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Abstract
Evidence is presented that the solutions of the Bethe ansatz equations for spin-½ isotropicHeisenberg
chains infixed total spin andmomentum sectors are the roots of single variable polynomials with
integer (or integer based) coefficients. Such solutions are used as a starting point for investigation of
long chain (critical region) properties. In the total spin S=0 sector I conjecture explicit formulae
for the Bethe string configuration labelling of all left and right tower excitations in the k=1, SU(2)
Wess-Zumino-Wittenmodel.

1. Introduction

This paper presents empirical observations about the states of (even) length L periodic chains of s=½spins
anti-ferromagnetically coupled as defined by theHamiltonian
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where i labels both the sites and distance along the chain and the components of is

are the Pauli spinmatrices.

Symmetry dictates that eigenstates of (1) can be labelled by total S and Sz and (quasi)momentumK. Each
stretched state (Sz=S) is constructed fromN=L/2−S overturned spins from the totally aligned spin
configuration. Any Sz<S state can be generated by angularmomentum lowering operators butwill not be
discussed here. Bethe [1] (for an English translation see [2]) showed (1) is soluble by associatingwith each
overturned spin a (quasi)momentum eigenvalue kn,−π<kn�π.These eigenvalues satisfy the Bethe ansatz
equations (BAE)
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The (scaled) sumof the kn is the totalmomentum
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an integer which, with (symmetric)modulo L understood, satisfies−L/2<K�L/2. Solutions for negative K,
−L/2<K<0, are obtained from those at positive K by sign reversal of all kn. The energy of any state that is a
solution of the BAE (2) is given by
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and is clearly unaffected by kn sign reversal.
While some progress has beenmade in the numerical solution of the BAE (2) (cfHao et al [3]) it remains a

difficult challenge.Here I present evidence that there exist important relations satisfied by BAE solutions that
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can be used as easily implemented checks on existing numerical solutions and/or provide alternativemethods of
solution. The evidence ismost apparent when instead ofmomenta k or rapiditiesλ one uses x=2cos(k).
Consider the case that K=L/6, L/4, or L/3 (or their negatives) and letDK=DK(L, S) be the total number of
eigenstates of (1) at the givenK, L and S. Ifind the polynomial
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formed from the BAE solutions has real, rational coefficients ri and can be rationalized to form an integer
coefficient polynomial I x .K ( ) One can consider the process in reverse. For any given I xK ( ) existing commercial
software such asMaple will efficientlyfind all roots xi and afinite search algorithm can find theDK combinations
ofNmomenta ki=±arccos(xi/2) that satisfy the BAE. In principle I xK ( ) can be found from a single1 solution
x=x1 say, obtained to someminimumaccuracy, by an integer relation algorithm such as PSLQ [4]
implemented onMaple.More practically, one can combine all the solutions of the BAE that aremost easily
foundwith a less accuracy demanding PSLQ to determine I x .K ( ) Similar considerations apply for K=0 and
L/2.Here symmetry allows solution of the BAE to be determined from integer coefficient polynomials I xK ( ) of
reduced degree whose roots are only the non-trivial xi.

For all other K the BAE solutions are the roots of polynomials whose coefficients are ‘integer based’.What
thismeans is that theK in the interval 0<K<L/2 group into blocks KdwithMdmembers consisting of those
Kwhose greatest commondivisor with L is d. The number ofmembersMd=j(L/d)/2wherej(n) is Euler’s
function (cfHardy andWright [5] section 5.5). IfMd=1 the situation is that described by (5); otherwise the
members of Kd have the sameDK and the terms cos(2πmK/L), m=0, 1,K,Md−1, are integrally
independent. The root polynomial analog of (5) for anymember is
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where the coefficients r0,i and rm,i are real, rational and independent of K andwhich can, by rationalization, be
converted to integer. Thus although the coefficients pi

K( ) in P x p xK i
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(6). If pi
K( ) is known to sufficient accuracy, the PSLQ algorithmwill determine the rationals r0,i and rm,i. In other

words, if all BAE solutions for onememberK are known, the polynomials P xK ¢( ) for all otherMdmembers
follow trivially without reference to the BAE.

All of the polynomial generated BAE solutions have been plausibly identifiedwith Bethe string
configurations and, by continuity in L, define the Bethe string content at large L. This is important for discussion
of the critical behaviour of (1)whichAffleck [6] showed is the k=1, SU(2)Wess-Zumino-Witten (WZW)
model. Subsequently Affleck et al [7] provided additional analytic and numerical confirmation. An apparent
discrepancy in the asymptotic behaviour of the ground state energy has recently been resolved [8], justifying a
systematic study of other states in long chains to identify the Bethe string content of the left and right tower
excitations in theWZWmodel in the critical region.

In the S=0 sector, the asymptotic L→∞ energy eigenstates of (1) are expected [7], based onWZWand
conformal field theory arguments, to have the form
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where ε and -2 s are both non-negative integers and L0 are non-universal numbers. The spin s in (7) is the spin sL
(sR) of the independent left (right) excitations inWZWwith s s S 0.L R+ = =
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considered as a series expansion in e. The notation (e/o) indicates that 2 s and 1-string holes hL, hR are either all
even or all odd. The essential feature of the generator (8) is its form as a product of independent left and right
towermultiplicities. Every term in a tower factor B x x ,h

s
h

2 ( ) ( )( ) / h hL= or h ,R can be identifiedwith a Bethe
string configuration; the (x)h denominators account for all possible 1-string excitations obtained by
rearrangement of the available 1-string holes hwhile the B xh

s2 ( )( ) are polynomials determined by the remaining
(n>1)-strings. General (conjectured) formulas for the B xh

s2 ( )( ) have been confirmed by high order numerical

1
Provided IK(x)does not (accidentally) factorize into smaller integer coefficient polynomials. Then a solution is needed for each factor.
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calculations to satisfy theWZWtower excitation sum rules
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This brief synopsis of themain results of the paper is expanded in the following sections togetherwith
numerous illustrative examples of BAE solutions.

Section 2 is a summary of Bethe’s solution forN=2 overturned spins but is here recast in a form that leads
directly to (5) and (6). Since themost efficient implementation of the PSLQ algorithm requires the number of
unknown constants to be available, section 3 is devoted to deriving formulas forDK(L, S). At the symmetry
points K=0 and L/2, states are either non-degenerate or 2-fold degenerate coming from the inversion
symmetry kn→−kn that leaves K and Eunchanged. Explicit formulas for these symmetry distinct state counts
are also derived. Section 4 provides example BAE solutions at K=0 and L/2; some of these are directly
derivable algebraically from (2) and provide justification for (5) that extends beyond theN=2 overturned spin
case. Section 5 reports some general K results forN=3.Here confirmation of (5) and (6) is based entirely on
numerical inference but is important because it shows the conjectured structure is not an accidental feature that
arises because the BAE have an analytic solutionwhenN=2. Section 6 is devoted to the example L=16,
S=0. Results from sections 4, 5 and 6 of themore extensive polynomials and associated state lists are provided
as text files L20_nondegen.txt, 3_overturned_spins.txt and L16_singlet.txt respectively in supplementary data.
Section 7 describes the basis for themultiplicity generator (8) and the general formulas for the B x .h

s2 ( )( )

Conclusions form section 8.

2. Twooverturned spins

The BAE (2) for two overturned spins are
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and the equality between first and last term implies the roots of unity condition
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with the scaling convention (3) for the totalmomentum.We can also use thefirst equation in (11) for a second
relation,
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rearranging is
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ForK=0, the solutions to (14) are given by the roots of unity condition (λ+i)/(λ−i)=exp(2πin/
(L−1)) or kn=2nπ/(L−1), n=−L/2+1,−L/2+2,K, L/2−1 fromwhichwemust exclude kn=0
as the solution for the S=L/2 uniform state. The S=L/2−2 solutions are the distinct pair combinations
satisfying k1+k2=0. There are L/2−1 such (non-degenerate) pairs and these exhaust the kn list for pairs. In

summary, the solution lists kK
Sˆ and kK

S ofmomentumpairs [k1, k2] for K=0 are
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adopting the convention of using hatted variables for the non-degenerate states at K=0 and L/2. For K=L/2,
there is one non-degenerate singular solution identifiedwithλ2+1=0.Wewrite the state formally as
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withfinite quantities such as the energy contribution to (4),ΔESing=−2, understood to be the result of a
careful limiting procedure. The solutions arising as roots of unity are kn=2nπ/(L−2), n=−L/2+2,
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−L/2+3,K, L/2−1 fromwhichwe exclude kn=π as the solution for the S=L/2−1 spin-wave. The
S=L/2−2 solutions are the distinct kn pairs which sum toπ (modulo 2π). One such set is k1=2nπ/(L−2),
k2=(L−2−2n)π/(L−2), 0<n< L 4 .⌊ ⌋/ The negatives,−k1,−k2 are also solutions and exhaust the
possibilities. Since reversing the signs of all kn leaves the energy unchanged as well as the sumk1+k2=π
(modulo 2π), each state is doubly degenerate. In summary, for K=L/2,
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where it is understood that we list only the positive half of the degenerate states.
For 0<K<L/2wefirst express (14) in alternative forms. By dividing through by (λ2+1)L/2 we get the
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which is useful for contributing to the discussion by Bethe [1] and Essler et al [9] of a possible complex pair
k=πK/L±iyK solution for K>1.On substituting either k into (18)wefind after some algebra that yKmust
satisfy
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The left hand side of (19) differs fromunity byO(1/L2) for large Lwhereas the right hand side for oddK
never exceeds 1−2/L. Thuswe recover the known result that forfixed oddK>1 there is always some critical
length Lc satisfying cos(πK/Lc)=1–2/Lc beyondwhich the complex solution transforms via yK→iyK to two
real solutions. The (19) for evenK always has a solution but is interesting in that the associatedλ pair has
imaginary partsI(λ)≈±2L1/2/(πK) forfixedK and L→∞ that do not approach the ideal 2-string values
±1 [10].

A second alternative forms the basis for the polynomials (5) and (6). Squaring both sides of (14) yields an
equation explicitly dependent onλ2 only whichwewrite asλ2=(2+x)/(2−x), x=2cos(k). After
rearranging andmultiplying through by the denominator factor (2−x)L−1 and a convenient normalizationwe
arrive at an equation for k given by
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where the xn are the roots of CK(x). In the process of squaring (14)wehave lost kn sign information but this can
be recovered by afinitem, n and sign search process inwhichwe demand the correct signs in (20) are those for
which km+kn=2πK/L. TheA andB in (20) are polynomials in x=2cos(k) of degree L−3 and L−1
respectively; explicitly,
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To reduce C xK ( ) to the polynomial P xK
S ( )whose only roots are those for S=L/2–2wemust divide out the

factor x K L2 cos 2p- ( )/ for the S=L/2–1 spin-wave. If K is oddwemust also divide out two spurious root
factors x K L x K L2 cos 2 cos ;p p- +( ( ))( ( ))/ / thefirst (k=πK/L) is easily shown to be a solution of (18) but
has no pair partner for a BAE solution because the second (k=π−πK/L) leads to left and right hand sides of
(18) having opposite sign. In summary,
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where the roots xn of PK
L 2 2-/ combine into L/2−2(L/2−1)BAE solution pairs for K odd(even). For every

BAE solution of (22) one automatically has also a BAE solution for−Kobtained by simply reversing all kn signs.
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A summary list of the number of solutions Kn̂ which is the non-degenerate part ofDK(L, S) for K=0 and L/2,
vK which is one-half of the remaining degenerate part and vK =DK(L, S) for 0<K<L/2 is

K L L L L L, , 0 2 , , 2 1, 0, 2 2, 2 1, , 4 1, 1 23K L L0 0 2 2^ ^n n n n n< < = - - - ¼ -[ ( ) ] [ ⌊ ⌋ ] ( )/ / / / // /

where the ellipsis indicates a repetition of the alternating sequence L/2−i, i=2, 1, 2,K to a total of L/2−1
terms. The total number of states from (23) is

L L
2

3

2
24

K

L

K L0
0

2

2^ ^ån n n+ + =
-

=

⎧⎨⎩
⎫⎬⎭

( ) ( )
/

/

in agreementwith the expected binomial difference L
N

L
N 1

-
-( ) ( ) forN=2 overturned spins.

