



THE UNIVERSITY  
*of* ADELAIDE

Measurement of the Mass Composition of the  
Highest Energy Cosmic Rays with the Pierre  
Auger Observatory

Alexander Edward Hervé

BSc (Honours), Physics

A thesis submitted to the University of Adelaide in fulfilment of the  
requirements for the degree of Doctor of Philosophy.

School of Chemistry & Physics

Department of Physics

May 2013

# Contents

|                                                                 |            |
|-----------------------------------------------------------------|------------|
| <b>Abstract</b>                                                 | <b>i</b>   |
| <b>Declaration of Originality</b>                               | <b>ii</b>  |
| <b>Acknowledgements</b>                                         | <b>iii</b> |
| <b>Introduction</b>                                             | <b>1</b>   |
| <b>1 Cosmic Rays</b>                                            | <b>4</b>   |
| 1.1 Discovery of Cosmic Rays . . . . .                          | 4          |
| 1.2 Energy Spectrum . . . . .                                   | 7          |
| 1.3 Mass Composition . . . . .                                  | 10         |
| 1.4 Origin & Sources . . . . .                                  | 11         |
| 1.4.1 Top-down Mechanisms . . . . .                             | 11         |
| 1.4.2 Bottom-up Mechanisms . . . . .                            | 12         |
| 1.4.3 Possible Sources . . . . .                                | 16         |
| 1.5 Propagation . . . . .                                       | 17         |
| 1.5.1 Magnetic Fields . . . . .                                 | 17         |
| 1.5.2 Energy Losses . . . . .                                   | 19         |
| 1.5.2.1 GZK Limit . . . . .                                     | 19         |
| 1.6 Anisotropy . . . . .                                        | 21         |
| <b>2 Extensive Air Showers</b>                                  | <b>22</b>  |
| 2.1 Components of Extensive Air Showers . . . . .               | 24         |
| 2.1.1 Hadronic Component . . . . .                              | 25         |
| 2.1.2 Electromagnetic Component . . . . .                       | 26         |
| 2.1.3 Muon Component . . . . .                                  | 27         |
| 2.2 Heitler Model . . . . .                                     | 27         |
| 2.2.1 Gaisser-Hillas Profile . . . . .                          | 29         |
| 2.3 Atmospheric Fluorescence and Cherenkov Light Production . . | 29         |
| 2.4 Measuring EAS . . . . .                                     | 31         |

