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Abstract. In previous publications, it was argued that because energy and matter are aligned in the
thin increment of present time for an observer, spacetime should and must have surface tension. In
this paper, we review how to apply 4-dimensional continuum mechanics with imaginary time
coordinates to derive a mechanical model of spacetime with surface tension. Then, to continue
model development, we discuss the concept of preferred curvature from the physical chemistry of
surfaces and attempt to apply those concepts to spacetime geometry. We show how the model
exhibits quantum fluctuations at the Plank scale and components resembling dark matter and dark
energy at the cosmic scale.

Introduction

There have been and continue to be numerous attempts to find a unified field theory in physics.
The approach taken here is to find a natural mechanism that causes spacetime itself to warp,
ripple, or otherwise form small particles in geometry. The proposed mechanism is surface
tension [1,2,3]. From everyday experiences, we know that surface tension results in micro-
phenomena including capillary waves, corpuscles, vortices, and menisci. In a similar way, it was
argued in [1,2,3] that incorporating surface tension in general relativity provides a bridge to
guantum mechanics and atomic particle physics.

Surface tension of spacetime is an obscure, yet present topic in modern physics. At least
nineteen references can be found in quantum and gravitational literature suggesting the
importance of surface tension [4-23]. A number of works discuss surface tension effects on
black hole horizons, worm holes, and stellar geometries [17,18,23]. Some novel works suggest
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surface tension as an analogy for the cosmological constant [13,16,18]. Others address surface
tension at the boundary of an expanding universe [4,10,21]. A few suggest the importance of
surface tension in quantum field theory [11,19,22]. This work is a continuation of efforts to
justify the hypothesis that spacetime itself has surface tension [1,2,3].

This paper contains a summary of the surface tension of spacetime hypothesis including the
postulated stress energy tensor with negative terms. Tensors describing the curvature
gradient, rate of curvature, and constitutive relation for spacetime with surface tension are
presented. It is shown that components of these tensors resemble wave equations in quantum
field mechanics. It is also shown that on a cosmic scale, gravity has extra terms that explain
dark matter and dark energy.

Stress Energy

The case for surface tension of spacetime has been argued based on statistical thermodynamics
[2,3]. Surface tension is negative stress energy in all spatial directions which
thermodynamically balance the presence of nearby mass. When coordinates are rotated such
that the off-diagonal time terms in the stress-energy tensor are zero, time is normal to space.
This orientation is called the principal reference frame in continuum mechanics, the rest frame
in modern physics, and tangent space in mathematics. Governing differential equations
describing the motion of curvilinear coordinates in a stress-energy field are best derived in the
principal frame. The stress-energy tensor for an infinitesimal element of spacetime with

surface tension in the principal frame is given by [3],
dpP 0 0 0
vw_| 0 —@ 0 0
Ly = 0 0 —Q 0 D
0 0 0 -9

Where dP is mass density, —@ is surface energy density (a.k.a. surface tension), and Tj‘ =
APET, ., is the Lorentz boosted stress energy tensor from the observer’s manifold to the tangent
space at a point.

It has been shown using conservation of work and energy that mass and surface tension can be

related thus [3],
# —Qdo = jg dPdV (2)
o |74

From (2) and the divergence theorem, surface tension is related to mass by [3],

-V-Q=dP 3)
For a polar symmetric system with central mass in laboratory coordinates, (3) can be re-written
as,

—30—=—=— 4

where R is the spacetime separation from the center of mass to the point where surface
tension is being measured, dy° is the basis of time at the point.
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Curvature Gradient

Lorentzian geometry and continuum mechanics are very similar fields in mathematics. Both use
differential geometry of manifolds to describe curved spaces with a continuous metric tensor.
The mathematics of both are inherently intrinsic as neither requires a containing space.
Lorentzian geometry has a pseudo-Riemannian metric and continuum mechanics has a regular
(positive definite) Riemannian metric. If one makes a coordinate substitution such that time
and proper time are imaginary, then it creates a complex Hilbert space where all the tools
developed for continuum mechanics can be applied to evaluate spacetime geometry.

From continuum mechanics of thin shells, we know that the curvature gradient of spacetime
(rotation of curvilinear coordinates in a stress-energy field) between two observations
separated by dt is given by [1,2,3],

[ dP ] r a 0 E

QVZy0 4 — 0 0 0 ou- 0 0
dyo a7 0
a9 1
0 0 0 o % 0 o
ut = _l dy* _ ot (5)
ol 0 0 99 0 o o 9
dy? ot

99 3

0 0 0 LA o o o ™

i ay3 1 L 0t -

where yV are curvilinear coordinates at a point, u* is the motion of coordinates over the period

. . ayH
of observation given by o

Rate of Curvature

In this work, we use the Green-Lagrange definition of rate of curvature, which is similar to
applying a small perturbation to the metric as given by,

(1+2D¢dr)ds"? =ds**  (6)
where the terms in parenthesis represent the change in the metric over the period of
observation, g. For small strains, dsV = ds*, (6) is approximated by linearized engineering
strain, ergo change in basis over initial basis.

