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Abstract

We give character formulae for the positive energy unitary irreducible repre-
sentations of the N-extended D=4 conformal superalgebras su(2,2/N). Using these
we also derive decompositions of long superfields as they descend to the unitarity
threshold.

1. Introduction

Recently, superconformal field theories in various dimensions are attracting
more interest, cf. extensive bibliography in [1] . This makes the classifica-
tion of the UIRs of the conformal superalgebras very important. The classi-
fication was given first for the D = 4 superconformal algebras su(2, 2/1)
[2] and su(2, 2/N) (for arbitrary N) [3]. Recently, the classification for
D = 3 (for even N), D = 5, and D = 6 (for N = 1, 2) was given in [4]
(some results being conjectural), and then the D = 6 case (for arbitrary N)
was finalized in [5]. Finally, the cases D = 9, 10, 11 were treated by finding
the UIRs of osp(1/2n), [6]. Once we know the UIRs of a (super-)algebra
the next question is to find their characters, since these give the spectrum
which is important for the applications. This is the question we address in
this paper for the UIRs of D = 4 conformal superalgebras su(2, 2/N using
results from [7, 3, 8, 9]. The present paper is a compact version of [1] to
which we refer for more extended introduction.

2. Representations of D=4 conformal supersymmetry

The conformal superalgebras in D = 4 are G = su(2, 2/N). The even
subalgebra of G is G0 = su(2, 2)⊕ u(1)⊕ su(N). We label the relevant
representations of G by the signature:

χ = [ d ; j1 , j2 ; z ; r1 , . . . , rN−1 ] (1)

where d is the conformal weight, j1, j2 are non-negative (half-)integers
which are Dynkin labels of the finite-dimensional irreps of the D = 4
Lorentz subalgebra so(3, 1) of dimension (2j1 + 1)(2j2 + 1), z rep-
resents the u(1) subalgebra which is central for G0 (and for N = 4
is central for G itself), and r1, . . . , rN−1 are non-negative integers which
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are Dynkin labels of the finite-dimensional irreps of the internal (or R)
symmetry algebra su(N).
We need to recall the root system of the complexification GCI of G - for
definiteness - as used in [8]. The positive root system Δ+ is comprised
from αij , 1 ≤ i < j ≤ 4 + N . The even positive root system Δ+

0̄
is

comprised from αij , with i, j ≤ 4 and i, j ≥ 5; the odd positive root
system Δ+

1̄
is comprised from αij , with i ≤ 4, j ≥ 5. The simple roots

are chosen as in (2.4) of [8]:

γ1 = α12 , γ2 = α34 , γ3 = α25 , γ4 = α4,4+N , γk = αk,k+1 , 5 ≤ k ≤ 3+N,
(2)

where γ3, γ4 are odd, the rest are even. Thus, the Dynkin diagram is:

©
1
−−−⊗

3
−−−©

5
−−− · · · −−− ©

3+N
−−−⊗

4
−−−©

2
(3)

This is a non-distinguished simple root system with two odd simple roots
[11].
We consider lowest weight Verma modules V Λ over GCI , where the lowest
weight Λ is characterized by its values on the Cartan subalgebra H and is
in 1-to-1 correspondence with the signature χ. If a Verma module V Λ is
irreducible then it gives the lowest weight irrep LΛ with the same weight.
If a Verma module V Λ is reducible then it contains a maximal invariant
submodule IΛ and the lowest weight irrep LΛ with the same weight is
given by factorization: LΛ = V Λ / IΛ [10]. The reducibility conditions
were given by Kac [10]. There are submodules which are generated by
the singular vectors related to all even simple roots [8]. These generate an
even invariant submodule IΛ

c present in all Verma modules that we consider
and which must be factored out. Thus, we shall consider also the factor-
modules:

Ṽ Λ = V Λ / IΛ
c (4)

The Verma module reducibility conditions for the 4N odd positive roots of
GCI were derived in [7, 8] adapting the results of Kac [10], (for k = 1, . . . , N,)

d = d1
Nk − zδN4 , d1

Nk ≡ 4− 2k + 2j2 + z + 2mk − 2m/N, (5a)

d = d2
Nk − zδN4 , d2

Nk ≡ 2− 2k − 2j2 + z + 2mk − 2m/N, (5b)

d = d3
Nk + zδN4 , d3

Nk ≡ 2 + 2k − 2N + 2j1 − z − 2mk + 2m/N, (5c)

d = d4
Nk + zδN4 , d4

Nk ≡ 2k − 2N − 2j1 − z − 2mk + 2m/N, (5d)

where mk ≡
∑N−1

i=k ri , k < N , mN ≡ 0, m ≡∑N−1
k=1 mk =

∑N−1
k=1 krk .
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We next recall the result of [3] (cf. part (i) of the Theorem there) that
the following is the complete list of lowest weight (positive energy) UIRs of
su(2, 2/N) :

d ≥ dmax = max(d1
N1, d

3
NN ) , (6a)

d = d4
NN ≥ d1

N1 , j1 = 0 , (6b)
d = d2

N1 ≥ d3
NN , j2 = 0 , (6c)

d = d2
N1 = d4

NN , j1 = j2 = 0 , (6d)

where dmax is the threshold of the continuous unitary spectrum. Note
that in case (d) we have d = m1, z = 2m/N −m1 , and that it is trivial for
N = 1.
Next we note that if d > dmax the factorized Verma modules are irre-
ducible and coincide with the UIRs LΛ . These UIRs are called long in
the modern literature, cf., e.g., [12, 13, 14, 15, 16, 17, 18]. Analogously,
the cases when d = dmax in (6a) are called also semi-short UIRs, cf.,
e.g., [12, 14], while the cases (6b,c,d) are also called short UIRs, cf., e.g.,
[13, 14, 15, 16, 17, 18].
Next consider in more detail the UIRs at the four distinguished reducibility
points determining the UIRs list above: d1