|          |                                                                                 |           |
|----------|---------------------------------------------------------------------------------|-----------|
| 2.4.1    | Ground Arrays . . . . .                                                         | 32        |
| 2.4.2    | Fluorescence Detectors . . . . .                                                | 34        |
| 2.4.3    | Hybrid Detection . . . . .                                                      | 35        |
| <b>3</b> | <b>Cosmic Ray Detectors</b>                                                     | <b>37</b> |
| 3.1      | Previous and Current Cosmic Ray Detectors . . . . .                             | 37        |
| 3.1.1    | Volcano Ranch . . . . .                                                         | 37        |
| 3.1.2    | Haverah Park . . . . .                                                          | 38        |
| 3.1.3    | SUGAR . . . . .                                                                 | 39        |
| 3.1.4    | Yakutsk . . . . .                                                               | 39        |
| 3.1.5    | Fly's Eye . . . . .                                                             | 40        |
| 3.1.6    | AGASA . . . . .                                                                 | 41        |
| 3.1.7    | HiRes . . . . .                                                                 | 41        |
| 3.1.8    | Telescope Array . . . . .                                                       | 42        |
| 3.2      | Pierre Auger Observatory . . . . .                                              | 42        |
| 3.2.1    | Communications and CDAS . . . . .                                               | 44        |
| 3.2.2    | Offline Software Framework . . . . .                                            | 44        |
| 3.2.3    | Surface Detector . . . . .                                                      | 46        |
| 3.2.3.1  | Detector Design . . . . .                                                       | 47        |
| 3.2.3.2  | Station Triggers . . . . .                                                      | 48        |
| 3.2.3.3  | Calibration . . . . .                                                           | 50        |
| 3.2.3.4  | Geometry Reconstruction . . . . .                                               | 52        |
| 3.2.3.5  | Energy Reconstruction . . . . .                                                 | 53        |
| 3.2.4    | Fluorescence Detector . . . . .                                                 | 57        |
| 3.2.4.1  | Detector Design . . . . .                                                       | 57        |
| 3.2.4.2  | Calibration and Atmospheric Monitoring . . . . .                                | 59        |
| 3.2.4.3  | Triggering and Electronics . . . . .                                            | 60        |
| 3.2.4.4  | Geometry Reconstruction . . . . .                                               | 61        |
| 3.2.4.5  | Energy Reconstruction . . . . .                                                 | 64        |
| 3.2.5    | Hybrid Event Reconstruction . . . . .                                           | 68        |
| 3.2.6    | Upgrades to the Detector . . . . .                                              | 70        |
| 3.3      | Current Measurements from Cosmic Ray Detectors . . . . .                        | 72        |
| 3.3.1    | Energy Spectrum . . . . .                                                       | 72        |
| 3.3.2    | Anisotropy . . . . .                                                            | 77        |
| 3.3.2.1  | Large Scale Anisotropies . . . . .                                              | 78        |
| 3.3.2.2  | Correlation Studies . . . . .                                                   | 80        |
| <b>4</b> | <b>Mass Composition</b>                                                         | <b>84</b> |
| 4.1      | Optical Detector measured shower properties used for mass composition . . . . . | 84        |
| 4.1.1    | The depth of shower maximum $X_{max}$ . . . . .                                 | 84        |

|          |                                                                                             |            |
|----------|---------------------------------------------------------------------------------------------|------------|
| 4.1.2    | Fluctuations in $X_{max}$ . . . . .                                                         | 88         |
| 4.2      | Surface Array measured shower properties used for mass composition . . . . .                | 88         |
| 4.2.1    | Muon Content . . . . .                                                                      | 89         |
| 4.2.2    | Rise time $t_{1/2}$ . . . . .                                                               | 92         |
| 4.2.3    | Lateral Distribution Function . . . . .                                                     | 92         |
| 4.2.4    | Azimuthal asymmetry . . . . .                                                               | 93         |
| 4.2.5    | Other observables . . . . .                                                                 | 94         |
| <b>5</b> | <b>Using Lateral Distribution Function Parameters for Mass Composition</b>                  | <b>96</b>  |
| 5.1      | Method . . . . .                                                                            | 97         |
| 5.2      | Elongation rate from SD . . . . .                                                           | 103        |
| 5.2.1    | Comparing elongation rates at different zenith angles .                                     | 106        |
| <b>6</b> | <b>Studies of the current Lateral Distribution Function</b>                                 | <b>109</b> |
| 6.1      | Studies of saturation using simulated events with unsaturated traces . . . . .              | 109        |
| 6.2      | “Total LDF” method . . . . .                                                                | 112        |
| 6.3      | Issues with functional form and possible solutions . . . . .                                | 114        |
| 6.4      | Concluding remarks on this study . . . . .                                                  | 119        |
| <b>7</b> | <b>Proposed new Lateral Distribution Function</b>                                           | <b>120</b> |
| 7.1      | New functional form and fixing the parameters . . . . .                                     | 121        |
| 7.2      | Testing new functional form . . . . .                                                       | 123        |
| 7.2.1    | Finding a parameterisation for the $\beta$ and $\gamma$ parameters of the new LDF . . . . . | 125        |
| 7.3      | Conclusion . . . . .                                                                        | 136        |
| <b>8</b> | <b>Update of SD elongation rate using new LDF form</b>                                      | <b>137</b> |
| 8.1      | Low energy bias . . . . .                                                                   | 138        |
| 8.2      | Updated method . . . . .                                                                    | 140        |
| 8.3      | Investigating the effect of the Molière radius . . . . .                                    | 149        |
| 8.4      | Solving the inclined shower problem . . . . .                                               | 154        |
| 8.5      | Systematic errors in the calibration method . . . . .                                       | 158        |
| 8.6      | Concluding remarks on the method . . . . .                                                  | 160        |
| <b>9</b> | <b><math>S_{1000}</math> Asymmetry and its relation to mass composition</b>                 | <b>161</b> |
| 9.1      | Asymmetry in extensive air showers . . . . .                                                | 161        |
| 9.1.1    | Sources of azimuthal asymmetry . . . . .                                                    | 162        |
| 9.1.1.1  | Geometrical asymmetry . . . . .                                                             | 162        |

