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We investigate the production of𝑋𝑏 in the process Υ(5𝑆, 6𝑆) → 𝛾𝑋𝑏, where𝑋𝑏 is assumed to be the counterpart of𝑋(3872) in the
bottomonium sector as 𝐵𝐵∗ molecular state. We use the effective Lagrangian based on the heavy quark symmetry to explore the
rescattering mechanism and calculate their production ratios. Our results have shown that the production ratios for Υ(5𝑆, 6𝑆) →

𝛾𝑋
𝑏
are orders of 10−5 with reasonable cutoff parameter range 𝛼 ≃ 2 ∼ 3. The sizeable production ratios may be accessible at the

future experiments like forthcoming BelleII, which will provide important clues to the inner structures of the exotic state𝑋𝑏.

1. Introduction

In the past decades, many so-called𝑋𝑌𝑍 have been observed
by the Belle, BaBar, CDF, D0, CMS, LHCb, and BESIII collab-
orations [1]. Some of them cannot fit into the conventional
heavy quarkonium in the quark model [2–5]. Up to now,
many studies on the production and decay of these 𝑋𝑌𝑍

states have been carried out in order to understand its nature
(for a recent review, see [6–8]).

In 2003, the Belle collaboration discovered an exotic can-
didate𝑋(3872) in the process 𝐵+ → 𝐾

+
+𝐽/𝜓𝜋

+
𝜋
− [9] which

was subsequently confirmed by the BaBar collaboration [10]
in the same channel. It was also discovered in proton-
proton/antiproton collisions at the Tevatron [11, 12] and LHC
[13, 14]. 𝑋(3872) is a particularly intriguing state because on
the one hand its total width Γ < 1.2MeV [1] is tiny compared
to typical hadronic widths and on the other hand the close-
ness of its mass to𝐷

0
𝐷
∗0 threshold (𝑀𝑋(3872)−𝑀𝐷0 −𝑀𝐷∗0 =

(−0.12 ± 0.24)MeV) and its prominent decays to 𝐷
0
𝐷
∗0 [1]

suggest that it may be an meson-meson molecular state [15,
16].

Many theoretical works have been carried out in order to
understand the nature of 𝑋(3872) since the first observation
of𝑋(3872). It is also natural to look for the counterpart with

𝐽
PC

= 1
++ (denoted as 𝑋𝑏 hereafter) in the bottom sector.

These two states are related by heavy quark symmetry which
should have some universal properties.The search for𝑋𝑏may
provide us with important information on the discrimination
of a compact multiquark configuration and a loosely bound
hadronic molecule configuration. Since the mass of 𝑋𝑏 may
be very heavy and its 𝐽

PC is 1
++, it is less likely for a direct

discovery at the current electron-positron collision facilities,
though the Super KEKB may provide an opportunity in
Υ(5𝑆, 6𝑆) radiative decays [17]. In [18], a search for 𝑋𝑏 in
the 𝜔Υ(1𝑆) final states has been presented and no significant
signal is observed for such a state.

Theproduction of𝑋𝑏 at the LHCand theTevatron [19, 20]
and other exotic states at hadron colliders [21–26] has been
extensively investigated. In the bottomonium system, the
isospin is almost perfectly conserved, which may explain the
escape of 𝑋𝑏 in the recent CMS search [27]. As a result, the
radiative decays and isospin conserving decays will be of high
priority in searching for𝑋𝑏 [28–30]. In [28], we have studied
the radiative decays of 𝑋𝑏 → 𝛾Υ(𝑛𝑆) (𝑛 = 1, 2, 3), with 𝑋𝑏

being a candidate for 𝐵𝐵∗molecular state, and found that the
partial widths into 𝛾𝑋𝑏 are about 1 keV. In [29], we studied
the rescattering mechanism of the isospin conserving decays
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Figure 1: Feynman diagrams for 𝑋𝑏 production in Υ(5𝑆) → 𝛾𝑋𝑏 under 𝐵𝐵
∗ meson loop effects.

𝑋𝑏 → Υ(1𝑆)𝜔, and our results show that the partial width for
𝑋𝑏 → Υ(1𝑆)𝜔 is about tens of keVs.

