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Quantum computing is rapidly advancing, harnessing the power of qubits’ superposition and 
entanglement for computational advantages over classical systems. However, scalability poses a 
primary challenge for these machines. By implementing a hybrid workflow between classical and 
quantum computing instances, D-Wave has succeeded in pushing this boundary to the realm of 
industrial use. Furthermore, they have recently opened up to mixed integer linear programming 
(MILP) problems, expanding their applicability to many relevant problems in the field of optimisation. 
However, the extent of their suitability for diverse problem categories and their computational 
advantages remains unclear. This study conducts a comprehensive examination by applying a selection 
of diverse case studies to benchmark the performance of D-Wave’s hybrid solver against that of 
industry-leading solvers such as CPLEX, Gurobi, and IPOPT. The findings indicate that D-Wave’s hybrid 
solver is currently most advantageous for integer quadratic objective functions and shows potential for 
quadratic constraints. To illustrate this, we applied it to a real-world energy problem, specifically the 
MILP unit commitment problem. While D-Wave can solve such problems, its performance has not yet 
matched that of its classical counterparts.

The field of Quantum Computing (QC) has seen great improvements over the last decade with companies like 
IBM and Google investing heavily in order to develop resources capable of solving challenging computational 
problems1,2. Recently, also Microsoft announced their new topological qubit design3, showcasing a new path in 
obtaining more error-resistant scalable quantum computers. Although rapid progress coincides with modern 
times, the idea of using “simple” systems governed by Quantum Mechanics (QM) to perform computation was 
proposed already in the 1980s by both Richard Feynman4 and Paul Benioff5 independently. There are numerous 
ways to approach building a quantum computer, but the two main categories are gate-based and annealing-
based QC. Just like bits in a classical computer, quantum computers use quantum bits, commonly referred to as 
qubits. Over the years, many different technologies have been suggested and tested as physical implementations 
of qubits. The first attempts in the 90s used nuclear magnetic resonance6, later, a plethora of different ideas has 
shown promise such as cold atoms7, trapped ions8, photon-based9 and others10,11. The current largest quantum 
annealers are pioneered by D-Wave12 and consist of loops of superconducting material13. It has been shown that 
in specific cases, QC can be exponentially faster than Classical Computing (CC), such as for Shor’s algorithm14, 
or the quantum Fourier transform algorithm15.

The fundamental idea behind QC is to use quantum phenomena such as superposition and entanglement to 
solve computationally difficult problems. In addition to solving computationally expensive problems, QC may 
be suited for solving problems that classical computers cannot, such as simulating nature16,17, as these systems 
are governed by the same rules of QM. It has been shown that for several NP-hard problems, where classical 
approaches fail to efficiently find a solution, QC can be a promising way to solve them18–21.

In gate-based QC, the classical, binary bits are replaced by controllable qubits capable of being in non-binary 
states. Adiabatic quantum annealers, however, function on a different principle. They prepare an ensemble of 
qubits in the ground state of some initial Hamiltonian, before allowing the system to evolve abiding by the 
adiabatic theorem22 to some final state encoding the desired solution. This principle will be further explained in 
Section “Adiabatic theorem”.
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Although quantum annealers are easier to scale towards more qubits, they are far more limited in their 
applications due to the lack of controllability of the individual qubits. While in gate-based quantum computers 
qubits can be controlled and manipulated with precise unitary operations, the annealing-based computers 
of D-Wave controls theirs with tunable biases and the coupling strengths between them. D-Wave’s quantum 
annealers are not universal quantum computers, and therefore can not run arbitrary algorithms. They are, 
however, especially well suited for optimisation problems where scalability is one of the most determining 
factors in solving relevant, modern, real-world problems. For a more thorough overview of the synergies 
between operational research and quantum computing, see23,24.

The development of quantum computers has finally reached a point where they are comparable to classical 
computers for an ever-increasing diverse pool of problems, some of which we wish to present here. Several 
formulations of vehicle routing problems were proposed for utilising quantum computers in21. Syrichas & 
Crispin25 proposed a simplified but systematic approach to tune quantum annealing parameters for vehicle 
routing problems. Bernal et al.26 presented the perspective of quantum computing for chemical engineering 
and provided examples in computational chemistry and molecular simulation where QC may become relevant. 
Rosenberg et al.27 developed a metaheuristic solver to solve large quadratic unconstrainted binary optimisation 
problems, which utilise D-Wave’s quantum annealers. On the other hand, Glover, Lewis, and Kocheberger28 
analysed the logical and inequality implications of reducing problem size to use QC to solve larger problems.

Quantum annealing may prove significantly beneficial for stochastic programming. In29 an algorithm based 
on the concepts of quantum theory was proposed and was applied to a stochastic job shop scheduling problem. 
In addition to real-world applications, several studies also investigate utilising quantum computing in classical 
optimisation algorithms, such as30,31.

