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Quantum computing is rapidly advancing, harnessing the power of qubits’ superposition and
entanglement for computational advantages over classical systems. However, scalability poses a
primary challenge for these machines. By implementing a hybrid workflow between classical and
quantum computing instances, D-Wave has succeeded in pushing this boundary to the realm of
industrial use. Furthermore, they have recently opened up to mixed integer linear programming

(MILP) problems, expanding their applicability to many relevant problems in the field of optimisation.
However, the extent of their suitability for diverse problem categories and their computational
advantages remains unclear. This study conducts a comprehensive examination by applying a selection
of diverse case studies to benchmark the performance of D-Wave's hybrid solver against that of
industry-leading solvers such as CPLEX, Gurobi, and IPOPT. The findings indicate that D-Wave's hybrid
solver is currently most advantageous for integer quadratic objective functions and shows potential for
quadratic constraints. To illustrate this, we applied it to a real-world energy problem, specifically the
MILP unit commitment problem. While D-Wave can solve such problems, its performance has not yet
matched that of its classical counterparts.

The field of Quantum Computing (QC) has seen great improvements over the last decade with companies like
IBM and Google investing heavily in order to develop resources capable of solving challenging computational
problems!. Recently, also Microsoft announced their new topological qubit design®, showcasing a new path in
obtaining more error-resistant scalable quantum computers. Although rapid progress coincides with modern
times, the idea of using “simple” systems governed by Quantum Mechanics (QM) to perform computation was
proposed already in the 1980s by both Richard Feynman* and Paul Benioff° independently. There are numerous
ways to approach building a quantum computer, but the two main categories are gate-based and annealing-
based QC. Just like bits in a classical computer, quantum computers use quantum bits, commonly referred to as
qubits. Over the years, many different technologies have been suggested and tested as physical implementations
of qubits. The first attempts in the 90s used nuclear magnetic resonance’, later, a plethora of different ideas has
shown promise such as cold atoms’, trapped ions®, photon-based® and others'®!!. The current largest quantum
annealers are pioneered by D-Wave!? and consist of loops of superconducting material'. It has been shown that
in specific cases, QC can be exponentially faster than Classical Computing (CC), such as for Shor’s algorithm!?,
or the quantum Fourier transform algorithm!>.

The fundamental idea behind QC is to use quantum phenomena such as superposition and entanglement to
solve computationally difficult problems. In addition to solving computationally expensive problems, QC may
be suited for solving problems that classical computers cannot, such as simulating nature'®!?, as these systems
are governed by the same rules of QM. It has been shown that for several NP-hard problems, where classical
approaches fail to efficiently find a solution, QC can be a promising way to solve them!8-21,

In gate-based QC, the classical, binary bits are replaced by controllable qubits capable of being in non-binary
states. Adiabatic quantum annealers, however, function on a different principle. They prepare an ensemble of
qubits in the ground state of some initial Hamiltonian, before allowing the system to evolve abiding by the
adiabatic theorem?? to some final state encoding the desired solution. This principle will be further explained in
Section “Adiabatic theorem”.
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Although quantum annealers are easier to scale towards more qubits, they are far more limited in their
applications due to the lack of controllability of the individual qubits. While in gate-based quantum computers
qubits can be controlled and manipulated with precise unitary operations, the annealing-based computers
of D-Wave controls theirs with tunable biases and the coupling strengths between them. D-Wave’s quantum
annealers are not universal quantum computers, and therefore can not run arbitrary algorithms. They are,
however, especially well suited for optimisation problems where scalability is one of the most determining
factors in solving relevant, modern, real-world problems. For a more thorough overview of the synergies
between operational research and quantum computing, see***%.

The development of quantum computers has finally reached a point where they are comparable to classical
computers for an ever-increasing diverse pool of problems, some of which we wish to present here. Several
formulations of vehicle routing problems were proposed for utilising quantum computers in!. Syrichas &
Crispin®® proposed a simplified but systematic approach to tune quantum annealing parameters for vehicle
routing problems. Bernal et al.?® presented the perspective of quantum computing for chemical engineering
and provided examples in computational chemistry and molecular simulation where QC may become relevant.
Rosenberg et al.?” developed a metaheuristic solver to solve large quadratic unconstrainted binary optimisation
problems, which utilise D-Wave’s quantum annealers. On the other hand, Glover, Lewis, and Kocheberger®®
analysed the logical and inequality implications of reducing problem size to use QC to solve larger problems.

Quantum annealing may prove significantly beneficial for stochastic programming. In* an algorithm based
on the concepts of quantum theory was proposed and was applied to a stochastic job shop scheduling problem.
In addition to real-world applications, several studies also investigate utilising quantum computing in classical
optimisation algorithms, such as®*3!.

Although D-Wave’s quantum annealers have been applied to solve problems such as rescheduling of urban
railroads®?, traffic flow optimisation®?, and dynamic portfolio optimisation®!, the performance or capability
of quantum annealers in solving different classes of optimisation problems compared with industrial leading
classical solvers is not clear®. As pointed out in®2, the current implementations of quantum annealing in
optimisation are limited in size and not yet upscaled to real-world situations. Furthermore, the exploration of
quantum annealing in scheduling problems is limited. Given the rapid evolution of QC, regular benchmarking
becomes crucial to highlight emerging developments and showcase the current state of this highly promising
field, as emphasised by**. Benchmarks like*® have shown that D-Wave can compete with classical solvers like
Tabu Search®” and Simulated Annealing (SA)*® for energy coalition formation and is ahead of gate-based
applications like the Quantum Approximate Optimization Algorithm?®®. However, no benchmark of industry-
leading solvers has been conducted that evaluates their performance against that of D-Wave’s hybrid solvers for
different optimisation problem categories.

