
The problem of classicalization of quantum Universe and quark

con�nement

A.Yu. Kamenshchik

L.D. Landau Institute for Theoretical Physics of Russian Academy of Sciences, Kosygina str. 2, Moscow

117334

Russia

Abstract

We apply developed earlier proposal for the choice of the preferred basis in the many-worlds

interpretation of quantum mechanics and quantum cosmology to the systems possessing some non-

Abelian symmetry. It is shown that in this case the subdivision of the system into subsystems

implying the choice of the preferred basis should be arranged in such a way that the wave functions

of the subsystems belong to the trivial representation of the corresponding non-Abelian group. In

the opposite case the procedure of the choice of the preferred basis does not work. Obtained result is

used for a \toy" explanation of the phenomenon of quark con�nement in quantum chromodynamics.

This paper is dedicated to the memory of Nikita Alexeevich Sveshnikov. I had a happy opportunity

to work with him in the end of 70th and at the beginning of 80th on the problem of infrared divergences

in the quantum-�eld-theoretical models possessing non-Abelian symmetry. As known this problem is

closely connected with the problem of quark con�nement. It was N.A. Sveshnikov who �rst understood

that the consistent application of the method of asymptotic dynamics developed for �ghting with infrared

divergences in quantum electrodynamics [1] to massless theories with non-Abelian symmetries can imply

non-trivial restrictions on the spectrum of the theory including the absence of color states in chromodynamics

[2]. We worked together until the middle of 80th, but after that I often used to discuss with Nikita di�erent

topics and he was always able to give a good advice.

I believe that his presence in the science can not be reduced to the list of his publications. His indirect

inuence on people around him was very strong and important and I can �nd its traces in works rather

distant from his activity in such �elds as, for example, quantum cosmology.

In the work which I present here some distant topics are mixed{ interpretation of quantum mechanics,

problem of classicalization of quantum Universe and quark con�nement. I shall try to show how the

phenomenon of quark con�nement could be understood (or illustrated) from the simple quantummechanical

considerations connected with the many-worlds interpretation of quantum mechanics [3].

Let me describe briey the basic points of many-worlds interpretation of quantum mechanics. In the

Copenhagen interpretation there are two types of fundamental processes: evolution of the wave function

according to Schr�odinger equation and reduction of the wave packet. This second process is connected

with the special role of classical observer or even consciousness [4].

In the many-worlds interpretation of quantum mechanics only quantum objects are primary ones and

only one fundamental process exists: evolution according to Schr�odinger equation without reduction of

the wave packet. Instead one can speak of a simultaneous realization of di�erent outcomes of quantum

measurement in di�erent branches of the wave function of the Universe or in di�erent \parallel" Everett

worlds.

Resolving some old problems of interpretation of quantum theory the many-worlds interpretation

invokes new questions. The special place between them occupies the problem of the choice of the preferred

basis or in other words the choice of the procedure which determines what namely pieces of the wave

function of the Universe can be regarded as those describing the autonomous Everett worlds or branches.

In our papers [5] we have revived the old proposal of Zeh [6] and gave somewhat di�erent and more

transparent arguments in favor of this proposal. It is necessary to stress also that this basis, which we

shall call bi-orthogonal, was �rst introduced at the dawn of quantum mechanics (and many years before

the many-worlds interpretation came into existence) by Schr�odinger for the purpose of describing the

quantum correlations between the interacting subsystems [7].

Here I would like to discuss briey the relation between the procedure of the choice of the preferred

basis and the symmetry of the system under consideration. It is shown that in this case when the system

possesses some non- Abelian symmetry the subdivision of this system into subsystems implying the choice

of the preferred basis should be arranged in such a way that the wave functions of the subsystems belong
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to the trivial representation of the corresponding non-Abelian group. In the opposite case the procedure

of the choice of the preferred basis does not work [8].

