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Abstract

Evidence is presented that the solutions of the Bethe ansatz equations for spin-%2 isotropic Heisenberg
chains in fixed total spin and momentum sectors are the roots of single variable polynomials with
integer (or integer based) coefficients. Such solutions are used as a starting point for investigation of
long chain (critical region) properties. In the total spin S = 0 sector I conjecture explicit formulae

for the Bethe string configuration labelling of all left and right tower excitations in thek = 1, SU(2)
Wess-Zumino-Witten model.

1. Introduction

This paper presents empirical observations about the states of (even) length L periodic chains of s = %2 spins
anti-ferromagnetically coupled as defined by the Hamiltonian

1<, . .
H= EZ G Gy,  OLa1= 0 1
i=1

where ilabels both the sites and distance along the chain and the components of ; are the Pauli spin matrices.
Symmetry dictates that eigenstates of (1) can be labelled by total S and S, and (quasi) momentum K. Each
stretched state (S, = S)is constructed fromN = L/2 — Soverturned spins from the totally aligned spin
configuration. Any S, < Sstate can be generated by angular momentum lowering operators but will not be
discussed here. Bethe [1] (for an English translation see [2]) showed (1) is soluble by associating with each
overturned spin a (quasi) momentum eigenvalue k,,, —m < k, < 7. These eigenvalues satisfy the Bethe ansatz
equations (BAE)

\L .
(Anﬂ) | (M) A, = cot(ﬁ), mm—1,2.% s @
Ap— 1 e \An — Ay — 21 2

The (scaled) sum of the k,, is the total momentum

N
K:(L)ka N=L g 3)
27 =1 2

an integer which, with (symmetric) modulo L understood, satisfies —L/2 < K < L/2. Solutions for negative K,
—L/2 < K < 0, are obtained from those at positive K by sign reversal of all k,,. The energy of any state thatisa
solution of the BAE (2) is given by

L N
E= 5 - 2> (1 — cos(ky) =

4
1+ A

N | =

N
- Z 3 (4)
n=1 n=1 n
and is clearly unaffected by k,, sign reversal.
While some progress has been made in the numerical solution of the BAE (2) (cf Hao et al [3]) it remains a

difficult challenge. Here I present evidence that there exist important relations satisfied by BAE solutions that
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can be used as easily implemented checks on existing numerical solutions and/or provide alternative methods of
solution. The evidence is most apparent when instead of momenta k or rapidities A one uses x = 2cos(k).
Consider the case that K = L/6,L/4, or L/3 (or their negatives) and let Dy = Dg(L, S) be the total number of
eigenstates of (1) at the given K, Land S. I find the polynomial

NDyg NDyg ) L
PeG) = [[ & —x) =3 nx, N== =5, ®)
i=1 i=0

formed from the BAE solutions has real, rational coefficients ryand can be rationalized to form an integer
coefficient polynomial I (x). One can consider the process in reverse. For any given Ix (x) existing commercial
software such as Maple will efficiently find all roots x; and a finite search algorithm can find the Dx combinations
of N momentak; = +arccos(x;/2) that satisfy the BAE. In principle I (x) can be found from a single' solution
X = X, say, obtained to some minimum accuracy, by an integer relation algorithm such as PSLQ [4]
implemented on Maple. More practically, one can combine all the solutions of the BAE that are most easily
found with aless accuracy demanding PSLQ to determine Ix (x). Similar considerations apply for K = 0 and
L/2. Here symmetry allows solution of the BAE to be determined from integer coefficient polynomials Ix (x) of
reduced degree whose roots are only the non-trivial x;.

For all other K the BAE solutions are the roots of polynomials whose coefficients are ‘integer based’. What
this means is that the Kin the interval 0 < K < L/2 group into blocks K4 with My members consisting of those
Kwhose greatest common divisor with Lis d. The number of members My = ¢(L/d)/2 where ¢(n) is Euler’s
function (cf Hardy and Wright [5] section 5.5). If M4 = 1 the situation is that described by (5); otherwise the
members of K4 have the same Dy and the terms cos2mmK/L), m = 0,1, ..., M4 — 1, are integrally
independent. The root polynomial analog of (5) for any member is

NDg NDg My—1 o 4
Pr(x) = H (x — xi(K)) = Z 1o,i + 2 z Tim,i COS (TmK) x! (6)
i=1 i=0 m=1

where the coefficients r ; and r,,, ; are real, rational and independent of K and which can, by rationalization, be

NDk _ (K)

converted to integer. Thus although the coefficients pl.(K )in Py (x) = Zi: o P x' arein general irrational they

My—1

ey Tm,i €OS (27mK /L) from

are expressible in terms of rational coefficients by the identity pi(K ) =1+ 2>
6).If pi(K )is known to sufficient accuracy, the PSLQ algorithm will determine the rationals ro ; and rp, ;. In other
words, if all BAE solutions for one member K are known, the polynomials Py (x) for all other My members
follow trivially without reference to the BAE.

All of the polynomial generated BAE solutions have been plausibly identified with Bethe string
configurations and, by continuity in L, define the Bethe string content at large L. This is important for discussion
of the critical behaviour of (1) which Affleck [6] showed is thek = 1, SU(2) Wess-Zumino-Witten (WZW)
model. Subsequently Affleck et al [7] provided additional analytic and numerical confirmation. An apparent
discrepancy in the asymptotic behaviour of the ground state energy has recently been resolved [8], justifying a
systematic study of other states in long chains to identify the Bethe string content of the left and right tower
excitations in the WZW model in the critical region.

IntheS = Osector, the asymptoticL — oo energy eigenstates of (1) are expected [7], based on WZW and
conformal field theory arguments, to have the form

N 1y 7r_2 7r_2 2s(s + 1) 1
E= L(zm(z) 2) o L (H In(L/Lo) +O(ln(i>)] v

where € and -2 s are both non-negative integers and L are non-universal numbers. The spin s in (7) is the spin sp

(sp) of the independent left (right) excitations in WZW with ?L + s} = S = 0. With the definition
o = Hn: . (1 — x"), the multiplicity of states in (7) at energy € and relative momentum « = K-K,,
K. = (L/2 + 2 smod 2)L/2, is the coefficient of e°g* in the generator

eo @0 B e/ (€2 B (%)
Z (e, q)(e/o) — Z e(29) Z L R2
hg=2s (€D

2s=0/1 hp=2s (EZ/Q)hL

®)

considered as a series expansion in e. The notation (e/0) indicates that 2 s and 1-string holes hy , hy, are either all
even or all odd. The essential feature of the generator (8) is its form as a product of independent left and right
tower multiplicities. Every term in a tower factor B,EZS) (x)/(x)n, h = hy or hg, can be identified with a Bethe
string configuration; the (x), denominators account for all possible 1-string excitations obtained by
rearrangement of the available 1-string holes  while the B{*) (x) are polynomials determined by the remaining

(n>1)-strings. General (conjectured) formulas for the B,SZS) (x) have been confirmed by high order numerical

! Provided Ix(x) does not (accidentally) factorize into smaller integer coefficient polynomials. Then a solution is needed for each factor.
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calculations to satisfy the WZW tower excitation sum rules

oo
xS0 BE,,(0) ) (Dasp2r = (x5 — X6 /(1) . )
v=0

This brief synopsis of the main results of the paper is expanded in the following sections together with
numerous illustrative examples of BAE solutions.

Section 2 is a summary of Bethe’s solution for N = 2 overturned spins butis here recast in a form that leads
directly to (5) and (6). Since the most efficient implementation of the PSLQ algorithm requires the number of
unknown constants to be available, section 3 is devoted to deriving formulas for D (L, S). At the symmetry
points K = 0and L/2, states are either non-degenerate or 2-fold degenerate coming from the inversion
symmetryk, — —k, thatleaves K and E unchanged. Explicit formulas for these symmetry distinct state counts
are also derived. Section 4 provides example BAE solutions at K = 0 and L/2; some of these are directly
derivable algebraically from (2) and provide justification for (5) that extends beyond the N = 2 overturned spin
case. Section 5 reports some general K results for N = 3. Here confirmation of (5) and (6) is based entirely on
numerical inference but is important because it shows the conjectured structure is not an accidental feature that
arises because the BAE have an analytic solution when N = 2. Section 6 is devoted to the example L = 16,

S = 0. Results from sections 4, 5 and 6 of the more extensive polynomials and associated state lists are provided
as text files L20_nondegen.txt, 3_overturned_spins.txt and L16_singlet.txt respectively in supplementary data.
Section 7 describes the basis for the multiplicity generator (8) and the general formulas for the B,EZS) (x).
Conclusions form section 8.

2. Two overturned spins

The BAE (2) for two overturned spins are

)\1+1:L:>\1—/\2+2z:: /\2—1:L (10)
)\1*1 )\1*)\2*21 )\2+1
and the equality between first and last term implies the roots of unity condition
)\I——i_l. )\2+1. :exp(Zﬂ'iK/L):>k1+k2:2—7TK (11)
)\1 — 1 /\2 — 1 L

with the scaling convention (3) for the total momentum. We can also use the first equation in (11) for a second
relation,
N+ T
X=———, T= tan(wK/L), 12
2= T (7K/L) (12)

and on inserting this into the first equality in (10) obtain

\L—1 .
>‘1_+1. = w, (13)
Al — i N—9DT -2
aresult thatapplies equally to \,. A useful equivalent to (13) for either A obtained by cross multiplying and
rearranging is
3 NL_2 Lo . [TK N1 N 7K
N+ DA+ 9) — (A — i)* %) sin T =2((A+ 1) — (A —1D" YHcos T . (14)

For K = 0, the solutions to (14) are given by the roots of unity condition (A + i)/(A — i) = exp(2min/
L - 1)ork, =2n7/(L — 1),n=—-L/2 +1,—-L/2 + 2,...,L/2 — 1from which we must excludek, = 0
as the solution for the S = L/2 uniform state. The S = L/2 — 2 solutions are the distinct pair combinations
satisfyingk; + k, = 0. Thereare L/2 — 1such (non-degenerate) pairs and these exhaust the k,, list for pairs. In

. . ~S .
summary, the solution lists k; and k,s< of momentum pairs [k, k,] for K = O are

AL/2-2 2nmt —2nm L L/2—2
k = , yn=1,2..,=—1|, kl’*?=[Null], 15
0 [[L—l L—l] 2 ] ‘ (Nl )

adopting the convention of using hatted variables for the non-degenerate statesat K = 0 and L/2. ForK = L/2,
there is one non-degenerate singular solution identified with \* + 1 = 0. We write the state formally as

[Sing] = [7/2 + ic0, /2 — ic0] = [—7/2 + ico, —7/2 — i00] (16)
with finite quantities such as the energy contribution to (4), AEg;,; = —2, understood to be the result of a
careful limiting procedure. The solutions arising as roots of unity arek, = 2n7/(L — 2),n = —L/2 + 2,

3
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—L/2 + 3,...,L/2 — 1from which we exclude k, = mas the solution for theS = L/2 — 1 spin-wave. The

S = L/2 — 2solutions are the distinct k,, pairs which sum to 7 (modulo 27). One such setisk; = 2nw/(L — 2),
k, =@ — 2 = 2n)7/(L — 2),0 < n < |L/4]. The negatives, —k;, —k; are also solutions and exhaust the
possibilities. Since reversing the signs of all k,, leaves the energy unchanged as well as the sumk; + k, = 7
(modulo 27), each state is doubly degenerate. In summary, forK = L/2,

~L/2-2 . _ 2 L—-2-2
kijy = lisingll, K/ zz[[L’frz,( — 2”)”],n =1,2,..., |L/4] - 1] (17)

where it is understood that we list only the positive half of the degenerate states.
For0 < K < L/2 we first express (14) in alternative forms. By dividing through by (\* + 1)™/% we get the

equivalent
. [k (K)o (k) (ko K
sm(E(L — 2))SIH(T) =2 51n(2)51n(2(L 1))cos( i ) (18)

which is useful for contributing to the discussion by Bethe [1] and Essler et al [9] of a possible complex pair
k = 7K/L =+ iyg solution for K > 1. On substituting either k into (18) we find after some algebra that yx must
satisfy

cos (1K /L) = {sinh (L — 2)/2)/ sinh(yL/2), K odd, o)

cosh(y (L — 2)/2)/ cosh(yL/2), K even.