This research aims to address this gap by utilizing the largest publicly available adiabatic quantum
annealers, last updated in August 2023, to solve various optimisation problems, including integer/binary
linear programming (BLP) with linear and quadratic constraints, integer/binary quadratic programming
(BQP), and mixed-integer linear programming. To assess performance, we systematically compare D-Wave’s
Advantage quantum annealers, as described in’, with the state-of-the-art classical solvers CPLEX*!, Gurobi*?,
and IPOPT®. Recognizing the limitations of fully QC algorithms, we employ D-Wave’s hybrid solvers**. This
approach seamlessly integrates the strengths of both classical and quantum computation, as explained in more
detail in Section “Hybrid computing”. This study serves as a valuable resource for researchers across various
fields dealing with optimisation problems, enabling them to assess the suitability of current D-Wave quantum
annealers for their respective applications.

The subsequent sections of the paper are organized as follows: Section “Quantum annealing” provides a
brief introduction to the physical and technical background of quantum annealing, encompassing the adiabatic
theorem and D-Wave’s architecture in their treatment of constraints and the hybrid computing approach
employed. Section “Case study” presents various case studies for different classes of optimisation problems. Then,
Section The unit commitment problem—an energy system application showcases the application of D-Wave’s
hybrid constrained quadratic model (CQM) solver® on an energy system problem formulated as Mixed-Integer
Linear Programming (MILP).

Quantum annealing
Simulated Annealing (SA) is used for approximating the global optimal solution, often used when an approximate
global solution is preferred over an exact local minimum?®. The fundamental principle of SA involves a two-
phase process: initially “heating” the system, followed by a gradual “cooling” that guides it into its globally lowest
energy state. It is important to emphasize that this “heating” and “cooling” are metaphorical concepts, as no
physical heating or cooling is applied; rather, the entire process is mathematically simulated. The inspiration for
SA comes from the physical annealing process often used to change the characteristics of different materials?®.
D-Wave utilizes a quantum variation of this process, known as quantum annealing. In quantum annealing, the
quantum mechanical phenomenon of tunnelling through a potential barrier, rather than the classical process of
“climbing” over it, is utilized to escape local minima and potentially find a global one, as explained by Kadowaki
and Nishimori (1998)*. This fundamental characteristic is pivotal in understanding the potential computational
advantages of quantum annealers over their classical counterparts, particularly because the “hill climbing”
process in SA can be time-consuming for a substantial subset of problems.

Quantum annealers exhibit narrower applicability compared to gate-based quantum computers and are, for
example, unable to execute Shor’s algorithm!“. By design, they are made to handle optimisation problems and are
especially suited for quadratic unconstrained binary optimisation (QUBO) problems of the form
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rnxin Z hixzi + Z Qijrizj |, (D)

i<j

where z € {0,1} and Q;;, h; € R™.

QUBO problems are very closely related to the Ising model (Eq. 2) and can be easily transformed into this
form by applying an affine transformation z — 2z — 1, effectively mapping = € {0, 1} to {—1, 1}. Under this
transformation, the variables x;, x; correspond to classical spin variables s; = %1 leading to the classical Ising
spin system:

Eismg(s) = Z hisi + Z Ji,jSiSj, (2)

i>j

where J; ; represents the spin interaction strength and h; external field. Traditionally, the Ising model is used
in the field of statistical mechanics where the variables represent the binary states of a particle that can either be
“spin down” or “spin up”.

In quantum mechanics, these variables are replaced by Pauli operators o4y, .. Specifically, spin states are
often expressed by terms of the Pauli 0. matrix which correspond to spin projections along the z-axis. The
Hamiltonian describing such a quantum system takes the form:

H(O’): ;S) Zhi0£>+ZJi)jU§)U£J> 5 (3)

>3

where B(s) is a prefactor with dimensions of energy and J; ; determines the interaction strength between
neighboring spins. Since all the terms in this Hamiltonian involve o. operators, they mutually commute.
However, quantum annealers such as D-Wave introduce and additional transverse field involving o terms,
which do not necessarily commute with o.. This non-commutativity is crucial for quantum annealing to
leverage the adiabatic theorem??, requiring an initial Hamiltonian with a dominant transverse field component
as a starting point before gradually transitioning into the problem Hamiltonian.