For K=L/6, L/4 or L/3 all cosine terms in (22) are rational so that (22) simplifies by elementary division to
a polynomial with rational coefficients. As example, for L=12, S=4 andK=2, 3 and 4wefind the
rationalized polynomials P x I xK i K i

i4
0

2
,

4Kå= n
=

( ) where the integer lists I i, 0..2K i K,
4 n=[ ] are

I

I

I

4, 36, 48, 111, 133, 87, 99, 27, 29, 3, 3 ,

5, 6, 22, 8, 22, 2, 8, 0, 1 ,

4, 12, 24, 61, 5, 49, 13, 13, 7, 1, 1 . 25

2
4

3
4

4
4

= - - - -

= - - -

= - - - - -

[ ]
[ ]
[ ] ( )

In general let the roots xi of the polynomials P xK
L 2 2- ( )/ be arranged in lists of non-decreasingR(xi) order. Then

the corresponding BAE solutions, which are themomentumpairs [km, kn] satisfying km+kn= 2πK/L, are
compactly given in lists kK

L 2 2-/ =[[n1, n2], [n3, n4],K]where |ni| are position pointers to the root lists and

k
n

n
xarccos 2 . 26n

i

i
ni i=

∣ ∣
( ) ( )∣ ∣/

For the example leading to the polynomials (25), the associated state lists when energy ordered are

k

k

k

1, 3 , 2, 5 , 4, 7 , 6, 8 , 9, 10 ,

1, 4 , 2, 5 , 3, 8 , 6, 7 ,

3, 4 , 1, 6 , 2, 10 , 5, 9 , 7, 8 . 27

2
4

3
4

4
4

= - - - - -

= - - - -

= - - - - -

[[ ] [ ] [ ] [ ] [ ]]
[[ ] [ ] [ ] [ ]]
[[ ] [ ] [ ] [ ] [ ]] ( )

For general K in 0<K<L/2 excludingK=L/6, L/4 and L/3 treated above, elementary algebraic division
in (22)will lead to products of cosines that can always be eliminated by use of 2cos(a)cos(b)=cos(a+b)+cos
(a−b). The resulting polynomial PK

L 2 2-/ has coefficients that are sums of (possiblymany redundant) cnK. By
using various trigonometric identities it is possible to reduce the number of cnK in the coefficient of any x

i to a
minimumnumber of integrally independent terms. As afirst step in this reduction, inversion and shifts

c c c c1 1 28nK
K

L n K
K

n L K L n K
2 2

= - = - = = ¼- - -( ) ( )( ) ( ) ( )( )

allow replacement of any cnK by cmKwith 0�m� L 4⌊ ⌋/ providedwe treat separately even and oddK so that
the replacement rule (28)with its (−1)K factors is the same for all K in either category. Such separationwith
distinct rules for different groups but the same rules for every Kwithin a group dictates that the general grouping
is defined by blocksKdwhere d is the greatest commondivisor of K and L. The number ofmembersMd in block
Kd isj(L/d)/2wherej(n) is Euler’s function and the division by 2 arises fromour restriction 0<K<L/2.
AnyKdwith one element will be one of L/6, L/4 or L/3whichwas considered in the preceding paragraph.

Before dealingwith the general cmK reduction to an integrally independent set consider the L=12, S=4
example again. The distinct blocks areK1=1, 5 andK2=2, K3=3, K4=4 so that only K1 remains to be
treated2. The cmK left after reduction by (28) are 1, c1K, c2K and c3K but for K=K1=1 or 5, c K2 1

=1/2 and
c K3 1

=0 leaving only the integrally independent 1 and c K1 1
inwhich to express the result of the division (22). The

explicit result for the rationalized PK
4 from (22) is

P x I I K x K2 cos 6 , 1, 5 29K
i

i i
i4

0

2

1,
4

5,
4

K

å p= + =
n

=

( ) ( ( )) ( )/

where ν1=ν5=4 and

I

I

8, 0, 16, 8, 1, 11, 7, 3, 2 ,

4, 4, 12, 11, 10, 9, 5, 2, 1 . 30
1
4

5
4

= - - - -

= - - - -

[ ]
[ ] ( )

This differs from (6) only in notation; in any specific case it is preferable to replace generic labels by the distinct
Kd values, e.g. {r0,r1}→{I1,I5}here. From the roots of P xK

4 ( )we can construct the BAE states

2
I useKd as a label both for a single element and the set of elements {Kd}; the context determines what ismeant.
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k

k

1, 2 , 3, 4 , 5, 6 , 7, 8 ,

2, 4 , 1, 8 , 3, 7 , 5, 6
311

4

5
4

= - - - -

= - - - -

[[ ] [ ] [ ] [ ]]
[[ ] [ ] [ ] [ ]]

( )

exactly aswas done in arriving at (27) including energy ordering.
Some general results for the reduction of the number of cmK below the L 4 1+⌊ ⌋/ left following use of (28)

have been obtained and I begin by illustrating this for blockK1. The number of elements inK1 cannot exceed the
L 4⌊ ⌋/ reachedwhen blockK1 contains all oddK in the interval 0<K<L/2 so that one replacement beyond
(28)will always be required. This can be taken to be

c

L M

c L M

0, 4

1
1

2
1 , 4 2

32MK M
m

M m
mK

1
1

11
1å=

=

- + - = +-
=
-⎜ ⎟

⎧
⎨⎪
⎩⎪

⎛
⎝

⎞
⎠( ) ( ) ( )

where theL=4Mcase is the trivial cos(πn/2)=0 for nodd (e.g. c K3 1
= 0 in theL=12 example above). The result

in (32) for L=4M+2 follows from the roots of unity condition n Ncos 2 1 2 1 1 2
n

N

1å p- + =
=

(( ) ( ))/ /
togetherwith (28). No identities beyond (28) and (32) are needed if L/2=p, p prime>2, or L/2=2ℓ. If L has odd
divisors>1 someof the oddK in the interval 0<K<L/2will be excluded in the constructionofK1.Wewill then
need asmanynew identities as there have been exclusions.One set of identities follows trivially from (32)–whenever
L is amultiple of some4M+2,M>0, then

c c L f M1
1

2
1 , 4 2 , 33fMK

M
m

M m
fmK

1
1

1
1 1å= - + - = +-

=
-⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( ) ( )

which with f>1 supplements (32). An example is f=2,M=1 giving c K2 1
=1/2 used in the L=12

discussion leading to (29). Other identities follow from (33)which we get by first rewriting (33) as
c1 1 2 0.

m

M m
fmK1 1å+ - == ( ) Onmultiplying this by ciK1

and again using the identity 2cos(a)cos(b)=cos
(a+b)+cos(a−b)we obtain

c c c L f M1 0, 4 2 . 34iK
m

M
m

fm i K fm i K
1

1 1 1å+ - + = = +
=

+ -( ) ( ) ( ) ( )( ) ( )

An example replacement using (34) is at L=24 (f=4,M=1)where K1=1, 5, 7, 11 andwith i=1,
c c c .K K K5 1 31 1 1

= - Together with c K4 1
=1/2 from (33) and c K6 1

=0 from (32)we are left with the required four
integrally independent 1, c ,K1 1

c K2 1
and c K3 1

coefficients.
Every blockKd has its own set of rules analogous to (32)–(34). For example for K2,

c
L M

c L M

1, 4
1

2
, 4 2

35MK
m

M
mK1

12
2å=

- =

- - = +
=
-

⎧
⎨⎪
⎩⎪

( )

replaces (32) and there are corresponding replacements for (33) and (34). For any given L and divisor d, atmost
two cmKd

relations are needed to complete the division (22) provided these are used in replacements at each step
of the division process so as to always limit themaximumm in cmKd

to afixed number. Furthermore, the effort to
derive the required relations from formulas such as (32)–(34) can be avoided by using a PSLQdetermination
instead. Specifically, for any L and dwe know the number of Kd elements isMd=j(L/d)/2 and the empirical
evidence, based on PSLQ analysis, is that cmKd

=cos(2πmKd/L), m=0, 1,K,Md−1, are integrally
independent and can be used as a basis inwhich to express any c ,mKd

m�Md, as a sumwith rational coefficients.
The PSLQ algorithm,with anyKd as numerical input, will provide an analytical expression for cM Kd d

that suffices
for d even and in addition c M K1d d+( ) that is required for d odd. This procedure has been confirmed for all even L
to 100.

This completes theN=2 overturned spin analysis that forms the basis for (5) and (6).Many examples have
shown the structure of (5) and (6), as defined by the blocks KdwithMdmembers, remains unchanged for any
N�L/2 overturned spins. TheNdependence lies entirely in the degree of the integer polynomials which relates
directly to the number of statesDK(L, S) determined in the next section.

3. State counting

Todetermine the numberD(N, L, K) of states of totalmomentumK forNoverturned spins in a length L

periodic chain start with the observation that the binomial L
N( ) is the total number of configurationsψ forfixed

N and L and these can be separated into exclusive classesψd where d is a commondivisor of L andN. The
distinguishing feature of classψd is that for configurations Tnψd (translations by n=1, 2,K fromψd) thefirst
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occurrence of Tnψd=ψd is at n=L/d. Such configurations are formed fromd repetitions ofN/d overturned
spins on segments of length L/d.

The configurations inψd can be grouped intoDd blocks, each block containing L/d translation related
configurations Tn−1ψ, n=1,K, L/d, which provide a basis for forming, by superposition, Dd states for each
total Kwhich is necessarily restricted tomultiples of d. Adding together the state counts (L/d)Ddof every class

ψd gives the total
L
N

;( ) this is the sum rule

L
N

L

d
D . 36

d N L
d

,
å=( ) ( )
∣( )

The notation used in (36) and the following is that (M,M′) is the greatest commondivisor of a pairM,M′

whilem|Mdenotesm is a divisor, including 1 andM, ofM andΣm|Mmeans sumoverm subject to the constraint

m|M.More generally, the total number of periodic configurations of period L/d is
L d

N d

⎛
⎝⎜

⎞
⎠⎟

/

/
and contributing to

this total are the classesψ(N,L)/d′ for d′|(N, L)/d. The corresponding sum rule is

L d

N d
d L

N L
D d N L

,
, , , 37

d N L d
N L d

,
,å=

¢

¢

¢

⎛
⎝⎜

⎞
⎠⎟ ( )

∣( ) ( )
∣ ( )

( )
/

/
/

/

with (36) being the special case d=1. The number of equations (37) are the numberσ0 of divisors d of (N, L)
and these uniquely determine theσ0 unknownDd. The number of statesD(N, L, K) then follows as

D N L K D, , 38
d N L

d K d
,

,å= D( ) ( )
∣ ( )

where 1d K,D = if d|Kand 0 otherwise; this incorporates the fact that K for states in classψd are restricted to
multiples of d. By periodicity, K can only take on L distinct values giving L d

K d K,å D = / and sowe confirm

D N L K L
N

, ,
Kå = ( )( ) from (38) togetherwith (36).