Although D-Wave’s quantum annealers have been applied to solve problems such as rescheduling of urban 
railroads32, traffic flow optimisation33, and dynamic portfolio optimisation34, the performance or capability 
of quantum annealers in solving different classes of optimisation problems compared with industrial leading 
classical solvers is not clear35. As pointed out in32, the current implementations of quantum annealing in 
optimisation are limited in size and not yet upscaled to real-world situations. Furthermore, the exploration of 
quantum annealing in scheduling problems is limited. Given the rapid evolution of QC, regular benchmarking 
becomes crucial to highlight emerging developments and showcase the current state of this highly promising 
field, as emphasised by24. Benchmarks like36 have shown that D-Wave can compete with classical solvers like 
Tabu Search37 and Simulated Annealing (SA)38 for energy coalition formation and is ahead of gate-based 
applications like the Quantum Approximate Optimization Algorithm39. However, no benchmark of industry-
leading solvers has been conducted that evaluates their performance against that of D-Wave’s hybrid solvers for 
different optimisation problem categories.

This research aims to address this gap by utilizing the largest publicly available adiabatic quantum 
annealers, last updated in August 2023, to solve various optimisation problems, including integer/binary 
linear programming (BLP) with linear and quadratic constraints, integer/binary quadratic programming 
(BQP), and mixed-integer linear programming. To assess performance, we systematically compare D-Wave’s 
Advantage quantum annealers, as described in40, with the state-of-the-art classical solvers CPLEX41, Gurobi42, 
and IPOPT43. Recognizing the limitations of fully QC algorithms, we employ D-Wave’s hybrid solvers44. This 
approach seamlessly integrates the strengths of both classical and quantum computation, as explained in more 
detail in Section “Hybrid computing”. This study serves as a valuable resource for researchers across various 
fields dealing with optimisation problems, enabling them to assess the suitability of current D-Wave quantum 
annealers for their respective applications.

The subsequent sections of the paper are organized as follows: Section “Quantum annealing” provides a 
brief introduction to the physical and technical background of quantum annealing, encompassing the adiabatic 
theorem and D-Wave’s architecture in their treatment of constraints and the hybrid computing approach 
employed. Section “Case study” presents various case studies for different classes of optimisation problems. Then, 
Section The unit commitment problem—an energy system application showcases the application of D-Wave’s 
hybrid constrained quadratic model (CQM) solver45 on an energy system problem formulated as Mixed-Integer 
Linear Programming (MILP).

Quantum annealing
Simulated Annealing (SA) is used for approximating the global optimal solution, often used when an approximate 
global solution is preferred over an exact local minimum38. The fundamental principle of SA involves a two-
phase process: initially “heating” the system, followed by a gradual “cooling” that guides it into its globally lowest 
energy state. It is important to emphasize that this “heating” and “cooling” are metaphorical concepts, as no 
physical heating or cooling is applied; rather, the entire process is mathematically simulated. The inspiration for 
SA comes from the physical annealing process often used to change the characteristics of different materials46. 
D-Wave utilizes a quantum variation of this process, known as quantum annealing. In quantum annealing, the 
quantum mechanical phenomenon of tunnelling through a potential barrier, rather than the classical process of 
“climbing” over it, is utilized to escape local minima and potentially find a global one, as explained by Kadowaki 
and Nishimori (1998)47. This fundamental characteristic is pivotal in understanding the potential computational 
advantages of quantum annealers over their classical counterparts, particularly because the “hill climbing” 
process in SA can be time-consuming for a substantial subset of problems.

Quantum annealers exhibit narrower applicability compared to gate-based quantum computers and are, for 
example, unable to execute Shor’s algorithm14. By design, they are made to handle optimisation problems and are 
especially suited for quadratic unconstrained binary optimisation (QUBO) problems of the form
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x

(∑

i

hixi +
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i<j

Qijxixj

)
, (1)

where x ∈ {0, 1} and Qij , hi ∈ Rn.
QUBO problems are very closely related to the Ising model (Eq. 2) and can be easily transformed into this 

form by applying an affine transformation x �→ 2x − 1, effectively mapping x ∈ {0, 1} to {−1, 1}. Under this 
transformation, the variables xi, xj  correspond to classical spin variables si = ±1 leading to the classical Ising 
spin system:

 
Eising(s) =

∑

i

hisi +
∑

i>j

Ji,jsisj , (2)

where Ji,j  represents the spin interaction strength and hi external field. Traditionally, the Ising model is used 
in the field of statistical mechanics where the variables represent the binary states of a particle that can either be 
“spin down” or “spin up”.

In quantum mechanics, these variables are replaced by Pauli operators σx,y,z . Specifically, spin states are 
often expressed by terms of the Pauli σz  matrix which correspond to spin projections along the z-axis. The 
Hamiltonian describing such a quantum system takes the form:

 
H(σ) = B(s)

2

(∑

i

hiσ
(i)
z +

∑

i>j

Ji,jσ(i)
z σ(j)

z

)
, (3)

where B(s) is a prefactor with dimensions of energy and Ji,j  determines the interaction strength between 
neighboring spins. Since all the terms in this Hamiltonian involve σz  operators, they mutually commute. 
However, quantum annealers such as D-Wave introduce and additional transverse field involving σx terms, 
which do not necessarily commute with σz . This non-commutativity is crucial for quantum annealing to 
leverage the adiabatic theorem22, requiring an initial Hamiltonian with a dominant transverse field component 
as a starting point before gradually transitioning into the problem Hamiltonian.