The left hand side of (19) differs from unity by O(1,/L?) for large L whereas the right hand side for odd K
never exceeds 1 — 2/L. Thus we recover the known result that for fixed odd K > 1 there is always some critical
length L satisfying cos(mK/L.) = 1-2/L.beyond which the complex solution transforms viayg — iy to two
real solutions. The (19) for even K always has a solution but is interesting in that the associated A pair has
imaginary parts J(\) ~ £2L' /2 /(mK) for fixed Kand L — oo that do not approach the ideal 2-string values
+1[10].

A second alternative forms the basis for the polynomials (5) and (6). Squaring both sides of (14) yields an
equation explicitly dependent on 2\ only which we write as N =2+ x/Q2 — x),x = 2cos(k). After
rearranging and multiplying through by the denominator factor (2 — x)* ' and a convenient normalization we
arrive atan equation for k given by

Ck(x)=A+B—(A—B) cos(?) =0, k, = tarccos(x,/2), (20)

where the x,, are the roots of Cx(x). In the process of squaring (14) we have lost k,, sign information but this can
be recovered by a finite m, n and sign search process in which we demand the correct signs in (20) are those for
which k,, + k, = 27K/L. The A and B in (20) are polynomials in x = 2cos(k) of degreeL — 3andL — 1
respectively; explicitly,

2
x + 2 L/2-1 L _2
A= ——— Z ( )(X + Z)L/Zflfn(x _ z)nfl
43 ( 2 \2n -1

_ 2

P 2)([L/§z% 1(_1)W(L/2 -2 — m)xL/zzm] ,
m=0 m

L2 Q1)

2
x—2 L—-1 _ _
=— (x + 221 (x — 2)" 1)
gL—2 (;(Zn — 1)

[L=2)/4] 2
—woo| > (2 s m ), L2 21 7 2m
“ 2)( m=0 =D ( m )x (x N L/2—1—-—m )] '

To reduce Ck (x) to the polynomial PI‘E (x) whose only roots are those for S = L/2-2 we must divide out the
factor x — 2 cos (2K /L) for the S = L/2-1 spin-wave. If Kis odd we must also divide out two spurious root
factors (x — 2 cos (wK/L))(x + 2 cos (wK/L)); the first (k = 7K/L) is easily shown to be a solution of (18) but
has no pair partner for a BAE solution because the second (k =7 — 7K/L)leads to left and right hand sides of
(18) having opposite sign. In summary,

3 2
ey /¥ 2akx” = @ 2000%) g g
+2 + 4C1K + 2C2K

Cx(x)/(x — 2¢ak), K even

PP (x) =

27rnK)’ 22)

o cos(

where the roots x;, of Plé/ 272 combineintoL/2 — 2(L/2 — 1) BAE solution pairs for K odd(even). For every
BAE solution of (22) one automatically has also a BAE solution for —K obtained by simply reversing all k,, signs.

4
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A summary list of the number of solutions x which is the non-degenerate part of Di(L, S) for K = 0and L/2,
vk which is one-half of the remaining degenerate partand vx = Dg(L,S)for0 < K < L/21is

[DO: Vo, VK(O <K< L/Z), vL/2 DL/Z] = [L/2 -1, 0, L/2 -2, L/2 -1, :LL/4J -1, 1] (23)

where the ellipsis indicates a repetition of the alternating sequence L/2 — i,i = 2,1,2,... toatotalof L/2 — 1
terms. The total number of states from (23) is

L/2
L(L—-3
Dy + Z{Z VK} + U= L9 (24)
K=0 2
in agreement with the expected binomial difference ( 1{}) — ( N L_ I for N = 2 overturned spins.

ForK = L/6,L/4 or L/3 all cosine terms in (22) are rational so that (22) simplifies by elementary division to
a polynomial with rational coefficients. As example, for L = 12,S = 4and K = 2, 3 and 4 we find the

21/](
i=0

I} = [4, 36, 48, —111, —133, 87, 99, —27, —29, 3, 3],
I} =[5 6, —22, -8, 22, 2, -8, 0, 1],
I} = [4, —12, —24, 61, 5, —49, 13, 13, —7, —1, 1]. (25)

rationalized polynomials Pg (x) = > I ;x' where the integer lists [I§ ;, i = 0..2vg] are

In general let the roots x; of the polynomials PL/?~2(x) be arranged in lists of non-decreasing 2(x;) order. Then
the corresponding BAE solutions, which are the momentum pairs [k, k,,] satisfying k,, + k, =27K/L, are
compactly given in lists k]%/ 272 = [[ny, ], [n3, nyl, ...] where |ny| are position pointers to the root lists and

kn, = ﬁarccos(x|ni|/2)- (26)
n;

For the example leading to the polynomials (25), the associated state lists when energy ordered are

ky = [[—1, 3], [2, =51, [4, —71, [6, —8], [9, 1011,
ki =1[[—1, —4], [2, —5], [3, 8], [6, 711,
ki=I[[-3, —4], [-1, —6], [2, —10], [5, 9], [7, 8]]. 27)

For general Kin0 < K < L/2 excludingK = L/6,L/4 and L/3 treated above, elementary algebraic division
in (22) will lead to products of cosines that can always be eliminated by use of 2cos(a)cos(b) = cos(a + b) + cos
(a — b). The resulting polynomial PIQ/ 272 has coefficients that are sums of (possibly many redundant) c,x. By
using various trigonometric identities it is possible to reduce the number of ¢, in the coefficient of any x' to a
minimum number of integrally independent terms. As a first step in this reduction, inversion and shifts

Cog = (—l)KC<%_H)K = (—1)KC(’1_%)K = Cl_mK = --- (28)

allow replacement of any ¢ by ¢, with 0 < m < |L/4]| provided we treat separately even and odd K so that
the replacement rule (28) with its (—1)* factors is the same for all K in either category. Such separation with
distinct rules for different groups but the same rules for every K within a group dictates that the general grouping
is defined by blocks K4 where d is the greatest common divisor of K and L. The number of members M4 in block
Kqis ¢(L/d)/2 where ¢(n) is Euler’s function and the division by 2 arises from our restriction 0 < K < L/2.
Any K4 with one element will be one of L/6, L/4 or L/3 which was considered in the preceding paragraph.
Before dealing with the general ¢,k reduction to an integrally independent set consider theL = 12,S = 4
example again. The distinct blocks are K; = 1,5and K, = 2,K; = 3,K, = 4 so that only K; remains to be
treated”. The ci left after reduction by (28) are 1, ¢k, cox and cs but forK = K; = 1or5, ok = 1/2and
6k, = 0leaving only the integrally independent 1 and ¢ g, in which to express the result of the division (22). The
explicit result for the rationalized Pg from (22)is

2vg
Pi(x) = > (I + 2I3; cos (TK /6))x, K =1, 5 (29)
i=0

wherev, = vs = 4and

I'=1[-8,0,16,8, —1, —11, —7, 3, 2],
I} = [4, —4, —12, 11, 10, —9, —5, 2, 1]. (30)

This differs from (6) only in notation; in any specific case it is preferable to replace generic labels by the distinct
Kgvalues, e.g. {ro,r;} — {I;,I5} here. From the roots of Pg (x) we can construct the BAE states

2 . . .
Tuse K4 as alabel both for a single element and the set of elements { K4 }; the context determines what is meant.

5
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k14 - [[1) _2]) [3> _4]) [5) _6]) [7) _8]])

(3D
k54 - [[_2> _4]: [_1> _8]: [3> 7]) [5: 6]]

exactly as was done in arriving at (27) including energy ordering.

Some general results for the reduction of the number of ¢, below the | L/4| + 1left following use of (28)
have been obtained and I begin by illustrating this for block K;. The number of elements in K; cannot exceed the
|L/4]reached when block K, contains all odd Kin the interval 0 < K < L/2 so that one replacement beyond
(28) will always be required. This can be taken to be

0, L =4M

= 1 — 32
CMK; (71)M—1(5 4 Zr::(,l)mcmm)’ L=4M +2 (32)

where the L = 4 M case is the trivial cos(7n/2) = 0fornodd (e.g. ¢;x, =0inthe L = 12 example above). The result
in(32)forL = 4 M + 2 follows from the roots of unity condition ZHN:I cos(2n — )w/(2N + 1)) = 1/2
together with (28). No identities beyond (28) and (32) are needed if L/2 = p, p prime >2,0rL/2 = 2. IfLhas odd
divisors >1 some of the odd K in the interval 0 < K < L/2 will be excluded in the construction of K;. We will then
need as many new identities as there have been exclusions. One set of identities follows trivially from (32) — whenever
Lisamultiple of some4M + 2,M > 0, then

o = (—1>M*1(§ 4 Zf;k—l)mcfmm), L=fAM +2), (33)

whichwith f > 1supplements (32). An exampleisf = 2,M = 1giving ox, = 1/2usedinthel = 12
discussion leading to (29). Other identities follow from (33) which we get by first rewriting (33) as

1+ Zle(— 1)"2¢ink; = 0. On multiplying this by c;x, and again using the identity 2cos(a)cos(b) = cos
(a + b) + cos(a — b)we obtain

M
cig + Y (=D"™(C(fmrirk + Cpm—ik) =0, L = f(4M + 2). (34)
m=1
An example replacement using (34)isatL = 24 (f = 4,M = 1) whereK; = 1,5,7, 11 and withi = 1,
G5, = QK — Gk, Togetherwith ¢, = 1/2from (33)and cex, = 0 from (32) we are left with the required four

integrally independent 1, ¢ g, 6k, and csg, coefficients.
Everyblock K4 has its own set of rules analogous to (32)—(34). For example for K,,

-1, L =4M

1 . 35
M fgfzf:fcmxz, L=4M +2 (33)

replaces (32) and there are corresponding replacements for (33) and (34). For any given L and divisor d, at most
two ¢k, relations are needed to complete the division (22) provided these are used in replacements at each step
of the division process so as to always limit the maximum m in ¢, to a fixed number. Furthermore, the effort to
derive the required relations from formulas such as (32)—(34) can be avoided by using a PSLQ determination
instead. Specifically, for any L and d we know the number of K4 elementsis My = ¢(L/d)/2 and the empirical
evidence, based on PSLQ analysis, is that ¢,,x, = cos2mmKy/L),m = 0,1, ...,Myq — 1,areintegrally
independent and can be used as a basis in which to express any ¢k, m > My, as a sum with rational coefficients.
The PSLQ algorithm, with any K, as numerical input, will provide an analytical expression for ¢y, ¢, that suffices
for d even and in addition ¢, + 1)k, that is required for d odd. This procedure has been confirmed for all even L
to 100.

This completes the N = 2 overturned spin analysis that forms the basis for (5) and (6). Many examples have
shown the structure of (5) and (6), as defined by the blocks K4 with My members, remains unchanged for any
N < L/2 overturned spins. The N dependence lies entirely in the degree of the integer polynomials which relates
directly to the number of states Dx(L, S) determined in the next section.

3. State counting

To determine the number D(N, L, K) of states of total momentum K for N overturned spinsin alength L
periodic chain start with the observation that the binomial 16 is the total number of configurations 1 for fixed

N and L and these can be separated into exclusive classes g where d is a common divisor of Land N. The
distinguishing feature of class )4 is that for configurations T {4 (translations byn = 1, 2, ... from 1)) the first
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occurrence of Ty = Mgisatn = L/d. Such configurations are formed from d repetitions of N/d overturned
spins on segments of length L/d.