—

u ds* — dsV
D;dt = ST (7

In continuum mechanics of thin shells, the rate of curvature tensor is given by,
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Temporal terms above were misrepresented in earlier works [1,2,3] and have been corrected
here.

The rate of curvature tensor compares closely to the Einstein tensor in general relativity. We
know from mathematics of elasticity that the rate of curvature tensor for thin shells is the push
forward of the Lie derivative of the metric plus the Gaussian curvature. We also know from
general relativity that the Lie derivative of the metric is the 3-dimensional extrinsic curvature
and that Gaussian curvature is the Ricci scalar times the metric. Thus, the rate of curvature of
spacetime IS the Einstein tensor in tangent (3+1) space.

1 1
DY = SLegh 45kl (9

1
Dy = Ksp +§|Kv’€”| (10)

1
Dy = R, +3Rg, (1D

Constitutive Relation

A covariant constitutive relationship between stress-energy and rate of deformation enforces

locality, creates a map over all configurations (histories), and establishes conservation laws for

energy, linear momentum, angular momentum, and other symmetries. In continuum

mechanics, the general constitutive relationship is given by the tensor version of Hooke’s law,
T, = CpyDg  (12)

where C“f is a 4x4x4x4 matrix known as stiffness or elasticity tensor. To ensure that spacetime

remain smooth and continuously differential, the elasticity tensor must be orthonormal,
invertible, and non-degenerate. An anisotropic constitutive relation was proposed in [2] in an
attempt to unify gravitational and quantum fields. However, [3] explained that an anisotropic
elastic tensor is unnecessary for unification if the relationship between mass and stored surface
energy is taken into consideration at minimum curvature.

For the current work, we shall define the constitutive relation between stress-energy and rate
of deformation of spacetime as a uniform constant in accord with Einstein,
T) = !
v 8nG

Dy (13)



IARD 2022 IOP Publishing
Journal of Physics: Conference Series 2482 (2023) 012008  doi:10.1088/1742-6596/2482/1/012008

Preferred Curvature

In the mechanics of thin shells, particularly biological systems, there is a concept known as
preferred curvature wherein the lowest negative energy state (greatest surface tension) of a
thin shell has a minimum preferred curvature. It is suggested here, that the minimum radius of
curvature of spacetime is the Plank length, 4,,.

If we define a discrete mass, m, as the mass density integrated over the volume of three sphere
with a minimum radius equal to the Plank length, then the right side of (2) becomes,

f dPdV =3m (14
%4

If we integrate surface energy density (a.k.a. surface tension) over the surface of a three sphere
of Plank radius, then the left side of (2) becomes,

# —Qdo = —129nA;, (15)

g
By equivalence of work and energy (2), we see,
m
—-Q = 16
4T (16)

Quantum Mechanics Analogs

General relativity is a geometric theory. Quantum mechanics is interpreted as a probabilistic
theory. Unification of general relativity and quantum mechanics requires a geometric analog
for quantum mechanics. The differential geometry of continuum mechanics exists in the
tangent space at all points on a manifold. If a manifold describes all possible positions, the
tangent space represents all possible velocities. In an earlier section, it was explained that
making a coordinate substitution such that time and proper time are imaginary, creates a
positive definite complex Hilbert space. The tangent space at all points in spacetime is an
orthogonal linear vector space with valid inner product consisting of state vectors |dx, and

. d . .
corresponding dual vectors < Py | that establish the expectation value of stress energy and
u

curvature fields. Imposing a constitutive relation between stress energy and curvatures
ensures that the space is continuously differential, separable, and complete.

Many continuum mechanics equations can be written in quantum mechanics notation. For
example, (3) can be re-written as,

0
< —|Qldt >=dP
ot

Mass density at a point is the expectation value of bras and kets formed by the spacetime
separation between observations and the surface tension operator. In order to unify general
relativity and quantum mechanics, it is important to recognize the mathematical similarities
between differential geometry and Hilbert spaces.

In the remainder of this section, we examine other quantum mechanics analogs that arise in
the geometry of spacetime with surface tension. The foregoing continuum mechanics tensors
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have some immediately recognizable wave equation components. The time-time component in
the curvature gradient, (5), in laboratory coordinates is,
azyO aZyO aZyO 1 dP 1'azy0 "
o ot tanne s war (D
where time and proper time have been changed to natural units by multiplying by ic. For a
vacuum, (17) reduces to the wave equation,
aZyO aZyO aZyO 1 aZyO
ayt’>  ay?*  9ys? T c? or?
This equation describes capillary waves, which in general relativity, represent ripples in the
coordinate of time that follow the overall curvature of the metric. The waves are massless and
move at the speed of light regardless of frequency and wavelength. This expression is
analogous to the Klein-Gordon equation in quantum mechanics.