In this work, we will further investigate𝑋𝑏 production in
Υ(5𝑆, 6𝑆) → 𝛾𝑋𝑏 with 𝑋𝑏 being 𝐵𝐵

∗ molecule candidate. To
investigate this process, we calculate the intermediate meson
loop (IML) contributions. As well know, IML transitions
have been one of the important nonperturbative transition
mechanisms being noticed for a long time [31–33]. Recently,
this mechanism has been used to study the production and
decays of ordinary and exotic states [34–60] and 𝐵 decays
[61–68], and a global agreement with experimental data was
obtained. Thus this approach may be suitable for the process
Υ(5𝑆, 6𝑆) → 𝛾𝑋𝑏.

The paper is organized as follows. In Section 2, we
present the effective Lagrangians for our calculation.Then in
Section 3, we present our numerical results. Finally we give
the summary in Section 4.

2. Effective Lagrangians

Based on the heavy quark symmetry, we can write out the
relevant effective Lagrangian for Υ(5𝑆) [68, 69]:

LΥ(5𝑆)𝐵(∗)𝐵(∗) = 𝑖𝑔Υ𝐵𝐵Υ𝜇 (𝜕
𝜇
𝐵𝐵 − 𝐵𝜕

𝜇
𝐵)

− 𝑔Υ𝐵∗𝐵𝜖𝜇]𝛼𝛽𝜕
𝜇
Υ
]
(𝜕
𝛼
𝐵
∗𝛽

𝐵 + 𝐵𝜕
𝛼
𝐵
∗𝛽

)

− 𝑖𝑔Υ𝐵∗𝐵∗ {Υ
𝜇
(𝜕𝜇𝐵
∗]
𝐵
∗

] − 𝐵
∗]
𝜕𝜇𝐵
∗

] )

+ (𝜕𝜇Υ]𝐵
∗]

− Υ]𝜕𝜇𝐵
∗]
) 𝐵
∗𝜇

+ 𝐵
∗𝜇

(Υ
]
𝜕𝜇𝐵
∗

] − 𝜕𝜇Υ
]
𝐵
∗

] )} ,

(1)

where 𝐵
(∗)

= (𝐵
(∗)+

, 𝐵
(∗)0

) and 𝐵
(∗)𝑇

= (𝐵
(∗)−

, 𝐵
(∗)0

)

correspond to the bottom meson isodoublets. 𝜖𝜇]𝛼𝛽 is the
antisymmetric Levi-Civita tensor and 𝜖0123 = +1. SinceΥ(5𝑆)
is above the threshold of 𝐵

(∗)
𝐵
(∗), the coupling constants

between Υ(5𝑆) and 𝐵
(∗)

𝐵
(∗) can be determined via exper-

imental data for Υ(5𝑆) → 𝐵
(∗)

𝐵
(∗) [1]. The experimental

branching ratios and the corresponding coupling constants
are listed in Table 1. Since there is no experimental infor-
mation on Υ(6𝑆) → 𝐵

(∗)
𝐵
(∗) [1], we choose the coupling

constants betweenΥ(6𝑆) and 𝐵
(∗)

𝐵
(∗), the same values as that

of Υ(5𝑆).
In order to calculate the process depicted in Figure 1, we

also need the photonic coupling to the bottomedmesons.The

Table 1: The coupling constants of Υ(5𝑆) interacting with 𝐵
(∗)

𝐵
(∗).

Here, we list the corresponding branching ratios of Υ(5𝑆) →

𝐵
(∗)

𝐵
(∗).

Final state B (%) Coupling
𝐵𝐵 5.5 1.76

𝐵𝑠𝐵𝑠 0.5 0.96

𝐵𝐵
∗

+ c.c. 13.7 0.14GeV−1

𝐵𝑠𝐵
∗

𝑠
+ c.c. 1.35 0.10GeV−1

𝐵
∗
𝐵
∗

38.1 2.22

𝐵
∗

𝑠
𝐵
∗

𝑠
17.6 5.07

magnetic coupling of the photon to heavy bottom meson is
described by the Lagrangian [70, 71]

L𝛾 =
𝑒𝛽𝑄𝑎𝑏

2
𝐹
𝜇]Tr [𝐻†

𝑏
𝜎𝜇]𝐻𝑎]