The configurations in 14 can be grouped into D4 blocks, each block containing L/d translation related
configurations T, ;{,n = 1, ...,L/d, which provide a basis for forming, by superposition, D, states for each
total K which is necessarily restricted to multiples of d. Adding together the state counts (L/d) D4 of every class

g gives the total ( L

N); this is the sum rule

LY\ _ L
(N) = dz dDd. (36)
|(N,L)
The notation used in (36) and the following is that (M, M) is the greatest common divisor of a pair M, M/
while m|M denotes m is a divisor, including 1 and M, of M and ¥,,,,s means sum over m subject to the constraint

m|M. More generally, the total number of periodic configurations of period L/d is (i]//i) and contributing to
this total are the classes Yy 1y/4 for d’|(N, L)/d. The corresponding sum rule is
L/d ) dL
= Z —D(N,L)/d’, d|(N) L), (37)
(N/d d'|(N,L)/d (N, L)

with (36) being the special cased = 1. The number of equations (37) are the number o, of divisors d of (N, L)
and these uniquely determine the oy unknown Dy. The number of states DN, L, K) then follows as
D(N,L,K) = > AuxDy (38)
d|(N,L)
where A x = 1ifd|Kand 0 otherwise; this incorporates the fact that K for states in class {4 are restricted to
multiples of d. By periodicity, K can only take on L distinct values giving » « Aax = L/d and sowe confirm

ZK D(N, L, K) = (1{7) from (38) together with (36).
An explicit formula for D4 is obtained as follows. Define f(d’) as the expression in the sums (37) and replace
that equation list by the equivalent

dL/(N, L
( /( )):g(d):Zf(d’), dI(N, I, (39)

dN/(N, L) 2

formed by the substitution d — (N, L)/d which runs over the same values. The M6bius inversion formula (cf
Hardy and Wright [5] section 16.4) applied to (39) gives

dL W (d

———Dw,ya=f(d) =) p(d )g(—,), d|(N, L), (40)
(N, L) dZEj d

where (1 is the Mobius function. An equivalent of (40) is obtained by the substitutiond — (N, L)/d again and

when the resulting Dy is substituted into (38) we get the explicit state count

( L/(dd")

DN, L, K)= Y Agxd 2 pd) N/(dd")

d|(N,L) d'|(N,L)/d
ForN = OorL, D(N, L,K) = 6ok, the fully aligned states. The number of states Dx(L, S) at fixed S = S, is given
by the well known subtraction

Di(L, S)=D(L/2 — S, L,K) —D(L/2—-S—1,L,K), S<L/2, (42)

supplemented by Di(L,L/2) = 8ok.

As an example consider L = 12. We get from D(N, L, K) in (41) that D(1, 12,K) = 1,D(2, 12,K) =
5+ Ay, D(3,12,K) = 18 4+ As D4, 12,K) = 40 + 2A, ¢ + Ay D(5,12,K) = 66,D(6,12,K) =
75 4+ 3A,x + Asx + Agx whileasubtraction (42) gives Di(12,0) = 9 + 3A,x + Az x + Ag k- The values
Dy (12,0) = 14 and those for other L using (41) and (42) agree with the sums D(SP01) + D(SP02) given by
Fabricius et al [11] in their Table II. On the other hand D(6, 12,0) = 80 calculated here differs from their
D(S,=0,K = 0) = 44. More detailed comparison shows that D(S, = 0,K = 0)in[11] incorrectly includes only
even S contributions. That the state counts (41) are correct has been confirmed by many additional checks
including comparison to a generalization of Bethe’s [1] state counting to which I now turn.

A string configuration for a state of total spin Sand S, = S on a chain of even length L with periodic
boundary conditions is specified by the list (py, p2, ps» - .. ) where the p,, are the number of n-strings in the
configuration. Each n-string is associated with n overturned spins and this yields the constraint

), 0<N<L (41)
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N = Y'np, = L/2 — Son the total number of overturned spins N. The Bethe formula for the number of states
with this configuration, denoted below as { p, }, is the product

h, h,
D(L,s,{pn})zn(pn+ ):H(Pﬁ ) hy =25+ 23 (m — mp, (43)

n p” n h” m>n

with each binomial factor the number of ways p,, ‘particles’ (i.e. strings) and h,, ‘holes’ can be arranged in
Pn + hyinteger slots. An important observation from (43) is that h,, depends only on p,, m > nandin
particularh; = 2S + 2Y(n — 1)p,, is fixed by the n-string content forn > 2. Since the constraint

N = Ynp, = L/2 — Salsofixesp; = N — Y ,~1(np,), any configuration can equally be specified by just
thelist (p,, p3, ...). Bethe also introduced P = Y p,, for the total number of ‘particles’ which yields the
alternative expressionsh; = 2S5 + 2Y(n — 1)p, = 2S + 2N — 2P = L — 2P, results that will be of use
later (cf (54)).

Bethe shows that D(L, S, {p,}) summed overall { p, } that are the unrestricted partitions of N, gives the
correct total number of states for N overturned spins but does not explicitly remark on the number of states at
fixed total (scaled) momentum K = (L/27) Y k;. However, implicit in (43) is the observation that a shift of any
‘particle’ or ‘hole’ to an adjacent slot leads to the same change |AK| = 1. Consequently it is possible to define a
generator Z (L, S, {p,}), which is a polynomial invariant under the interchange q <+ 1/q with the coefficient of
q" being the number of states at K = k relative to a central value K = K_. This generator has the form of

D(L, S, {p,})in (43) but with every binomial ( P ;)r h) replaced by the Gaussian binomial modified by a

prefactor q P2 for q < 1/qinvariance. Explicitly,

p+ h) [P + h] — grhs2 a- p+k) Pk (1 —q"h [P + h]
— R . (44)
( P ], kHl 1 -4 kH1 (1 -4 h

The justification for this prescription relies first on Pélya’s [12] observation that the coefficient of g™ in the
expansion of Hf::l (1 — g"*%) /(1 — g*)isthe number of p + h step walks between (0, 0) and (h, p) that
enclose area A between the walk, the x-axis and the line x = h. Second, there is a one to one correspondence
between Pélya walks and configurations of p particles and h holes and, to within an additive constant, K = A. To
show this adopt the reference configuration corresponding to the zero area Pélya walk to be that of all particles to
the left of all holes with the holes labelled 1, 2, ..., h in sequence starting with hole 1 as the rightmost hole. A
general configuration will have n; particles to the right of holeiwith0 < n; < n, < ... < ny, < p. Ifthis
configuration is represented as a histogram of n; versus i inscribed inanh x p rectangle it will be seen to be one
of Polya’s walks with A = )’; n;. Furthermore every particle to the right of a hole is the result of an adjacent
particle hole interchange and a unit increase in momentum implying Y; n; = Kand hence A = Krelative to the
reference configuration momentum.

Itis observed empirically that the central (symmetric) K. is either 0 or L/2 (mod L), depending on whether
P = ) 'pn,iseven or odd respectively. On incorporating this result we get as our generalization of the Bethe
formula (43) the g-generator

Z(L, S, {p,1)g = q® ™4 DL/ [Pn N h"] , ha=25+2% (m—n)p, (45)
q

n p" m>n

with []4 for each n given by (44). The coefficient of qK in (45) is the contribution of the particle configuration
{pn} to the number of states at momentum K. Shifts of K by multiples of L are understood to bring K into the
first Brillouin zone —L/2 < K < L/2. Therelation to the total number of states (42) is

k=L

> ZWUL, S {p, )y = Z Di(L, $)g* (46)

{p,} K:, +1

where the left hand side sum is understood to be over all partitions of N = L/2 — S.
Consider as example L = 12, S = 0. Separate the partitions p(6) into even and odd P; then, in a truncated
notation and {p, } written as product [ [ n,
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Zeyen = Z Z(L=12,5=0, {P,, })q

{p,},P even
=Z(1% + Z(122%) + Z(P3") + Z(3%) + Z(2'4) + Z(1'5Y
(1 -9)0 —q% L= A -0 -¢) . A-¢q) L A= 7°)
Q-1 —g)  q°0 -0 —gH(1 - g’ ?*A—-q q*'d -9
=q°+q°+49 " +50°+8¢ 2+ 87"+ 12+ 89 + 89> + 5¢° + 494" + ¢° + q°

Zoaa= ., Z(L=12,8S=0,{p,})y
{p,},P odd

=Z(1*2H + Z (2% + Zz(11213Y) + Z(124Y + Z(6Y
_ 45 _ 46 7 P} 47 _ 48
_6(<41 DO —g) ), 0-D0-g)  1-g q§+1]
q*(1 — @)1 —q°) q*(1 —q) °(1 — @1 — g%
:qézeven 47)

The sum mapped to the first Brillouin zone is

Z(L=12,8 = O)q = 22(12, 0, {pn})q = Zeven + Zodd
{p,}

=97+ 12g7* + 1073 + 12972 + 997 ' + 14 + 99 + 129% + 104> + 12q* + 9g° + 144° (48)

which agrees with Di(12,0) = 9 + 3A,x + Asx + Ak noted in the paragraph following (42). Neither
method of calculation distinguishes between degenerate and non-degenerate states at the symmetry points
K = 0and K = L/2. For that I turn to another generalization of Bethe’s method.

Some of the states at K = K_ arise from terms in which, in every binomial factor in (43), the particles and
holes are symmetrically distributed. If the number of overturned spins is odd one of the associated Bethe wave-
vectors will be 7w but except for this isolated case the Bethe wave-vectors k; will occur in symmetric pairs’ (k;, —k;)
and describe the non-degenerate statesat K = 0 or K = L/2. To obtain the number of these states note that the
number of holes h,, is always even in each binomial distribution and exactly half of the holes, h,,/2, must occupy,
say the right, half of the availablesslots, | p, /2] + h,/2. The occupancy of the left half is fixed by the required
symmetry so that the symmetric (non-degenerate) state count is just the new binomial product

(Lpn/zJ - hn/z)

D™ (L, S, {p,}) = H h /2

n

yhy =25+ 2) (m — n)p,, (49)

m>n

that replaces (43). From (49) one can derive an explicit formula for the total number of symmetric states that
parallels Bethe’s derivation of the total number of states. Begin by defining a constrained sum

DY™(L, S, P) = 'DI"(L, S, {p,}) (50)

in which the number of ‘particles’ Y p, = P,1 < P < N, inaddition to the number of overturned spins
N = Ynp, = L/2 — S, is fixed. By comparing with a large number of examples I conclude

/2 + (—1)NS)/2J)(L(L/2 — (=DNs - 1)/2J] 1)
[P/2] [(P—1)/2]

Bethe has proved the analogous formula D(L, S, P) for the constrained total number of states by induction after

first showing it satisfies the recursion

DY™(L, S, P) = [L

D(L, S, P) = L(L/Z +S+ 1)(L/2 s 1)
L/24+S+1 2 P_1
P—1
=3 (P1 + hl)D(L —2P,S,P—p). 52
=0 hl

The corresponding recursion here follows by replacing the binomial in the second equality in (52), which is the
n = 1factorin (43),bythen = 1 factor in (49) thus giving
P 2] + hy/2
DY™(L, S, P) = 3 /21 I/
/2

)Dsym(L — 2P, S5, P—p). (53)
pn=0

To show (51) satisfies (53) the four cases in which N and P are separately even or odd must be considered. For
the even-evencasesetN = 2R,R = 1,2,...andP = 2Q,Q = 1, 2,...,R; then (53) reduces to

In this context we must treat (7/2 + ico, m/2 — ic0) as a symmetric pair also. The associated spins are always nearest neighbours so the
only wave-vector describing the pair is the sum wave-vector 7 which is also —7 (mod 2).

9
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(R+S)(R—1)_Zq+2(R—Q)+S R-Q-1 R—Q+S+R—Q+S (54)
Q Q-1 Sl 2R-Q+s NQ-—gq-1 Q-9 Q—-q—1
where the two terms in braces arise from the even p; = 2qand odd p; = 2q + 1 terms in the original p; sum in

(53). These can be combined into a single binomial and if we define R-Q = A, Q-g-1 = ktheright hand side of
(54) can be written

AZ_:l(R+A+Slk)(A—1)(A+S+1)
~ 24+ S k k+ 1
R+A+S—1) (1R+A,AS,1A)
3 F, ;1

2A+ S 2,1-R-A-S (53)

:(A+S+1)(

with the equality verified by direct comparison of terms in the sum with terms in the hypergeometric function.

The latter is Saalschiitzian (cf Erdélyi et al [ 13] section 4.4) and satisfies ; F 2( @ b, —n 1) =

c,l—i—a—l—b—c—n;
(c — a)u(c — b), . , 1o .
m where (x), = I'(x + n) /T'(x) is Pochhammer’s symbol. With this result one finds (55) is
! (A+S”+l) R+A+S=D! R-D! QA+ 1 R+
RA+SHIR-A-DNR-A'A+S+DNAIR+A+S-1!