Adiabatic theorem

In quantum mechanics, operators are used to extract information about physical systems. The most relevant of
these operators in our case is the Hamilton operator H, usually just referred to as the Hamiltonian. The Hamilton
corresponds to the total energy of the quantum mechanical system. By assuming that the time-dependent part
varies sufficiently slow and that there is a big enough gap between the eigenstates of H, the solutions to the time-
dependent Schédinger equation?® are obtained in terms of the eigenfunctions of the instantaneous Hamiltonian,

H(t)Ya(t) = Ea(t)da(t), (4)

where E, is the energy of eigenstate 1),. The scale of “sufficiently slow” depends on the specific energy gap
between the quantum states of the system and can range from less than a microsecond to a few seconds. If H(t)
varies slowly in time, a system initially in a non-degenerate state 1)(t = to) with energy E, (t = to) will evolve
into the corresponding state 1, (¢) with energy F,(t) at a later time ¢ without making any transitions between
energy levels. This is known as the adiabatic theorem and is the fundamental principle utilized in quantum
annealing. For a more detailed description of the adiabatic theorem and a complete proof thereof, see?2.

To perform calculations using a quantum annealer, the physical collection of qubits, hereafter referred to as
the system, is prepared in an easy-to-solve initial Hamiltonian Hy. After the system has been prepared in H;
, external magnetic fields are applied to change the initial Hr into a complex Hamiltonian Hr. Suppose this
process follows the adiabatic theorem described above. In that case, the system will remain in its ground state for
the duration of the anneal and the final state will be the solution of the complex Hamiltonian. As [0, 0] # 0,
Hr and HF do not share a common set of eigenstates. As a result, the system must undergo quantum transitions
to evolve from one eigenstate to another. If the two Hamiltonians did commute, the eigenstates would remain
unchanged throughout the evolution, preventing any quantum dynamics from occurring. The procedure can
slowly anneal the system from the quantum Hamiltonian (Eq. (5)) to the solution of the classical Ising spin
system shown in Eq. (2). After the annealing process, the collapsed spin states will present a low-energy solution.
The annealing quantum Ising Hamiltonian is as follows:

—_A ) B ) N
Higng = AL (5700 ) L PS5 600 1 5™ 150060

i>j

@)

i

Initial state Hamiltonian Final state Hamiltonian

The annealing process begins at ¢t = 0 and ends at time ¢ = ¢, where A(0) > B(0) and A(ty) < B(ty). At
time ¢ = ty, the qubits have been de-phased to a classical system and the Pauli matrix can be replaced by the
classical s; = £1, resulting in Eq. (2).
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D-Wave architecture

The quantum annealers developed by D-Wave are currently the most promising systems capable of utilizing
quantum properties for computation. Since 2011, D-Wave has steadily improved the capabilities of their quantum
processing units (QPU) by upgrading both the hardware through multiple generations of system topologies and
their own developed software Ocean’, thereby allowing for remote problem solving on their quantum annealers.
D-Wave quantum annealers use loops of superconducting material as qubits to build their QPUs. This approach
fixes the physical layout, also known as the (hardware graph), of the QPU.

The most powerful QPU available is the Pegasus topology™. In the Pegasus topology, each qubit is coupled
to 15 other qubits, which is a great improvement from the 6 couplings of the previous generation. It consists of a
square lattice of unit cells which themselves contain 24 qubits. The Advantage QPU, used for the computations
performed in this work, is a 16 x 16 lattice of unit cells, totalling 24 x 16 x (16 — 1) = 5760 qubits. Due to
the densely packed spatial arrangement of qubits and the physical manufacturing process, it is expected that
some qubits may exhibit suboptimal performance. D-Wave estimates that approximately 5% of the qubits in the
Pegasus topology may have imperfections. This dense graph structure of the Pegasus systems has allowed for
a significant increase in the number of useful qubits, making the Advantage QPU the most promising system
to solve the optimisation problems presented in Sections “Integer/binary linear programming (BLP)”, “Integer/
Binary Linear Programming with quadratic constraints” and “Integer/binary quadratic programming (BQP)”.

Quantum devices like those from D-Wave are subject to several causes of errors, including thermal noise,
control errors, flux bias drifts and decoherence, which can lead to wrong solutions. To mitigate some of these,
D-Wave has implemented Drift Correction techniques® to compensate for slow fluctuations in qubit parameters
by periodically measuring and adjusting flux biases to maintain computational accuracy. Additionally, D-Wave
has demonstrated on the new Advantage-2 prototype Zero-Noise Extrapolation (ZNE)*? using controlled noise
amplification and extrapolation to estimate error-free results. However, ZNE has not yet been implemented
on commercially available systems. Generally, D-Wave uses statistical sampling by running multiple annealing
cycles to generate a distribution of solutions, mitigating the noise introduced by these faulty qubits.

Due to their physical implementation, current quantum annealers can only encode BLP and BQP problems,
so terms and constraints have to be transformed into this form>. For detailed information on Pegasus and
other D-Wave topologies refer to>. Additionally, the next generation of topology, called Zephyr®*, has already
been announced with even higher connectivity. When working with any of these topologies, the embedding of
the problem onto the physical hardware is of high importance. While D-Wave does provide a large amount of
functionalities to help in accomplishing this process, this is no easy task and requires significant knowledge of
the architecture and the problem at hand.

Constraints
Once the Hamiltonian is set, the annealing process will result in a minimal energy configuration of the system.
No restrictions regarding conditions or constraints on the binary variables can be enforced directly into this
procedure. Constraints can, however, be accounted for by adding quadratic penalty terms directly to the Ising
Hamiltonian, also known as Lagrangian relaxation®”. By penalizing the unwanted solutions with large enough
penalty factors, a cost is added to make some of the solutions unfavourable.

