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Action-angle approach to the geodesic motions in the

homogeneous Sasaki-Einstein space T 1,1

Mihai Visinescu

Department of Theoretical Physics, National Institute for Physics and Nuclear Engineering,
Magurele, P.O.Box M.G.-6, Romania

E-mail: mvisin@theory.nipne.ro

Abstract. The complete integrability of geodesics in the homogeneous Sasaki-Einstein space
T 1,1 makes possible the explicit construction of the action-angle variables. This parametrization
of the phase space represents a useful tool for developing perturbation theory. We find that
two pairs of fundamental frequencies of the geodesic motions are resonant indicating a chaotic
behavior when the integrable Hamiltonian is perturbed by a small non-integrable piece.

1. Introduction
Recently Sasaki geometry, as a natural odd-dimensional counterpart of the Kähler geometry,
has become of significant interest in some modern studies in mathematics and physics [1, 2].
Sasaki-Einstein (SE) manifolds whose metric cones are Calabi-Yau manifolds find applications in
string theory in connection with AdS/CFT correspondence which relates quantum gravity in a
certain background to ordinary quantum field theory without gravity. A large class of examples
consists of type IIB string theory on the background AdS5 × Y5 with Y5 a five-dimensional
SE space. A particular interesting class of toric SE structures on S2 × S3 have been studied
by physicists [3, 4]. An extensively studied case is when Y5 is T 1,1 which is homogeneous SE
space with SU(2)2 × U(1) isometry. The AdS × T 1,1 is the first example of a supersymmetric
holographic theory based on a compact manifold which is not locally S5.

The purpose of this paper is to analyze the complete integrability of geodesics of the five-
dimensional SE space T 1,1. We present the action-angle formulation of the geodesic motions
in T 1,1 space. The description of the integrability of geodesics in T 1,1 in terms of action-
angle variables give us a comprehensive description of the dynamics. We find that two pairs
of frequencies of the geodesic motions are resonant giving way to chaotic behavior when the
integrable Hamiltonian is perturbed by a small non-integrable piece.

The organization of the paper is as follows. In the next Section we present the functionally
independent integrals of motions for geodesics in T 1,1 space. In Section 3 we describe the
construction of action-angle variables and evaluate the fundamental frequencies of the geodesic
motions. The paper ends with conclusions in Section 4.

2. T 1,1 space
Until recently, the only five-dimensional SE manifolds that were known explicitly were the round
metric on S5 and the homogeneous metric T 1,1 on S2 × S3.
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The metric on T 1,1 may be written down explicitly by utilizing the fact that it is a U(1)
bundle over S2×S2. We choose the coordinates (θi, φi) , i = 1, 2 to parametrize the two spheres
S2 in the standard way, while the angle ψ ∈ [0, 4π) parametrizes the U(1) fiber. The metric on
T 1,1 may be written as [5]

ds2(T 1,1) =
1

6
(dθ2

1 + sin2 θ1dφ
2
1 + dθ2

2 + sin2 θ2dφ
2
2) +

1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)2 . (1)

In what follows we introduce ν = 1
2ψ so that ν has canonical period 2π.

On a Riemannian manifold (M, g) with local coordinates xµ and metric gµν the geodesics are
represented by the trajectories of test-particles with proper time Hamiltonian

H =
1

2
gµνpµpν , (2)

where pµ are the canonical momenta conjugate to the coordinate xµ, pµ = gµν ẋ
ν with overdot

denoting proper time derivative.
In the case of T 1,1 space, the conjugate momenta to the coordinates (θ1, θ2, φ1, φ2, ν) are

pθ1 =
1

6
θ̇1 ,

pθ2 =
1

6
θ̇2 ,

pφ1 =
1

6
sin2 θ1 φ̇1 +

1

9
cos2 θ1 φ̇1 +

1

9
cos θ1 ψ̇ +

1

9
cos θ1 cos θ2 φ̇2 ,

pφ2 =
1

6
sin2 θ2 φ̇2 +

1

9
cos2 θ2 φ̇2 +

1

9
cos θ2 ψ̇ +

1

9
cos θ1 cos θ2 φ̇1 ,

pν =
2

9
ν̇ +

1

9
cos θ1 φ̇1 +

1

9
cos θ2 φ̇2 ,

(3)

and the conserved Hamiltonian (2) takes the form:

H = 3

[
p2
θ1 + p2

θ2 +
1

4 sin2 θ1
(2pφ1 − cos θ1pν)2 +

1

4 sin2 θ2
(2pφ2 − cos θ2pν)2

]
+

9

8
p2
ν . (4)

Using the complete set of Killing vectors and Killing-Yano tensors of SE space T 1,1 we find a
lot of conserved quantities [6, 7, 8, 9]. However the number of functionally independent integrals
of motion is only five which means that the geodesic flow on T 1,1 space is completely integrable,
but not superintegrable.

We can choose as functionally independent constants of motion the energy

E = H , (5)

the momenta corresponding to the cyclic coordinates (φ1 , φ2 , ν)

pφ1 = cφ1 ,

pφ2 = cφ2 ,

pν = cν ,

(6)

where (cφ1 , cφ2 , cν) are some constants, and one of the two total SU(2) angular momentum

~J 2
i = p2

θi
+

1

4 sin2 θi
(2pφi − cos θipν)2 +

1

4
p2
ν , i = 1, 2 . (7)
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3. Action-angle variables
The strategy to construct the action-angle variables consists in a few steps [10, 11]. First

of all, we fix a level surface F = (H, pφ1 , pφ2 , pν ,
~J 2
1 ) = c of the mutually commuting

constants of motion (5)–(7). After that, we introduce the generating function for the canonical
transformation from the coordinates (p,q), where p are the conjugate momenta (3) to the
coordinates q = (θ1, θ2, φ1, φ2, ν), to the action-angle variables (J,w).

Taking into account that the Hamiltonian (4) has no explicit time dependence, we can write
the Hamilton’s principal function

S(q, c) = W (q, c)− Et , (8)

where the Hamilton’s characteristic function is

W =
∑
i

∫
pidqi . (9)

In the case of the geodesic motions in SE space T 1,1, the variables in the Hamilton-Jacobi
equation are separable and we seek a solution with the characteristic function

W (θ1, θ2, φ1, φ2, ν) = Wθ1(θ1) +Wθ2(θ2) +Wφ1(φ1) +Wφ2(φ2) +Wν(ν) . (10)

For completely separable Hamilton-Jacobi equation, considering only closed orbits, the action
variables are defined as integrals over complete period in the (qi, pi) plane:

Ji =

∮
pidqi =

∮
∂Wi(qi; c)

∂qi
dqi (no summation) . (11)

Ji’s form n independent functions of ci’s and can be taken as a set of new constant momenta.
For the cyclic variables (φ1 , φ2 , ν) from (6) and (9) we get straight

Wφ1 = pφ1φ1 = cφ1φ1 ,

Wφ2 = pφ2φ2 = cφ2φ2 ,

Wν = pνν = cνν ,

(12)

and the corresponding action variables (11) are easily calculated

Jφ1 = 2πcφ1 ,

Jφ2 = 2πcφ2 ,

Jν = 2πcν .

(13)

Conjugate angle variables wi are given by

wi =
∂W

∂Ji
=

n∑
j=1

∂Wj(qj ; J1, · · · , Jn)

∂Ji
, (14)

having a linear evolution in time
wi = ωit+ βi , (15)

with βi other constants of integration.
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Having determined the characteristic functions corresponding to the cyclic variables, the
Hamilton-Jacobi equation becomes

E = 3

[(
∂Wθ1

∂θ1

)2

+
1

4 sin2 θ1

(
2cφ1 − cos θ1cν

)2]

+ 3

[(
∂Wθ2

∂θ2

)2

+
1

4 sin2 θ2

(
2cφ2 − cos θ2cν

)2]
+

9

8
c2
ν .