(R+S)( R-1

_(R—A)<R7Af 1) (56)
which, sinceR — A = Q, then confirms (54) is correct. A similar analysis for the remaining N and P even/odd
cases verifies that (51) satisfies the recursion (53) in general. Furthermore, the special values Z%"(L, S, 1) = 1
and Z%™(L, S, 2) = [(L/2 + (—1)NS) /2] from (51), which are easily shown to agree with the definition (50),
serve as the initial conditions to complete the inductive proof of (51) for P > 2.

Now only a sum over P in (51) remains to obtain the total number of symmetric (non-degenerate) states. In
compliance with the discussion on whether the center of symmetry K is 0 or L/2, we have

L/2 —1
sym _ sym —
DR%(L. $) = 3, DL, S, P) = (m/z LS (—1)L/2—5)/2J) ’
sym — sym = L/2 -1
D" (L) = S DIM(L, S, P) = (L(L/Z L 5/2 (57)

2 Podd

where the final equalities follow using Vandermonde’s identity an: 0( rZz) (n _b m) = (a —riz_ b ) for the sums.

Explicit calculation of Bethe states has confirmed (57) in many cases, including all S < L/2andevenL < 12. All
other statesat K = 0 and L/2, necessarily including those translated from outside the first Brillouin zone, are
doubly-degenerate states related by the reflection symmetry k; — —k;. The state counts (57) take a particularly
simple form when related directly to the wave-vector lists that occur. These are of the form [, (k;, —k;),

(ky, —k3),... ,(ky, —k,)] where * are special values comprising four cases of N* = 0 to 3 wave-vectors — null; 7;
/2 + ico, /2 — ioo; /2 + ioo, /2 — ioo, m—with associated K* = 0,L/2,L/2, 0 respectively. The state
counts (57) now take the form

0, N*=0,3

L/2, N°=1,2" (58)

DI™(L, S) = (L/2 - 1),5:L/2 — N* = 2n, K:{
n
The results in (58) confirm those for N* = 3 for L = 2mod4 and N* = 2 for even Lin [14] (their equations (29)
and (30)). These authors do not give general results for the remaining case N* = 3 for L = 0 mod 4 but their
specific count of 4 for L = 12 with 5 overturned spins is in error — disagreeing with the count of 5 from (58), the
explicit (61) arrived at by an independent calculation below, and the results reported in [15].

4.Non-degenerate statesat K = 0 and L/2

The simplest extension of BAE solutions to more than 2 overturned spins is for states of symmetrically
distributed particles and holes discussed in the preceding section. These are the non-degenerate states at K = 0
and L/2 and I begin with a few examples of states contributing to counts (58). The result of fixing the N* special
wave-vectors is a reduced set of BAE for the remaining n independent rapidities ; = cot(k;/ 2)*. These
equations are

* The defining equations for the N special rapidities are trivially satisfied but in the pair \ = =i case a careful limiting procedure such as that
described in [16] must be used to determine their energy contribution AEjn, = —2.

10
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)\ + A\L-1 1) N* =0 )\ + A\L-2 A +3 1> N* = 2
H 1 . i 1 H 1 .
[A’ ] =FyAt2 1,[; ] = F— M 3 (59)
i A - 20 i A PV
where
A+ 20)2 — \,2
E=1]] N + 20) Cim=1,2 .. n (60)

mej (Nj — 20)2 — A2
Simplifying (59) forn = 1,in which case F = 1, leads triviallyto \N"%0¢2 PN, ()?) = 0 where P} “isa
polynomial of degree m but different for every N*. The possible root A = 0 (k =) has no independent partner
at—k and is to be discarded. The L/2—1 roots of PL%, L exhaust the state counts (58). Consider the case L = 12,
S = 1,K = 0forwhichN* = 3,n = 1. The root equation in \* can also be given as one in x = 2cos(k) using
N = (2 + x)/(2 — x); the equations are

55 — 505X 4 582X 4+ 78X — 4508 — 500 =0, 54 9x — 15x2 — 2x3 + 5x* — x> =0 (61)

and illustrate those in x typically have smaller coefficients. The roots of (61) give A = £0.35796, +0.83363,
+1.83377, +3.031034, £1.99966i which together with the N* = 3 special A can be identified with the even
partitions (strings) of the 5 overturned spins, namely 172" (3 cases) and 1'4, 2'3" (one case each) in agreement
with the individual counts (49). Hao et al [3] report only 4 roots but the ‘missing’ A (= £0.3579...) is plausibly
element 235 in their supplementary information Table 69, misidentified due to numerical inaccuracies.

Forn = 2 thereduced BAE (59) can be simplified to the pair

A= QN0 /PN, 0%, X = QN0 /PN, () (62)

where the PLA;; , are the same polynomials that arose forn = 1;the Q LI\;z polynomials are new. Substituting
either equation of the pair (62) into the other demands the vanishing of a degree (L/2)* polynomial. The
numerical evidence is that this polynomial always factorizes giving

(R + DE2PN, (%) — QNLODRY 21w /22y (W) = 0 (63)

in which the L/2 roots of the middle factor are the \; = ), solutions of (62) and are to be discarded. Also to be
discarded are the roots of the first factor in (63) which are the singular solutions already accounted for in the N*
wave-vector list. The (L/2 — 1)(L/2 — 2) roots of the R polynomial in (63) are to be paired using (62) and so
exhaust the state counts (58) forn = 2.ForL = 10,S = 0,K = 50nehas N* = 1,n = 2 and the R polynomial
root equation, expressed in x, is

1637 — 6346x + 2103x2% + 11585x> — 10898x* — 1000x> + 6066x°
— 3079x” — 55x% + 627x° — 258x10 + 45x!1 — 3x12, (64)

Ifthe roots of (64) are ordered from 1 to 12 by non-decreasing real part, the Bethe solutions are the pairs [1,
91,13, 101, [5,11],[2,4], [6, 7], [8, 12] obtained using (62). In explicit terms and including the N* = 1rootk = 7
(A = 0), the solutions in this sequence are, respectively

A = [£0.23834, +£2.089214, 0], [£0.65226, £2.00829i, 0], [£1.50543, +2.00166%, 0], (65)
[0, £0.43240, £1.19617], [0, £1.02826 + 1.00383:], [£4.32753i, £2.00003i, 0]

corresponding to the odd partitions of 5 overturned spins, namely 1231 (3 cases) and 1°, 1122, 5! (one case each)

again in agreement with (49).

I am unaware of any simple algebraic process that will find the analogs of polynomials (61) or (64) forn > 2.
On the other hand, the existence of these polynomials has been confirmed in a number of cases either by direct
construction from solutions of the BAE or more simply by use of the integer relation algorithm PSLQ [4]. For
any given L, N* and n one need only find one BAE solution from which to pick a wave-vector k, and determine
x; = 2cos(k;) with a certain minimum accuracy. This x, is used to construct the list [1, x;, X2, ..., x"P] where Dis
the state counts from (58). This list serves as input to the PSLQ algorithm and provided the accuracy is adequate,
the output will be the integer coefficient list [ay, a;, a5, ..., ayp] in the polynomial Eaixi. Software packages such
as Maple can efficiently find polynomial roots and what remains is then just a finite search process for D groups
of nroots that satisfy the BAE.

The needed accuracy in x; for a successful PSLQ return is roughly nD times the number of digits in the
coefficient a; of largest magnitude. This can be a severe limitation but one can always reduce the PSLQ
complexity by increasing the number of BAE solutions used for input. Instead of the single root power list one
constructs the array, and by linear algebra, its triangular reduction

11
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Figure 1. Non-degenerate L = 20 state energies at K = 0 and10, separated into partitions of 10 and grouped by particle number
P = Yp,. Theleft-most column in each P group is the partition 1°"'(11-P)'; partitions for the remaining columns are in the
dictionary order given in Table 24.2 of AS [18]. The horizontal lines are the ferromagnetic (L/2) and limiting anti-ferromagnetic
(L/2 - 2LIn(2)) energies.

1x xf ... x" IR
1x xf..xfP [ ] 01%*  * (66)
1 Xy %20 xP 00..01...%

which leaves, in the final row,nD — m + 2 non-zero elements that become the new input list into PSLQ. Back
substitution of a successful PSLQ coefficient list return into the triangular reduction array yields successive
polynomial coefficients. To within the floating-point accuracy used these are either integer or rational and in the
latter case the entire (tentative) list can be converted to integer by an appropriate multiplication. It is
advantageous to supply the PSLQ algorithm with real coefficients; complex x; need not be discarded and instead
the complex power list [1, x;, xiz, e X?D] should be input as the two lists which are its real and imaginary parts.
The largest L treated by this method hasbeen L = 20 (D = 126) with PSLQ input reduced to less than 50
elements. The final 631(505) polynomial coefficients for K = 0(10) appear in the supplementary data file

L20_nondegen.txt as lists ThOSOL20 (foo) and Th10S0L20 (fl%). Also given are the corresponding energy ordered

BAE solution lists 1200 and 121% written as khOSOL20 := [[70, 105, 146, 185, 238], ...] and kh10S0L20 := [[56, 91,
127, 166], ...] where the integers specify the location in the polynomial root lists x; when ordered by non-
decreasing real part as in the example leading to (65) (note for K = 10 each BAE solution consists of £ \; from
the four listed x; plus the N* = 2 special +i). The D energies E; for each K define a polynomial Hi (E; — E) that
has been confirmed to have integer coefficients. These are the lists he0S0L20 and The10S0L20 and serve as useful
checks. Every solution has been plausibly identified with a Bethe string solution and hence a partition of 10. To
emphasize this and the agreement with the counts (49) all states have been separated by partition label with
energies as shown in figure 1. Some of the state identifications might not be obvious at first sight. AK = 0
exampleis[1,2, 564, 629, 630] which is

A = [£0.00188i, £0.76047i, £1.23953i, £1.99994i, +2.81271i] (67)

and is identified as the P = 4 partition 1'2'3'4". Here it is important to recognize that symmetry dictates that the
nominal Bethe strings have the same (vanishing) real part which implies 2-fold A root degeneracy at both +iand
0. This degeneracy must be lifted and (67) shows it is lifted by a spitting of the roots in the imaginary direction’.
The splitting in (67) can be emphasized by writing the A roots as

> There are examples where the splitting is in the real direction. For the K = 10 state [119, 380, 476, 477] which is identified as the P = 3
partition 2'3'5%, X\ & [4:0.550075, i, 40.550074 =+ 2.000001i, +-4.816316i].

12
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Figure 2. A sequence of complex A-plane sections showing Bethe roots for partitions 127921314 Lot lengths L shown. The lower half
planes, being the reflection of the upper half, have been truncated. The major horizontal and vertical lines intersect at the points A = 0
and A = 2i. The horizontal scale is indicated by a scale bar of length 2.

A= [+ epi, £(1 — 1 — eq)i, £(1 + e — eq)i» (2 — e2)iy £(3 — e3)i]
eo = 1.8798 x 1073, e; = 0.23953 ..., eq = 1.4197 x 1077, e; = 5.9980 x 1075, e3 = 0.18729  (68)

and the very small eq shows how little the centroid of the nominally degenerate =i pair has shifted. The small eq
also labels the state as a ‘quartet’ —a state in which two different \; have imaginary parts differing by ~2. Since
there has been some question in the literature [ 17] about the role that quartet states play in the BAE solutions it is
instructive to see what happens to (68) with changes in L. For large L one can derive the asymptotic results

eo = 371/2204/21 {1 + 27L128(150L — 1321) + O(I¥37 1)},

er = 271/2604/14 {1 4+ 27L(3150L% — 95145L + 675329) + O(L*3 1)},

eq = (e1/2)F45{1 — 27114(450L%* — 11610L + 65189) + O(L*37 1)},

e, = 371140{60L — 187 + 271512(4500L> — 50820L + 79417) + O(I*371)},

e3 = 271840{30L — 337 + 2716(10500L° — 597600L> + 9552665L — 47241816) + O(L¥371)} (69)

thateven for L = 20 are in qualitative agreement with (68). One notes that e becomes doubly exponentially
small but does not in any way prevent the £iand 0 root splittings from becoming exponentially small.
A more interesting situation arises at L > 20 when the (2'3'4")-string combination with L/2 — 9 remaining

1-strings is keptasan S = 0 excitation. The number of such excitations based on (49) is (m :1_ 6) for

L = 20 + 4 mbutI consider for each L only the one state in which the 1-string ); are in magnitude as small as
possible and sandwiched between a symmetric set of 1-string large | A| holes®. The 1-strings interfere significantly
with the (2'3'4")-string combination and lead to an increase in both ey and e, in (68) until a complex ); collision
occurs and changes the qualitative character of the solution. This is illustrated in figure 2. That the states for L >
40 are indeed the continuation of those for L < 40 is confirmed by noting that the squares of the splitting
between the colliding roots form a smooth sequence with a sign change at L ~ 39. The configuration atL = 48
when viewed in isolation would almost certainly be identified as an ‘apparent’ 1'°3> partition rather than the
Bethe 1'°2'3'4", While this is just a more elaborate example of a complex root collision discussed following (19)
and already observed by Bethe and others, it does illustrate that quartet configurations are typically unstable
intermediate forms that facilitate transitions between states of different character.

