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Abstract

In this thesis we explore the vacua structure of type ITA orientifold (CY) compacti-
fications with fluxes, both from the 4d and the 10d point of view.

We start by reviewing type IIA Calabi-Yau orientifold compactifications with fluxes.
First we consider only RR and NSNS fluxes, and then add (non)-geometric fluxes. We recall
how the potential created by the fluxes can be rewritten as a bilinear expression, which
is very useful to do a systematic search of vacua. We also review the main swampland
conjectures that can be applied to these scenarios.

Once the basics have been setted, we perform a systematic search of vacua, using
directly the 4d effective action and the potential generated. We focus first on the case with
only RR and NSNS fluxes. This generalises previous results in the literature, computed in
toroidal examples, to any Calabi-Yau orientifold. We obtain several families of SUSY and
non-SUSY AdSy vacua. We study their stability. These vacua have the property that scale
separation between the internal radius and the AdS,4 radius can be obtained parametrically,
tuning the G4 flux. Scale separation is in tension with the strong version of the AdS
distance conjecture, we comment on this. We then repeat the same game by including
geometric fluxes. We take an ansatz for the geometric fluxes in the vacuum -motivated by
stability arguments- and find again several families of SUSY and non-SUSY AdS, vacua.
We check which of them are stable. In this case, we are not able to find a regime with
scale separation.

We then put on the 10d glasses to analyse from the 10d perspective the SUSY
vacua derived in the 4d effective theory. We comment on how an uplift to SU(3) structure
manifolds does not exist unless the O6 planes are smeared along the internal dimensions.
This is the so-called smeared approximation. Though these results are consistent with the
previous literature, it is important to point out that in this case we are not describing the
true physical situation, in which the sources must be localised in the internal manifold.
We then go beyond this approximation and look for an uplift in SU(3) x SU(3) structure
manifolds, considering only the case with RR and NSNS fluxes. To do so, we expand the
equations of motion in terms of gs;. At zeroth order we recover the smeared approximation.
We solve the expansion at first order, where the localised nature of the O6-planes is taken
into account -but not the intersecting terms between the different O6-planes, which would
appear at next order-.

After this, we use the same machinery to study the non-perturbative stability of
the family of non-SUSY vacua with only RR and NSNS fluxes characterised by having
GRon-SUSY — _GRUSY (they are perturbatively stable). According to a refined version of
the weak gravity conjecture, there should be membranes in the spectrum with @ > T,
triggering its decay. We see that D8 branes wrapping the internal manifold with D6 branes
ending on them can satisfy this requirement, making these vacua unstable.

We finish the thesis by recapping all the results and making some comments about
which questions are still open, as well as possible future lines of research.



Resumen

En esta tesis exploramos la estructura de vacios de la teoria de cuerdas tipo IIA
cuando se compactifica en un orientifold (de una variedad de Calabi-Yau) con flujos,
tanto desde el punto de vista 4-dimensional, como desde el punto de vista 10-dimensional.

Lo primero que hacemos en repasar la accién efectiva que se obtiene al compactificar
la teoria de de cuerdas tipo ITA en un orientifold de un Calabi-Yau cuando se incluyen flu-
jos. Primero consideramos solo flujos de tipo RR y NSNS y luego anadimos también flujos
(no)-geométricos. Recordamos cémo el potencial creado por los flujos se puede reescribir
en una formulacion bilineal, lo que resultarda desupués muy tutil para realizar una bus-
queda sistematica de vacios. También repasamos las principales conjeturas de la ciénaga
(swampland conjectures) que se pueden aplicar a estos escenarios.

Una vez hemos establecido los coneptos basicos, realizamos una bisqueda sistema-
tia de vacios, usando directamente la accién efectiva en 4d y el potencial generado. Nos
centramos primero en el caso en el que solo incluimos flujos del tipo RR y NSNS. Esto ge-
neraliza los resultados previamente obtenidos en la literatura, donde los célculos se habian
hecho usando modelos toroidales, a compactificaciones en orientifolds de cualquier varie-
dad de Calabi-Yau. Obtenemos varias familias de vacios AdS, tanto supersimétricos como
no-supersimétricos. Estudiamos su estabilidad. Todos estos vacios tienen la caracteristica
de que uno puede ir a un régimen en el que el radio de la variedad interna es paramétirca-
mente mucho més pequenio que el radio de AdSy, simplemente ajustando el flujo G4. Esta
separacion de escalas estd en coflicto con la AdS distance conjecture, como discutimos pos-
teriormente. Hecho el anélisis con flujos RR y NSNS, repetimos la jugada pero incluyendo
también flujos geométricos. Para ello asumimos un ansatz sobre la forma que los flujos
geométricos deben tener en el vacio, guiados por argumentos de estabilidad. Obtenemos
de nuevo varias familias de vacios AdS, tanto supersimétricas como no-supersimétricas.
Comprobamos cudles de ellas son estables. En este caso no somos capaces de encontrar un
régimen con separacion de escalas entre la variedad interna y la externa.

A continuacién nos ponemos las gafas 10-dimensionales para analizar desde esta
perspectiva los vacios supersimétricos obtenidos con la accién efectiva en 4d. Discutimos
por qué un uplift' de estos vacios en variedades con una estructura SU(3) no es posible a
menos que los O6-planos estén deslocalizados en las dimensiones internas. Es la llamada
aproximacién smeared (que podriamos traducir como aproximacién deslocalizada). Estos
resultados son consistentes con lo obtenido previamente en la literatura. Hay que tener
en cuenta que no describen la verdadera situacion fisica, en la que los O6-planos deben
estar localizadas en las dimensiones internas. El siguiente paso es ir mas alla de esta
aproximacién y buscar un uplift en variedades con estructura SU(3) x SU(3), para lo que
nos centramos en el caso solo con flujos de tipo RR y NSNS. Para ello expandimos las
ecuaciones de movimiento en términos de gs. A orden zero recuperamos la aproximacién
deslocalziada. Resolvemos entonces la expansiéon a primer orden, en la que la naturaleza
localizada de los O6-planos se hace presente -aunque no los términos de intersecciéon entre
varios O6-planos, que aparecerian a siguiente orden en la expansién-.

En la dltima parte de la tesis utilizamos este mismo formalismo para estudiar la
estabilidad no perturbativa de la familia de vacios no-supersimétricos obtenidos con flujos
RR y NSNS y caracterizada por tener G1oSUSY = —G§USY _a nivel perturbativo si son
estables-. Segiin una version refinada de la conjetura de la gravedad débil (la WGC por sus

1 A . . .
Esto es, una solucién a las ecuaciones 10 dimensionales que reproduzca lo que vemos en 4d



siglas en inglés, Weak Gravity Conjecture), estos vacios deberfan contener en su espectro
al menos una membrana con () > T, provocando su decaimiento. Comprobamos que D8-
branas enrollando la variedad interna y con D6-branas acabando en ellas parecen satisfacer
este requerimiento, haciendo estos vacios inestables.

Finalizamos la tesis recapitulando todos los resultados obtenidos y haciendo algunos
comentarios sobre qué preguntas quedan aun por responder, asi como posibles futuras
lineas de investigacion.
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Introduction

“Someone in the crowd could be the one you need to know” they sing in the first
minutes of La La Land. And I just can not resist starting my thesis by paraphrasing this
song ! and writing “String theory could be the one you need to know”. But let us start by
the beginning. How the world is understood changed drastically during the 20th century.
General relativity and quantum mechanics were discovered, and a lot of new measurements
and experiments were done. Not only this, but also the most precise description of nature
as of today was formulated: the standard model, a theory of almost all the fundamental
interactions and particles, accurate in some cases to 12 decimal places [6]. If this was
the end of the story, probably this thesis would be different. But it is not. We have two
frameworks, general relativity and quantum mechanics, that work astonishing well. The
first one allows us to understand gravity (and so basically the universe) at large distances,
whereas the second one explains the processes we can detect at small distances with a
formidable accuracy. But these frameworks do not talk to each other.

Unfortunately -or fortunately for the young generation of scientists-, we know that
there must be some deeper theory, some framework that does not have the word almost in
its description. And this is one of the hardest and most beautiful problems we are trying
to solve, the description of gravity at the quantum scale. Or, in other words, the seek of
a theory of quantum gravity.

String theory (ST) is nowadays the most promising candidate we have for it. Besides
describing gravity at small distances, it also aims to describe all other interactions, so it
can be seen as the theory of everything we were looking for. And though we do not have
yet any proof regarding its validity as a description of our universe, we do know that string
theory s a theory of quantum gravity, and this makes interesting its study per se.

In the era of the big experiments, with the discovery of the Higgs Boson in 2012 [7],
the observation of gravitational waves in 2016 [8] and the first picture of a black hole in
2019 [9], one could ask when we will be able to proof or disproof string theory. To do this,
we need to connect it with our universe, so we need to understand what kind of theories
can arise from strings. This is precisely the core of the swampland program [10], initiated a
few years ago. In a sense, the swampland program provides tools for a down-top approach,
cataloguing the properties that effective field theories must satisfy to be embeddable in
string theory.

At the same time, it is also important to continue studying pure top-down construc-
tions: both to learn if string theory is useful to describe our reality and, more generally, to
list the properties that string compactifications have. In fact, in the era of the swampland

La La Land is one the favourite films of the author.



Chapter 1. Introduction

program, this field is more active than ever. It is in this way that one may able to classify
string compactifications and provide, at some point, a recipe with the ingredients that

theories coming from strings have.

In all this game of connecting string theory with a low energy model that is falsifiable,
flux compactifications play a key role. On the one hand, they are the main tool we
have to build 4d vacua configurations with realistic properties (scale separation, moduli
stabilisation...). On the other hand, they supply us with a plethora of examples from
which one can chart the distinct vacua of string theory -the string landscape- and extract
patterns to formulate and test the so-called swampland conjectures. They are the heart of
string phenomenology. The path that could lead us to the most detailed comprehension
of our universe.

Let me finish this section, before moving to a more detailed discussion of all the
concepts introduced here, in the same spirit as we started, paraphrasing a movie. This
time we could turn to Kubrick and say ‘How I Learned to Stop Worrying and Love the

Landscape”.

String theory: a quick start guide

The basic idea behind string theory is quite simple: considering that the fundamental
constituents of nature are not punctual objects but strings. This seemingly inoffensive

fime
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Figure 1.1: Propagation of a point particle and an open string through spacetime. The first one
sweeps a one-dimensional trajectory, whereas for the second one the trajectory is 2d. The picture

can be easily generalised for closed strings and branes

change of paradigm modifies completely how we understand the world at its smallest
scales. There would not be different particles anymore, but just one only component, the
string, whose vibrational modes would correspond to the different particles we observe.
Among these modes, there appears a massless spin 2 field corresponding to the graviton
[11]. One has then a quantum description of gravity since quantum gravity questions
in this framework yield always finite answers, unlike the point particle approach. Besides
strings, the theory also contains extended objects, the p-branes -where p refers to its spatial
dimensions-, that appear when one studies the theory beyond its perturbative description.

It is important to remind that string theory has only one free parameter: the string



length [s, which can only be measured experimentally and determines the energy scale
Mg ~ 1/ls at which the extended nature of the string becomes relevant. Even the di-
mensions of the space-time are fixed by the internal consistency of the theory and cannot
be put by hand. For superstring theories, the ones in which we will be interested, the
space-time must have d = 10. Four of these ten dimensions are identified with the ones
we detect. The other 6 extra dimensions are assumed to be so tiny that cannot be seen
in our current experiments. We say that they are compactified.

And how are the geometry and the topology of these compact dimensions? Since
current experiments cannot say much about it, one needs to guess what properties are
needed to reproduce the world we observe in four dimensions. But the problem arises in
the freedom one has in doing so. The vast amount of theories that can be obtained from
string theory is the so-called string landscape -see for instance [12—14] for estimations in
the number of string vacua-. Among the different choices one has to do when constructing
4d vacua of string theory, there are the vev of the field strengths in the compact dimen-
sions, the flures. A compactification where some of them are non-vanishing is called a
flux compactification. Fluxes cannot be arbitrarily big and are subjected to the tadpole
cancellation conditions, the fact that in a compact space the total charge must be zero.
At the same time, they restrict the kind of geometry of the internal dimensions, since not
any manifold admits any flux. We will also see below that fluxes create a potential in the
effective theory that fixes the moduli -the plethora of massless scalar fields that appear
when compactifying- of the compactification. The search for vacua of this potential and
the study of their properties from the 4d and the 10d perspective will be the main topic
of this thesis. Among the different superstring theories, all of them related by dualities
-see picture 1.2-, we will focus on flux compactifications of type IIA. We will not spend

S0(32)

Figure 1.2: Graphical representation of the dualities of string theory.

much more time talking about string theory basics and refer the reader to the classical
books [15-20] for a more paused and detailed discussion.

A swampland in the room

One can not talk nowadays about string theory without referring to the swampland
program. Initiated a few years ago in [10], its spirit is against the picture that “any theory
can arise in string theory”. Contrary to what was widely believed in the early 2000s, the
idea is that though the string landscape is big, it would be of measure zero compared to

3



Chapter 1. Introduction

Quantum gravity

\ .
Energy (string theory)

Swampland
conjectures

Figure 1.3: Adapted from [21]. The swampland (quantum field theories that cannot be consist-
ently coupled to quantum gravity) and the landscape.

the number of theories that are semiclassically consistent but inconsistent when coupled
to quantum gravity -see figure 1.3-. Such theories are said to lay in the swampland. The
community is now trying to list which are precisely the properties that effective theories
must satisfy to be in the landscape and not in the swampland. For the moment they are
formulated in terms of conjectures, which are the so-called swampland conjectures.

In this thesis, we will always keep an eye on the swampland program and the swamp-
land conjectures, especially in the ones that can be applied to our constructions.

Plan of the thesis

The goal of this thesis is to study the vacua structure of type IIA orientifold com-
pactifications. We will do so by following a logical path. The thesis then is structured as
follows:

= We will start in chapter 2 by reviewing type IIA CY orientifold compactifications
from the 4d perspective. We will recall how the 4d action is derived and the role
of the RR, NSNS and (non)-geometric fluxes. We will explain how the potential
generated by these fluxes admits a bilinear formulation. This formulation will be
very useful when we look for vacua in the following sections. We will end this
chapter by summarising the main swampland conjectures that can be applied to
these scenarios.

= Having the 4d action and the potential generated by the fluxes, we will initiate our
exploration of the type IIA vacua landscape in chapter 3 by considering the case
with only RR and NSNS fluxes. We will look for the extrema of the potential trying
to be as systematic as possible. We will obtain SUSY and non-SUSY vacua. We
will close the chapter by commenting on the properties of the vacua and analysing
its consistency and (possible) instabilities.

» We will then add (non)-geometric fluxes in chapter 4 and will repeat the same
strategy, looking for the extrema of the potential and trying to be as general as
possible. We will take an ansatz that can be motivated by stability arguments and
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that switches off non-geometric fluxes. Once we obtain the extrema, we will analyse
their properties to determine which of them are true (stable) vacua.

Having done a 4d systematic search of vacua, we will move to study the full 10d
background in chapter 5. This chapter will serve as a bridge between the 4d and
the 10d pictures. We will review the 10d equations of motion and recall how SUSY
equations can be expressed in a very elegant way using the language of polyforms.
We will initiate the discussion of the uplift of the vacua derived in the previous
chapters by checking if they can be embedded in SU(3) structure manifolds. We
will see that this is not enough unless one smears the sources, which is not describing
the physical true situation.

In chapter 6 we will continue the study of the 10d uplift of the SUSY 4d vacua
derived in chapter 3. We will analyse ten-dimensional solutions to type ITA string
theory of the form AdS4 x Xg which contain orientifold planes and preserve N = 1
supersymmetry. They would correspond to the uplift of CY orientifold compactific-
ations. To do so we will expand the equations in powers of gs. We will see that at
zero-order we recover the smeared solution. We will give the explicit solution of the
1st order correction, which sees the localised nature of the orientifold sources.

The results obtained in chapter 6 will be useful in chapter 7, which will be dedicated
to study the non-perturbative stability of the non-SUSY solutions of chapter 3.
This requires having the 10d picture since we will be interested in the membrane
spectrum of the theory. According to a refined version of the WGC, there should be
a membrane in the spectrum of these non-SUSY vacua triggering its decay. We will
see that indeed this is the case.

We will finish the thesis in chapter 8 with some general remarks and conclusions
(translated to Spanish in chapter 9). Some long computations, technicalities and
conventions are left to appendices A, B, C, D, E, F.



Type IIA orientifold compactifications: a 4d
perspective

In this chapter, we will present and review the main ingredients regarding flux
compactifications on Calabi-Yau (CY) orientifolds. We do not aim to give a detailed
introduction to the topic -for that one could go to the original references [22-24] or to
the excellent reviews [19,25-29]- but just presenting the framework and fixing notation.
We will be working mainly using the 4d effective action, and not worrying about the 10d
equations -which will be the subject of study of chapter 5-. We will start by considering
compactifications with NSNS and RR fluxes, and then adding geometric and non-geometric
fluxes. We well afterwards discuss the bilinear formulation of [30] and present the main
swampland conjectures involving these scenarios.

As argued in the introduction, flux compactifications play a central role in string
phenomenology, being the most promising way of constructing effective theories which can
describe our universe. In string compactifications with no fluxes, the spectrum contains
a large number of massless fields, the moduli, including the dilation and the fields para-
metrising the geometry of the internal manifold. In the 4d effective theory these massless
scalars couple to matter and create long-range interactions. Because these couplings are
not necessarily universal, for a 4d observer they would be seen as “fifth forces”, leading
to violations in the principle of equivalence that have not been detected experimentally
so far. Adding fluxes (non-vanishing vevs for the field strengths) to the compactification,
a potential for the moduli is generated in the 4d action. The fields are then stabilised at
their value in the minima of the potential and the moduli acquire a mass, overcoming the
previous problem. This process is called moduli stabilisation.

We will focus on flux compactifications of (massive) type IIA and will study moduli
stabilisation. In this scenario [31,32], NSNS and RR fluxes alone can stabilise all moduli
in a regime -weak coupling large volume- in which the supergravity description can be
trusted, which is very suggestive from the phenomenological point of view. The price to
pay is that because of the backreaction of fluxes and sources, the internal manifold can not
be Calabi-Yau [33] and the construction is not totally well understood. One usually ignores
this problem and works in the smearing approximation [34], where the sources needed to
cancel the tadpole equations for the fluxes are smeared along the internal manifold, which
is Calabi-Yau in this approximation. We will address this problem in chapters 5 and 6.
For completeness, despite the fact we will not study them in this thesis, we can say that
the same problem happens in Type I/heterotic flux compactifications, where moreover one
needs to take into account non-perturbative corrections to cancel the tadpoles -see [25,27]
for more references-. On the other side, for type IIB the backreaction of the fluxes makes
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the compact manifold be a warped Calabi-Yau, which is better understood, but in this
case NSNS and RR fluxes alone are not enough to stabilise all moduli [35].

We have been already talking a while about the tadpole equations but we have not
yet defined them properly. The point is that fluxes cannot be put in any arbitrary manifold
at will, but there are some “rules” that must be satisfied. It is just Gauss law applied
to compact spaces and field strengths of p-forms. Consider for instance type ITA and the
Bianchi identity for the 2-form G5. Without sources, it reads

dGy = FoH . (2.1)

Integrating this equation over a 3-cycle, we see that the LHS always vanishes whereas
the RHS does not if there is some flux of H on it. This inconsistency can be cured by
adding sources d3 that compensate the fluxes and make that the RHS also vanishes when
integrated over any 3-cycle,

AGy = FoH + 55 —s /(FOH +83) = 0. (2.2)

These sources will be in general (anti)D-branes and orientifold planes. Since we are in-
terested in preserving some amount of supersymmetry in the effective theory, we will use
D-branes and orientifold planes to cancel the fluxes. These cancellation conditions are the
so-called tadpole equations and we will talk about flux compactifications on Calabi-Yau
orientifolds. They are described by a N = 1 supergravity theory in 4d. We will follow
mostly [19,24] (with the conventions of our latest works) in this section.

2.1 DMassive type ITA on CY orientifolds

The bosonic part of the low energy description of massive ITA string theory in the
Einstein frame at leading order in ' and gs and in the democratic formulation is [306]

1 1 1

Smd:—/dlo 2% (R 4 4(9¢)* ——/ —2¢ HAH——/ GAG,

i =5, z1\/|gle ( + 4( ¢)) 2, e “? %19 82 *10 oy
2.3

where w3, = (2 /4n, {5 = 2nv/o/. To obtain the complete action one should add possible
sources and fermions. In this formulation we double the degrees of freedom and define the
polyform G as the formal sum G = Gy + G2 + G4 + Gg + Gg + G19. Then we impose

G = *10)\ (G) s (2.4)

where A is the operator reversing the indices. The field strengths G,, are related with the
RR p-form potentials C), as

G=dyC+eP NG, (2.5)

with C=C1+C3+C5+ C7r + Cy, H=dB + H is the three-form NS flux, dg = d — HA
is he H-twisted differential and {H, G} will be the background values (the fluxes) for the
NSNS and the RR field strengths respectively.

We can now put this theory on an orientifold of
Calabi-Yau three-fold.

L3 % Mg being Mg a compact
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Intermezzo: CY manifolds and its relevance in ST compactifications

CY manifolds play a key role in string theory compactifications. For a detailed discussion of
their properties and how they appear in this context one can go for instance to [16,37-42].
We will just say a few words to be as self-contained as possible. The basic idea is that
if we choose a background My = 13 x Mg and demand that some supersymmetry®
is preserved in the 4d action, Mg is constrained severely. In short, supersymmetry de-
mands Mg to admit one non-trivial globally defined spinor that is covariantly constant.
This is satisfied by manifolds with SU(3) holonomy. Calabi-Yau manifolds are precisely
d-dimensional complex, Kéahler manifolds with SU(d) holonomy. They are characterised by
having a globally defined and closed (1,1)-form J -the Kéhler form- and a globally defined
and closed (3,0)-form 2, the holomorphic form, satisfying

1 ; _
—6J/\J/\J:—%Q/\Q:dvolcy. (2.6)

If we put Heterotic or Type I string theory on these backgrounds, we obtain a N' = 1 super-
gravity theory in 4d, and the same is true for type IIA/B but with A' = 2. In this last case,
modding out the internal manifold by the appropriate symmetries (so compactifying not on
a CY but on a CY orientifold) supersymmetry is reduced to A = 1, as it will be in our case.
In the situation in which the radius of '3 is much bigger than the one of Mg, the low
energy description of the theory is obtained by performing a Kaluza-Klain reduction of
the fields and considering only the massless modes. They are given by the eigenfunctions
with null eigenvalue of the internal Laplacian or, in other words, by the harmonic forms
of Mg. In turn, the harmonic forms of a manifold are counted by the dimension of the
different cohomology groups, the Hodge numbers. For CY manifolds, the only non-vanishing
cohomology groups are [24]

gever = HO00 o gl g g22) o g6.3) ,
Hedd  — H(3’0) D H(Qﬁl) @D H(Lz) D H(0’3) , (27)
where the indices in H("™"™) refer to p-forms with m holomorphic and n antiholomorphic

indices. The dimensions of each group dimH (™™ = h(™") can be summarized in the
Hodge diamond

ho,o 1
hl,O hO,l 0 0
hao hia ho,2 0 hia 0
h3,0 ha 1 hi2 hos = 1 ha 1 ha 1 1 (2.8)
h3,1 ha.2 hi3 0 hi1 0
h3.2 ha 3 0 0

s

“One could forget about it and just look for generic solutions to the 10d equations of motion.
But, as a first step to understanding ST, having some supersymmetry makes life easier since we
have more control on the compactification.

Let us consider massive type IIA string theory compactified on an orientifold of

1,3 x Mg with Mg a compact Calabi-Yau three-fold. More precisely, we take the standard
orientifold quotient by O = ,(—)fTR [19,27,43,44], with Q, the whorldsheet parity and
Fr, the left-moving spacetime fermion number. R is an anti-holomorphic Calabi-Yau
involution acting on the Kéhler 2-form J and the holomorphic 3-form Q as R(J) = —J
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and R(2) = —Q. The p dimensional hyper-surfaces left invariant by R are the orientifold
planes, the Op-planes. In type Ila there are generically only O6-planes’. These O6-
planes are source of RR charge and consequently appear in the Bianchi identities. By
construction, they span '3 and wrap special Lagrangian 3-cycles II3 characerised by

Jlm, =0, Im () |, =0. (2.9)

On the other hand, under the action of R, the harmonic forms split into even and odd
H? (Mg) = HY & H”. We can introduce a basis for each of these subspaces:

cohomology group HJ(FI’I) gty HJ(FQ’Q) H(_2’2) Hi H3
dimension h(j’” R pD h(j’l) A2 11| pED 41
basis G204 | 2w, | A0 | 6% 3y, 0730

Table 2.1: Extracted from [24] and adapted to our conventions. Basis forms for the different
cohomology groups. The correspondent factors of the string length ¢, = 2wV’ are introduced to
made the p-forms dimensionless.

where Hodge duality imposes h(j’l) = h(_2’2), p = h(f’”
normalised such that

. The elements of the basis are

1 b w 1 i 1
— We N@° =96, , — wa AP =62, — a, ANpY =68, 2.10
KS Me ¢ ¢ Kg Me “ “ Eg Me g “ ( )

For completeness, we also list how the 10d fields have to transform under R to be invariant
under the action of O
9| o]B|C|Cy
RI{+[+]-[-T+

Table 2.2: Action of R on the 10d massless spectrum of ITA.

since this is illustrative to understand how part of the spectrum is projected out -compared
to a compactification on a CY manifold- and supersymmetry is reduced from N = 2 to
N =1 in the 4d effective theory.

Once the presentations have been made, we are ready to compute the 4d effective
theory. We will divide this calculation into three pieces: massless spectrum (moduli) in
2.1.1, NSNS and RR fluxes in 2.1.2 and geometric and non-geometric fluxes in 2.1.3 .

2.1.1 4d effective action: massless fields (moduli)

Neglecting worldsheet and D-brane instanton effects, dimensional reduction of massive
type IIA to 4d yields several massless chiral and vectors fields, whose components can be
described as follows [23].

= There are the massless modes coming from the free parameters of the 10d metric g.
We will omit here the discussion -for which one can go for instance to [39]- and limit

Tn type IIB there can be either O3/05 or O5/09, depending on the orientifold projection.

10



2.1. Massive type IIA on CY orientifolds

ourselves to present the results. On the one hand, the are the deformations of the
Kéhler form J, which give rise to h(_l’l) real scalars t* -recall that J is odd under R-.
They control the volume of the 2-cycles of the CY manifold. We can pair them with
the real scalars b arising from the B = b%w, field to define the complexified Kéhler

moduli T% = b* + it?,
Je=Btied = +it") we = T%e, ae{l,... Kby, (2.11)
where J is expressed in the Einstein frame, ¢ represents the ten-dimensional dilaton

and, recalling table 2.1, ¢;%w, correspond to harmonic representatives of the classes
in H (Ms). The kinetic terms for these moduli is encoded in their Kéhler potential

) - = - 4
Ki = —log (élcabc(T“ — T (T — T®)(T° — TC)) = —log (31C> . (2.12)
where Kgpe = —£5° [ Mg Wa A\ wp A\ we are the Calabi-Yau triple intersection numbers

and K = Kyttt = 6Vol M = %QT is a homogeneous function of degree three on
the t%.

= On the other hand, there are the deformations of the complex 3-form ), para-
metrising the volumes of the internal 3-cycles. We can pair them with the axio-
dilaton and the internal 3-form coming from the RR potential C3, giving rise to
the so-called complex structure moduli. Introducing Q. = Cs + iRe (CS2) where

C = e~%e3(Kes=Kr) jg o compensator, with K., = —log —il;6 [QAQ and ¢ the
10d dilaton, the complex structure moduli are defined as

Ut =gt vt =60 Qenpr, pefo. . hty (2.13)

where we are using the basis introduced in table 2.1, B# € H3 (Mg). Their kinetic
terms are given in terms of the following piece of the Kéhler potential:
e¢

\/VOIMG

where D is the four-dimensional dilaton defined through e” =

Kg =4log ( > =—log e P | (2.14)
o®
Vol
Go=ce is a homogeneous function of degree two in u*. The complex structure
moduli (2.13) are redefined in the presence of D6-brane moduli, and so is the Kéhler
potential (2.14). For simplicity, we will not consider this case for now, leaving its

discussion to section 3.5.

. The function

—Kq/2

= There is the C7, which is projected out, since it is odd under R, €, (—1)FL

trivially on it and there are no harmonic 1-forms on a CY.

act

= Finally”, there are the pieces of C3 with external legs. C3 can be expanded as

C3 = c3(z) + A%(z) Awa + Cs, (2.15)

2We will not discuss {Cs, C7, Co} since they do no introduce new degrees of freedom, and are just dual
to the p-forms already considered.

11



Chapter 2. Type IIA orientifold compactifications: a 4d perspective

We are abusing a bit of notation and are calling in the same way the RR 3-form
potential C'35 and its internal 3-form component, which we have already discussed
two paragraphs ago when Q. was introduced. c3(x) and A%(z) give rise to a 3-form
and a 1-form in four dimensions respectively. c3 does not propagate any degree of
freedom and corresponds to a flux parameter. The gauge kinetic functions for the
field strengths F'* = dA® are

2fop = iKaapT®, (2.16)
with l@aag = —ES_G Mg Wa N Wa A wg.

Collecting all the results, the spectrum of massive type IIA compactified on a CY orienti-
fold boils down to a N' =1 4d supergravity theory whose bosonic part of the spectrum is
summarised in table 2.3. The metric for the kinetic terms of the chiral multiplets is derived

Multiplet Multiplicity | Bosonic field Content
gravity multiplet 1 G
vector multiplet h}r’l A«
Chiral multiplets pLD o po
Chiral multiplets | h>! +1 uM, EH

Table 2.3: 4d N = 1 bosonic massless spectrum of IIA compactified on a CY orientifold.

from the Kéhler potentials { Kx, K¢}, introduced in (2.12) and (2.14) for the Kéhler and
complex moduli respectively, see appendix A.1. They satisfy some nice properties, which
will be of utility later on, that we list in that same appendix. Explicitly, the bosonic part
of the action for this theory is

1 _ _

S = —5Rx 1= KgpdT® A *dT? — K, dU" A *dU" o1
2.17

1 1

—5m fopF N FP — 5 Re fapF™ AxFP

with the gauge kinetic functions defined in (2.16).

2.1.2 4d effective action: NSNS and RR fluxes

On top of the above orientifold background one may add RR and NSNS fluxes.
Using the democractic formulation introduced previously, the Bianchi identities for the
field strengths read

2

RdePAG) = =S AL Aemle | dH =0, (2.18)
(0%

with ¢, = 27V’ the string length. Here II, hosts a D-brane source with a quantised
worldvolume flux F,, and 6(Il,) is the bump J-function form with support on II, and

12



2.1. Massive type IIA on CY orientifolds

indices transverse to it, such that 2=2§(I1,) lies in the Poincaré dual class to [[I4]. O6-
planes contribute as D6-branes but with minus four times their charge and F, = 0.
Finally, A is the operator that reverses the order of the indices of a p-form. As introduced
in (2.5),the solution to (2.18) can then be decomposed as

G=¢’A(dA+G), H=dB+H, (2.19)

where A = C A e P and G is a sum of closed p-forms to be thought as the background
values for the internal RR fluxes. One may now impose Page charge quantisation [45],

_ 1 _
2 . dAgp_l + Ggp € ., E o dB+ H € (220)
where 7o, with p = 1,2,3 and 73 are internal cycles of Mg. In the absence of localised
sources such as D-branes, the gauge potentials A are well-defined everywhere and the
cohomology class of Gg,, H along Mg capture the internal flux quanta. For orientifold
compactifications the internal p-cycles have to comply with the orientifold projection, such
that the background flux can be characterised by virtue of flux quanta (m,m®, eq,€p).
These are defined as

1 = 1 ~ 1 _
— 0,Go, m® = =  GaAQ, = GyAwa, -~ Gs.
m S 0 m gg X6 2 w ea é? XG 4 Wa 60 52 X6 6
(2.21)

The internal RR-fluxes G are known to generate a perturbative superpotential for the
Kéhler moduli [46,47]:

1 — 1
LWi=-5 @A e = o+ eT" + SKapem"T'T* + %icabcT“TbTC, (2.22)
s 6
where Kgpe = —£56 Xg Wa AN wp A we are the Calabi-Yau triple intersection numbers, K =

Kapet®Pt¢ = 6Voly, and we have made used of the flux quanta defined in (2.21). The
NS 3-form flux H3 on the other hand threads the R-odd three-cycles (B*) € H3 (Mp),
which are the de Rham duals to the R-odd three-forms (8#) introduced earlier. Similar
to the RR-fluxes, the quantised Page charge for the NS-flux background can be expressed
in terms of the integer flux quanta (h,):

LI (2.23)

2 pu - ’
and generate a linear superpotential for the complex structure moduli

LWo = — Q. N Hs = h,U". (2.24)

1
Kg Me
The combination of RR and NS-fluxes suffices to generate a four-dimensional F-term scalar

potential for the geometric moduli (¢*, u*) and closed string axions (b%, &), given by
Ve = e KD WD;W —3[W|? (2.25)

where DoW = 0, W +W 0, K, K = Ki+ Kg -computed in (2.12)-(2.14)-, W = W +Wq
-see (2.22)-(2.24)- and the indices a, 8 = {a, u} go over the complex and Kéhler moduli.
We will see in the next section 2.2 that this potential exhibits a remarkable factorisation
into a geometric moduli piece, an axion piece and a flux piece [30,48] which is very useful
to do a systematic search of vacua.
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Chapter 2. Type IIA orientifold compactifications: a 4d perspective

2.1.3 4d effective action: general fluxes

As we have already commented, type ITA compactifications with NSNS and RR
fluxes represent a particularly interesting corner of the string landscape, as already the
classical potential generated by p-form fluxes suffices to stabilise all moduli [32,49]. Even
so, as pointed out in [50] one may consider a larger set of NS fluxes for this class of
compactifications, related to each other by T-duality. Taking them into account results
into a richer scalar potential, as analysed in [51-56]. In this last part of the derivation of
the 4d effective action, we will consider the potential generated when we turn on geometric
and non-geometric fluxes.