+
𝑒𝑄


2𝑚𝑄

𝐹
𝜇]Tr [𝐻†

𝑎
𝐻𝑎𝜎𝜇]] ,

(2)

with

𝐻 = (
1 + �V
2

) [B
∗𝜇
𝛾𝜇 −B𝛾5] , (3)

where 𝛽 is an unknown constant, 𝑄 = diag{2/3, −1/3, −1/3}
is the light quark charge matrix, and 𝑄

 is the heavy quark
electric charge (in units of 𝑒). 𝛽 ≃ 3.0GeV−1 is determined
in the nonrelativistic constituent quark model and has been
adopted in the study of radiative 𝐷

∗ decays [71]. In 𝑏 and 𝑐

systems, 𝛽 value is the same due to heavy quark symmetry
[71]. In (2), the first term is the magnetic moment coupling
of the light quarks, while the second one is the magnetic
moment coupling of the heavy quark and hence is suppressed
by 1/𝑚𝑄.

At last, assume that𝑋𝑏 is 𝑆-wavemolecule with 𝐽
PC

= 1
++

given by the superposition of 𝐵0𝐵∗0 + c.c. and 𝐵
−
𝐵
∗+

+ c.c.
hadronic configurations as

𝑋𝑏⟩ =
1

2
[(


𝐵
0
𝐵
∗0

⟩ −

𝐵
∗0
𝐵
0

⟩)

+ (
𝐵
+
𝐵
∗−

⟩ −
𝐵
−
𝐵
∗+

⟩)] .

(4)
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Table 2: Predicted branching ratios for Υ(5𝑆) → 𝛾𝑋𝑏. The parameter in the form factor is chosen as 𝛼 = 2.0, 2.5, and 3.0. The last column is
the calculated branching ratios in NREFT approach.

Binding energy Monopole form factor Dipole form factor NREFT
𝛼 = 2.0 𝛼 = 2.5 𝛼 = 3.0 𝛼 = 2.0 𝛼 = 2.5 𝛼 = 3.0

𝜖
𝑋𝑏

= 5MeV 2.02 × 10
−5

2.06 × 10
−5

2.08 × 10
−5

1.90 × 10
−5

1.99 × 10
−5

2.04 × 10
−5

1.52 × 10
−6

𝜖𝑋𝑏
= 10MeV 2.58 × 10

−5
2.66 × 10

−5
2.71 × 10

−5
2.32 × 10

−5
2.47 × 10

−5
2.57 × 10

−5
2.12 × 10

−6

𝜖𝑋𝑏
= 25MeV 3.24 × 10

−5
3.42 × 10

−5
3.54 × 10

−5
2.61 × 10

−5
2.90 × 10

−5
3.09 × 10

−5
3.88 × 10

−6

𝜖
𝑋𝑏

= 50MeV 3.37 × 10
−5

3.65 × 10
−5

3.85 × 10
−5

2.37 × 10
−5

2.75 × 10
−5

3.04 × 10
−5

6.41 × 10
−6

𝜖𝑋𝑏
= 100MeV 2.91 × 10

−5
3.27 × 10

−5
3.54 × 10

−5
1.65 × 10

−5
2.05 × 10

−5
2.38 × 10

−5
1.20 × 10

−5

As a result, we can parameterize the coupling of 𝑋𝑏 to the
bottomed mesons in terms of the following Lagrangian:

L =
1

2
𝑋
†

𝑏𝜇
[𝑥1 (𝐵

∗0𝜇
𝐵
0

− 𝐵
0
𝐵
∗0𝜇

)

+ 𝑥2 (𝐵
∗+𝜇

𝐵
−
− 𝐵
+
𝐵
∗−𝜇

)] + h.c.,
(5)

where 𝑥𝑖 denotes the coupling constant. Since 𝑋𝑏 is slightly
below 𝑆-wave 𝐵𝐵

∗ threshold, the effective coupling of this
state is related to the probability of finding 𝐵𝐵

∗ component
in the physical wave function of the bound states and the
binding energy, 𝜖𝑋𝑏 = 𝑚𝐵 + 𝑚𝐵∗ − 𝑚𝑋𝑏

[36, 72, 73]:

𝑥
2

𝑖
≡ 16𝜋 (𝑚𝐵 + 𝑚𝐵∗)

2
𝑐
2

𝑖
√

2𝜖𝑋𝑏

𝜇
, (6)

where 𝑐𝑖 = 1/√2 and 𝜇 = 𝑚𝐵𝑚𝐵∗/(𝑚𝐵 + 𝑚𝐵∗) is the reduced
mass. Here, we should also notice that the coupling constant
𝑥𝑖 in (6) is based on the assumption that𝑋𝑏 is a shallowbound
state where the potential binding the mesons is short-ranged.