For illustrative purposes we begin the consideration with the well-known example of the Stern-Gerlach

experiment. Let the system consist of the device which is initially in the state j�i

0

and is ready to measure

the spin z-component of an atom, which is in the state

(c

1

j "i+ c

2

j #i);

where j "i and j #i are s

z

= �

1

2

orthonormal eigenstates of an atom. The initial state of the system as a

whole is

j	i

in

= (c

1

j "i+ c

2

j #i)j�i

0

: (1)

We see that before the measurement both the device and atom are in the pure state. Let us introduce now

the unitary operator

^

U describing the interaction between the atom and the device. The measurement

operator

^

U satis�es the following rule [21]:

^

U j "ij�i

0

= j "ij�

"

i

^

U j #ij�i

0

= j #ij�

#

i (2)

where j�

"

i and j�

#

i are the orthonormal eigenstates of the device indicating the fact of measuring

respectively the values s

z

=

1

2

and s

z

= �

1

2

. Under the action of

^

U the state (1) transforms into

j	i

out

=

^

U j	i

in

= c

1

j "ij�

"

i+ c

2

j #ij�

#

i: (3)

>From the point of view of Copenhagen interpretation the unitary transition from the state (1) to the

state (3) is only the �rst part of the process of quantum measurement. We know that really we can

measure only one value of s

z

, but in (3) there are two terms corresponding to both possible results of

measurement. The second part of the quantum measurement consists in the elimination of one of these

terms:

j	i

out

) j "ij�

"

i

or

j	i

out

) j #ij�

#

i: (4)

The process (4) is nothing else but a reduction of the wave packet. However, in the framework of the

many-worlds interpretation we reject the process (4) and recognize the simultaneous existence of both

terms in the superposition (3): the measurement process is reduced to the arrangement of correlations

between the atom and the device and both outcomes of the experiment exist in parallel worlds. Thus,

instead of the reduction of the wave packet we have the \branching" of our world. From the mathematical

point of view the branching is merely defactorization of the wave function of a system with respect to

the subdivision of this system into subsystems (see eq.(3)) and these subsystems undergo the transition

from pure quantum states to mixed ones.

Generally speaking, every transition of the wave function of a system which consists of two subsystems

from the factorized state

j	i

in

= j'ij�i (5)

to the defactorized state

j	i

out

=

n

X

i=1

j'

i

ij�

i

i; (6)

where the states j'i, j'

i

i describe one subsystem and states j�i; j�

i

i - another one, and n > 1 can be

regarded as a process of branching or defactorization of the wave function.

We see that in the decomposition (6) every state of one subsystem j'

i

i has the uniquely determined

counterpart j�

i

i, which is usually called the \relative state". However at the same time we can choose

another set of basis states j ~'

i

i instead of j'

i

i. In this case we shall have another set of relative states

j~�

i

i and the wave function (6) will be written in the following form:

j	i

out

=

n

X

i=1

j ~'

i

ij~�

i

i: (7)
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>From the mathematical point of view there is not essential di�erence between formulas (6) and (7), they

simply describe the same wave function, but written in di�erent bases. But from the physical point of

view the choice of di�erent bases implies di�erent decompositions of the wave function into some sets

of branches which correspond to di�erent real worlds, which can be perceived experimentally. Thus, we

have to make a de�nite choice of some preferred decomposition or preferred basis.

One can say that within the usual \common sense" it is impossible to choose in the case of Gerlach-

Stern experiment another basis but

j "ij�

"

i and j #ij�

#

i; (8)

because our device is constructed and arranged to measure namely spin z-component of an atom. It is true,

but in order to separate other possible choices of the basis we have to resort to some classical properties

of the device. However, this deprives us of the main advantage of the many-worlds interpretation - its

purely quantum nature. Moreover, the common sense are applicable only in simple quantum mechanical

experiments. In a more complicated case of quantum cosmology common sense does not always work. The

point is that it is necessary to work out the procedure of constructing the preferred basis originating from

purely quantum notions. We can try to extract this procedure from the consideration of rather simple

quantum mechanical problems, generalize it, then apply it to more general and complicated situations

amounting to problems of quantum cosmology.