Again, we do not aim to give a detailed review of the topic -for that one can go
to [55,57]- but just a minimalist introduction to motivate the scenario and fix the notation.
The basic idea is that geometric and non-geometric fluxes appear when we consider T-
dualities in flux compactifications. As it is known, T-duality relates a theory compactified
on a circle of radius R with another theory compactified on a circle of radius 1/R. An
example of this symmetry is the duality between type IIA and IIB string theories, as
pictorially presented in figure 1.2. Subtleties appear when we play this same game in circles
threaded by fluxes. Let us review the example studied in [50]. Take IIB compactified on a
T° with NSNS flux Hy,p. on some 3-cycle, with the indices a,b,--- € {1,2,...,6} denoting
the internal directions. Performing a first T-duality, for instance in the direction a, the
effect of the flux H is that in the IIA description the compactification is not on a torus
but on a twisted torus. That is, in the dual picture, the flux is seen in the metric, which

now has a component dx® — fg‘c:ccd:cb 2, where fi! € is the geometric flur. One can
then perform a second T-duality, say in the direction . The dual theory still admits a
local description in terms of geometry (so we can define a metric locally) but globally
the Riemannian description fails® and the space is called non-geometric. In this exotic
background, the presence of H is encoded through the flux Q2. One can perform a third
T-duality, which yields a dual description that does not even admit a local description of
the internal space in terms of geometry, and so is also non-geometric. We denote by R
the T-dual lux arising in this case in the 4d effective theory. It is important to point out

a
foe Globally geometric space

3-Torus T3
Flux Habc

Two T-dualities T, _ -p . .
> (J;° Locally geometric, globally non-geometric space

Rabe Locally non-geometric space

Figure 2.1: (Non)-geometric fluxes and T-dualities.
that compactifications with non-geometric fluxes (@, R) are not well understood. Though

we will take them into account when constructing the 4d potential, when we look for vacua
we will limit ourselves to just considering RR, NSNS and geometric fluxes.

3Basically when one goes around the circle ° — 2°+27 R’ the metric and the B-field mix in a non-trivial
way and the manifold is not globally well defined.
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2.1. Massive type IIA on CY orientifolds

The flux superpotential including geometric and non-geometric NS fluxes is de-
scribed in terms of a twisted differential operator [52]

D=d-HA+ f<+ Q>+ Re, (2.26)

where H is the NS three-form flux, f encodes the geometric fluxes, @) that of globally-non-
geometric fluxes and R is the locally-non-geometric fluxes, see e.g. [55] for more details.
The action of various fluxes appearing in D is such that for an arbitrary p-form A, the
pieces H AN Ay, f<1 Ay, Q> A, and Re A denote a (p+3), (p+1), (p—1) and (p — 3)-
form respectively. Given these definitions, the NSNS flux-generated superpotential Wy, is
now [51,52]

1
Wo=-= Q.AD e . (2.27)

6
Es X6

Expanding in the basis introduced in table 2.1 and using the action of the NS fluxes on
such a basis as given in (A.4), one obtains the following expression for the superpotential

1 1
tWao = U"\hy + fau T + 5 Kabe T T°Q%, + G KapeT*TTCR,|,  (2.28)

which, compared to (2.24), has some extra terms. Wx remains the same -recall equation
(2.22)- and is not altered by the presence of (non)-geometric fluxes.

2.1.3.1 The F-term flux potential

Under the assumption that background fluxes do not affect the Kahler potential
pieces (2.12) and (2.14),* one can easily (re)compute the F-term flux potential for closed
string moduli via the standard supergravity expression (2.25). As in [30, 48], one can
show that this F-term potential also displays a bilinear structure that will be exploited in
chapter 4

2.1.3.2 The D-term flux potential

In the presence of a non-trivial even cohomology group H}r’l, geometric and non-
geometric fluxes will generate a D-term contribution to the scalar potential. This can be
computed as

1
Vp =5 (Ref)™" " Da Dy, (2.29)

where D,, is the D-term for the U(1) gauge group corresponding to a 1-form potential A
arising from Cj -recall decomposition (2.15)-

Do = i04K 00 + Ca s (2.30)

where 6,07 is the variation of the scalar field ¢ under a gauge transformation, and (,
is the corresponding Fayet-Iliopoulos term. In order to find the explicit expression of the

4The validity of this assumption should not be taken for granted and will depend on the particular
class of vacua. The results in [2,58,59] suggest that it is valid in the presence of only p-form fluxes Frr,
H. However, [60] gives an example of compactification with metric fluxes in which the naive KK scale is
heavily corrected by fluxes, and so should be the Kéhler potential.

15



Chapter 2. Type IIA orientifold compactifications: a 4d perspective

D-term potential we perform a gauge transformation on the gauge bosons in C3°
AY — AT 4 d\*. (2.31)

The transformation of the RR p-form potential Crr = C1 + C3 + ... can then be given
in terms of the twisted differential D given in (2.26)

Crr — Crr+D (A" wq + Mg @) (2.32)
= (£#+>\afa“+)\aQa#)au+---y

where we have used the flux actions given in (A.4), with fo*, Q*, fau, Q“, integers.
This transformation shows that the scalar fields &# are not invariant under the gauge
transformation, leading to the following shift in the A/ = 1 coordinates U,

SUM = X fol + Aq Q. (2.33)

Note that due to the Bianchi identities (A.5) only the combinations of fields U* invariant
under (2.33) appear in the superpotential and, as a result, the Fayet-Iliopoulos terms
vanish. Interpreting (2.33) as gaugings of the U(1) gauge fields and their magnetic duals
one obtains the D-terms

1 A 1
Do = 50.K  fo"+ Kaapb®@Q? | D= SOuK Q. (2.34)

Taking into account the kinetic couplings (2.16) we end up with the following D-term
scalar potential

1 A A A A
Vp = =10, K0,K TmK™" % fol' + Kaanb" Q™ [5" + Kepsb® Q™ +Im KapQ™ Q™

(2.35)
where Ko5 = Kuap T Alternatively, one may obtain the same potential by following the
tensor multiplet analysis of [22,61].° The total potential has then two contributions

V=Vr+Vp, (2.36)

though when we do a systematic search of facua in chapter 4, we will consider only the
case with Vp = 0.

2.2 Flux potential, 4-forms and bilinear formalism

The main goal of this thesis is to shed light on the landscape of (massive) type IIA
orientifold compactifications. To do that, a crucial ingredient is to understand the vacua
structure of the flux potential arising in the 4d theory, see (2.25) and (2.36). In doing
so, the bilinear formalism introduced in [30, 48, 63—-65] turns out to be a very powerful
tool, since doing a systematic search of extrema in this context is much simpler. In this

SWe are focusing on Cs to maintain the discussion simple but, in the democratic formulation, similar
operations have to be done for the 1-form A, arising from C5.

This result is different from the type IIA D-term potential of [56], and recovers the expected discrete
gauge symmetries related to b-field shifts. The same strategy can be applied to type IIB setups with
non-geometric fluxes, recovering the full scalar obtained by DFT dimensional reduction in [62].
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2.3. Swampland conjectures

section we will review and motivate briefly how the bilinear formulation was derived -for
a detailed discussion the reader interested can go to the original references-. We will use
this form of writing the potential in chapters 3 and 4.

The importance of the 4-forms in the vacua structure of string theory can be traced
back to Bousso and Polchinski (BP) [66] (building on previous ideas of Brown and Teitel-
boim [67,68]). They noticed that the existence of a large set of non-propagating 3-forms
Cé“ in string theory could help to explain the smallness of the cosmological constant. The
basic idea is that these 3-forms give rise to constant 4-forms (fluxes) Fj' = dC4' that
contribute to the vacuum energy as

‘/effective = Z ZABFAFB + A0 y (237)
A,B

being Ag the bare cosmological constant (c.c). They showed that for a large enough number
of 4-forms, one can construct in a natural way an exponentially small cosmological constant
Veffective, Without strong requirements in the bare c.c. Ag.

With this fact in mind, in [30] they studied the role of the four-dimensional 4-forms
in massive type IIA flux compactifications. They showed that the different contributions
to the scalar potential Vi can be written -just playing with the equations- as

16S4q D —ZaF{ N xyFP +2F{ py — Z48 pupi (2.38)

with the indices A running over the fluxes of the compactifications -the four-dimensional
four forms Fjfl-, pa depending on the axions and the topological data of the internal
manifold and Z4p depending only on the saxions. On shell xFj! = Z4Bpp and the scalar
potential can be written as

V= &iiZAB,OApB, (2.39)
which has a bilinear structure and is reminiscent of the (BP) structure. This was first
obtained in [30] for massive type IIA compactifications with RR and NSNS fluxes, and
then generalised in the presence of mobile D6 branes [64] and including o’ corrections [65].
We will see in chapter 4 that even when we include (non)-geometric fluxes, the potential
exhibits a bilinear factorisation.

It is important to stress that the bilinear expression for the potential is derived by
just regrouping, defining, and rewriting some terms. There is no any hide assumption and
the result is completely general. The point, as we will see, is that working with the ps one
can perform quite easily a systematic search of vacua. We will give explicit expressions
for them in the correspondent chapters.

2.3 Swampland conjectures

Finally, the last leg of this review of type IIA flux compactifications is the swampland
program [10]. As we have mentioned in the introduction, the swampland goes against the
idea that any theory can be obtained from string theory. Contrary to this belief, quantum
gravity is expected to constrain severely the kind of effective theories that are compatible
with it. We say that effective theories that have a UV completion in quantum gravity are
in the landscape, whereas those that do not have it are said to belong to the swampland.
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Chapter 2. Type IIA orientifold compactifications: a 4d perspective

As of today, this field is actively in progress and we do not have many rigorous facts, but we
work with conjectures, the so-called swampland conjectures. They can be derived in two
ways. On the one hand, by thinking about which properties a theory of quantum gravity
should satisfy. This is the case for example of the no global symmetries conjecture [69,70],
formulated using black hole arguments. On the other hand, analysing systematically string
compactifications and extracting general patterns. An example of a conjecture derived in
this way is the swampland distance conjecture [71].

Under the swampland approach -for reviews see [21, 72-74]- (massive) type IIA
compactifications on CY orientifolds have received a renewed interest and are now being
scrutinised. Among the different swampland conjectures, three of them involve these scen-
arios directly, the Non-Supersymmetric AdS Instability Conjecture [75], the AdS distance
conjecture [76] and the dS swampland conjecture [77,78]. Let us recall them briefly.

2.3.1 Non-Supersymmetric AdS Instability Conjecture

As it was formulated originally, it states [75]

Any non-supersymmetric AdS geometry supported by flux is unstable in a consistent
quantum theory of gravity with low energy description in terms of the FEinstein gravity
coupled to a finite number of matter fields.

The conjecture was not derived independently but obtained as a consequence of a
refined version of the weak gravity conjecture (WGC). The vanilla version of the WGC [79]
says that in any gravitational theory coupled to a U(1) with gauge coupling g, there must
be a particle in the spectrum satisfying the inequality

i—2 i

To see arguments in its favour, other versions of it and references, we refer the reader to
the mentioned swampland reviews and [80] for a specific recent review of the WGC. The
basic idea behind this conjecture combines the absence of global symmetries in quantum
gravity, the evaporation of black holes and the violation of certain entropy bounds. These
same arguments can be applied in theories with general C), gauge fields, from which the
existence of p — 1 dimensional objects follows, analogously to (2.40). In other words, the
WGC states that in any theory of gravity coupled to a p-form Abelian gauge field, there
must be a p — 1 membrane whose tension and charge satisfy

d—p—2 d2
pA=p=2)p - op= (2.41)
d—2
In [75] a stronger claim was made and a refined version of the WGC was proposed, stating
that the WGC (2.41) is saturated if and only if the theory is supersymmetric and the state
in question is BPS. From this, it follows that any non-SUSY AdS supported by fluxes is

at least metastable, as we will argue in a moment.
Consider a non-SUSY AdS; vacuum supported by fluxes f = . Fp. Using
Hodge duality, the fluxes f can be described in the d-dimensional theory in terms of top

forms field strengths Fy = dCy_1, where d is the dimensions of the spacetime. Now, the
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2.8. Swampland conjectures

refined version of (2.41) applied to the Cy_; forms implies the existence of some d — 2
brane satisfying T' < QME. But precisely, a co-dimension one brane whose charge is
smaller than its tensions implies an instability in the AdS [81], and so the vacuum can be
at best metastable.

Type IIA orientifold compactifications provide a big arena where this conjecture can
be tested. In chapter 7 we will examine some of the obtained non-SUSY vacua under the
lens of this conjecture and will see how is non-trivially satisfied.

2.3.2 AdS distance conjecture

Originally formulated in [76] it states

Consider quantum gravity on d-dimensional AdS space with cosmological constant A. There
existis an infinite tower of states with mass scale m which, as A — 0, behaves (in Planck
units) as

m ~ |A]* (2.42)

where « s a positive order-one number.

\. J

In string theory, the AdS distance conjecture is usually satisfied through Kaluza
Klain modes, that is, the mass scale m appearing in the LHS of (2.42) can be identified
with Mkk.

In the same original paper, a stronger version was proposed, claiming that

[ for SUSY AdS vacua a = % ]

Straightforwardly, from the strong version and the fact that m ~ Mgy and A ~
fods it follows that Rx g ~ Ragqs and so SUSY AdS vacua with scale separation would
be in the swampland. Though there are many examples in string theory supporting this
form of the conjecture, ITA compactified on a CY orientifold does not satisfy it. We will
see that they yield o = 7/18 for both the SUSY and the non-SUSY AdS vacua, and so
one can achieve Ry, < Raqs parametrically.

As we have explained in the introduction of this chapter, the problem of AdS,
orientifold vacua is that the complete solution to the 10d equations of motion is not
known, because of the presence of intersecting orientifold planes. One usually works in
the smearing approximation, where the localised sources are smeared along the internal
dimensions -we will comment more on this approximation in the following chapters-. It is
therefore an open question if the fully back-reacted solution still allows for separation of
scales. In chapter 6 we will make some steps in this direction, showing that the smeared
solution can be understood as the Oth order of an expansion whose 1st order we will
construct.

In the meanwhile, there have been refinements of the strong AdS distance conjec-
ture that make it compatible with scale separation [59]7, and the study of the would-be
conformal duals of scale separated AdS vacua was initiated recently in [5,82-85]. There

are other proposals that can be applied to these scenarios with scale separation, as the

"Though this version does not seem to be satisfied in 3d [82].
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Chapter 2. Type IIA orientifold compactifications: a 4d perspective

one of [86], which states that SUSY AdS vacua whose mass of the lightest mode m? is
very large compared with the AdS mass scale chlls,

m2LA e > 1, (2.43)

are in the swampland. In any case, as of today, it is still unclear if string theory admits
solutions with separation of scales, which is crucial to constructing 4d theories describing
our universe.

2.3.3 de Sitter conjecture

The refined version of the dS conjecture® states [78]

A A potential V (¢) for scalar fields in a low energy effective theory of any consistent
quantum gravity must satisfy either,

c/

IVV| > Mip vV or min (V,V,;V) < ==
p

-V, (2.44)

for some universal constants ¢,¢’ > 0 of order 1, where the left-hand side of (2.44) is the
minimum eigenvalue of the Hessian V;V;V in an orthonormal frame.

Though this is one of the most controversial conjectures, it is widely believed to be
true at least in asymptotic regions of the moduli space (near-infinite distance singularities),
where it is satisfied in all the cases studied. In other regions of the moduli space, it is not
clear that the conjecture holds. Notice that it has strong implications in the description
of our universe since it forbids stable dS vacua in string theory. For reviews of the current
status of this problem, one can go to [88,89]. Related to this conjecture, we also need to
mention the Transplanckian Censorship conjecture (TCC) [90], which nevertheless we will
not use in this work.

When looking for vacua, we will always have in mind the dS conjecture and will
study what kind of set-ups could rise to violations of this conjecture. Anticipating the
results, we will see first in equation (3.6) that the conjecture always holds in the presence
of only NSNS and RR fluxes. Then, adding (non)-geometric fluxes, in section 4.3.2, we
will see that the conjecture could in principle be violated, though not with the ansatz we
will consider.

8 Just after the original version of the conjecture [77] was released, several counterexamples were found
-see for instance [87]- and so a refinement was proposed a few months later.
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Search of vacua: RR and NSNS fluxes

A fundamental question in the context of string compactifications is the character-
isation of the string Landscape, that is the collection of isolated, metastable 4d vacua
that are obtained from string theory. In this regard compactifications with background
fluxes [19,25,26,28,91] have proven to be a remarkably fruitful framework. To great ex-
tent, this is because they provide a simple mechanism for moduli stabilisation that at the
same time generates a discretum of vacua, which allows developing our intuition on how
the full string Landscape may look like.

Within the flux landscape, a very interesting corner is given by (massive) type IIA
compactifications with RR and NSNS fluxes, in the sense that one may achieve full moduli
stabilisation using only classical ingredients, as already mentioned. Early results on this
subject display a non-trivial set of classical ITA flux vacua to AdSy [32,33,49,92-107].
Some of these solutions are based on the results of [23], which combines the classical
Kahler potential of Calabi-Yau (CY) orientifolds and the superpotential induced by RR
and NS background p-form fluxes to obtain an effective F-term potential, as reviewed in
chapter 2. In particular, ref. [49] obtains a discretum of N' = 1 AdS4 vacua from such
an effective 4d approach. The same strategy was implemented in [32] for the specific case
in which the Calabi-Yau is a six-torus, finding different branches of supersymmetric and
non-supersymmetric AdS, vacua.

In this chapter we extend the general analysis of [49] to find further vacua of the
classical 4d potential of [23], which are not necessarily supersymmetric. The motivation
to analyse this particular setup is two-fold: on the one hand, it has been recently shown
in [30] that the type IIA CY flux potential can be expressed as a bilinear on the flux
quanta, in which the dependence of axions and saxions factorises -see section 2.2-. As such,
the extremisation conditions take a particularly simple form, already exploited in [64,65]
in the search for new vacua. On the other hand, Calabi-Yau orientifolds with fluxes
constitute an interesting arena to test the recent Swampland conjectures involving string
compactifications to AdS [75, 76], and in principle they could provide counterexamples
to them -recall 2.3-. In order to properly address whether or not this is the case, it is
important to determine the full set of vacua that corresponds to this construction.

Needless to say, solving for general vacua of a potential is more involved than re-
stricting the search to supersymmetric ones. In the last case, even when the Kéahler
metrics for moduli fields are not fully specified, the vanishing conditions for the F-terms
allow rewriting the vacua conditions algebraically, significantly simplifying the analysis.
Interestingly, the factorised form of the potential found in [30], which features a number
of flux-axion polynomials invariant under discrete shift symmetries, allows implementing
a similar strategy in the search of more general vacua. Indeed, we find that by imposing
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Chapter 3. Search of vacua: RR and NSNS fluxes

a simple off-shell Ansatz for the derivatives of the potential in terms of the flux-axion
polynomials, the extrema conditions can also be expressed algebraically. By solving them
we find several branches of extrema, one of which corresponds to supersymmetric AdS
vacua, other to the non-supersymmetric Minkowski vacua discussed in [108], and the rest
are different branches of non-supersymmetric AdS solutions. Compared to previous res-
ults in the literature, on the one hand we find a one-to-one correspondence between our
branches of solutions and those found in [32] for isotropic toroidal compactifications. On
the other hand, we find that some of the extrema found in [107] are incompatible with
our results. Our approach also permits to analyse the perturbative stability of these new
AdS solutions, solving for the spectrum of flux-induced masses for the simplest branches
of extrema. In those cases we find some branches where tachyons are absent, and some
others where they are present but satisfy the Breitenlohner-Freedman bound. Finally, our
strategy can be easily generalised to include moduli and fluxes in the open string sector,
providing an even richer landscape of AdS flux vacua.

The rest of the chapter is organised as follows. In section 3.1 we rewrite the clas-
sical F-term potential associate to ITA Calabi-Yau orientifolds with fluxes in a bilinear
formulation. In section 3.2 we implement our Ansatz to solve for the extrema conditions,
finding several branches of solutions which are summarised in table 3.1. In section 3.3
we analyse the perturbative stability of some of these branches and find that they can be
considered perturbatively stable, see table 3.2. Section 3.4 discusses the validity of these
solutions from a 4d viewpoint. Section 3.5 generalises the setup to include D6-brane with
moduli and the corresponding worldvolume fluxes. We draw our conclusions in section
3.6, and relegate some technical details to the appendices. Appendix A.1 contains some
Kahler metric relations used in the main text, already introduced introduced in the pre-
vious chapter, while appendix B performs a detailed analysis of the Hessian for several
branches of solutions.

3.1 Type IIA orientifolds with fluxes: bilinear formalism

In the following we will focus on (massive) type IIA flux vacua whose internal geo-
metry can be approximated by a Calabi-Yau orientifold, as assumed in [23] to derive the
F-term potential used in [49]." We will express the scalar potential directly in the fac-
torised bilinear form of [30]. As pointed out in there, the bilinear form of the potential
is independent on whether the background geometry is Calabi-Yau or not and, as it will
be clear from the computations in the next section, so will be the strategy to extract the
vacua from it.

Let us consider massive type IIA string theory compactified on an orientifold of

L3 % Mg with Mg a compact Calabi-Yau three-fold. As discussed in section 2, the
4d effective theory is described by a N' = 1 supergravity. The presence of RR and NS-
fluxes suffices to generate a four-dimensional F-term scalar potential for the geometric
moduli (%, u*) and closed string axions (b%, {#), whose precise shape exhibits a remarkable
factorisation into a geometric moduli piece, an axion piece and a flux piece [30, 48] -see

1 Using such potential to search for vacua is justified a posteriori, by arguing that the flux-induced scale
can be made parametrically smaller than the Kaluza-Klein scale, in the same region where corrections
to the potential can be neglected, see [49] and section 3.4.1. Therefore, even if in the presence of fluxes
the compactification metric is not Calabi-Yau, it is expected that the fluxless Kéhler potential is a good
approximation to capture the 4d dynamics. See also [109,110] for some objections to this approach.
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3.2. Type IIA fluz vacua

section 2.2-. Namely, we have a bilinear structure of the form

1, -
V=—=p'2p, (3.1)
Ky

where the matrix Z only depends on the saxions {¢,u}, while the vector p only on the
flux quanta and the axions {b,£}. More precisely, the dependence of the flux quanta is
linear, and so one may write £;0 = R’ - ¢, with R’ an axion-dependent rotation matrix
and ¢ = (eq, €q, m®, m, hy)" the vector of flux quanta. In general the entries of § are
axion polynomials with flux-quanta coefficients that are invariant under the discrete shift
symmetries of the combined superpotential W = W+ Wq. In the case at hand they read

lapo = €0+ Cab® + LCupemBUE + T bIBPDE + B W,

lspa = eq+ ,Cabcmbbc + %Kabcbbbca

lsp® = m®* 4+ mb°, (3.2)
bsp = m,

lopu = hy.

In this basis, the saxion-dependent matrix Z reads

Z =X KK , (3.3)
%IC2 %ICu“
2w KM

where K = K + Kq, Kg, = %ataatbKK, and K, = %&M&JVKQ, and with upper indices
denote their inverses.

3.2 Type ITIA flux vacua

As already exploited in [64,65], the bilinear structure of F-term potential (3.1) can be
used to look for vacua in type ITA flux compactifications. In this section we will generalise
this approach and implement a quite general strategy for the search of extrema of V', that
will lead to different branches of solutions for the case of CY orientifold flux backgrounds.
These branches will mostly describe new non-supersymmetric AdS solutions, but they
will also contain the supersymmetric AdS solutions of [49] and the non-supersymmetric
Minkowski solutions of [108]. As we will see, these vacua correspond to the branches of
the toroidal type IIA flux vacua found in [32], but now generalised to the much broader
context of Calabi-Yau geometries. In the next section we will analyse the spectrum of
some of these extrema and see that they are, in fact, classically stable AdS vacua.

3.2.1 Extrema conditions

Let us start by writing explicitly the different extrema conditions, grouped into the
first order derivatives of the F-term potential (3.1) with respect to the axions {&#,b%} and
saxions {u*,t*} of the compactification. Using the explicit expressions for Z and p we
find:

Axionic directions
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ov o
ogn| = 8e” popu = 0 (3.4a)
vac
ov 8 oo - .
el = e 8popa + §IC2,OCKcap + 20 KK gopt =0 (3.4b)
vac vac
Saxionic directions
ov 4
| = e’ e RV, K + glCﬁﬁM + 0, K" pups =0 (3.5a)
U vac vac
ov 4 2
e ek [eK VO,K + 0, §IC2ﬁbﬁCKbC + 0. K popg + Kap 3Kp+ dup, =0
vac vac
(3.5b)

Interestingly, manipulating these condition one may rederive the inequality found
in [111] that in turn prevents the existence of de Sitter vacua. Indeed, using the properties
listed in appendix A.1 it is straightforward to see that, off-shell:

m 1 a SeK 2 ~a~b K 2 46K ab
ut OV + gt OV = =3V — 2—71C PP Koy — 8e™ pg — TK PaPb - (3.6)
At each extremum, where 0V = 0, this equation shows that V|extremum must be negative
or vanishing. In particular at a vacuum Vv, < 0, forbidding any dS vacuum at the
classical level. It would be interesting to see if the above kind of relation is preserved or
violated by the different corrections to the classical approximation, along the lines of [112].

3.2.2 The Ansatz

Rather than solving the extrema conditions (3.4) and (3.5) by brute force, in the
following we will use the algebraic properties of the axion polynomials p4 to set up an
Ansatz to look for vacua. To describe such Ansatz, we will first convert the vector p’ into
a different vector 7, of the form

Y0 po — peo
Ya Pa — P€a
p—= =3 |=1 p*"—pe* |, (3.7)
’AYu ﬁu - ﬁgu
p p

which can be seen as a (field-dependent) change of basis. The moduli-dependent functions
€ are such that 4 has only one non-vanishing component at the vacuum. Namely we define
them such that ¥|yae = (0 0 0 0 p). Of course, this does not really constrain what
the €’s may be, because there is an infinite number of functions with the same value at
a single point. However, we will impose an Ansatz that will significantly constrain this
freedom. Indeed, in the following we will look at vacua such that, off-shell,

0V = xAya (3.8)
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where v4 = {70, V4, 7% 4.} runs over all the components of ¥ except g, and Xé are some
regular functions of the moduli, with the latter indexed by «. Notice that this essentially
implies that the €4 are also regular functions of the moduli.

In order to implement this Ansatz, it proves useful to rewrite the potential and the
extrema conditions in terms of the v basis. We have that

= —=7'27, (3.9)

where, unlike the pa, the elements of 4 are regular functions that depend on both the
axions and the saxions. The bilinear product now reads

4 €0
Kab Kabea
7 =K K2 Ko , SK2K e , (3.10)
Kh 20 + KMve
3 H
€0 Kabeb %’CQKabgb %K:’LL‘“ + Kuyéy %]C2 + «

where 4 4
a=e+ K%,e + §IC2Kab€“€b + K18, + SKute, . (3.11)

The strategy will now be to extremise V in this basis, in order to obtain the different
expressions for the €’s or, in other words, the functional dependence of v4. To each class
of solutions will correspond a different class of vacua.

Notice that we can split the scalar potential as

V=WVi+Vo=7"217+7"Z7, (3.12)
where
4
Kab
7y = 2K , (3.13)
KHv
0
and
0 €0
0 Kbe,
Zy =X 0 2K . (3.14)
0 2K + KMe,

0 K% $K°Kue® 2Kut+ K'e, K% +o

Note also that Vj is positive semidefinite, while V5 is not. Because V; is quadratic on
quantities that vanish at the vacuum, the extremisation conditions are equivalent to taking
derivatives with respect to V5 only

OVlae =0 <= IOValyac =0. (3.15)

In this sense, our Ansatz (3.8) requires something stronger than (3.15). Namely that, off-
shell, V3 is a function which is at least linear in the v4. In the following we will classify
the different classes of solutions that arise from this requirement.
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3.2.3 Branches of vacua

Let us now turn to solve for the extrema conditions (3.4) and (3.5). As we will
see, rewriting them in the form (3.15) makes it easier to classify the different branches of
solutions. Later on we will discuss how such branches reproduce and generalise previous
vacua found in the literature.

Axionic derivatives

Already from the initial expression (3.1), (3.2), (3.3), one can see that V' depends
quadratically on pg, which is the only quantity that depends on the complex structure
axions £". Moreover, as it depends linearly we have that

0 .
8§HV - 86Kpoaigo = 8€Kp0pu7 8§uv|vac =0— P0|vac =0]. (3'16)
m

Therefore, in our Ansatz (3.7) one may take ¢y = 0, as we will do in the following.

Let us now look at the derivative with respect to the B-field axions:
8
Opa Vo = pPel€ §K2Kab€b + 2K e Copef® + ... (3.17)

where we have used that Opapp = Kapep® and Jpa ﬁb = ﬁdg, and the dots stand for terms
linear in the v4. The Ansatz (3.8) has then two possible solutions:

= Branch Al:
& =0 — lvac = 0. (3.18)

= Branch A2:

Let us assume that & # 0 and multiply (3.17) by t®. Using the relations in appendix
A1, one sees that a necessary condition for the bracket in the rhs of (3.17) to vanish
off-shell is

1 1
€q = fZlCd — Palvac = — ZplCa. (3.19)

Replacing this result in (3.17) one obtains a 2nd condition:

— 7%lvac = Bt?, (3.20)

with B # 0 some regular function of the moduli.

Saxionic derivatives

The saxionic derivatives conditions are, for the complex structure moduli:
2

K 4
Ouo Vo = p?el |00 K ot 4 (Ouor KM) €6, + FKéo | +

46K ~ I K ~g-uv » A 8€K 2~ ~b za K ~grab
+ Oyo TICpu +2e” pKH*éE, Ay A+ Ouo TK PEp € A%+ Oy 27 pK%eq 7.

(3.21)
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3.2. Type IIA fluz vacua

Notice that if one contracts (3.21) with u? and uses that u?dyc K*¥ = 2K"" one obtains:

e K

1 17PN A~ 1 2 b 4 2 ~a~b
—TﬁQ’U/Jaua‘/Q = §K’u €H€V + Ku“eu + §IC -+ Ka €a€b —+ §IC Kab€a€ 4+ ... (322)

where the dots stand for terms linear in v4.

Finally, the Kéhler saxionic derivative reads:

2

K 1 4
ata‘/g = eK[)Q ataK ? +a + §8talC2 + ataKbc €p€c + §ata K:QKab gagb + 4]Cau“€u +

4€K ~ K ~g-uv 2 SBK 2~ ~b zc K ~1-cb
Opa TICpu +2e" pK"e, Ay + O TK PKp€® A4 O 2 pKPe. .