BAE solutions for L > 20 such as those shown in figure 2 have been found by Newton-Raphson (NR)
iteration. The L = 20 results are invaluable as a template for NR initialization for L = 24. For larger L,
polynomial extrapolation in L (with allowance for root collision) is usually adequate for the complex root
initialization. For real root initialization it is preferable to start with numerical approximations to the density

)\11
p = dn/d\ and extrapolate these in L. One then obtains A, by the integrationn = f pd A with n either
0

integer or half-integer. An adequate approximation to p in most cases is the Hulthén [19] ground state

po = L/(4cosh(m\/2)) plus polynomial and/or resonance (Lorentzian) functions. Many such calculations have
been carried to L /&~ 1000 with the goal of establishing the correspondence between Bethe string solutions and
WZW model states. A graphical solution is facilitated if we rewrite (7) as

® This state s alocal energy minimum and is appropriately called a cusp state. Quite generally, asymptotic L — oo energies ¢ = &(K) in (7)
for different 1-string arrangements but fixed (n>>1)-strings fill a V-shaped ‘cusp’ region £(K) > e(K.) + 2|K — K_| in energy versus
momentum in the neighbourhood of alocal minimum £(K,), K.
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52
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48
e(L)1
46
44
) _/
40
38
36
1/1n(L)
0 0.1 0.2 03
Figure 3. Crosses mark numerical (L) from (70) versus 1/In(L), 20 < L < 1280, for configurations (reading upward at large L) 7',
2'6',3'5", 225", 4%, 2'3'4", 24", 3% in the simplified notation that excludes the L- dependent 1-strings. Solid curves are interpolations
plus extrapolations based on fits while the straight line segments are WZW asymptotes ¢ + 2 s(s + 1)/In(L) fors = 0(red), 1(green),
2(blue) and 3(magenta).
L 1 1 2s(s + 1 1
S(L):—E—I—L(ZIH(Z)——) + —=¢+ ( )+0 . (70)
w2 2 6 In(L/Ly) In(L)

Let the left hand side be numerical BAE solutions and the explicit terms with integer € and 2 s on the right hand
side be possible asymptotic WZW solutions. A sample of such paired graphs, including the (2'3'4")-string
combination featured in figure 2, is shown in figure 3. It is apparent that in most cases alength L = 1280 is more
than adequate to unambiguously establish the Bethe-WZW correspondence.

The results of the correspondence from figure 3 and many similar calculations are given in table 1. Empirical
relations describing the Bethe-WZW correspondence for the states F,,, in table 1 are

Epp=1272""m + Di(n — m + 1)', h =2n (Bethe string)
e=n’4+4m, s(=sg=s)=m—2m)/2 (WZW model) (71)

form =0, 1,...[n/2], n =0, 1,...and can be understood to be the rules for all states with at most two (n>1)-
strings. A more comprehensive set of rules and combinatorial relations will be given in section 7 after Bethe
string configurations at general K have been discussed in sections 5 and 6.

I close this section with a discussion of a very different but intriguing state. It is the single particle P = 1,L/2-
string state which appears in figure 1 as the lowest lying S = 0 excitation on the ground state of a ferromagnetic
chain. This is the state [323, 341, 379, 468] which in A representation is

A= [£i, £ + 4.59 x 1074, +5.001053i, +7.23669i, +13.08157i]. (72)
TheL = 22 state,
A=1[0, £(2 + 3.54 x 1077)i, +(4 + 4.60 x 1077)i, +6.005167i, +8.43462i, +15.42998i], (73)

is the analogous single particle L/2-string for L/2 odd. The explicit (72) and (73) serve as useful templates for
initial guesses for larger L and can be easily improved by NR iteration. Oscillations due to odd/even L/2 rapidly
decay with increasing L and I find from an analysis of states to L = 60 that the energy is

E ~ L 71'_2(1 ~ 1.34630515852995 i 3.35506593315  6.18534702 n 12.96091  25.54

2 L L I? I L4 L
where the 7 has been inferred from numerical values but is not in doubt. Corresponding inference for the other
numerical values in the series (74) has not been successful. The excitation energy o< 1 /L implies this state is not
two ferromagnetic domains separated by finite width domain walls. Another guess for a classical analog of this
state is one in which the chain is cut and the ferromagnetic ground state twisted by 27 before reconnection. This
state is not topologically distinct from the ground state but it is a highly degenerate stationary energy state since
the vector defining the 27 rotation can have any orientation. In all such states neighbouring spins deviate by

) (74)
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Table 1. WZW asymptotic parameters ¢ and s together with Bethe 1-string hole count h; for the lowest energy cusp state picked from every
column in figure 1. Each main configuration entryis the L = 20 Bethe (n>>1)-string list; this is followed by a label in parentheses that is the
‘apparent’ large L string content if there are changes as a result of root interactions. For states labelled by F,,,,, see text; for a state designated
with +n there are additional cusp states with energies ¢ greaterby4 m,m = 1...n.

Configuration Configuration (at
Fam+n  (atK = 0) e 2xs h +2 line# Fyn+n K=1/2) e 2xs h=+2
Foo Ground state 0 0 0 1
Fao 3! 4 2 2 2 Fio 2! 1 1
Fay 22 8 0 2 3 Fs0 4! 9 3 3
Fao 5! 16 4 4 4 Fs, 2'31(2%) 13 1 3
Fui 2'4' 273" 20 2 4 5 2’ 17 1 3
Fu 3% 24 0 4 6 Fso 6' 25 5 5
+1 223! 24 2 4 7 Fs; 2151 (2241 29 3 5

24 32 0 4 8 Fs» 3'4' (2'3%) 33 1 5
Feo 7! 36 6 6 9 +2 224! 33 3 5
Fe: 2'6' (2%5") 40 4 6 10 2'3% 37 1 5
Fe» 3'5' (3% 44 2 6 11 +1 2°31(2%) 41 1 5
Fes 4? 48 0 6 12 2° 49 1 5
+3 225! 44 4 6 13 Fro 8! 49 7 7

2'3141 (3% 48 2 6 14 Fyy 2'7' 2%6Y) 53 5 7

3 52 2 6 15 s, 3'6' (3%4") 57 3 7
+2 2°4' 2*3") 52 2 6 16 Fy3 4'5'(2'4%) 61 1 7
+2 2%3% 56 0 6 17 +4 2%* 57 5 7
Fso 9! 64 8 8 18 23151 (3241 61 3 7
Fs1 2181 227Y 68 6 38 19 2142 65 1 7
Fs» 3171 (3%5Y) 72 4 8 20 +1 324! 65 3 7
Fgs 4'6' (34 76 2 8 21 Foo 10' 81 9 9
Fg4 52 80 0 38 22
angle 27/Lso that

2
Eglussical _ £ COS(Z—W) — £ _ 7T_ + O(L—3) (75)
2 L 2 L

and the agreement of the leading terms in (74) and (75) suggests this is indeed the correct analog state.
Confirmation comes from a comparison of spin-spin correlations which classically are simply

(5 siep 15 PR = cos(22) 76)

and imply long range order with spins separated by L/2 strictly anti-parallel.
For thes = % quantum chain correlations I have solved the Hamiltonian (1) eigenvalue/eigenvector
problem by generating a basis recursively starting with |1y) = 0 and
L/2

o)y =TT AL =1 Djjerse (77)

j=1

which is a product of singlet states of spin pairs separated by L/2. Besides the desired property that spins
separated by L/2 are strictly anti-parallel, (77) is shown by translationj — j 4 1 to be an eigenstate of total
momentum K = L/2. Additional bases are defined by [1,11) = H|¥,) — €nltn) — au|tpn—1) where £,and a,
are chosen to guarantee the orthogonality (1| ¥nt1) = (¥n_1] ¥n+1) = 0.Iteration stops when one observes
L/2 —1

[L/4]
as written above and we define the normalization constants N, = (1|1, ), the tri-diagonal Hamiltonian matrix
in anormalized basis has elements H,, ,, = €,and H,, ,,» 1 = H, 1., = «/Ny+1/N,. The characteristic
(eigenvalue) polynomial of this matrix agrees with that found by Bethe ansatz for all cases considered. The
highest energy eigenvalue is that of the single particle L /2-string state and the spin-spin correlations found from
the associated eigenvectors for even L from 4 to 20 are shown in figure 4. Thej = 1 correlation C; is related to the
energy (74) by C; = 2E; /(3L) while the factor 3 enhancement of the j = 0 correlation C, over that of the
asymptotic C, in figure 4 is the s = %2 distinction between spin length squared s(s + 1) = 3/4 for asingle
quantum spin and the maximum (?1 . 5) = s> = Vi for distinct (parallel) spins. This obvious quantum effect
has no classical analog. The data in figure 4 for L = 20 has the Fourier decomposition

|¥p+1) = 0;thishappenswhenD = , the dimension given in (57). If the states are left unnormalized
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-0.5

_1_

Figure 4. Spin-% model spin-spin correlations C; = (i - ;;‘F]‘> /(s(s + 1)) versus site separation j in the single particleP = 1,L/2-
string state for chains oflength 4,6, ..., 20. Lines connecting C;, 0 < j < L/2at the same Lare a guide to the eye. The remaining lines
are polynomial in 1/L fits to C; /, for the largest L and these extrapolate to C., = —0.33(1) as shown. The inset shows the convergence
of Cjfor L = 20 when only contributions from bases |1;) through |1),) are kept. The extremes are C; = 60—, /> forn = 1and the
exact Cjforn = 126. Intermediate curvesaren = 2,3,4,5and 7.

C; = 0.6666256; 9 — 0.033331 + 0.383518 cos (2%])

4 6 18 78)
— 0.017072 cos(—ﬂ-j) + 0.000538 cos(lj) 4178 %1077 cos(lj)
L L L
and from various fits, including the extrapolation C; ;, = —0.33(1) for L — oo from figure 4, I conclude
2 1 2T
Ci= —=bj0+ — cos(—')
R L
- %(% —0.93(2) cos(z%rj) +0.24(3) cos(%j) +0.03(3) cos(%rj)—i- ) +O(L ) (79)

inthe L — oo limit. The first correction—2/(3 L) in (79) is required by the sum rule };C; = 0 while the sum
2/3-0.93(2) + 0.24(3)+ ... must vanish because there are no O(1/L) corrections to C;. Finally, because
cos(27j/L) is the only surviving cosine mode in (79) for L — oo in agreement with (76) we have confirmed
the suggested identity of the analog classical state.