The construction of the preferred basis, which we would like to advocate, consists of two steps: (i)

splitting of the system under consideration into certain subsystems and (ii) choosing the proper basis for

one subsystem and the basis of relative states for another subsystem. It is necessary to stress that from the

point of view of our prescription, we can choose any subdivision of the system into subsystems, because

for every such subdivision our prescription gives an unique preferred basis. In contradistinction to the

Copenhagen interpretation, where observation and measurement play a special role, in the many-worlds

interpretation they are simply interactions between subsystems. Therefore, we shall treat our subsystems

on an equal footing without indication which of them is the observer and which is the observable. All

notations concerning the corresponding subsystem will be marked by subscripts I and II.

It seems rather reasonable to require that the belonging of di�erent terms of the decomposition of

the wave function to di�erent worlds must be accompanied by their mutual orthogonality; moreover, we

require also orthonormality of substates corresponding to our subdivision of the system into subsystems.

It leads immediately to the following decomposition:

j	i =

X

n

c

n

jni

I

jni

II

; (9)

where the both sets of basis vectors jni

I

and their relative states jni

II

are orthonormal

I

hnjmi

I

= �

nm

;

II

hnjmi

II

= �

nm

(10)

and c

n

are some complex coe�cients which determine a priory probabilities p

n

of realizing the nth Everett

world:

p

n

= jc

n

j

2

X

n

jc

n

j

2

= h	j	i = 1: (11)

This prescription for the choice of the preferred basis yields also a constructive algorithm for �nding it.

Consider the density matrix of the total system �̂ = j	ih	j and the density matrix of the �rst subsystem

I, obtained by tracing out the degrees of freedom of the subsystem II

�̂

I

= Tr

II

j	ih	j: (12)

Substituting the decomposition (9) and using the orthonormality condition (10) one �nds that the latter

has the form

�̂

I

=

X

n

jc

n

j

2

jni

I I

hnj (13)

whence one concludes that the vectors jni

I

of the preferred basis solve the eigenvalue problem for the

density matrix �̂

I

�̂

I

jni

I

= p

n

jni

I

;
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p

n

= jc

n

j

2

(14)

with eigenvalues which exactly coincide with the probability weights (11) of Everett worlds. Similarly to

jni

I

the basis vectors jni

II

are the eigenvectors of the density matrix of the second subsystem

�̂

II

= Tr

I

j	ih	j; �̂jni

II

= p

n

jni

II

: (15)

The both density matrices �̂

I

and �̂

II

are Hermitian, positive semi-de�nite and (in view of the

normalizability of j	i) bounded operators. Therefore they possess a countable eigenvalue spectrum

and their orthonormal eigenvectors are unique up to inessential phase factors. The only exceptions are

the invariant subspaces of �̂

I

and �̂

II

corresponding to possible degenerate eigenvalues, in which the

eigenvectors can be determined up to unitary rotations. These subspaces can only be �nite-dimensional,

because the sum of eigenvalues over each subspace is less than (or equal to) 1 in view of (11).

The basis (9), to which we came due to reasoning of the above type, coincides with the bi-orthogonal

basis of Schr�odinger [7], introduced for the study of quantum correlations between interacting quantum

systems or with the \Schmidt canonical basis" of Zeh [6], used in the context of the many-worlds

interpretation. This basis can be obtained by solving two eigenvalue problems (13) and (14) for the

density matrices of relevant subsystems. The non-uniqueness of this solution in the invariant subspaces

of the degenerate eigenvalues was also mentioned in Ref. [6], but without a concrete proposal for its

resolution. Here we shall go somewhat further and resort to an additional principle in order to �x this

basis uniquely. From Eqs. (13){(14) it follows that the preferred basis depends on the quantum state j	i

of the total system and consequently evolves in accordance with the Schr�odinger evolution of j	i = j	(t)i.

Then it seems natural to require that the decomposition of these invariant Hilbert subspaces into equally

probable Everett worlds should be stable against this dynamical evolution. To demonstrate the e�ciency

of this principle we return to the above mentioned example of the Gerlach-Stern experiment.

The density matrices of measurement device and atom corresponding to the state of the whole system

after measurement (3) take the form

�̂

device

= jc

1

j

2

j�

"

ih�

"

j+ jc

2

j

2

j�

#

ih�

#

j

�̂

atom

= jc

1

j

2

j "ih" j+ jc

2

j

2

j #ih# j

and according to our algorithm preferred basis is given in the non-degenerate case jc

1

j

2

6= jc

2

j

2

by the

vectors (4).