An explicit formula forDd is obtained as follows. Define f(d′) as the expression in the sums (37) and replace
that equation list by the equivalent

dL N L

dN N L
g d f d d N L

,

,
, , , 39

d d
å= = ¢
¢

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( ) ( ) ∣( ) ( )
∣

/

/

formed by the substitution d→(N, L)/dwhich runs over the same values. TheMöbius inversion formula (cf
Hardy andWright [5] section 16.4) applied to (39) gives

dL

N L
D f d d g

d

d
d N L

,
, , , 40N L d

d d
, å m= = ¢

¢
¢

⎜ ⎟⎛
⎝

⎞
⎠( )

( ) ( ) ∣( ) ( )( )
∣

/

whereμ is theMöbius function. An equivalent of (40) is obtained by the substitution d→(N, L)/d again and
when the resultingDd is substituted into (38)we get the explicit state count

D N L K
d

L
d

L dd

N dd
, , , 0 N L. 41

d N L
d K

d N L d,
,

,
å å m= D ¢

¢
¢

< <
¢

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( )
( )

∣( ) ∣( )

/

//

ForN=0 or L, D(N, L, K)=δ0K, the fully aligned states. The number of statesDK(L, S) atfixed S=Sz is given
by thewell known subtraction

D L S D L S L K D L S L K S L, 2 , , 2 1, , , 2, 42K = - - - - <( ) ( ) ( ) ( )/ / /

supplemented byDK(L, L/2)=δ0K.
As an example consider L=12.We get fromD(N, L, K) in (41) that D(1, 12, K)=1,D(2, 12, K)=

5+Δ2,K, D(3, 12, K)=18+Δ3,K, D(4, 12, K)=40+2Δ2,K+Δ4,K, D(5, 12, K)=66, D(6, 12, K)=
75+3Δ2,K+Δ3,K+Δ6,K while a subtraction (42) givesDK(12, 0)=9+3Δ2,K+Δ3,K+Δ6,K. The values
D0 (12, 0)=14 and those for other L using (41) and (42) agree with the sumsD(SP01)+D(SP02) given by
Fabricius et al [11] in their Table II. On the other handD(6, 12, 0)=80 calculated here differs from their
D(Sz=0, K=0)=44.More detailed comparison shows thatD(Sz=0, K=0) in [11] incorrectly includes only
even S contributions. That the state counts (41) are correct has been confirmed bymany additional checks
including comparison to a generalization of Bethe’s [1] state counting towhich I now turn.

A string configuration for a state of total spin S and Sz=S on a chain of even length Lwith periodic
boundary conditions is specified by the list (p1, p2, p3,K)where the pn are the number of n-strings in the
configuration. Each n-string is associatedwith n overturned spins and this yields the constraint
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N=∑npn=L/2−S on the total number of overturned spinsN. TheBethe formula for the number of states
with this configuration, denoted below as p ,n{ } is the product

D L S p
p h

p
p h

h
h S m n p, , , 2 2 43n

n

n n

n n

n n

n
n

m n
m  å=

+
=

+
= + -

>

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( { }) ( ) ( )

with each binomial factor the number of ways pn ‘particles’ (i.e. strings) and hn ‘holes’ can be arranged in
pn+hn integer slots. An important observation from (43) is that hn depends only on pm,m>n and in
particular h1=2 S+2∑(n−1)pn is fixed by the n-string content for n�2. Since the constraint
N=∑npn=L/2−S also fixes p1=N−∑n>1(npn), any configuration can equally be specified by just
the list (p2, p3,K). Bethe also introduced P=∑pn for the total number of ‘particles’which yields the
alternative expressions h1=2S+2∑(n−1)pn=2S+2N−2P=L−2P, results that will be of use
later (cf (54)).

Bethe shows that D L S p, , n( { }) summed over all pn{ } that are the unrestricted partitions ofN, gives the
correct total number of states forNoverturned spins but does not explicitly remark on the number of states at
fixed total (scaled)momentumK=(L/2π)∑ki. However, implicit in (43) is the observation that a shift of any
‘particle’ or ‘hole’ to an adjacent slot leads to the same change |ΔK|=1. Consequently it is possible to define a
generator Z L S p, , n q( { }) which is a polynomial invariant under the interchange q↔1/qwith the coefficient of
qκ being the number of states at K=κ relative to a central value K=Kc. This generator has the formof

D L S p, , n( { }) in (43) butwith every binomial
p h

p
+⎛

⎝⎜
⎞
⎠⎟ replaced by theGaussian binomialmodified by a

prefactor q−ph/2 for q↔1/q invariance. Explicitly,

p h
p

p h
p

q
q

q
q

q

q

p h

h

1

1

1

1
. 44

q

ph

k

h p k

k
ph

k

p h k

k
q

2

1

2

1
 +


+

=
-
-

=
-
-

=
+-

=

+
-

=

+⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )
( )

( )/ /

The justification for this prescription relies first on Pólya’s [12] observation that the coefficient of qA in the
expansion of q q1 1

k

p h k k
1 - -

=
+( ) ( )/ is the number of p+h stepwalks between (0, 0) and (h, p) that

enclose area A between thewalk, the x-axis and the line x=h. Second, there is a one to one correspondence
between Pólyawalks and configurations of p particles and h holes and, towithin an additive constant, K=A. To
show this adopt the reference configuration corresponding to the zero area Pólyawalk to be that of all particles to
the left of all holes with the holes labelled 1, 2,K, h in sequence startingwith hole 1 as the rightmost hole. A
general configurationwill have ni particles to the right of hole i with 0�n1�n2�K�nh�p. If this
configuration is represented as a histogramof ni versus i inscribed in an h×p rectangle it will be seen to be one
of Pólya’s walkswithA=∑i ni. Furthermore every particle to the right of a hole is the result of an adjacent
particle hole interchange and a unit increase inmomentum implying∑i ni=Kand hence A=K relative to the
reference configurationmomentum.

It is observed empirically that the central (symmetric)Kc is either 0 or L/2 (modL), depending onwhether
P=∑pn, is even or odd respectively. On incorporating this result we get as our generalization of the Bethe
formula (43) the q-generator

Z L S p q
p h

p
h S m n p, , , 2 2 45n q

P L

n

n n

n q

n
m n

m
mod 2 2 å=

+
= + -

>

⎡
⎣⎢

⎤
⎦⎥( { }) ( ) ( )( ) /

with []q for each n given by (44). The coefficient of q
K in (45) is the contribution of the particle configuration

{pn} to the number of states atmomentumK. Shifts of K bymultiples of L are understood to bring K into the
first Brillouin zone−L/2<K�L/2. The relation to the total number of states (42) is

Z L S p D L S q, , , 46
p

n q

K L

K L

K
K

2
1

2

n

å å=
=- +

=

( { }) ( ) ( )
{ }

where the left hand side sum is understood to be over all partitions ofN=L/2−S.
Consider as example L=12, S=0. Separate the partitions p(6) into even and odd P; then, in a truncated

notation and {pn}written as product n ,pn

8

J. Phys. Commun. 3 (2019) 025007 BNickel



Z Z L S p

Z Z Z Z Z Z

q q

q q q

q q q

q q q q

q

q q

q

q q

q q q q q q q q q q q q

Z Z L S p

Z Z Z Z Z

q
q q

q q q

q q

q q

q q

q q q

q Z

12, 0,

1 1 2 1 3 3 2 4 1 5

1
1 1

1 1

1 1 1

1 1 1
1

1

1

1

1

4 5 8 8 12 8 8 5 4 ,

12, 0,

1 2 2 1 2 3 1 4 6

1 1

1 1
1

1 1

1

1 1

1 1
1

47

even
p P even

n q

odd
p P odd

n q

even

,

6 2 2 3 1 2 1 1 1 1

5 6

4 2

5 6 7

6 2 3

5

2

9

4

6 5 4 3 2 1 2 3 4 5 6

,

4 1 3 1 1 1 2 1 1

6
5 6

4 2

7 3

4 2

7 8

6 2

6

n

n

å

å

= = =

= + + + + +

= +
- -
- -

+
- - -
- - -

+ +
-
-

+
-
-

= + + + + + + + + + + + +

= = =

= + + + +

=
- -
- -

+ +
- -

-
+

- -
- -

+

=

- - - - - -

⎛
⎝⎜

⎞
⎠⎟

( { })

( ) ( ) ( ) ( ) ( ) ( )
( )( )

( )( )
( )( )( )

( )( )( )
( )

( )
( )

( )

( { })

( ) ( ) ( ) ( ) ( )
( )( )

( )( )
( )( )

( )
( )( )

( )( )
( )

{ }

{ }

The summapped to the first Brillouin zone is

Z L S Z p Z Z

q q q q q q q q q q q

12, 0 12, 0,

9 12 10 12 9 14 9 12 10 12 9 14 48

q
p

n q even odd

5 4 3 2 1 2 3 4 5 6
n

å= = = = +

= + + + + + + + + + + +- - - - -

( ) ( { })

( )
{ }

which agrees withDK(12, 0)=9+3Δ2,K+Δ3,K+Δ6,K noted in the paragraph following (42). Neither
method of calculation distinguishes between degenerate and non-degenerate states at the symmetry points
K=0 andK=L/2. For that I turn to another generalization of Bethe’smethod.

Some of the states at K=Kc arise from terms inwhich, in every binomial factor in (43), the particles and
holes are symmetrically distributed. If the number of overturned spins is odd one of the associated Bethewave-
vectors will beπ but except for this isolated case the Bethewave-vectors ki will occur in symmetric pairs3 (ki,−ki)
and describe the non-degenerate states at K=0 orK=L/2. To obtain the number of these states note that the
number of holes hn is always even in each binomial distribution and exactly half of the holes, hn/2,must occupy,
say the right, half of the available slots, p 2n⌊ ⌋/ +hn/2. The occupancy of the left half isfixed by the required
symmetry so that the symmetric (non-degenerate) state count is just the new binomial product

D L S p
p h

h
h S m n p, ,

2 2

2
, 2 2 , 49sym

n
n

n n

n
n

m n
m å=

+
= + -

>

⎛
⎝⎜

⎞
⎠⎟( { })

⌊ ⌋
( ) ( )

/ /

/

that replaces (43). From (49) one can derive an explicit formula for the total number of symmetric states that
parallels Bethe’s derivation of the total number of states. Begin by defining a constrained sum

D L S P D L S p, , , , 50sym sym
nå= ¢( ) ( { }) ( )

inwhich the number of ‘particles’∑pn=P, 1�P�N, in addition to the number of overturned spins
N=∑npn=L/2−S, isfixed. By comparingwith a large number of examples I conclude
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P
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Bethe has proved the analogous formulaD(L, S, P) for the constrained total number of states by induction after
first showing it satisfies the recursion

D L S P
S

L S
L S

P
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p h

h
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, ,
2 1
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2 1 2 1

1
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/
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The corresponding recursion here follows by replacing the binomial in the second equality in (52), which is the
n=1 factor in (43), by the n=1 factor in (49) thus giving

D L S P
p h

h
D L P S P p, ,

2 2

2
2 , , . 53Sym

p

P
Sym
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1
1 1

1
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å=
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⎞
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⌊ ⌋
( ) ( )

/ /

/

To show (51) satisfies (53) the four cases inwhichN and P are separately even or oddmust be considered. For
the even-even case setN=2 R, R=1, 2,K and P=2Q,Q=1, 2,K, R; then (53) reduces to

3
In this context wemust treat (π/2+i∞,π/2−i∞) as a symmetric pair also. The associated spins are always nearest neighbours so the

onlywave-vector describing the pair is the sumwave-vector πwhich is also−π (mod 2π).
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where the two terms in braces arise from the even p1=2q and odd p1=2q+1 terms in the original p1 sum in
(53). These can be combined into a single binomial and if we define R-Q=A,Q-q-1=k the right hand side of
(54) can bewritten

R A S k
A S
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with the equality verified by direct comparison of terms in the sumwith terms in the hypergeometric function.