5. States of 3 overturned spins for general K

This section confirms the structures (5) and (6) for the case of 3 overturned spins and Bethe string configurations
1%,1'2" and 3'. The results are coefficient lists reported in 3_overturned_spins.txt based on the following
notation and conventions. The data for given L starts with the state count list in the form (23),

NS$ : =[Vo, vo, vk (0 < K < L/2), v1/2, 91/2], where $ is the numerical value of the spin S and defines also

L = 6 + 2 S.The number of states &y + 21, v (0 < K < L/2)and 2vy/, + U1/, at each K together with

v_g = v are given by (41) followed by (42). There is only the 7y = 1 symmetric non-degenerateK = 0,E =
L/2-6 state [r/2 + ioco,m/2 — ico, ] whichisthe N* = 3,n = O casein (58). AtK = L/2 thereare ¥/, =
L/2-1 symmetric non-degenerate states [, k, —k] based on N* = 1, n=1. The non-trivial momenta are

k = arccos(x/2) with x in turn each root of the polynomial P; /, = Zf:/ (2)_ i /,,;x" derived as described for (59)

and (60). The coefficient list defining this polynomial is denoted Th$S$ : =1, LS /2,0 1= 0, 1, .., 5] with $ being
placeholders for the numerical K = L/2 and S respectively. To completely describe the BAE solutions via (5) and
(6) requires and additional L/2 + 1 analogous coefficient lists IKS$ : =[IIS<,,', i=0,1,.,3vk,0 < K K L/2.
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ForK = 0,L/6,L/4,L/3 or L/2 the polynomial Pk (x) = ZZ’; Ifcixi is defined by the single list ‘IKS = but for
Kan element of block Kq with M4 = ¢(L/d)/2 > 2 elements as described following (28), Py (x) depends on a
superposition of M lists. Let the elements of K4 be labelled and ordered as K" < KI'' < ... < KM~ 1in
which case the list sum

KIS + 250 teos (2mmK /L) IKYM S (80)

replaces the single list ‘IKS$" used to define Py (x) as in the (29) example. The 3vi roots of Px(x) define the
3 Bethe wave-vectors for all of the v states. These states are represented as the list k$S$ := [[n;, n,, n3],
[n4, 05, 0], - . [ .., 03, ]] Where the $ are numerical K and S as before while the |n;| are position pointers to
therootlist. It is to be understood that the roots x; are arranged in non-decreasing JR(x;) order with the Bethe
momentum k,, associated with n; then uniquely given by (26). Thelist ‘k$S$" is energy ordered with the energy
of each state given by (4). A check is provided by energy polynomial coefficient lists ‘IeKS$" that are the analog of
‘IKS$" but define polynomials Pi(E) whose vk roots are the energies of the states in the ‘kKS$' lists. The analogy
between ‘[eKS$" and ‘IKS$' extends to the combining rule (80) that is applicable to both lists. One final list
‘[he$S$" provides the energies for the states generated from ‘Th$S$' atK = L/2.

The results presented in 3_overturned_spins.txtincludeallevenL,8 < L < 26. The L = 8 data, part of
which is

I181: =[384, —896, —208, 1248, —436, —328, 292, —52, —8,0, —2, 6, —1];

I381: =[256, —512, —464, 1088, 92, —856, 262, 274, —152, —4, 21, —5, 1];

k181: =[[-1, 3, 5], [2, —9, —10], [—4, 7, 8], [—6, 11, 12]];

k381 : =[[-1, -3, 6], [2, 7, —8], [—4, —9, —10], [5, 11, 12]];

Iel1S1: =[0, —16, —6, 4, 1];  I1e3S1: =[-8, 0, 4, 1, 0]; , (81)

is here used to illustrate that the lists ‘IK; S$' for My > 1 are not unique. The coefficient lists

J1S1: =[896, —1920, —1136, 3424, —252, —2040, 816, 496, —312, —8, 40, —4, 1];
J351: =[640, —1408, —672, 2336, —344, —1184, 554, 222, —160, —4, 19, 1, 0]; (82)

are alternatives to ‘151" and ‘I3S1" respectively. They are related by
12 -
H (x — xi(K)) = YJ181' + 2 cos (ZK) VENA
i=1

(83)
_ (1 + 2cos(§K))(‘HSl\ + ZCOSGK)‘BSP), K=1,3

where xi(K ) are the roots of the associated polynomials Px(x) of either coefficient list. Only the result following

the first equality conforms to that in (6) but the second form with irrational multipliers is more typically found
when obtaining the polynomials by PSLQ. Since such different forms give identical roots, supplementary data
that is equivalent to (6), asin L = 8 above, has been left unchanged. The remaining data in (81) can be used to
verify that the roots of Px(E) determined from the list sum ‘Ie1S1' + 2 cos (K /4)‘e3S1" are the energies
calculated from lists ‘kKS1" for K = 1 and 3 using (4).

The maximum L = 26 exceeds the L ~ 21.86 critical value where (19) shows the first complex root collision
for 2 overturned spins and this allows us to explore more fully string interactions. As a specific example, figure 5
shows how strings in 1'2" interact and modify bare 2" behaviour. The main indicators of interaction are the
approximately linear drifts from the marker values and a pronounced level repulsion around the line 2k, = k,
mod 27. 2-string root collisions are first observed at L = 24, a marginal shift from L = 22 expected based on
(19), for 22 distinct k, values. In contrast for the 23rd ki, the collision seen in the L = 74 inset is suppressed until
L = 56. For states with root collision expected at L ~ 61.35 based on (19), the 2-string remains complex in two
states with k; above the line 2k, = k, mod 2w atL = 74.

6.L = 16 singlet states for general K

This section provides further confirmation of (5) and (6) but more importantly provides the BAE solutions that
serve as templates for the calculations of much longer chains. The notation and conventions follow those in
section 5 and start with the S = 0, L = 16 state count

[P0, vo, vx(0 < K < 8), vg, 5] = [35, 30, 85, 93, 85, 94, 85, 93, 85, 30, 35] (84)

determined from (41), (42) and (58). A minor change is that labels for lists reported as supplementary data in
L16_singlet.txt are truncated versions ‘Ih$", \I$', ‘kh$", ‘k$", ‘The$' and ‘Ie$' with $ the numerical momentum K.
The symmetric non-degenerate states at K = 0 are N* = 0,n = 4 versions of (58) and of the form [k;, —k;,

i = 1..4]. Theyarelisted as [n;, i = 1..4]in ‘kh0" with k; = arccos(x,, /2) and x,, the n;™ root of P(x) of degree
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igure 5. Momentum correlations for BAE 1'2' configuration solutions in a (half) periodic cell. The 242 states shown for L = 26 plus
241 additional states obtained by inversion about (7, —7) make up the total 23 x 21 from (43). The k; markers areat 27n/(L — 2),n
Y p
integer. Diagonals indicate constantk; + k, = 27K/LshownatK = —10,0, 13and 21 for L = 26 and matchingL — 13andL — 5
for L = 74. Crosses label complex 2-strings; diamonds are real 2-strings following root collision.

41, with coefficients listed in ‘Th0". The corresponding symmetric non-degenerate statesat K = 8 are N* = 2,
n = 3versions of (58) and of the form [7/2 + 100, 7/2 — i00, ki, —k;, 1 = 1..3]. The non-trivial momenta are
listed as [n;,i = 1..3]in ‘kh8' with k; = arccos(x,, /2) and x,, the ;™ root of P(x) of degree 37, with coefficients
listed in ‘Th8". All other states are of the form [k;, i=1..8] listed as [n;, i = 1..8] in kK. Now however signs are
important and k; is given by (26) with the x;,,, the roots of a Px(x) of degree 8. For K = 0, 4 or 8 the coefficients
of Py are the lists ‘IK; for K a member of the block K; = 1,3,5,7 orK, = 2, 6 the superposition rules of (80)
apply. Similarly for the energy polynomial lists ‘IeK .

Solutions are plausibly identified with Bethe string configurations that are partitions of 8 and confirm the
counts (45). Energy versus momentum of all states, separated by partition, is shown in figures 6-8. Of particular
note are cusp states defined as those for which all 1-strings occupy adjacent positions with no intervening holes.
In the limit of large L these are local energy minima with respect to 1-string excitation and a particularly
important set of low energy states called current excitations by Bortz et al [20]. Many such large L (=1000)
solutions have been found by NR and analyzed similarly to that described in the text leading to (70). The results
for all cusp states supplementing the odd € cases from table 1 are shown in figure 9 for e < 41. The state labelling
conforms to that used in figures 6-8. Combinatorial rules that predict the location of states in the L — oo limit
shown in figure 9 are found to be a simple modification of the standard Bethe rules and are described in the next
section. Here I only note that while the Bethe string labelling is an essential component of these rules, a different
‘apparent’ string labelling is often a much better indicator of the solution rapidities in the complex A plane.

Very clear patterns are seen in figure 9 of which the most striking is that all state counts are consistent
with products of the (left and right moving) 4« excitation counts appearing in the single row diagonals
e = (n — 1)’ + 2|x| terminating at the single n-string values at & = 0. This is as expected for the WZW model
and is also explored in more detail in the next section which concludes with a conjecture for the string content of
all left and right tower states in the total S = 0 sector. Another observation is that any cusp state associated with

WZW spin s contains at least one n-string withn > 2 s; this is shown to follow from the string content
conjecture.

7.Low energy S = 0 state counting forL — oo

The cusp state examples described in sections 4 and 6 lead naturally to conjectures for the multiplicity of all low
lying singlet statesas L — oo. An important parameter in the cusp state classification is the number of 1-string
holesh; = 2} (n-1)p, (cf (43) and subsequent discussion) which is necessarily even and fixed by the n-string
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Figure 6. Energy E versus (quasi) momentum K for Bethe 1¥"n' (P = 9-n) configurations. Only the (n>1)-string component is used
as plot label. Lines connect upper and lower boundary states for each n as a guide to the eye. For clarity the K (mod L) for each state has
been chosen such that only after including reflection about K = 0(L/2) for states of even(odd) particle number P will the display be in
explicit agreement with the counts (45). Diamonds replace crosses for the ground state (gs) and cusp states described in the text.
Configurations with no 1-strings are also potential cusp states and are marked as squares. The horizontal line of length L (one periodic
cell) marks the ferromagnetic energy L/2.

Figure 7. E versus K for Bethe 1°™2'n" (P = 8-n) configurations. Only the (n>>1)-string components are used as plot labels (with
22 — 22,23 — 213} etc). Conventions as in figure 6.

content forn > 1. Thush; is decoupled from L and our analysis does not require any specific value for L beyond
Levenand L >> h,. The complete list of possible {p, . ; }s,= (P2, P3, .-.) for any h is the list of the partitions of
h,/2 with every integer in a partition incremented by one. For example, for h; = 10, the partitions of 5 1>, 172,
1°3',1'22,1'4,2'3, 5') after incrementing are the cusp state configurations {p,- }10 (2%, 2°3",2%4",2'3%, 25",
314! 6"). Define P = Y a-1Pnand N = Y - inp,, the total number of ‘particles’ and overturned spins
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Figure 8. E versus K for Bethe configurations not shown in figures 6 and 7. Conventions as in figures 6, 7.
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Figure 9. Bethe configuration labelled cusp state asymptotic energy € from (7) versus momentum x = K — K, K. = 0(L/2) for L/2
odd(even). States are distinguished by WZW model s = s; = sg = 1/2(red), 3/2(green) and 5/2(blue). Statesat £ > 0 are obtained
by reflection about £ = 0. There are hiddens = 3/2 states near k = 0, = 37; for these see the lower left corner insert which hides
thes = 1/2 states instead. The data for the lowest excited state shown has been carriedto L = 16384 in [21].

respectively in the (n>1)-strings. For the example list, P =5,4,3,3,221andin general N =P + h,/2with
1 <P <hyy/2

Any particular {p,~1} appears as a distinct cusp state for each division of h; into exclusively left h; and right
hg holes. In the symmetric case, hy = hg = h;/2, there is a trivial generalization of the generator (45) to the cusp

state generat0r7.
7 pn + th p, + hn . . . Cq. . . .
I = s and the lower element in the Gaussian binomial in a Bethe product is always to be understood to be p, in this
o 4 "o
section.
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Z({ Py DY = gLt 2mod LT [P" - h"] he =2 (m—n)p,, (85)
q

n>1 p"

where use has been made of the relationh;, = L — 2P derived in the discussion following (43). To get from the
symmetric casetoh; = h;/2 + m,hg = h;/2 — mrequires movingeach ofp; = L/2 — N 1-strings by m
steps. Each step shifts momentum K by one so the effect is to multiply (85) by g”*/2~N)  The g™~/2 factor can be
accommodated by replacing h; /2 in the first factor in (85) by hy to give the general result

. . + hy, 5
e [p " ] o N=2, (86)
n> n q

To efficiently evaluate configuration sums of expressions such as (86) it is useful to first determine
amplitudes A;;,i = 1,2, ..., 1 < j < i, which are sums of the products I1[...], appearing in (85) and (86)
subject to the constraintsh; = 2i, P = j(or N =i + j). Endpoint valuesare A;; = A;; = 1 arising from
configurations (i + 1)' and 2' respectively. Intermediate cases for the partition of 5 list above are

Asy = Z + m =q°+q’+29'+2+29+9*+

—— ——
215! 3lqt

£S)

As3 = ? + [g] =qt+q3+3g2+3qg ' +4+39+ 39>+ ¢+ q%,
Nl
2132 224!
Asg = g —g gt 2 h 242+ P+ g = Asa. (87)
L2 dg
233!