For jc

1

j

2

= jc

2

j

2

=

1

2

this procedure becomes insu�cient, because the preferred basis in our two-

dimensional Hilbert space is already not unique. For example, instead of (4) one can take the basis of

vectors j !ij�

!

i and j  ij�

 

i,where

j !i =

1

p

2

(j "i+ j #i);

j  i =

1

p

2

(j "i � j #i);

j�

!

i =

1

p

2

(j�

"

i+ j�

#

i);

j�

 

i =

1

p

2

(j�

"

i � j�

#

i): (16)

For the case c

1

= c

2

=

1

p

2

Eq. (15) also solves the eigenvalue problems. The new basis is however

unstable with respect to the measurement-like interaction between the device and the atom. Indeed, two

branches of j	i in this basis

j	i =

1

p

2

j !ij�

!

i+

1

p

2

j  ij�

 

i: (17)

In contrast to branches (15) of the decomposition (16) those branches (4) of the decomposition (3) are

not destroyed during the dynamical evolution by the operator

^

U and thus form the unique preferred basis

which gives the reasonable many-worlds picture of the Gerlach-Stern experiment.
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The procedure of the choice of preferred basis considered above is constructed in such a manner to

be independent of the particular splitting of the system under consideration into subsystems. However,

in some cases the requirement of de�niteness and uniqueness of our choice can e�ect a procedure of

splitting. We can represent one example of such \back reaction" of the prescription for preferred basis

to the splitting.

Let us assume that there is some conserved non-Abelian symmetry in our Universe i.e. Hamiltonian,

governing the evolution of the Universe contains operators, belonging to some non-trivial representations

of a non-Abelian group in such a way, that this Hamiltonian as a whole belongs to singlet representation

of this group. Besides, we suppose that the wave function of the Universe belongs also to a singlet

representation of the symmetry group. Under a singlet representation of some group one usually means

the trivial representation of this group. When we speak about the wave function in the singlet (trivial)

representation we mean that this wave function is intact under the action of all group elements gj	i = j	i

and is annihilated by every generator of the corresponding Lie algebra. In the case of an operator

belonging to a singlet representation (in our problem we consider Hamiltonian) the following equality is

correct

gHg

�1

= H;

where g is an arbitrary group element. In other terms it means that the Hamiltonian commutes with all

the generators of the corresponding Lie algebra. It is necessary to stress that the wave function can be

constructed in such a way, that being in singlet (trivial) state it can contain components, belonging to

the non-singlet (non-trivial) states. Mathematical background of this phenomenon consists in the fact

that the direct products of elements belonging to non-trivial representations of a non-Abelian group can

contain in the decomposition into the direct sum the trivial representation. For example, the couple of

particles with the one-half spin can have total spin which equals to zero. Analogously, baryon, which

consists of three color quarks belonging to non-trivial (fundamental) representation of SU(3) group can

be colorless and belonging to the trivial representation of this group. In accordance with written above we

can choose the splitting of the system under consideration (Universe) in such a way that both subsystems

are in non-singlet states, while the Universe as a whole is in a singlet state. All subsequent consideration

is valid for arbitrary gauge theory with non-Abelian symmetry, but tending to clearness of our picture we

shall speak about color group SU(3) in quantum chromodynamics and as a subsystem with a non-zero

color charge we can take a single quark or another color combination of quarks and antiquarks. In the

case then one subsystem is quark and another|the rest of the Universe the wave function takes the

following form:

j	i =

3

X

i=1

1

p

3

j'

i

ij�

i

i: (18)

Here, three functions j'

i

i belong to the fundamental representation of SU(3) group while functions j�

i

i

belong to one contragradient to fundamental. The density matrices for both subsystems have degenerate

spectrum (p

i

=

1

3

for i = 1; 2; 3). Thus in order to get a unique preferred basis we must resort to

the principle of dynamical stability of this basis. The Hamiltonian governing the evolution of the wave

function (18) can be represented in the following form

H = H

'

O

I

�

+ I

'