|           |                                                                                                                                             |            |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 9.1.1.2   | Shower evolution and atmospheric attenuation                                                                                                | 166        |
| 9.1.1.3   | Other causes                                                                                                                                | 169        |
| 9.1.2     | Effects of asymmetry in shower reconstruction parameters                                                                                    | 169        |
| 9.2       | Testing the asymmetry using MC showers and the “Total LDF” method                                                                           | 169        |
| 9.3       | Measuring the asymmetry ratio using real data                                                                                               | 173        |
| 9.4       | Applying the asymmetry method to real data and comparing with MC showers                                                                    | 177        |
| 9.5       | Concluding remarks                                                                                                                          | 183        |
| <b>10</b> | <b>Conclusions</b>                                                                                                                          | <b>186</b> |
| <b>A</b>  | <b><math>\beta</math> vs <math>DX</math> plots for the linear and quadratic <math>\sec \theta</math> correction to <math>X_{max}</math></b> | <b>188</b> |
| A.1       | Linear correction                                                                                                                           | 188        |
| A.2       | Quadratic correction                                                                                                                        | 191        |
| <b>B</b>  | <b>Core Shift graphs for simulated data</b>                                                                                                 | <b>195</b> |
| <b>C</b>  | <b>E/L ratio plots for other opening angles</b>                                                                                             | <b>197</b> |
| <b>D</b>  | <b>Bibliography</b>                                                                                                                         | <b>204</b> |

# Abstract

The origin of ultra high energy cosmic rays is one of the big unsolved questions in Astrophysics today. Knowing the mass composition of these cosmic rays would help to determine information about both their propagation and acceleration. The Pierre Auger Observatory was built to gather more information and more statistics than any previous cosmic ray detector ever built. In this thesis, I will detail my method of extending the current Pierre Auger mass composition information by using surface array parameters as a proxy for the depth of shower maximum, an established mass indicator.

# Declaration of Originality

I, Alexander Edward Hervé, certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed: \_\_\_\_\_

Date: \_\_\_\_\_

# Acknowledgements

I would like to thank my supervisors, Bruce Dawson, José Bellido and Roger Clay, for all their guidance and support they have given me over the course of my PhD. I am extremely grateful for their guidance and enthusiasm towards my research that they have shown throughout my studies.

I would also like to thank all the other members of the High Energy Astrophysics research group at the University of Adelaide, both past and present. They have helped make my time as a PhD student enjoyable and enlightening, always willing to offer expertise to help tackle any difficult problems I came across. Particular thanks go to all my fellow office members, both past and present, especially Tom Harrison, Chris Hudson and Mathew Cooper, who have provided much support and advice during tough times throughout my research.

The Pierre Auger Collaboration ([www.auger.org/admin/Collaborators/author\\_list\\_alpha.html](http://www.auger.org/admin/Collaborators/author_list_alpha.html)) has been an exciting group of people to work with, and I thank the collaboration members for any ideas and input that they have offered. The opportunity to work with a state of the art detector, and be exposed to a wide variety of areas in the cosmic ray field, has given me an excellent start to research.

My friends and family have been a constant source of support over the course of my studies. I would like to thank my parents in particular, Jill and Tony. Their encouragement and support to allow me to continue what I wanted to do helped get me through to this stage of my studies.