Based on many more examples I conjecture but have not proved A;; = Aj;.j;; foralli, j. On the other hand, the
1 ) i — 1). . . . . . . .
sumrule A; jl—; = — (] ! 1)(; i) is easily verified by noting the Gaussian binomials at ¢ = 1 are ordinary
ili- —
binomials after which follows a one to one correspondence between the sums here and Bethe’s constrained sums
D(L, S, P)in(52). Whatare Land P with S = 0in (52) are here h; and P respectively as a consequence of our
transcription of partitions into the cusp state configurations {p,~}. The symmetry A;j ; = A;;.jallows usto
restrict our explicit amplitude calculation to A;; jwith 1 < j < (i-1)/2 in which case every Gaussian binomial
P, +h

p)
the {p,~1}. These remaining factors in all terms with a common f, combine into an amplitude of the same

product contains some f, = [ ] together with other factors that are incremented partition analogs of

structure as A; ; but of lower order. The result, together with A;; = A;; = 1, is the recursion formula
ifi+ji—k .
Aiji1 = Ajij = Z[ % ] A, 1 <j< G- 1D/2 (88)
k=1 4

The generator for all cusp states obtained by summing (86) over configurations are usefully separated as

(e/0)
Z(q) — q(L/2 mod 2)L/2Z(3V5") + q(L/2+1 mod 2)L/22(0dd)’ Z(q)(e/o) _ Z BhL,hR(q) (89)
hy,hr

where

Biva(@) = 32 q V2] [P" N h”]
q

p
1 n
h {pn>1} n> (90)
1 ~
= > qr=mONI2A L o R hsa s = hp + hg.
N=h;/2+1

The sum in the first equality in (90) is over configurations {p,~; } understood tobe {p, . , }, as described in the
first paragraph of this sectionand N = ZD b, s in (86). In the second equality N hasbecome adummy
summation variable indexing the very restricted configuration information available in the A; ;. By excluding the
power of q factors in (89) from the definition of Z /) the latter become generators in which x in q" is the
momentum K relative to a central K. that is either 0 or L/2. To make contact with WZW model results I expand
By, i (q) from (90) as a sum of products® of independent left and right cusp generators B}Ezs) (x) carryinga

8 To avoid exceptions in product formulas it is convenient to define the ground state as a cusp state also. Then (89) and (90) are understood
to be supplemented with the definition By = 1.
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common 2s = 2s; = 2sg WZW spin label and differing only in argument in the left and right cases. Forh < 2s,
B{*) (x) = 0, while B (x) = 1. The defining equations (notationally collapsed into one with (/o) indicating
hy, hg and 2 sare all either even or odd integers),

(e/0)

Biw(@ = Y. B (1/9)B2 (), 1)
25=0/1

considered as identities in h; and hg have a structure that allows all remaining B{**’ to be determined recursively
from By, j, starting from the smallest 2s = 0 or 1. To illustrate, consider the odd casein (91) and seth;, = 1to
get By, (9) = B,gi) (9).Forhg = 1, BY = B, | = A, thelast equality coming from (90) and confirming

BV = 1. Asafew additional cases, again using (90) and A;jfrom (88),
B (9) = Bis = ’Asy + q*Asp = ¢° + ¢,

Bs(l)(q) =By 6+2nA3,n — q8 + q9 4 qIO 4 q“ + q12’

B;U (q) _ Bl,7 12+3nA4,n

3
n=1
4
n=1

— q15 + q16 + q17 + 2q18 + 2q19 + 2q20 + 2q21 + q22 + q23 + q24. (92)

Had we kept configuration information by utilizing the first equality in (90) rather than the A; ; form we could
have sourced B{" and each term in (92) byits {p,~;} configuration. The result is

Bl(l) —

1
— - L N~

, BY@= ¢+ 4 BP@= ¢+ q‘°[3] + 9%
q

2 3! 2? 4 __vl_ ?3_/
2131
BN (g) = q15+q18|:?:| + q18+q21[‘21] g (93)
2141 2231

and with the replacement ¢ — 1/qwe see all the terms in (93) can be identified with the terms on a single
(lowest) diagonal of energy versus momentum in figure 9.

For the determination of B,53) sethy, = 3in(91)to get B; ,(q) = B{Y (l/q)B}E;) (@ + Bli) (q). For
confirmation, using B3 3 = Z::1 Aspyweget BY = q '+ 34+ q— (7 + 9@ + g = L.Afew
higher order terms are

4
BP(q) =" q*""As, — BV (/B @) = ¢° + q° + 97 + q°,

n=1
5
B7(3) (q) — Z quHnAs,n _ B;l)(l/q)Bél) (q)
n=1
:qlz + q13 + 2q14 + qus + 2q16 + 2q17 + 2q18 + q19 + qzo' (94)

To get the analog of (93) we must supplement the product count rules with configuration product rules. For the
simpler case of the subtraction B{?,,(q) = Ba212,(q) — B (1/9)Bi%,,(@), v =0, 1, 2,... ,wemeetonly
the products 2! from Bz(o) times (P2, p3, -..) from 32((22”. Theresult 2! x P»P3 ---) = (p2 + 1,ps...)isjusta
special case of ordinary multiplication (p’s, p’s, ... ) (P2, P3> ---) = (P2 + P'2,P3 + P'3 -..). Clearly no subtraction
occursif p, = 0in the configuration {p,-., } that contributes to B;>+2,(q).Ifp, > 0in {p,~,} Ifind the effect

of the subtraction is to make the contribution to B{?,, (q) to be that for B »2,(9) modified by the Gaussian

binomial replacement
e R (95)
p 2 g

Note that the replacement (95) implies the h, = 0 configuration 2> does not contribute to B?,,. Thisis a
special case of an observed general rule that only configurations {p,,~ ; } with atleast one m-string, m > 2s,
contribute to Bz(ssz)zV. Itis also the case that in general every contribution to Bz(szi)%, is found to be of the form of
the contribution to By »,. 2, but with modified Gaussian binomials. Returning now to the terms in (94), the
configuration version of B{" (1/4) B,S;) (g) involves new considerations. First, it is necessary to follow every

product {p, . Jast 21 X {P,>; Jas+2, 10 Bz(szi)zﬂ (1 /q)Bz(fi)zy (q) by division by some {p, . , J4;. Second, it may also

be necessary to replace { p,. | }as12, by some other configuration with the same h;. This introduces ambiguities
which for low order terms can be resolved on a case by case basis without having to resort to long chain

calculations. From examples for the BS" (1/4)BS,, (q) product like those given in appendix A, T infer as a

general result that the contribution to B3(3+) 1, (q) isthe Bs 3.4,,(q) contribution modified by the two Gaussian
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binomial replacements

p2+h2 — gh p2+h2—2 , p3+h3 —>q"3/2 p3+h3_1 (96)

similar in form to (95). The results for the configuration sources for the terms in (94),

» B (@@= g7+ q“’[s] + q%[Z] + q‘8[4] D
—_ 1, 11, 2],
—— 6

214! 215! 3141 224!

B =1 = g+ [
4 q

51

identify with the terms on the second diagonal in figure 9.
The process for getting the independent left and right cusp count generators illustrated by the examples
above extends to the general case. Equations (90) and (91) rewritten as

2s+v
Bososion(@) = Y, qE TV Ay s
ls) - (©8)
B®,,(@) = Baeran(@) — Y BE T (1/9BELM (@), v=10,1,2,..

p=1

are applicable to both even and odd 2s and as recursions together with (88) for A; ; provide everything needed for
the cusp count generator Z(gq) in (89) or its WZW product form

(e/0)
Z(@@ = Y (Z Bgi)zyL(l/Q)][Z Bz‘?i)zyk(q)). (99)

25=0/1\v;=0 vr=0

From (95) and (96) and a few higher order analogs I conjecture the configuration sourced version of (98) is

q(zs—n+1)p,,/2[pn + hy, —p25 +n— 1] n< s
n
BEh@= 2 T a7 x ) q 100)
(Pys1Jast20 1P, >0 Py + N n > 2s.
P,

The configurations {p,. ,}x,h; = 45 + 2v, contributing to the sum (100) are as described in the first
paragraph of this section while the product is over those n for which p, is non-vanishing. The Gaussian binomial

[Z] is to be understood to vanish when a < b which happens when n is its maximum n,,, (makingh,, = 0, cf
q

(85)) and np,y < 2 's; this s the basis for the rule that there is no contribution to B{%,, (q) from a configuration
that does not contain at least one string with length greater than 2 s. Conversely, every configuration with
Npax > 2 s contributes; for a proofit suffices to showh, — 2s + n — 1 > Oforeveryn < 2sin (100). Now
hy, = 2) nen(Mm — D)py = 2(Mpay — 1) 2N — 0+ 1 > 25 — n + 1 which is the required result.
Agreement between (98) and (100) has been confirmed numerically to high order.

Many regularities are observed in the solutions (98) and (100). Of particular note, the terms c,.q" in
Bz(ffﬁ 1, (q) are constrained by v(2s + v + 1) < k < 2v(2s + v) with the coefficient ¢, 254+, 1yin the leading
term always unity and sourced by the single (2s + v + 1)-string configuration. The coefficients c,; are
symmetric under reflection of x about the midpoint of its allowed range and a similar reflection symmetry
applies to any subset of coefficients sourced by a particular {p,~} configuration. The number of configurations
contributing to B{ZY,,(9), C*¥ = > ¢, = B{Z),,(q = 1),is the coefficient of x” in the generator

C® =3"B¥,,(q=Dx" = (2/(1 — 2x + J1 — 4x))&+D/2, (101)
v=0

The formulas for C*" and C©) =1+ xC™ can be derived using the A;jsum rule in the discussion following
(87) and supplemented with Z jl: LA lg=1 = 2!/ (! + 1)); formulas for C® for some 2s > 1have been
confirmed analytically based on the recursions (98) while others have been checked numerically. An explicit
independent formula is

Y 1 y 2s+v—1 2s+v—1
(2s)
C® = EO—M - 1(”){< u )+2s( w1 )} (102)

inwhich the '™ term in the sum is the number of contributions from configurations of fixed
N =2s + v+ p + 1in(100).
Because of the observation made in connection with (93) and (97) and illustrated in figure 9 that the

contributions to B{*,, lie on single row diagonals, the Z(q) from (99) is easily modified to the generator Z (e, q)
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of cusp state counts in both energy and momentum. With the normalization of € as chosen in the energy
formula (7),

N € @ €
Zle, @/ = 3 el 3 B (/g || Yo B () (103)
25=0/1 hp=2s hp=2s

where the coefficient of e°g* is the number of cusp states at € and «. The factor e incorporated into (103)
accounts for the observation that B{?¥, which identifies with the single (2s + 1)-string configuration at x = 0,
hase = (2s)” as seen in the many examples in table 1. The arguments e*/q and e°q replacing those in (91)
account for the observed increase in ¢ of two units for every unit shift of x away from x = 0.