Adiabatic theorem
In quantum mechanics, operators are used to extract information about physical systems. The most relevant of 
these operators in our case is the Hamilton operator H, usually just referred to as the Hamiltonian. The Hamilton 
corresponds to the total energy of the quantum mechanical system. By assuming that the time-dependent part 
varies sufficiently slow and that there is a big enough gap between the eigenstates of H, the solutions to the time-
dependent Schödinger equation48 are obtained in terms of the eigenfunctions of the instantaneous Hamiltonian,

 H(t)ψa(t) = Ea(t)ψa(t), (4)

where Ea is the energy of eigenstate ψa. The scale of “sufficiently slow” depends on the specific energy gap 
between the quantum states of the system and can range from less than a microsecond to a few seconds. If H(t) 
varies slowly in time, a system initially in a non-degenerate state ψ(t = t0) with energy Ea(t = t0) will evolve 
into the corresponding state ψa(t) with energy Ea(t) at a later time t without making any transitions between 
energy levels. This is known as the adiabatic theorem and is the fundamental principle utilized in quantum 
annealing. For a more detailed description of the adiabatic theorem and a complete proof thereof, see22.

To perform calculations using a quantum annealer, the physical collection of qubits, hereafter referred to as 
the system, is prepared in an easy-to-solve initial Hamiltonian HI . After the system has been prepared in HI

, external magnetic fields are applied to change the initial HI  into a complex Hamiltonian HF . Suppose this 
process follows the adiabatic theorem described above. In that case, the system will remain in its ground state for 
the duration of the anneal and the final state will be the solution of the complex Hamiltonian. As [σx, σz] ̸= 0, 
HI  and HF  do not share a common set of eigenstates. As a result, the system must undergo quantum transitions 
to evolve from one eigenstate to another. If the two Hamiltonians did commute, the eigenstates would remain 
unchanged throughout the evolution, preventing any quantum dynamics from occurring. The procedure can 
slowly anneal the system from the quantum Hamiltonian (Eq. (5)) to the solution of the classical Ising spin 
system shown in Eq. (2). After the annealing process, the collapsed spin states will present a low-energy solution. 
The annealing quantum Ising Hamiltonian is as follows:

 

HIsing = −A(s)
2

(∑

i

σ(i)
x

)

� �� �
Initial state Hamiltonian

+ B(s)
2

(∑

i

hiσ
(i)
z +

∑

i>j

Ji,jσ(i)
z σ(j)

z

)

� �� �
Final state Hamiltonian

.
 (5)

The annealing process begins at t = 0 and ends at time t = tf , where A(0) ≫ B(0) and A(tf ) ≪ B(tf ). At 
time t = tf , the qubits have been de-phased to a classical system and the Pauli matrix can be replaced by the 
classical si = ±1, resulting in Eq. (2).
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D-Wave architecture
The quantum annealers developed by D-Wave are currently the most promising systems capable of utilizing 
quantum properties for computation. Since 2011, D-Wave has steadily improved the capabilities of their quantum 
processing units (QPU) by upgrading both the hardware through multiple generations of system topologies and 
their own developed software Ocean49, thereby allowing for remote problem solving on their quantum annealers. 
D-Wave quantum annealers use loops of superconducting material as qubits to build their QPUs. This approach 
fixes the physical layout, also known as the (hardware graph), of the QPU.

The most powerful QPU available is the Pegasus topology50. In the Pegasus topology, each qubit is coupled 
to 15 other qubits, which is a great improvement from the 6 couplings of the previous generation. It consists of a 
square lattice of unit cells which themselves contain 24 qubits. The Advantage QPU, used for the computations 
performed in this work, is a 16 × 16 lattice of unit cells, totalling 24 × 16 × (16 − 1) = 5760 qubits. Due to 
the densely packed spatial arrangement of qubits and the physical manufacturing process, it is expected that 
some qubits may exhibit suboptimal performance. D-Wave estimates that approximately 5% of the qubits in the 
Pegasus topology may have imperfections. This dense graph structure of the Pegasus systems has allowed for 
a significant increase in the number of useful qubits, making the Advantage QPU the most promising system 
to solve the optimisation problems presented in Sections “Integer/binary linear programming (BLP)”, “Integer/
Binary Linear Programming with quadratic constraints” and “Integer/binary quadratic programming (BQP)”.

Quantum devices like those from D-Wave are subject to several causes of errors, including thermal noise, 
control errors, flux bias drifts and decoherence, which can lead to wrong solutions. To mitigate some of these, 
D-Wave has implemented Drift Correction techniques51 to compensate for slow fluctuations in qubit parameters 
by periodically measuring and adjusting flux biases to maintain computational accuracy. Additionally, D-Wave 
has demonstrated on the new Advantage-2 prototype Zero-Noise Extrapolation (ZNE)52 using controlled noise 
amplification and extrapolation to estimate error-free results. However, ZNE has not yet been implemented 
on commercially available systems. Generally, D-Wave uses statistical sampling by running multiple annealing 
cycles to generate a distribution of solutions, mitigating the noise introduced by these faulty qubits.

Due to their physical implementation, current quantum annealers can only encode BLP and BQP problems, 
so terms and constraints have to be transformed into this form35. For detailed information on Pegasus and 
other D-Wave topologies refer to53. Additionally, the next generation of topology, called Zephyr54, has already 
been announced with even higher connectivity. When working with any of these topologies, the embedding of 
the problem onto the physical hardware is of high importance. While D-Wave does provide a large amount of 
functionalities to help in accomplishing this process, this is no easy task and requires significant knowledge of 
the architecture and the problem at hand.