(3.23)
Proceeding as before, one can contract (3.23) with ¢* to obtain:
e L2 b 4,0 b
> 10 Vo = SK? = K"eec + GK?Kapee — BK™ ey + ... (3.24)

where again the dots stand for terms linear in the 4 and we have used that t%0s K =
2K and t%0p K?K,, = 4K2K,,. Notice that both the first line of (3.21) and of (3.23)
depend on p but not on any other component of g. As such, they cannot depend on the

v4. Following our strategy, we will then demand them to vanish off-shell, ensuring our
Ansatz (3.8) and therefore that Oye V|vac = OpaV |vae = 0.

To proceed, let us consider the general Ansatz for €,:

& = AKO K + K&, with  u'eh =0, (3.25)

where A is some function of the moduli, and the factor of K has been introduced for later
convenience. The term €}, is a ‘primitive’ component of €,. We will first consider the case

where €}, = 0, which we dub:

= Branch S1: €2 =

On the one hand the vanishing of (3.22) becomes
2 1 —2 ab 4 ~a~b
4A — 8A° = 9 + K2 K%¢q¢ep + §Kabe e, (3.26)

which we impose off-shell. On the other hand the vanishing of (3.24) reads

1 4
48A% = 3 K 2K epe. + §Kab€“€b7 (3.27)

to be understood also off-shell. Combining these two equations we find

1 9
Kpe®e® = -5+ 5A + 4542, (3.28)
Kab 1

KZ“E” = 5 +24-284% (3.29)
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For the Branch A1 one finds the following solutions:

1 3 K
A = — a = :l:i a € = — K .
= | IOIC € 158u (3.30)
1
A=—2 = &= ii\/ilca, (3.31)

the second one being unphysical. For the Branch A2 one finds

1 5 1 ~ 1 . K
A = o2 . P iita &y = ﬁaﬂf( (3.32)
1
A=—-—— 5 B?’<0 3.33
. , (3.33)

again the second solution being unphysical.

= Branch S2: | &) #0

Finding solutions in this branch is in general more involved, as one needs some more
specific information on the Kéhler potential for the dilaton and complex structure
moduli. Things however simplify if one considers a Kéhler potential of the form

Kg = —log(2s) — 2log G(u') (3.34)

where G is a homogeneous function of degree 3 /2 on the geometric complex structure
moduli. This kind of Kéhler potential was used in [64, 65, 108] to construct N' = 0
Minkowski flux vacua. Since in this case the metric for the dilaton and other complex
structure moduli decouple, it is natural to make the following Ansatz

¢ = BoKOK = —F~ . &= EKO, K = _omc 29 , (3.35)
s g

with E, Ey functions of the moduli. Then we may easily derive two equations from
(3.21), namely

4 1
OsVo=0 — S8EK*— §E01C2 = §IC2 +a (3.36)
. 4 1
wd,Vo=0 — 8E?K?— gE/C2 = 5/@ +a . (3.37)
Notice that F, Fy are solutions to the same quadratic equation, so if F # Ey then
necessarily
1
E+ Ey= 6 (3.38)
Using this we can rewrite (3.37) as
2 8 —2 y-ab 4 ~a~b
—8E° + §E =K K%, + §Kabe e, (3.39)

Moreover, from (3.24) and using (3.38) one obtains
4
48E? — 4E = —K?K"¢pe, + §Kabgagb. (3.40)
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To sum up, one finds the equations

1

Kpe®e® = 9 5E2—6E : (3.41)
K%¢,e, 5 10

= —28E°+ E. 3.42

K2 T3 (342)

In the following we will analyse the possible solutions for the two axionic branches.

For the Branch A1 one finds the following solutions:

E=0 — [ea=0], €0:—%, (3.43)

1 V6 . 21|, K
E—i — fa—j:TOICa 60——1758 GZ—%

O K |. (3.44)

One can check that (3.43) corresponds to the Minkowski vacua analysed in [64, 108].
For the Branch A2 one finds

1 By 1 . K . K

E = ﬁ — €a = j:§ta, €0 = Eauol(, € = EauzK (345)
1 1 11K K

E=o — |@=+4—t"|ég= ——— | |& = —0,K|. 4
28 ‘ 1l || sas | |~ 8% (3.46)

Note that (3.45) is in fact a special case of the Branch S1. For all the other solutions
one can express things in terms of the Ansatz (3.25) as

R E 1 .
€y = 3 + 21 Koy K + ICeg, (3.47)
with
R 1 3FE R E 1
&= 3”3 0K , & = 3" 0, K . (3.48)

So in total we find two (double) classes of AdS solutions in the Branch S1 and two
(double) classes of AdS solutions in the Branch S2, where in the latter we have
assumed the factorised metric Ansatz (3.34).

Uniqueness of the solutions

Some comments are in order regarding the uniqueness of these solutions. An implicit
assumption of the above discussion is that the Kéahler metric K}‘{b is irreducible. If the
metric display a block-diagonal structure, as for instance in toroidal orientifolds, then
more solutions are recovered. Indeed, one can check that in that case the choice of sign
for the €,’s in (3.30) and (3.44) can be made independently on each block. Each choice
corresponds in principle to a different solution, as it is related to different signs of the flux
quanta. The election of the signs will not be reflected in the value of the Viacuum - which
is invariant - but it will affect the F-terms and the spectrum of light modes. Unless stated
differently, in the following we will consider a generic irreducible Kéhler metric, for which
the choice of sign must be equal for all €,’s.
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Chapter 3. Search of vacua: RR and NSNS fluxes

3.2.4 Summary of the vacua and physical properties

Let us recap the previous results and compute some of the properties of these ex-
trema:

General structure

All the solutions found for the vacuum equations satisfy:
pPo = 0, ﬁu = ﬁlC AauuK + €E 5 ﬁa = Bﬁta, Pa = Cﬁ/Ca, (349)

with A, B,C' € . The Branch A1 has B = 0, whereas the Branch A2 has B # 0, C' =
—1/4. The Branch S1 has ¢}, = 0 whereas the Branch S2 has ¢}, # 0. It is convenient
to point out that as long as A # 0, C' # 0 - ignoring the complex structure axions for the
moment - there are as many equations as moduli so in principle all the moduli can be fixed.
Regarding the complex structure axions, only the linear combination that appears in the
superpotential (2.24) is fixed. As pointed out in [32], this allows the remaining axions
to participate in the Stiickelberg mechanism present in the presence of space-time-filling
D6-branes, while guaranteeing the gauge invariance of the flux superpotential.

Kéahler moduli stabilisation

The structure (3.49) provides several relations between the Kéahler moduli and the
axion polynomials of the compactification. In particular, the last two equations involving
pe and p® provide 2hM! relations between the quantised zero-, two- and four-form fluxes
and the complexified Kéhler moduli. By using (3.2) one may derive an explicit relation
between the geometric Kdhler moduli and the quantised fluxes. Namely we have that

1 Kopem®m

b
1
:JJEIC—iBZ, (3.50)

€a = Ca 2 m
where we have defined a shifted four-form flux é, analogous to the one in [49], invariant
under discrete shifts involving Kéhler axions and fluxes. It follows from this relation that
whenever B? = 2C one needs to impose &, = 0 in order to have a sensible solution for
the extrema conditions, and that then the individual K&hler moduli are not stabilised.
One can check that this is the case for the branch (3.43), corresponding to the non-
supersymmetric Minkowski solutions analysed in [108], see also [64,65]. As pointed out
in there, for Minkowski vacua the constraint on the fluxes é, = 0 is lifted once that o’
corrections for the Kéhler sector are taken into account.

Vacuum energy

Using the expressions (3.6) and (3.49) it is straightforward to see that the vacuum
energy has the following general expression:

2 16 eK
A=Vl]pe =— —B>4+—=0? —K?5%. 51
14 5B+ 5 C REICp (3.51)

F-terms
Using (3.49) and the expression for the F-terms derived in [64] one can directly

compute them for each of the above extrema

1 B
FTa . ﬁ/Ca —% - Z + 6A + Zlcaﬁz 3 (352)
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- c 1 B .
Summary
Finally, we gather all the above results in table 3.1:
Branch H A ‘ B ‘ C ‘ KA ‘ Fra Fyu
B ice ~
A1-S1 || £ | 0 | & —i;%/@;ﬁ 3~0 3Kp
1 3 252
A1-S1 15 0 —10 - ,?5 K 1% Tglca —T)pau,uK
Fs= —++¢ Kpo,K
A1-S2 | I | 0 | &¥B | _seg2g | _Cy L gp v e
1 C ~
A1-S2 || L | 0 0 0 0 Fs=0, Fyi=-"20,K
o — - -
A2-S1 || & | £3 | -1 | —4K%p? S+ 5K, — L +iB KpowK
11, B 5
A2-82 || 5 |+ | -1 | —lefg2p 185K 5= mmtT Lok
84 14 1 291 "~ P 56Pva 7 B e
Fpi= —51+ % Kpo,: K

Table 3.1: Different branches of solutions with the corresponding vacuum energy and F-terms.

The solutions in the branch S2 assume the Kéhler potential (3.34).

As already mentioned, when the structure of the metric in the Kéahler sector is block
diagonal, this allows to choose the sign of C' independently in each block and therefore
the corresponding value of the F-term. In particular, in the Branch A1-S1 one can then
break SUSY independently in each of the block-diagonal sectors.

3.2.5 Relation to previous results

As a cross-check of formalism and the solutions discussed so far, let us compare them
with some of the existing results in the literature. We will analyse three different papers,
presenting their main results schematically. We refer the reader to the original papers for

further details.

1. Comparison with DGKT [49]

This paper analyses the general conditions for A/ = 1 Calabi-Yau orientifold vacua,
which are then applied to the particular orbifold background ®§-’:1Tj2 /73. At the
general level, one can easily map our conditions for the A1-S1 SUSY branch with

the equations of section 4 of [49]. For instance, the condition

ma

pr=0—=0"=—-——, (3.54)
m
is equivalent? to (4.33) in [49]. This implies that
3 . 3 bac
Pa = —pKo — Eq = —mqpet t°, (3.55)

10

10

There are some signs differences which arise form the different conventions in the flux quanta definitions.
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Chapter 3. Search of vacua: RR and NSNS fluxes

which is equivalent to (4.36) in [49]. Regarding the dilaton/complex structure sector,
on the one hand one can see that the equations (4.24) and (4.25) in [49] are equivalent
to (3.37) of [64] and to the second condition in (3.30). On the other hand, one can
check that the eq.(4.26) of [49] that fixes one linear combination of axions £ is
equivalent to pg = 0.

The same statements hold when applying the above to the specific background
®§?:1Tj2 / 2. Before the inclusion of fluxes, the moduli space of this compactification
consists of the axio-dilaton and 12 complexified Kéhler moduli: 3 of them inherited
form the toroidal geometry, and 9 associated with the blow-ups of the orbifold sin-
gular points. Since there are no complex structure moduli, the only necessary inputs
to solve our equations are the intersection numbers, given by:

Kijk =K <= i #j#k, Kaaa =8, (3.56)

where i, j... label the toroidal Kéhler moduli and A, B... the blow-up modes. Apply-
ing (3.54) and (3.55) to this model one finds

.3 5€;éy, ~ 3 10é4
Pi 10P i i \/;/iéi’ PA 10)0 A A 3,3777,7 ( )

. 2
with & = e; — /im;;nk, s = ey — 62%, which is equivalent to (5.5) and (5.8)

in [49]. One can equally recover egs.(5.10) and (5.12) from applying the conditions
of the A1-S1 SUSY branch. Therefore our results reproduce the analysis in [49], as
expected.

2. Comparison with NT [107]

This paper considers the same orbifold background as [49], but searches for non-
supersymmetric vacua as well. By approximating the potential to its leading terms
in certain flux quotients, more solutions to the extremisation equations are found,
which are labelled as {Case 1), ..., Case 8)}. Case 1) stands for the supersymmetric
solutions already found in [49]. Case 2) is related to Case 1) by an overall sign flip in
all the RR four-form fluxes, that is by an overall sign flip in the p, or equivalently in
the €,. Therefore, Case 1) and 2) correspond to the two components of the branch
A1-S1 in table 3.1. Finally, Cases 3), ..., 8) are obtained by partial sign flips in the
four-form fluxes corresponding to the toroidal and blow-up two-cycles, and some of
these cases are identified as classically stable vacua while others are not.

However, one can check that once that the blow-up moduli are introduced the metric
in the Kéhler sector is irreducible. Therefore, from the viewpoint of our analysis,
none of the cases 3), ..., 8) would be actual extrema of the scalar potential. This
can be seen for instance by means of the equation (3.29): performing partial sign
flips in the ¢,’s will change the LHS for an irreducible Kéhler metric, while the
RHS remains invariant. The fact that the analysis in [107] identifies these cases
as extrema is presumably due to the approximations made in the potential, which
effectively removes the kinetic mixing between the different Kédhler modes.

3. Comparison with CFI [32]

In this case the CY orientifold is given by ®§.’:1sz /2 (=1)*% &, so there are three
complexified Kahler moduli, three complex structure moduli and the axio-dilaton.
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3.8.  Perturbative stability of the solutions

To find different branches of vacua the simplification T3 = Ty = T3 = T is imposed
in the Kéahler sector. The relevant data to apply our results are:

Kijr=1 < i#j#k, Kq ~ —log (uguiugus) (3.58)

where we are using ¢, j... to label the Kéhler moduli and p, v... to label the complex
structure moduli (U?) and the axio-dilaton (U?). The two branches A1l and A2
become:

- Cco 1._
pb‘vaCZO%b:_Fy Pa|vac:_1plca_>b:

—C9 + I — ﬁ2t2/2
F;
respectively. Here, as in [32], we have dropped the indices in the Ké&hler sector,
renamed m® = ¢, e, = ¢1 and defined I' = ¢2 — mc;. Notice that these are precisely
the two branches found in eq.(4.23) of [32], up to some sign due to different conven-
tions in defining flux quanta. Inside each branch, we have distinguished between the

subbranches S1 and S2 that read:

. (3.59)

. . . L. . .
€, =0 — prug = poug , E+ Ey= g Pruk = pt* — pouo (3.60)

which are precisely the two sub-branches in eq.(4.24) of [32]. Once that we have
matched the branches, is direct to see that, in the vacuum:

s Branch A1-S1
I, (3.61)

w| ot

R K ~ 2 . 30 ~

equivalent to (4.25) in [32].
= Branch A1-S2

A

K 4 V65 5
i = —0,i K — poug = —=pt> o =t—K, >t =7——=I', (3.62
pi = 350 Pouo SO p 10 =T (3.62)

equivalent to (4.26) in [32].
= Branch A2-S1

K 1 ot® 4
ﬁﬂ == EOUMK — pAHU# — —iﬁti;, ﬁa — Zl:% — t2,(~)2 — gr, (363)
equivalent to (4.27)-(I) in [32].
= Branch A2-S2
K 11 e 196
pi = —O0ulK — poug = ——pt*, =L s t?p=—"T 3.64
pi = 5g0u pouo = = P, P ¥ pr=g L (364

equivalent to (4.27)-(II) in [32].

3.3 Perturbative stability of the solutions

Given the above families of extrema of the flux-induced potential, a natural question

is which ones are actual vacua. In the following we would like to analyse this question at
the classical level, by computing the spectrum of flux-induced masses on the former moduli
fields. In particular, we will check whether the non-supersymmetric AdS extrema have
any tachyonic direction with a mass below the BF found [113]. For simplicity, we will do
this computation focusing only on the A1-S1 and A2-S1 branches, leaving the S2 branch
for further work. In chapter 7 we will go one step further and study the non-perturbative
stability of branch A1-S1.
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3.3.1 The Hessian
By construction, we have a potential whose first derivatives are of the form
9oV = X4, (3.65)
with x4 some regular functions of the saxions and the p’s. Therefore we have that
008V lvac = Xa40574 (3.66)

where we have imposed our extremisation conditions 74 = 0. In fact, since V; is quadratic
in the ¥, 0?Vj |yac must be quadratic in 7. Indeed, one easily sees that

aaaﬁvllvaczz 8(1:);1: Zl 8,6”7 (3'67)

where o = {¢#, b u®, 9}, Z1 is defined as in (3.13) and we have defined

’?t: 00 Yo A A P, (3.68)

denyjt= h, 0 0 0 O ,
O = pe Kacad® 026 0 0
Oyt =0 0 0 —pAKOL0,K — pKOaé? 0
Ot = 0 —2pCKoe —pBI¢ —3pAK0,K 0
Notice that (3.67) is a product of two vectors with a positive definite metric. Therefore it

corresponds to a positive definite Hessian, in agreement with the fact that V7 is a sum of
squares. The matrix of second derivatives of V5 yields, by direct computation,

D005 Valvae = 2170 21057 = 2007 Z11j} (3.69)

where we have defined

=000 0 0, (3.70)

Ma=p 0 0 3CK*KCy 0 0 ,

fita =p 0 COKKy BO.Kt* 2—4A % (0,0,K — 0,K0.K)+e KKpKg,0. XK 0 |

Mha=p 0 LKy 3EKY™K. Koué, 0

Unlike (3.67), the term (3.69) is in general not definite, and may yield tachyonic directions.
Putting both results together we find that the matrix of second derivatives is given by

9003V |vac = 2 007" Za 9p7 +1p (3.71)

which can also be written as:
60485‘/|vac = 8&'}7;"t + ﬁZt Z1 6,8% + 77_,5’ + aa%t Zl aﬁ’%’ - nﬁtzlﬁ_/} . (372)
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3.3.2 Flux-induced masses and perturbative stability

The explicit form of the Hessian for the different branches A1-S1 and A2-S1 is
given in Appendix C.3, where the computation of its physical eigenvalues along tachyonic
directions is also performed. The relevant results for classical stability are summarised in

table 3.2:
Branch Tachyons | Physical eigenvalues | Massless modes
A2-S1 0 - 2N
A1-S1, SUSY N M, = SMhp N
A1-S1, Non-SUSY | N +1 M = SMEp N

Table 3.2: Massless and tachyonic modes for the extrema in the branch S1. Here N stands for
the number of complex structure moduli. The extra zero modes in the branch A2-S1 are discussed

in appendix B.3.

Let us highlight some of the features resulting from this analysis:

Each vacuum has at least N zero modes, which are the complex structure axions
that do not appear in the superpotential (2.24). As such, they do not appear in
the F-term classical scalar potential, as one can check directly from eqgs.(4.2)-(3.3).
Therefore they constitute N flat directions of the classical potential. These unlifted
axions may be eaten by D6-brane gauge bosons via the Stiickelberg mechanism [32].

As expected from the analysis in [114], there are N tachyons with mass %|m Br|? in
supersymmetric vacua. Such modes correspond to the saxionic directions that pair
up with the flat axionic directions into complex fields. That is, they correspond to
the saxions that do not appear in the superpotential (2.24).

As shown in appendix B.2 the same tachyons are present in the non-supersymmetric
vacua within the branch A1-S1, with the same mass in terms of the BF bound.
Moreover, such non-SUSY vacua contain an extra tachyon which is a combination
of complex and Kéhler axionic directions, with exactly the same mass as the rest.

All these tachyons are absent in the A2-S1 branch of solutions. Indeed, as shown in
appendix B.1, all the solutions of this branch have a positive semidefinite Hessian.
The tachyonic modes of the saxionic sector of the branch A1-S1 are zero modes
in this branch. They are however not flat directions and develop a positive quartic
potential, see appendix B.3 for a detailed discussion. The rest of the spectrum does
not arrange into mass-degenerate complex scalars.

A general analysis is more involved for the S2 branches. Following [32], we have
analysed them for the particular case of isotropic toroidal compactifications (i.e.,
where all three complex structure and three Kédhler moduli are identified as U; = U
and T; = T, respectively). We have found that AdS solutions in this branch contain
tachyons not satisfying the BF bound, and are therefore perturbatively unstable. It
would be interesting to see if this feature is also present for more general solutions
and compactifications within this branch.
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3.4 Validity of the solutions

In the following we analyse the validity of our solutions from the 4d perspective. We
relegate the analysis from the 10d perspective to chapters 5 and 6.

3.4.1 4d analysis and swampland conjectures

Since the different branches of solutions have been found via a classical potential V,
one should check that they fall in the compactification regime in which the corrections to
V' are negligible. More precisely, a necessary condition to trust the above solutions is that
the Kahler moduli are stabilised at sufficiently large values - so that o/ corrections can be
neglected - and the string coupling at small enough values - so that quantum corrections
can also be neglected. In the following we will generalise the 4d validity analysis made
in [32,49] to our solutions, obtaining similar results. In short, the scaling of the volumes
and couplings with the fluxes follows the same pattern as in these references, which allows
to fall in the required regime for large values of the shifted four-form flux. Indeed, we have
that

1 B? é
-1, _ = T2 2 = ~
U e =pk, C 2B - = C 5 — (3.73)
t3mA
pu=pKASK — u~ ’Z : (3.74)

where for simplicity we have assumed isotropic fluxes h, ~ h, é, ~ é. Since the é, are
unconstrained by tadpole equations, in principle we are free to scale them to be as large
as needed. Assuming that 2C # B2, the moduli dependence on this scaling is given by

t~el/2, un~ed?. (3.75)

In addition we have that

el vyt v el el T2 e? = VolyeP ~ 1732 ~ o734, (3.76)

These are the same scaling relations found in [49] and so, for large é, we are in a regime
of large volume and weak coupling that prevents large corrections. Finally, one can check
that the four-form density scaling is similar to [49] and therefore the corresponding higher
derivative corrections are equally suppressed.

Additionally, one can check the scaling of the different mass scales, following for
instance the relations given in [64]:

Myk oI5 T2 é—7/4’

Mp V23
A t3
T K K2m2 ~ =~ t73 ~ 2 (3.77)
P

RaasMp ~ A~ Y2Mp ~ &9/4

We then recover the same scaling as found in [49], and in particular the same parametric
separation between the compactification scale and the AdS radius:

R . . M R
TAdS ) p1/2 Bxk ~ RIS, — ZEE L R718, (3.78)
RKK MP
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where R = RMp and A= A/M3. Lastly, using the results derived in appendix B.2, for
the A1-S1 branch we have:

1

2 2
Mmoduli ™~ MBF ™~ A~ R2 ’ (379)
AdS
where mfnoduh refers to the canonically normalised mass of the moduli becoming massive.

Regarding the swampland conjectures, the last relation (3.79) satisfies the criterium
suggested in [86] for the lightest scalars -recall section 2.3.2-. It would be interesting to
check if the spectrum of Stiickelberg masses associated with the zero modes as well as the
spectrum of the other branches still satisfy this relation. In terms of the AdS conjectures
formulated in [76], all the AdS vacua found in our analysis satisfy the plain AdS Distance
Conjecture, while the supersymmetric ones would fail to satisfy its strong version. It was
suggested in [76] that this failure could be related to the lack of knowledge of the full 10d
supergravity background describing such vacua -which are only satisfied in the smearing
approximation- and that the back-reaction of the sources could spoil the separation of
scales. In fact, to date the absence of a solution to the 10d equations of motion holds for
each of the AdS vacua found in our 4d analysis, and is to be expected that finding their
10d description is at the same level of difficulty. This problem will be addressed in detail
in chapters 5-6. Finally, there is also the non-Supersymmetric AdS Instability Conjecture,
which predicts that the A/ = 0 vacua found should suffer from instabilities. We have seen
in the previous section that these non-susy AdS vacua are stable at the classical level. We
will examine branch A1-S1 in light of this conjecture in chapter 7

3.5 Including mobile D6-branes

As in [63,115,116] we may generalise the above setup by considering type ITA ori-
entifold compactifications where D6-branes have deformation and Wilson line moduli. In
order to preserve supersymmetry such D6-branes must wrap special Lagrangian three-
cycles I, C Mg with vanishing worldvolume flux [117,118]. Then the open string moduli
space is characterised by b1 (Il,) complex moduli [119,120]. These are defined as [30, 64]

=Tl — 0o = O +i 05, (3.80)

where i runs over the integer harmonic one-forms (; of Il,, ¢?, is the Wilson line corres-
ponding to each of them and f! , is a function of the corresponding geometric deformation
of I1, defined in terms of a chain integral. We refer the reader to [30,63,64] for further
details on these definitions.

For each harmonic one-form ¢; € H!(Il,, ) there is a two-form n' € H?(Il,, )
along with a worldvolume flux F' = n%; that can be turned on. This enters the D6-brane
DBI action and therefore the scalar potential in the combination n%.; — % g’ by, where gl
is also defined in terms of a chain integral [30,63,64]. As such the presence of such fluxes
generates a potential, captured by the superpotential

tsWpg = @, (n; —ng, T + LWo (3.81)
where 1
Ng; = B o, wa N Gi € (3.82)
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are non-vanishing whenever the two-cycles of II, are non-trivial in Ho(Msg, ). Indeed,
as pointed out in [121] in this case the open string moduli develop a potential due to the
D6-brane backreaction on a compact space.

An important effect to take into account is the field redefinition of the closed string
moduli in the dilaton-complex structure sector in the presence of open string moduli. We
have that the new variables read [30, 64]

1 .
Ut = Uf + 5 Z g;,uaeét - TaH#a ) (383)

where U stand for the complex structure moduli in the absence of mobile D6-branes,
namely (2.13), and U* are the redefined 4d variables. Finally H¥  are functions of the
saxions defined in terms of £, and g!', [30]. Notice that (2.14) is a function of u%, which
is to be written in terms of the new 4d variables by means of (3.83).

A similar statement holds for the scalar potential, which still has the form (3.1) but
now with

4 0 0 0 0 0 0
0 K 0 0 0 0 0
P0
0 0 KKy O 0 0 0 A
ﬁ/a
Z=1|[0 0 0 Gi7 0 0 o |, s=1 0o |, (384
B Pai
0 0 0 0 t%*GY 0 0 Py
p
0 0 0 0 0 K* 2Kuf
2 v K2
where
P = po+0pi,
A~ . 1 R
Pa = Pa = 0'pai + fapi = SHPus
pU= 0t = KT+ KL pu (3.85)
_ " I I
pi =5 (ni = V"nai) =0 Pu = pi = 591 Du»

Pi

—1
Pai = ES Nai -

A few comments are in order. To simplify the notation we have absorbed the D6-brane
index « into the open string moduli index i. Here py is defined as in (3.2) but now in terms
of the redefined RR axion & = & — %baH [ % gt . Finally, notice that the p’s defined
in (3.85) not only depend on fluxes and axions, but also on some saxions, differently from
those defined in [30]. This is just as well for the purpose of this analysis, as we are going to
combine them right away in terms of saxion-dependent polynomials v4. Indeed, applying
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the strategy of section 3.2.2 we define

/ /

0 Po
’Y(/z pfz — pta
;Va ﬁ/a _ ﬁga
== 4 | (3.86)
tapai tapai
'AYM ﬁu - ﬁgu
p p

where we are not relabelling t®p,; in order to not to overload the notation and, as before,
we assume that each of the terms of this vector vanishes in the vacuum, except p. The
potential can again be split in two terms

4 g -
Vi= e S Kap + 405 + K™+ K35 + G i)+t pait’pn; +

v/
+ef %Kﬁui‘% + SICQ,ﬁKbaﬁ’agb + 20K ey + 2pKM iy + 57+ 92 ,
V2
(3.87)
where o = K%¢,ep, + %ICQKbaébéa + KHYé €, + %Kuf@ and
& = Bt", ca = CKa, é = AKO, K + Kéb. (3.88)

Again, as V; is quadratic in the vy = {70,7,, %% 7, t*Pai, Yu}, the extremisation
conditions only depend on V5. As before, one can take derivatives of Vs along axionic and
saxionic directions, and impose an Ansatz of the form (3.8). The discussion parallels to a
large extent the one in section 3.2.3, so we will provide fewer details of the derivation.

Axionic sector

Oen V3 = 8¢" A,
8KCek

aAZ‘V, - —
9: V2 3

Cp pyi (3.89)

2 : 8 1
Opa Vg = eK§ICﬁ KoBp +4Ct° Koo + fipys = ngicmcac C3*“+ B C+ A

The last expression is linear on 4/ for either B = 0 (branch A1) or C = —1 (branch A2).
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Saxionic sector

1 2Bek
OuVi = 5 =24 4K p (0K +8) 3 + 0K 36 Kk, 7" (3.90)
8C
+ 0a K ?eKﬁICtb Y+ 2Kp0s eKKME 4,
52 K K2 wye o 4 b
+ pee™t | Oy K 9 +oa + (OuwK")Eé, + 3]C€U ,
HE — fig? 0ueVa  4BeK 8C
ata‘/Z/ = “ CL21 : + 36 Kﬁ]cab 'N)’,b+ ?CKﬁ,C ’Y(/l (391)
+ 2e5 KK 9 4 —@icfi 20, — Bt py;
P taﬁu ’Yu 3 P a p’L Pdi
K2 1 4
+€Kﬁ2 0taK ?‘1'04 + §8tal(:2+ ataKbc €b€c+§ata ICQKab €“€b+4lCau“€u y
HOuVo  def
0y V4 =7 v Z Kp 20p, — Bttpy . (3.92)

One can see that the conditions for OV to be linear on the 7/, are exactly the same as
in the case without mobile D6-branes with the extra conditions {7, = p; = 0,t%p,; = 0}.
Therefore, the same branches of vacua are recovered replacing the previous +’s by the new
ones. Notice that one of these branches corresponds to non-supersymmetric Minkowski
vacua with D6-branes and that the conditions (3.8) precisely reproduce those of the vacua
found in [64]. In general, we expect that the vacua of section 3.3 remain perturbatively
stable in the presence of mobile D6-branes, generalising the results of [64] to AdS vacua.
A detailed analysis of the Hessian, whose expression is given in appendix B.4, is however
left for future work.

3.6 Summary

Let us close the chapter by recapping what we have done. In this chapter we have
performed a general search for vacua of the classical type ITA flux potential in generic
Calabi-Yau orientifold compactifications. Our analysis extends the one made in [49] in
the sense that we allow for non-supersymmetric vacua as well, the only requirement being
the Ansatz of section 3.2.2. Implementing it we find several branches of vacua, including
the supersymmetric AdS branch of [49], a Minkowski A/ = 0 branch mirror to type IIB
with three-form fluxes [108] and several new branches of non-supersymmetric AdS vacua.
Remarkably, when restricted to the isotropic torus, these branches reduce to precisely
the ones found in [32]. In this sense, our results can also be seen as an extension of the
AdS type ITA flux landscape familiar from toroidal compactifications to the plethora of
Calabi-Yau geometries.

The technical ingredient behind this progress is essentially the bilinear form of the
flux potential developed in [30,48,63]. This expression for V' conveniently factorises the

40



3.6. Summary

saxionic and axionic degrees of freedom of the compactification, and arranges the latter
in flux-axion polynomials p4 invariant under discrete shift symmetries. This permits a
more economic and organised description of the extrema conditions and their solutions,
which arrange themselves into branches parametrised by real constants A, B, C' - see table
3.1. Moreover, it also allows incorporating into the analysis the light degrees of freedom
of mobile D6-branes, together with their worldvolume fluxes. As a result one is able to
extend the above landscape of solutions to the open string sector, in the spirit of [122].

Given these branches of critical points of the potential, the next step is to verify
if they correspond to (possibly metastable) vacua. We have performed the analysis of
the classical stability for the simplest branches of solutions, namely the Branch S1 of
section 3.2.3, where the homogeneity properties of the Kahler potential allow to compute
the mass spectrum of the would-be moduli. We have compared such masses with the
Breitenlohner-Freedman bound, finding that ¢) the Branch A1-S1 develops tachyons
satisfying the bound and i) the Branch A2-S1 is absent of any tachyons. Therefore,
this set of extrema already constitute a Landscape of AdS flux vacua. It would remain to
analyse the non-perturbative stability of this collection of vacua, which could represent an
interesting playground to test the recent Non-Supersymmetric AdS Instability Conjecture,
reviewed in section 2.3.1. We will examine branch Branch A1-S1 from this point of view
in chapter 7.

