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Action-angle approach to the geodesic motions in the
homogeneous Sasaki-Einstein space 7!
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Abstract. The complete integrability of geodesics in the homogeneous Sasaki-Einstein space
T makes possible the explicit construction of the action-angle variables. This parametrization
of the phase space represents a useful tool for developing perturbation theory. We find that
two pairs of fundamental frequencies of the geodesic motions are resonant indicating a chaotic
behavior when the integrable Hamiltonian is perturbed by a small non-integrable piece.

1. Introduction

Recently Sasaki geometry, as a natural odd-dimensional counterpart of the Kéahler geometry,
has become of significant interest in some modern studies in mathematics and physics [1, 2].
Sasaki-Einstein (SE) manifolds whose metric cones are Calabi-Yau manifolds find applications in
string theory in connection with AdS/CFT correspondence which relates quantum gravity in a
certain background to ordinary quantum field theory without gravity. A large class of examples
consists of type IIB string theory on the background AdSs x Y5 with Y5 a five-dimensional
SE space. A particular interesting class of toric SE structures on S? x S3 have been studied
by physicists [3, 4]. An extensively studied case is when Y5 is T™! which is homogeneous SE
space with SU(2)? x U(1) isometry. The AdS x TV is the first example of a supersymmetric
holographic theory based on a compact manifold which is not locally S°.

The purpose of this paper is to analyze the complete integrability of geodesics of the five-
dimensional SE space T1!. We present the action-angle formulation of the geodesic motions
in TH! space. The description of the integrability of geodesics in TV in terms of action-
angle variables give us a comprehensive description of the dynamics. We find that two pairs
of frequencies of the geodesic motions are resonant giving way to chaotic behavior when the
integrable Hamiltonian is perturbed by a small non-integrable piece.

The organization of the paper is as follows. In the next Section we present the functionally
independent integrals of motions for geodesics in Th! space. In Section 3 we describe the
construction of action-angle variables and evaluate the fundamental frequencies of the geodesic
motions. The paper ends with conclusions in Section 4.

2. TH! space
Until recently, the only five-dimensional SE manifolds that were known explicitly were the round
metric on S° and the homogeneous metric 71! on $? x 3.
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The metric on T%! may be written down explicitly by utilizing the fact that it is a U(1)
bundle over S? x S2. We choose the coordinates (6;, ¢;), i = 1,2 to parametrize the two spheres
S? in the standard way, while the angle v € [0,47) parametrizes the U(1) fiber. The metric on
T! may be written as [5]

1 1
ds*(TH) = 6(d@% + sin? 0, d¢? + df2 + sin® Oydp3) + §(d¢ + cos O1dpy + cos Badn)?. (1)

In what follows we introduce v = %¢ so that v has canonical period 27.
On a Riemannian manifold (M, g) with local coordinates z* and metric g,,, the geodesics are
represented by the trajectories of test-particles with proper time Hamiltonian

1
H = 59" pupy (2)
where p,, are the canonical momenta conjugate to the coordinate z#, p, = g,,@” with overdot
denoting proper time derivative.
In the case of T'! space, the conjugate momenta to the coordinates (61,02, ¢1, ¢o, V) are

1.
p91:6017
1.
p92:7927
6
1, . 1 5, . 1 .1 .
Py, = g sin 91¢)1+§COS 01<Z>1+§c0391¢+50059100592¢2, (3)
_1-29'129'1g'19 5 d
pd)zfﬁsm 2¢2+9(:os 2¢2+9cos gw—i—gcos 1cos s ¢y,
2

1 . 1 .
pl,:gz)—i-gcos&lqbl—&-gcos@(ﬁg,

and the conserved Hamiltonian (2) takes the form:

9
(2pg, — cos 6’2py)2 + fp,%. (4)

(2pg, — cos 01p,)? + 3

2 2 1
H =31pj, +pi, + 4sin? 6, 4sin? 0,
Using the complete set of Killing vectors and Killing-Yano tensors of SE space T! we find a
lot of conserved quantities [6, 7, 8, 9]. However the number of functionally independent integrals
of motion is only five which means that the geodesic flow on 71! space is completely integrable,
but not superintegrable.
We can choose as functionally independent constants of motion the energy

E=H, (5)

the momenta corresponding to the cyclic coordinates (¢, ¢2, V)

Py, = Coy
Pgy = Coy (6)
Pv = Cy,

where (cg, , ¢g, ,¢,) are some constants, and one of the two total SU(2) angular momentum

- 1 1
2 2 2 2 .
J’i :pei + 4Sin2 01 (2p¢z - COS@ipV) + zpu7 1= 172 . (7)
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3. Action-angle variables
The strategy to construct the action-angle variables consists in a few steps [10, 11]. First

of all, we fix a level surface F = (H,pg,,Psy,Pv, j;f) = c¢ of the mutually commuting
constants of motion (5)—(7). After that, we introduce the generating function for the canonical
transformation from the coordinates (p,q), where p are the conjugate momenta (3) to the
coordinates q = (01, 62, ¢1, P2, V), to the action-angle variables (J, w).