Constraints
Once the Hamiltonian is set, the annealing process will result in a minimal energy configuration of the system. 
No restrictions regarding conditions or constraints on the binary variables can be enforced directly into this 
procedure. Constraints can, however, be accounted for by adding quadratic penalty terms directly to the Ising 
Hamiltonian, also known as Lagrangian relaxation55. By penalizing the unwanted solutions with large enough 
penalty factors, a cost is added to make some of the solutions unfavourable.

A linear equality constraint P (x) =
(∑N

i
aixi − b

)
 with binary variables xi = {xi : ∀i ∈ N} can be 

written as

 
λ

(
N∑

i

aixi − b

)2

≡ λP (x)2, (6)

where b is some constant that has to be met. However, when confronted with a linear inequality constraint of 
the form P (x) =

(∑N

i
aixi − b

)
≤ 0, auxiliary slack variables, y = {yj : ∀j ∈ J} and their corresponding 

weights wj  are used to transform inequality constraints into equality constraints56 so that Eq. (6) can be written 
as

 
λ

(
N∑

i

aixi +
W∑

j

wjyj − b

)2

≡ λP (x)2. (7)

The number of slack variables W needed can be determined based on the coefficients ai and bi, with an upper 
limit of W = b.

The entire new QUBO, after adding all constraints, can then be written as

 
F (x) = Obj(x, Q) +

∑

k

λkPk(x)2, (8)

with coupling values Q and summing over all constraints k. With this approach, constrained optimisation 
problems can be reformulated into a solvable QUBO. We note that other approaches than Lagrangian relaxation 
have been considered and are actively researched to account for the constraints57. Furthermore, the penalty 
strength λ in Eq. (8) has to be chosen with care. Contrary to classical computing, there is a far more limited 
dynamic range of possible pre-factors and coupling strengths that can be applied. Too large values cause a 
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tremendous amount of distortion of the distribution in the ground state. At the same time, too small values 
will not ensure the satisfaction of the constraint as breaking it could then still result in optimal, unfeasible 
solutions. The best penalty strength is thereby the lowest possible value that still satisfies the constraints. There 
is no consensus on how to consistently guarantee this behaviour, and only some guidelines can be found either 
empirically or algebraically33,58.

State of the art of quantum annealing
The most capable quantum annealers as of today are owned by D-Wave. Therefore, in this paper, we focus on 
analysing and comparing the performance of their most advanced system against that of classical computers. 
While D-Wave promotes the capabilities of their machines in solving optimisation problems with 1 million 
variables and 100,000 constraints40, it is essential to note that these claims are strongly problem-dependent and 
not currently realizable simultaneously. The limit of 1 million variables is only valid for unconstrained problems 
with the possibility of adding constraints via penalties manually. For constrained models, the Advantage system 
can handle 500,000 variables and 100,000 constraints. These numbers, however, are only the case for D-Wave’s 
hybrid solvers, which split the problem into different partitions, where some are solved classically and others on 
the QPU depending on how suited these sub-problems are for either of the systems. As an example, continuous 
variables are usually run on classical computers, as here quantum annealers are not suspected to provide any 
computational advantage59. For pure quantum computation, without any partitioning, the capabilities of the 
Advantage system are significantly reduced and dependent on the exact embedding of the problem onto the 
QPU topology. Additionally, the larger the problem size, the “smaller” the logical qubits get, resulting in reduced 
connectivity and poorer solution quality. The maximum number of variables for a fully connected QUBO on 
the Advantage hardware is currently at 180, meaning the architecture can only support up to this amount (not 
considering any faulty qubits) of fully interacting logical variables60. For larger fully connected QUBOs, D-Wave 
uses hybrid workflows and partitioning of the problem into several sub-problems.

Hybrid computing
One of the main issues with modern quantum computing and quantum annealers is their scalability. For most 
industrial problems, the current number of qubits is not sufficient to run purely via quantum methods. However, 
hybrid workflows pave the way to tackle this issue by identifying and decomposing the problem into several 
sub-problems. Hereby, the strengths of both classical computers and quantum annealers for suited tasks can 
be utilized similarly to GPUs used for training machine learning models. D-Wave’s Leap Hybrid Solvers44 are 
cloud-based solvers and are the currently leading hybrid quantum annealing algorithm. Due to its proprietary 
nature, it acts like a black box, however, some generally known features are summarized in the following. When 
identifying and decomposing the problem into several sub-problems, the LeapHybridCQMSolver, designed for 
constrained quadratic models, automatically implements an appropriate penalty term for the constraint with 
suitable Lagrangian multipliers. D-Wave does not guarantee that this setting is optimal as these might differ for 
certain problems.