The latter is Saalschützian (cf Erdélyi et al [13] section 4.4) and satisfies F
a b n
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where x x n xn = G + G( ) ( ) ( )/ is Pochhammer’s symbol.With this result onefinds (55) is
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which, since R−A=Q, then confirms (54) is correct. A similar analysis for the remainingN and P even/odd
cases verifies that (51) satisfies the recursion (53) in general. Furthermore, the special values Z L S, , 1 1Sym =( )
and Z L S L S, , 2 2 1 2Sym N= + -( ) ⌊( ( ) ) ⌋/ / from (51), which are easily shown to agreewith the definition (50),
serve as the initial conditions to complete the inductive proof of (51) for P>2.

Nowonly a sumover P in (51) remains to obtain the total number of symmetric (non-degenerate) states. In
compliancewith the discussion onwhether the center of symmetry Kc is 0 or L/2, we have
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where thefinal equalities follow usingVandermonde’s identity a
m

b
n m

a b
nm

n

0å - = +
= ( )( )( ) for the sums.

Explicit calculation of Bethe states has confirmed (57) inmany cases, including all S�L/2 and even L�12. All
other states at K=0 and L/2, necessarily including those translated fromoutside the first Brillouin zone, are
doubly-degenerate states related by the reflection symmetry ki→−ki. The state counts (57) take a particularly
simple formwhen related directly to thewave-vector lists that occur. These are of the form [*, (k1,−k1),
(k2,−k2),... ,(kn,−kn)]where

* are special values comprising four cases ofN*=0 to 3wave-vectors—null;π;
π/2+i∞,π/2−i∞;π/2+i∞,π/2−i∞,π—with associatedK*=0, L/2, L/2, 0 respectively. The state
counts (57)now take the form

D L S L
n

S L N n K
N

L N
, 2 1 , 2 2 ,

0, 0, 3
2, 1, 2

. 58K
sym = - = - - =

=
=

*
*

*

⎧⎨⎩( )( ) ( )/ /
/

The results in (58) confirm those forN*=3 for L≡2mod 4 andN*=2 for even L in [14] (their equations (29)
and (30)). These authors do not give general results for the remaining caseN*=3 for L≡0mod 4 but their
specific count of 4 for L=12with 5 overturned spins is in error— disagreeingwith the count of 5 from (58), the
explicit (61) arrived at by an independent calculation below, and the results reported in [15].

4.Non-degenerate states at K=0 and L/2

The simplest extension of BAE solutions tomore than 2 overturned spins is for states of symmetrically
distributed particles and holes discussed in the preceding section. These are the non-degenerate states at K=0
and L/2 and I beginwith a few examples of states contributing to counts (58). The result offixing theN* special
wave-vectors is a reduced set of BAE for the remaining n independent rapiditiesλj=cot(kj/2)

4. These
equations are

4
The defining equations for theN* special rapidities are trivially satisfied but in the pairλ=±i case a careful limiting procedure such as that

described in [16]must be used to determine their energy contributionΔEsing=−2.
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Simplifying (59) for n=1, inwhich case F=1, leads trivially to P 0N mod
L
N2

2 1
2l l =-

* *
( )/ where Pm

N* is a
polynomial of degreembut different for everyN*. The possible rootλ=0 (k=π) has no independent partner
at –k and is to be discarded. The L/2–1 roots of PL

N
2 1-
*

/ exhaust the state counts (58). Consider the case L=12,
S=1, K=0 forwhichN*=3, n=1. The root equation inλ2 can also be given as one in x=2cos(k) using
λ2=(2+x)/(2−x); the equations are

x x x x x55 505 582 78 45 5 0 , 5 9 15 2 5 0 612 4 6 8 10 2 3 4 5l l l l l- + + - - = + - - + - = ( )
and illustrate those in x typically have smaller coefficients. The roots of (61) giveλ=±0.35796,±0.83363,
±1.83377,±3.03103i,±1.99966iwhich together with theN*=3 specialλ can be identifiedwith the even
partitions (strings) of the 5 overturned spins, namely 1321 (3 cases) and 1141, 2131 (one case each) in agreement
with the individual counts (49). Hao et al [3] report only 4 roots but the ‘missing’λ (=±0.3579K) is plausibly
element 235 in their supplementary informationTable 69,misidentified due to numerical inaccuracies.

For n=2 the reduced BAE (59) can be simplified to the pair

Q P Q P, 62L
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where the PL
N

2 1-
*

/ are the same polynomials that arose for n=1; the QL
N

2

*

/ polynomials are new. Substituting
either equation of the pair (62) into the other demands the vanishing of a degree (L/2)2 polynomial. The
numerical evidence is that this polynomial always factorizes giving

P Q R1 0 63L
L
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L
N

L L
N2 2 2

2 1
2

2
2

2 1 2 2
2l l l l l+ - =-

- - -
* * *

( ) ( ( ) ( )) ( ) ( )( )( )/ / / /

inwhich the L/2 roots of themiddle factor are theλ1=λ2 solutions of (62) and are to be discarded. Also to be
discarded are the roots of the first factor in (63)which are the singular solutions already accounted for in theN*

wave-vector list. The (L/2–1)(L/2–2) roots of the R polynomial in (63) are to be paired using (62) and so
exhaust the state counts (58) for n=2. For L=10, S=0, K=5 one hasN*=1, n=2 and the R polynomial
root equation, expressed in x, is

x x x x x x

x x x x x x

1637 6346 2103 11585 10898 1000 6066

3079 55 627 258 45 3 . 64

2 3 4 5 6

7 8 9 10 11 12

- + + - - +
- - + - + - ( )

If the roots of (64) are ordered from1 to 12 by non-decreasing real part, the Bethe solutions are the pairs [1,
9], [3, 10], [5, 11], [2, 4], [6, 7], [8, 12] obtained using (62). In explicit terms and including theN*=1 root k=π
(λ=0), the solutions in this sequence are, respectively

i i i
i i i

0.23834, 2.08921 , 0 , 0.65226, 2.00829 , 0 , 1.50543, 2.00166 , 0 ,
0, 0.43240, 1.19617 , 0, 1.02826 1.00383 , 4.32753 , 2.00003 , 0

65
l =      

     
[ ] [ ] [ ]

[ ] [ ] [ ] ( )

corresponding to the odd partitions of 5 overturned spins, namely 1231 (3 cases) and 15, 1122, 51 (one case each)
again in agreementwith (49).

I amunaware of any simple algebraic process that willfind the analogs of polynomials (61) or (64) for n>2.
On the other hand, the existence of these polynomials has been confirmed in a number of cases either by direct
construction from solutions of the BAEormore simply by use of the integer relation algorithmPSLQ [4]. For
any given L,N* and n one need only find one BAE solution fromwhich to pick awave-vector k1 and determine
x1=2cos(k1)with a certainminimumaccuracy. This x1 is used to construct the list [1, x1, x1

2,K, x1
nD]whereD is

the state counts from (58). This list serves as input to the PSLQ algorithm and provided the accuracy is adequate,
the outputwill be the integer coefficient list [a0, a1, a2,K, anD] in the polynomial∑aix

i. Software packages such
asMaple can efficientlyfind polynomial roots andwhat remains is then just afinite search process forD groups
of n roots that satisfy the BAE.

The needed accuracy in x1 for a successful PSLQ return is roughly nD times the number of digits in the
coefficient ai of largestmagnitude. This can be a severe limitation but one can always reduce the PSLQ
complexity by increasing the number of BAE solutions used for input. Instead of the single root power list one
constructs the array, and by linear algebra, its triangular reduction
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which leaves, in the final row, nD−m+2 non-zero elements that become the new input list into PSLQ. Back
substitution of a successful PSLQ coefficient list return into the triangular reduction array yields successive
polynomial coefficients. Towithin the floating-point accuracy used these are either integer or rational and in the
latter case the entire (tentative) list can be converted to integer by an appropriatemultiplication. It is
advantageous to supply the PSLQ algorithmwith real coefficients; complex xi need not be discarded and instead
the complex power list [1, xi, xi

2,K, xi
nD] should be input as the two lists which are its real and imaginary parts.

The largest L treated by thismethod has been L=20 (D=126)with PSLQ input reduced to less than 50
elements. Thefinal 631(505) polynomial coefficients for K=0(10) appear in the supplementary datafile

L20_nondegen.txt as lists Ih0S0L20 I0
0( ˆ ) and Ih10S0L20 I .10

0( ˆ ) Also given are the corresponding energy ordered

BAE solution lists k0
0ˆ and k10

0ˆ written as kh0S0L20 := [[70, 105, 146, 185, 238],K] and kh10S0L20 := [[56, 91,
127, 166],K]where the integers specify the location in the polynomial root lists xi when ordered by non-
decreasing real part as in the example leading to (65) (note for K=10 each BAE solution consists of±λi from
the four listed xi plus theN

*=2 special±i). TheD energies Ei for eachKdefine a polynomial E E
i i -( ) that

has been confirmed to have integer coefficients. These are the lists Ihe0S0L20 and Ihe10S0L20 and serve as useful
checks. Every solution has been plausibly identifiedwith a Bethe string solution and hence a partition of 10. To
emphasize this and the agreement with the counts (49) all states have been separated by partition label with
energies as shown in figure 1. Some of the state identificationsmight not be obvious at first sight. AK=0
example is [1, 2, 564, 629, 630]which is

i i i i i0.00188 , 0.76047 , 1.23953 , 1.99994 , 2.81271 67l =     [ ] ( )

and is identified as the P=4 partition 11213141.Here it is important to recognize that symmetry dictates that the
nominal Bethe strings have the same (vanishing) real part which implies 2-foldλ root degeneracy at both±i and
0. This degeneracymust be lifted and (67) shows it is lifted by a spitting of the roots in the imaginary direction5.
The splitting in (67) can be emphasized bywriting theλ roots as

Figure 1.Non-degenerate L=20 state energies at K=0 and10, separated into partitions of 10 and grouped by particle number
P=∑pn. The left-most column in each P group is the partition 1P-1(11-P)1; partitions for the remaining columns are in the
dictionary order given in Table 24.2 of AS [18]. The horizontal lines are the ferromagnetic (L/2) and limiting anti-ferromagnetic
(L/2–2Lln(2)) energies.

5
There are examples where the splitting is in the real direction. For theK= 10 state [119, 380, 476, 477]which is identified as the P= 3

partition 213151,λ≈[±0.550075,±i,±0.550074±2.000001i,±4.816316i].