O

H

�

+ J

'

O

J

�

: (19)

Here the �rst term in (19) denotes free Hamiltonian of �rst subsystem which must belong to trivial

(singlet) representation of SU(3) (and I

�

is the unite operator acting in the subspace, describing the

second subsystem), the second term is free Hamiltonian for the second subsystem and the third term in

the right-hand side of (19) describes the color interaction between subsystems. The color currents J

'

and

J

�

must belong to some nontrivial representations of SU(3) and their direct product must be constructed

in such way to be belonging to the singlet representation of symmetry group. It implies that term J

'

N

J

�

contains more than one item [9]. Let us now act by the evolution operator determined by Hamiltonian

(19) on the one branch j'

k

ij�

k

i from the decomposition (18). Due to the structure of the term J

'

N

J

�

,

including several items our branch under consideration turns into several branches analogously to the

splitting of the branch j !ij�

!

i in the Gerlach-Stern experiment under the action of measurement

operator

^

U . Every branch j'

k

ij�

k

i will undergo this additional splitting and this phenomenon does not
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depend on the particular way of the decomposition of the wave function (18). Independently of the choice

of our preferred basis its elements (\branches") will rotate with permanent velocity in the space of internal

color degrees of freedom. Thus we do not have the preferred basis for this decomposition because we

do not have the branches which are stable against the quantum evolution. All the above considerations

remain true in the cases when the subsystem I is not a single quark but an arbitrary combination of quarks

and antiquarks which belongs to some non-singlet representation of SU(3). Moreover, our arguments are

applicable to every non-Abelian symmetry group. At the same time the splitting of the system into singlet

subsystems resolves the problem of stability of the preferred basis because in this case the non-trivial

(color) interaction between subsystems can not take place. Thus, we have seen that the rules for the

choice of the preferred basis formulated in Sec. II in some cases can e�ect the choice of splitting of the

system into subsystems. The requirement of consistency imposes some restrictions on the arbitrariness

of this splitting. In the case of SU(3) color group of quantum chromodynamics the impossibility of the

consideration of a single quark or some color combination of quarks and antiquarks as the subsystem

can be treated as some hint for a purely quantum mechanical proof of the con�nement phenomenon in

QCD or as some \toy" approach to this phenomenon. Let us stress once again: in the presence of exact

non-Abelian symmetry for the wave function of the Universe and for Hamiltonian governing its evolution

decomposition of the Universe into non-singlet parts do not induce the unique and consistent choice

of the preferred basis because all the possible bases will be unstable against interaction Hamiltonian

belonging to the trivial representation of the corresponding non-Abelian group but composed from non-

trivial currents. Note that treating Stern-Gerlach experiment we could choose the unique preferred basis

even in the case of degenerate density matrix of the atom (degeneration of density matrix is equivalent

to the fact that the wave function is invariant under the action of rotation group SO(3)) because the

Hamiltonian of interaction between atom and device was not invariant under SO(3) and had a chosen

direction |orientation of magnetic �eld.

In the conclusion I would like to mention once again Nikita Alexeevich Sveshnikov. Work presented

here is literally penetrated by ideas and thoughts which I have caught from him during our joint work

and permanent discussions. Sometimes, I feel that my attitudes to di�erent questions of physics (often

distant from immediate interests of N.A. Sveshnikov) are molded by my communication with him. The

very interest to the phenomenon of con�nement and to the role of non-Abelian symmetries in quantum

�eld theory was connected with my work with Nikita. Moreover, long before I �rst heard about many-

worlds interpretation of quantum mechanics I have learned from him the attitude to quantum theory as

to the theory more fundamental than classical mechanics. It was in strong contrast with the Copenhagen-

style ideas represented in the standard text-books and namely conversation with Nikita helped me to

understand many-worlds interpretation and in indirect way to start my work in quantum cosmology. One

can add also that Nikita was fond of papers of Yu.M. Shirokov [10] devoted to elaboration of universal

Hamilton mechanics and studying these papers (again under Nikita's inuence) helped me very much in

my work.

This work was partially supported by Russian Foundation for Basic Research via grant No 96-02-

16220.
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