After the preprocessing, a hybrid workflow44 is implemented utilizing classical heuristics like simulated 
annealing and Tabu search37. Simultaneously, the quantum hardware is used to run smaller binary quadratic 
unconstrained optimisation problems with the potential to boost the classical counterparts, noting that linear 
binary problems can easily be transformed into QUBOs. Furthermore, the hybrid solvers also take over the task 
of embedding the problem onto the quantum hardware and run the QUBO partitions several times, creating 
a sampleset of solutions that then can be incorporated into the hybrid workflow again. As both the quantum 
annealing and the integrated classical methods are heuristic, the entire output is also heuristic. Thereby the 
solver does not guarantee the optimal solutions but returns a sampleset of several results. The entire hybrid 
approach is probabilistic. Finally, the exact nature of these solvers is not known, however, D-Wave enables the 
creation of custom hybrid workflows which, if properly implemented, might outperform the LeapHybridSolvers.

Case study
This section presents different case studies and their results. The exploration covers various classes of 
optimisation problems: Integer/Binary Linear Programming (BLP), while also considering the influence of 
additional constraints of both linear and quadratic nature in Section “Integer/Binary Linear Programming 
(BLP)”, and Integer/Binary Quadratic Programming (BQP) in Section “Integer/binary quadratic programming 
(BQP)”. To assess the performance of D-Wave’s Advantage system for industrial use, we benchmark the solution 
quality and computational time of D-Wave’s LeapHybridCQMSolver45 against results produced by the widely 
adopted classical solvers CPLEX41, Gurobi42, and IPOPT43 (version 3.14.12). The classical solvers are executed 
on a dedicated computer cluster equipped with dual 3.5 GHz Intel Xeon Gold 5115 CPUs, each featuring 10 
cores and 96 GB of RAM. Noting here that for the time comparison, we measured the total run time as outputted 
by the cloud service, which includes the time it takes to return the full sample-set of on average 100 sample 
solutions. From these solutions, we first filter out the feasible set before selecting the solution with the lowest 
energy value. The time required for these two steps was not included in the computational time measurement 
for obtaining sufficient solutions. While these steps typically take less than 1s on average, their impact may only 
be considerable for very short total run times.

Integer/binary linear programming (BLP)
Initially, our focus is on exploring optimisation problems characterized by variables that are exclusively either 
integer or binary values, with linear objective functions and constraints. We consider how solution quality 
and execution times vary with the number of assigned variables for the hybrid CQM solver and compare its 
performance with the introduced classical ones. The problem is formulated as:
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min

N∑

i=1

µixi  (9)

 
s.t.

N∑

i=1

xi = C,  (10)

where µi are random constants between (0,1) and xi ∈ {0, 1} are binary variables. This restricts the sum over 
all binary variables to equal a fixed constant C. We first run the solvers with 10,000 to 100,000 binary variables. 
A comparison of the solutions and the computational time for this range of binary variables is shown in Fig. 1a. 
Here, we average over 5 runs, each providing a sampleset of approximately 100 solutions from which the best 
feasible one is selected. As we experienced little deviation in the results we deemed higher statistics not to be 
necessary. Additionally, as access to quantum computers is still very limited, large statistics are not realisable. 
IPOPT is designed to handle large-scale nonlinear problems43 and is not suited for integer variables. As IPOPT 
approximates the binary variables with continuous ones with very small bounds around zero and one, the 
derived objective function value with these numbers can score a lower value than what is actually true. We 
excluded IPOPT’s objective function values in Fig. 1b, however, we kept this solver throughout this work as it 
shows important results in Section “Integer/binary quadratic programming (BQP)”. Looking at Fig. 1a, D-Wave 
stays relatively constant in computation time of about 6s up to 38,000 variables, from whereon it increases 
more drastically when the number of variables is increased further. Viewing the objective function value, we see 
that IPOPT behaves similarly to the other solvers for a low number of variables, but starts diverging from the 
rest as the number of variables increases. It can also be noted that the computational time of IPOPT increases 
rapidly compared to the other classical solvers. CPLEX and Gurobi start below 1s and gradually increase with 
an increasing number of variables. D-Wave finds the same optimal solution as Gurobi and CPLEX, resulting in 
three overlapping lines. The observed sawtooth pattern of the solutions is due to the randomness of the µ –values 
as they are newly drawn for each run with a specific seed. When comparing computational time in Fig. 1b, the 
hybrid solver requires significantly more time as it approaches its scalability limit. This behaviour could be 
explained by the need for an extremely high amount of partitioning into subproblems as the number of variables 
increases35. Although the optimal solution has been found, D-Wave’s hybrid solvers show no computational 
advantage.

Fig. 1. Mean objective function value and computational time comparison between CPLEX, Gurobi, IPOPT 
and D-Wave’s hybrid solver for the BLP with a single linear constraint. The results are averaged over 5 runs and 
the minimum and maximum deviation from the mean value is shown by the vertical lines.
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Increasing the complexity by adding more constraints
Next, we focus on determining whether D-Wave could continue to find the optimal solution at its scalability 
limit when increasing the complexity of the BLP (Eq. (9)) by adding additional constraints. As the constraints are 
added as penalty terms, we want to see if the solution quality can be maintained even though the computational 
time is significantly higher. We consider some arbitrary although feasible constraints listed below.

 

N∑

i

xi ≥ C,

N∑

i

xi =
N∑

j

xj , i ∈ 2N, j ∈ 2N + 1,

N/2∑

i

xi ≤
N∑

i=N/2

xi,

N∑

i

xi = 0, i/5 ∈ N,

N∑

i

µi+1xi ≤
N∑

i

µi−1xi.