The results of this chapter can be applied and generalised in different directions.
For instance, they could be extended to include non-Calabi-Yau geometries, like SU(3)
compactifications with metric fluxes or with non-geometric fluxes. Such compactifications
can also be described by an effective scalar potential bilinear in the fluxes [32,96,101] and
our strategy can be applied to them as well. Chapter 4 will be dedicated to do a systematic
search of vacua in these set-ups. In fact, such bilinear structure arises as well in any su-
persymmetric effective field theory based on three-forms, like the ones recently developed
in [123-125]. One could combine our results with the said formalism to have a (partial)
EFT description of the landscape of AdS flux vacua, together with membrane-mediated
transitions between them. In this context, one may analyse the phenomenological prop-
erties of this landscape of vacua as an ensemble [12]. For instance, given the F-terms for
each of these vacua, one could extend the analysis of [64] to compute the spectrum of
supersymmetry-breaking soft terms induced on the open string sector, and then analyse
its statistical distribution.

For each of these developments, a crucial step is to establish the perturbative stability
of the extrema of the potential. In this sense, it would be interesting to extend the results
of Appendix B to other branches not analysed in there, including solutions with mobile
D6-branes. The same type of analysis could also be carried out for further examples of
classical AdS vacua, like those involving metric fluxes. Some of these have the advantage
that their 10d description is well understood, so analysing them with the formalism used
here for Calabi-Yau orientifolds may help to better understand the 10d description of the
latter. In this sense, the (smeared) 10d uplift of the vacua derived here will be studied in
chaper 5. In general, we expect that a global understanding of type ITA flux vacua from
a 4d perspective will shed light on their microscopic description, helping to comprehend
the ensemble of type ITA flux compactifications and eventually the string Landscape.
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One of the major challenges in the field of string theory (and the subject of this
thesis) is to determine the structure of four-dimensional meta-stable vacua, a.k.a. the
string Landscape. In this sense, type IIA flux compactifications with RR and NSNS fluxes
have played a prominent role, as we have discussed in the previous chapters. To some
extent this is because, in appropriate regimes, type IIA moduli stabilisation can be purely
addressed at the classical level in these scenarios [32,49,94,95], opening the door for a
direct 10d microscopic description of such vacua.

But, as we introduced in section 2.1.3, this is not the end of the story since one can
add more ingredients to the game: geometric and non-geometric fluxes. It is fair to say
that the general structure of geometric type IIA flux compactifications is less understood
that their type IIB counterpart [19,25,26,28,91]. Part of the problem is all the different
kinds of fluxes that are present in the type IIA setup, which, on the other hand, is the
peculiarity that permits to stabilise all moduli classically. Traditionally, each kind of flux
is treated differently, and as soon as geometric fluxes are introduced the classification of
vacua becomes quite involved.

The purpose of this chapter is to improve this picture by providing a unifying treat-
ment of moduli stabilisation in (massive) type IIA orientifold flux vacua. Our main tool
will be again the bilinear form of the scalar potential V = Z48p4pp, introduced in sec-
tion 2.2. While this bilinear structure was originally found for the case of Calabi-Yau
compactifications with p-form fluxes, we will show that it can be extended to include the
presence of geometric and non-geometric fluxes, even when these fluxes generate both an
F-term and a D-term potential.

With this form of the flux potential, one may perform a systematic search for vacua,
as we already did in chapter 3 for the case with only RR and NSNS fluxes. We will now
generalize that analysis by also considering geometric fluxes, which are one of the main
sources of classical AdSy and dS4 backgrounds in string theory, and have already provided
crucial information regarding swampland criteria. On the one hand, the microscopic 10d
description of AdS, geometric flux vacua has been discussed in several instances [96, 98,
100, 101, 106, 126]. On the other hand, they have provided several no-go results on de
Sitter solutions [111,127-132], as well as examples of unstable de Sitter extrema that have
served to refine the original de Sitter conjecture [87]. Therefore, it is expected that a
global, more exhaustive description of this class of vacua and a systematic understanding
of their properties leads to further tests, and perhaps even refinements, of the de Sitter
and AdS distance conjectures.

To perform our search for vacua we consider a certain pattern of on-shell F-terms,
that is then translated into an Ansatz. Even if this F-term pattern is motivated from
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general stability criteria for de Sitter vacua [133-137], it turns out that in our setup de
Sitter extrema are incompatible with such F-terms, obtaining a new kind of no-go result.
Compactifications to AdS, are on the other hand allowed, and using our Ansatz we find
both a supersymmetric and a non-supersymmetric branch of vacua, intersecting at one
point. In some cases we can check explicitly the perturbative stability of the non-SUSY
AdS4 branch, finding that the vacua are stable for a large region of the parameter space
of our Ansatz, and even free of tachyons for a large subregion.

The chapter is organised as follows. In section 4.1 we consider the classical F-term
and D-term potential of type IIA compactifications with all kind of fluxes and express
both potentials in a bilinear form. In section 4.2 we propose an F-term pattern to avoid
tachyons in de Sitter vacua, and build a general Ansatz from it. We also describe the flux
invariants present in this class of compactifications. In section 4.3 we apply our results to
configurations with p-form and geometric fluxes, in order to classify their different extrema.
We find two different branches, that contain several previous results in the literature. In
section 4.4 we discuss which of these extrema are perturbatively stable. We draw our
conclusions in section 4.5.

Some technical details have been relegated to the Appendices. Appendix A.2 and
C.1 contain several aspects regarding NS fluxes and flux-axion polynomials. Appendix
C.2 develops the computations motivating our F-term Ansatz. Appendix C.3 contains the
computation of the Hessian for geometric flux extrema.

4.1 Type IIA orientifolds with general fluxes: bilinear form-
alism

Let us consider again type IIA string theory compactified on an orientifold of X4 x X§g
with Xg a compact Calabi—Yau three-fold. As we have already seen in section 2.1, this
set-up can be described by a N’ = 1 supergravity theory in 4d. The presence of RR, NSNS
and (non)-geometric generates a potential in the effective theory which this time has two
pieces

V=Vi+Vp, (4.1)

as we have explained in section 2.1.3. Since all the details have been discussed in the
previous chapters, we will directly give the explicit form of the potential in the bilinear
formalism.

4.1.1 The F-term flux potential

As in [30,48], one can show that the F-term potential displays a bilinear structure
of the form
ki Ve = pa 2% ps, (4.2)

where the matrix entries Z48 only depend on the saxions {t* n*}, while the p4 only
depend on the flux quanta and the axions {b% &#}. Indeed, one can easily rewrite the
results in [138] to fit the above expression, obtaining the following result.

The set of axion polynomials with flux-quanta coefficients are
PA = {pOapayﬁaaﬁvp;upa,u:ﬁz:ﬁ,u}7 (4.3)
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and are defined as

1
Lopo = €0 + eab” + S Kapem bt + %Kabcb“bbbc + puh, (4.4a)
gspa =eq + Kabcmbbc + %K:abcbbbC + pa,ugu s (44b)
lsp®* =m® +mb® + &t (4.4c)
lsp=m+ pugt, (4.4d)
and

a 1 brca 1 apbyc
Cspp = hy + faub® + flCabcb b Q + f/Cabcb b’b°R,, (4.5a)
spa,u fa,u + ’Cabcbec + ]CabcbbbcR,LL ) (45b)
lspy = Q) + "Ry, (4.5¢)
gsp,u = Rp, . (45(1)

The polynomials (4.5) are mostly new with respect to the previous case with only p-
form fluxes, as they highly depend on the presence of geometric and non-geometric fluxes.
As in [30], both (4.4) and (4.5) have the interpretation of invariants under the discrete
shift symmetries of the combined superpotential W = Wgrgr + Wng. This invariance is
more manifest by writing ¢sp4 = RBqs, where g4 = e, ey, mb, m, Py fou, Qb#, R,
encodes the flux quanta of the compactification and

10 LK b0 L Kape b2 b°
_ Ro Ro & o & Kape b° 2 Kape B0 b°
R= " Ro st * ™=l g 8¢ b* , (46)
0 0 0 1

is an axion-dependent upper triangular matrix, see Appendix C.1 for details. Including
curvature corrections will modify R, such that discrete shift symmetries become manifest,
and shifting an axion by a unit period can be compensated by an integer shift of g4 [65].

As for the bilinear form Z, one finds the following expression

G O
ZAB — K o @ (4.7)
where
4 0 0 0 0 0 0 —Zw
0 g® 0 0 0 0 Zysp 0
G = = 3 4.
0 0 %4, o [@© 0 -~y 0 0 - (48)
o0 o0 X v 0 0 0
chv 0 —avke 0
c_ 0 @vtth + g®uru” 0 —aiek (49)
| -k 0 T IC Ky + 4 gabu“u 20 ‘
0 —emibk 0 K2 o
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Here K = Kx + K, gab = 10000p K = 10,0,Kk, and ¢ = 2000 Ko = 10,0, Ko,
while upper indices denote their inverses. Also u* = Im U* stands for the complex struc-
ture saxions, and we have defined Ky = Kapt?t¢ and & = ' — dutuV.

Compared to the previous chapter, with only RR and NSNS fluxes, the matrices
C and O are more involved, again due to the presence of geometric and non-geometric
fluxes. Interestingly, the off-diagonal matrix O has the same source as in the previous
case, namely the contribution from the tension of the localised sources after taking into
account tadpole cancellation. Indeed, the contribution of background fluxes to the D6-
brane tadpole is given by [51]

DFrr = — (mhy, — m® fo, + €aQ%y — eoRy) B*, (4.10)

which can be easily expressed in terms of the p 4. The corresponding absence of D6-branes
needed to cancel such tadpole then translates into the following piece of the potential

4 . . . .
/fivloc = geKK: ult (ppu - papau + papau — PO pu) ) (4~11)

which is nothing but the said off-diagonal contribution.

Putting all this together, the final expression for the F-term potential reads

) N o
KiVP =€ 4p5+ 9" papy + =5 9P 0" + -

Ko Ky 4K2 S omw K2 4K, 4K,
R N O A L T R ST

5%+ pupy + U+ U papupny
+

aK . aK . . 0 K
—gu P Pav + ?u”ppy — M Kapupy — c’“’tagpwpl, : (4.12)

4.1.2 The D-term flux potential

The potential derived in section 2.1.3 can be rewritten in a bilinear form similar to
(4.12) by defining the following flux-axion polynomials

Esﬁau = fa“ + Iaaozﬁ b* Q[?)H s ZSﬁaM = Qau s (413)
so that one has
1 2.g*P9,K0,K 0 ng”
2 — Zlsm  zou| 29 OphOv Pp
K4VD 4 [pa } ' 0 K 4050, KO, K =
1 3 A 21C L ~
= JOKOK g™ pa " + = gap 01 (4.14)

with gag = —%Im I@aﬁ and ¢®? its inverse. It is then easy to see that the full flux potential
V = Vg 4+ Vp can be written of the bilinear form (4.2), by simply adding (4.13) to the
polynomials (4.3) and enlarging Z accordingly.
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4.2 Analysis of the potential

While axion polynomials allow for a simple, compact expression for the flux poten-
tial, finding its vacua in full generality is still quite a formidable task. In this section we
discuss some general features of this potential that, in particular, will lead to a simple
Ansatz for the search of vacua. In the following section we will implement these obser-
vations for the case of compactifications with geometric fluxes. As the D-term piece of
the potential will not play a significant role, in this section we will neglect its presence by
considering compactifications such that hil = 0. Nevertheless, the whole discussion can
be easily extended to a more general case.

4.2.1 Stability and F-terms

Given the F-term potential (4.12), one may directly compute its first derivatives to
find its extrema and, subsequently, its second derivatives to check their perturbative sta-
bility. However, as (meta)stability may be rather delicate to check for non-supersymmetric
vacua, it is always desirable to have criteria that simplify the stability analysis.

A simple criterium to analyse vacua metastability for F-term potentials in 4d super-
gravity was developed in [133-137], with particular interest on de Sitter vacua. As argued
in there, the sGoldstino direction in field space is the one more likely to become tachyonic
in generic de Sitter vacua. Therefore, a crucial necessary condition for metastability is that
such a mass is positive. Interestingly, the stability analysis along the sGoldstino direction
can essentially be formulated in terms of the Kéhler potential, which allows analysing
large classes of string compactifications simultaneously.

Following the general discussion in [133—137] the sGoldstino masses can be estimated

by 5
m? = (3m3y + K3V) 6 — gmiv, (4.15)
where m3 /9 = eX/2|W| is the gravitino mass, and
L2 5 5
5 =5~ Rapenl 1700 (116

is a function of the normalised F-terms f4 = #’:)1/2 with G4 = DWW, and the Riemann

(
curvature tensor R ,p~p. Therefore, if V' is positive so must be &, or else the extremum
will be unstable. Reversing the logic, the larger & is, the more favorable will be a class of

extrema to host metastable vacua.

It is quite instructive to compute & in our setup. Notice that because the Riemann
curvature tensor only depends on the Kahler potential, the analysis can be done inde-
pendently of which kind of fluxes are present. Moreover, because the moduli space metric
factorises, R 450p 7 0 only if all indices correspond to either Kéhler or complex structure
directions. As a consequence, the normalised F-terms can be expressed as

fa = (cos B ga,sin 3 g,) (4.17)
where g, = (GagW’ Iy = (GLEW are the normalised F-terms in the Ké&hler and
1/2
complex structure sectors, respectively, and tan g = % Therefore we have that
N 2 4 7 7 . 4 B —
6= 3 (cos ) Ragcgg“gbgcgd — (sin )" Ruvop 9" 9" 9° 9" . (4.18)
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Following the discussion of Appendix C.2, one finds that the terms R ; g“ngcgJ and
Ryzop g"g” g% gP are respectively minimized by

7K
Ga = %Kaa 9u =
where yi,7g €  are such that |yk|? = |7g|? = 1. In this case we have that

2 2
6:§—(cos )43—(sin5)4§,

and it is positive for any value of 8. The choice (4.19) corresponds to F-terms of the form

y
?QKM , (4.19)

(4.20)

Gag= {Ga,Gﬂ} = {OZKKa,OzQKu} , (4.21)

with ak,ag € , the maximum value of (4.20) being attained for ag = g or equivalently
tan 3 = 2/4/3. Remarkably, the explicit branches of vacua obtained in the previous
chapter have this F-term pattern.' In the following we will explore type IIA flux vacua
whose F-terms are of the form (4.21), assuming that they include a significant fraction
of perturbatively stable vacua. It would be interesting to extend our analysis to other
possible maxima of & not captured by (4.19).

An F-term Ansatz

As it turns out, (4.21) can be easily combined with the bilinear formalism used in
the previous section. Indeed, as pointed out in [30], F-terms can be easily expressed in
terms of the axion polynomials p 4. The expressions in [30] can be generalised to the more
involved flux superpotential (2.28) and (2.28), obtaining that

a

~ 3K 1. .. 1. ..
Go= pa— /CabPZU“ — - t"pat u“Pu - §Kbpzuu + =Kp

2 K 6
. - 3K 1. .. 1 .
+1 ’Cabe + paput + S Po— tut pay — *’Cbpb - = Kpuut ) (4.22)
2 K 2 6
1. . oK 1. 1.
G“ = Pu— *Ka,OZ + £ tapa + Uup# - *ICb,OZUN — fICp
2 2 2 6
. 1. . oK 1. .. 1. .
+i t"pay — EICP“ — “T po — t*ut pey — ilepb + gleuu“ . (4.23)

Therefore, to realise (4.21), one needs to impose the following on-shell conditions

pa — Kapphut = £;'P 9K (4.24a)
Kapf® + paput = €51Q 0, K (4.24D)
1
P = 5 Ka = (IMO,K (4.24c¢)
1
£ — Kb = (IN 9K, (4.244)

"More precisely, S1 vacua branches in chapter 3 are of the form (4.21). The solutions found within the
branches S2 correspond to cases where the complex structure metric factorises in two, and so their F-terms
are specified in terms of a third constant a. Finally, F-terms for Minkowski vacua with D6-brane moduli
also have a similar structure, except that (4.21) should be written in terms of contravariant F-terms [64].
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where P, Q, M, N are real functions of the moduli. In the next section we will impose
these conditions for compactifications with geometric fluxes, obtaining a simple Ansatz
for the search of type ITA flux vacua.

4.2.2 Moduli and flux invariants

If instead of the above Ansatz we were to apply the more standard strategy of
the previous chapter, we would compute the first and second derivatives of the potential
(4.12), to classify its different families of extrema and determine the perturbative stability
of each of them. As pointed out in [30] for the Calabi-Yau case, the derivatives of the
axion polynomials (4.4) and (4.5) are themselves combinations of axion polynomials, see
Appendix C.1 for the expressions in our more general setup. As a result, all the derivatives
of the potential are functions of the saxions {t*, u#} and the py4, and in particular the
extrema conditions OV |yac = 0 amount to algebraic equations involving both:

(8O¢V) (taa u,u7 PA)’vac =0 ) (425)

where « runs over the whole set of moduli {b%, &, t% u*}. The fact that the extrema
equations depend on the quantised fluxes g4 only through the p4 is not surprising, as
these are the gauge invariant quantities of the problem [48,63]. In addition, because in
our approximation the axions {b%,&#} do not appear in the Kéhler potential and in the
superpotential they appear polynomially, they do not appear explicitly in (4.25), but only
through the p 4 as well. Therefore, finding the extrema of the F-term potential amounts
to solve a number of algebraic equations on {t%, u*, pa}.

This simplifying picture may however give the impression that the more fluxes that
are present, the less constrained the system of equations is. Indeed, (4.25) always amounts
to 2(1+ htt 4 h*1) equations, while the number of unknowns is 1 + bt p2l +ng, with ng
the number of different p’s, which depends on the fluxes that we turn on. For Calabi-Yau
with p-form fluxes ny = 3 + ontt 4 h?!, while by including geometric and non-geometric
fluxes we can increase it up to n, = 2(2 + h%1)(1 + h'1). From this counting, it would
naively seem that the more fluxes we have, the easier it is to solve the extrema equations.
This is however the opposite of what is expected for flux compactifications.

The solution to this apparent paradox is to realise that the p4 are not fully in-
dependent variables, but are constrained by certain relations that appear at linear and
quadratic order in them. Such relations turn out to be crucial to properly describe the
different branches of vacua. In the following we will describe them for different cases in
our setup.

Calabi—Yau with p-form fluxes

Let us consider the case where only the fluxes Fy,, H are turned on, while f = Q =
R = 0. The moduli stabilisation analysis reduces to that in the previous chapter, and the
extrema conditions reduce to 2h>" 4+ h%! 4 2 because only one linear combination h,&* of
complex structure axions appears in the F-term potential. In this case the vector of axion
polynomials p4 = (po, pa, p*, p, pu) has 3+2h"" + k2! entries, but several are independent
of the axions. Indeed, at the linear level

1

F=Cm, =ty (4.26)

s
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are axion-independent, while at the quadratic level

. 1 b~ _ 1

PPa — ilCabCpbpc =/ 2 e, — §ICabcmbmc , (4.27)
is also independent of the axions. If we fix the flux quanta g4 = (eg, ey, m®, m, hy), the
value of (4.26) and (4.27) will be fixed, and p4 will take values in a (1 + h'')-dimensional
orbit. This orbit corresponds to the number of axions that enter the F-term potential,
and so taking these constraints into account allows to see (4.25) as a determined system.

Interestingly, the quadratic invariant (4.27) was already identified in [49] as the
quantity that determines the value of the Kahler saxions in supersymmetric vacua of this
kind. In fact, this is also true for non-supersymmetric vacua. One has that

1 b, ¢ 1
meg — ilCabcm mt = AK,, (4.28)
with A €  fixed for each branch of vacua. Moreover, for the branches satisfying (4.21),
the complex structure saxions are fixed in terms of the fluxes as h, = AKO0,K, with
A constant. Therefore the fluxes fix both the saxions and the allowed orbit for the p4.
Finding the latter in terms of (4.25) is equivalent to finding the values of b* and h,&".

Adding geometric fluxes

Let us now turn to compactifications with fluxes Fy,, H, f, while keeping Q) =
R = 0. The number of axions &* that enter the scalar potential now corresponds to
the dimension of the vector space spanned by (h, fau), for all possible values of a. If
we see fq, as a At x (h*! + 1) matrix of rank ry, the number of relevant entries on
pA = (P0s Pas P Ps Pu» Pap) 18 2+ (2 + rf)hl_’l + (1 +7rp)(1L+n>) — r]%. At the linear level
the invariants are

p= gs_lm> Pap = gs_lfau ) (4.29)

while at the quadratic level we have

_ N _ N 1 b~
Py = P pap = £57 (mhyy —m®fap) ¢ ppa— 5K - (4.30)

2
Here the ¢* €  are such that c%p,, = 0 Vpu, so there are S ry of this last class
of invariants. Taking all these invariants into account we find that p4 takes values in a
1+t + r¢)-dimensional orbit,” signalling the number of stabilised axions. In other
words, with the inclusion of metric fluxes the orbit of allowed p4 increases its dimension,
which implies that more moduli, in particular more axions £* are fixed by the potential.
As in the CY case, the saxions are expected to be determined in terms of these invariants.

Adding non-geometric fluxes

The same kind of pattern occurs when non-geometric fluxes are included. If one sets
R = 0, the invariants at the linear level are p and pf, as well the combinations ¢*d" p,,

21f d° fo = hy, for some d* € , then the p4 draw a (h"' + 7;)-dimensional orbit, and one less axion
is stabilised. As a result one can define an additional flux invariant. See next section for an example.

20
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with ¢*,d"* €  such that ¢"d"KapQ), = 0, Vb. At the quadratic level, the first invariant
in (4.30) is replaced by

PP — P*Pap + Palby (4.31)
where we have taken into account the Bianchi identity f4, @“, = 0. Additionally, the
second invariant in (4.30) may also survive if there are choices of ¢* €  such that
cpau&t = 0 V&M, Finally, when all kind of fluxes are nonvanishing, the only invariant
at the linear level is R,,, and some particular choices of Py, and pay. At the quadratic level
we have the generalisation of (4.31)

ﬁpy - ﬁapay, + Paﬁz - pOﬁ,LL ’ (432)

where we have imposed the Bianchi identity p, p,) — paju A%y = b Ru) — faju Q%) = 0,
see Appendix A.2. Notice that this invariant and its simpler versions are nothing but the
D6-brane tadpole (4.10) induced by fluxes. We also have the new invariants

ﬁﬁuﬁu} ) pa(,uﬁu) - ,CabcﬁZﬁIC/ ) (433)

where as above [ ] and () stand for (anti-)symmetrisation of indices, respectively. Finally,
if the second invariant in (4.33) vanishes, or in other words if f,,Q,) = lCabCQZQ‘;, we
have that

pa(uﬁg) - BP(MﬁV) ) (434)

is also an invariant.”

4.3 Geometric flux vacua

In this section we would like to apply our previous results to the search of vacua
in type ITA flux compactifications. For concreteness, we focus on those configurations
with p-form and geometric fluxes only, leaving the systematic search of non-geometric flux
vacua for future work. As we will see, for geometric flux vacua the Ansatz formulated in
the last section, which amounts to impose on-shell F-terms of the form (4.21), forbids de
Sitter solutions. In contrast, we find two branches of AdS extrema corresponding to our
Ansatz, one supersymmetric and one non-supersymmetric. The perturbative stability of
the latter will be analysed in the next section.

4.3.1 The geometric flux potential

Let us first of all summarise our previous results and restrict them to the case of
p-form and geometric fluxes. The scalar potential reads V' = Vg + Vp, with

aK? ., K%
KIVE =X 4p2 4+ g papy + —— g P’ +

9 9
4K 4K
+ M pupy + g papry — U s+ 0 py  (4:35)
2 3 af A pa v
kiVp = =0, K0, K g°” pt' pg” . (4.36)

8K

3Remarkably, both (4.34) and the second invariant in (4.33) vanish if the “missing" Bianchi identities
fa(uQuy = Kabe QL Q5 and fa(u@y) — 3h(. Ry proposed in [139] turn out to hold generally.
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Chapter 4. Search of vacua: geometric fluxes

The definitions for g%, ¢*¥, & and ¢*” are just as in section 4.1, while the p4 simplify
to

1

Lapo = €0+ eab” + S Kapm VB + T Kapcb"VH° + p€ (4.37a)
Espa =e€q + ’Cabcmbbc + %Kabcbbbc + paufu ) (437b)
Lsp® = m® + mb, (4.37¢)
lsp=m, (4.37d)
fspp, - hp, + fauba 5 (4376)
gspau = fau ) (437f)
Cpl = fh- (4.37g)

Using these explicit expressions one may compute the first order derivatives of the
scalar potential with respect to the axions {&#,b%} and saxions {ut,t*} of the compacti-
fication. As expected the extrema conditions are of the form (4.25), with

Axionic directions

15)%
_K b
agu = 8p0pu + 29" papoy » (4.38a)
_K o 2 ~~C be  ~d N
e = SPopat §/C Gachp” + 2Kapag” pep” + 2¢" pappy (4.38b)

Saxionic directions

_ OV _ 4 .. 4 .
Ko = € VROUK + 2Kppu + 0uc™ prpo — K5 pap + 29" pappru” (4.392)
(€™ Parpvr — SPappott’) + Re’K 0,0, KO, K g°° po’ ps"
oV ) 4, 2
e o = ¢ VROK + 0. SKPP e+ 0ag™pepat+ Kap KD+ 4u'py

_4,Caﬁb,0buuy + QEMVtCPa;LPcy + 8agbcplmu“pcuuy

3 9K,
+%e—f<a KO, K 0,9°° pops” — ok e R0,K0,K g potply . (4.39b)

4.3.2 de Sitter no-go results revisited

From (4.39) one can obtain the following off-shell relation

1 4K? K?
UV 4+ 2190V = —(4+ 32)Vp — (24 2)Vp + 4 |z 59 “pope + Tgbcp o+ FP

1 1 L 1 )
+ 5 oupyt g tw Ku” fpy = Pow + (14 2) (@ + g w ) pper

(4.40)

52



4.8. Geometric flux vacua

with x € an arbitrary parameter. Different choices of x will lead to different equalities
by which one may try to constrain the presence of extrema with positive energy, in the
spirit of [111,129]. In practice it is useful to rewrite this relation as

WV + 290V = —3V + =, , (4.41)

where, for instance, the choice z = 1/3 leads to

[1]

2 1 2 ~b ~ 1 ~UV v
1/3 = gVD + 4€K —20(2) - 7gbcpbpc - 7pbpclc2gbc + 6(tatbCH + gabU”U )pa,upau s

3 27
(4.42)
while the choice x = 1 gives
- K IC2 ~2 2 1 ab 1 uv
= =4e LA 4ppy — 59" Papy = 5 pupy - (4.43)

Extrema of positive energy require 9V = 0 and V' > 0, and so necessarily both (4.42)
and (4.43) should be positive. It is easy to see that this requires that both the Romans’
parameter p and geometric fluxes (either p,, or pi) are present, in agreement with previous
results in the literature [127-132]. In that case, it is unlikely that the potential satisfies
an off-shell inequality of the form proposed in [77], at least at the classical level.

In our formulation one can make more precise which kind of fluxes are necessary to
attain de Sitter extrema. For this, let us express the last term of (4.42) as

v 5
(4P + g™ ur Y — MUY ) pappay = O+ utu? gE — gtatbu“u” PapPav , (4.44)
I

where gl%b, ¢p” are the primitive components of the Kéhler and complex structure metric,
respectively. That is

2 1
g = 3 2 — KK A = Jut = 4GoGY (4.45)

where G = e Ka and Gg’j is the inverse of 9,,0,Gq. These metric components have the
property that they project out the Kéhler potential derivatives along the overall volume
and dilaton directions, namely g9, K = '8, K = 0. So in order for the bracket in (4.42)
to be positive, the geometric fluxes pq, not only must be non-vanishing, but they must
also be such that

t*pap tpav cp + paptt’ pavu” gl(%b #0. (4.46)
In other words, either the vector p,,u* is not proportional to 9,K or the vector t%pg,

is not proportional to 0, K. The condition is likely to be satisfied at some point in field
space, but in order to allow for a de Sitter extremum it must be satisfied on-shell as well.

Remarkably, we find that the F-term Ansatz of section 4.2.1 forbids de Sitter ex-
trema. Indeed, if we impose that the on-shell relations (4.24) are satisfied with the non-
geometric fluxes turned off (cf. (4.50) below) we obtain that, on-shell

4 a~
ot paw B+ papt” pavt” 98" = 5K a1 (4.47)

with gfb the inverse of g%,b in the primitive sector. Even if this term is positive, it can
never be bigger than the other negative contributions within the bracket in (4.42). In fact,
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Chapter 4. Search of vacua: geometric fluxes

after plugging (4.47) in (4.42) there is a partial cancellation between the third and fourth
term of the bracket, that then becomes semidefinite negative:

1 2 5
4e’ =205 = 29" papy = P B Kgay — LGt U Papr (4.48)

with g}jbp = Gab — gfb = %K;&’gb the non-primitive component of the Kahler moduli metric.

Even if the bracket in (4.42) is definite negative, there is still the contribution from
the piece %VD, which is positive semidefinite. However, one can see that with the Ansatz
(4.21) this contribution vanishes. Indeed, using the Bianchi identity fq, fak = 0 and
(4.50d), one can see that for f,, # 0 the D-term D, = iaqua“ vanishes, and so does Vp.

To sum up, for type ITA geometric flux configurations, in any region of field space
in which the F-terms are of the form (4.21) we have that the F-term potential satisfies

1
u”@uuV + gtaatav é —3V, (449)
and so de Sitter extrema are excluded. In other words:

In type IIA geometric flux compactifications, classical de Sitter extrema
are incompatible with F-terms of the form (4.21).

Here geometric flux compactifications refer to those with f,,, # 0, while for Calabi-Yau
compactifications the no-go follows from [111]. It would be interesting to extend this
discussion to non-geometric flux compactifications, along the lines of [140, 141].

4.3.3 Imposing the Ansatz

Besides the cosmological constant sign, let us see other constraints that the on-shell
condition (4.21) leads to. By switching off all non-geometric fluxes, (4.24) simplifies to

pa = ;P 0K , (4.50a)

Kavf + pap = 6,1 Q0K (4.50b)
pu=1Ll;* MK, (4.50c)

t*pap = L5 "N O, K , (4.50d)

where again P, Q, M, N are real functions of the moduli. Such functions and other
aspects of this Ansatz are constrained by the extrema conditions (4.38) and (4.39) with
which they must be compatible. Indeed, plugging (4.50) into (4.38) one obtains

8 (poM — PN) 9, K =0, (4.51a)

1
8P(po — Q) = 5K (10Q = 8N) DuK + [K + 8P — 8M] payu = 0, (4.51b)

which must be satisfied on-shell. Even when both brackets in (4.51b) vanish, this equation
implies that on-shell
Paput < O, K , and pr ot (4.52)
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4.8. Geometric flux vacua

simplifying the Ansatz. More precisely, we are led to the following on-shell relations

lspo = AK, (4.53a)
lsp, = BKO,K , (4.53b)
0,5 = Cte, (4.53¢)
tj=D, (4.53d)
lopp = EKO,K , (4.53¢)
F
Lspaut® = ZICQLK, (4.53f)
F
lspauu = §IC8“K’ (4.53g)

where A, B,C, D, E, F are functions of the saxions. We have extracted a factor of K in
some of them so that the expression for the on-shell equations simplifies. In terms of (4.53)
we have that the vanishing of (4.38) amounts to

4AE -~ BF =0, (4.54a)

1
8AB — -CD + BC — EF =0, (4.54b)
assuming that at each vacuum 0,K # 0 # 0, K. Similarly, the vanishing of (4.39) implies

1 1 )
4A% +12B% + 502 + §D2 +8E? — 6F2 +CF—4DE =0, (4.55a)
2 2 1 o 1.5 2 D9

4A° +4B* — $C° — oD +16E* — (7 =0, (4.55b)

where we have used the identities in A.

Expressing the extrema equations in terms of the Ansatz (4.53) has the advantage
that we recover a system of algebraic equations. Nevertheless, eqgs.(4.54) and (4.55) may
give the wrong impression that we have an underdetermined system, with four equations
and six unknowns A, B,C,D, E,F. Notice, however, that these unknowns are not all
independent, and that relations among them arise when the flux quanta are fixed. Indeed,
let us first consider the case without geometric fluxes, which sets F' = 0. In this case, AdS
vacua require that the Roman’s parameter m is non-vanishing so we may assume that
D # 0. Because the lhs of (4.54) and (4.55) are homogeneous polynomials of degree two,
we may divide each of them by D? to obtain four equations on four variables: Ap = A/D,
Bp = B/D,Cp = C/D, Ep = E/D. The solutions correspond to Ap = 0 and several
rational values for Bp, Cp, Ep, which reproduce the different S1 branches found in chapter
3.% Finally, the variable D = m is fixed when the flux quanta are specified.