12

J. Phys. Commun. 3 (2019) 025007 BNickel



e i e e i e e i e i e i

e e e e e

, 1 , 1 , 2 , 3

1.8798 10 , 0.23953 , 1.4197 10 , 5.9980 10 , 0.18729 68

0 1 Q 1 Q 2 3

0
3

1 Q
17

2
5

3

l =   - -  + -  -  -

= ´ = ¼ = ´ = ´ =- - -

[ ( ) ( ) ( ) ( ) ]
( )

and the very small eQ shows how little the centroid of the nominally degenerate±i pair has shifted. The small eQ
also labels the state as a ‘quartet’ – a state inwhich two differentλi have imaginary parts differing by≈2. Since
there has been some question in the literature [17] about the role that quartet states play in the BAE solutions it is
instructive to seewhat happens to (68)with changes in L. For large L one can derive the asymptotic results
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that even for L=20 are in qualitative agreement with (68). One notes that eQ becomes doubly exponentially
small but does not in anyway prevent the±i and 0 root splittings frombecoming exponentially small.

Amore interesting situation arises at L>20when the (213141)-string combinationwith L/2–9 remaining

1-strings is kept as an S=0 excitation. The number of such excitations based on (49) is m
m

6+( ) for
L=20+4 mbut I consider for each L only the one state inwhich the 1-stringλi are inmagnitude as small as
possible and sandwiched between a symmetric set of 1-string large |λ| holes6. The 1-strings interfere significantly
with the (213141)-string combination and lead to an increase in both e0 and e1 in (68) until a complexλi collision
occurs and changes the qualitative character of the solution. This is illustrated infigure 2. That the states for L�
40 are indeed the continuation of those for L<40 is confirmed by noting that the squares of the splitting
between the colliding roots form a smooth sequencewith a sign change at L≈39. The configuration at L=48
when viewed in isolationwould almost certainly be identified as an ‘apparent’ 11533 partition rather than the
Bethe 115213141.While this is just amore elaborate example of a complex root collision discussed following (19)
and already observed by Bethe and others, it does illustrate that quartet configurations are typically unstable
intermediate forms that facilitate transitions between states of different character.

BAE solutions for L>20 such as those shown infigure 2 have been found byNewton-Raphson (NR)
iteration. The L=20 results are invaluable as a template forNR initialization for L=24. For larger L,
polynomial extrapolation in L (with allowance for root collision) is usually adequate for the complex root
initialization. For real root initialization it is preferable to start with numerical approximations to the density

ρ=dn/dλ and extrapolate these in L.One then obtainsλn by the integration n= d
0

n

ò r l
l

with n either

integer or half-integer. An adequate approximation to ρ inmost cases is theHulthén [19] ground state
ρ0=L/(4cosh(πλ/2)) plus polynomial and/or resonance (Lorentzian) functions.Many such calculations have
been carried to L≈1000with the goal of establishing the correspondence betweenBethe string solutions and
WZWmodel states. A graphical solution is facilitated if we rewrite (7) as

Figure 2.A sequence of complexλ-plane sections showing Bethe roots for partitions 1L/2–921314 1 at lengths L shown. The lower half
planes, being the reflection of the upper half, have been truncated. Themajor horizontal and vertical lines intersect at the pointsλ=0
andλ=2i. The horizontal scale is indicated by a scale bar of length 2.

6
This state is a local energyminimumand is appropriately called a cusp state. Quite generally, asymptotic L→∞ energies ε= ε(K) in (7)

for different 1-string arrangements but fixed (n>1)-strings fill a V-shaped ‘cusp’ region ε(K)� ε(Kε)+2|K−Kε| in energy versus
momentum in the neighbourhood of a localminimum ε(Kε), Kε.
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Let the left hand side be numerical BAE solutions and the explicit termswith integer ε and 2 s on the right hand
side be possible asymptoticWZWsolutions. A sample of such paired graphs, including the (213141)-string
combination featured infigure 2, is shown infigure 3. It is apparent that inmost cases a length L=1280 ismore
than adequate to unambiguously establish the Bethe-WZWcorrespondence.

The results of the correspondence fromfigure 3 andmany similar calculations are given in table 1. Empirical
relations describing the Bethe-WZWcorrespondence for the states Fnm in table 1 are

F m n m h n Bethe string

n m s s s n m WZW model

1 1 1 , 2

4 , 2 2 71

n m
L n

L R

,
2 2 1 1

1

2e
= + - + =

= + = = = -

- - ( ) ( ) ( )
( ) ( ) ( ) ( )/

/

for m n n0, 1, 2 , 0, 1,= ¼ = ¼⌊ ⌋/ and can be understood to be the rules for all states with atmost two (n>1)-
strings. Amore comprehensive set of rules and combinatorial relations will be given in section 7 after Bethe
string configurations at general K have been discussed in sections 5 and 6.

I close this sectionwith a discussion of a very different but intriguing state. It is the single particle P=1, L/2-
string state which appears infigure 1 as the lowest lying S=0 excitation on the ground state of a ferromagnetic
chain. This is the state [323, 341, 379, 468]which inλ representation is

i i i i i, 3 4.59 10 , 5.001053 , 7.23669 , 13.08157 . 729l =   + ´   -[ ( ) ] ( )

The L=22 state,

i i i i i0, 2 3.54 10 , 4 4.60 10 , 6.005167 , 8.43462 , 15.42998 , 7317 7l =  + ´  + ´   - -[ ( ) ( ) ] ( )
is the analogous single particle L/2-string for L/2 odd. The explicit (72) and (73) serve as useful templates for
initial guesses for larger L and can be easily improved byNR iteration. Oscillations due to odd/even L/2 rapidly
decaywith increasing L and Ifind from an analysis of states to L=60 that the energy is

E
L

L L L L L L2
1

1.34630515852995 3.35506593315 6.18534702 12.96091 25.54
74L

2

2 3 4 5

p
» - - + - + -⎜ ⎟⎛

⎝
⎞
⎠ ( )

where theπ2 has been inferred fromnumerical values but is not in doubt. Corresponding inference for the other
numerical values in the series (74) has not been successful. The excitation energy∝ 1/L implies this state is not
two ferromagnetic domains separated by finite width domainwalls. Another guess for a classical analog of this
state is one inwhich the chain is cut and the ferromagnetic ground state twisted by 2π before reconnection. This
state is not topologically distinct from the ground state but it is a highly degenerate stationary energy state since
the vector defining the 2π rotation can have any orientation. In all such states neighbouring spins deviate by

Figure 3.Crossesmark numerical ε(L) from (70) versus 1/ln(L), 20�L�1280, for configurations (reading upward at large L) 71,
2161, 3151, 2251, 42, 213141, 2341, 33 in the simplified notation that excludes the L- dependent 1-strings. Solid curves are interpolations
plus extrapolations based on fits while the straight line segments areWZWasymptotes ε+2 s(s+1)/ln(L) for s=0(red), 1(green),
2(blue) and 3(magenta).
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and the agreement of the leading terms in (74) and (75) suggests this is indeed the correct analog state.
Confirmation comes from a comparison of spin-spin correlationswhich classically are simply

s s s
L

jcos
2

76i i j
Classical2 p

=
 

+


⎜ ⎟⎛
⎝

⎞
⎠⟨ · ⟩ ∣ ∣ ∣ ( )/

and imply long range order with spins separated by L/2 strictly anti-parallel.
For the s=½quantum chain correlations I have solved theHamiltonian (1) eigenvalue/eigenvector

problemby generating a basis recursively startingwith 00y =∣ ⟩ and

77
j

L

j j L1
1

2

, 2y =   -  
=

+∣ ⟩ ( ) ( )
/

/

which is a product of singlet states of spin pairs separated by L/2. Besides the desired property that spins
separated by L/2 are strictly anti-parallel, (77) is shown by translation j→j+1 to be an eigenstate of total
momentumK=L/2. Additional bases are defined by H an n n n n n1 1y y e y y= - -+ -∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩where ne and an

are chosen to guarantee the orthogonality 0.n n n n1 1 1y y y y= =+ - +⟨ ∣ ⟩ ⟨ ∣ ⟩ Iteration stopswhen one observes

0D 1y =+∣ ⟩ ; this happenswhenD=
L

L

2 1

4
,

-⎛
⎝⎜

⎞
⎠⎟⌊ ⌋

/

/
the dimension given in (57). If the states are left unnormalized

aswritten above andwe define the normalization constants N ,n n ny y= ⟨ ∣ ⟩ the tri-diagonalHamiltonianmatrix
in a normalized basis has elements Hn n n, e= and H H N N .n n n n n n, 1 1, 1= =+ + + / The characteristic
(eigenvalue) polynomial of thismatrix agrees with that found byBethe ansatz for all cases considered. The
highest energy eigenvalue is that of the single particle L/2-string state and the spin-spin correlations found from
the associated eigenvectors for even L from4 to 20 are shown infigure 4. The j=1 correlationC1 is related to the
energy (74) byC1=2EL/(3L)while the factor 3 enhancement of the j=0 correlationC0 over that of the
asymptotic C1 infigure 4 is the s=½distinction between spin length squared s(s+1)=3/4 for a single
quantum spin and themaximum s s1 2

 
⟨ · ⟩=s2=¼ for distinct (parallel) spins. This obvious quantum effect

has no classical analog. The data infigure 4 for L=20 has the Fourier decomposition

Table 1.WZWasymptotic parameters ε and s together with Bethe 1-string hole count h1 for the lowest energy cusp state picked from every
column infigure 1. Eachmain configuration entry is the L=20Bethe (n>1)-string list; this is followed by a label in parentheses that is the
‘apparent’ large L string content if there are changes as a result of root interactions. For states labelled by Fnm see text; for a state designated
with+n there are additional cusp states with energies ε greater by 4 m,m=1Kn.

Fnm,+n

Configuration

(at K=0) ε 2× s h1÷2 line# Fnm,+n

Configuration (at
K=L/2) ε 2× s h1÷2

F00 Ground state 0 0 0 1

F20 31 4 2 2 2 F10 21 1 1 1

F21 22 8 0 2 3 F30 41 9 3 3

F40 51 16 4 4 4 F31 2131 (23) 13 1 3

F41 2141 (2231) 20 2 4 5 23 17 1 3

F42 32 24 0 4 6 F50 61 25 5 5

+1 2231 24 2 4 7 F51 2151 (2241) 29 3 5

24 32 0 4 8 F52 3141 (2132) 33 1 5

F60 71 36 6 6 9 +2 2241 33 3 5

F61 2161 (2251) 40 4 6 10 2132 37 1 5

F62 3151 (33) 44 2 6 11 +1 2331 (25) 41 1 5

F63 42 48 0 6 12 25 49 1 5

+3 2251 44 4 6 13 F70 81 49 7 7

213141 (33) 48 2 6 14 F71 2171 (2261) 53 5 7

33 52 2 6 15 F72 3161 (3241) 57 3 7

+2 2341 (2431) 52 2 6 16 F73 4151 (2142) 61 1 7

+2 2232 56 0 6 17 +4 2261 57 5 7

F80 91 64 8 8 18 213151 (3241) 61 3 7

F81 2181 (2271) 68 6 8 19 2142 65 1 7

F82 3171 (3251) 72 4 8 20 +1 3241 65 3 7

F83 4161 (3142) 76 2 8 21 F90 101 81 9 9

F84 52 80 0 8 22
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and fromvarious fits, including the extrapolationCL/2=–0.33(1) for L→∞ fromfigure 4, I conclude
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in the L→∞ limit. Thefirst correction –2/(3 L) in (79) is required by the sum rule∑jCj=0while the sum
2/3–0.93(2)+0.24(3)+Kmust vanish because there are noO(1/L) corrections toC1. Finally, because
cos(2πj/L) is the only surviving cosinemode in (79) for L→∞ in agreementwith (76)we have confirmed
the suggested identity of the analog classical state.