(16)

In this equation the dependencies on θ1 and θ2 are separated and we can set the quantities
enter the two square brackets to be constants denoted by c2

θ1
and respectively c2

θ2
. Consequently

we have (16):

∂Wθi

∂θi
=

√
c2
θi
−

(2cφi − cos θicν)2

4 sin2 θi
, i = 1, 2 , (17)

and the corresponding action variables are

Jθi =

∮
dθi

√
c2
θi
−

(2cφi − cos θicν)2

4 sin2 θi
, i = 1, 2 . (18)

An efficient procedure to evaluate this integral is to put cos θi = ti and extend ti to a complex
variable z. The integral becomes a closed contour integral in the z-plane. The turning points of
the ti-motions are

ti± = 2
cφicν ± cθi

√
4c2
θi

+ c2
ν − 4c2

φi

4c2
θi

+ c2
ν

, i = 1, 2 , (19)

which are real for
4c2
θi

+ c2
ν − 4c2

φi
≥ 0 , i = 1, 2 , (20)

and situated in the interval (−1,+1). We cut the complex z-plane from t− to t+ and the closed
contour integral is a loop enclosing the cut in a clockwise sence. The contour can be deformed
to a large circular contour plus two contour integrals about the poles at z = ±1.

After the standard evaluation of the residues and the contribution of the large contour integral
we finally get [12]

Jθi = 2π

[
1

2

√
4c2
θi

+ c2
ν − cφi

]
, i = 1, 2 . (21)

We observe that the constants of motion Jθi , Jφi , Jν , E are connected by the relation:

H = E =
3

4π2

[(
Jθ1 + Jφ1

)2
+
(
Jθ2 + Jφ2

)2 − 1

8
J2
ν

]
. (22)

This result is characteristic for the complete integrable systems. The number of conserved
quantities equals the number of degrees of freedom and the Hamiltonian depends only on the
action variables [10, 11].

Moreover, we observe that the energy depends on Jθi and Jφi in the combination Jθi + Jφi
meaning that the frequencies of motions in θi and φi are identical:

ωθi = ωφi =
∂H

∂Jθi
=

∂H

∂Jφi
=

3

2π2

(
Jθi + Jφi

)
, i = 1, 2 . (23)
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These frequencies are resonant or rational dependent, the system is degenerate, and this fact
has important consequences for developing perturbation theory.

Recall that in a geometric picture of an integrable Hamiltonian system, the whole phase
space is foliated into an n-parameter family of invariant tori, on which the the flow is linear with
constant frequencies. According to the classical Kolmogorov-Arnold-Moser (KAM) theorem
[10], when an integrable Hamiltonian is perturbed by a small non-integrable piece, most KAM
tori survive but suffer small alterations. In contrast with the customary case, the resonant tori
which have rational ratios of frequencies get destroyed and motion on them becomes chaotic. The
chaotic behavior of the perturbed Hamiltonian integrable system T 1,1 was observed in [13, 14]
using numerical simulations in the study of certain classical string configurations in AdS×T 1,1.

The angle variables (11) are evaluated from equations (13) and (21) [12]:

wθi =
∂W

∂Jθi
=
∂Wθi

∂Jθi
= −

Jθi + Jφi
2π

I1(ai, bi, ci; cos θi) , i = 1, 2 ,

wφi =
∂W

∂Jφi
=
∂Wθi

∂Jφi
+
∂Wφi

∂Jφi
=
∂Wθi

∂Jφi
+

1

2π
φi

= −
Jθi + Jφi

2π
I1(ai, bi, ci; cos θi)−

2Jφi − Jν
8π

I2(ai + bi + ci, bi + 2ci, ci; cos θi − 1)