The analysis is slightly more involved in the presence of geometric fluxes. Now
we may assume that F' £ 0, since otherwise we are back to the previous case. Our
Ansatz implies that the first flux invariant in (4.30) is a linear combination of the vectors

(fa)u = faua as

~ F 4DFE
mhu = mh# — mafa# = DF — CT ’Ca‘uK = T - C tafa#, (456)

4To compare with chapter 3 one needs to use the dictionary: B = —(CFrevious Chapter/S, C = BY°,
E = AFC since in we are denoting differently the constants appearing in the ansatz.
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where IC, 0,K, (t*) correspond to the value of the Kéhler saxions in the corresponding
extremum, etc. One can write the above relation as

mhy, = d*fa, , (4.57)

where the constants d* are fixed once that we specify the fluxes m, h,, m®, fqu.. As
a consequence, the number of stabilised complex structure axions {# is ry = rank fy,,
while the rest may participate in Stiickelberg mechanisms triggered by the presence of
D6-branes [32].° Strictly speaking, d® is only fixed up to an element in the kernel of f,,
but this is irrelevant for our purposes. Indeed, notice that due to our Ansatz

1 C?
meég = meq — ilCamebmc = BD-+ - KooK —m fou 8"
3BD (7
- TN TR, o VY
T + 5F U D" | fau s (4.58)

where again IC, u#, £* stand for the vevs at each extremum. This implies several things.
First, the second set of invariants in (4.30) vanish identically. Second, the combination
md®é, is fully specified by the flux quanta, without any ambiguity. Finally in terms of

2

m2éy = m?

1
eg — mmceq + glCabcm“mbmc , (4.59)
we can define the following cubic flux invariant

3 ADE 2
mzé() - mdaéa =K AD2 + 3BCD + % + T -C 3BD + % . (460)

The existence of this additional invariant is expected from the discussion of section 4.2.2.
As we now show, K is fixed at each extremum by the choice of the flux quanta and the
Ansatz’ variables. Therefore (4.60) and D = m provide two extra constraints on these
variables, which together with (4.54) and (4.55) yield a determined system of algebraic
equations.

To show how IC is specified, let us first see how the saxionic moduli are determined.
First (4.56) determines (4DE —CF)K0, K in terms of the flux quanta, which is equivalent
to determine (4DE — CF)~'u*/K. Plugging this value into (4.53g) one fixes (4DE/F —
C)~19,K in terms of the fluxes, which is equivalent to fix (4DE/F — O)t®. Therefore at

each extremum we have that
3

—-C K, (4.61)

is specified by the flux quanta. Notice that this is compatible with (4.56), and we can
actually use this result to fix the definition of d%, by equating (4.61) with KCgp.d®d®de.

®Microscopically, (4.57) means that h,, is in the image of the matrix of geometric fluxes fa,, and as such
it is cohomologically trivial. Macroscopically, it means that the number of independent complex structure
axions entering the scalar potential are dim(h,, fi,., fou,...) = rankf,, = ry, and not ry + 1.
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4.8. Geometric flux vacua

4.3.4 Branches of vacua

Let us analyse the different solutions to the algebraic equations (4.54) and (4.55).
Following the strategy of the previous subsection, we assume that F' # 0 and define
Ap = A/F, Br = B/F, Cp = C/F, Dp = D/F, Ep = E/F. Then, from (4.54a) we
obtain

Br = 4ApFErp, (4.62)
which substituted into (4.54b) gives the following relation
CrDp = 12Ep(12A% + 4ApCr — 1). (4.63)
Then, multiplying (4.55b) by C% and using (4.63) we obtain
VUBEAp = CF (3643 — C} - 5], (4.64)
where
Ap = (124% + 4ApCp — 1)? — 4A%.0% — C%. (4.65)

We have two possibilities, depending on whether Ar = 0 or not. Let us consider both:

s Ap =0

In this case, from (4.64) and (4.65), we find four different real solutions for (Ar, Cr):

3 1
AF = —g, CF = Z, (466&)
1
Ap— g S Or=—y, (4.66b)
1
Ap=—4+—— Cp=0. 4.66¢
F >3 F ( )

Given the solution (4.66a), one can solve for Dp in (4.63) and check that (4.55a)
and (4.55b) are automatically satisfied. We then find that:

(4.66&) — BF = —%EF, DF = 15EF, (467)

with Er unfixed. Thus, at this level (E, F') are free parameters of the solution. As
we will see below, this case corresponds to the supersymmetric branch of solutions.
The remaining solutions can be seen as limiting cases of the following possibility:

» Ap#0
Under this assumption we can solve for Er in (4.64):
02
Fe 42F [364% - CF - 5] (4.68)
Then we see that (4.55a) and (4.55b) amount to solve the following relation:
8A%.C} 7C} 16ArC}
g E L JApCH — TF 1644303 + 4842 C3 — —EEE 03 4 5764402
206 A2.C% 7C?
+ 144A3.0% — % —4ApCE + TF + 2304A%Cr — 592A%.CF + 24A%Cr
100ArC 25
+ % — 2Cp + 3456 A% — 1176 A% + 124A% — 5 =0 (4.69)
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which selects a one-dimensional family of solutions in the (Ap, Cp)-plane. We only
consider those such that (4.68) is non-negative, see figure 4.1. One can check that
all values in (4.66) are also solutions of (4.69). Even if for them Ar = 0, we have
that ) )

14 Cr(4A% +1)

D% = A

(3643 — % — 5] , (4.70)
as well as (4.68), attain regular limiting values that solve the equations of motion.
Because (4.69) constrains one parameter in terms of the other, we have two free
parameters, say (C, F'), unfixed by the equations (4.54) and (4.55).

Ar
0
)
0 ~ o)
-, —2 2 Cr .;)
o |
WP

Figure 4.1: Set of points that verify (4.69) (blue curve) and have E% > 0. The coloured dots
correspond to the particular solutions (4.66). Both curves tend asymptotically to Ap = 1/4 for
CF — +oo.

4.3.5 Summary

Let us summarise our results so far. Given the on-shell F-terms (4.21), we find two
branches of vacua, summarised in table 4.1. Each branch has two continuous parameters.
However, when taking specific values for the fluxes and taking into account that D = m
and (4.60), these two degrees of freedom are fixed. Then, as we scan over different flux
quanta, we will obtain a discretum of values for the parameters of the Ansatz, within the
above continuous solutions.

As we show below, the branch where Ap = —3/8, Cr = 1/4 and Ep is uncon-
strained corresponds to supersymmetric vacua, while the other branch contains non-
supersymmetric ones. Remarkably, both branches intersect at one point. The non-
supersymmetric branch splits into three when imposing the physical condition EI% >0, as
can be appreciated from figure 4.1. Each point in the green physical region contains two

solutions, corresponding to the two values Er = j:% ALY (36A4% — CZ —5).
F-terms
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4.8. Geometric flux vacua

Branch H AF ‘ BF ‘ CF ‘ DF ‘
SUSY -3 —3Ep 1 15Ep

non-SUSY || eq.(4.69) | 4ArEr | eq.(4.69) \/g§+(4A%+1)12EF
F

Table 4.1: Branches of solutions in terms of the quotients Ap = A/F, etc. of the parameters of
the Ansatz (4.53). In the SUSY branch Er is a free parameter, while in the non-SUSY extrema
it is given by (4.68). Moreover Ap is given by (4.65), being always zero in the supersymmetric
branch.

One can recast the F-terms for each of these extrema as

1 1 1 1 1 )
G, = —§BF—2EF+EDF +1 _ECF_iAF_E FK“0,K, (4.71a)
3 1 11 1 )

and one can see that requiring that they vanish is equivalent to impose (4.66a) and (4.67).
Therefore, the branch (4.66a) corresponds to supersymmetric vacua, while general solu-
tions to (4.69) represent non-supersymmetric extrema of the potential.

4.3.6 Vacuum energy and KK scale: AdS distance conjecture

Using (4.42) and imposing the extremisation of the potential, one can see that the vacuum
energy has the following expression in the above branches of solutions:

5

4 1
ARGV [yae = —geK K2F? 2A% +64A%FE7 + 1—80% T (4.72)
In the supersymmetric branch this expression further simplifies to
3
AnkfVISUSY — _oKx2F? 19F% + 1 (4.73)

So essentially we recover that the AdSy scale in Planck units is of order

AMas b A

where in the last step we have defined y = 2A4% + 64A%FE% + %C% + 1%. This is to be
compared with the KK scale

M? _
T~ APV 2, (4.75)
P
obtaining the quotient
ARas 2D/4/3 2 tt 2 476
MZy ~E X et X (4.76)
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Scale separation will occur when this quotient is small, which seems hard to achieve
parametrically, unlike in the case with only RR and NSNS fluxes. Indeed, unless some fine
tuning occurs, at large {t,u} one expects that e’ |W|? ~ e |Wgrr|? + e |Wys|?, which in
supersymmetric vacua dominates the vacuum energy. If both terms are comparable, then
in type ITA setups with bounded geometric fluxes and Romans mass m, u goes like u ~ t2,
and there is no separation due to the naive modulus dependence in (4.76). If one term
dominates over the other the consequences are even worse, at least for supersymmetric
vacua.® Because y is at least an order one number, the most promising possibility for
achieving scale separation is that F' scales down with ¢. While this is compatible with
(4.56), we have not been able to find examples where this possibility is realised. In any
event, even if ' does not scale with the moduli, it would seem that generically F*  O(0.1)
is a necessary condition to achieve a vacuum at large volume, weak coupling, and minimal
scale separation. This is perhaps to be expected because in the limit F' — 0 we recover
the analysis of the previous chapter, where parametric scale separation occurs, at least
from the 4d perspective considered here. It would be also interesting to relate to results
to [142], where vacua with scale separation and geometric fluxes (and no Roman’s mass)
are obtained after performing two T-dualities.

4.3.7 Relation to previous results

In order to verify the validity of our formalism and the results we have obtained,
we proceed to compare them with some of the existing results in the literature. We will
therefore focus on examples.

Comparison with Camara et al. [32]

This reference studies RR, NS and metric fluxes on a 76 /(Q(—1)¥% I3) Type IIA orientifold.
We are particularly interested in section 4.4, where N/ = 1 AdS vacua in the presence
of metric fluxes are analysed. One can easily use our SUSY branch (see table 4.1), the
definitions of the flux polynomials (4.37) and our Ansatz (4.53) to reproduce their relations
between flux quanta and moduli fixing. We briefly discuss the most relevant ones.

In [32] they study the particular toroidal geometry in which all three complexified
K &dhler moduli are identified. This choice greatly simplifies the potential and the flux
polynomials. To reproduce the superpotential in [32, eq.(3.15)] we consider the case T% =
T, Va, so that there is only one Kéhler modulus and the Kéhler index a can be removed.
The flux quanta {eqg, eq, m*,m, hy, payu} are such that e, = 3c1, m® = ¢z and

3a w=0,
Pap = a,b, e . (4.77)
b,u 2 7é 07
This relation provides a constraint for the fluxes in order for this family of solutions
to be realised (cf. [32, eq.(4.32)]). The complex structure saxions are instead determined
in terms of p,,: Imposing the constraint D = m on the SUSY Ansatz we have
3 m 1

A=—ZF, B=-15. C=F, D=m=15E. (4.78)

SWith specific relations between flux quanta parametric scale separation at the 4d level is possible [60].
Remarkably, it was there found that this naive 4d scale separation did not occur at the 10d level.
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4.8. Geometric flux vacua

The first step is to use the invariant combinations of fluxes and axion polynomials together
with the Ansatz to fix the value of the saxions. Notice that because we only have one
Kéhler modulus, p,, has necessarily rank one, and so (4.56) fixes ¢ as function of the fluxes
and the parameter F'

AED a a 19 — 4F 3at =mho —3acy if =0
T—C Pa,ut :mhu—pwm — 4m? 1F b.t =mh b if
mF — 2l bt =mhy —buey i p#0

(4.79)
This relation provides a constraint for the fluxes in order for this family of solutions to
be realised (cf. [32, eq.(4.32)]). The complex structure saxions are instead determined in
terms of pg:

F 3at = — £k
pat” = TKOK — ¢~ 0 (4.80)
but = — g »

which reproduces the relation [32, eq.(4.31)].

To obtain the remaining relations of [32, section 4.4], we take into account that
K = 6t% and take advantage of the particularly simple dependence of our Anstaz when
considered on an isotropic torus. Using that F' = 4C we can go back to (4.80) to eliminate
the F' dependence of the complex structure moduli.

613 F 613 612
o~ =—C— = ——Oﬁ“ — 3atu’ = —6t2(62 +om),
U u u
(4.81)

which, up to redefinition of the parameters, is just relation [32, eq.(4.34)]. Similarly, we
have

pa{”zo}ta = F]Ca,u:oK = —

= EK8,—oK — h __mo 4.82
IOM=0_ =0 — 0+3(I’U——ﬁ$. ( 8 )

Replacing ug using (4.81) in the above expression leads to
2 _ 5(ho + 3av)(co + mo) ’ (4.83)

am

which is equivalent to [32, eq.(4.41)] and provides an alternative way to fix the Kéahler
moduli ?.

To fix the complex structure axions £# we note that

3 3u? 9
pa = BKO,K = —SEKO,K = %puzoaaf( — pat® = =5 (ho +3av)u . (4.84)
Expanding p, and replacing ¢ using (4.81) we arrive at
9
3¢t 4 6cav + 3mo® + 3a€’ + > by = =(ca + mw)(ho + 3av) (4.85)
a

m

and hence we derive an analogous relation to [32, eq.(4.33)]. We observe that it only fixes
one linear combination of complex structure saxions. This was to be expected, since by
construction the geometric fluxes are of rank one. Finally, we can fix the Kéhler axion b
using the flux polynomial pg

3C 3

po = AK = —?IC = —EWIC — po = —9(co +muv)t?, (4.86)
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Chapter 4. Search of vacua: geometric fluxes

which after replacing the complex axions using (4.85) and substituting ¢ using (4.82) and
(4.83) leads to the same equation for the Kéhler axion as the one shown in [32, eq.(4.40)].

Comparison with Dibitetto et al. [143]

In this reference the vacuum structure of isotropic o X 5 compactifications is analysed,
combining algebraic geometry and supergravity techniques. We are particularly interested
in the results shown in [143, section 4], where they consider a setup similar to [32, section
4.4], but go beyond supersymmetric vacua.” More concretely, in this section they study
type IIA orientifold compactifications on a  %/( 3 x ) isotropic orbifold in the presence
of metric fluxes. Hence, they have an STU model with the axiodilaton S, the overall
Kéhler modulus T and the overall complex structure modulus U.

They obtain sixteen critical points with one free parameter and an additional solu-
tion with two free parameters. This last case is not covered by our Ansatz, since the
associated geometric fluxes do not satisfy (4.53f) and (4.53g). Therefore it should corres-
pond to a non-supersymmetric vacuum with F-terms different from (4.21). The remaining
sixteen critical points are grouped into four families and summarised in [143, table 3].
Taking into account their moduli fixing choices, we can relate their results for the flux
quanta with the parameters of our Ansatz as follows:

= When s9 = 1, solution 1 from [143, table 3] corresponds to a particular point of the
SUSY branch in our table 4.1, with Ep = if}ﬁ (sign given by s1).

» When s9 = —1, solution 1 of [143, table 3] corresponds to the limit solution (4.66Db)
of the non-SUSY branch (point (b) in figure 4.1). We confirm the result of [143]
regarding stability: similarly to the SUSY case, this is a saddle point with tachyonic
mass m? = —8/9Im%y| (for a detailed analysis on stability check section 4.4 and

Appendix C.3).

= Solution 2 from [143, table 3] corresponds to a limit point Cr = 0 of the non-SUSY
branch with Ap # 0 and Ap = £5/12. Such solution was not detailed in our analysis
of section 4.3.4 since, despite being a limit point, it still verifies (4.68), (4.69) and
(4.70). In [143, table 4 ] it is stated that this solution is perturbatively unstable, in
agreement with our results below (see figure 4.2).

= Solution 3 from [143, table 3] is a particular case of the non-SUSY branch, corres-
ponding to Ap = s1/4 and Cp = s1/2 (with 1 = £1). This specific point falls
in the stable region of figure 4.2. The analysis of section 4.4 reveals that the mass
spectrum has two massless modes, confirming the results of [143].

» Solution 4 of [143, table 3] is not covered by our ansatz since, similarly to the two-
dimensional solution, our parameter F' is not well-defined under this combination of
geometric fluxes. We then expect F-terms not of the form (4.21).

It is worth noting that in order to solve the vacuum equations, [143] follows a complementary approach
to the standard one. Typically, one starts from the assumption that the flux quanta have been fixed and
then computes the values of the axions and saxions that minimise the potential. Ref. [143] instead fixes
a point in field space, and reduces the problem to find the set of consistent flux backgrounds compatible
with this point being an extremum of the scalar potential. Both descriptions should be compatible.
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4.4. Perturbative stability

Hence, the results of [143] provide concrete examples of solutions for both the su-
persymmetric and non-supersymmetric branches of table 4.1.

Examples of de Sitter extrema

In [128], the authors study the cosmological properties of type IIA compactifications on
orientifolds of manifolds with geometric fluxes. They apply the no-go result of [129] to rule
out de Sitter vacua in all the scenarios they consider except for the manifold SU(2) x SU(2),
where they find a de Sitter extremum, albeit with tachyons. One can check that the fluxes
considered in section 4.2 of [128] do not satisfy condition (4.57). Therefore, this example
lies outside of our Ansatz and so relation (4.49) does not hold.

4.4 Perturbative stability

Given the above set of 4d AdS extrema some questions arise naturally. First of all,
one should check which of these points are actual vacua, meaning stable in the perturbative
sense. In other words, we should verify that they do not contain tachyons violating the
BF bound [113]. As it will be discussed below, for an arbitrary geometric flux matrix f,,
it is not possible to perform this analysis without the explicit knowledge of the moduli
space metric. Nevertheless, the problem can be easily addressed if we restrict to the case
in which f,, is a rank-one matrix, which will be the case studied in section 4.4. On the
other hand, one may wonder if these 4d solutions have a 10d interpretation. We relegate
this second question to chapter 5.

Following the approach of the previous chapter we will compute the physical eigen-
values of the Hessian by decomposing the Kéhler metrics (both for the complex structure
and Kéhler fields) into their primitive and non-primitive pieces. This decomposition to-
gether with the Ansatz (4.53) reduces the Hessian to a matrix whose components are just
numbers and whose eigenvalues are proportional to the physical masses of the moduli.
The explicit computations and details are given in Appendix C.3, whose main results we
will summarise in here. To simplify this analysis we will initially ignore the contribution
of the D-term potential, that is, we will set p,* = 0. We will briefly discuss its effect at
the end of this section.

As mentioned above, we will consider the case in which f,, = €sp,, has rank one,
since the case with a higher rank cannot be solved in general. Let us see briefly why. One
can show that the Ansatz (4.53) implies:

FK

5 OaKOLK + Fas with t fap =0 = ut fo,, (4.87)

fau:_

1
")

orthogonal to t*, and similarly for ut The contribution of the first term of (4.87) to the
Hessian can be studied in general. The contribution of the second term depends, among
other things, on how both the . and ui are stabilised, which can only be studied if
the explicit form of the internal metric is known. Therefore, in the following we will set
fau = 0. Notice that, for this case, our Ansatz implies that just one linear combination of
axions is stabilised, since from (4.53) it follows that p, o pau, Va.

and so fa# must be spanned by t- ® u, where the ¢+ form a basis of the subspace

SUSY Branch
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As expected, the SUSY case is perturbatively stable. The results can be summarised as:

| Branch || Tachyons (at least) | Physical eigenvalues | Massless modes (at least) |
SUSY | i i, = Emh, | T |

Table 4.2: Massless and tachyonic modes for the supersymmetric minimum.

Let us explain the content of the table and especially the meaning of “at least”. All
the details of this analysis are discussed in appendix C.3

= Since the potential only depends on a linear combination of complex structure ax-
ions and the dilaton, the other h%! axions of this sector are seen as flat directions.
Their saxionic partners, which pair up with them into complex fields, are tachyonic
directions with mass %mQB - Both modes are always present for any value of Efr so
we refer to them with the “at least" tag. This is expected form general arguments,
see e.g. [114].

= For Efp 0.1 there appear new tachyons with masses above the BF bound, in
principle different from %szF. The masses of these modes change continuously

with Fr, and so they become massless before becoming tachyonic.

= Finally, there are also modes which have a positive mass for any Ep.

Non-SUSY branch

This case presents a casuistry that makes it difficult to summarise in just one table. As
discussed in section 4.3.4, the non-SUSY vacuum candidates are described by the physical
solutions of eq.(4.69), represented in figure 4.1. On top of this curve one can represent the
regions that are excluded at the perturbative level:

Some comments are in order regarding the behaviour of the modes:

» In the regions with |[Ap| 0.4 there is always a tachyon whose mass violates the BF
bound. This corresponds to the red pieces of the curves in figure 4.2.

= On the blue region of the curves, tachyons appear only in the vicinity of the red
region, while away from it all the masses are positive. For instance, in the curve
stretching to the right there are no tachyons for Cr  1.5.

The explicit computation of the modes and their masses is studied in appendix C.3.

D-term contribution

As announced in the introduction, let us finish this section by commenting on the
effect of the D-terms on stability. The first thing one has to notice is that, although
Vp = 0 once we impose the ansatz (4.53), the Hessian Hp associated to the D-terms is
generically different from zero -see (C.43)-. Indeed one can show that the matrix Hp is
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Afp
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Figure 4.2: Set of points that verify (4.69) with E% > 0 and: have no tachyons violating the
BF bound and therefore are perturbatively stable (blue curve); have tachyons violating the BF
bound and therefore are perturbatively unstable (red curve). The colored dots correspond to the
particular solutions (4.66).

a positive semidefinite matrix. Therefore, splitting the contribution of Vg and Vp to the
Hessian into H = Hp + Hp and using the inequalities collected in [144], one can prove
that the resulting eigenvalues of the full Hessian H will always be equal or greater than
the corresponding Hf eigenvalues. Physically, what this means is that the D-terms push
the system towards a more stable regime. In terms of the figure (4.2) and taking into
account the directions affected by Hp -see again (C.43)-, one would expect that, besides
having no new unstable points (red region), some of them do actually turn into stable ones
(blue points) once the D-terms come into play.

4.5 Conclusions

In this chapter we have continued our systematic approach towards moduli stabil-
isation in 4d type IIA orientifold flux compactifications. The first step has been to rewrite
the scalar potential, including both the F-term and D-term contributions, in a bilinear
form, such that the dependence on the axions and the saxions of the compactification is
factorised. This bilinear form highlights the presence of discrete gauge symmetries on the
compactification, which correspond to simultaneous discrete shifts of the axions and the
background fluxes. This structure has been already highlighted for the F-term piece of the
potential in Calabi-Yau compactifications with p-form fluxes [30,48,63], and in here we
have seen how it can be extended to include general geometric and non-geometric fluxes
as well.

Besides a superpotential, these new fluxes generate a D-term potential, which dis-
plays the same bilinear structure. The D-term potential arises from flux-induced Stiickel-
berg gaugings of the U(1)’s of the compactification by some axions that do not appear in
the superpotential, and that generate conventional discrete gauge symmetries arising from
B A F couplings. Such discrete symmetries are unrelated to the ones in the F-term poten-
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tial. However, the D-term potential itself depends on the B-field axions %, because they
appear in the gauge kinetic function f,g, and these axions do appear as well in the F-term
potential, participating in its discrete symmetries. It would be interesting to understand
the general structure of discrete shift symmetries that one can have in flux compactific-
ations with both F-term and D-term potentials. In addition, it would be interesting to
complete the analysis by including the presence of D6-branes with moduli and curvature
corrections, along the lines of the previous chapter.

As in [30,48,63], it is the presence of discrete shift symmetries that is behind the
factorisation of the scalar potential into the form (4.2), where Z48B only depends on the
saxionic fields, and p4 are gauge invariant combinations of flux quanta and axions. With
the explicit form of the p4 one may construct combinations that are axion independent,
and therefore invariant under the discrete shifts of the compactification. In any class of
compactifications, some of the fluxes are invariant by themselves, while others need to be
combined quadratically to yield a flux invariant. We have analysed the flux invariants that
appear in Calabi—Yau, geometric and non-geometric flux compactifications, their interest
being that they determine the vev of the saxions at the vacua of the potential. Therefore,
in practice, the value of these flux invariants will control whether the vacua are located or
not in regions in which the effective field theory is under control.

Another important aspect when analysing flux vacua is to guarantee their stability,
at least at the perturbative level. Guided by the results of [133—-137], we have analysed the
sGoldstino mass estimate in our setup, imposing that it must be positive as a necessary
stability criterium to which de Sitter extrema are particularly sensitive. Our analysis has
led us to the simple Ansatz (4.21) for the F-terms on-shell, which can be easily translated
to relations between the p4 and the value of the saxions at each extremum, cf. (4.24).

The next step of our approach has been to find potential extrema based on this
Ansatz, a systematic procedure that we have implemented for the case of geometric flux
compactifications. This class of configurations is particularly interesting because they con-
tain de Sitter extrema and are therefore simple counterexamples of the initial de Sitter
conjecture [77], although so far seem to satisfy its refined version [78,145]. In this re-
spect, we have reproduced previous de Sitter no-go results in the literature [111,129] with
our bilinear expression for the potential, but with two interesting novelties. First, when
imposing that the F-terms are of the form (4.21) either on-shell or off-shell, we recover
an inequality of the form (4.49) that forbids de Sitter extrema. We find quite amusing
that this result is recovered after imposing an Ansatz inspired by de Sitter metastability.
Second, our analysis includes a flux-induced D-term potential, and so the possibility of
D-term uplifting, typically considered in the moduli stabilisation literature, does not seem
to work in the present setting. We see our result as an interesting product of integrating
several de Sitter criteria, and it would be interesting to combine it with yet other no-go
results in the literature, like for instance those in [146-148].

Asis well known, type ITA orientifold compactifications with geometric fluxes provide
a non-trivial set of AdSs vacua, which we have analysed from our perspective. We have
seen that, by imposing the on-shell Ansatz (4.21), the equations of motion translate into
four algebraic equations. By solving them, we have found two different branches of vacua,
one supersymmetric and one-non-supersymmetric, and we have shown how both of them
include most of the vacua found in the geometric flux compactification literature. This
link with previous results can be made both with references that perform a 4d analysis and
those that solve the equations of motion at the 10d level which is particularly interesting
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for non-supersymmetric solutions, which are scarce.

All these results demonstrate that analysing the bilinear form of the scalar potential
provides a systematic strategy to determine the vacua of this class of compactifications,
overarching previous results in the literature. Needless to say, to obtain a clear overall
picture it would be important to generalise our analysis in several directions. First, it would
be interesting to consider other on-shell F-term Ansatz beyond (4.21) that also guarantee
vacua metastability. Indeed, our analysis of the Hessian shows that, for certain geometric
flux compactifications, perturbative stability occurs for a very large region of the parameter
space of our F-term Ansatz, and it would be important to determine how general this
result is. Second, a natural extension of our results would be to implement our approach
to compactifications with non-geometric fluxes, a task that we leave for the future. In
this case it would be particularly pressing to characterise the potential corrections to the
effective flux-potential, and in particular to the Kéhler potential that we have assumed
throughout our analysis. For the case of geometric fluxes these corrections should be
suppressed for those vacua that sit at large volume and weak coupling, which generically
corresponds with the set of solutions with a small value for the Ansatz parameter F.
Remarkably, it is through the same small parameter that it seems to be possible to control
the separation between the AdSy scale and the cut-off scale of the theory. This is in
agreement with that in the limit F' — 0 such scale separation may, a priori, be realised
parametrically.

In any event, we hope to have demonstrated that with our systematic approach one
may be able to obtain an overall picture of classical type ITA flux vacua. Our strategy not
only serves to find and characterise different metastable vacua, but also to easily extract
the relevant physics out of them, like the F-terms, vacuum energy and light spectrum of
scalars. A global picture of this sort is essential to determine what the set of string theory
flux vacua is and it is not, and the lessons that one can learn from it. Hopefully, our
results will provide a non-trivial step towards this final picture.
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Type ITA orientifold compactifications: a
(smeared) 10d perspective

Up to this moment, we have been studying type IIA (CY) orientifold compactific-
ations just focusing on the 4d effective action, without worrying about the EOM in the
6d internal manifold. As repeated several times during the previous chapters, the issue
in these scenarios is that the back-reaction of the intersecting O6-planes is not taken into
account. Technically, this would require going beyond the usual Calabi-Yau manifolds and
considering SU(3) x SU(3) structure manifolds, which are far less understood. For that
reason, one works usually in the smeared approximation, where the punctual sources are
smeared. That is, they are distributed uniformly along all the internal dimensions while
keeping the total amount of charge fixed. Though this is not describing truly the physical
situation, the idea is that at low energies -so in the long-wavelength approximation- both
solutions should be similar, and so the smearing approximation should be valid in this
regime’ .

This approach is not exempt from criticism, as we have already mentioned. It could
happen that some of the nice properties of the smeared solution, such as scale separation,
are lost when the localised nature of the sources and the full 10d picture is taken into
account”. Indeed, we know for sure that the smeared solution cannot be capturing all the
properties of the true solution since gradients for the dilaton and the warp factor -which
in the smearing approximation are constant- are expected to appear. The question is
whether the information hidden by the smearing approximation changes drastically when
one considers the fully back-reacted background.

In this same spirit, the full 10d picture is also needed to study the non-perturbative
stability of the non-SUSY solutions. Only in this way one can compute the spectrum of
the theory and check if there is some membrane triggering an instability, as predicted
by the refined version of the WGC. Therefore, we see that to have better control and
understanding of the vacua derived so far, studying the 10d equations of motion, and not
only the 4d effective action is an indispensable requirement

In this chapter we will initiate the study of the 10d picture of the 4d vacua derived so
far, focusing here on the SUSY solutions and its uplift to SU(3) structure manifolds. We
will start by reviewing the 10d equations of motion equations in section 5.1 and recalling
how the SUSY scenario can be recast in a very elegant way using polyforms in section 5.2.
We will be short and concise, referring the reader to [25,29, 150-152] -which we will be
following- to a detailed introduction and further references. After having presented the

! An example in which this also happens, though for parallel O6 planes, can be found in [149)].
2See for example [60] for a case in which something similar happens.
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framework, we will finalise in section 5.3 presenting the smeared uplift of the SUSY vacua
derived in chapters 3 and 4.

5.1 10d equations of motion and Bianchi identities

Let us start by listing here all the equations that a consistent background has to
satisfy. Though we will see afterwards that the SUSY case can be expressed in a much
simpler form, when we study in chapter 7 the stability of some of the non-SUSY vacua
derived in chapter 3, we will need to work with these equations directly. We will use the
expressions derived in [58] adapted to our conventions. Since we will study (non-)SUSY
AdS, vacua, we take an ansatz for the metric of the form

ds® = eQAdSQAdS4 + dsg . (5.1)

5.1.1 Bianchi identities

Already introduced in (2.18), let us now write them explicitly. In the presence of
D6-branes and O6-planes they read

dGy =0, dGy = GoH — 4006 + Naé]%(; , dGy =Go NH , dGg =0, (5.2)

where we have defined dpg/06 = 0725(pg /06)- Recall that Il, hosts a D-brane source,
and 0(I1,) is the bump d-function form with support on II, and indices transverse to it,
such that 2=95(I1,) lies in the Poincaré dual class to [II,]. This in particular implies that

P.D. [4llos — NoIIe]) = m[¢s2H], (5.3)

constraining the quanta of Romans parameter and NS flux.