 (11)

The objective function value and computational time averaged over 5 runs together with the minimum and 
maximum deviation as vertical lines are shown in Fig. 2. We observe that the solution quality stagnates with 
more constraints and in particular for the 5th added constraint a significant variability in the result with an 
approximate increase up to a factor of five. D-Wave’s computational time is significantly higher reaching above 
600s on the fully constrained problem. Furthermore, we ran the same problem with just 10,000 variables where 
D-Wave was able to find the optimal value with all 5 constraints added in every one of the 5 runs. This is a clear 
indication that D-Wave’s CQM hybrid solver can not ensure optimal solutions at its variable limit. Although 
no thorough study on the best setting for the Lagrange multipliers was conducted, minor adjustments to their 
values showed no improvements, supporting our conclusion that D-Wave fails to provide optimal solutions at its 
variable limit with an increasing number of constraints.

Integer/binary linear programming with quadratic constraints
In the previous section, all added constraints were linear. The examination, in this section, involves the 
consideration of a quadratic constraint while keeping the objective function linear. To this end, we added 
another factor to the constraint from Eq. (10) so that it now reads

 

N∑

i,j=1

xixj ≥ C, (12)

Fig. 2. Mean objective function value (a) and computational time (b) comparison between CPLEX, Gurobi, 
IPOPT and D-Wave’s hybrid solver for the BLP with increasingly more constraints. The results are averaged 
over 5 runs and the minimum and maximum deviation from the mean value is shown by the vertical lines.
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where xi,j ∈ {0, 1}, resulting in N2 terms. At first, we viewed the solution quality and computational time for 
an increasing number of variables, shown in Fig. 3a, followed by a stepwise increase in the complexity of the 
constraint by increasing the value of C in Fig. 3b.

In the first scenario, we observe that D-Wave finds worse solutions than both CPLEX and IPOPT whereas 
IPOPT’s value ranks lower due to the approximate representation of the binary variables as already mentioned 
in the previous section.

The solution obtained by CPLEX corresponds to the actual optimal solution from which D-Wave is 
continuously approximately a factor of two off. Notably, although D-Wave does not find the optimal solution, the 
best solution found in every run is the same, resulting in no observable error bars. This indicates that D-Wave 
gets stuck in a local minima. Nonetheless, D-Wave solves the problem faster than IPOPT from 500 variables 
and CPLEX from 600 variables onwards. Although D-Wave did not find the optimal solution a single time, the 
computational time is unaffected by the increase of variables.

We experience similar behaviour when stepwise increasing the value of the constraint. D-Wave is again 
slightly off the optimal solution, however, it stays relatively constant in computational time and solves the 
problem almost consistently faster than IPOPT. Although the solution is suboptimal, it can be seen in Fig. 3b 
that also for quadratic constraints with a linear objective function, the hybrid solver is not able to find the 
optimal solution in any run. We note that we did not adjust the Lagrange multipliers and kept the ones chosen 
by default by the hybrid solver. We do not rule out that customised settings for the parameters could be beneficial 
to the quality of the solution.

Integer/binary quadratic programming (BQP)
Binary quadratic problems are NP-hard61 and thus challenging to solve classically, even for a relatively small 
number of variables and constraints. As the structure of BQP resembles the Ising Hamiltonian, Eq. (5), these 
problems are especially suited for quantum annealers62. By multiplying with and summing over an additional set 
of binary variables xj  in Eq. (9), we acquire a BQP of the form

Fig. 3. Mean objective function value (top) and computational time (bottom) comparison between two 
classical solvers and D-Wave’s hybrid solver for the BLP with a single quadratic constraint. In (a) the 
complexity scales with the number of variables. In (b), the variables are fixed to 500 whereas the complexity 
scales with increasing C as stated in Eq. (10). All results are averaged over 5 runs, and the vertical lines show 
the minimum and maximum deviation from the mean value. Gurobi’s solve time is significantly larger than all 
other solvers and is thereby excluded here for visibility.
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min

N∑

i,j=1

µijxixj  (13)

 
s.t.

N∑

i=1

xi = C, xi, xj ∈ {0, 1}.  (14)

To benchmark the different solvers for this BQP, we increase the complexity by incrementally increasing the 
value of the constant C. Thereby, the complexity of the task is increased as the feasible solution space increases. 
This is preferred over a further increase of N to avoid an unnecessarily large memory usage as the number of 
terms in the objective function increases with N2.For the comparisons in this section, we choose a sufficiently 
large problem with N = 500, although different sizes were tested, showing the same tendencies. The results are 
shown in Fig. 4.

Considering both solution and run time, we observe a clear computational advantage of the hybrid solver 
to CPLEX. We cut CPLEX off after 1000s of runtime, resulting in sub-optimal solutions when the solution 
space increases. Gurobi performed even worse than CPLEX for this problem and was excluded in the figure for 
visibility reasons. While IPOPT shows comparable solutions and run time to D-Wave, the solutions are still not 
optimal. D-Wave finds consistently optimal solutions in less computational time, which again results in no error 
bars. To more clearly visualise this, we show the relative difference in solution quality between D-Wave’s hybrid 
solver and the objective function value of both IPOPT and CPLEX in Fig. 5.