A linear equality constraint P(x) = (Zf\f ;i — b) with binary variables ©; = {z; : Vi € N} can be

written as

N 2
MDY ami—b)| =APx)?, (6)

%

where b is some constant that has to be met. However, when confronted with a linear inequality constraint of
the form P(x) = (Zf\’ a;T; — b) < 0, auxiliary slack variables, y = {y; : Vj € J} and their corresponding

weights w; are used to transform inequality constraints into equality constraints® so that Eq. (6) can be written
as

N 2

w
A Zaixi + Z wiy; —b | = AP(x)2. (7)
i J

The number of slack variables W needed can be determined based on the coefficients a; and b;, with an upper
limit of W = b.
The entire new QUBO, after adding all constraints, can then be written as

F(x) = 0bj(x, Q) + > AePr(x)”, ®)

with coupling values Q and summing over all constraints k. With this approach, constrained optimisation
problems can be reformulated into a solvable QUBO. We note that other approaches than Lagrangian relaxation
have been considered and are actively researched to account for the constraints®”. Furthermore, the penalty
strength A in Eq. (8) has to be chosen with care. Contrary to classical computing, there is a far more limited
dynamic range of possible pre-factors and coupling strengths that can be applied. Too large values cause a
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tremendous amount of distortion of the distribution in the ground state. At the same time, too small values
will not ensure the satisfaction of the constraint as breaking it could then still result in optimal, unfeasible
solutions. The best penalty strength is thereby the lowest possible value that still satisfies the constraints. There
is no consensus on how to consistently guarantee this behaviour, and only some guidelines can be found either
empirically or algebraically>**.

State of the art of quantum annealing

The most capable quantum annealers as of today are owned by D-Wave. Therefore, in this paper, we focus on
analysing and comparing the performance of their most advanced system against that of classical computers.
While D-Wave promotes the capabilities of their machines in solving optimisation problems with 1 million
variables and 100,000 constraints*’, it is essential to note that these claims are strongly problem-dependent and
not currently realizable simultaneously. The limit of 1 million variables is only valid for unconstrained problems
with the possibility of adding constraints via penalties manually. For constrained models, the Advantage system
can handle 500,000 variables and 100,000 constraints. These numbers, however, are only the case for D-Wave’s
hybrid solvers, which split the problem into different partitions, where some are solved classically and others on
the QPU depending on how suited these sub-problems are for either of the systems. As an example, continuous
variables are usually run on classical computers, as here quantum annealers are not suspected to provide any
computational advantage®. For pure quantum computation, without any partitioning, the capabilities of the
Advantage system are significantly reduced and dependent on the exact embedding of the problem onto the
QPU topology. Additionally, the larger the problem size, the “smaller” the logical qubits get, resulting in reduced
connectivity and poorer solution quality. The maximum number of variables for a fully connected QUBO on
the Advantage hardware is currently at 180, meaning the architecture can only support up to this amount (not
considering any faulty qubits) of fully interacting logical variables®. For larger fully connected QUBOs, D-Wave
uses hybrid workflows and partitioning of the problem into several sub-problems.

Hybrid computing

One of the main issues with modern quantum computing and quantum annealers is their scalability. For most
industrial problems, the current number of qubits is not sufficient to run purely via quantum methods. However,
hybrid workflows pave the way to tackle this issue by identifying and decomposing the problem into several
sub-problems. Hereby, the strengths of both classical computers and quantum annealers for suited tasks can
be utilized similarly to GPUs used for training machine learning models. D-Wave’s Leap Hybrid Solvers™* are
cloud-based solvers and are the currently leading hybrid quantum annealing algorithm. Due to its proprietary
nature, it acts like a black box, however, some generally known features are summarized in the following. When
identifying and decomposing the problem into several sub-problems, the LeapHybridCQMSolver, designed for
constrained quadratic models, automatically implements an appropriate penalty term for the constraint with
suitable Lagrangian multipliers. D-Wave does not guarantee that this setting is optimal as these might differ for
certain problems.

After the preprocessing, a hybrid workflow*! is implemented utilizing classical heuristics like simulated
annealing and Tabu search®’. Simultaneously, the quantum hardware is used to run smaller binary quadratic
unconstrained optimisation problems with the potential to boost the classical counterparts, noting that linear
binary problems can easily be transformed into QUBOs. Furthermore, the hybrid solvers also take over the task
of embedding the problem onto the quantum hardware and run the QUBO partitions several times, creating
a sampleset of solutions that then can be incorporated into the hybrid workflow again. As both the quantum
annealing and the integrated classical methods are heuristic, the entire output is also heuristic. Thereby the
solver does not guarantee the optimal solutions but returns a sampleset of several results. The entire hybrid
approach is probabilistic. Finally, the exact nature of these solvers is not known, however, D-Wave enables the
creation of custom hybrid workflows which, if properly implemented, might outperform the LeapHybridSolvers.