5.1.2 RR and NSNS equations

In our conventions, the EOM for the field strengths -in the string frame- derived
from (2.3) are

0=d (*10G2) + H3 A *19Gy, (5.4&)
0=d (*10G4) + H3 A *19Gs (5.4b)
0=d (*10G6) s (54(3)
0=d e 20 x10 H3 + *10G2 A Go + *x10G4 A Go + x10Ge N\ Gy . (5.4(1)
5.1.3 Einstein and dilaton equation
Finally, we will also write these equations explicitly for completeness
e 2 e 2¢ e 2¢ e ? _ _ _ _
0 :1262714 + 12(327’4(8614)2 + 4eTv2€A =+ 1267(86A)(86 (b) + e ¢V2€ ¢ + (86 ¢)2
1 bg—1 5 1 . .
- ie*% |Hs)* = R+ 5(‘?5 > —48he + Obs (5.5)
q=0 %
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e 2% e ? 1 1
0=-— e_2¢Rmn +4 oA vmaneA + ?gmn(aeA)(ae—qﬁ) + ngne_¢v2€_¢ + ngn(a€_¢)2

_ _ _ _ 1 _ 1
+ 27,0, —2 Ope?  O,e? + 56 2¢ \Hg\fm — ngn |H3|2 (5.6)
19 —1 7 ~ , .
+§Z Fq fnn—ngmn Fq2 +Z Hi,mn_égmn € ¢ _4666+5]ZD6 ’
q=0 i
eid)

_ 32 _ e ? e ?
0=-— 8V2€ ¢ _ 24627 — 67(6614)(66 ¢) — 24627(86A)2 — 1667V2€A

e (5.7)
+2¢ P Rpng™™ — e ® ]H3]2 +2 Z —46066 + 0pg s
i

where the subindex ¢ sums over all the O6-planes and D6-brane sources and the 6%6 /06

o 2 5\/g7ri
Vi g™
tensor of the ith O6-planes/D6-brane. The conventions for the hodge star and in general

the conventions in 10d used in the next chapters are relegated to appendix D

was defined in section 5.1.1. 1I; = is the projector of the stress-energy

5.2 SUSY backgrounds

As is often the case, asking for the solution to preserve some amount of supersym-
metry makes life easier. Without going into the details, it was shown first in [33] that
the equations of motion (which are second-order equations) are automatically satisfied by
backgrounds solving the vanishing of the supersymmetric variations of the fermions and
the Bianchi identities (which are all first-order equations). In other words, SUSY+Bianchi
identities—»EOM. Then, in [153] the SUSY equations were written in a very elegant and
simple way, using the language of polyforms. Let us review here briefly the main tools
needed. We will be following [29, 100] mostly.

Having supersymmetry in the 4d theory constrains severely the internal space Mg,
since it requires the existence of a constant spinor defined on the manifold. The compac-
tification ansatz for the 10d supergravity generators "2 in IIA is

d=gon+c e, C=Gor@+cen?, (58

where ( are constant complex Weyl spinors in the 4d theory -yielding N = 1 supersymmetry-
, whereas 7+ are two internal spinors of positive and negative chirality respectively. The
existence of these spinors reduces the structure group of Mg to SU(3) x SU(3).

Structure groups

Consider the internal manifold M, and its tangent bundle 7'M 4, that is, the bundle over the
manifold Mg with fiber in each point p € M, the set of bases of the tangent space T, Ms.
Locally, on a patch U, of My, we have (p,e,) where p € U, and e, = €.0,,, a,i =1,...d
is a local basis of T, M.

Let us now consider two different patches {U,, Ug} with some region in common, where
they are described by (p,e,) and (p, é,) respectively. On the this overlap, there exists the
following relation inherited from the associated tangent bundle

& = (tpa), » (5.9)

71



Chapter 5. Type IIA orientifold compactifications: a (smeared) 10d perspective

where tg, € GL(d, ) are called the transition functions and must satisfy some consistency
conditions -see [100] for more details-. In practice the ¢, tell us how a local basis of
the tangent space of the manifold transform when moving between different patches. This
group of transformations is called the structure group of the manifold, and will be in general

GL(d, ).

v

Ua UB Ua Ufi

Figure 5.1: Extracted from [100]. On the left, the structure group is assumed to be reduced
to O(d). On the right: a globally defined non-vanishing vector v is introduced and the structure
group is reduced to O(d — 1).

We will be interested in the cases in which the structure group is reduced to some subgroup
G C GL, which depends on the topological properties of the manifold. This happens for
instance when there are structures globally defined on the manifold. For example, if the
manifold admits an everywhere non-vanishing vector v, the structure group is reduced to
O(d — 1) -see figure 5.1-; if it admits a metric, it reduces O (d, ) and if there is a globally
defined volume form associated with it, to SO (d, )

From the internal spinors, one can build a pair of bispinors®, &4 = 77—1k ® niT. In
turn, these bispinors can be expressed, using Fierz identities, as

1S, 1

2 2

do=nt e = 3 > il M Y AT (5.10)
k=0 "

where the gamma matrices are defined in the usual way {v.,7%} = 29spa = 1,...,6;

Yng..n: is the antisymmetric product of gammas, vy, .. n, = Vg - - - Vna) -for instance Yy, =
%[’ym,'yn]— and the same for ™" with the indices raised by the metric. Under the
Clifford map, the previous expression can be interpreted as a polyform in the internal
space

11

2 2

Dy ——§§ o M ey 7™ ”’“<—>§§ o M Y AT A A dzE
: k=0 """

(5.11)

3Indeed, one could build 3 different pairs of bispinors, but only the one considered in the main text will
play a significant role.
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The Clifford map
The Clifformd map -see [29] for a more detailed discussion- is an isomorphism between
polyforms and operators acting on spinors, defined as

1 1
ap = Haml..‘mkdxml Ao Adx™F — o = Haml...mk'ymlmmk . (512)

The action of ™ on the bispinor a4, translates to the polyform formalism oy as the operator

<_
’yﬁ —dz™ A+g" "y, A" s (dz™ A —g™"1,,) (—1)9°8 (5.13)

where — (+) indiactes that the gamma matrix is acting on the bispinor on the left (right).c,,
is the contraction operator defined as

o (dz™ AL Adz™) = kP da AL Ade™

for instance ¢y, da™ A dzP = 6], da? — 6P, dz”- Finally, the operator deg counts the degree
of a form, deg a, = kay, where «y, is a k-form.

Depending on how the internal spinors 7’ are -parallel, orthogonal or generic-, the
structure group of the manifold can be reduced further. We will give the explicit expres-
sions for &1 for each case in the next sections. Then in 5.2.4, we will directly give the
differential constraints that the SUSY variations impose on ®_.

5.2.1 SU(3)-structure

If the two spinors are proportional, 1 o< 7%, the structure group reduces to SU(3).

t .
If we choose a normalisation for the spinors such that ni 771+ = 8e?4~%¢"  then
o, = 39l d_ = 31790, (5.14)

where we have introduced the warp factor A and the dilaton ¢ in the normalisation (they
can change along the internal manifold) since they will appear naturally when we consider
the SUSY equations. {J,Q} are a globally defined real 2-form and a globally defined
complex 3-form respectively, satisfying

1 ) ~
JAQ=0, dvol(;:—éJ/\J/\J:—éQAQ. (5.15)

Moreover, 2 has to be decomposable: at every point, it should be possible to write it as
the wedge product of three one-forms. This constraint allows to reconstruct Im ) from
ReQ, or vice-versa; explicit formulas for this were given in [154] and reviewed for example
n [155, Sec.3.1].

We can decompose (d.J,d?) in terms of SU(3)-representations [156]:
3 -
dJ = —§Im(Wlﬂ) +WynNJT+Ws, (5.16)
dQ=W1J> + Wa A J + W5 AQ, (5.17)

where the W; are the torsion classes: Wi is a complex scalar, Ws is a complex primitive
(1,1)-form, W3 is a real primitive (1,2) + (2,1)-form, Wy is a real one-form and W5 a
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Manifold Vanishing torsion class
Complex Wi=Wy=0
Symplectic Wi =Ws=Wy=0
Half-flat ImWi=ImWy =Wy, =W5=0
Special Hermitean Wi=Woe=W,=Ws;=0
Nearly Kahler Wo=W3=W,=Ws;=0
Almost Kéahler Wi=Ws3=Wy=W5=0
Kéhler Wi =We=W3=W;=0
Calabi-Yau Wi=We=Ws=W4,=W5=0
“Conformal” Calabi-Yau | Wi, = Wy = W3 =3W, —2W5 =0

Table 5.1: Extracted from [157]. Manifolds with SU(3) structure with vanishing torsion classes.

complex (1,0)-form. Depending on which of these torsion classes vanishes, manifolds with
SU(3) structure receive the classification shown in table 5.1. When all of them vanish,
the manifold is Calabi-Yau, and {J,Q} become respectively the Kéhler and complex form
introduced in the first chapter.

As we will see in section 5.3, SU(3) manifolds are enough only to accomodate the
smeared uplift of the vacua studied in chapters 3 and 4, but we need SU(3) x SU(3)
structure to describe the localised nature of the sources.

5.2.2 (Static) SU(2) structure

T
If the two spinors are orthogonal ni 771+ = 0 the structure group of the manifold
is SU(2) and the polyforms, choosing again an appropriate normalisation, are

o, = 34— g3vN NJ, O =y nel (5.18)

where v is a complex 1-form and j,w a real and complex two-forms respectively satisfying
JNw=wAw=0, w/\JJ:2jQ,

lwj =57 =0, Lyw = tyw = 0, (5.19)

with the contraction ¢z defined in (5.2). The volume form is in this case is dvolg =
—2v A A j% An equivalent definition is obtained by taking an SU(3)-structure (J, <)
and adding a complex one-form v. The forms j and w are then obtained as

. i 1 1

j:J—§1)/\U, W= Sl Eiv-Q. (5.20)
In other words, 2 =v A w.

We will not use manifolds of this kind, since SUSY AdS, compactifications of clas-

sical ITA SUGRA in static SU(2) manifolds do not exist [100, 158,159]. Nevertheless, j, v
and w will appear when we study SU(3) x SU(3) manifolds (or dynamic SU(2) manifolds).

5.2.3 SU(3) x SU(3) structure or dynamic SU(2) structure
In the most generic case, and choosing an appropriate normalisation,
t A
2 ik = Scos () 40,
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where {0,1} can change along the internal manifold. The polyforms are
d, = 3479 cos g exp[—iJy], d_ =3P coshu A expliwy) (5.21)
with

1 1 1
] AV =
cos(w)‘7 T3 tan?(v) v “¥

Jy = Rew + ———Imw , (5.22)

and {j,v,w} defined in the previous section 5.2.2. We will work with this kind of manifolds
in the next chapter.

To close this section, it is important to point out that this and the other two previous
cases can be described in a unifying and more natural way using the language of generalised
complex geometry [160,161]. We will not talk about it in this thesis.

5.2.4 SUSY equations

As we have commented when we introduced the whole set of 10d equations in section
5.1, looking for SUSY solutions is simpler, since one only has to solve the Bianchi identities
and the vanishing of the SUSY variations of the fermions (the gravitino and dilatino).
Bianchi identities were introduced in section 5.1.1, whereas we will present now SUSY
equations.

SUSY equations impose some differential constraints in the spinors nli’Q. These
constraints can be re-expressed in a very compact way using the polyforms @, introduced
in the previous sections. We will skip here the technical details and refer the reader to
the original reference [153] -or to the reviews previously mentioned- to see the complete
derivation. In our conventions, the differential equations imposed by supersymmetry on
the &4 can be written as

dp®, = —2pe “Red_ (5.23a)
dy eMm®_ = —3uIm®, + e x \G . (5.23b)

Here * is the internal Hodge dual, A is a sign reversal operation defined on a k-form as
Mayg) = (=1)#/2lay, and dy = d — HA. For our purposes, it is convenient to recall that
the second equation admits an alternative expression [155]

Te-dyg eMmd_ = —5ue Red, + G . (5.24)

The new operator J. - is associated in a certain way to the form ®,; we will see in explicit
examples what it reduces to.

To find a SUSY solution, one needs to solve equations (5.23) together with the
Bianchi identities for the fluxes (5.2). The specific form of &4, -(5.14), (5.2.2) or (5.21)-
will depend on the ingredients we consider since they will restrict the manifold in which
we have to do the compactification. Having presented the tools needed, we are ready to
look for solutions to these equations and see which of them correspond to the 4d vacua
obtained in the first chapters.
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5.3 SUSY (smeared) uplift

We are ready finally to start the study of the uplift of the SUSY vacua found in
the previous chapters. Before discussing the solutions, let us start by explaining what
the smearing approximation is since we have not presented it properly yet. Originally
introduced in [34], it replaces the localised sources with a homogeneous distribution of the
charge over the internal manifold. In other words, it spreads the charge. Mathematically,
the idea is the following. Consider the Bianchi identity for Ga

dGe = GoH + 6D6/06 R (5.25)

with dpg/06 taking into account the presence of O6 and D6 sources. In the smearing
approximation, one replaces

5D6/06 — —GOH, (526)

so that now equation (5.25) only imposes that G2 must be closed. In this section, we will
see that the uplift of the previous vacua to manifolds with SU(3) structure -which are
simpler than the ones with SU(3) x SU(3) structure- does not work, unless one work in
the smearing approximation, which is not describing the true physical situation. Chapter
6 will be entirely dedicated to studying if one can go beyond this approximation, focusing
on the case with only RR and NSNS fluxes.

5.3.1 RR and NSNS fluxes

Massive type IIA 10d supergravity solutions of the form AdS4 x Xg are relatively
well understood in several instances, like when the internal manifold Xg is endowed with
a SU(3)-structure underlying 4d N/ = 1 supersymmetry [33,92,93]. In that case, using
the expressions introduced in the previous sections, the 10d background supersymmetry
equations reduce to

dHImQ = €¢ *g (Go — G2 + G4 — G6) — 3Im (wge_i‘]) s (5.27&)
dpe ™ = —2wgRe ), (5.27h)
dgRe) = 0, (5.27¢)

where ¢ is constant, dg = d— HA and wg = ey = ¢ /R € is the constant entering the
Killing equation of an AdS, of radius Rl,. e does not appear in the equations because
they imply dA = 0, so A is constant and we have already fixed its value to e? = 1 -any
other number can be reabsorbed in p-. For wg €  the solution to the above equations
can be parametrised as

2
Gg=0, H:ge¢GoReQ, Gy = —e "W, G4—3G0JAJ, dJ =0,

10
(5.28)
where Gy = 5e?Rewy is a constant and Ws is a real primitive (1,1)-form, namely a
SU(3) torsion class of € -recall expressions (5.16). Notice that because of (5.27a) Wy
cannot have a harmonic component. One may now express the RR background fluxes as

6 dVO].)(6

Go = 0, Gy = ﬁa Es_Qwa—f—OéQ, Gy = Pa 65_4(1)(14-@4, Gg = 0 68_ + ag , (5.29)

vol X6
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5.3. SUSY (smeared) uplift

where w, and ©% are a basis of harmonic two- and four-forms of Xg introduced in table
2.1, and o, are globally well-defined forms with no harmonic component. We also expand
the NS-flux as in (2.23). One can then see that (5.28) amounts to apply the Ansatz (3.49)
with the choice of constants A, B, C corresponding to the supersymmetric A1-S1 branch,
together with ap = —e W5 and o = ag = 0. Even if a Ws # 0 signals that the metric
on Xg is not Calabi-Yau, supersymmetry requires that W5 has no harmonic component,
just as in type ITA compactifications to 4d Minkowski [121]. As such, its presence can
be considered as a deformation of the Calabi-Yau metric similar to a warp factor, rather
than a discrete deformation or genuine geometric flux carrying topological information,
see e.g. [162,163].

Despite these suggestive features, one can see that the (5.27) is too simple to describe
an actual 10d background corresponding to a type IIA compactification with fluxes, O6-
planes and D6-branes. First, it features a constant dilaton and warp factor, which are in
tension with the backreaction of such localised sources. Second, it is incompatible with
the Bianchi identity for G2. This reads

dGy = HGo + bpgjos  — dWa = —e® |GoH + dpg 06| » (5.30)

where dpg/0¢ are bump functions localised on the 3-cycles wrapped by the D6-branes and
O6-planes and include their relative charge. As usual, RR tadpole cancellation amounts
require that the quantity in brackets vanishes in cohomology, so that Gy = —e~?W, can
be globally well-defined. However, (5.30) together with Q A Gy = 0 implies a flux density
|G 4|? which is negative in the bulk and singular on top of any localised source. A proposal
to circumvent these problems, as explained at the beginning of this section, is to modify
the Bianchi identity (5.30) by replacing the localised sources with smeared ones [34], so
that one can take Go = 0.

Instead of modifying the Bianchi identity, one may try to embed the above solu-
tion into a type IIA AdS, compactification based on a background with SU(3) x SU(3)
structure, which is compatible with a non-trivial dilaton and warp factor [102, 104, 105].
We will study this possibility in the next chapter, where we will also revisit the smearing
problem problem in more detail.

5.3.2 Geometric fluxes

For those geometric vacua that fall in the large-volume regime, one may try to infer
a microscopic description in terms of a 10d background AdSs; x Xg. In this section we
will do so by following the general philosophy of the previous section, by interpreting our
4d solution in terms of an internal manifold Xg with SU(3)-structure. As in the previous
case, it could be that the actual 10d background displays a more general SU(3) x SU(3)-
structure that is approximated by an SU(3)-structure in some limit. This is in fact to
be expected for type IIA supersymmetric backgrounds with localised sources like O6-
planes since the problem with the Bianchi identity for G2 discussed in the anterior section
always appears. One should be able to describe the 4d vacua from a 10d SU(3)-structure
perspective if the localised sources are smeared so that the Bianchi identities amount to
the tadpole conditions derived from (4.10), already taken into account by our analysis.

Following section 5.3.1, one may translate our Ansatz into 10d backgrounds in terms
of the gauge-invariant combination of fluxes

Grr = dHCRR+eB/\FRR, (5.31)
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where dg = d — HA. From here one reads

(,Gs = 6Advolx,, (sGy=3BJANJ, 0,Go=CJ, (.H=—6EgJIm(eQ),
(5.32)
and ¢;Go = —D, with the constants {4, ..., F} defined in (4.53a)-(4.53g). Moreover, a
vanishing D-term D, = %EhK fo!* implies no torsion classes, as in the setup in [164]. In
this case from (4.53f) and (4.53g) it follows that

3 , :
dJ = iFgSZSIm (e, dRe (e7Q) = —Fgyl,J N J | (5.33)

which translate into the following SU(3) torsion classes

Wi = —lsgseF Wo=Ws=W,=Ws;=0. (5.34)
Therefore, in terms of an internal SU(3)-structure manifold, our vacua correspond to
nearly-Kéhler compactifications.

With this dictionary, it is easy to interpret our SUSY branch of solutions in terms of
the general SU(3)-structure solutions for N' =1 AdSy type IIA vacua [33,92]. Taking for
instance the choice § = —7/2, we can compare with the parametrisation of [158, eq.(4.24)],
and see that the relations (4.66a) and (4.67) fit perfectly upon identifying

5 F
U\ Wole™47% =39, E+ i (5.35)

where |Wp| is the AdSy scale from the 10d frame, and 0 a phase describing the solution.

One can in fact use this dictionary to identify some solutions in the non-supersymmetric
branch with 10d solutions in the literature, like e.g. those in [102]. Indeed, let us in par-
ticular consider [102, section 11.4], where N' = 0 AdS4 compactifications are constructed
by extending integrability theorems for 10d supersymmetric type II backgrounds. We
first observe that the second Bianchi identity in [102, eq.(11.29)] describes our first va-
cuum equation (4.54a). Similarly [102, eqs.(11.31),(11.35),(11.36)] are directly related to
(4.55a), (4.55b) and (4.54b) respectively.

Using these relations three classes of solutions are found in [102, section 11.4]:

1. The first solution [102, (11.38)] is a particular case of the non-SUSY branch, corres-
ponding to Ap = +1/4 and Cp = £1/2, with ApCp > 0.

2. The second solution [102, (11.38)] corresponds the limit solution of the non-SUSY
branch with Cp =0 and Ap # 0.

3. The third solution [102, (11.40)] describes a point in the SUSY branch characterised
by E F = iﬁ.

To sum up, the results of [102] provide concrete 10d realisation of solutions for both
the supersymmetric and non-supersymmetric branches of table 4.1.

Finally, this 10d picture allows us to understand our no-go result of section 4.3.2
from a different perspective. Indeed, given the torsion classes (5.34) the Ricci tensor of
the internal manifold Xg reads [165, 166]

5
R = ngn|wl\2 , (5.36)

and so it corresponds to a manifold of positive scalar curvature, instead of the negative
curvature necessary to circumvent the obstruction to de Sitter solutions [167].
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5.4. Summary

5.4 Summary

In this chapter we have initiated the study of the 10d picture of the 4d vacua derived
in chapters 3 and 4. In other words, the study of the 10d uplift of type ITA orientifold flux
compactifications.

We started by recapping the 10d equations of motion and recalling how, for SUSY
backgrounds, they can be rewritten in a very elegant way using the language of poly-
forms. We also pointed out that SUSY AdS, flux compactifications of (classical) type ITA
(SUGRA) only admit two kinds of internal manifolds, either SU(3) or SU(3) x SU(3)
structure manifolds.

We then tried to embed ITA orientifold compactifications on these backgrounds, first
only considering NSNS and RR fluxes and then including geometric fluxes. In general,
this is important to understand if some of the nice properties the 4d vacua have (scale
separation, stability of the non-SUSY solutions...) are preserved when we look at them
with the 10d glasses.

Regarding orientifold compactifications with NSNS and RR fluxes, we recovered the
results of [34]. We started by checking if SU(3) manifolds are enough to accommodate
these vacua. We saw that, unfortunately, they are not: the Bianchi identity for G2 cannot
be solved unless one smears the O6/D6 sources.

This same problem happens when geometric fluxes are included. We have seen that
our Ansatz corresponds to a nearly-Kéhler geometry in the limit of smeared sources. On
the other hand, AdS; SUSY vacua with W5 # 0 have been recently derived in [142], which
seem to be missed by our ansatz. It would be nice to understand how these solutions are
recovered in our formalism.

We limited ourselves to discussing the uplift of the previously derived 4d vacua in
SU (3) structure manifolds. We explained why this is not possible, but this is not the end of
the story. The natural next step is to check if SU(3) x SU(3) manifolds can accommodate
these solutions. This question will be addressed in the next chapter 6, where we will
look carefully at NSNS and RR flux compactifications and their possible uplift. With the
results derived there, we will finish this thesis in chapter 7 by studying the uplift of the
non-SUSY solutions of that same scenario, focusing on the stability of the vacua.
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Type IIA orientifold vacua beyond the smeared
uplift

6.1 Introduction

String theory is known to support many Anti-de Sitter (AdS) vacua, solutions of the
form AdS; x M, where all fields are invariant under the AdS isometries. Strikingly, for
the vast majority of AdS vacua, the Kaluza—Klein (KK) scale is comparable to the scale of
the cosmological constant: one often says that there is no “scale separation”. This means
that the solutions are not really d-dimensional in any physical sense: physics looks ten-
or eleven-dimensional to a hypothetical observer. There have been many studies on the
property of scale separation in string theory, see in particular [60,86, 110, 168-170].

Recently, the feature of scale separation was revisited as part of the Swampland
program, as we reviewed in section 2.3.2. As we explained there, it was suggested that a
Swampland condition could be that the value of the cosmological constant sets the mass
scale of an infinite tower of states. The AdS Distance Conjecture (ADC) states that this
mass scale m is related to the cosmological constant as

m e~ AY (6.1)

with a ~ O(1). The conjecture was motivated by examples in string theory, but also by
the fact that the A — 0 limit is in the infinite distance in the space of metrics. Further, a
Strong version of this conjecture was also proposed which states that for supersymmetric
vacua o = % This stronger form would be satisfied in any AdS vacuum which has no

separation of scales.'

We have seen in chapter 3, section 3.4.1, that type IIA compactified on a CY ori-
entifold with RR and NSNS fluxes violates this conjecture, yielding o« = 7/18 for both
SUSY and non-SUSY vacua. This was first noticed in [49] for the SUSY case, to which
we will refer as DGKT vacua -we saw in section 3.2.5 how this solution is included in
our formalism-. All these vacua have orientifold singularities and indeed O-planes are
supposed to be necessary for scale separation [110].

This four-dimensional possible counter-example to the Strong ADC was already
discussed in [76], where it was argued that since there is no known ten-dimensional up-
lift of this vacuum its features are not established and therefore may not be trustable.
This chapter aims to take some initial steps towards improving our understanding of ten-

!The absence of scale separation was actually shown for general classical supersymmetric AdS; vacua
in [170].
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dimensional solutions which are based on these 4d proposals.”

Over the years, several attempts have been made to lift the four-dimensional DGKT
construction to a ten-dimensional solution. The main difficulty, as we have seen in section
5.3, lies in the presence of the O-plane sources. There exist several AdS solutions with
back-reacted O-planes (but without scale separation: see for example [170] for a discussion
in AdS7). But in this case, the most concrete examples proposed in [49] involve intersecting
O-planes, whose back-reaction isn’t even known in flat space. In [34] it was proposed to
simply smear the O-planes; with this trick, an uplift to ten dimensions can indeed be
found using SU(3) structure manifolds. Other similar solutions were found with the same
trick in [171].

Smearing O-planes is not physically sensible -though this approximation can capture
the main physical properties [149]-, so the next step was to investigate whether a similar
solution could be found, where the O-planes could be localised. In [172], a local solution
was found as a candidate for the behaviour near the individual O6-planes, with a resolved
singularity and large-distance asymptotics to the smeared solution of [34]. However, it
was not clear whether it could be made global; this partially motivated scepticism about
the solution [109].

Our approach to looking for a solution is to utilise the supersymmetry equations
introduced in section 5.2.4. First, we restrict to the equations at the two-derivative level,
so neglecting higher-order o’ corrections. The supersymmetry is related to the structure
group of the manifold. The Ricci-flat metric on a Calabi-Yau has SU (3)-structure, and it is
known that there are no SU (3)-structure solutions with localised O-planes [34]. Therefore,
any solution must deform the metric away from the Ricci flat one. For this deformation to
be supersymmetric it should exhibit SU(3) x SU(3) structure, which is the most general
possibility. We, therefore, study whether there are ten-dimensional solutions with SU(3) x
SU (3)-structure that exhibits the properties of DGKT. Even though these would not be
compactifications on the Ricci-flat Calabi—Yau metric, they may morally be considered
the uplifts to DGKT.

We find an approximate solution to the supersymmetry equations. Specifically, in
[172] it was proposed that one could look for solutions that are perturbations of the smeared
solution controlled by an expansion parameter related to the value of the cosmological
constant. Following this approach, we find a solution to the supersymmetry equations and
the Bianchi identities with localised sources, at leading order in this expansion parameter.
The solution is very different to the one considered in [172], specifically we have an exact,
rather than approximately, vanishing Freund-Rubin flux.? However, the methodology is
the same.”

Note that this approach was also recently utilised in a closely related paper [58].
Our work focuses on the supersymmetry equations, which were not considered in [58], but
at least so far as the existence of a first-order solution our results agree with those of [58].

2 Another approach towards establishing their validity would be to construct a dual CFT, which would
have the so far unrealised features of a parametric hierarchy between the central charge and the scaling
dimensions of an infinite number of operators. An initial search for the dual CFT to [49] was carried out
in [5,82-85].

3Tt should be noted that AdS solutions without a Freund-Rubin flux exist, notably in cases where they
are forbidden by the dimensionality of spacetime, such as for AdSs in M-theory [173] or AdS7 in type
ITA [174], but also not, such as in [175].

4An argument against exactly vanishing Freund-Rubin flux was suggested in [172, Sec. 7.5]. However,
we have found a mistake in that argument (which does not influence the rest of the paper).
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Returning to the question of separation of scales, our results show that DGKT
vacua have passed a first non-trivial test. However, we do not claim that our results show
conclusively that DGKT really does uplift to a full exact solution of string theory, nor
that if such a solution exists it exhibits separation of scales. We discuss the remaining
open questions in section 6.7.

The rest of the chapter is organised as follows. In section 6.2 we review again
the basics ingredients that are important for a 10d description, and the most general
class of 10d supersymmetric backgrounds that they can correspond to. In section 6.3 we
discuss how the 4d features of DGKT constrain such 10d supersymmetric vacua, narrowing
down the search for solutions. In section 6.4 we present a large volume/weak coupling
approximation of the supersymmetry equations compatible with DGKT. In section 6.5 we
solve exactly the Bianchi identities corresponding to DGKT in a generic Calabi-Yau. In
section 6.6 we present our solution to the supersymmetry equations and Bianchi identities
in the large volume approximation. We express such a solution in terms of Calabi—Yau
quantities, and discuss its general features. We finally draw our conclusions in section 6.7.

The most technical details of the chapter have been relegated to the Appendices.
Appendix E reviews type ITA supersymmetry solutions from the viewpoint of SU(3) x
SU(3) structures -the equations were introduced in sec 5.2-, and appendix E.3 contains
the proof of what we dub the source balanced equation, see (6.33).

6.2 Supersymmetric type ITA flux vacua

In this section we review the setup considered in [49] and in chapter 3, and in
particular the features that should appear in a 10d description. Since the vacua in which we
will be interested are supersymmetric from a 4d viewpoint, one expects their corresponding
10d backgrounds to solve the 10d supersymmetry equations with four supercharges. These
equations can be efficiently encoded in the language of compactifications with SU(3) x
SU(3) structures -see section 5.2- which we also review. As we will show in the next
section, the results of [49] imply that only a specific class of SU(3) x SU(3)-structure
compactifications can describe the global aspects of these vacua. Most of the concepts
presented here have already been introduced along the pages of this thesis, but we will
repeat some of them to guarantee the internal coherence of this chapter and to make it as
self-contained as possible.

6.2.1 4d description of type ITA AdS, orientifold vacua

Let us summarize here all the concepts introduced in the previous sections that
we will need in this chapter. Consider again type IIA string theory compactified in an
orientifold of X4 x Xg with Xg a compact real six-manifold with a Calabi—Yau metric,
and therefore a Kéhler 2-form Jcy and a holomorphic 3-form Q2¢y. The orientifold action
is generated by ,(—1)fZR and the fixed locus g of R is one or several 3-cycles of Xg
in which O6-planes are located. In a consistent compactification, the RR charge of such
O6-planes must be cancelled by a combination of D6-branes wrapping three-cycles of Xg
and background fluxes.

In the presence of only O6-planes the Bianchi identities for the RR fluxes read
dGy =0, dGe = GoH — 460 , dGy = Go NH , dGg =0, (6.2)
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Chapter 6. Type IIA orientifold vacua beyond the smeared uplift

where we have defined dog = £ 20(Ilog). This in particular implies that
4P.D.[Tlog] = m[(2H], (6.3)

constraining the quanta of Romans parameter and NS flux.

In chapter 3, as in the original approach in [49], we performed a 4d analysis of this
scenario, finding an infinite discretum of A/ =1 AdS4 vacua. Indeed, one finds that

_ 2 3G
(6:)[H] = £Go[ReQcy],  (G2) =0, (Gu)="=FTAJT,  (Ge)=0, (64)
where we have defined
_ €7¢Jé Go A J% G4 N Joy Gs
(9:7) = g (Ga) = A (Gu) = ey (G =
X6 “CY X6 “CY X6 “CY X6 (C6Y5)

with ¢ the 10d dilaton®. It was also obtained that the Calabi-Yau volume ¢$Voy(Xg) =
—% Xg JéY is controlled by the four-form and two-form flux quanta, more precisely by the

combination é, = e, — %w, with KCupe the triple intersection numbers of Xg [49]. As

such, one may arbitrarily increase the Calabi—Yau volume by increasing the value of é,,
while the density of four-form flux remains constant, as captured by (6.4). On the other
hand, because of (6.3) the quanta of H and m are bounded and in practice be considered
to be fixed. This implies that the average value of the (inverse) dilaton scales as

(951 ~ Ve ~ &/t (6.6)
Finally, the AdS4 radius Raqgg scales like
RaasMp ~ &%/* (6.7)
Therefore the 4d EFT considered in [49] suggests that as we increase é along the infinite
family of solutions we go to a limit of weak coupling, large volume and large AdS radius.
6.2.2 10d description and supersymmetry equations

We now review the conditions for ten-dimensional supersymmetry directly in the
pure spinor formalism. A ten-dimensional AdS; vacuum has a metric of the form

ds® = e*Ads} g, + dst . (6.8)

Preserved supersymmetry imposes differential equations on the internal part of the
supersymmetry parameters n$. From these one can build a bispinor &4 = n}r ®1732EJ', which
can be interpreted as a polyform in the internal space by the Clifford map " — dz™.
This form obeys some algebraic constraints, that follow from its definition in terms of
spinors, and some differential equations that follow from supersymmetry.