+
2Jφi + Jν

8π
I2(ai − bi + ci, bi − 2ci, ci; cos θi + 1) +

1

2π
φi , i = 1, 2 ,

wν =
∂W

∂Jν
=
∂Wθ1

∂Jν
+
∂Wθ2

∂Jν
+
∂Wν

∂Jν
=
∂Wθ1

∂Jν
+
∂Wθ2

∂Jν
+

1

2π
ν

=
∑
i=1,2

2Jφi − Jν
16π

I2(ai + bi + ci, bi + 2ci, ci; cos θi − 1)

+
∑
i=1,2

2Jφi + Jν
16π

I2(ai − bi + ci, bi − 2ci, ci; cos θi + 1) +
1

2π
ν ,

(24)

where:

ai = J2
θi

+ 2JθiJφi −
1

4
J2
ν ,

bi = JφiJν ,

ci = −
(
Jθi + Jφi

)2
, i = 1, 2 .

(25)

In the above equations I1(a, b, c; t) and I2(a, b, c; t) are the integrals [15]

I1(a, b, c; t) =

∫
dt√

a+ bt+ ct2
=
−1√
−c

arcsin

(
2ct+ b√
−∆

)
,

I2(a, b, c; t) =

∫
dt

t
√
a+ bt+ ct2

=
1√
−a

arctan

(
2a+ bt

2
√
−a
√
a+ bt+ ct2

)
,

(26)

evaluated for c < 0, ∆ = 4ac − b2 < 0 and for a < 0 respectively. That is the case of the
parameters (25) taking for granted (20).

Let us note that the degeneracy of the pairs of frequencies (ωθi , ωφi) may be removed by a
canonical transformation from the variables

{(wθ1 , Jθ1), (wθ2 , Jθ2), (wφ1 , Jφ1), (wφ2 , Jφ2), (wν , Jν)}
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to new action-angle variables

{(Θ1, JΘ1), (Θ2, JΘ2), (Φ1, JΦ1), (Φ2, JΦ2), (Ξ, JΞ)} .

For this purpose we introduce the following generating function

F (wθ1 , wφ1 , wθ2 , wφ2 , wν ; JΘ1 , JΦ1 , JΘ2 , JΦ2 , JΞ) =
∑
i=1,2

(wφi−wθi)JΦi+
∑
i=1,2

wθiJΘi+wνJΞ , (27)

which implies

Φi =
∂F

∂JΦi

= wφi − wθi , i = 1, 2 ,

Θi =
∂F

∂JΘi

= wθi , i = 1, 2 ,

Ξ =
∂F

∂JΞ
= wν ,

(28)

and

Jφi =
∂F

∂wφi
= JΦi , i = 1, 2 ,

Jθi =
∂F

∂wθi
= JΘi − JΦi , i = 1, 2 ,

Jν =
∂F

∂wν
= JΞ .

(29)

The Hamiltonian (22) becomes

H =
3

4π2
(J2

Θ1
+ J2

Θ2
− 1

8
J2

Ξ) , (30)

with the fundamental frequencies

ωΦ1 = ωΦ2 = 0 , ωΘ1 =
3

2π2
JΘ1 , ωΘ2 =

3

2π2
JΘ2 , ωΞ = − 3

16π2
JΞ . (31)

Therefore, in terms of the new transformed variables, the Hamiltonian (30) appears in a form
involving only that action variables for which the corresponding frequencies are different from
zero.

4. Conclusions
The action-angle approach to geodesic motions in T 1,1 space gives us a better understanding of
the dynamics. The formulation of the integrable system in these variables represents a useful
tool for developing perturbation theory.

We observe that for geodesics in T 1,1 the frequencies of the motions corresponding to θi
and φi coordinates are equal. The resonant tori are in general destroyed by an arbitrary small
perturbation to the integrable Hamiltonian giving way to chaotic behavior. A similar result has
been obtained using numerical simulations [13] which shows that certain classical configurations
in AdS5 × T 1,1 are chaotic.

It would be interesting to extend the action-angle formulations to other five-dimensional SE
spaces as well to their higher dimensional generalizations relevant for the predictions of the
AdS/CFT correspondence.
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