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Abstract.  In previous publications, it was argued that because energy and matter are aligned in the 

thin increment of present time for an observer, spacetime should and must have surface tension.  In 

this paper, we review how to apply 4-dimensional continuum mechanics with imaginary time 

coordinates to derive a mechanical model of spacetime with surface tension.  Then, to continue 

model development, we discuss the concept of preferred curvature from the physical chemistry of 

surfaces and attempt to apply those concepts to spacetime geometry.  We show how the model 

exhibits quantum fluctuations at the Plank scale and components resembling dark matter and dark 

energy at the cosmic scale.   

�

Introduction�
There�have�been�and�continue�to�be�numerous�attempts�to�find�a�unified�field�theory�in�physics.��
The�approach�taken�here�is�to�find�a�natural�mechanism�that�causes�spacetime�itself�to�warp,�
ripple,�or�otherwise�form�small�particles�in�geometry.��The�proposed�mechanism�is�surface�
tension�[1,2,3].��From�everyday�experiences,�we�know�that�surface�tension�results�in�micro�
phenomena�including�capillary�waves,�corpuscles,�vortices,�and�menisci.��In�a�similar�way,�it�was�
argued�in�[1,2,3]�that�incorporating�surface�tension�in�general�relativity�provides�a�bridge�to�
quantum�mechanics�and�atomic�particle�physics.�
�
Surface�tension�of�spacetime�is�an�obscure,�yet�present�topic�in�modern�physics.��At�least�
nineteen�references�can�be�found�in�quantum�and�gravitational�literature�suggesting�the�
importance�of�surface�tension�[4�23].��A�number�of�works�discuss�surface�tension�effects�on�
black�hole�horizons,�worm�holes,�and�stellar�geometries�[17,18,23].��Some�novel�works�suggest�
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surface�tension�as�an�analogy�for�the�cosmological�constant�[13,16,18].��Others�address�surface�
tension�at�the�boundary�of�an�expanding�universe�[4,10,21].��A�few�suggest�the�importance�of�
surface�tension�in�quantum�field�theory�[11,19,22].��This�work�is�a�continuation�of�efforts�to�
justify�the�hypothesis�that�spacetime�itself�has�surface�tension�[1,2,3].�
�
This�paper�contains�a�summary�of�the�surface�tension�of�spacetime�hypothesis�including�the�
postulated�stress�energy�tensor�with�negative�terms.��Tensors�describing�the�curvature�
gradient,�rate�of�curvature,�and�constitutive�relation�for�spacetime�with�surface�tension�are�
presented.��It�is�shown�that�components�of�these�tensors�resemble�wave�equations�in�quantum�
field�mechanics.��It�is�also�shown�that�on�a�cosmic�scale,�gravity�has�extra�terms�that�explain�
dark�matter�and�dark�energy.���

Stress�Energy�
The�case�for�surface�tension�of�spacetime�has�been�argued�based�on�statistical�thermodynamics�
[2,3].��Surface�tension�is�negative�stress�energy�in�all�spatial�directions�which�
thermodynamically�balance�the�presence�of�nearby�mass.��When�coordinates�are�rotated�such�
that�the�off�diagonal�time�terms�in�the�stress�energy�tensor�are�zero,�time�is�normal�to�space.��
This�orientation�is�called�the�principal�reference�frame�in�continuum�mechanics,�the�rest�frame�
in�modern�physics,�and�tangent�space�in�mathematics.��Governing�differential�equations�
describing�the�motion�of�curvilinear�coordinates�in�a�stress�energy�field�are�best�derived�in�the�
principal�frame.��The�stress�energy�tensor�for�an�infinitesimal�element�of�spacetime�with�
surface�tension�in�the�principal�frame�is�given�by�[3],�

��� �  � ��    00 	
      0     0      0     0    0      0     0      0  	
   0    0  	
�          �1
�

�
Where����is�mass�density,�	
�is�surface�energy�density�(a.k.a.�surface�tension),�and���� ��������is�the�Lorentz�boosted�stress�energy�tensor�from�the�observer’s�manifold�to�the�tangent�
space�at�a�point.���
�
It�has�been�shown�using�conservation�of�work�and�energy�that�mass�and�surface�tension�can�be�
related�thus�[3],�

� 	
��� � � �����           �2
�

From�(2)�and�the�divergence�theorem,�surface�tension�is�related�to�mass�by�[3],�	� � 
 � ��          �3
�
For�a�polar�symmetric�system�with�central�mass�in�laboratory�coordinates,�(3)�can�be�re�written�
as,�

	3
 ���� � ����           �4
�

where���is�the�spacetime�separation�from�the�center�of�mass�to�the�point�where�surface�
tension�is�being�measured,�����is�the�basis�of�time�at�the�point.�����
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Curvature�Gradient�
Lorentzian�geometry�and�continuum�mechanics�are�very�similar�fields�in�mathematics.��Both�use�
differential�geometry�of�manifolds�to�describe�curved�spaces�with�a�continuous�metric�tensor.��
The�mathematics�of�both�are�inherently�intrinsic�as�neither�requires�a�containing�space.��
Lorentzian�geometry�has�a�pseudo�Riemannian�metric�and�continuum�mechanics�has�a�regular�
(positive�definite)�Riemannian�metric.��If�one�makes�a�coordinate�substitution�such�that�time�
and�proper�time�are�imaginary,�then�it�creates�a�complex�Hilbert�space�where�all�the�tools�
developed�for�continuum�mechanics�can�be�applied�to�evaluate�spacetime�geometry.�
�
From�continuum�mechanics�of�thin�shells,�we�know�that�the�curvature�gradient�of�spacetime�
(rotation�of�curvilinear�coordinates�in�a�stress�energy�field)�between�two�observations�
separated�by����is�given�by�[1,2,3],�
�
�

�� �� � 	 1
 

!"
""
""
""
#
���� $ �����    0

   0   %
%�&
0      0
0      0

    0             0
    0             0

%
%��       0
      0 %
%�' ()

))
))
))
*

�
!"
""
""
""
# %��%� 0

0 %�&%�
 0 0   
 0 0   

    0 0   
    0 0   

%��%� 0
0 %�'%� ()

))
))
))
*
          �5
�

�
where����are�curvilinear�coordinates�at�a�point,����is�the�motion�of�coordinates�over�the�period�
of�observation�given�by�+,-

+. .��

Rate�of�Curvature�
In�this�work,�we�use�the�Green�Lagrange�definition�of�rate�of�curvature,�which�is�similar�to�
applying�a�small�perturbation�to�the�metric�as�given�by,�/1 $ 26����7�8�� � �89��          �6
�
where�the�terms�in�parenthesis�represent�the�change�in�the�metric�over�the�period�of�
observation,�;� .��For�small�strains,��8� < �89�,�(6)�is�approximated�by�linearized�engineering�
strain,�ergo�change�in�basis�over�initial�basis. 

6���� � �89� 	 �8��8�            �7
�

In�continuum�mechanics�of�thin�shells,�the�rate�of�curvature�tensor�is�given�by,�
�
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Temporal�terms�above�were�misrepresented�in�earlier�works�[1,2,3]�and�have�been�corrected�
here.���
�
The�rate�of�curvature�tensor�compares�closely�to�the�Einstein�tensor�in�general�relativity.��We�
know�from�mathematics�of�elasticity�that�the�rate�of�curvature�tensor�for�thin�shells�is�the�push�
forward�of�the�Lie�derivative�of�the�metric�plus�the�Gaussian�curvature.��We�also�know�from�
general�relativity�that�the�Lie�derivative�of�the�metric�is�the�3�dimensional�extrinsic�curvature�
and�that�Gaussian�curvature�is�the�Ricci�scalar�times�the�metric.��Thus,�the�rate�of�curvature�of�
spacetime�IS�the�Einstein�tensor�in�tangent�(3+1)�space.�

6�� �  12 E.;�� $ 12 |F�F�|          �9
 

6�� �  H'I $ 12 |F�F�|          �10
 

6�� �  ��� $ 12 �;��          �11
 

Constitutive�Relation�
A�covariant�constitutive�relationship�between�stress�energy�and�rate�of�deformation�enforces�
locality,�creates�a�map�over�all�configurations�(histories),�and�establishes�conservation�laws�for�
energy,�linear�momentum,�angular�momentum,�and�other�symmetries.��In�continuum�
mechanics,�the�general�constitutive�relationship�is�given�by�the�tensor�version�of�Hooke’s�law,���� �  JK���6K�         �12
�
where�JK����is�a�4x4x4x4�matrix�known�as�stiffness�or�elasticity�tensor.��To�ensure�that�spacetime�
remain�smooth�and�continuously�differential,�the�elasticity�tensor�must�be�orthonormal,�
invertible,�and�non�degenerate.��An�anisotropic�constitutive�relation�was�proposed�in�[2]�in�an�
attempt�to�unify�gravitational�and�quantum�fields.�However,�[3]�explained�that�an�anisotropic�
elastic�tensor�is�unnecessary�for�unification�if�the�relationship�between�mass�and�stored�surface�
energy�is�taken�into�consideration�at�minimum�curvature.�
�
For�the�current�work,�we�shall�define�the�constitutive�relation�between�stress�energy�and�rate�
of�deformation�of�spacetime�as�a�uniform�constant�in�accord�with�Einstein,�

��� �  �L8MN  6��          �13
�
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Preferred�Curvature�
In�the�mechanics�of�thin�shells,�particularly�biological�systems,�there�is�a�concept�known�as�
preferred�curvature�wherein�the�lowest�negative�energy�state�(greatest�surface�tension)�of�a�
thin�shell�has�a�minimum�preferred�curvature.��It�is�suggested�here,�that�the�minimum�radius�of�
curvature�of�spacetime�is�the�Plank�length,�OP.���
�
If�we�define�a�discrete�mass,�Q,�as�the�mass�density�integrated�over�the�volume�of�three�sphere�
with�a�minimum�radius�equal�to�the�Plank�length,�then�the�right�side�of�(2)�becomes,�

� ����� � 3Q          �14
�

If�we�integrate�surface�energy�density�(a.k.a.�surface�tension)�over�the�surface�of�a�three�sphere�
of�Plank�radius,�then�the�left�side�of�(2)�becomes,�

� 	
��� � 	12
MOP�           �15
�

By�equivalence�of�work�and�energy�(2),�we�see,�	
 � Q4MOP�           �16
�

Quantum�Mechanics�Analogs�
General�relativity�is�a�geometric�theory.��Quantum�mechanics�is�interpreted�as�a�probabilistic�
theory.��Unification�of�general�relativity�and�quantum�mechanics�requires�a�geometric�analog�
for�quantum�mechanics.��The�differential�geometry�of�continuum�mechanics�exists�in�the�
tangent�space�at�all�points�on�a�manifold.��If�a�manifold�describes�all�possible�positions,�the�
tangent�space�represents�all�possible�velocities.��In�an�earlier�section,�it�was�explained�that�
making�a�coordinate�substitution�such�that�time�and�proper�time�are�imaginary,�creates�a�
positive�definite�complex�Hilbert�space.��The�tangent�space�at�all�points�in�spacetime�is�an�
orthogonal�linear�vector�space�with�valid�inner�product�consisting�of�state�vectors�|�R�S�and�
corresponding�dual�vectors�T ++U- |�that�establish�the�expectation�value�of�stress�energy�and�

curvature�fields.��Imposing�a�constitutive�relation�between�stress�energy�and�curvatures�
ensures�that�the�space�is�continuously�differential,�separable,�and�complete.�
�
Many�continuum�mechanics�equations�can�be�written�in�quantum�mechanics�notation.��For�
example,�(3)�can�be�re�written�as,�

T %%� |
|�� V � ���

Mass�density�at�a�point�is�the�expectation�value�of�bras�and�kets�formed�by�the�spacetime�
separation�between�observations�and�the�surface�tension�operator.��In�order�to�unify�general�
relativity�and�quantum�mechanics,�it�is�important�to�recognize�the�mathematical�similarities�
between�differential�geometry�and�Hilbert�spaces.�
�
In�the�remainder�of�this�section,�we�examine�other�quantum�mechanics�analogs�that�arise�in�
the�geometry�of�spacetime�with�surface�tension.��The�foregoing�continuum�mechanics�tensors�
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have�some�immediately�recognizable�wave�equation�components.��The�time�time�component�in�
the�curvature�gradient,�(5),�in�laboratory�coordinates�is,�%���

%�&� $ %���
%��� $ %���

%�'� $ 1�� �����
 �  1�� %���%��           �17
�

where�time�and�proper�time�have�been�changed�to�natural�units�by�multiplying�by�W�.��For�a�
vacuum,�(17)�reduces�to�the�wave�equation,�%���

%�&� $ %���
%��� $ %���

%�'� �  1�� %���%��           �18
�

This�equation�describes�capillary�waves,�which�in�general�relativity,�represent�ripples�in�the�
coordinate�of�time�that�follow�the�overall�curvature�of�the�metric.��The�waves�are�massless�and�
move�at�the�speed�of�light�regardless�of�frequency�and�wavelength.��This�expression�is�
analogous�to�the�Klein�Gordon�equation�in�quantum�mechanics.���
�
For�the�case�where�temporal�acceleration�is�zero,�(17)�reduces�to,���%���

%�&� $ %���
%��� $ %���

%�'� � 	 1�� �����
          �19
�

which�is�the�classic�Young�Laplace�equation�that�describes�corpuscular�formation.��The�first�
three�terms�are�the�principal�curvatures�in�the�time�direction.��In�a�polar�symmetric�system�with�
radius�of�curvature��,�(19)�becomes,�

	3
 ?���� A � ����           �20
�

which�is�the�same�expression�intuitively�derived�and�shown�in�(4).�
�
Another�quantum�fluctuation�is�recognized�in�the�spatial�diagonal�components�of�the�
deformation�gradient�(8).��The�dispersion�equation�is�obtained�by�replacing�the�stress�energy�
with�the�corresponding�rate�of�deformation�in�accord�with�the�constitutive�relation�(13),���L8MN ?%��X

%�X�A � 	
 %�X%�           �21
�

where�the�third�order�term�has�been�omitted�for�simplification.��For�small�particles�with�radius�
equal�to�the�Plank�length,�OP,�stored�surface�energy�can�be�represented�by�a�discrete�mass,�Q,�
via�(16).��Changing�to�laboratory�units,�and�noting�that�OP� � YZ[\ �results�in,�

	 Y2Q ?%��X
%�X�A � W %�X%�          �22
�

which�is�analogous�to�the�one�dimensional�Schrödinger�wave�equation�with�four�velocity�
replacing�probability�density.��Surface�energy�and�the�corresponding�spatial�strains�in�spacetime�
move�in�accord�with�a�Schrödinger�like�dispersion�equation.�
�
Still�another�quantum�fluctuation�follows�from�the�fluidity�of�spacetime,�the�constitutive�
relationship�(13),�and�the�shear�strain�or�off�diagonal�spatial�terms�in�(8),�given�by,�%�]%�X $ %�X%�] $ C?%��%�] A ?%��%�XAC �� � 0          �23
�
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In�continuum�mechanics,�this�is�the�Navier�Stokes�equation�for�a�vortex.��There�are�three�vortex�
solutions�with�half�integer�indices:��unstable�short�lived�rotational�vortices,�stable�irrotational�
vortices�with�field�lines�ending�at�a�corpuscle,�and�a�stable�pair�of�oppositely�rotating�
irrotational�vortices�entangled�in�time.��A�vortex�itself�does�not�carry�mass,�but�does�cause�
strain�and�deformation�of�spacetime�thereby�altering�geodesics.�
�
As�a�final�comment�on�analogies�with�quantum�field�theory,�consider�the�constitutive�
relationship�itself.��According�to�(13)�and�(1),�spatial�components�of�stress�energy�are�related�to�
rate�of�deformation�by,���

	
 X̂] �  �L8MN  6X]          �24
�

We�can�replace�stored�surface�energy�using�the�relationship�(16)�for�discrete�particles�of�Plank�
radius�to�obtain�in�laboratory�units,� Q X̂]6X] � 	W Y2          �25
�

The�units�of�Q�are�mass�energy.��The�units�of�6X]�are�the�inverse�of�proper�time.��If�we�square�
both�sides�and�apply�the�Cauchy–Schwarz�inequality,�then�essentially,�

Q�� _ Y2          �26
�

The�constitutive�relationship�for�discrete�particles�of�curved�spacetime�with�surface�tension�at�
the�Plank�radius�is�analogous�to�the�Heisenberg�uncertainty�principle.�

Gravitational�Geometry�
Simply� by� adding� and� subtracting�
 �from� the� time�time� term,� the� stress�energy� tensor� with�
surface�tension�(1)�can�be�rewritten�as,�

��� �  ��� $ 
 00 0 0 00 0      0      0   0   0 0 00 0� 	 
;��         �28
�

In�this�form,�surface�tension�appears�as�an�additional�mass�term,�$
,�and�a�negative�
cosmological�constant,�	
;��.��In�cosmology�applications,�the�additional�mass�term�could�be�
interpreted�as�“dark�matter”�and�the�negative�cosmological�constant�as�“dark�energy”.��
Ordinary�luminous�matter,���,�and�“dark�matter”,�$
,�are�interrelated�by�(3)�and�(4).��A�
correspondence�between�luminous�matter�and�dark�matter�is�to�be�expected.��Eloquent�
arguments�for�such�a�correspondence�are�given�in�[24].�
�
In�a�prior�work�[3],�it�was�shown�that�replacing�surface�tension�in�(28)�with�its�equivalent�mass�
relation�(4),�results�in�an�equation�for�orbital�velocity�given�by,�

` � aNb c1� $ 14�����d          �29
�

where�the�first�term�represents�Newton’s�contribution�and�the�second�term�is�the�effect�of�
surface�tension.��The�time�scalar,����,�can�be�set�equal�to�unity�for�non�relativistic�speeds.�
�
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Orbital�velocities�from�(29)�were�compared�with�galaxy�rotation�curves�for�fifteen�galaxies�in�
[3].��Good�correlation�was�found�if�the�mass�to�light�ratios�of�sample�galaxies�is�set�to�values�
much�lower�than�previously�accepted.��If�the�best�fit�mass�to�light�ratios�are�plotted�relative�to�
the�square�root�of�total�galaxy�luminosity,�then�an�inverse�correlation�is�found�with�an�R2�value�
of�0.96.��When�this�relationship�is�re�inserted�into�the�orbital�velocity�equation�and�the�limit�is�
taken�at�large�values�of��,�the�Tully�Fisher�relation�is�derived.�

Conclusions�
It�has�been�shown�in�this�work�that�including�surface�tension�in�the�treatment�of�spacetime�
results�in�quantum�fluctuations�that�are�analogous�to�quantum�field�mechanics�at�the�minimum�
preferred�curvature�of�Plank�scale.��It�also�has�been�shown�that�including�surface�tension�in�
orbital�dynamics�at�the�cosmic�scale�can�serve�as�an�explanation�for�dark�matter�and�dark�
energy.�
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