Preserved supersymmetry allows several types of solutions. Only two classes are
relevant for us. The first class is made of the SU(3)-structure solutions, and are enough to

SRemarkably, similar relations hold when adding curvature corrections [65,108] and mobile D6-branes
[64].
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6.2. Supersymmetric type 1A flux vacua

describe the smeared uplift - [34] and section 5.3-; they depend on a two-form .J and a three-
form Q. The second class, which is the generic solution, comprises the SU(3) x SU(3)-
structure solutions; this is the one relevant for this chapter. Both classes were reviewed
in 5.2; here we only need to know that the SU(3) x SU(3) class depends on the following
data:

= Two functions 1, 6,
= A complex one-form v,
= A real two-form j,

= A complex two-form w.

The function 1) measures the departure from the SU(3) class; v — 0 makes one fall to
that case. In that limit, the data reassemble in those of an SU (3)-structure as

1 AT 0 1
—— VA = v
2tan? ) ’ tan 1

J=7+ ANw. (6.9)

On the other hand, # is the phase of ngjni. Finally, the forms v, j, w are the same data
that define an SU (2)-structure in six dimensions, see 5.2 for more details.

The differential equations imposed by supersymmetry on the &L were introduced in
section 5.2 and read

dp®, = —2ue 4 Red_ | (6.10a)
dy eMm®_ = —3uIm®, + e+ \G, (6.10b)

with the second equation admitting the following equivalent formulation [155]
Ty -dg e 3 md_ = —5ue " Red, + G. (6.11)

Recall that * is the internal Hodge dual, X is defined as A(ay) = (—1)*/2ap and  —A/3
is the AdS, radius seen from the 10d string frame perspective. The mean value of e~ can
be absorbed into the definition of —A/3 so we can fix it to one. Regarding the operator
J+-, we will see in explicit examples what it reduces to.

Let us now present in some detail what one gets by plugging in (6.10a), (6.11)
the solutions to the algebraic constraints for ®1. Here we will focus on those classes of
solutions that are more relevant for the computations of the following sections, leaving the
rest for the more detailed discussion of App. E.

6.2.2.1 SU(3)-structure
For an SU(3)-structure we have seen that the pure spinors have the form
D, = 3 %W o = 3170Q. (6.12)

where J and Q do not need to be closed, allowing for SU(3)-structure torsion classes.
From here one finds that
do =0 3dA = d¢ (6.13)
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and the following expression for the fluxes [158]:

H = 2pe “cos # ReQ, (6.14a)
Go = 5ue " Acos, (6.14b)
Gy = %u6_¢_Asin0 J—J-d e ’ImQ (6.14c)
Gy = %,ue*d’*Acose JNJT, (6.14d)
G = 3ue”* “sin f dvolxy, . (6.14e)

The operation J- is defined as J~! : one inverts the two-form J to obtain a bivector, and
one contracts this bivector with the forms that follow it. We will see more precisely how
that works in the solutions below.

6.2.2.2 SU(3) x SU(3) with 6 =0

Here we consider the special case 8 = 0, since, as we will argue in section 6.3, this
case is the one suitable for a microscopic description of the DGKT vacua. SU(3) x SU(3)
backgrounds with 6 # 0 have a similar but slightly more involved description; we defer
their discussion to App. E.1.

In the case § = 0 the pure spinors have the form

D, = 7% cosp exp[—idy), d_ =347 cos v A expliwy] (6.15)
where
Jy = | + ! vVAD Wy = ! Rew + ——Imw (6.16)
v = cos(w)j 2 tan?(v)) ’ Y= sin(y) cos(v)) ’ ’

Details about v, j, w are reviewed in section 5.2.

There are first some equations that do not involve the fluxes:

A A
Rev = —% (3dA — d¢ — tan ypdi) = —;—dlog(cos pedA9Y (6.17a)
p p

d(e347? cospJy) = 0. (6.17D)

To arrive to (6.15) one needs to perform a B-field transformation on the pure spinors
and the fluxes [126,172,176], with by, = tan Imw. The physical fluxes are obtained by
undoing it:

H = H + d(tan ITmw) G = efanvImenp (6.18)
where
H = 2pe ™ Re(iv A wy), (6.19a)
Fo = —Jy - d(cos Ve ?Imv) + 5 cos e A7? (6.19Db)
. — Sin2 w —A—¢
Fy = —Jy - dIm(icosve v Awy) — QMWe Imwy, (6.19¢)
1
Fy = Ji §F0 — peosype AP 4 Jy A dTIm(cos e~ %), (6.19d)
Fs=0. (6.19€)

In the limit ¢y — 0 and upon making the replacements (6.9) one recovers (6.14) with § = 0.
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6.3 Constraining the solution

As expected for data obtained from the 4d EFT, the relations (6.4) correspond
to integrated quantities, and so there could be an infinite number of 10d backgrounds
that correspond to them. Nevertheless, when combined with supersymmetry they result
in some stringent constraints on the microscopic description of DGKT vacua. In this
section we develop such constraints by using the machinery of SU(3) x SU(3)-structure
compactifications. The result is quite simple to state: DGKT vacua should correspond to
10d backgrounds such that 7) the internal flux G vanishes pointwise and i) it corresponds
to a genuine SU(3) x SU(3) structure with 6§ = 0.

6.3.1 The Freund—Rubin flux

A key characteristic of type IIA flux compactifications studied so far is their Freund—
Rubin flux. Given the compactification Ansatz (6.8), this flux is of the form

G = cdvoly, + Gy, (6.20)

where c¢ is defined by
c=e%Gg, (6.21)
and G4, Gg are the four- and six-form components of the internal flux (5.31). The equations
of motion imply that ¢ is a constant, since
d (x10Gg) = dvolx, Ad e* «Gs = dvolx, Ndc=0, (6.22)
or in other words that the internal six-form takes the expression

Gg = ce Hdvoly, | 6.23
6

with ¢ constant. Notice that the volume form dvoly, need not be —1.J&y, because the
actual internal metric of the solution is not supposed to be Calabi—Yau, even if Xg admits
a Calabi-Yau metric. In any case the last relation in (6.4) reads

¢ e Mdvoly, =0. (6.24)
Xe

This in principle leads to two possibilities: either c or the integral vanishes. Notice however
that the integrand is positive definite — excluding perhaps regions very close to the O6-
planes where the supergravity approximation breaks down — and so should be its integral.’
Therefore, sensible 10d uplifts of DGKT vacua are those in which the six-form flux Gg
(and dual Freund-Rubin flux) must vanish point-wise on Xg

Gs=0. (6.25)

As follows from the discussion of Appendix E, this condition has a straightforward implic-
ation for the poly-forms describing the SU(3) x SU(3) structure. Namely

Im® |, . =0. (6.26)

This simple constraint rules out several candidates for DGKT 10d vacua.

SIn practice one may shifts the warp factor by a constant that is absorbed into the AdS, scale p, to fix
the value of the integral to a certain positive value. We take the simple choice <674A> =1 in our solution
of section 6.6.
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Chapter 6. Type IIA orientifold vacua beyond the smeared uplift

6.3.2 No SU(3)-structure solution

As noticed in [34], the relations (6.4) are very suggestive from the viewpoint of type
ITA flux backgrounds with SU(3) structure, whose most general solution was found in
[33,92]. Nevertheless, this particular subcase of SU(3) x SU (3)-structure compactification
cannot accommodate a 10d uplift of [49] unless the orientifold sources are smeared, as we
already discussed in the previous chapter. While this is a well-known obstruction, it will
prove useful to review it from the present perspective.

Recall the SU(3)-structure solutions (6.14). It is easy to see that the choice § =

0 is reminiscent of the relations (6.4), and in particular that it is compatible with the

constraints (6.25) and (6.26). However, this choice is not allowed in the present setup,

unless the Bianchi identity is modified by smearing the O6-plane sources. Indeed, it follows

from the Bianchi identity for G that there both the warp factor and dilaton are constant,
from where one obtains that

dImQ =iWy A J, (6.27)

with Wy a real, primitive (1,1)-form. Then, the Bianchi identity for G2 becomes [34,97]
o 1 2 —24,2 2, 2. 2
e Z|W2‘ +e ““u* 10cos“d — 35in 0 ReQd=—dpg.- (6.28)

Away from the O6-plane locus, the LHS of (6.28) needs to vanish, which necessarily
imposes that # # 0 and a non-vanishing internal flux Gg. Therefore, by the requirement
(6.25) this cannot be a 10d realisation of [49]. If dp¢ is replaced with a smeared three-form
source in the appropriate cohomology class

—606 — GoH = 10e %724, 2cos’0 ReQ (6.29)

such obstruction is gone, and one find solutions with W5 = 8 = 0. This would-be solution
would have dJ = d2 = 0, and would correspond to a Calabi—Yau metric. The fluxes would
read

H =2uRe,
Go = 5pe™?, G2=0, (6.30)
G4 = gu€_¢J2, Gﬁ =0.

Since A is constant, we have set it to zero, reabsorbing it in . To see how things scale,
assume as in [49] that Fy ~ O(1) and that the internal space has volume V(Xg) ~ RS in
string units. We know already that ¢ o< Re(2; if we take dpg ~ —%Re ), integrating ¢
along a 3-cycle gives O(1), as it should. From all this we read

5
gs = —fi~ R, (6.31)

with i = pls, in agreement with (6.6).

It has been recently proposed in [58] that this Calabi—Yau solution with smeared
sources can be seen as the leading order contribution to an expansion in the flux quantity
é controlling the volume of the compactification. As we will see in section 6.6, this is
manifest in the solution that we find for the SU(3) x SU(3)-structure supersymmetry
equations, approximated in the large volume regime. Before deriving such equations, let
us constrain which kind of SU(3) x SU(3) structure can describe DGKT microscopically.
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6.3.3 Setting 0§ =0

Massive type IIA supergravity backgrounds solving the SU(3) x SU(3)-structure
supersymmetry equations have been analysed in [172,177]. In particular, in [172] two
different branches of solutions were identified, as reviewed in section 6.2.2 and Appendix
E. These two branches are described in terms of the function 6 defined in section 6.2.2,
which appears in the pure spinors as in (6.15). One branch has 6 = 0 (see section 6.2.2)
and the other one has non-vanishing, varying 6 (see section E.1).

Our discussion above implies that the branch with # = 0 should be more suitable to
describe DGKT. Indeed, given (6.15) one can rewrite (6.26) as § = 0 or 7. Accordingly,
one can show that after the B-field transformation (6.18) one obtains Gg = 0 from (6.19),
see Appendix E. The compatibility of this branch with the presence of O6-planes seemed
unlikely from the symmetry arguments used in [172]. However, in the following sections we
will see that supersymmetry equations for the case § = 0 are rich enough to host localised
and smeared sources at the same time. In this sense, what our results of the following
sections suggest is that the 10d description of [49] consists of a SU(3) x SU(3)-structure
background with # = 0 that at large volumes can be approximated by an SU(3)-structure
background with & = 0. Indeed, we will see that the background that we find can be

1/2. The zeroth

organised as a perturbative expansion on the small parameter g5 ~ V)_Q;

order contribution is nothing but the background (6.30).

The branch in which € is non-vanishing is a priori not suitable to describe the
10d uplift of DGKT. First, as reviewed in section E.1, such a solution has a varying Gg
flux, which prevents it to satisfy the point-wise constraint (6.25). In addition, this sort
of backgrounds are characterised by an NS three-form flux H which is exact. As this
implies vanishing H-flux quanta, it can never describe the global features of a DGKT
vacuum. Finally, a crucial aspect of this branch is that Im®|, ¢ =~ # 0, and in fact
it is not even constant. The aim of [172] was to find a solution that only asymptotes to
Im @4 |y_¢..n = 0, but we have shown that this must hold locally anywhere on X where
a 10d supergravity description is reliable. Therefore it seems unlikely the solution in [172]
can be part of a 10d description of DGKT.

This being said, let us stress that the approximate solution that we find in section
6.6 breaks down near the O6-plane loci. In particular in those regions we find the same
metric singularities associated with O6-planes in flat space, featuring a divergent negative
warp factor e~ 44. In the case of flat space it is known that the divergent negative warp
factor around the O6-plane is resolved by string theory corrections, uplifting the solution to
M-theory on a G2 manifold with an Atiyah-Hitchin metric on the former O6-plane region
[178-181]. In the case at hand we are dealing with massive type IIA string theory and
therefore we lack an M-theory description, so it would be very interesting to understand
how the theory resolves such a singularity. One possibility could be that the full solution
with & = 0 does not have any singularity. This would be quite analogous to the result
found in [172] for the 6 # 0 branch. Indeed, there it was shown that such massive type
ITA solutions with O6-planes can resolve the O6-plane singularity without resorting to an
M-theory description. As these belong to a different branch of SU(3) x SU(3)-structure
backgrounds, we will take an agnostic approach towards this possibility.
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6.3.4 The source balanced equation

If the obstruction for SU(3)-structure solutions can be circumvented by SU(3) x
SU (3)-structure backgrounds with # = 0 a natural question is how the equation (6.28)
leading to the obstruction is modified. In the following we would like to present a gener-
alisation of eq.(6.28), valid for any SU(3) x SU(3)-structure background, which we dub
source balanced equation.

For this we first need to introduce the Mukai pairing

<w1, w2> =wi A X (CL)Q) (6.32)

top ?
for the poly-forms w; and wg, where |0, indicates that we only extract the top form of
the product. The source balanced equation then reads

Bpte ™ (Re @y, Tm @) — ™3 Gp A%Gy + dX5 = (0o e Im @), (6.33)

source’
k

where 5§§)urce = Y., 0(Il,) contains all the localised sources wrapping three-cycles, both
O6-planes and D6-branes. In addition

X5 = <€AIH1 <IL,G> = —GoA €lm d_ 3—}—G4/\ eATm ®_ 1+G0 eAm ®_ 5 (6.34)

where the subscripts denote the degree of the form to be picked out.

Eq.(6.33) is derived in Appendix E.3 by using the Bianchi identities and the super-
symmetry equations. Notice that it takes a similar form to (6.28) in the sense that the
left-hand side is supported over the whole manifold, while the right-hand side is localised.
One can see this relation as a generalisation of (6.28), in which case one had X5 = 0.
Indeed, recall that in the SU(3)-structure case (Im ®_); = (Im ®_), = 0 and that Gy is
a (1,1)-form. In section 6.6.3 we will test our solution with this equation, to see in which
way (6.28) is modified to allow for a consistent SU(3) x SU(3)-structure solution.

6.4 The large volume approximation

We now consider the BPS equations in a limit where the cosmological constant is
small, aiming for a solution similar to (6.30) but without smearing. We will do this by
taking the parameter i = uls in (6.10), (6.11) to be small; recalling (6.31) g5 will then
also be small and R large.

6.4.1 Defining the limit

As we have seen in section 6.3, the smeared solution comes from an SU (3)-structure,
but the solution with localised O6-planes that we are looking for cannot. As discussed
around (6.9), the function ¢ interpolates between SU(3) and SU(3) x SU(3). So in the
limit we also have to take the function 1 to be at least of order ji ~ R™3 ~ g, at leading
order, recalling (6.31). In addition, from (6.30) we see that for Fy to stay non-zero in the
limit we need e? — 0. On the other hand, since we are already making /i — 0, e* should
not scale. For simplicity in the following we will fix (e=%4) = 1.

A limit with all these features was originally devised in [172], exactly for the solution
at hand. As we commented earlier, there the focus was on the local behaviour, and we
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have argued above that solution cannot capture the global solution, essentially because
0 # 0 was taken there. In the limit, the problem presented itself already in eq. [172]; it
was noted below eq.(6.12) in that paper that Re{2 has to be exact at leading order, and
that this could be an obstruction to finding a global solution.

Nevertheless, we can still apply the same ideas of [172] to the # = 0 case. Notably,
it was decided there to expand in u, but with a subleading behaviour that is either an
even or odd function of . This was found to simplify the equations significantly, and it
was inspired in turn by a similar limit in [182] where ¢ — 0 but the cosmological constant
remained fixed.

Implementing this strategy in our case leads us to taking g; — 0, with the following
Ansatz:

N m
K= 79s, ¢:gs¢1+0(9§)7 0=0,

5 (6.35)
e? = ggeftoteidtatOlgs) eA — AotgiAa+0(gd)

It is important to stress that the equations will fix the coefficients of the expansion
as a function of the coordinates, in such a way that some extra powers of the parameter
gs ~ R™3 will appear. For example we will find below that

e ~ ap + alR_4 ~ ag + alg;l/s . (6.36)
This might look confusing, but the method is sensible as long as these “hidden” powers

of gs are not smaller with respect to terms we have ignored in (6.35). The same comment
applies to the expansion of the forms, to which we now turn.

6.4.2 Forms and fluxes

We now have to decide how to scale the forms. Rew is already determined by
(6.17a). Due to the p in the denominator of that equation, (6.35) would imply that

Rev ~ —25;31:1 d(3Ao — d¢p), whereas as we explained above we would like Rev — 0 in the
limit. For this reason we take
S = 3Ag . (6.37)
Now we obtain
3 1 A 5 1 2
Rev = gsRev; + O(g3), Rev; = ¢ Odfy fu = - 3As — dpg — §¢1
(6.38)

As for j and w, we want them to reconstruct in the limit an SU(3)-structure (J,2). We
will simply assume here the latter to be fixed, and (j,w) to be determined by (6.9). We
don’t know whether this assumption is really warranted at higher orders in our expansion,
but up to the order of our computations we will see no difference. All this leads to

Jy=J+0(2), Q= ¢ivl Awo + O(g2). (6.39)
1

In fact we will be able to write everything in terms of v and the fixed (J, ). It should be
remarked that we are not assuming these to be those of the underlying Calabi—Yau, since
we are aiming at removing the smearing.
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Q) still defines an almost complex structure I: we mentioned in section 6.2.2 that it
is at every point the wedge product of three one-forms h%, which are then defined to be
the (1,0)-forms of I. In fact we see from (6.39) that vy is one of these (1,0)-forms, and we
can use this to determine Imv; in the expansion Imv ~ gsImv; + O(g3). But we are not
assuming I to be integrable; this would be implied by d€2 = 0, which is not part of the
equations we found in section 6.2.2.2. On the other hand, at leading order (6.17b) simply
becomes

dJ=0. (6.40)

The metric is not really needed to find a solution; it is determined by the forms of
the SU(3) x SU(3)-structure. The procedure comes originally from generalised complex
geometry [176], and was explained in detail in [172, Sec. 2.2.2]. Fortunately at the leading
order we are working with, the procedure reduces to the simpler one for SU(3)-structures,
which we will illustrate in an example later on. In terms of this metric, one can invert the
relation for © in (6.39) with a contraction:

L0 (6.41)
W= —— U1 3L, .
2¢n

One last comment about the geometric forms: we are taking the volume of the
internal space Xg to be Vol(Xg) ~ R®, but we are taking care of that by scaling coordin-

ates rather than the metric and forms. So for example for the torus cases below, the
periodicities of the internal coordinates will scale like

Ay~ R. (6.42)

One can of course easily always switch to another point of view, where the coordinates
don’t rescale and forms do; this would lead to J ~ R2Jy, Q ~ R3Qg. We take this
viewpoint in the explicit example of section 6.6.2.

Applying the above procedure to (6.19) we obtain the following relations between
the fluxes and the SU(3) x SU(3)-structure forms:

L2
H= gFogse_AORe Q+0(gd), (6.43a)
Fy = Foe 0 — J . d(e 3%Imvy) + O(g?), (6.43D)
1
Fy= —;J d(eIm Q) + O(ygy) , (6.43¢)
11
Fy = FyJ? i ge—‘“‘o + J Ad(e”?Imovy) + O(g?), (6.43d)
Feg=0. (6.43¢)

Where recall that Fy = ¢ m. Using (6.18) we find the physical fluxes
H=H+ gd(rlmwg) + O(g2), G = elos¥rlmwotOUAR, (6.44)

Notice that (Imwp)? = 0, so the exponential truncates.

To summarise, in order to find a solution in this limit we need to find an SU(3)-
structure (J,9), a (1,0)-form vy, and a funcntion Ag, such that e*Rew; is exact, J is
closed ((6.38), (6.40)). When plugged into (6.43) these should provide an expression for
the fluxes that solves the Bianchi identities, up the order of the approximation.
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6.5 Solving the Bianchi identities

In this section we solve exactly the Bianchi identities for the internal sources that
correspond to [49] and to the vacua derived in chapter 3. For this we consider a manifold
X that admits a Calabi-Yau metric, namely a metric of SU(3) holonomy, so that we can
have a 10d interpretation of the sources. Looking at the first relation in (6.4) and the
expression for H in terms of SU(3) x SU(3) structures with § = 0 one infers that it must
be of the form

H = 2uReQcy + dB, (6.45)

with 5u(g;!) = Go. Let us for now set B = 0 and solve the Bianchi identities in this
case, and then recover the general solution by applying a B-field transformation. For the
particular solution we denote the RR fluxes by ).

The Bianchi identity for the two-form flux reads
2dFy = 2miReQcy — 46(I1og) (6.46)
with i = puls. By Hodge decomposition the most general solution is of the form
By =di K + FY 4+ dCy, (6.47)

with dC exact, FQh Calabi—Yau harmonic, and dEY constructed with the Calabi—Yau
metric. Finally, K is a 3-form current that always exists, as it satisfies the following

Laplace equation
PAcyK = 2miReQcy — 46(Tlog) (6.48)

where Acy = dEYd + ddTCY is constructed from the CY metric. Indeed, following [183,
sec. 3.4] notice that dReQcy = dd(Ilpg) = 0, AcydK = 0 and dK is harmonic. Because
it is also exact, then necessarily dK = 0. We conclude that Acy K = ddeK from where
(6.47) follows. One can then constrain K by using that Joy, Qcy are covariantly constant
with respect to Acy:

AcyKNJoy =0= Acy(KANJoy) =0 = KAJoy =0, (6.49)
AcyK ANReQcy = 0= Acy(K AReQcy) = 0= K = pReQcy + cIm Qcy + Rek,
(6.50)

with ¢ a real function, ¢ a constant that we will take to be zero, and k a (2,1) primitive
current. Here we have used that there are no harmonic 5-forms in the CY metric. One
then obtains that

iy K = %oy (dp ATm Qoy) — xoydlmk = —Joy - d (2¢Im Qcy) — Va, (6.51)
where V3 is a primitive (1,1)-form in the CY sense. One can check that this implies that
Fy = —Joy - d(4oIm Qcy — xcy K) 4+ FF +dC; . (6.52)
As for the remaining fluxes, it is easy to see that
Fy = FP —dpp Joy A Joy + 2uReQcy A C 4 dCs (6.53)

vyith dC'3 exact, F f Calabi—Yau harmonicN, satisfies the Bianchi identity dFy = 2uReQcy A
F5. As for the six-form flux, we can set Fg = dC5 to be an exact form.
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Chapter 6. Type IIA orientifold vacua beyond the smeared uplift

Finally, whenever B in (6.45) is not trivial, the solution for the fluxes will be given
by i
G =P'F, (6.54)

with Fy = Go and the remaining ng as specified.

6.6 Solving the supersymmetry equations

Thanks to our previous results, in this section we will be able to give a 10d super-
symmetric background describing the relations (6.4) for any manifold Xg that admits a
Calabi—Yau metric. Our strategy will be simple: we will provide expressions for €2, J,
e and v; in terms of Calabi-Yau quantities, such that when plugged in (6.43) provide
backgrounds fluxes solving the Bianchi identities up to the appropriate order of the expan-
sion. Because of that, our background can only be thought of as an approximation to an
actual supersymmetric solution describing a 10d counterpart of [49]. This approximation
becomes more accurate in the limit of large volume and weak coupling, approaching the
SU (3)-structure smeared solution in that limit.

6.6.1 General Calabi—Yau manifolds

Since by assumption Xg admits a Calabi—Yau metric, we can profit from the discus-
sion in section 6.5 as a guiding principle to construct the SU(3) x SU(3)-structure metric
in Xg. First, as the two-form J is closed, we will assume that

J=Joy +0(g2) (6.55)

where recall that g; = 5u/m = 5V;{;/ 2 /m. Then, one can guess the form of ImQ by

comparing (6.43c) and (6.52). Indeed, let us consider the following expression
e 3Im Q = (1 + go40) Im Qoy — gs xey K + O(g?) (6.56)

with K an exact three-form defined by (6.48) and ¢ defined by (6.50). Plugging this into
(6.43c) one obtains (6.52) with FI' = dC; = 0. Therefore with the choice (6.56), Fy in
(6.43c) satisfies (6.46). Finally, such an Fy also satisfies the Bianchi identity up to O(g?)
terms if we assume that B ~ O(g?) in (6.45), as we will do in the following.

From here, one may construct the rest of 2. In general its real and imaginary
parts are related by a method in [154] and reviewed in [155, Sec. 3.1]. In particular
here we can consider Im €2 as a perturbation over Im ¢y, and apply the perturbation
formulas [155, (3.8)—(3.10)]. One finds that

e 3MReQ = (14 g52¢) ReQcy + 9K + O(g?), (6.57)

which satisfies the SU (3)-structure relation ReQ AImQ = %J 3 provided that

e~ M0 =1 4 g dp + O(g2). (6.58)

From the definition of ¢ it is easy to see that y ¢ = 0 and therefore (e=44) =1 up to
this order of approximation, as expected. This moreover leads to

e MReQ) = ReQcy + 9K + O(g?), (6.59)
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and so, since dK = 0, the Bianchi identity dH = 0 is satisfied up to order O(g?). Finally,
when plugging (6.59) into (6.43a) we obtain that dB = 2ugsK + O(g?), consistently with
our assumption. We finally obtain

Q = Qcy+gsk+0(g?), (6.60)

where k the primitive (2,1)-from % defined by (6.50). Notice that this expression is com-
patible with SU(3)-structure torsion classes, since

dQ = godk = —dp A Qcy +igsVa A J = dAg ATmQ + iWo A J + O(g?), (6.61)

with Wa = gsVa + O(g?). So the leading correction to the pair (J,Q) corresponds to a
non-Ricci-flat, symplectic metric with SU(3)-structure.

With this choice of (J,2) and warp factor it is easy to accommodate the remaining
expressions in (6.43) to satisfy the Bianchi identities with B ~ O(g?). Indeed, to fit
(6.43d) into (6.53) one simply needs to take

~ 3

Fil = TOFO Jovy A Jovy , Cs = 6_3AJCY Almw . (6.62)
Finally, the Bianchi identity for Fy is compatible with the RHS of (6.43b) if one takes
Imwv; to be the imaginary completion of

1
Rev; = 5eAOdf*, (6.63)

with
U Ay fr = —gsm8p 4+ O(g2) . (6.64)

In other words, Imwvy = I - Revy, with I- the action of the complex structure. At the
leading order of the expansion, this implies that v; = Jgy fx. It follows from this result
that the B-field transformation in (6.18) is suppressed by g2 and does not induce any
change in the fluxes at the present order. In the following we will discuss in detail how
this approximate solution looks like in the case of a toroidal orbifold, where the above
expressions can be made more explicit.

In summary, our solution is specified by the SU(3)-structure given in (6.55), (6.60);
the one-form v; specified by (6.63); and the warping function Ag in (6.58). The Bianchi
identity were shown to be solved for Fy in (6.56); for H in (6.60); for Fy in (6.64); for Fy
in (6.62). By the general results of [151], once the supersymmetry equations and Bianchi
identities are satisfied, the equations of motion for the fields are also solved.

6.6.2 A toroidal orbifold example

Let us consider the particular case where Xg = 7%/ 5 x 9, as in [32]. We consider
the choice of discrete torsion that makes it T-dual to the closed string background in [184],
so that all O6-planes have negative charge and tension. In the orbifold limit, the Calabi-
Yau structure is essentially inherited from the covering space T, so we can write

Joy = 4mitidzt Ady', (6.65)
ReQcy = h minnfl—npl —np® —mp (6.66)
Im QCY = h (Ck() — 797301 — T1T30p — 7’17‘20&3) s (6.67)
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Chapter 6. Type IIA orientifold vacua beyond the smeared uplift

where

) R, [t1tat
t' = R,iR T = Riy , h = 873 7_17_2:; = 87T3R11RI2R903 , (6.68)
xl

and we have the following basis of bulk three-forms

o = dat A dx® A daB, B0 = dy' Ady? Ady?,
a1 = dat Ady? Ady?, B = dy' A da? Ada?,
ap = dyt A da? Ady?, 6% = dat Ady? Ada?,
as = dy' A dy? A da B3 =dat A dz® AdyP.

In principle one can consider partially cancelling the charge of the O6-planes with D6-
branes on top of them, and so different choices of H-flux that will cancel the corresponding
generalisation of the tadpole condition (6.3). For simplicity, we will consider those cases
where the H-flux is of the form

C[H] =8q [8°— (8"~ 8% - 157] | (6.69)

for some choice of ¢ € , with gm = 4 in the particular case where no D6-branes are
present. Then supersymmetry requires that

4
=T =713=1, and ﬂzﬁq7 (6,70)
from where it is clear that i ~ V;(;/ ®. In this setup we find a solution for (6.48) of the
form
K =qm ByB’ — Bif' — Bo8®> — Bsf® (6.71)
with
2/8 o2 [y 2y ) +7) 2/3 2|y @? @) 7]
Bo = —h Z _ 2 472772 » Bi=—h Z _ 2 472772 (6:72)
n 0#£ie 3 17 0#£7e 3
2/3 eQﬂ'iﬁ-[(:pl,yQ,xS)Jrﬁ] 2/3 eQﬂiﬁ-[($1,$2,y3)+ﬁ]
B = —h Z _ Z 47252 ) Bs=—h Z ~ Z 47252
n 0#£ne 3 n 0#£ne 3
where for simplicity we have set Rjn = R = Rys = R.,” and 77 has entries which are either

0 or 1/2. Notice that d(B;3") = 0Vi so that K is closed, and in fact exact.

It is important to point out that the expansion for the B;’s in terms of Fourier modes
should be understood as a formal solution since the sum is not convergent. A regularised
version of these Green functions using the Jacobi theta function was originally suggested
in [185] and some details have been recently studied in [186]. For practical purposes, the
regularised functions behave as standard Green functions in flat space when approximating
the source and go to zero as we move away.

Following the Calabi—Yau general discussion, can rewrite things as (6.50) with

3
o= % S Bi,  Rek =K — gReQ®Y . (6.73)
=0
"Otherwise one should replace 7%/R? by |fi|* = i (m/Ryi)Q.
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Notice that ¢ ~ O(R™!) but it is not suppressed by an extra factor of g;. Eq.(6.56)
becomes

6_3AOIH1Q = Choap — Crag — Coag — Cyaig + (9(93) s (674)
with C; = h — gsqm (B; — B;). Stability techniques from [154] (reviewed for example
n [155, Sec. 3.1]) tell us when a three-form can be the imaginary part of a decomposable

form e~3400), and what the real part is. For (6.74) this tells us that Q exists in regions
where CyC1C2C3 > 0, and determines

eMReQ = h3(CoCiCrCy)' P O B0 - OB — OB — Oy %] + O(gp.75)
= ReQcy + g:K + O(g2) .

where we have used that from imposing the relation ReQ2 A Im ) = %J%Y one obtains
e 440 = R (001 CoCs) P =1+ 4gs0 + O(g?) (6.76)

in agreement with (6.58) and (6.59). By combining all these expressions we obtain

1/2 1/2 1/2
. . O3 . (1G5 . C1C
0= 3Ap d 1 d 1 d 2 d 2 d 3 d 3
1”0y |dx” 44 CoCh y | A |dx 41 CoCs Yo | A |dx® 41 CoCs v,
(6.77)
which corresponds to the metric
r 1/2 1/2 1/2
C Cl C()CQ COCB
ds2 — p2/3 0 da!)2 dx2)2 dz3)? 6.78
. co @he ZE @ FF @ 6m)
- 1/2 1/2 1/2
C2C3 0103 0102
p2/3 duh)? du?)? dud)? O(a?) .
+ CoCs (dy")” + CoCs (dy”)” + CoC (dy”)”| + O(g5)
Regarding the fluxes, we find that
2 1 )
H = Fogs ReQcy + g5 K) — gs5dRe (01 - Qey) + O(g5) (6.79)
Fy = dL K+ 0(gs), (6.80)
3 4
Fy = FyJéy 19~ 9% +Joy Adimoy + O(g?), (6.81)
where Im vy is the imaginary completion of
—Ao 2 . 2qm2 D,
2e”°Rev; = df, + O(g3) , with fe= —fsgST Z B;. (6.82)

where B; stand for the functions B; in (6.72) with the replacement R?/fi? — R*/|ii|*.
Note that, unlike the B;, the B; can be shown to be convergent, so there is no need to
regularise them.
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6.6.3 Comparison with the smeared solution

Let us summarise our approximate solution. We obtain that the background fluxes
are given by /3Gy = m and

2 1 _ 2
H = gngo (ReQcy + gsK) — idRe (v-Qcy) + O(gf) = gngoRchy 1+ O(g§/3) ,

Gy = iy K + O(gs) = 0(4%), (6.83a)
3 4 3
Gy = GoJy 0 F9¥ + Joy A g; tdimov + O(g2) = EGOJéY 14+ 0(gY3 |
(6.83D)
Gs=0, (6.83¢)

where g5 = 5V;(61/2/m, K is defined by (6.48) and the proof of Gg = €’F |g = 0 is given
in appendix E.2. The warp factor, dilaton and internal metic are specified by

e =14g,0+0(g2) = 1+0(g?), (6.84a)
e® =g, (1—3g:0) + Og3) = g5 1+0(g¥*) , (6.84b)
Q= Qcy +gsk + O0(g2) = Qcy 1+ 0(g2?) | (6.84c)
J=Joy +0(g?) = Joy 1+0(Y3) (6.84d)

v = gsdoy fx + O(g2) = O(g2) (6.84¢)

where recall that ¢ and k are defined by (6.50), and f, by (6.64). When next to a p-form,
the above scalings O(g¥) are to be interpreted with respect to the natural scaling of the

p-form, so the total scaling of the object is O(gffp/g).