N1 , d2
N1 , d3

NN , d4
NN which

occur for the following odd roots, resp.:

α3,4+N = γ2 +γ4 , α4,4+N = γ4 , α15 = γ1 +γ3 , α25 = γ3 . (7)

We note a partial ordering of these four points:

d1
N1 > d2

N1 , d3
NN > d4

NN . (8)

Due to this ordering at most two of these four points may coincide.
First we consider the situations in which no two of the distinguished four
points coincide. There are four such situations:

a : d = dmax = d1
N1 = da ≡ 2 + 2j2 + z + 2m1 − 2m/N > d3

NN , (9a)
b : d = d2

N1 > d3
NN , j2 = 0 , (9b)

c : d = dmax = d3
NN = dc ≡ 2 + 2j1 − z + 2m/N > d1

N1 , (9c)
d : d = d4

NN > d1
N1 , j1 = 0 . (9d)

We shall call these cases single-reducibility-condition (SRC) Verma
modules or UIRs, depending on the context. The cases (9a,c) are semi-
short, the cases (9b,d) - short. The corresponding factorized Verma mod-
ules Ṽ Λ have only one invariant odd submodule which has to be factorized
in order to obtain the UIRs. These odd embeddings and factorizations are:

Ṽ Λ → Ṽ Λ+β , LΛ = Ṽ Λ/Iβ , (10)
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where we use the convention [7] that arrows point to the oddly embedded
module, and we give only the cases for β that we shall use later:

β = α3,4+N , for (9a), j2 > 0, (11a)
= α3,4+N + α4,4+N , for (9a), j2 = 0, (11b)
= α15 , for (9c), j1 > 0, (11c)
= α15 + α25 , for (9c), j1 = 0 (11d)

The weight shifts Λ′ = Λ + β, when β is an odd root are called odd re-
flections in [8], and for future reference will be denoted as:

ŝβ · Λ ≡ Λ + β , (β, β) = 0, (Λ, β) �= 0 . (12)

We consider now the four situations in which two distinguished points
coincide:

ac : d = dmax = dac ≡ 2 + j1 + j2 + m1 = d1
N1 = d3

NN , (13a)
ad : d = d1

N1 = d4
NN = 1 + j2 + m1 , j1 = 0 , (13b)

bc : d = d2
N1 = d3

NN = 1 + j1 + m1 , j2 = 0 , (13c)
bd : d = d2

N1 = d4
NN = m1 , j1 = j2 = 0 . (13d)

We shall call these double-reducibility-condition (DRC) Verma mod-
ules or UIRs. The case (13a) is a semi-short UIR, while the other cases are
short.
The odd embedding diagrams and factorizations for the DRC modules are:

Ṽ Λ+β′

↑|
Ṽ Λ −→ Ṽ Λ+β

LΛ = Ṽ Λ/Iβ,β′
, Iβ,β′

= Iβ ∪ Iβ′
(14)

and we give only the cases for β, β′ to be used later:

(β, β′) = (α15, α3,4+N ), for (13a), j1j2 > 0 (15a)
= (α15, α3,4+N + α3,4+N ), for (13b), j1 > 0, j2 = 0 (15b)
= (α15 + α25, α3,4+N ), for (13c), j1 = 0, j2 > 0 (15c)
= (α15 + α25, α3,4+N + α3,4+N ), for (13d), j1 = j2 = 0 (15d)

3. Character formulae of positive energy UIRs

3.1. Character formulae: generalities

In the beginning of this subsection we follow [19]. Let Ĝ be a simple Lie
algebra of rank � with Cartan subalgebra Ĥ, root system Δ̂, simple root
system π̂. Let Γ, (resp. Γ+), be the set of all integral, (resp. integral
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dominant), elements of Ĥ∗, i.e., λ ∈ Ĥ∗ such that (λ, α∨
i ) ∈ ZZ, (resp.

ZZ+), for all simple roots αi , (α∨
i ≡ 2αi/(αi, αi)). Let V be a lowest

weight module with lowest weight Λ and lowest weight vector v0 . It has
the following decomposition:

V = ⊕
μ∈Γ+

Vμ , Vμ = {u ∈ V | Hu = (λ + μ)(H)u, ∀ H ∈ H} (16)

(Note that V0 = CIv0 .) Let E(H∗) be the associative Abelian algebra
consisting of the series

∑
μ∈H∗ cμe(μ) , where cμ ∈ CI, cμ = 0 for μ outside

the union of a finite number of sets of the form D(λ) = {μ ∈ H∗|μ ≥ λ} ,
using some ordering ofH∗, e.g., the lexicographic one; the formal exponents
e(μ) have the properties: e(0) = 1, e(μ)e(ν) = e(μ + ν).
Then the (formal) character of V is defined by:

ch V =
∑

μ∈Γ+

(dim Vμ) e(Λ + μ) = e(Λ)
∑

μ∈Γ+

(dim Vμ) e(μ) (17)