Taking into account that the Hamiltonian (4) has no explicit time dependence, we can write
the Hamilton’s principal function

S(qa C) = W(q,C) - Et’ (8)

where the Hamilton’s characteristic function is
W= [ pida. (9)
i

In the case of the geodesic motions in SE space T'%!, the variables in the Hamilton-Jacobi
equation are separable and we seek a solution with the characteristic function

W (01,02, 1, d2,v) = Wo, (01) + Wo, (02) + W, (¢1) + W, (d2) + Wi (v). (10)

For completely separable Hamilton-Jacobi equation, considering only closed orbits, the action
variables are defined as integrals over complete period in the (g;, p;) plane:

OWi(gs; :
Ji = fpidqi = j{ (;;c)dqi (no summation) . (11)

Ji’s form n independent functions of ¢;’s and can be taken as a set of new constant momenta.
For the cyclic variables (¢1, ¢2, ) from (6) and (9) we get straight

W¢1 = p¢1¢1 = C¢1¢1 3
W¢2 = p¢2¢2 = C¢2¢2 ; (12)

W, =pv=cyr,

and the corresponding action variables (11) are easily calculated

Jg, = 2mcy,
J¢2 = 27TC¢2 y (13)
J, = 2me, .

Conjugate angle variables w; are given by

having a linear evolution in time
w; = wit + G5, (15)

with (; other constants of integration.
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Having determined the characteristic functions corresponding to the cyclic variables, the
Hamilton-Jacobi equation becomes

6W9 2 1 2
E= L —(2¢4, — y
3[( 0, ) +4sin201( ¢y, — cosbhc ) ]

8W9 2 1 2
3 2) 4 (2¢,, — cosbacy
+ [( 905 > +4sin202( o — 080201

In this equation the dependencies on 61 and 65 are separated and we can set the quantities
enter the two square brackets to be constants denoted by cgl and respectively 032. Consequently

we have (16):
oWy, 5 (2¢4, —cosbic,)? ,
! = — G == 1 2 17

26, \/091' 4sin? 6, T 17)

(16)
+ gcg

and the corresponding action variables are

2c4; — 91’1/2
Jgi:fdei\/cgi—(%l cosbicy)” i _ 19, (18)

4sin? 6;

An efficient procedure to evaluate this integral is to put cos6; = t; and extend ¢; to a complex
variable z. The integral becomes a closed contour integral in the z-plane. The turning points of
the t;-motions are

Co;Cv £ Co, \/463, +c2— 402
t' :2 ‘ - 9 L = 1727 19
it 4031—’—012, 4 ( )

which are real for
Acj +ci—4ci >0 , i=1,2, (20)

and situated in the interval (—1,41). We cut the complex z-plane from ¢_ to ¢4 and the closed
contour integral is a loop enclosing the cut in a clockwise sence. The contour can be deformed
to a large circular contour plus two contour integrals about the poles at z = £1.

After the standard evaluation of the residues and the contribution of the large contour integral

we finally get [12]
1
Jo, :2w[2,/4cgi+c’5—c¢i] , i=1,2. (21)

We observe that the constants of motion Jy,, J4,, J,, I are connected by the relation:

This result is characteristic for the complete integrable systems. The number of conserved
quantities equals the number of degrees of freedom and the Hamiltonian depends only on the
action variables [10, 11].

Moreover, we observe that the energy depends on Jp, and Jy, in the combination Jy, + Jy,
meaning that the frequencies of motions in 6; and ¢; are identical:

zai:a—H:i(Jgi+J¢i) , =12, (23)

YO T 9, T 0y, 272
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These frequencies are resonant or rational dependent, the system is degenerate, and this fact
has important consequences for developing perturbation theory.