5. States of 3 overturned spins for general K

This section confirms the structures (5) and (6) for the case of 3 overturned spins andBethe string configurations
13, 1121 and 31. The results are coefficient lists reported in 3_overturned_spins.txt based on the following
notation and conventions. The data for given L starts with the state count list in the form (23),
NS v K L v$ : , , 0 2 , , ,K L L0 0 2 2^ ^n n n= < <[ ( ) ]/ / / where $ is the numerical value of the spin S and defines also
L=6+2 S. The number of states 2 ,0 0n̂ n+ v K L0 2K < <( )/ and 2 L L2 2^n n+/ / at eachK together with
v K- = vK are given by (41) followed by (42). There is only the 0n̂ =1 symmetric non-degenerate K=0, E=
L/2–6 state [π/2+i∞,π/2−i∞,π]which is theN*=3, n=0 case in (58). At K=L/2 there are L 2n̂ / =
L/2–1 symmetric non-degenerate states [π, k,−k] based onN*=1, n=1. The non-trivialmomenta are

k=arccos(x/2)with x in turn each root of the polynomial P I xL i

L
L i
S i

2 0

2 1
2,

^ ^å=
=

-
/

/
/ derived as described for (59)

and (60). The coefficient list defining this polynomial is denoted Ih S I i$ $ : , 0, 1, ...,L i
S

L2, 2
^ n̂= =[ ]/ / with $ being

placeholders for the numerical K=L/2 and S respectively. To completely describe the BAE solutions via (5) and
(6) requires and additional L/2+1 analogous coefficient lists IKS I i$ : , 0, 1, ,3 ,K i

S
K, n= = ¼[ ] 0�K�L/2.

Figure 4. Spin-½model spin-spin correlationsCj= s s s s 1i i j +
 

+⟨ · ⟩ ( ( ))/ versus site separation j in the single particle P=1, L/2-
string state for chains of length 4, 6,K, 20. Lines connecting Cj, 0�j�L/2 at the same L are a guide to the eye. The remaining lines
are polynomial in 1/L fits to CL/2 for the largest L and these extrapolate to C∞=–0.33(1) as shown. The inset shows the convergence
of Cj for L=20when only contributions frombases 1y ñ∣ through ny ñ∣ are kept. The extremes areCj=δj,0 – δj,L/2 for n=1 and the
exact Cj for n=126. Intermediate curves are n=2, 3, 4, 5 and 7.
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ForK=0, L/6, L/4, L/3 or L/2 the polynomial P x I xK i K i
S i

0

3
,

Kå= n
=

( ) is defined by the single list ‘IKS$’ but for
K an element of blockKdwithMd=j(L/d)/2� 2 elements as described following (28), P xK ( ) depends on a
superposition ofMd lists. Let the elements of Kd be labelled and ordered as Kd

0[ ]<Kd
1[ ]<K<Kd

M 1d-[ ] in
which case the list sum

IK S mK L IK S$ 2 cos 2 $ 80d m

M
d
m0

1

1då p+
=
-   ( ) ( )[ ] [ ]/

replaces the single list IKS$  used to define P xK ( ) as in the (29) example. The 3νK roots of PK(x) define the
3 Bethewave-vectors for all of the νK states. These states are represented as the list k$S$ := [[n1, n2, n3],
[n4, n5, n6],K, [K, n3 Kn ]]where the $ are numerical K and S as beforewhile the |ni| are position pointers to
the root list. It is to be understood that the roots xi are arranged in non-decreasingR(xi) order with the Bethe
momentum kni

associatedwith ni then uniquely given by (26). The list k S$ $  is energy orderedwith the energy
of each state given by (4). A check is provided by energy polynomial coefficient lists IeKS$  that are the analog of
IKS$  but define polynomials PK(E)whose νK roots are the energies of the states in the kKS$  lists. The analogy
between IeKS$  and IKS$  extends to the combining rule (80) that is applicable to both lists. One final list
Ihe S$ $  provides the energies for the states generated from Ih S$ $  at K=L/2.

The results presented in 3_overturned_spins.txt include all even L, 8�L�26. The L=8 data, part of
which is

I S
I S
k S
k S
Ie S Ie S

1 1: 384, 896, 208, 1248, 436, 328, 292, 52, 8, 0, 2, 6, 1 ;
3 1: 256, 512, 464, 1088, 92, 856, 262, 274, 152, 4, 21, 5, 1 ;
1 1: 1, 3, 5 , 2, 9, 10 , 4, 7, 8 , 6, 11, 12 ;
3 1 : 1, 3, 6 , 2, 7, 8 , 4, 9, 10 , 5, 11, 12 ;
1 1: 0, 16, 6, 4, 1 ; 3 1: 8, 0, 4, 1, 0 ; , 81

= - - - - - - - -
= - - - - - -
= - - - - -
= - - - - - -
= - - = -

[ ]
[ ]
[[ ] [ ] [ ] [ ]]
[[ ] [ ] [ ] [ ]]
[ ] [ ] ( )

is here used to illustrate that the lists IK S$d  forMd>1 are not unique. The coefficient lists

J S
J S
1 1: 896, 1920, 1136, 3424, 252, 2040, 816, 496, 312, 8, 40, 4, 1 ;
3 1: 640, 1408, 672, 2336, 344, 1184, 554, 222, 160, 4, 19, 1, 0 ; 82

= - - - - - - -
= - - - - - -

[ ]
[ ] ( )

are alternatives to I S1 1  and I S3 1  respectively. They are related by
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where xi
K( ) are the roots of the associated polynomials PK(x) of either coefficient list. Only the result following

thefirst equality conforms to that in (6) but the second formwith irrationalmultipliers ismore typically found
when obtaining the polynomials by PSLQ. Since such different forms give identical roots, supplementary data
that is equivalent to (6), as in L=8 above, has been left unchanged. The remaining data in (81) can be used to
verify that the roots of PK(E) determined from the list sum Ie S K Ie S1 1 2 cos 4 3 1+   ( )/ are the energies
calculated from lists kKS1  for K=1 and 3 using (4).

ThemaximumL=26 exceeds the L≈21.86 critical value where (19) shows thefirst complex root collision
for 2 overturned spins and this allows us to exploremore fully string interactions. As a specific example, figure 5
shows how strings in 1121 interact andmodify bare 21 behaviour. Themain indicators of interaction are the
approximately linear drifts from themarker values and a pronounced level repulsion around the line 2k1=k2
mod 2π. 2-string root collisions arefirst observed at L=24, amarginal shift fromL=22 expected based on
(19), for 22 distinct k1 values. In contrast for the 23rd k1, the collision seen in the L=74 inset is suppressed until
L=56. For states with root collision expected at L≈61.35 based on (19), the 2-string remains complex in two
states with k1 above the line 2k1=k2mod 2π at L=74.

6. L=16 singlet states for general K

This section provides further confirmation of (5) and (6) butmore importantly provides the BAE solutions that
serve as templates for the calculations ofmuch longer chains. The notation and conventions follow those in
section 5 and start with the S=0, L=16 state count

K, , 0 8 , , 35, 30, 85, 93, 85, 94, 85, 93, 85, 30, 35 84K0 0 8 8^ ^n n n n n< < =[ ( ) ] [ ] ( )

determined from (41), (42) and (58). Aminor change is that labels for lists reported as supplementary data in
L16_singlet.txt are truncated versions Ih$ ,  I$ ,  kh$ ,  k$ ,  Ihe$  and Ie$ with $ the numericalmomentumK.
The symmetric non-degenerate states at K=0 areN*=0, n=4 versions of (58) and of the form [ki,−ki,
i=1..4]. They are listed as [ni, i=1..4] in kh0 with k xarccos 2i ni

= ( )/ and xni
the ni

th root of P(x) of degree
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4 0n̂ with coefficients listed in Ih0 .  The corresponding symmetric non-degenerate states at K=8 areN*=2,
n=3 versions of (58) and of the form [π/2+i∞,π/2−i∞, ki,−ki, i=1..3]. The non-trivialmomenta are
listed as [ni, i=1..3] in kh8 with k xarccos 2i ni

= ( )/ and xni
the ni

th root of P(x) of degree 3 0n̂ with coefficients
listed in Ih8 .  All other states are of the form [ki, i=1..8] listed as [ni, i=1..8] in kK .  Nowhowever signs are
important and ki is given by (26)with the x ni∣ ∣ the roots of a PK(x) of degree 8 .Kn ForK=0, 4 or 8 the coefficients
of PK are the lists IK ;  for K amember of the blockK1=1, 3, 5, 7 or K2=2, 6 the superposition rules of (80)
apply. Similarly for the energy polynomial lists IeK . 

Solutions are plausibly identifiedwith Bethe string configurations that are partitions of 8 and confirm the
counts (45). Energy versusmomentumof all states, separated by partition, is shown infigures 6–8.Of particular
note are cusp states defined as those forwhich all 1-strings occupy adjacent positionswith no intervening holes.
In the limit of large L these are local energyminimawith respect to 1-string excitation and a particularly
important set of low energy states called current excitations by Bortz et al [20].Many such large L (≈1000)
solutions have been found byNR and analyzed similarly to that described in the text leading to (70). The results
for all cusp states supplementing the odd ε cases from table 1 are shown infigure 9 for ε�41. The state labelling
conforms to that used infigures 6–8. Combinatorial rules that predict the location of states in the L→∞ limit
shown infigure 9 are found to be a simplemodification of the standard Bethe rules and are described in the next
section.Here I only note that while the Bethe string labelling is an essential component of these rules, a different
‘apparent’ string labelling is often amuch better indicator of the solution rapidities in the complexλ plane.

Very clear patterns are seen infigure 9 of which themost striking is that all state counts are consistent
with products of the (left and rightmoving)±κ excitation counts appearing in the single rowdiagonals
ε=(n−1)2+2|κ| terminating at the single n-string values atκ=0. This is as expected for theWZWmodel
and is also explored inmore detail in the next sectionwhich concludes with a conjecture for the string content of
all left and right tower states in the total S=0 sector. Another observation is that any cusp state associatedwith
WZWspin s contains at least one n-stringwith n>2 s; this is shown to follow from the string content
conjecture.