The character formula for Verma modules is [19]:

ch V Λ = e(Λ)
∏

α∈Δ+

(1− e(α))−1 (18)

Further we recall the standard reflections in Ĥ∗ :

sα(λ) = λ− (λ, α∨)α , λ ∈ Ĥ∗ , α ∈ Δ̂ (19)

The Weyl group W is generated by the simple reflections si ≡ sαi , αi ∈ π̂ .
The Weyl character formula for the finite-dimensional irreducible LWM LΛ

over Ĝ, i.e., when Λ ∈ −Γ+ , has the form:

ch LΛ =
∑

w∈W

(−1)�(w) ch V w·Λ , Λ ∈ −Γ+ (20)

where the dot · action is defined by w · λ = w(λ− ρ) + ρ.
In the case of basic classical Lie superalgebras (except osp(1/2N)) the
character formula for Verma modules is [10]:

ch V Λ = e(Λ)

⎛⎜⎝ ∏
α∈Δ+

0̄

(1− e(α))−1

⎞⎟⎠
⎛⎜⎝ ∏

α∈Δ+
1̄

(1 + e(α))

⎞⎟⎠ (21)

Note that this may be written as:

ch V Λ = ch V Λ
0 ch V̂ Λ , ch V̂ Λ ≡

∏
α∈Δ+

1̄

(1 + e(α)) , (22)
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where V̂ Λ ≡ (
U(GCI

+)/(GCI
+)(0)

) |̃Λ〉 , ch V Λ
0 is the character of the

restriction of V Λ to the even subalgebra. Obviously, V̂ Λ may be viewed
as the result of all possible application of the 4N odd generators X+

a,4+k on
|Λ〉 . Thus, V̂ Λ has 24N states. Explicitly, the basis of V̂ Λ is [9]:

Ψε̄ =

(
1∏

k=N

(X+
1,4+k)

ε1,4+k

)(
1∏

k=N

(X+
2,4+k)

ε2,4+k

)
× (23)

×
(

N∏
k=1

(X+
3,4+k)

ε3,4+k

)(
N∏

k=1

(X+
4,4+k)

ε4,4+k

)
|̃Λ〉 , εaj = 0, 1,

where ε̄ denotes the set of all εij .
The odd null conditions entwine with the even null conditions as we shall
see. The even null conditions carry over from the even null conditions of
Ṽ Λ :

(X+
1 )1+2j1 |Λ〉 = 0 , (24a)

(X+
2 )1+2j2 |Λ〉 = 0 , (24b)

(X+
j )1+rN+4−j |Λ〉 = 0 , j = 5, ..., N + 3 (24c)

where by |Λ〉 we denote the lowest weight vector of the UIR LΛ .
For future use we introduce additional notation:

εi =
N∑

k=1

εi,4+k , i = 1, 2, 3, 4 , ε = ε1 + ε2 + ε3 + ε4 . (25)

3.2. Character formulae for the long UIRs

As we mentioned if d > dmax there are no further reducibilities, and the
UIRs LΛ = Ṽ Λ are called long since L̂Λ may have the maximally
possible number of states 24N (including the vacuum state). However,
the actual number of states may be less than 24N states due to the fact
that - depending on the values of ja and rk - not all actions of the odd
generators on the vacuum would be allowed. The latter is obvious from
explicit signature of the state Ψε̄ [1]:

χ (Ψε̄) = [ d + 1
2ε ; j1 + 1

2(ε2 − ε1), j2 + 1
2(ε4 − ε3) ; z + εN (ε3 + ε4 −

−ε1 − ε2) ; . . . , ri + ε1,N+4−i − ε1,N+5−i + ε2,N+4−i − (26)
−ε2,N+5−i − ε3,N+4−i + ε3,N+5−i − ε4,N+4−i + ε4,N+5−i , . . . ] .
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Thus, only if j1, j2 ≥ N/2 and ri ≥ 4 (for all i) the number of states is
24N [3], and the character formula may be symbolically1 written as:

ch LΛ = ch L0
Λ ch V̂ Λ , j1, j2 ≥ N/2, ri ≥ 4, ∀ i , (27)

where ch L0
Λ denotes the character of the restriction of LΛ to the even

subalgebra.
The general formula for ch LΛ shall be written in a similar symbolic
fashion:

ch LΛ = ch L0
Λ ch L̂Λ . (28)

Moreover, from now on we shall write only the formulae for ch L̂Λ . Thus,
formula (27) may be written equivalently as:

ch L̂Λ = ch V̂ Λ , j1, j2 ≥ N/2, ri ≥ 4,∀ i . (29)

If the auxiliary conditions in (27) are not fulfilled then a careful analysis is
necessary. To simplify the exposition we classify the states by the following
quantities:

εc
j ≡ ε1 − ε2 , εa

j ≡ ε3 − ε4 , (30)

εi
r ≡ ε1,5+i + ε2,5+i + ε3,4+i + ε4,4+i − ε1,4+i − ε2,4+i − ε3,5+i − ε4,5+i ,

i = 1, . . . , N − 1. This gives the following necessary conditions on εij for
a state to be allowed:

εc
j ≤ 2j1 , (31a)

εa
j ≤ 2j2 , (31b)

εi
r ≤ rN−i , i = 1, . . . , N − 1 . (31c)

These conditions are also sufficient only for N = 1. The exact conditions
are:
Criterion: The necessary and sufficient conditions for the state Ψε̄ of
level ε to be allowed are that conditions (31) are fulfilled and that the
state is a descendant of an allowed state of level ε− 1. ♦
The second part of the Criterion will eliminate first of all impossible chiral
(or anti-chiral) states which happen when some εaj contribute to opposing
sides of the inequalities in (31a) and (31c), (or (31b) and (31c)) and j1 =
ri = 0, (or j2 = ri = 0). For the lack of space we omit examples of such
impossible states and their combinations given in [1].

1We say symbolically, since if we expand the odd part of the character we get the
expansion of the corresponding superfield in components, and each component has its own
even character. However, we do not lose information using this symbolically factorized
form which has the advantage of brevity.
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Summarizing the discussion so far, the general character formula may be
written as follows:

ch L̂Λ = ch V̂ Λ − R , d > dmax , R = e(V̂ Λ
excl) =

∑
excluded
states

e(Ψε̄) , (32)

e(Ψε̄) =

(
1∏

k=N

e(α1,4+k)ε1,4+k

)(
1∏

k=N

e(α2,4+k)ε2,4+k

)
×

×
(

N∏
k=1

e(α3,4+k)ε3,4+k

)(
N∏

k=1

e(α4,4+k)ε4,4+k

)
,

where the counter-terms denoted by R are determined by V̂ Λ
excl which is

the collection of all states (i.e., collection of εjk) which violate the Criterion.
Finally, we consider two important conjugate special cases. Namely, there
are only N anti-chiral states that can be built from the generators
X+

4,4+k alone:

X+
4,5+N−k X+

4,6+N−k · · · X+
4,4+N |Λ〉 , k = 1, . . . , N , j2 = ri = 0, ∀ i . (33)

This follows from (31c) which for such states becomes ε4,4+N−i ≤ ε4,5+N−i
for i = 1, . . . , N − 1 . The chiral sector of R-symmetry scalars with j1 = 0
is obtained from the above by conjugation.

3.3. Character formulae of SRC UIRs

•a d = d1
N1 = da ≡ 2 + 2j2 + z + 2m1 − 2m/N > d3

NN .
• Let first j2 > 0. In these semi-short SRC cases holds the odd null
condition:

P3,4+N |Λ〉 =
(
2j2X

+
3,4+N −X+

4 X+
2

)
|Λ〉 = 0 . (34)

Clearly, condition (34) means that the generator X+
3,4+N is eliminated

from the basis that is built on the lowest weight vector |Λ〉 . Thus, for
N = 1 and if r1 > 0 for N > 1 the character formula is:

ch L̂Λ =
∏

α∈Δ+
1̄

α�=α3,4+N

(1 + e(α)) − R , j2r1 > 0 . (35)

There are no counter-terms when j1 ≥ N/2, j2 ≥ (N−1)/2 and ri ≥ 4
(for all i), and then the number of states is 24N−1.
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Formula (35) may be described by using the odd reflection (12) with β =
α3,4+N :

ch L̂Λ = ch V̂ Λ − 1
1 + e(α3,4+N )

ch V̂ ŝα3,4+N
·Λ − R = (36a)

=
∑

ŝ∈Ŵα3,4+N

(−1)�(ŝ) ŝ · ch V̂ Λ − R , (36b)

where Ŵβ ≡ {1, ŝβ} , and we have formalized further by introducing
notation for the action of an odd reflection on characters:

ŝβ · ch V Λ =
1

1 + e(β)
ch V ŝβ ·Λ =

1
1 + e(β)

ch V Λ+β =
e(β)

1 + e(β)
ch V Λ .

(37)
It is natural to use Ŵβ since only the identity element and the generator
ŝβ act nontrivially because the action ŝβ on characters is nilpotent:

(ŝβ)2 · ch V Λ = 0 . (38)

In fact, we shall need more general formula for the action of odd reflections
on polynomials P from E(H∗). Thus, instead of (37) we shall define the
action of ŝβ on P as a homogeneity operator treating e(β) as a variable:

ŝβ · P ≡ e(β)
∂

∂e(β)
P , (39)

where β may be a root or the sum of roots. Obviously, if P is a monomial
which contains a multiplicative factor 1+e(β) the action (39) is equivalent
to (37).
We shall show that in many cases character formulae (35),(36) may be
written as follows:

ch L̂Λ =
∑

ŝ∈Ŵβ

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ − Rlong

)
, (40)

where Rlong represents the counter-terms for the long superfields for the
same values of j1 and ri as Λ, while the value of j2 is zero when j2 from
Λ is zero, otherwise it is any j2 ≥ N/2.
Writing (35) as (36) (or (40)) may look as a complicated way to describe the
cancellation of a factor from the character formula for V̂ Λ, however, first
of all it is related to the structure of Ṽ Λ given by (10), and furthermore
may be interpreted - when there are no counter-terms - as the following
decomposition:

V̂ Λ = L̂Λ ⊕ L̂Λ+β , (41)
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for β = α3,4+N . Indeed, for generic signatures L̂Λ+β is isomorphic to
L̂Λ as a vector space (this is due to the fact that V Λ+β has the same
reducibilities as V Λ, cf. [1], they differ only by the vacuum state. Thus,
when there are no counter-terms, both L̂Λ and L̂Λ+β have the same
24N−1 states.
It is more important that there is a similar decomposition valid for many
cases beyond the generic, i.e., we have:(

L̂long

)
|d=da

= L̂Λ ⊕ L̂Λ+α3,4+N
, N = 1 or r1 > 0 for N > 1 , (42)

where L̂long is a long superfield with the same values of j1 and ri as Λ,
while the value of j2 has to be specified, and equality is as vector spaces.
For N > 1 there are possible additional truncations of the basis. Let
i0 be an integer such that 0 ≤ i0 ≤ N − 1 , and ri = 0 for i ≤ i0 , and
if i0 < N − 1 then ri0+1 > 0. Now for i0 > 0 the generators X+

3,4+N−i ,
i = 1, . . . , i0, are eliminated from the basis. This follows from:

P3,4+N−i |Λ〉 =
(
2j2X

+
3,4+N−i −X+

4,4+N−i X+
2

)
|Λ〉 = 0 , i ≤ i0 . (43)

From the above follows that for i0 > 0 the decomposition (42) can not hold.
Indeed, the generators X+

3,4+N−i , i = 1, . . . , i0 , are eliminated from the
irrep L̂Λ due to the fact that we are at a reducibility point, but there is
no reason for them to be eliminated from the long superfield. Certainly,
some of these generators are present in the second term L̂Λ+α3,4+N

in (42),
but that would be only those which in the long superfield were in states
of the kind: ΦX+

3,4+N |Λ〉, and, certainly, such states do not exhaust the
occurrence of the discussed generators in the long superfield. Symbolically,
instead of the decomposition (42) we shall write:(

L̂long

)
|d=da

= L̂Λ ⊕ L̂Λ+α3,4+N
⊕ L̂′

Λ , N > 1 , i0 > 0 , (44)

where we have represented the excess states by the last term with prime
stressing that this is not a genuine irrep, but just a book-keeping device.
Formulae as (44) in which not all terms are genuine irreps shall be called
quasi-decompositions.
The corresponding character formula is:

ch L̂Λ =
∏

α∈Δ+
1̄

α�=α3,5+N−k
k=1,...,1+i0

(1 + e(α)) − R = (45a)
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=
∑

ŝ∈Ŵ a
i0

(−1)�(ŝ) ŝ · ch V̂ Λ − R = (45b)

=
∑

ŝ∈Ŵ a
i0

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ − Rlong

)
, (45c)

Ŵ a
i0 ≡ Ŵα3,N+4 × Ŵα3,N+3 × · · · × Ŵα3,N+4−i0

.

The restrictions (31) used to determine the counter-terms are, of course,
with ε3,5+N−k = 0, k = 1, . . . , 1 + i0 . Formulae (35),(36),(40) are special
cases of (45a,b,c), resp., for i0 = 0. The maximal number of states in L̂Λ is
24N−1−i0 . This is the number of states that is obtained from the action of
the Weyl group Ŵ a

i0
on ch V̂ Λ, while the actual counter-term is obtained

from the action of the Weyl group on Rlong .
• Let now j2 = 0. Then all null conditions above follow from (24b), so
these conditions do not mean elimination of the mentioned vectors. In this
situation we have the following null condition [1]:

X+
3,4+N X+

4,4+N |Λ〉 = X+
4 X+

2 X+
4 |Λ〉 = 0 . (46)

The state in (46) and all of its 24N−2 descendants are zero for any N .
Thus, the character formula is similar to (36), but with α3,4+N replaced
by β12 = α3,4+N + α4,4+N :

ch L̂Λ =
∑

ŝ∈Ŵβ12

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ − Rlong

)
, N = 1 or r1 > 0 , (47)

where Ŵβ12 ≡ {1, β12}. Note that for N = 1 formula (47) is equivalent
to (35).
Here holds a decomposition similar to (42):(

L̂long

)
|d=da

= L̂Λ ⊕ L̂Λ+β12 , N = 1 or r1 > 0 for N > 1 , (48)

where L̂long is with the same values of j1, j2(= 0), ri as Λ. Note, however,
that the UIR L̂Λ+β12 belongs to type b below.
There are more eliminations for N > 1 when i0 > 0 and the decomposition
(48) does not hold. Instead, there is a quasi-decomposition similar to (44).
We can be more explicit in the case when all ri = 0. In that case there are
only N anti-chiral states given in (33). Thus the character formula is:

ch L̂Λ =
N∑

k=1

k∏
i=1

e(α4,5+N−i) +
∏

α∈Δ+
1̄

ε1+ε2>0

(1 + e(α)) − R , j2 = ri = 0,∀ i

(49)
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•b d = d2
N1 = z + 2m1 − 2m/N > d3

NN , j2 = 0. Here holds the
odd null condition:

X+
4 |Λ〉 = X+

4,4+N |Λ〉 = 0 . (50)

Since j2 = 0 from (24b) and (50) follows the additional null condition:

X+
3,4+N |Λ〉 = [X+

2 , X+
4 ] |Λ〉 = 0 . (51)