Based on the relevant Lagrangians given above, the decay
amplitudes in Figure 1 can be generally expressed as follows:

𝑀𝑓𝑖 = ∫
𝑑
4
𝑞2

(2𝜋)
4

∑

𝐵∗pol.

𝑇1𝑇2𝑇3

𝐷1𝐷2𝐷3

F (𝑚2, 𝑞
2

2
) , (7)

where𝑇𝑖 and𝐷𝑖 = 𝑞
2

𝑖
−𝑚
2

𝑖
(𝑖 = 1, 2, 3) are the vertex functions

and the denominators of the intermediate meson propaga-
tors. For example, in Figure 1(a), 𝑇𝑖 (𝑖 = 1, 2, 3) are the vertex
functions for the initial Υ(5𝑆), final 𝑋𝑏, and photon, respec-
tively. 𝐷𝑖 (𝑖 = 1, 2, 3) are the denominators for the interme-
diate 𝐵+, 𝐵−, and 𝐵

∗+ propagators, respectively.
Since the intermediate exchanged bottom mesons in the

triangle diagram in Figure 1 are off-shell, in order to com-
pensate these off-shell effects arising from the intermediate
exchanged particle and also the nonlocal effects of the vertex
functions [74–76], we adopt the following form factors:

F (𝑚2, 𝑞
2

2
) ≡ (

Λ
2
− 𝑚
2

2

Λ2 − 𝑞2
2

)

𝑛

, (8)

where 𝑛 = 1, 2 corresponds tomonopole and dipole form fac-
tor, respectively. Λ ≡ 𝑚2 +𝛼ΛQCD and the QCD energy scale
ΛQCD = 220MeV. This form factor is supposed and many

phenomenological studies have suggested 𝛼 ≃ 2 ∼ 3. These
two form factors can help us explore the dependence of our
results on the form factor.

The explicit expression of transition amplitudes can be
found in Appendix (A.2) in [77], where radiative decays
of charmonium are studied extensively based on effective
Lagrangian approach.

3. Numerical Results

Before proceeding the numerical results, we first briefly
review the predictions on mass of 𝑋𝑏. The existence of 𝑋𝑏
is predicted in both the tetraquark model [78] and those
involving a molecular interpretation [79–81]. In [78], the
mass of the lowest-lying 1

++
𝑏𝑞𝑏𝑞 tetraquark is predicated

to be 10504MeV, while the mass of 𝐵𝐵∗ molecular state is
predicated to be a few tens of MeV higher [79–81]. For exam-
ple, in [79], the mass was predicted to be 10562MeV, which
corresponds to a binding energy to be 42MeV, while themass
was predicted to be (10580

+9

−8
)MeV, which corresponds to a

binding energy (24
+8

−9
)MeV in [81]. As can be seen from the

theoretical predictions, it might be a good approximation and
might be applicable if the binding energy is less than 50MeV.
In order to cover the range of the previous molecular and
tetraquark predictions on [78–81], we present our results up
to a binding energy of 100MeV, and we will choose several
illustrative values: 𝜖𝑋𝑏 = (5, 10, 25, 50, 100)MeV.

In Table 2, we list the predicted branching ratios by
choosing the monopole and dipole form factors and three
values for the cutoff parameter in the form factor. As a
comparison, we also list the predicted branching ratios in
NREFT approach. From this table, we can see that the
branching ratios for Υ(5𝑆) → 𝛾𝑋𝑏 are orders of 10−5. The
results are not sensitive to both the form factors and the cutoff
parameter we choose.