Last, but certainly not least, is my wife Amy. Her belief and loving support has kept me going even through the most stressful periods of my PhD. I would not have gotten this far without her.

# Introduction

Since the discovery of cosmic rays at the beginning of the twentieth century, some of the most important properties of these energetic particles such as the origin, production mechanisms and mass composition, still remain a mystery. Specifically unsolved are the properties of Ultra High Energy Cosmic Rays (UHECRs), defined as those with an energy above  $10^{18}$  eV, which exceed by several orders of magnitude the maximum energy attainable in the most recent man-made accelerators such as the Large Hadron Collider.

The flux of cosmic rays is strongly dependent on primary energy decreasing down to 1 particle per  $\text{km}^2$  per century for energies around  $10^{20}$  eV. The observation of UHECRs with such a low flux is possible through the detection of the so-called Extensive Air Showers (EAS). The interaction of an extremely energetic cosmic ray with an atmospheric nucleus induces the development of a cascade of secondary particles which can be observed from the ground with an appropriate instrument. Because of the extremely low flux, large instrumented surfaces are necessary to study the most energetic cosmic rays. The Pierre Auger Observatory is at present the largest detector constructed to study UHECRs.

The Pierre Auger Observatory was conceived as a hybrid detector designed to study with high significance the energy spectrum, arrival direction distribution and mass composition of UHECRs. The hybrid concept, in which the Pierre Auger project is a forerunner, implements a combination of the two most successful techniques previously used in the study of high energy cosmic rays. A Surface Detector (SD), composed of over 1600 water Cherenkov stations, samples the secondary particles at ground level, while a Fluorescence Detector, made up of 27 telescopes, registers the longitudinal development of the shower by collecting the faint fluorescence light emitted by atmospheric nitrogen molecules previously excited by cascade particles crossing the atmosphere.

The flux suppression above around  $10^{19}$  eV postulated by Greisen, Zatsepin and Kuzmin due to the interaction of UHECRs with the Cosmic Microwave Background Radiation, has been recently observed with high signifi-

cance by the Pierre Auger Collaboration. In addition, a related breakthrough reported by the Collaboration has been the observation of correlations between the direction of nearby Active Galactic Nuclei and the arrival directions of the highest energy cosmic rays.

Determining the mass composition of UHECRs is crucial for the interpretation of these results, i.e. the energy spectrum and the distribution of arrival directions, as well as for an appropriate understanding of the acceleration mechanisms and the possible sources. In this thesis a method to extract the mass composition of UHECRs is presented. The technique is based on the slope of the lateral spread of particles (the lateral distribution function or LDF) measured by the SD of the Pierre Auger Observatory. As will be shown, the slope of the LDF is a very useful mass-sensitive parameter, well correlated with the distance to the depth of shower maximum. Another technique, using the asymmetry of the LDF at 1000 m for composition measurements, is also discussed as well as extensive studies of the characteristics of the LDF.

This thesis is divided into 10 chapters.

- **Chapter 1** A brief overview of the history of cosmic rays, including possible origin and sources as well as propagation.
- **Chapter 2** A description of the phenomenology of EAS and a summary of the most used techniques developed for detecting them.
- **Chapter 3** Previous and current cosmic ray detectors and their significant results are mentioned, leading into a summary of the Pierre Auger Observatory. Results from the current generation of cosmic ray detectors are discussed.
- **Chapter 4** The current status of mass composition measurements are detailed: both the results and the methods of obtaining the measurements.
- **Chapter 5** The method of using the slope of the (LDF) to characterise the mass composition is detailed.
- **Chapter 6** Results from extensive studies of the characteristics of the LDF.
- **Chapter 7** A proposed new LDF and results of tests and comparisons with the old LDF.
- **Chapter 8** Updating the old method of characterising mass composition using the new LDF and investigating systematics in the method.

- **Chapter 9** The procedure of characterising the mass composition using the asymmetry of the LDF at 1000 m is presented.
- **Chapter 10** Final concluding remarks.