7. Low energy S=0 state counting for L→∞

The cusp state examples described in sections 4 and 6 lead naturally to conjectures for themultiplicity of all low
lying singlet states as L→∞. An important parameter in the cusp state classification is the number of 1-string
holes h1=2∑(n-1)pn (cf (43) and subsequent discussion)which is necessarily even and fixed by the n-string

Figure 5.Momentum correlations for BAE 1121 configuration solutions in a (half) periodic cell. The 242 states shown for L=26 plus
241 additional states obtained by inversion about (π,−π)make up the total 23×21 from (43). The kimarkers are at 2πn/(L−2), n
integer. Diagonals indicate constant k1+k2=2πK/L shown at K=−10, 0, 13 and 21 for L=26 andmatching L−13 and L−5
for L=74. Crosses label complex 2-strings; diamonds are real 2-strings following root collision.
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content for n>1. Thus h1 is decoupled fromL and our analysis does not require any specific value for L beyond
L even and L?h1. The complete list of possible pn h1 1>{ } = (p2, p3,K) for any h1 is the list of the partitions of
h1/2with every integer in a partition incremented by one. For example, for h1=10, the partitions of 5 (15, 1321,
1231, 1122, 1141, 2131, 51) after incrementing are the cusp state configurations {pn>1}10 (2

5, 2331, 2241, 2132, 2151,
3141, 61). Define P̃=∑n>1pn and Ñ=∑n>1npn , the total number of ‘particles’ and overturned spins

Figure 6.Energy E versus (quasi)momentumK for Bethe 18-nn1 (P=9-n) configurations. Only the (n>1)-string component is used
as plot label. Lines connect upper and lower boundary states for each n as a guide to the eye. For clarity theK (modL) for each state has
been chosen such that only after including reflection about K=0(L/2) for states of even(odd) particle number Pwill the display be in
explicit agreement with the counts (45). Diamonds replace crosses for the ground state (gs) and cusp states described in the text.
Configurationswith no 1-strings are also potential cusp states and aremarked as squares. The horizontal line of length L (one periodic
cell)marks the ferromagnetic energy L/2.

Figure 7.E versus K for Bethe 16-n21n1 (P=8-n) configurations. Only the (n>1)-string components are used as plot labels (with
22→22, 23→2131, etc). Conventions as in figure 6.
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respectively in the (n>1)-strings. For the example list, P̃=5, 4, 3, 3, 2, 2, 1 and in general Ñ = P̃+h1/2with
1�P̃�h1/2.

Any particular {pn>1} appears as a distinct cusp state for each division of h1 into exclusively left hL and right
hR holes. In the symmetric case, hL=hR=h1/2, there is a trivial generalization of the generator (45) to the cusp
state generator7.

Figure 8.E versus K for Bethe configurations not shown infigures 6 and 7. Conventions as infigures 6, 7.

Figure 9.Bethe configuration labelled cusp state asymptotic energy ε from (7) versusmomentumκ=K−Kc, Kc=0(L/2) for L/2
odd(even). States are distinguished byWZWmodel s=sL=sR=1/2(red), 3/2(green) and 5/2(blue). States atκ>0 are obtained
by reflection aboutκ=0. There are hidden s=3/2 states nearκ=0, ε=37; for these see the lower left corner insert which hides
the s=1/2 states instead. The data for the lowest excited state shownhas been carried to L=16384 in [21].
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⎦⎥ and the lower element in theGaussian binomial in a Bethe product is always to be understood to be pn in this

section.
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where use has beenmade of the relation h1=L−2P derived in the discussion following (43). To get from the
symmetric case to hL=h1/2+m, hR=h1/2−mrequiresmoving each of p1=L/2−Ñ 1-strings bym
steps. Each step shiftsmomentumKby one so the effect is tomultiply (85) by q .m L N2-( ˜ )/ The qmL 2/ factor can be
accommodated by replacing h1/2 in thefirst factor in (85) by hL to give the general result
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To efficiently evaluate configuration sums of expressions such as (86) it is useful tofirst determine
amplitudes Ai,j, i=1, 2,K, 1�j�i, which are sums of the productsΠ [K]q appearing in (85) and (86)
subject to the constraints h1=2i, P̃=j (or Ñ=i+j). Endpoint values are Ai,1=Ai,i=1 arising from
configurations (i+1)1 and 2i respectively. Intermediate cases for the partition of 5 list above are
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Based onmanymore examples I conjecture but have not provedAi,j=Ai,i-j+1 for all i, j. On the other hand, the
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⎠⎟∣ is easily verified by noting theGaussian binomials at q=1 are ordinary

binomials after which follows a one to one correspondence between the sums here andBethe’s constrained sums
D L S P, ,( ) in (52).What are L andPwith S=0 in (52) are here h1 and P̃ respectively as a consequence of our
transcription of partitions into the cusp state configurations {pn>1}. The symmetry Ai,j+1=Ai,i-j allows us to
restrict our explicit amplitude calculation toAi,i-j with 1�j�(i-1)/2 inwhich case every Gaussian binomial

product contains some f2=
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⎦⎥ together with other factors that are incremented partition analogs of

the {pn>1}. These remaining factors in all termswith a common f2 combine into an amplitude of the same
structure as Ai,j but of lower order. The result, togetherwith Ai,1=Ai,i=1, is the recursion formula
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The generator for all cusp states obtained by summing (86) over configurations are usefully separated as
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The sum in thefirst equality in (90) is over configurations {pn>1}understood to be pn h1 1>{ } as described in the
first paragraph of this section and N np

n n1å= >
˜ as in (86). In the second equality Ñ has become a dummy

summation variable indexing the very restricted configuration information available in theAi,j. By excluding the
power of q factors in (89) from the definition of Z e o˜ ( )/ the latter become generators inwhichκ in qκ is the
momentumK relative to a central Kc that is either 0 or L/2. Tomake contact withWZWmodel results I expand
B qh h,L R

( ) from (90) as a sumof products8 of independent left and right cusp generators B xh
s2 ( )( ) carrying a

8
To avoid exceptions in product formulas it is convenient to define the ground state as a cusp state also. Then (89) and (90) are understood

to be supplementedwith the definition B0,0=1.
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common 2s=2sL=2sRWZWspin label and differing only in argument in the left and right cases. For h<2s,
B x 0,h

s2 =( )( ) while B x 1.s
s

2
2 =( )( ) The defining equations (notationally collapsed into onewith (e/o) indicating

hL, hR and 2 s are all either even or odd integers),
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considered as identities in hL and hR have a structure that allows all remaining Bh
s2( ) to be determined recursively

from Bh h,L R
starting from the smallest 2s=0 or 1. To illustrate, consider the odd case in (91) and set hL=1 to
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Hadwe kept configuration information by utilizing the first equality in (90) rather than the Ai,j formwe could
have sourced B1

1( ) and each term in (92) by its {pn>1} configuration. The result is
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andwith the replacement q→1/qwe see all the terms in (93) can be identifiedwith the terms on a single
(lowest)diagonal of energy versusmomentum infigure 9.

For the determination of Bh
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To get the analog of (93)wemust supplement the product count rules with configuration product rules. For the
simpler case of the subtraction B q B q B q B q1 , 0, 1, 2,2 2

2
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special case of ordinarymultiplication (p′2, p′3,K)(p2, p3,K)=(p2+p′2, p3+p′3,K). Clearly no subtraction
occurs if p2=0 in the configuration {pn>1} that contributes to B q .2,2 2n+ ( ) If p2>0 in {pn>1} Ifind the effect
of the subtraction is tomake the contribution to B q2 2
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Note that the replacement (95) implies the h2=0 configuration 22+ν does not contribute to B .v2 2
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( ) This is a
special case of an observed general rule that only configurations {pn>1}with at least onem-string,m>2s,
contribute to B .s v
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the contribution to B s s v2 ,2 2+ butwithmodifiedGaussian binomials. Returning now to the terms in (94), the
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which for loworder terms can be resolved on a case by case basis without having to resort to long chain
calculations. From examples for the B q B q13
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general result that the contribution to B q3 2
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similar in form to (95). The results for the configuration sources for the terms in (94),
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identify with the terms on the second diagonal infigure 9.
The process for getting the independent left and right cusp count generators illustrated by the examples

above extends to the general case. Equations (90) and (91) rewritten as
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are applicable to both even and odd 2s and as recursions together with (88) for Ai,j provide everything needed for
the cusp count generator Z q˜ ( ) in (89) or itsWZWproduct form
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From (95) and (96) and a fewhigher order analogs I conjecture the configuration sourced version of (98) is
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The configurations p ,n h1 1>{ } h1=4 s+2ν, contributing to the sum (100) are as described in the first
paragraph of this sectionwhile the product is over those n forwhich pn is non-vanishing. TheGaussian binomial
a
b q

⎡
⎣⎢

⎤
⎦⎥ is to be understood to vanishwhen a<bwhich happenswhen n is itsmaximumnmax (making hn=0, cf

(85)) and nmax�2 s; this is the basis for the rule that there is no contribution to B qs v
s

2 2
2
+ ( )( ) from a configuration

that does not contain at least one stringwith length greater than 2 s. Conversely, every configurationwith
nmax>2 s contributes; for a proof it suffices to showhn−2s+n−1� 0 for every n�2 s in (100). Now
hn=2∑m>n(m−n)pm� 2(nmax−n)�nmax−n+1>2s−n+1which is the required result.
Agreement between (98) and (100) has been confirmed numerically to high order.

Many regularities are observed in the solutions (98) and (100). Of particular note, the terms cκq
κ in
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n+ ( )( ) are constrained by ν(2s+ν+1)�κ�2ν(2s+ν)with the coefficient cν(2s+ν+1) in the leading
term always unity and sourced by the single (2s+ν+1)-string configuration. The coefficients cκ are
symmetric under reflection ofκ about themidpoint of its allowed range and a similar reflection symmetry
applies to any subset of coefficients sourced by a particular {pn>1} configuration. The number of configurations
contributing to B q ,s v

s
2 2

2
+ ( )( ) C cs2 å=n k

( ) =B q 1 ,s v
s

2 2
2 =+ ( )( ) is the coefficient of xν in the generator
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The formulas for C(1) andC(0)=1+xC(1) can be derived using theAi,j sum rule in the discussion following

(87) and supplementedwith A i i i2 1 ;
j

i
i j q1 , 1å = +

= =∣ ( )! ( !( )!)/ formulas for C(2s) for some 2s>1 have been

confirmed analytically based on the recursions (98)while others have been checked numerically. An explicit
independent formula is

C
v s s

s1

1
2 1 2

2 1
1

102s2

0

v

å m m
n
m

n
m=

+
+ - +

+ -
-
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⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭( )( ) ( )( )

inwhich theμth term in the sum is the number of contributions from configurations offixed
N s2 1n m= + + +˜ in (100).

Because of the observationmade in connectionwith (93) and (97) and illustrated infigure 9 that the
contributions to B s v

s
2 2

2
+

( ) lie on single rowdiagonals, the Z q˜( ) from (99) is easilymodified to the generator Z e q,˜ ( )
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of cusp state counts in both energy andmomentum.With the normalization of ε as chosen in the energy
formula (7),

Z e q e B e q B e q, 103e o
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where the coefficient of e qke is the number of cusp states at ε andκ. The factor e s2 2( ) incorporated into (103)
accounts for the observation that B ,s

s
2

2( ) which identifies with the single (2s+1)-string configuration atκ=0,
has ε=(2s)2 as seen in themany examples in table 1. The arguments e2/q and e2q replacing those in (91)
account for the observed increase in ε of two units for every unit shift ofκ away fromκ=0.