In Figure 2(a), we plot the branching ratios for Υ(5𝑆) →

𝛾𝑋𝑏 in terms of the binding energy 𝜖𝑋𝑏
with the monopole

form factors 𝛼 = 2.0 (solid line), 2.5 (dashed line), and 3.0

(dotted line), respectively. The coupling constant of𝑋𝑏 in (6)
and the threshold effects can simultaneously influence the
binding energy dependence of the branching ratios. With the
increasing of the binding energy 𝜖𝑋𝑏

, the coupling strength
of 𝑋𝑏 increases, and the threshold effects decrease. Both the
coupling strength of𝑋𝑏 and the threshold effects vary quickly
in the small 𝜖𝑋𝑏 region and slowly in the large 𝜖𝑋𝑏

region.
As a result, the behavior of the branching ratios is relatively
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Figure 2: (a)The dependence of the branching ratios of Υ(5𝑆) → 𝛾𝑋𝑏 on 𝜖𝑋𝑏
using monopole form factors with 𝛼 = 2.0 (solid lines), 𝛼 = 2.5

(dashed lines), and 𝛼 = 3.0 (dotted lines), respectively. (b) The dependence of the branching ratios of Υ(5𝑆) → 𝛾𝑋
𝑏
on 𝜖
𝑋𝑏

using dipole
form factors with 𝛼 = 2.0 (solid lines), 𝛼 = 2.5 (dashed lines), and 𝛼 = 3.0 (dotted lines), respectively. The results with binding energy up to
100MeV might make the molecular state assumption inaccurate.
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Figure 3: (a)The dependence of the branching ratios of Υ(6𝑆) → 𝛾𝑋𝑏 on 𝜖𝑋𝑏
using monopole form factors with 𝛼 = 2.0 (solid lines), 𝛼 = 2.5

(dashed lines), and 𝛼 = 3.0 (dotted lines), respectively. (b) The dependence of the branching ratios of Υ(6𝑆) → 𝛾𝑋𝑏 on 𝜖𝑋𝑏
using dipole

form factors with 𝛼 = 2.0 (solid lines), 𝛼 = 2.5 (dashed lines), and 𝛼 = 3.0 (dotted lines), respectively. The results with binding energy up to
100MeV might make the molecular state assumption inaccurate.

Table 3: Predicted branching ratios for Υ(6𝑆) → 𝛾𝑋𝑏. The parameter in the form factor is chosen as 𝛼 = 2.0, 2.5, and 3.0. The last column is
the calculated branching ratios in NREFT approach.

Binding energy Monopole form factor Dipole form factor NREFT
𝛼 = 2.0 𝛼 = 2.5 𝛼 = 3.0 𝛼 = 2.0 𝛼 = 2.5 𝛼 = 3.0

𝜖𝑋𝑏
= 5MeV 9.71 × 10

−6
1.02 × 10

−5
1.05 × 10

−5
8.16 × 10

−6
9.04 × 10

−6
9.63 × 10

−6
3.38 × 10

−6

𝜖𝑋𝑏
= 10MeV 1.25 × 10

−5
1.33 × 10

−5
1.38 × 10

−5
9.97 × 10

−6
1.13 × 10

−5
1.22 × 10

−5
4.89 × 10

−6

𝜖𝑋𝑏
= 25MeV 1.62 × 10

−5
1.76 × 10

−5
1.85 × 10

−5
1.14 × 10

−5
1.34 × 10

−5
1.49 × 10

−5
8.27 × 10

−6

𝜖𝑋𝑏
= 50MeV 1.76 × 10

−5
1.96 × 10

−5
2.12 × 10

−5
1.08 × 10

−5
1.32 × 10

−5
1.52 × 10

−5
1.30 × 10

−5

𝜖𝑋𝑏
= 100MeV 1.66 × 10

−5
1.92 × 10

−5
2.12 × 10

−5
8.12 × 10

−6
1.06 × 10

−5
1.28 × 10

−5
2.24 × 10

−5

sensitive at small 𝜖𝑋𝑏 , while it becomes smooth at large 𝜖𝑋𝑏
.

Results with the dipole form factors 𝛼 = 2.0, 2.5, and 3.0
are shown in Figure 2(b) as solid, dash, and dotted curves,
respectively. The behavior is similar to that of Figure 2(a).