We see from Fig. 5 that CPLEX performs well in the lower complexity region and that D-Wave does not 
find exclusively better solutions than CPLEX here, however, due to the capped computational time, D-Wave 
outperforms consistently for higher values of C. While IPOPT’s relative difference becomes increasingly small, 
CPLEX, with a capped solve-time of 1000s, seems to settle at a deviation of ∼ 25% from the optimal solution. 
This shows that D-Wave’s hybrid solvers are a suitable alternative for BQPs, even showing a computational 
advantage for this specific case. However, in the field of optimisation, there is a limited amount of problems that 
correspond to these pure BQPs.

The unit commitment problem—an energy system application
With the release of the LeapHybridCQM solver45, D-Wave opened itself up to a wider range of problems, such 
as Mixed Integer Linear Problems (MILP), with a wide spread of applications in various fields. To evaluate 
its performance, we benchmark D-Wave’s current performance on a real-world Unit Commitment problem, 
a complex optimisation challenge in the power sector that plays a crucial role in power system operation and 
planning. The Unit Commitment Problem involves determining the optimal scheduling of generating units—
deciding when each unit should be turned on or off—over a given time horizon. The goal is to meet the forecasted 
load at minimum total production cost while satisfying a range of constraints, including power balance, reserve 
requirements, transmission limits, and individual unit constraints such as generation limits, minimum up/
down times, and ramp rates63. For this purpose, a well-established MILP formulation of the Unit Commitment 
problem is chosen64, which consists of both continuous and binary variables while maintaining a fully linear 
structure in its objective function and constraints. The problem is tested at three different scales as defined in 
Table 1. The objective function of a unit commitment model is as follows:

Fig. 4. Comparison of the objective function value (a) and computational time (b) between D-Wave and the 
previously introduced classical solvers for BQP with 500 binary variables. The results are averaged over 5 runs. 
The run time is limited to 1000s, resulting in CPLEX not finding the optimal solution for increasing C.
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Sg∑
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CSs
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)
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ii

)
,
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where the objective function consists of two components: (i) the production cost and (ii) the startup cost. cg(t) 
represents the cost of the power produced by thermal generator g above its minimum output at time t, CP 1

g  
represents the cost of operating at the minimum power output for generator g, while ug(t) is a binary variable 
that indicates the commitment status of generator g at time t. In the final term, CSs

g  represents the startup cost 
in category s for generator g, where s ∈ Sg  represents the startup categories for thermal generator g, with s = 1 
corresponding to the hottest state (shortest downtime) and s = Sg  to the coldest state (longest downtime). The 
variable δs

g(t) indicates the startup in category s for thermal generator g at time t. These three terms are summed 
over all periods in time t ∈ T  and all generators g ∈ G. For a detailed explanation of this formulation, see64,65.

For the full-scale problem, the default pre-set minimum run time is set by D-Wave at 20s. In this limit, the 
hybrid solver was not able to find a single feasible solution, shown in Fig. 6a. We therefore solved the problem 
6 times with an increased minimum solve time of 150s and 2 times of 400s, shown in Fig. 6b. For comparison, 
the near-optimal solution with a gap of 0.05% was found by Gurobi in 180s with a value of 1.23 × 106. We can 
observe a clear increase in solution quality by the hybrid solver as in both cases feasible solutions were found. 
The best feasible solution for the 150s case yielded within 6 runs an objective function value of 5.9 × 106, while 
two runs with 400s run time yielded a value of 5.7 × 106. This is a clear indication that the minimum run time 
chosen by the solver itself is not optimal and has to be adjusted specifically for the problem at hand as a balance 
between computational time and solution quality. Next, an investigation was conducted to observe how D-Wave 
would perform if the problem was downsized, as stated in Table 1. First, the Reduced-1 problem with 12 time 
periods and 4 segments was examined, making it approximately one-fourth of the size of the initial problem. We 
kept the default minimum run-time setting of 10s, as this is already significantly longer than Gurobi’s solve time 
of 1.34s for the optimal solution without a gap. The solution distribution of 70 runs is shown in Fig. 7a, while the 
deviation of each run to the classical optimal solution is presented in Fig. 7b.

Although D-Wave found at least one feasible solution in every run except for one, its best solution differs by 
approximately a factor of 10 from the optimal. The Reduced-2 problem is reduced even further to just 2 time 
periods and a single segment of linearisation. The solution distribution over 70 runs is shown in Fig. 8a and the 
deviation from the optimal classical solution in Fig. 8b. The hybrid solver finds a feasible solution in every run 
with the best run being ∼ 2.4% off from the optimal one. When comparing solve time, D-Wave takes on average 
5s while Gurobi finds the best solution in less than 1s thereby showing no quantum computing advantage. We 

Number of variables Number of constraints Time periods [h] Segments
Full scale 44,544 42,899 48 4

Reduced-1 11,136 10,169 12 4
Reduced-2 1418 1526 2 1

Table 1. Parameters of the full scale and the two reduced versions of the Unit Commitment problem adjusted 
from64 and using the rts_gmlc data set therein.