No counter examples to (103) have been found in the many computations of cusp energies in long chains.
On the other hand, a general rule for handling configuration products, as distinct from configuration count

products, has not been found. In the search for possible systematics I have included cases where B ;ELZS) containsa

term n(e?/q)* withn > 1. Multiplication with the corresponding B ,ﬁs) term 1 (e%q)* and factor e implies a
multiplicity of n‘atk = 0Oande = (2s)* + 4w of which n should be non-degenerate and (n*-n)/2 doubly
degenerate. The lowest energy example of this is the configuration combination 2'5"' and 3'4" in B{? at k = 14
(cf(94) and (97) or figure 9) which implies multiplicity 4 at 2s = 3, x = 0, = 65. The observed Bethe and
‘apparent’ (in parentheses) configurations followed by the complex Bethe roots A atlength L = 640 are

3241341 3Y): £3.17920 + (2 — 7.627 x 107%)i, +i, +3.97827i
2351(22|41] 22): £2.51180 & (1 — 4.926 x 10713)i, £0.93741 £ (1 — 1.024 x 10-13%)i, +i, +6.77476i
213151(31|41] 22): —3.35607 & 1.9997104i, 0.85154 = 5.50177i, 1.38330304024 + 0.06388218267i,
1.38330300552 = 1.93611787368i, 2.46892 + (1 — 8.379 x 10~14)i
(104)

with a 4th one obtained from the 3rd by reversal of all signs. The strings in the apparent configurations are
separated into left, central and right; that for the 3rd root assumes the quartet with real parts near 1.3833 will at
some longer length split into two 2-strings, one central and the other right. The apparent configurations suggest
aproduct form (3" 4 2%[4'|3' + 2%)and a special role for the 4(=2s + 1)-string, expected because we are
dealing with a B9 B9 configuration product. Allowance for string replacement 5' — 2'4" analogous to that in
(A.2)is required to get the resultant strings, namely 3'4' x 3'4' = (3'4)(3'4") /4' = 3%4',2'5" x 2'5' —
(2'51(2%4"Y) /4" = 2°5"and 3'4" x 2'5' = (3'4")(2'5")/4" = 2'3'5'. Another example is the configuration
combination 2'4' and 3*in B{"V atx = 18 (cf(92) and (93) or figure 9) which implies multiplicity 4 at2s = 1,

k = 0,& = 73. Theanalogof (104) is

223141213121 2!31): £2.84490 £ (1 + 1.136 x 107%)i, £1.67148 £ 2.05580i, =i

2133(2131|2!] 2'3Y): +4.08785 + 1.98750i, +0.89428 + (1 — 2.938 x 1071494, +i

2231413121 412Y: —4.17364 4 1.98721i, —1.40196 + (1 — 1.988 x 107%%)i, 2.39321 =+ 3.24675i,
2.40291 + (1 + 1.937 x 107)i, 2.90420 + (1 + 3.126 x 107%)i (105)

Here the apparent configurations are not of product form but do single out the 2(=2s + 1)-string as special.
After allowance for string replacements 4' — 2'3"and 3" — 2°weget2'4' x 2'4' — (2'4")(2%3")/2' =
223141 3% x 37 — (31)(2°3")/2" = 2'3°and 2'4" x 3> — (2'4")(2?3")/2" = 2%3"4'. A final, different example
is the product 4! (BPatrk = —4) x 214! (B6(2) atk = 11)thatresultsin3'4'at2s = 2,k = 7,& = 34.This
requires the string replacement 4' — 2'3" and the divisor choice 2 rather than 3' (a2s + 1-string was the
divisor for a B9 B®9 product in all the other examples above). The absence of any obvious pattern in these
configuration products is in stark contrast to the simple explicit formula (100) for the WZW tower
excitations Béﬁ)zy.

Equation (103) can be modified to become the generator Z (e, q) for all states by incorporating the

generators for 1-string excitations into the available left h; and right hy holes. These G,(x) are most easily found

asthep — oolimitof[p : h] giving
x h

Gu(x) = 1/C, G = J] A —xm, (106)

n=1

wherex = ¢?/ qforh = hy and ezq forh = hg. Theresult, reproduced in (8), for the all state generator is

(e/0) (e/0) (e/0)
Z(e, q)(e/o) — i ZO:/I 6(25) [hZ:Z B;Sis) (32/q)GhL(62/q)][hz:2 B}S}Z:) (ezq)GhR(ezq) (107)
5= =25 R=25

considered as a series expansion in e. Evidence that (107) is correct comes from the separate left/right excitation
count sum rules
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(e/0)

> B (0)Gh(x) = (1 — x*) G (x) (108)

h=2s
determined by explicit calculation, in many cases to an excess of a hundred terms. The right hand side of (108)
involves G, (x) = limy_, . Gp(x) = 1 + Znoo: p(m)x" which is Euler’s generating function for p(n), the
number of partitions of n. This is known to be the multiplicity of states m(s,) at fixed s, in the WZW model with
n = 0always understood to be a point on the parabola s;. The multiplicity at fixed s given by the generator (108)
is the difference m(s, = s) — m(s, = s + 1) and the factor x> accounts for the shift An = (s + 1)* — §°
between the two m(s,) multiplicity expressions. This can be seen more directly by writing the factor €29 in (107)
as the product (¢2/q)*’ (e?q)*” and incorporating these terms separately into the left and right factors. The sum
rules involving the new left/right factors take the form (9) and are explicit realizations of the characters noted in
equation (159) of [22], chapter 9.

8. Conclusions

Examples have been provided in support of the conjecture that all BAE solutions for spin-2 isotropic
Heisenberg chains in fixed total spin and momentum sectors can be obtained as roots of single variable
polynomials with integer (5) or integer based (6) coefficients. The most important examples are those such as the
L = 16 states in figures 68 which were used to obtain BAE solutions by NR for longer chains extending to

L ~ 1000. These long chain solutions have provided the basis for a conjecture on the relation between Bethe’s
string configuration labelling and the asymptotic L — oo,k = 1, SU(2) WZW model states in the S = 0 sector.
The WZW states are characterized by left and right moving excitations labelled by a WZW spins = s; = sgand
an example of the Bethe-WZW relation is shown in figure 9 for odd 2 s. The general conjecture is (8) which
expresses the state multiplicity generating function in energy and momentum in the expected WZW left times
right tower excitation product form. The tower generator B}EZS) (%) / (%) in (8), equivalently B,SZS) G, in (107),
contains the generator G, (x) = 1/(x);, of 1-string excitations and a polynomial B;EZS) (x) as generator for the
(n>1)-string parts of Bethe’s string labelled configurations. The B\*) explicit formula (100) provides every
tower state in the L — oo limit with a Bethe string configuration label; the alternative (98) together with the
recurrences (88) can be used if only multiplicities without string labelling are desired. The additional
(numerical) reduction via the sum rule (9), equivalently (108), confirms the multiplicities are those expected
from the WZW model. The methods described in this paper are expected to apply also to the extension of the
Bethe-WZW correspondencetoS > 0 states.

The successful assignment of Bethe string configuration labels to every state in the WZW left/right towers in
the critical region at large L could be viewed as nothing more than some (yet to be proved) combinatorial
identities. However, results such as (100) are more than a tautology as they rely on the observation that the tower
states in an energy versus momentum plane lie on single row diagonals as illustrated in figure 9 and thus involve
more than just Bethe combinatorics. I have found no counter examples in the calculation of the energy of any
particular state based on the assignment of Bethe string labels by the observed complex rapidities A at small L and
the use of continuity in L to track A to large L. It is unclear whether this always is, or can be turned into, a rigorous
procedure since Bethe string identification at small L might ultimately fail to be unambiguous and, because Lis
discrete, continuity in L is not a well defined concept.

Because so many of the large L solutions that have been observed have complex A that are qualitatively
different from those at small L, the paper explores the possibility that there exists an ‘apparent’ string labelling
appropriate for L — 0o. While many plausible examples are found there are also counter examples such as (105)
which do not fit into a consistent classification scheme. It appears that Bethe’s string labelling remains as the only
viable alternative even though its implementation at large L is computationally involved.

Finally, there remains the challenge of actually proving the combinatorial identities require to go from the
Bethe string representation (100) to the final sum rule (108) that expresses multiplicities in terms of Euler’s
generating function for p(n), the number of partitions of n.

Appendix

Configuration product examples
The ambiguities and their resolution in the subtraction process

BY),, (@) = Bssia(9) — BP(1/9)B),, (@), B (/9= g+ q* (A.1)

1 2

3 2

areillustrated for v = 1,2 and 3. If we write a configuration in the B{",,(q) factor as (p,, p,,...) we find all
observations are consistent with the products
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(p, + 1, ps,-..), casecl or
22X (Pyy Pyoe) = (D) + 1, psen)s 31 X (Pyy Poseer) :{ 2 3 (A.2)

(p, — L,p; + 1,...), case c2
which corresponds to ordinary multiplication and division (p’s, p’s, ... ) (P2, P3» - -)/. 2! = (p2 +p2-1,
ps + pP's, ...). Two possibilities for the 3' product are required to correctly generate all terms in (A.1) with case
cl arising from the replacement 3' — 2° that maintainsh, = 4 as noted in the remarks following (95).
Consider first the generation of 35(3 ) (9). From (106) we have

Bss(q) = q5+q6[5] + g+ q7[4] + q° (A.3)
< U, = 21, -
’ 214! ’ 223!

which together with BS(D (¢9) from (93) and the product rule (A.2) gives
Us=Bss(@) — q*x( "+ +q°+4q" + ¢
—— - ——— =

52 4 2131 2
— q5+ q5+q6+q7+q8 + q6+ q7+q8+q9 (A‘4)
? 24! ?7 273!

as the unambiguous part of the subtraction in (A.1). For the final result

c c c c2
3) r—'L f-'i f—}— —~ =
BS (q) — U5 _ q73 X ( l]8 + q9 + qlo + qll + q12) (A5)
3! 4 2131 2’

we need to compare terms to see, for example, that 3' x 4' = (3")(4")/2" can onlybe 2'4'(c1) while

31 x 23 = (3Y)(2'3")/2" is either 223" (c1) or 3%(c2) and a unique choice is dictated by the terms in Us available
for cancellation. All uniquely fixed products are indicated by the (A.2) case markers above the BV (q) terms in
(A.5) and yield, after subtraction,

3
BO@= ¢+ a+d +4¢ = 4+ q7[1] (A-6)
5 214 s 4
2l4

which is that reported in (97). Comparison with (A.3) confirms both the cancellation of all terms not containing
strings longer than 2 s = 3 and the form invariance with modified Gaussian binomials in the remaining terms.
A similar calculation starting from

7 5 5
Bys(q) = ¢+ q14[1] n q14[i] + qm[l] + qle[g] n q18[3] rog® (A7)
f q q q q a5
6 2

2151 3i4l 2132 2241 2331

yields a U; analog of (A.4) given by

U7:£LZ+ q12+q13+q14+q15+q16+q17 + q13+q14+q15 + q15+q16+q17+q18

61 2151 3141 2132
_|_q14 + q15 + 2q16 + 26]17 + 2q18 + q19 + qzo + q18 + q19 + qzo + q21 (A.8)
224! 2331

and, accepting the need to cancel all terms with no string longer than 2 s = 3, a final

cl c2 22 cl
B(S)( y=U, — g3 15 ~T6 17 18 19 20
7 4 77— qa°x(qg°+q°+q"+q9° +q9° +¢q
;T ?ld 214!
cl c2 cl c2 (A'9)
~ -~
+ q18+ q19+q20+q21 + q21+q22+q23 + q24)‘
vy 231 4
3 273 2

The uncertain terms in (A.9) indicated by question marks could default to either 3'4' or 2°4" and are resolved as
type cl if we demand form invariance which only allows for a changed Gaussian binomial in the term sourced by
224", Explicit long chain calculation confirms this is the correct choice and on collecting terms, (A.9) reduces to

G — 12 1505 29/2 2] 18[4]
B (q) _‘?_, +q [1]q + q [1 , + q 5 q, (A.10)
61

2151 314 224!

again recorded in (97).
Form invariance has been checked to be sufficient for a unique B9(3) (g)and B (9)- The result for B9(3) (@ is
the first to show what happens in the case of a Gaussian binomial product. We have
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Bso(q) = q*' + q24[9] + q24[5] + g+ q27[8] + q27[7] [3] + q3°[7] + ... (A.11)
— 1 4 1 4 — 2 4 1 4 1 4 3 4
7 4

216! 3151 2251 213141 2341

where the ellipsis indicates terms without any strings longer than 2 s = 3 and

Bé”(q) = '+ q25[7] + q49/2[4] +ogt q29[6] + q57/2[5] [2] + q33[5] ) (A.12)
z 1], 1], T L 2 1,11 3
71 42 q q q q
2161 3151 2251 213141 234]
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