Recall that in a geometric picture of an integrable Hamiltonian system, the whole phase
space is foliated into an n-parameter family of invariant tori, on which the the flow is linear with
constant frequencies. According to the classical Kolmogorov-Arnold-Moser (KAM) theorem
[10], when an integrable Hamiltonian is perturbed by a small non-integrable piece, most KAM
tori survive but suffer small alterations. In contrast with the customary case, the resonant tori
which have rational ratios of frequencies get destroyed and motion on them becomes chaotic. The
chaotic behavior of the perturbed Hamiltonian integrable system T was observed in [13, 14]
using numerical simulations in the study of certain classical string configurations in AdS x T

The angle variables (11) are evaluated from equations (13) and (21) [12]:

I ow _ 8W9i _ _Jgi—l—J@.I
b= 0T, Jp, o !

k3 k3

ow 8W9i oWy, _ oW, 1

(@i, bi,ci5c080;) , i=1,2,

Yo gy T ady 0Ty 0Ty 2n”
Ji J, 2Jy. — J,
= uh(ai, bs, ci; cos b;) — MIZ(CM + b + ¢, b + 2¢;, ¢5;c086; — 1)
2 8
2J:. + J, 1 .
¢éﬁ . ( 7,—bi+Cl’,bZ’—ZCi,Ci;COSGi"—l)"_%(bZ’ , U= ]-527 (24)

8W _OWa,  OWa, | OW, _ OWp, |, OWp, | 1

= aJ,, Yo7, Tan, = a5, "o, T2
2J.
— Z $i — 12 (a; + b; + ¢i, by + 2¢;, ¢i;c080; — 1)

167

i=1,2
2Js. + J.

+ izl:Q 7(1)1167(‘ VIQ(CL»L' — bl + Ci, bl — 201’; C;; COS 91 + 1) + %V’

where:

1

a; = Jg§ +2Jp,J, — ZJE,

bi = Jg, (25)
—(Jo, + Js)° . i=1,2.

In the above equations I1(a, b, c;t) and Iz(a,b,c;t) are the integrals [15]

dt -1 2ct + b
Li(a,b,c;t) = = arcsin (C—'—) ,

Va+bt+ct2  /—c V-A (26)

Ix(a,b,c;t) / dt _ 1! arctan 2a + bt
A EE tVa+bt+ct?2  V-a 2v/—ava + bt +ct? )’

evaluated for ¢ < 0, A = 4ac — b*> < 0 and for a < 0 respectively. That is the case of the
parameters (25) taking for granted (20).

Let us note that the degeneracy of the pairs of frequencies (wp,,wy,) may be removed by a
canonical transformation from the variables

{(w917 J91)7 (w¢927 J92)7 (w¢17 J¢1)7 (w¢27 J¢2)7 (wW JV)}
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to new action-angle variables

{(617 J@1)a (@2a J92)7 ((I)b J<I>1)7 (‘1)27 J‘I’2)> (Ev JE)} :

For this purpose we introduce the following generating function

F(w917w¢17w927w¢27wl/;J@17J<I>17J@27Jq)27']5) == Z (w@—wel)z]cbﬂ‘z weic]@i"i‘quEv <27)

i=1,2 i=1,2
which implies
OF
(I)z—ﬁ—w@—wgi , 1=1,2,
oF
@z:m:wei ’ 7’:1727 (28)
—. OF
== =w
8,]5 Vo
and
OF
JQSZZM:JQZ s ’L:].,27
OF
Jei_i_J@i_Jq)i ) i:1527 (29)
Owg,
OF
J — ey J':
v 8’U}V =
The Hamiltonian (22) becomes
H=2_(J3 +J3 — 212 30
- m( [SH (SZ g E)? ( )
with the fundamental frequencies
3 3 3
Wep; = Wopy = 0 N we, = 277_(2J@1 s we, = 2771_21]@2 s W= = —@JE . (31)

Therefore, in terms of the new transformed variables, the Hamiltonian (30) appears in a form
involving only that action variables for which the corresponding frequencies are different from
zZero.

4. Conclusions

The action-angle approach to geodesic motions in 7! space gives us a better understanding of
the dynamics. The formulation of the integrable system in these variables represents a useful
tool for developing perturbation theory.

We observe that for geodesics in 7! the frequencies of the motions corresponding to 6;
and ¢; coordinates are equal. The resonant tori are in general destroyed by an arbitrary small
perturbation to the integrable Hamiltonian giving way to chaotic behavior. A similar result has
been obtained using numerical simulations [13] which shows that certain classical configurations
in AdSs x TH! are chaotic.

It would be interesting to extend the action-angle formulations to other five-dimensional SE
spaces as well to their higher dimensional generalizations relevant for the predictions of the
AdS/CFT correspondence.
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