 

Fig. 5. Mean relative difference of D-Wave’s hybrid solution and those supplied by CPLEX and IPOPT for 
the  BQP. The vertical lines indicate the difference between CPLEX’s and IPOPT’s mean solution to the 
maximum and minimum solution provided by D-Wave within all 5 runs.
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note that the problem in this reduced state is no longer representable of a real-world problem, as a 2h time frame 
is too short for a unit commitment problem. We conclude that D-Wave’s hybrid solver is currently not in a state 
to effectively solve large-scale MILP unit commitment problems of this type, considering both computational 
time and solution quality. It is also worth mentioning that minor adjustments to some of the Lagrange multipliers 
for the constraints did not show any improvements.

Conclusions
We provided an introduction to quantum annealing and conducted a benchmark of D-Wave’s current generation 
of quantum-annealing-based hybrid solvers against state-of-the-art classical algorithms. Through a comparison 
of computational times and the corresponding best solutions across several case studies spanning a wide range 
of optimisation problems, we conclude that a state-of-the-art hybrid solver running on the most advanced 
quantum annealer has reached a point where it is competitive with the best classical approaches for a limited set 
of real-world problems.

Fig. 7. Solution distribution of the Reduced-1 unit commitment problem. (a) shows the objective function 
values of 70 runs (blue) given by D-Wave’s LeapHybridCQM solver with an average of 100 solutions each. The 
feasible solutions are highlighted in orange. (b) shows the absolute difference between the optimal classical 
and the best feasible hybrid solution for each run for the Reduced-1 problem. Only one of the 70 runs did not 
obtain a feasible solution.

 

Fig. 6. Solution distribution from D-Wave’s LeapHybridCQM solver for the full-scale unit commitment 
problem. (a) shows the results of 50 runs with the solver’s default chosen run time of 20s. (b) shows the 
solution for the same problem with 6 runs for an increased run time of 150s and 2 runs for one of 400s. Each 
run supplies a sampleset with on average 100 solutions each.
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For BLP, D-Wave’s hybrid solver stays consistent with both CPLEX and Gurobi and finds near-optimal 
solutions for all our test cases. However, the computational time grows significantly when the number of 
variables increases.

Although the hybrid-solver approach enables larger problem sizes than what is currently possible for full 
quantum approaches, such problems still have to be heavily partitioned into many subproblems and stuck back 
together, leading to increasing computational time35.

By increasing the complexity of the problem through systematically adding additional constraints, we 
conclude that the solution quality diverges more and more from the classical solvers for an increasing number of 
constraints at D-Wave’s scalability limit. Additionally, the increase in run time is so drastic that the hybrid solver 
shows no benefit at this scale. Although we did see some competitive computational times by D-Wave when 
handling quadratic constraints in Section “Integer/Binary Linear Programming with quadratic constraints”, the 
hybrid solver was not able to find the optimal solution with a factor of approximately two off in most runs. It is 
for the BQP that D-Wave’s hybrid solver seems the most promising. Due to the mathematical structure of BQPs 
being so closely related to the Ising Hamiltonian of Eq. (5), D-Wave’s hybrid solver performs better than all three 
classical solvers. The most competitive classical solver is IPOPT, but D-Wave does find slightly better solutions 
in a shorter amount of time. Compared with CPLEX, which due to its deterministic nature will find the optimal 
solution, D-Wave is superior in regards to computational time. Regarding the MILP unit commitment problem, 
the benchmark underscored the importance of fine-tuning the minimum run time to enhance the solution 
quality. Despite various adjustments and reduced problem cases, D-Wave’s LeapHybridCQMSolver was unable 
to surpass Gurobi in terms of computational time or solution quality. As this specific problem has no quadratic 
binary instance in either the objective function or in any of the constraints, the case study indicates that these 
instances are currently necessary to potentially show a computational benefit. While it is promising that D-Wave 
can directly solve full MILP problems using their hybrid solvers, the computational advantage appears to be 
limited to BQP problems.

The findings presented in this paper indicate that D-Wave’s hybrid solvers and Advantage quantum 
computers currently exhibit competitiveness with classical optimisation algorithms, but this holds true only for 
a limited range of problems. While D-Wave’s hybrid solver performs well with binary quadratic problems, its 
competitiveness diminishes when dealing with non-binary, non-quadratic problems, or combinations thereof. 
Consequently, quantum annealers with broader capabilities have strong prospects for the future. The field of 
quantum annealing and quantum computing, in general, is undergoing rapid and promising advancements. 
Between 2020 to 2021 alone, D-Wave enhanced the performance of the Advantage machine, achieving an 
approximately eightfold increase in its ability to find solutions for Satisfiability problems and obtaining solutions 
for 3D lattice problems twice as fast66. They have already announced Zephyr for 202454. As classical solvers are 
experiencing regular performance updates, benchmarking research, as demonstrated in this paper, becomes 
imperative.

Data availability
The rts_gmlc dataset used for the unit commitment problem can be found in64. All other datasets used and/or 
analyzed during the current study are available from the corresponding author upon reasonable request.

Fig. 8. Solution distribution of the Reduced-2 unit commitment problem. (a) shows the objective function 
values of 70 runs (blue) given by D-Wave’s LeapHybridCQM solver with an average of 100 solutions each. The 
feasible solutions are highlighted in orange. (b) shows the absolute difference between the optimal classical 
and the best feasible hybrid solution for each run for the Reduced-2 problem. A feasible solution was found in 
every run.
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