Case study

This section presents different case studies and their results. The exploration covers various classes of
optimisation problems: Integer/Binary Linear Programming (BLP), while also considering the influence of
additional constraints of both linear and quadratic nature in Section “Integer/Binary Linear Programming
(BLP)”, and Integer/Binary Quadratic Programming (BQP) in Section “Integer/binary quadratic programming
(BQP)”. To assess the performance of D-Wave’s Advantage system for industrial use, we benchmark the solution
quality and computational time of D-Wave’s LeapHybridCQMSolver"® against results produced by the widely
adopted classical solvers CPLEX*!, Gurobi*?, and IPOPT*® (version 3.14.12). The classical solvers are executed
on a dedicated computer cluster equipped with dual 3.5 GHz Intel Xeon Gold 5115 CPUs, each featuring 10
cores and 96 GB of RAM. Noting here that for the time comparison, we measured the total run time as outputted
by the cloud service, which includes the time it takes to return the full sample-set of on average 100 sample
solutions. From these solutions, we first filter out the feasible set before selecting the solution with the lowest
energy value. The time required for these two steps was not included in the computational time measurement
for obtaining sufficient solutions. While these steps typically take less than 1s on average, their impact may only
be considerable for very short total run times.

Integer/binary linear programming (BLP)

Initially, our focus is on exploring optimisation problems characterized by variables that are exclusively either
integer or binary values, with linear objective functions and constraints. We consider how solution quality
and execution times vary with the number of assigned variables for the hybrid CQM solver and compare its
performance with the introduced classical ones. The problem is formulated as:
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N
min Z,uixi )
i=1
N
s.t. Z:rl =C, (10)
i=1

where p; are random constants between (0,1) and x; € {0, 1} are binary variables. This restricts the sum over
all binary variables to equal a fixed constant C. We first run the solvers with 10,000 to 100,000 binary variables.
A comparison of the solutions and the computational time for this range of binary variables is shown in Fig. 1a.
Here, we average over 5 runs, each providing a sampleset of approximately 100 solutions from which the best
feasible one is selected. As we experienced little deviation in the results we deemed higher statistics not to be
necessary. Additionally, as access to quantum computers is still very limited, large statistics are not realisable.
IPOPT is designed to handle large-scale nonlinear problems*? and is not suited for integer variables. As IPOPT
approximates the binary variables with continuous ones with very small bounds around zero and one, the
derived objective function value with these numbers can score a lower value than what is actually true. We
excluded IPOPT’s objective function values in Fig. 1b, however, we kept this solver throughout this work as it
shows important results in Section “Integer/binary quadratic programming (BQP)”. Looking at Fig. 1a, D-Wave
stays relatively constant in computation time of about 6s up to 38,000 variables, from whereon it increases
more drastically when the number of variables is increased further. Viewing the objective function value, we see
that IPOPT behaves similarly to the other solvers for a low number of variables, but starts diverging from the
rest as the number of variables increases. It can also be noted that the computational time of IPOPT increases
rapidly compared to the other classical solvers. CPLEX and Gurobi start below 1s and gradually increase with
an increasing number of variables. D-Wave finds the same optimal solution as Gurobi and CPLEX, resulting in
three overlapping lines. The observed sawtooth pattern of the solutions is due to the randomness of the 1 —values
as they are newly drawn for each run with a specific seed. When comparing computational time in Fig. 1b, the
hybrid solver requires significantly more time as it approaches its scalability limit. This behaviour could be
explained by the need for an extremely high amount of partitioning into subproblems as the number of variables
increases®. Although the optimal solution has been found, D-Wave’s hybrid solvers show no computational
advantage.

x1073
—— CPLEX
o 2.0 Gurobi o
2 I . k=]
5 IPOPT ® 10-¢ |
w54 v, D-Wave >
c - c
k=] o
+d 4+
v
< 1.0- 2
2 2
2 2
0.5 B
9 8
e} Kol
© 0.0 o
1075 1
200 ; . . . :
4
17.5 80 el
15.0 ’
125+ __ 60
\!'. of ] .ﬂ
© 10.0- i R P
E g™ e E 40+
F 751 Y F
e ?uﬁ:#‘#: S
5.0 Lﬁ,&s’ K]
ot 201
s
25 4
: N
0.0 0
20000 40000 60000 80000 100000 100000 200000 300000 400000 500000
Number of variables Number of variables
(a) (b)

Fig. 1. Mean objective function value and computational time comparison between CPLEX, Gurobi, IPOPT
and D-Wave’s hybrid solver for the BLP with a single linear constraint. The results are averaged over 5 runs and
the minimum and maximum deviation from the mean value is shown by the vertical lines.
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Increasing the complexity by adding more constraints

Next, we focus on determining whether D-Wave could continue to find the optimal solution at its scalability
limit when increasing the complexity of the BLP (Eq. (9)) by adding additional constraints. As the constraints are
added as penalty terms, we want to see if the solution quality can be maintained even though the computational
time is significantly higher. We consider some arbitrary although feasible constraints listed below.