We also predict the branching ratios of Υ(6𝑆) → 𝛾𝑋𝑏 and
present the relevant numerical results in Table 3 and Figure 3

with the monopole and dipole form factors. At the same
cutoff parameter 𝛼, the predicted rates for Υ(6𝑆) → 𝛾𝑋𝑏
are a factor of 2-3 smaller than the corresponding rates for
Υ(5𝑆) → 𝛾𝑋𝑏. It indicates that the intermediate 𝐵-meson
loop contribution to the processΥ(6𝑆) → 𝛾𝑋𝑏 is smaller than
that to Υ(5𝑆) → 𝛾𝑋𝑏. This is understandable since the mass
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ofΥ(6𝑆) is more far away from the thresholds of 𝐵(∗)𝐵(∗) than
Υ(5𝑆). But their branching ratios are also about orders of 10−5
with a reasonable cutoff parameter 𝛼 = 2 ∼ 3.

In [51], authors introduced a nonrelativistic effective field
theory method to study the meson loop effects of 𝜓


→

𝐽/𝜓𝜋
0. Meanwhile they proposed a power counting scheme

to estimate the contribution of the loop effects, which is
used to judge the impact of the coupled-channel effects.
For the diagrams in Figure 1, the vertex involving the initial
bottomonium is in 𝑃-wave. The momentum in this vertex
is contracted with the final photon momentum 𝑞 and thus
should be counted as 𝑞.The decay amplitude scales as follows:

V5

(V2)3
𝑞
2
∼

𝑞
2

V
, (9)

where V is understood as the average velocity of the interme-
diate bottomed mesons.

As a cross-check, we also present the branching ratios
of the decays in the framework of NREFT. The relevant
transition amplitudes are similar to that given in [36] with
only different masses and coupling constants. The obtained
numerical results for Υ(5𝑆) → 𝛾𝑋𝑏 and Υ(6𝑆) → 𝛾𝑋𝑏 in
terms of the binding energy are listed in the last column
of Tables 2 and 3, respectively. As shown in Table 2, except
for the largest binding energy 𝜖𝑋𝑏

= 100MeV, the NREFT
predictions of Υ(5𝑆) → 𝛾𝑋𝑏 are about 1 order of magnitude
smaller than the ELA results at the commonly accepted
range. For Υ(6𝑆) → 𝛾𝑋𝑏 shown in Table 3, the NREFT
predictions are several times smaller than the ELA results
in small binding energy range, while the predictions of
these two methods are comparable at large binding energy.
These differences may give some sense of the theoretical
uncertainties for the predicted rates and indicate the viability
of our model to some extent.

Here we should notice, for the isoscalar 𝑋𝑏, the pion
exchanges might be nonperturbative and produce sizeable
effects [81–83]. In [81], their calculations show that the relative
errors of 𝐶0𝑋 are about 20% for 𝑋𝑏. Even if we take into
account this effect, the estimated order of the magnitude for
the branching ratio Υ(5𝑆, 6𝑆) → 𝛾𝑋𝑏 may also be sizeable,
which may be measured in the forthcoming BelleII experi-
ments.

4. Summary

In this work, we have investigated the production of 𝑋𝑏 in
the radiative decays of Υ(5𝑆, 6𝑆). Based on 𝐵𝐵

∗ molecular
state picture, we considered its production through the
mechanism with intermediate bottom meson loops. Our
results have shown that the production ratios forΥ(5𝑆, 6𝑆) →
𝛾𝑋𝑏 are about orders of 10

−5with a commonly accepted cutoff
range 𝛼 = 2 ∼ 3. As a cross-check, we also calculated the
branching ratios of the decays in the framework of NREFT.
Except for the large binding energy, the NREFT predictions
of Υ(5𝑆) → 𝛾𝑋𝑏 are about 1 order of magnitude smaller than
the ELA results. The NREFT predictions of Υ(6𝑆) → 𝛾𝑋𝑏 are
several times smaller than the ELA results in small binding
energy range, while the predictions of these two methods

are comparable at large binding energy. In [28, 29], we have
studied the radiative decays and the hidden bottomonium
decays of 𝑋𝑏. If we consider that the branching ratios of the
isospin conserving process𝑋𝑏 → 𝜔Υ(1𝑆) are relatively large,
a search for Υ(5𝑆) → 𝛾𝑋𝑏 → 𝛾𝜔Υ(1𝑆) may be possible for
the updated BelleII experiments. These studies may help us
investigate 𝑋𝑏 deeply. The experimental observation of 𝑋𝑏
will provide us with further insight into the spectroscopy of
exotic states and is helpful to probe the structure of the states
connected by the heavy quark symmetry.
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