(18)

For the case where temporal acceleration is zero, (17) reduces to,
aZyO aZyO azyo 1 dP
2t 2t 2T T a0
dyt®  0dy2®  9y3 c?dy®Q
which is the classic Young-Laplace equation that describes corpuscular formation. The first

three terms are the principal curvatures in the time direction. In a polar symmetric system with
radius of curvature R, (19) becomes,

3Q 4y’ _ap 20

which is the same expression intuitively derived and shown in (4).

(19)

Another quantum fluctuation is recognized in the spatial diagonal components of the
deformation gradient (8). The dispersion equation is obtained by replacing the stress-energy
with the corresponding rate of deformation in accord with the constitutive relation (13),

ct (02U 3 Qauj ”
8nG \gyi?) 0t @D

where the third order term has been omitted for simplification. For small particles with radius
equal to the Plank length, 4, stored surface energy can be represented by a discrete mass, m,

. . . . h .
via (16). Changing to laboratory units, and noting that /1p2 = C—g results in,

h [(0%u/ . ou’ -
2m ayjz —! ot ( )

which is analogous to the one-dimensional Schrodinger wave equation with four-velocity
replacing probability density. Surface energy and the corresponding spatial strains in spacetime
move in accord with a Schrédinger-like dispersion equation.

Still another quantum fluctuation follows from the fluidity of spacetime, the constitutive
relationship (13), and the shear strain or off diagonal spatial terms in (8), given by,

aui+6uj+ ou®\ /ou®
oyl =~ ay! oyt ) \ay’

dr=0  (23)
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In continuum mechanics, this is the Navier-Stokes equation for a vortex. There are three vortex
solutions with half integer indices: unstable short-lived rotational vortices, stable irrotational
vortices with field lines ending at a corpuscle, and a stable pair of oppositely rotating
irrotational vortices entangled in time. A vortex itself does not carry mass, but does cause
strain and deformation of spacetime thereby altering geodesics.

As a final comment on analogies with quantum field theory, consider the constitutive
relationship itself. According to (13) and (1), spatial components of stress-energy are related to

rate of deformation by,
4

. C .
—Q 6! = D} 24

7 8nG Y (24)
We can replace stored surface energy using the relationship (16) for discrete particles of Plank
radius to obtain in laboratory units,

m &; _h -

— = —] —
Dj‘ 2 (25)
The units of m are mass-energy. The units of Dji are the inverse of proper time. If we square
both sides and apply the Cauchy—Schwarz inequality, then essentially,

h
mdt = E (26)
The constitutive relationship for discrete particles of curved spacetime with surface tension at
the Plank radius is analogous to the Heisenberg uncertainty principle.

Gravitational Geometry

Simply by adding and subtracting @ from the time-time term, the stress-energy tensor with
surface tension (1) can be rewritten as,

daP+9Q@ 0 0 O
wo_ 0 0 0 0| _o.u
Tv - 0 0O 0 O ng (28)
0 0 0 O

In this form, surface tension appears as an additional mass term, +@, and a negative
cosmological constant, —Qg{f. In cosmology applications, the additional mass term could be
interpreted as “dark matter” and the negative cosmological constant as “dark energy”.
Ordinary luminous matter, dP, and “dark matter”, +Q, are interrelated by (3) and (4). A
correspondence between luminous matter and dark matter is to be expected. Eloquent
arguments for such a correspondence are given in [24].

In a prior work [3], it was shown that replacing surface tension in (28) with its equivalent mass
relation (4), results in an equation for orbital velocity given by,

- GM(1+
v= R

4dy°c2) (29)

where the first term represents Newton’s contribution and the second term is the effect of
surface tension. The time scalar, dy°, can be set equal to unity for non-relativistic speeds.
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Orbital velocities from (29) were compared with galaxy rotation curves for fifteen galaxies in
[3]. Good correlation was found if the mass-to-light ratios of sample galaxies is set to values
much lower than previously accepted. If the best-fit mass-to-light ratios are plotted relative to
the square root of total galaxy luminosity, then an inverse correlation is found with an R? value
of 0.96. When this relationship is re-inserted into the orbital velocity equation and the limit is
taken at large values of R, the Tully-Fisher relation is derived.

Conclusions

It has been shown in this work that including surface tension in the treatment of spacetime
results in quantum fluctuations that are analogous to quantum field mechanics at the minimum
preferred curvature of Plank scale. It also has been shown that including surface tension in
orbital dynamics at the cosmic scale can serve as an explanation for dark matter and dark
energy.
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