N

Z%’ZC’

N

S mi=) mj, i€2NjEN+1,

N1/2 ]N

dw< Y a, (11)
i i=N/2

N

The objective function value and computational time averaged over 5 runs together with the minimum and
maximum deviation as vertical lines are shown in Fig. 2. We observe that the solution quality stagnates with
more constraints and in particular for the 5th added constraint a significant variability in the result with an
approximate increase up to a factor of five. D-Wave’s computational time is significantly higher reaching above
600s on the fully constrained problem. Furthermore, we ran the same problem with just 10,000 variables where
D-Wave was able to find the optimal value with all 5 constraints added in every one of the 5 runs. This is a clear
indication that D-Wave’s CQM hybrid solver can not ensure optimal solutions at its variable limit. Although
no thorough study on the best setting for the Lagrange multipliers was conducted, minor adjustments to their
values showed no improvements, supporting our conclusion that D-Wave fails to provide optimal solutions at its
variable limit with an increasing number of constraints.

Integer/binary linear programming with quadratic constraints

In the previous section, all added constraints were linear. The examination, in this section, involves the
consideration of a quadratic constraint while keeping the objective function linear. To this end, we added
another factor to the constraint from Eq. (10) so that it now reads

N
Z zix; > C, (12)
i,j=1
—— CPLEX
0.301 Gurobi
------- IPOPT
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Fig. 2. Mean objective function value (a) and computational time (b) comparison between CPLEX, Gurobi,
IPOPT and D-Wave’s hybrid solver for the BLP with increasingly more constraints. The results are averaged
over 5 runs and the minimum and maximum deviation from the mean value is shown by the vertical lines.
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where z; ; € {0, 1}, resulting in N2 terms. At first, we viewed the solution quality and computational time for
an increasing number of variables, shown in Fig. 3a, followed by a stepwise increase in the complexity of the
constraint by increasing the value of C in Fig. 3b.

In the first scenario, we observe that D-Wave finds worse solutions than both CPLEX and IPOPT whereas
IPOPT’s value ranks lower due to the approximate representation of the binary variables as already mentioned
in the previous section.

The solution obtained by CPLEX corresponds to the actual optimal solution from which D-Wave is
continuously approximately a factor of two off. Notably, although D-Wave does not find the optimal solution, the
best solution found in every run is the same, resulting in no observable error bars. This indicates that D-Wave
gets stuck in a local minima. Nonetheless, D-Wave solves the problem faster than IPOPT from 500 variables
and CPLEX from 600 variables onwards. Although D-Wave did not find the optimal solution a single time, the
computational time is unaffected by the increase of variables.

We experience similar behaviour when stepwise increasing the value of the constraint. D-Wave is again
slightly off the optimal solution, however, it stays relatively constant in computational time and solves the
problem almost consistently faster than IPOPT. Although the solution is suboptimal, it can be seen in Fig. 3b
that also for quadratic constraints with a linear objective function, the hybrid solver is not able to find the
optimal solution in any run. We note that we did not adjust the Lagrange multipliers and kept the ones chosen
by default by the hybrid solver. We do not rule out that customised settings for the parameters could be beneficial
to the quality of the solution.

Integer/binary quadratic programming (BQP)

Binary quadratic problems are NP-hard® and thus challenging to solve classically, even for a relatively small
number of variables and constraints. As the structure of BQP resembles the Ising Hamiltonian, Eq. (5), these
problems are especially suited for quantum annealers®?. By multiplying with and summing over an additional set
of binary variables z; in Eq. (9), we acquire a BQP of the form

.07 )
—— CPLEX 00
-7 [ S IPOPT 8 0.061 -
® | ot e D-Wave ©
: : 0.05
S 0.08+ 5
a8 T 0.04+
[ = =
=] >3
= = 0.031
2 2
g g 0.02
8 8 0.011
0.00
30 * 10 1
25 - * 97
o 8’
RN
o |k 4 .
T 4P | g
54 ...“.t_r...-.-'. *,' 'T""‘ A

4 E
3 .
200 400 600 800 1000 0 5 10 15 20 25 30 35
Number of variables Sum of variables
(a) (b)

Fig. 3. Mean objective function value (top) and computational time (bottom) comparison between two
classical solvers and D-Wave’s hybrid solver for the BLP with a single quadratic constraint. In (a) the
complexity scales with the number of variables. In (b), the variables are fixed to 500 whereas the complexity
scales with increasing C as stated in Eq. (10). All results are averaged over 5 runs, and the vertical lines show
the minimum and maximum deviation from the mean value. Gurobi’s solve time is significantly larger than all
other solvers and is thereby excluded here for visibility.
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N
min Z HijTij (13)
i,j=1
N
s.t. le =C, wx,z; €{0,1}. (14)
i=1

To benchmark the different solvers for this BQP, we increase the complexity by incrementally increasing the
value of the constant C. Thereby, the complexity of the task is increased as the feasible solution space increases.
This is preferred over a further increase of N to avoid an unnecessarily large memory usage as the number of
terms in the objective function increases with N2.For the comparisons in this section, we choose a sufficiently
large problem with NV = 500, although different sizes were tested, showing the same tendencies. The results are
shown in Fig. 4.

Considering both solution and run time, we observe a clear computational advantage of the hybrid solver
to CPLEX. We cut CPLEX off after 1000s of runtime, resulting in sub-optimal solutions when the solution
space increases. Gurobi performed even worse than CPLEX for this problem and was excluded in the figure for
visibility reasons. While IPOPT shows comparable solutions and run time to D-Wave, the solutions are still not
optimal. D-Wave finds consistently optimal solutions in less computational time, which again results in no error
bars. To more clearly visualise this, we show the relative difference in solution quality between D-Wave’s hybrid
solver and the objective function value of both IPOPT and CPLEX in Fig. 5.