No counter examples to (103)have been found in themany computations of cusp energies in long chains.
On the other hand, a general rule for handling configuration products, as distinct from configuration count
products, has not been found. In the search for possible systematics I have included cases where Bh

s2
L

( ) contains a

term n e q2 w( )/ with n>1.Multiplicationwith the corresponding Bh
s2

R

( ) term n e q2 w( ) and factor e s2 2( ) implies a
multiplicity of n2 atκ=0 and ε=(2s)2+4ω ofwhich n should be non-degenerate and (n2-n)/2 doubly
degenerate. The lowest energy example of this is the configuration combination 2151 and 3141 in B7

3( ) atκ=14
(cf (94) and (97) orfigure 9)which impliesmultiplicity 4 at 2s=3,κ=0, ε=65. The observed Bethe and
‘apparent’ (in parentheses) configurations followed by the complex Bethe rootsλ at length L=640 are

i i i

i i i i

i i i

i i

3 4 3 4 3 : 3.17920 2 7.627 10 , , 3.97827

2 5 2 4 2 : 2.51180 1 4.926 10 , 0.93741 1 1.024 10 , , 6.77476

2 3 5 3 4 2 : 3.35607 1.9997104 , 0.85154 5.50177 , 1.38330304024 0.06388218267 ,

1.38330300552 1.93611787368 , 2.46892 1 8.379 10

104

2 1 1 1 1 6

3 1 2 1 2 13 130

1 1 1 1 1 2
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  - ´  
  - ´   - ´  

-   
  - ´

-

- -

-

( ∣ ∣ ) ( )
( ∣ ∣ ) ( ) ( )

( ∣ ∣ )
( )

( )

with a 4th one obtained from the 3rd by reversal of all signs. The strings in the apparent configurations are
separated into left, central and right; that for the 3rd root assumes the quartet with real parts near 1.3833will at
some longer length split into two 2-strings, one central and the other right. The apparent configurations suggest
a product form (31+22|41|31+22) and a special role for the 4(=2s+1)-string, expected becausewe are
dealingwith a B Bs s2 2( ) ( ) configuration product. Allowance for string replacement 51→2141 analogous to that in
(A.2) is required to get the resultant strings, namely 3141×3141=(3141)(3141) /41=3241, 2151×2151→
(2151)(2241)/41=2351 and 3141×2151=(3141) (2151)/41=213151. Another example is the configuration
combination 2141 and 32 in B7

1( ) atκ=18 (cf (92) and (93) orfigure 9)which impliesmultiplicity 4 at 2 s=1,
κ=0, ε=73. The analog of (104) is

i i i

i i i

i i i

i i

2 3 4 2 3 2 2 3 : 2.84490 1 1.136 10 , 1.67148 2.05580 ,

2 3 2 3 2 2 3 : 4.08785 1.98750 , 0.89428 1 2.938 10 ,

2 3 4 3 2 4 2 : 4.17364 1.98721 , 1.40196 1 1.988 10 , 2.39321 3.24675 ,

2.40291 1 1.937 10 , 2.90420 1 3.126 10 105
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Here the apparent configurations are not of product formbut do single out the 2(=2s+1)-string as special.
After allowance for string replacements 41→2131 and 31→22we get 2141×2141→(2141)(2231)/21=
223141, 32×32→(32)(2231)/21=2133 and 2141×32→(2141)(2231)/21=223141. Afinal, different example
is the product 41 (B4

2( ) atκ=−4)×2141 (B6
2( ) atκ=11) that results in 3141 at 2 s=2,κ=7, ε=34. This

requires the string replacement 41→2131 and the divisor choice 22 rather than 31 (a 2s+1-stringwas the
divisor for a B Bs s2 2( ) ( ) product in all the other examples above). The absence of any obvious pattern in these
configuration products is in stark contrast to the simple explicit formula (100) for theWZWtower
excitations B .s

s
2 2

2
n+

( )

Equation (103) can bemodified to become the generator Z e q,( ) for all states by incorporating the
generators for 1-string excitations into the available left hL and right hR holes. TheseGh(x) aremost easily found

as the p→∞ limit of
p h

h x

+⎡
⎣⎢

⎤
⎦⎥ giving

G x x x x1 , 1 , 106h h h
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h
n

1
= = -
=
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where x=e2/q for h=hL and e
2q for h=hR. The result, reproduced in (8), for the all state generator is

Z e q e B e q G e q B e q G e q, 107e o

s

e o
s

h s

e o

h
s

h
h s

e o

h
s

h
2 0 1

2

2

2 2 2

2

2 2 2

L

L L

R

R R

2å å å=
= = =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( ) ( ) ( ) ( )( )

( )
( )

( )
( )

( )
( )/ //

/

/ / /

considered as a series expansion in e.Evidence that (107) is correct comes from the separate left/right excitation
count sum rules
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determined by explicit calculation, inmany cases to an excess of a hundred terms. The right hand side of (108)
involves G x G x p n xlim 1h h n

n
1å= = +¥ ¥ =

¥( ) ( ) ( ) which is Euler’s generating function for p(n), the
number of partitions of n. This is known to be themultiplicity of statesm(sz) atfixed sz in theWZWmodel with
n=0 always understood to be a point on the parabola sz

2. Themultiplicity atfixed s given by the generator (108)
is the differencem(sz=s)−m(sz=s+1) and the factor x2s+1 accounts for the shiftΔn=(s+1)2−s2

between the twom(sz)multiplicity expressions. This can be seenmore directly bywriting the factor e s2 2( ) in (107)
as the product e q e qs s2 22 2( ) ( )/ and incorporating these terms separately into the left and right factors. The sum
rules involving the new left/right factors take the form (9) and are explicit realizations of the characters noted in
equation (159) of [22], chapter 9.

8. Conclusions

Examples have been provided in support of the conjecture that all BAE solutions for spin-½ isotropic
Heisenberg chains infixed total spin andmomentum sectors can be obtained as roots of single variable
polynomials with integer (5) or integer based (6) coefficients. Themost important examples are those such as the
L=16 states infigures 6–8whichwere used to obtain BAE solutions byNR for longer chains extending to
L≈1000. These long chain solutions have provided the basis for a conjecture on the relation between Bethe’s
string configuration labelling and the asymptotic L→∞, k=1, SU(2)WZWmodel states in the S=0 sector.
TheWZWstates are characterized by left and rightmoving excitations labelled by aWZWspin s=sL=sR and
an example of the Bethe-WZWrelation is shown infigure 9 for odd 2 s. The general conjecture is (8)which
expresses the statemultiplicity generating function in energy andmomentum in the expectedWZW left times
right tower excitation product form. The tower generator B x xh

s
h

2 ( ) ( )( ) / in (8), equivalently B Gh
s

h
2( ) in (107),

contains the generator G x x1h h=( ) ( )/ of 1-string excitations and a polynomial B xh
s2 ( )( ) as generator for the

(n>1)-string parts of Bethe’s string labelled configurations. The Bh
s2( ) explicit formula (100) provides every

tower state in the L→∞ limit with a Bethe string configuration label; the alternative (98) together with the
recurrences (88) can be used if onlymultiplicities without string labelling are desired. The additional
(numerical) reduction via the sum rule (9), equivalently (108), confirms themultiplicities are those expected
from theWZWmodel. Themethods described in this paper are expected to apply also to the extension of the
Bethe-WZWcorrespondence to S>0 states.

The successful assignment of Bethe string configuration labels to every state in theWZW left/right towers in
the critical region at large L could be viewed as nothingmore than some (yet to be proved) combinatorial
identities. However, results such as (100) aremore than a tautology as they rely on the observation that the tower
states in an energy versusmomentumplane lie on single rowdiagonals as illustrated infigure 9 and thus involve
more than just Bethe combinatorics. I have found no counter examples in the calculation of the energy of any
particular state based on the assignment of Bethe string labels by the observed complex rapiditiesλ at small L and
the use of continuity in L to trackλ to large L. It is unclear whether this always is, or can be turned into, a rigorous
procedure since Bethe string identification at small Lmight ultimately fail to be unambiguous and, because L is
discrete, continuity in L is not awell defined concept.

Because somany of the large L solutions that have been observed have complexλ that are qualitatively
different from those at small L, the paper explores the possibility that there exists an ‘apparent’ string labelling
appropriate for L→∞.Whilemany plausible examples are found there are also counter examples such as (105)
which do notfit into a consistent classification scheme. It appears that Bethe’s string labelling remains as the only
viable alternative even though its implementation at large L is computationally involved.

Finally, there remains the challenge of actually proving the combinatorial identities require to go from the
Bethe string representation (100) to thefinal sum rule (108) that expressesmultiplicities in terms of Euler’s
generating function for p(n), the number of partitions of n.

Appendix

Configuration product examples
The ambiguities and their resolution in the subtraction process

B q B q B q B q B q q q1 , 1 A.1v v v3 2
3

3,3 2 3
1

3 2
1

3
1 3

3

4

21 2

= - = ++ + +
- -
 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )/ /

are illustrated for ν=1, 2 and 3. If wewrite a configuration in the B qv3 2
1
+ ( )( ) factor as p p, ,2 3 ¼( )wefind all

observations are consistent with the products
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1, , , 1
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A.22
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2 3
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2 3

´ ¼ = + ¼ ´ ¼ =
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- + ¼

⎧⎨⎩( ) ( ) ( )
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( ) ( )

which corresponds to ordinarymultiplication and division (p′2, p′3,K)(p2, p3,K)/21=(p2+p′2–1,
p3+p′3,K). Two possibilities for the 31 product are required to correctly generate all terms in (A.1)with case
c1 arising from the replacement 31→22 thatmaintains h1=4 as noted in the remarks following (95).

Consider first the generation of B q .5
3 ( )( ) From (106)we have
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which togetherwith B q5
1 ( )( ) from (93) and the product rule (A.2) gives
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as the unambiguous part of the subtraction in (A.1). For thefinal result
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weneed to compare terms to see, for example, that 31×41=(31)(41)/21 can only be 2141(c1)while
31×2131=(31)(2131)/21 is either 2231(c1) or 32(c2) and a unique choice is dictated by the terms inU5 available
for cancellation. All uniquely fixed products are indicated by the (A.2) casemarkers above the B q5

1 ( )( ) terms in
(A.5) and yield, after subtraction,
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which is that reported in (97). Comparisonwith (A.3) confirms both the cancellation of all terms not containing
strings longer than 2 s=3 and the form invariancewithmodifiedGaussian binomials in the remaining terms.

A similar calculation starting from
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yields aU7 analog of (A.4) given by

U q q q q q q q q q q q q q q

q q q q q q q q q q q2 2 2 A.8

7
12

6

12 13 14 15 16 17

2 5

13 14 15

3 4

15 16 17 18

2 3

14 15 16 17 18 19 20

2 4

18 19 20 21

2 3

1 1 1 1 1 1 2

2 1 3 1

= + + + + + + + + + + + + +

+ + + + + + + + + + +

         

      ( )

and, accepting the need to cancel all termswith no string longer than 2 s=3, afinal
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The uncertain terms in (A.9) indicated by questionmarks could default to either 3141 or 2241 and are resolved as
type c1 if we demand form invariancewhich only allows for a changedGaussian binomial in the term sourced by
2241. Explicit long chain calculation confirms this is the correct choice and on collecting terms, (A.9) reduces to

B q q q q q5
1

2
1

4
2

, A.10
q q q

7
3 12

6

15

2 5

29 2

3 4

18

2 4

1

1 1 1 1 2 1

= + + +
        

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( )( ) /

again recorded in (97).
Form invariance has been checked to be sufficient for a unique B q9

3 ( )( ) and B q .11
3 ( )( ) The result for B q9

3 ( )( ) is
thefirst to showwhat happens in the case of aGaussian binomial product.We have
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where the ellipsis indicates termswithout any strings longer than 2 s=3 and
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