For N > 1 and r1 > 2 each of these UIRs enters as the second term in
decomposition (48).
Further, for N > 1 there are additional recursive null conditions if ri = 0,
i ≤ i0 < N which follow from (24c) and (51):

X+
3,4+N−i |Λ〉 = [X+

3,5+N−i, X
+
4+N−i] |Λ〉 = 0 , rj = 0, 1 ≤ j ≤ i ≤ i0 (52a)

X+
4,4+N−i |Λ〉 = [X+

4,5+N−i, X
+
4+N−i] |Λ〉 = 0 , rj = 0, 1 ≤ j ≤ i ≤ i0 (52b)

Thus, 2(1 + i0) generators X+
3,5+N−k , X+

4,5+N−k , k = 1, . . . , 1 + i0 , are
eliminated. The maximal number of states in L̂Λ is 24N−2−2i0 . The
corresponding character formula is:

ch L̂Λ =
∑

ŝ∈Ŵ b
i0

(−1)�(ŝ) ŝ · ch V̂ Λ − R , j2 = ri = 0, i ≤ i0 , (53a)

Ŵ b
i0 ≡ Ŵ a

i0 × Ŵα4,N+4 × Ŵα4,N+3 × · · · × Ŵα4,N+4−i0
(53b)

where determining the counter-terms we use εa,4+k = 0, a = 3, 4, k =
1, . . . , 1 + i0 .
The case of R-symmetry scalars (i0 = N − 1) should be called chiral since
all anti-chiral generators are eliminated.

• c d = d3
NN = dc ≡ 2 + 2j1 − z + 2m/N > d1

N1 .
•d d = d4

NN = − z + 2m/N > d1
N1 , j1 = 0 .

These cases are conjugate to the cases a,b, resp. All results may be obtained
by the substitutions (for a = 1, 2, k = 1, ..., N ):

j1 ←→ j2 , ri ←→ rN−i , z ←→ −z, αa,4+k ←→ α4−a,N+5−k

and so we shall omit them here, cf. [1].

3.4. Character formulae of DRC UIRs
Let first N > 1 and r1rN − 1 > 0, (i.e., i0 = i′0 = 0). Then holds the
following character formula:

ch L̂Λ =
∑

ŝ∈Ŵβ,β′

(−1)�(ŝ) ŝ · ch V̂ Λ − R , (54a)
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Ŵβ,β′ ≡ Ŵβ × Ŵβ′ (54b)

The above formula is proved in [1] similarly to what we had in the SRC
cases, however, it takes into account the richer structure given explicitly
already in the paper [7]. The proof is not valid for N = 1, nevertheless,
formula (54) holds also then for the case (15a), cf. Appendix A.1. of [1].
•ac d = dmax = d1

N1 = d3
NN = dac ≡ 2 + j1 + j2 + m1 . In these

semi-short DRC cases hold the null condition (34) and its conjugate. In
addition, for N > 1 if ri = 0, i = 1, . . . , i0 , holds (43) and if rN−i = 0,
i = 1, . . . , i′0 , holds the conjugate to (43).

There are two basic situations. The first is when i0+i′0 ≤ N−2. This means
that not all ri are zero and all eliminations are as described separately for
cases •a and • c. These semi-short UIRs may be called Grassmann-
analytic following [14], since odd generators from different chiralities are
eliminated. The maximal number of states in L̂Λ is 24N−2−i0−i′0 .
The second is when i0 + i′0 ≤ N − 2 does not hold which means that
all ri are zero, and in fact we have i0 = i′0 = N − 1 and all generators
X+

1,4+k and X+
3,4+k are eliminated. The maximal number of states in

L̂Λ is 22N .
• For j1 j2 > 0 the character formulae are combinations of (45) and its
conjugate [1]:

ch L̂Λ =
∑

ŝ∈Ŵ ac
i0,i′0

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ − Rlong

)
, N ≥ 1, (55a)

Ŵ ac
i0,i′0

≡ Ŵ a
i0 × Ŵ c

i′0
, j1 j2 > 0 , (55b)

either i0 + i′0 ≤ N − 2,
ri = 0, i = 1, 2, . . . , i0, N − i′0, N − i′0 + 1, . . . , N − 1,
ri > 0, i = i0 + 1, N − i′0 − 1 ,

or i0 = i′0 = N − 1 , ri = 0, ∀ i .

The last subcase is of R-symmetry scalars.
For N > 1 and i0 = i′0 = 0 formula (55) is equivalent to (54) with
β = α15 , β′ = α3,4+N . Also holds the following decomposition:

(
L̂long

)
|d=dac

= L̂Λ ⊕ L̂Λ+α15 ⊕ L̂Λ+α3,4+N
⊕ L̂Λ+α15+α3,4+N

, r1 rN−1 > 0 ,

(56)
L̂long being a long superfield with the same values of ri as Λ and with
j1, j2 ≥ N/2.
• For j1 > 0, j2 = 0 the character formulae are combinations of (47) and
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the conjugate to (45) [1]:

ch L̂Λ =
∑

ŝ∈Ŵ a′c
i′0

(−1)�(ŝ) ŝ · ch V̂ Λ − R = (57a)

=
∑

ŝ∈Ŵ a′c
i′0

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ − Rlong

)
, r1 > 0 , (57b)