We see from Fig. 5 that CPLEX performs well in the lower complexity region and that D-Wave does not
find exclusively better solutions than CPLEX here, however, due to the capped computational time, D-Wave
outperforms consistently for higher values of C. While IPOPT’s relative difference becomes increasingly small,
CPLEX, with a capped solve-time of 1000s, seems to settle at a deviation of ~ 25% from the optimal solution.
This shows that D-Wave’s hybrid solvers are a suitable alternative for BQPs, even showing a computational
advantage for this specific case. However, in the field of optimisation, there is a limited amount of problems that
correspond to these pure BQPs.

The unit commitment problem—an energy system application

With the release of the LeapHybridCQM solver*>, D-Wave opened itself up to a wider range of problems, such
as Mixed Integer Linear Problems (MILP), with a wide spread of applications in various fields. To evaluate
its performance, we benchmark D-Wave’s current performance on a real-world Unit Commitment problem,
a complex optimisation challenge in the power sector that plays a crucial role in power system operation and
planning. The Unit Commitment Problem involves determining the optimal scheduling of generating units—
deciding when each unit should be turned on or off—over a given time horizon. The goal is to meet the forecasted
load at minimum total production cost while satisfying a range of constraints, including power balance, reserve
requirements, transmission limits, and individual unit constraints such as generation limits, minimum up/
down times, and ramp rates®. For this purpose, a well-established MILP formulation of the Unit Commitment
problem is chosen®, which consists of both continuous and binary variables while maintaining a fully linear
structure in its objective function and constraints. The problem is tested at three different scales as defined in
Table 1. The objective function of a unit commitment model is as follows:
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Fig. 4. Comparison of the objective function value (a) and computational time (b) between D-Wave and the
previously introduced classical solvers for BQP with 500 binary variables. The results are averaged over 5 runs.
The run time is limited to 1000s, resulting in CPLEX not finding the optimal solution for increasing C.
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Fig. 5. Mean relative difference of D-Wave’s hybrid solution and those supplied by CPLEX and IPOPT for
the BQP. The vertical lines indicate the difference between CPLEX’s and IPOPT’s mean solution to the
maximum and minimum solution provided by D-Wave within all 5 runs.

Number of variables | Number of constraints | Time periods [h] | Segments
Full scale | 44,544 42,899 48 4
Reduced-1 | 11,136 10,169 12 4
Reduced-2 | 1418 1526 2 1

Table 1. Parameters of the full scale and the two reduced versions of the Unit Commitment problem adjusted
from® and using the rts_gmlc data set therein.

Sg

min Z Z cg(t) + CPg1 ug(t) + Z (C’S;é;(t)) ) (15)

geG teT f s=1
i

where the objective function consists of two components: (i) the production cost and (ii) the startup cost. ¢4 (t)
represents the cost of the power produced by thermal generator g above its minimum output at time ¢, C' P,
represents the cost of operating at the minimum power output for generator g, while u4(t) is a binary variable
that indicates the commitment status of generator g at time ¢. In the final term, C'S; represents the startup cost
in category s for generator g, where s € S, represents the startup categories for thermal generator g, with s = 1
corresponding to the hottest state (shortest downtime) and s = Sy to the coldest state (longest downtime). The
variable ¢ (t) indicates the startup in category s for thermal generator g at time ¢. These three terms are summed
over all periods in time ¢ € T and all generators g € G. For a detailed explanation of this formulation, see%*.

For the full-scale problem, the default pre-set minimum run time is set by D-Wave at 20s. In this limit, the
hybrid solver was not able to find a single feasible solution, shown in Fig. 6a. We therefore solved the problem
6 times with an increased minimum solve time of 150s and 2 times of 400s, shown in Fig. 6b. For comparison,
the near-optimal solution with a gap of 0.05% was found by Gurobi in 180s with a value of 1.23 x 10°. We can
observe a clear increase in solution quality by the hybrid solver as in both cases feasible solutions were found.
'The best feasible solution for the 150s case yielded within 6 runs an objective function value of 5.9 x 10°, while
two runs with 400s run time yielded a value of 5.7 x 10°. This is a clear indication that the minimum run time
chosen by the solver itself is not optimal and has to be adjusted specifically for the problem at hand as a balance
between computational time and solution quality. Next, an investigation was conducted to observe how D-Wave
would perform if the problem was downsized, as stated in Table 1. First, the Reduced-1 problem with 12 time
periods and 4 segments was examined, making it approximately one-fourth of the size of the initial problem. We
kept the default minimum run-time setting of 10s, as this is already significantly longer than Gurobi’s solve time
of 1.34s for the optimal solution without a gap. The solution distribution of 70 runs is shown in Fig. 7a, while the
deviation of each run to the classical optimal solution is presented in Fig. 7b.