Ŵ a′c
i′0

≡ Ŵβ12 × Ŵ c
i′0

, β12 = α3,4+N + α4,4+N . (57c)

For i0 = i′0 = 0 holds the decomposition:(
L̂long

)
|d=dac

= L̂Λ ⊕ L̂Λ+α15 ⊕ L̂Λ+β12 ⊕ L̂Λ+α15+β12 , r1 rN−1 > 0 , (58)

where L̂long is a long superfield with the same values of j2(= 0), ri as
Λ and with j1 ≥ N/2. Note that the UIR L̂Λ+α15 is also of the type
ac under consideration, while the last two UIRs are short from type bc
considered below.
For R-symmetry scalars we combine (49) and the conjugate to (45a):

ch L̂Λ =
N∑

k=1

k∏
i=1

e(α4,5+N−i) +
∏

α∈Δ+
1̄

α�=α1,4+k ,

k=1,...,N
ε2>0

(1 + e(α)) − R , (59)

ri = 0, ∀ i , N > 1.

• The case j1 = 0, j2 > 0 is obtained from the previous one by conjuga-
tion. Here for i0 = i′0 = 0 holds the decomposition:(
L̂long

)
|d=dac

= L̂Λ ⊕ L̂Λ+α3,4+N
⊕ L̂Λ+β34 ⊕ L̂Λ+α3,4+N+β34 , r1rN−1 > 0

(60)
where L̂long is a long superfield with the same values of j1(= 0), ri as Λ
and with j2 ≥ N/2. Note that the UIR L̂Λ+α3,4+N

is again of the type
ac under consideration, while the last two UIRs are actually from type ad
considered below.
• For j1 = j2 = 0 the character formulae are combinations of (47) and
its conjugate:

ch L̂Λ =
∑

ŝ∈Ŵ a′c′
i′0

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ − Rlong

)
, r1rN−1 > 0 , (61a)
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Ŵ a′c′
i′0

≡ Ŵβ12 × Ŵβ34 . (61b)

For i0 = i′0 = 0 holds the decomposition:(
L̂long

)
|d=dac

= L̂Λ ⊕ L̂Λ+β12 ⊕ L̂Λ+β34 ⊕ L̂Λ+β12+β34 , r1 rN−1 > 0 , (62)

where L̂long is a long superfield with the same values of j1(= 0), j2(=
0), ri as Λ. Note that the UIR L̂Λ+β12 is of the type bc, L̂Λ+β34 is of
the type ad, L̂Λ+β12+β34 is of the type bd, these three being considered
below.
For R-symmetry scalars we combine (49) and its conjugate:

ch L̂Λ =
N∑

k=1

k∏
i=1

e(α2,4+i) +
N∑

k=1

k∏
i=1

e(α4,5+N−i) +

(63)

+
∏

α∈Δ+
1̄

ε1+ε2>0
ε3+ε4>0

(1 + e(α)) − R , ri = 0, ∀ i , N > 1 .

•ad d = d1
N1 = d4

NN = 1 + j2 + m1 , j1 = 0. In these short
DRC cases hold the three null conditions (34), and the conjugates to (50)
and (51). In addition, for N > 1 if ri = 0, i = 1, . . . , i0 , hold (43) and if
rN−i = 0, i = 1, . . . , i′0 , hold the conjugate of (52).
If i0 + i′0 ≤ N − 2 all eliminations are as described separately for cases
•a and •d. All these are Grassmann-analytic UIRs. The maximal number
of states in L̂Λ is 24N−3−i0−2i′0 . Interesting subcases are the so-called
BPS states, cf., [20, 21, 14, 17, 22, 23, 24, 25]. They are characterized
by the number κ of odd generators which annihilate them - then the
corresponding case is called κ

4N -BPS state. For example consider N =
4 and 1

4 -BPS cases with z = 0 ⇒ d = 2m/N . One such case is
obtained for i0 = 1, i′0 = 0, j2 > 0, then d = 1

2(2r2 + 3r3), r1 = 0, r2 > 0,
r3 = 2(1 + j2).
For j2 m1 > 0 the character formula is a combination of (45) and the
conjugate of (53):

ch L̂Λ =
∑

ŝ∈Ŵ ad
i0,i′0

(−1)�(ŝ) ŝ · ch V̂ Λ − R , N > 1, (64a)

Ŵ ad
i0,i′0

≡ Ŵ a
i0 × Ŵ d

i′0
, j2 m1 > 0 , (64b)

ri = 0, i = 1, 2, . . . , i0, N − i′0, N − i′0 + 1, . . . , N − 1,
ri > 0, i = i0 + 1, N − i′0 − 1 .
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For i0 = i′0 = 0 some of these UIRs appear (up to two times) in the
decomposition (60) [1].
For j2 = 0 , m1 > 0 the character formula is a combination of (47) and
the conjugate of (53a):

ch L̂Λ =
∑

ŝ∈Ŵ a′d
i′0

(−1)�(ŝ) ŝ · ch V̂ Λ − R , N > 1, (65a)

Ŵ a′d
i′0

≡ Ŵβ12 × Ŵ d
i′0

, (65b)

where β12 = α3,4+N +α4,4+N . For i0 = i′0 = 0 some of these UIRs appear
in the decomposition (62) or (60) [1].
In the case of R-symmetry scalars we have i0 = i′0 = N−1, κ = 3N and
all generators X+

1,4+k , X+
2,4+k , X+

3,4+k are eliminated. Here holds
d = −z = 1 + j2 . These anti-chiral irreps form one of the three series
of massless UIRs; they are denoted χ+

s , s = j2 = 0, 1
2 , 1, . . ., in Section

3 of [3]. Besides the vacuum they contain only N states in L̂Λ given
by (33) for k = 1, . . . , N . These should be called ultrashort UIRs. The
character formula can be written most explicitly:

ch L̂Λ = 1 +
N∑

k=1

k∏
i=1

e(α4,5+N−i) , j1 = ri = 0, ∀ i , N ≥ 1 , (66)

and it is valid for any j2 .
•bc d = d2

N1 = d3
NN = 1+j1+m1 , j2 = 0 , z = 2m/N−m1+1+j1 .

This case is conjugate to the previous one and all results may be obtained
as in the SRC conjugate cases.
•bd d = d2

N1 = d4
NN = m1 , j1 = j2 = 0, z = 2m/N −m1 . In

these short DRC cases hold the four null conditions (50), (51), and their
conjugates.
For N = 1 this is the trivial irrep with d = j1 = j2 = z = 0, since, we
have the null conditions: X+

k |Λ〉 = 0 for all simple root generators (and
consequently for all generators) and the irrep consists only of the vacuum
|Λ〉 .
For N > 1 the situation is non-trivial. In addition to the mentioned con-
ditions, and if ri = 0, i = 1, . . . , i0 , hold (52) and if rN−i = 0,
i = 1, . . . , i′0 , hold the conjugates of (52).
If i0 + i′0 ≤ N − 2 all eliminations are as described separately for cases
•b and •d. These are also Grassmann-analytic UIRs. The maximal
number of states in L̂Λ is 24N−4−2i0−2i′0 . For N = 4 for the BPS cases
we take z = 1

2(r3− r1) = 0 ⇒ d = 2r1 + r2 . In the 1
4 -BPS case we have

i0 = i′0 = 0, r1 = r3 > 0.
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For i0 = i′0 = 0 some of these UIRs appear in the decomposition (62) [1].
Most interesting is the case i0+i′0 = N−2, then there is only one non-zero
ri , namely, r1+i0 = rN−1−i′0 > 0, while the rest ri are zero. Thus, the
Young tableau parameters are: m1 = r1+i0 , m = (1 + i0)r1+i0 .
An important subcase is when d = m1 = 1, then m = i0 +1 = N −1− i′0 ,
ri = δmi, and these irreps form the third series of massless UIRs. In
Section 3 of [3] they are denoted χ′

n , n = m ≥ 1
2N , (z = 2n/N − 1), χ′+

n ,
n = N − m ≥ 1

2N , (z = 1 − 2n/N). Note that for even N there is the
coincidence: χ′

n = χ′+
n , where n = m = N −m = N/2. Here we

shall parametrize these UIRs by the parameter i0 = 0, 1, . . . , N − 1.
Another subcase here are 1

2 -BPS states for even N with z = 0 ⇒ d =
m1 = 2m/N ⇒ i0 = i′0 = N/2 − 1 ⇒ m1 = rN/2, m = N

2 rN/2 . These
are also massless only if rN/2 = 1, which is the self-conjugate case: χ′

n,
n = N/2. For N = 4 we have: i0 = i′0 = 1, r1 = r3 = 0, r2 > 0, which is
also massless if r2 = 1.
Finally, in the case of R-symmetry scalars we have i0 = i′0 = N − 1 and
all 4N odd generators are eliminated, all quantum numbers are zero, (cf.
(13d)), and this is the trivial irrep (as for N = 1).
For m1 > 0 the character formula is a combination of (53) and its conju-
gate:

ch L̂Λ =
∑

ŝ∈Ŵ bd
i0,i′0

(−1)�(ŝ) ŝ · ch V̂ Λ − R , N > 1 , (67a)

Ŵ bd
i0,i′0

≡ Ŵ b
i0 × Ŵ d

i′0
, (67b)

ri = 0, i = 1, 2, . . . , i0, N − i′0, N − i′0 + 1, . . . , N − 1,
ri > 0, i = i0 + 1, N − i′0 − 1 ,

where R designates the counter-terms due to our Criterion, in particular,
due to (31) taken with εa,N+1−k = 0, a = 1, 2, k = 1, . . . , 1+ i′0 , εbj = 0,
b = 3, 4, k = j, . . . , 1 + i0 .
Also for the third series of massless UIRs have an explicit character formula
without counter-terms. Fix the parameter i0 = 0, 1, . . . , N − 2. Then
there are only the following states in L̂Λ :

X+
2,N+4−j · · · X+

2,N+4−i0
|Λ〉 , j = 0, 1, . . . , i0 , (68a)

X+
4,4+k · · · X+

4,N+3−i0
|Λ〉 , k = 1, . . . , N − 1− i0 , (68b)

altogether N states besides the vacuum [1]. The character formula is:

ch L̂Λ = 1 +
i0∑

j=0

i0∏
i=j

e(α2,N+4−i) +
N−1−i0∑

k=1

N−1−i0∏
i=k

e(α4,4+i) ,

i0 = 0, 1, . . . , N − 2 , ri = δi,i0+1 . (69)
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