Although D-Wave found at least one feasible solution in every run except for one, its best solution differs by
approximately a factor of 10 from the optimal. The Reduced-2 problem is reduced even further to just 2 time
periods and a single segment of linearisation. The solution distribution over 70 runs is shown in Fig. 8a and the
deviation from the optimal classical solution in Fig. 8b. The hybrid solver finds a feasible solution in every run
with the best run being ~ 2.4% off from the optimal one. When comparing solve time, D-Wave takes on average
5s while Gurobi finds the best solution in less than 1s thereby showing no quantum computing advantage. We
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Fig. 6. Solution distribution from D-Wave’s LeapHybrid CQM solver for the full-scale unit commitment
problem. (a) shows the results of 50 runs with the solver’s default chosen run time of 20s. (b) shows the
solution for the same problem with 6 runs for an increased run time of 150s and 2 runs for one of 400s. Each
run supplies a sampleset with on average 100 solutions each.
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Fig. 7. Solution distribution of the Reduced-1 unit commitment problem. (a) shows the objective function
values of 70 runs (blue) given by D-Wave’s LeapHybridCQM solver with an average of 100 solutions each. The
feasible solutions are highlighted in orange. (b) shows the absolute difference between the optimal classical
and the best feasible hybrid solution for each run for the Reduced-1 problem. Only one of the 70 runs did not
obtain a feasible solution.

note that the problem in this reduced state is no longer representable of a real-world problem, as a 2h time frame
is too short for a unit commitment problem. We conclude that D-Wave’s hybrid solver is currently not in a state
to effectively solve large-scale MILP unit commitment problems of this type, considering both computational
time and solution quality. It is also worth mentioning that minor adjustments to some of the Lagrange multipliers
for the constraints did not show any improvements.

Conclusions

We provided an introduction to quantum annealing and conducted a benchmark of D-Wave’s current generation
of quantum-annealing-based hybrid solvers against state-of-the-art classical algorithms. Through a comparison
of computational times and the corresponding best solutions across several case studies spanning a wide range
of optimisation problems, we conclude that a state-of-the-art hybrid solver running on the most advanced
quantum annealer has reached a point where it is competitive with the best classical approaches for a limited set
of real-world problems.
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Fig. 8. Solution distribution of the Reduced-2 unit commitment problem. (a) shows the objective function
values of 70 runs (blue) given by D-Wave’s LeapHybridCQM solver with an average of 100 solutions each. The
feasible solutions are highlighted in orange. (b) shows the absolute difference between the optimal classical
and the best feasible hybrid solution for each run for the Reduced-2 problem. A feasible solution was found in
every run.

For BLP, D-Wave’s hybrid solver stays consistent with both CPLEX and Gurobi and finds near-optimal
solutions for all our test cases. However, the computational time grows significantly when the number of
variables increases.

Although the hybrid-solver approach enables larger problem sizes than what is currently possible for full
quantum approaches, such problems still have to be heavily partitioned into many subproblems and stuck back
together, leading to increasing computational time®.

By increasing the complexity of the problem through systematically adding additional constraints, we
conclude that the solution quality diverges more and more from the classical solvers for an increasing number of
constraints at D-Wave’s scalability limit. Additionally, the increase in run time is so drastic that the hybrid solver
shows no benefit at this scale. Although we did see some competitive computational times by D-Wave when
handling quadratic constraints in Section “Integer/Binary Linear Programming with quadratic constraints”, the
hybrid solver was not able to find the optimal solution with a factor of approximately two off in most runs. It is
for the BQP that D-Wave’s hybrid solver seems the most promising. Due to the mathematical structure of BQPs
being so closely related to the Ising Hamiltonian of Eq. (5), D-Wave’s hybrid solver performs better than all three
classical solvers. The most competitive classical solver is IPOPT, but D-Wave does find slightly better solutions
in a shorter amount of time. Compared with CPLEX, which due to its deterministic nature will find the optimal
solution, D-Wave is superior in regards to computational time. Regarding the MILP unit commitment problem,
the benchmark underscored the importance of fine-tuning the minimum run time to enhance the solution
quality. Despite various adjustments and reduced problem cases, D-Wave’s LeapHybrid CQMSolver was unable
to surpass Gurobi in terms of computational time or solution quality. As this specific problem has no quadratic
binary instance in either the objective function or in any of the constraints, the case study indicates that these
instances are currently necessary to potentially show a computational benefit. While it is promising that D-Wave
can directly solve full MILP problems using their hybrid solvers, the computational advantage appears to be
limited to BQP problems.

The findings presented in this paper indicate that D-Wave’s hybrid solvers and Advantage quantum
computers currently exhibit competitiveness with classical optimisation algorithms, but this holds true only for
a limited range of problems. While D-Wave’s hybrid solver performs well with binary quadratic problems, its
competitiveness diminishes when dealing with non-binary, non-quadratic problems, or combinations thereof.
Consequently, quantum annealers with broader capabilities have strong prospects for the future. The field of
quantum annealing and quantum computing, in general, is undergoing rapid and promising advancements.
Between 2020 to 2021 alone, D-Wave enhanced the performance of the Advantage machine, achieving an
approximately eightfold increase in its ability to find solutions for Satisfiability problems and obtaining solutions
for 3D lattice problems twice as fast®®. They have already announced Zephyr for 20244, As classical solvers are
experiencing regular performance updates, benchmarking research, as demonstrated in this paper, becomes
imperative.

Data availability
The rts_gmlc dataset used for the unit commitment problem can be found in®. All other datasets used and/or
analyzed during the current study are available from the corresponding author upon reasonable request.
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