We notice that the natural parameter of the expansion is g;l/ 3~ Vé?/ 3, or in other
words the quantum of four-form flux G4. We also notice that at leading order we recover
precisely the Calabi-Yau background with fluxes (6.30). At the next order our solution
is an SU(3) x SU(3) background, which contains an SU(3)-structure pair (J, ) with the
following torsion classes

dQ = iWe ANJ+d(¢p—24)NQ (6.85)
dJ] = 0 (6.86)

and with e?734 = g,. While this is the starting point for the analysis of SU(3)-structure
backgrounds with 8 = 0, the difference here is that a varying warp factor is allowed. This
is thanks to the presence of a non-trivial one-form v. This varying warp factor, and in
general the three-form K obtained from solving the Bianchi identity for G» at leading
order, also modifies the fluxes H and G4 at this order, adding a non-CY-harmonic piece.

Given the no-go results for SU(3)-structure compactifications of section 6.3, one may
wonder how this approximate background at O(gs) can overcome the obstructions therein.
In particular, let us see how (6.28) is modified to allow for a non-smeared solution. First
notice that to arrive at this equation one uses that [33]

dGo AN Q + Go ANdS) = d(Gz A Q) . (6.87)
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In type ITA SU(3)-structure compactifications Ga A = 0 iff the warp factor is constant,
as one can show from (6.14c) and the general expression for d). In the case of a SU(3)-
structure background, this follows when we impose that the RHS of (6.14b) is closed. In
our more general background, this expression generalises to (6.43b) allowing for a non-
constant, subleading piece or the warp factor, as the solution shows explicitly. This in turn
implies that d(G2 A ) # 0 adding the extra term to (6.28). In our solution, this term is
comparable to the terms in the LHS of (6.28) wedged with Im 2, which would then scale
like Q). Therefore the cancellation of this term is possible away from the localised sources
and no smearing is needed.

Notice that this the term d(G2 A Q) is a non-trivial contribution to X5 in the source

balanced equation (6.33). So let us analyse how this more general equation can be satisfied
for our approximate solution. Using the background in (6.83) and (6.84) one obtains

2
3u?e” (Re @, ,Im @, ) ~ —%G(Q)J?’ ~ O(g°) dvoly, (6.88a)
4A 26 5 5 |Gaof* 0 4/3
e E L G A *Gle %GOJ + TJ ~ O(gg) dvolx, + O(gs’”) dvolx,,  (6.88b)

4 1
—dX5 ~ —ﬁagﬂ — 68 A g—Im Qcy ~ O(g2) dvoly, (6.88¢)

S

where, although G A xGg ~ O(gﬁ/ 3) at leading order, we are writing explicitly this term
to make easier the comparison with (6.28). Even if the sum of the first two terms gives
a positive definite quantity — recovering the case § = 0 in (6.28) — the terms coming
from dX5 are able to compensate this contribution. Indeed, for the case at hand one can

check that the leading contribution to (6.88c) comes from d Go A eATm ®_ X and that

it cancels the other two contributions at order O(g?). In fact, one can easily check that
this corresponds to the contribution d(e~?Ga A Q) that would allow to circumvent the
obstruction related to (6.28).

6.7 Conclusions

In this chapter, we have found approximate solutions to the ten-dimensional super-
symmetry equations which exhibit some key features of four-dimensional vacua derived
in chapter 3 and found originally in [49], the so-called DGKT vacua. The solutions are
first order in an expansion parameter corresponding to the average 10d dilaton gs, or

equivalently to the AdSy scale p or V;(Gl/ ?

in string units.

The solutions are such that in the limit g; — 0 the background metric of the Calabi—
Yau X is the Ricci-flat one and the warp factor is constant. The non-vanishing fluxes are
Gy and G4 = %GoJéy. This background corresponds to the smeared-O6-plane solution
proposed in [34] and reviewed in the previous chapter. For small but non-vanishing gs,
corrections to this background appear. The leading ones can be described in terms of the
solution to the Bianchi identity dGo = GoH + dpg, which defines a function ¢ and a (2,1)-
form k. The first one corrects the warp factor and the dilaton, and the second one the
three-form Q. Due to this metric deformation Xg becomes a manifold with SU(3) x SU(3)-

structure.® Finally, H and G4 are also corrected in terms of ¢ and k, no longer being

8This can also be thought of as SU(3)-structure with an additional 1-form. The SU(3)-structure part
has the same torsion classes as type IIA Minkowski backgrounds with O6-planes.
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Chapter 6. Type IIA orientifold vacua beyond the smeared uplift

harmonic forms in the Calabi—Yau sense.

Given that the solution was obtained in an expansion in the average string coupling
gs, one might wonder whether it competes with the genus expansion in string theory.
Since we are at weak coupling, certainly the leading order part of the solution is under
good control. The next order comes in at g;l/ ’. We expect that string loop corrections
should appear at order g2 or higher, and therefore the analysis should hold at least to first
order. We leave a more detailed analysis of the magnitude of string corrections in this

background for future work.

Perhaps an even more delicate issue is the fact that we have solved the equations
at the two-derivative level, so at leading order in o/. Higher o corrections are controlled
by the curvature radius which is again related to our expansion parameter gs ~ R~3. In
this case, a more accurate analysis of the magnitude and, importantly, the precise form of
such corrections is needed to see whether their effect is substantial.

Regarding the issue of scale separation and the Strong ADC, our results show that
the DGKT proposal (type ITA Ady orientifold compactifications) for scale separation has
passed a first non-trivial test. There could have been an obstruction manifest already at
first order in the supersymmetry equations, but we have shown that this is not the case
(at least at the two-derivative level).

However, they are still far from settling the issue. Before even asking about separ-
ation of scales we may ask whether a full ten-dimensional solution actually exists. At a
technical level, a first possible obstruction may appear at the next order in the expansion
parameter. Indeed, a crucial part of DGKT is that it involves intersecting sources, and the
ten-dimensional solutions of such sources are poorly understood. At the first, linearised
level of the expansion, the interactions between the sources drop out which is why we are
able to find a solution relatively easily. The interactions only appear at the next level,
where this feature of the construction is first tested. Note that if a solution does exist, it
would be interesting to see if it also realises the picture proposed in section 5.3 in which
the pure spinors ¢ differ from the Calabi—Yau ones only by non-harmonic forms.

There are also other, older and more general, open problems with any solutions of
massive type ITA with O-planes. In our approximate solution, near an O6-plane we obtain
an warping behaviour of the form e™44 ~ 1 — gSTZS [186]. This defines a region in which
we enter strong coupling and the supergravity approximation breaks down. Typically the
O-plane singularities may be resolved by uplifting to M-theory or F-theory. This is not
possible here due to the mass parameter, and so the fate of these singularities remains an
open question. It should be noted that the mass parameter, which obstructs an M-theory
uplift [187], is the crucial element to obtaining scale-separated vacua (it cannot be turned
off, unlike some of the other fluxes). Practically, what this means is that we are simply
not able to say anything about what happens near the O-planes in our solution. The hope
is therefore that either we make progress on understanding the O-planes, or that we are
able to settle the relevant questions without needing to worry about them.’

There are other open questions, some of which were raised already in [49], such as
the control of higher derivative terms in the presence of large fluxes parameters. Further,
even if a ten-dimensional solution of string theory can be firmly proven under controlled
approximations, it still remains to be checked that it really does exhibit separation of

9 An interesting possibility is that the singularities are removed already in the ITA supergravity descrip-
tion, similar to the ideas in [172].
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scales. For example, as we have shown, the solution exhibits dilaton gradients and warp
factors which must be accounted for in establishing the mass scales of the KK and string
modes. On the other hand, one can use the formalism derived here to find the approximate
uplift of the non-SUSY vacua derived in chapter 3 and study its non-perturbative stability.
We will do this in the next (and last) chapter.

If the remaining open questions can be addressed and the property of scale separation
proven, we would reach a significant result in string theory, and a counterexample to the
Strong ADC (the normal ADC is of course satisfied in the scenarios studied here). In such
a case it would be interesting if there is a possible refinement of the Strong ADC which
may hold. A particularly interesting proposal was made in [59] related to the presence
of discrete symmetries. In any case, we find it exciting and encouraging that the recent
activity, and progress reported in this thesis, suggests that at least the issue of DGKT
and scale separation may be settled one way or the other in the not too distant future.
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Non-perturbative instabilities of non-SUSY AdSy
orientifold vacua

7.1 Introduction

Out of the different aspects of the Swampland Programme [10,21,72-74] one of the
most far-reaching is the interplay between quantum gravity and supersymmetry breaking.
In the specific context of non-supersymmetric vacua, several proposals for Swampland
criteria put severe constraints on their stability. In particular, the AdS Instability Con-
jecture [75,188] -reviewed in section -2.3.1- proposes that all ' = 0 AdS; vacua are at
best metastable, with bubble nucleation always mediating some non-perturbative decay.
The motivation for this proposal partially arises from a refinement of the Weak Gravity
Conjecture (WGC) stating that the WGC inequality is only saturated in supersymmet-
ric theories [75]. Applied to (d — 2)-branes, this implies a specific decay mechanism for
N = 0 AdS, vacua supported by d-form background fluxes, in which a probe superextremal
(d — 2)-brane nucleates and expands towards the AdS; boundary, as in [81].

These proposals have been tested in different contexts, and in particular for type I1
setups in which the AdS solution is supported by fluxes [170,177,189-196]. Remarkably,
the kind of compactifications studied in this thesis, that is of the form AdSs x Xg, where
X admits a Calabi—Yau metric [32,49], remain elusive of the conjecture, because so far
the decays observed for perturbatively stable N’ = 0 vacua are marginal [107], and the
corresponding membranes saturate the WGC inequality. A better understanding of these
constructions seems thus crucial to the Swampland Programme: their non-supersymmetric
version challenges the AdS Instability Conjecture, and more precisely the WGC for mem-
branes, while the supersymmetric settings challenge the strong version of the AdS Distance
Conjecture [76] -see chapter 6-. As pointed out in [59], the tension with the AdS Distance
Conjecture could be solved by taking into account the discrete symmetries related to 4d
membranes, so the spectrum and properties of 4d membranes seem to be at the core of
both issues. Finally, the constructions in [32,49] are particularly interesting phenomen-
ologically, since besides supersymmetry breaking they incorporate key features like scale
separation and chiral gauge theories supported on D6-branes wrapping intersecting three-
cycles of Xg.

An important caveat of the constructions in [32,49] and that we have highlighted
along this thesis, is that they do not solve the 10d equations of motion and Bianchi
identities, unless localised sources like D6-branes and O6-planes are smeared over the
internal dimensions, as we saw in chapter 5. Nevertheless, one may look for solutions with
localised sources by formulating the problem as a perturbative expansion, of which the
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leading term is the smeared-source Calabi—Yau approximation, and where the expansion
parameter is essentially the AdS, cosmological constant [172], recall chapter 6 for more
details. The first-order correction to this expansion displays localised sources and a natural

/3

expansion parameter R~4/3 ~ g;l , where R is the AdS4 radius in string units and g is

the average 10d string coupling.

In this chapter we revisit the stability of the AdS; vacua obtained in chapter 3
and [32,49,107], with the vantage point of the more precise 10d description of chapter
6. We consider N' = 1 and N' = 0 vacua which, in the smearing approximation, are
related by an overall sign flip of the internal four-form flux G4, considered firstly in [107]
for the specific case Xg = T9/( 3 x 3). For the supersymmetric backgrounds a rather
explicit 10d solution was provided in chapter 6, in terms of an SU(3) x SU(3)-structure
deformation of the Calabi—Yau metric. For their non-supersymmetric cousins we use the
approach in [58] to provide a solution at the same level of approximation. In this setup we
consider 4d membranes that come from wrapping D(2p)-branes on (2p — 2)-cycles of Xg.
These membranes couple to fluxes that support the AdS; background, more precisely to
the dynamical fluxes of the 4d theory [125,197]. Therefore, even if there could be other
non-perturbative decay channels, the /' = 0 sharpening of the WGC suggests that at least
one of these membranes or a bound state of them should be superextremal, and thus a
candidate to yield an expanding bubble. Note that these AdS4 backgrounds have not been
constructed as near-horizon limits of a backreacted black brane solutions, so it is a priori
not clear which membrane is the most obvious candidate to fulfil the conjecture.

It was argued in [83, 107] that D4-branes wrapping either holomorphic or anti-
holomorphic cycles of Xg saturate a BPS bound for the A/ = 1 and N’ = 0 vacua mentioned
above, while D2-branes and D6-branes wrapping four-cycles never do. By looking at each
of their couplings to the fluxes supporting the AdS; background and their tension we re-
cover the same result. Remarkably, we not only do so for the smeared-source Calabi—Yau
approximation considered in [83,107], but also when the first-order corrections to this
background are taken into account. It follows that at this level of approximation such
(anti-)D4-branes give rise to extremal objects, that can at most mediate marginal decays.
This extends to bound states of D6, D4 and D2-branes, in the sense that they do not yield
any superextremal 4d membrane.

We then turn to consider D8-branes wrapping Xg. Due to a Freed—Witten anomaly
generated by the H-flux, D6-branes must be attached to the D8 worldvolume. From the
4d perspective, these are membranes that not only change the Romans mass flux Fjy when
crossing them, but also the number of space-time filling D6-branes, so that the tadpole
condition is still satisfied. It turns out that the presence of attached D6-branes acts as
a force on the D8-branes, and exactly cancels the effect of their charge and tension in
supersymmetric vacua, as it should happen for a BPS object. This provides a rationale
for the precise relation between Fy, R, gs found in [49]. In N/ = 0 vacua the energetics of
D8-branes is more interesting, because curvature corrections induce D4-brane charge and
tension on their worldvolume. The induced tension is in general negative, implying that the
D8-brane is dragged towards the boundary of N'= 0 AdS,. As we argue, this corresponds
to a superextremal 4d membrane that mediates a decay to another non-supersymmetric

! Another caveat surrounding these constructions is that they combine O6-planes and a non-vanishing
Romans mass, which makes difficult to understand them microscopically. However, T-dual versions of the
solutions in [2,58] have been constructed in [142] with similar properties, vanishing Romans mass and an
11d description.
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vacuum with larger |Fy| and fewer D6-branes, in agreement with the sharpened Weak
Gravity Conjecture.

This picture is however incomplete, since it relies on the smeared description. First-
order corrections to the Calabi—Yau background modify the D8-brane action by terms
comparable to an induced D4-brane tension. In fact, beyond the smearing approximation
the D8/D6 system should be treated as a Blon-like solution, whose tension differs from
the sum of D8 and D6-brane tensions. We compute this difference for Xg = T%/( 2 x 3),
and find that this new correction is comparable to curvature-induced effects. Nevertheless,
we find that it is also negative, and so the D8-branes are still dragged towards the N' = 0
AdS4 boundary. We then argue that the same is true in more general setups, so that
the combined effect of curvature and Blon-like corrections provide a non-perturbative
instability for N'= 0 AdS, vacua with space-time filling D6-branes, in line with the AdS
Instability Conjecture.

The chapter is organised as follows. In section 7.2 we discuss the energetics of
membranes in AdS4 backgrounds with four-form fluxes, which we then use as criterion for
membrane extremality. In section 7.3 we review the A/ = 1 AdS, Calabi—Yau orientifold
vacua with fluxes in the smearing approximation, and classify BPS membranes that come
from wrapped D-branes. Section 7.4 does the same for non-supersymmetric AdSy, finding
superextremal membranes thanks to curvature corrections, and section 7.5 argues that they
mediate actual decays in the 4d theory. Section 7.6 describes the 10d background with
localised sources for ' =1 and N' = 0 AdS; vacua, and shows that D4-branes saturate
a BPS bound in both cases. Section 7.7 describes D8/D6-brane systems as Blons, and
shows that they are BPS in /' = 1 but feel a net force in N’ = 0 vacua. We finally present
our conclusions in section 7.8.

Several technical details have been relegated to the appendices F. Appendix F.1
shows that the backgrounds of section 7.6 satisfy the 10d equations of motion. Appendix
F.2 shows how the Blon profile of section 7.7 linearises the DBI action. Appendix F.3
relates this profile to 4d strings in type IIB warped Calabi—Yau compactifications and to
SU(4) instantons in Calabi-Yau four-folds. Appendix F.4 computes the Blonic D8-branes
excess tension for Xg = T6/( 2 x o).

7.2 Membranes in AdS;,

In a 4d Minkowski background with A" = 1 supersymmetry, simple examples of static

BPS membranes are 3d hyperplanes of R"3 including the time-like direction. Analogous

objects in Anti-de-Sitter can be described by considering the Poincaré patch of AdSy,
whose metric reads

ds = e (—dt® + di?) + d2? (7.1)

with R the AdS length scale, ¥ = (x',2?) and all coordinates range over R. In these
coordinates, the AdS4 boundary is located at z = co. Similarly to the Minkowski case,
one may consider a membrane that spans the coordinate ¢ and a surface within (z!, 22, 2).
Particularly simple is the case where the surface is the plane z = zg, with zy € R fixed.
While this object may look like the BPS membranes of Minkowski, the tension of such a
membrane decreases exponentially as we take zp — —oo. Therefore, if we place such an
object in AdSy and take the probe approximation, it will inevitably be driven away from

the boundary and it cannot be BPS.
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Chapter 7. Non-perturbative instabilities of non-SUSY AdSy orientifold vacua

This can be avoided if on top of the AdS; metric we consider a four-form flux
background Fy, to whose three-form potential Cs the membrane couples as — (3. Indeed,
if we have

3 z
(Fyu) = _vaoL; — (Cs) = QeTdt Ada' A da?, (7.2)

and @) coincides with the tension of the membrane T', then the variation of the tension when
moving in the z coordinate is compensated by the potential energy — (C3) gained because
of its charge. Moving along this coordinate is then a flat direction and the membrane may
be BPS. If @ > T one may still find BPS membrane configurations, but they cannot be
parallel to the boundary. We instead have that force cancellation occurs for embeddings
of the form

R 2
t,at 2 = t—xw=eR+tcyp, ceR. (7.3)
g -1

Four-form flux backgrounds are ubiquitous in AdS; backgrounds obtained from
string theory, and in particular in those with 4d N' = 1 supersymmetry or N' = 0 spontan-
eously broken. The membrane profiles z = zy and (7.3) were found in [97] in the context
of N = 1 AdS; backgrounds obtained from type II string theory, but from the above
discussion it follows that they can also be present in backgrounds with supersymmetry
spontaneously broken by fluxes. One can in fact see that the set of 4d fluxes arising from
the compactification is directly related to the spectrum of BPS branes, as well as to the
internal data specifying the supersymmetry generators.

In the following we will be chiefly concerned with those membranes whose profile is
given by z = zg. As argued in [97], for Q = T and at z — oo they capture the BPS bound
of a spherical membrane in global coordinates at asymptotically large radius. It is precisely
the domain walls that correspond to spherical membranes near the AdS boundary that
determine if the non-perturbative decay of one vacuum to another with lower energy is
favourable or not. Thus, by considering the energetics of membranes in the Poincaré patch
with z = 29 — oo we may detect if there could be some domain wall triggering such a
decay. If all membranes satisfy T' > @) such a decay should not occur, if Q = T' it should be
marginal, and if T" < @ the AdS background may develop a non-perturbative instability.
According to the conjectures in [75,188], any N' = 0 AdS background of this sort should
have at least one non-perturbative instability towards a new vacuum, and therefore a
membrane with 7' < Q). In the following sections we will consider the membranes that
appear from wrapping D-branes on internal cycles in backgrounds of the form AdSs x X,
where Xg admits a Calabi—Yau metric, and compute T and @ for them. In particular we
will consider the A/ = 1 vacua and some of the non-supersymmetric vacua found in chapter
3, which are stable at the perturbative level. We will not only consider the Calabi—Yau
approximation of these references, but also the solutions with localised sources, using the
tools of chapter 6. As we will see, for non-supersymmetric vacua the answer is not the
same once this more precise picture is taken into account.

7.3 Supersymmetric AdS, orientifold vacua
Examples of membranes satisfying Q = T are typically found in supersymmetric
AdS, backgrounds, where the equality follows from saturating a BPS bound. In this

section we analyse for which membranes this condition is met for the supersymmetric
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type IIA flux compactifications of [49], for an arbitrary Calabi-Yau geometry Xg, in
the approximation of smeared sources [34]. With the simple criterion ) = T one can
reproduce the results of [83] for membranes arising from D2, D4 and D6-branes wrapping
internal cycles of Xg = T%/( 3 x 3), and extend them to any Calabi-Yau manifold.
Furthermore, one may detect an additional set of BPS membranes, namely those coming
from D8&-branes wrapping Xg, to which space-time filling D6-branes are attached. This
last feature makes such membranes quite special, particularly when one considers them
for non-supersymmetric AdS, backgrounds and beyond the smearing approximation.

7.3.1 10d background in the smearing approximation

Let us consider again type ITA string theory compactified in an orientifold of X4 x Xg,
where Xg is a compact Calabi—Yau three-fold, with RR and NSNS fluxes. This scenario
has been presented several times in this thesis, and so we will just repeat the essential
expressions to make this chapter self-contained, referring to chatper 2 for more details.

The internal RR flux quanta were defined in terms of the following integer numbers

1 - 1 - 1 -
m = £;Gy, m* = — Go AN, e, = —— GiNwg, €y = —— Gg, (7.4
’ 52 Xe ¢ gg X6 ¢ E? Xe ( )
with wg, @” defined in table 2.1, in terms of which we can expand the Kahler form as Joy =
t*wq and —Joy A Joy = K@%, Recall that in our conventions —%J%Y = —%QCY A Qcy is
the volume form?. In the presence of D6-branes and O6-planes the Bianchi identities for
the RR fluxes read

dGy =0, dGo = GoH — 406 + Na5%6 , dGy =Gy NH dGg =0, (75)

implying that
P.D. [4llos — NoIIe]) = m[¢s2H], (7.6)

constraining the quanta of Romans parameter and NS flux. Let us in particular choose
P.D.[(;2H] = h[llpg] = h[II}4], Yo. We then find the constraint

mh+ N =4, (7.7)

with N the number of D6-branes wrapping I[Igg. Supersymmetry in addition implies that

mh and N are non-negative, yielding a finite number of solutions.?

The constraint on sign(mh) can be seen by means of a 4d analysis of the potential
generated by background fluxes, following chapter 3. As derived there and discussed in
section 5.3.1, the internal fluxes satisfy

2 3
ES[H] = gmgs[Rchy], G, =0, 0,Gy = —€,0% = EGQJ/\J. Gg =0, (78)

2Due to this choice of volume form the triple intersection numbers must be defined with an additional
minus sign compared to the more standard definition in the literature so that, whenever {[¢;2wq]}, is dual
to a basis of Nef divisors, Kupe > 0. The same observation applies to the curvature correction term K(§2>
defined in (7.13).

3In several instances (e.g., toroidal orbifolds) [[Ios] may be an integer multiple k of a three-cycle class.
In those cases h, N need not be integers, but instead kh,kN € , allowing for a richer set of solutions to
(7.7).
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with
~ 1 Kupem®mb
=€ — ——-— .

5 - (7.9)

Care should however be taken when interpreting such relations from the viewpoint
of the actual 10d supergravity solution, since the presence of fluxes and localised sources
will deform the internal geometry away from the Calabi—Yau metric, and a Gy and G4 of
the above form will never satisfy the Bianchi identities (7.5). The standard way to deal
with both issues is to see (7.8) as a formal solution in which all localised sources have been
smeared [34]. This so-called smeared solution is then the leading term in a perturbative
series that should converge to the actual background [172], with expansion parameter g;l/ 3,
and where sources are localised. Instead of (7.8), the relations that this background must
satisfy are

2
[H] = -Gogs[ReQcy], Go A" =0, ¢
5 Xs fs X6

3
G4Awa:_TOGOKa7 Gg =0,
(7.10)
where g, is the average value of e?, with ¢ a varying 10d dilaton. This value determines
the AdS, length scale in the 10d string frame R, from the following additional relation
by 1
— = —|m|gs . 7.11
== Zmlg, (7.11)
There is in addition a non-trivial warp factor, and the Calabi—Yau metric on Xg is deformed
to an SU(3) x SU(3)-structure metric, as explained in chapter 6. We will discuss this more
accurate background in section 7.6.1, and for now focus on the smearing approximation.
It follows from such a description that the Calabi—Yau volume Vcoy = %IC depends
on m and é,, growing large when we increase their absolute value. One can then for
instance see that 1/R grows as we increase h or m, and decreases as we increase é, The
more precise result can be obtained from the 4d analysis of chapter 3, which yields the
following 4d Einstein frame vacuum energy

_ 16m
T5k%

e K2m?, (7.12)

where K is the Kéhler potential, given by (A.1). One can then see that A scales like
Im|?/2, as in the explicit toroidal solutions in [32,49]. Recall however that the allowed
values for m are bounded by the tadpole condition (7.7).

Finally, one can include the effect of curvature corrections to the 4d analysis, fol-

lowing [65,108]. We will only include those corrections dubbed Kéi) and K2 in [65,108],
given by
m_ 1 9 _ L
Ko = 5Kaa, K=o x, e2(Xe) Awa, (7.13)

and that respectively correspond to O(a’) and O(a’?) corrections, since higher orders will
be beyond the level of accuracy of our analysis. If {[w,]}4 is dual to a basis of Nef divisors,

then K2 > 0 [198]. The effect of such corrections is to redefine the background flux
quanta as follows

eo — eg — mK? | €q — €q — Kc(lll))mb +mK® (7.14)

a
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so in particular they modify the flux combinations (7.9) that determine the Kéhler moduli
vevs. This modification makes more involved the scaling of A with m, but since in the
regime of validity we have that K, > KL(LQ), it turns out that A ~ |m|?? is still a good
approximation.

7.3.2 4d BPS membranes

Given a type II flux compactification to N’ = 1 AdSy, one may study the spectrum
of BPS D-branes via k-symmetry or pure spinor techniques, as in [83,97], and in particular
determine those D-branes that give rise BPS membranes from the 4d perspective. In the
following we will take the more pedestrian viewpoint of section 7.2 to identify such BPS
membranes. This criterion will also be useful when considering non-supersymmetric AdSy
vacua.

An analysis of 4d BPS membranes parallel to the AdS4 boundary in the Poincaré
patch was carried out in [83], for the particular case Xg = 9/( 3 x 3) of [49], in the
smearing approximation. It was found that D4-branes wrapping holomorphic cycles are
BPS, while D2 and D6 branes cannot be so. Let us see how to recover such results and
extend them to general Calabi—Yau geometries using the picture of section 7.2. For this
we recall that in the type IIA democratic formulation the RR background fluxes take the
form

G=vobL ANG+G, (7.15)

where voly is the AdS4 volume form and G and G only have internal indices, satisfying

the relation G = —A(%¢G). Therefore from (7.8) and (7.11) we find the following fluxes

that translate into a 4d four-form background
3

n n 3
Gg = — Iy A J Gl = — Iy A J, 7.16
6 RgSVO4 CY 10 6RgsVO4 CY > ( )

with 17 = signm. Contrarily, no component of voly appears in G4 or Gg. We hence deduce
the following couplings for 4d membranes arising from D(2p)-branes wrapping (2p—2)-
cycles of Xg:

5
Qp2 =0, Qpa = /% . Joy, Qps =0, Qps = —geK/QU gpsVoy, (7.17)

expressed in 4d Planck units. Here X is the two-cycle wrapped by the D4-brane, and
gps = *1 specifies the orientation with which the D8-brane wraps Xg. This implies that
for n = 1 a BPS D4-brane must wrap a holomorphic two-cycle with vanishing worldvolume
flux F = B+ %F to be BPS, so that /2 sdoy = eK/2area(E) = Tpy, while for n = —1
the fluxless two-cycle must be anti-holomorphic. This choice of orientation for 3 can be
understood from looking at how the four-form varies when crossing the D4-brane from
z = 00 to z = —o00. In both cases, due to (2.18) and the choice of orientation for 3 one
decreases the absolute value of the four-form flux quanta é,, and therefore the vacuum
energy. This is consistent with our expectations, as it permits to have a BPS domain-wall
solution mediating a marginal decay from a vacuum with higher energy (at z = o0) to
one with lower energy (at z = —oo). Considering this set of BPS membranes allows us
to scan over the set of vacua with different four-form flux quanta. Differently, D6-branes
wrapping four-cycles of Xg and D2-branes can never yield 4d BPS membranes. This indeed
reproduces and generalises the results found in [83], adapted to our conventions.
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It however remains to understand the meaning of (Jpg, which naively does not seem
to allow for BPS membranes that come from wrapping (anti-)D8-branes on X¢. On general
grounds one would expect that such BPS membranes exist as well, in order to scan over the
different values of m. In particular, one would expect that for n = 1 D8-branes (¢gpg = 1)
wrapping Xg are BPS, while for n = —1 the same occurs for anti-D8-branes (gpg = —1).
Indeed, when crossing the corresponding domain wall from z = oo to z = —oo the value
of |m| increases and the vacuum energy decreases in both setups, paralleling the case for
D4-branes. However, the factor of 5/3 and a sign prevent achieving the necessary BPSness
condition Qpg = Tps = eX/?Vay.

The resolution to this puzzle comes from realising that D8-branes wrapping Xg
cannot be seen as isolated objects. Instead, D6-branes must be attached to them, to cure
the Freed—Witten anomaly generated on the (anti-)D8-brane by the NS flux background
H. In the above setup the D6-branes will be wrapping a three-cycle of X3 on the Poincaré
dual class to n[¢;2H] = |h|[lIog], and extend along the 4d region of AdSy (¢, 2!, 22) x |29, 00)
that is bounded by the 4d membrane. More generally, we need an excess of space-time
filling D6-branes wrapping IIpg on the interval [zp, 00) to the right of the (anti-)D8-brane,
as compared to the ones in the left-interval (—oo, zg] to cancel the said Freed—Witten
anomaly:

Nright - Nleft = |h| ) (718)

see figure 7.1. Since m jumps by n when crossing the membrane from right to left, mh
jumps by |h|, and so (7.18) guarantees that the tadpole condition (7.7) is satisfied at both

sides.
2
AdS, boundary
Z— +00

N.=(N_, -h) D6 D8 N_. D6

right
m+1 m

SN

Figure 7.1: To cure the Freed—Witten anomaly induced by the H-flux on the D8-brane world-
volume, an excess of |h| space-time filling D6-branes must be attached from its position to the
AdS4 boundary. We take m,h > 0 in the figure.

Since the number of space-time filling D6-branes is different at both sides of the D8-
brane, their presence will induce an energy dependence in terms of the D8-brane position.
Indeed, if we decrease zp and move the D8-brane away from the AdS, boundary the region
of AdS; filled by Nyigny D6-branes will grow, and so will the total energy of the system. As
a result, the D6-brane jump induced by the Freed—Witten anomaly pulls the D8-branes
towards the boundary of AdS4. It turns out that this effects precisely cancels the effect
of the tension Tpg and coupling @ps of the D8-brane, which both drag the 4d membrane
away from the AdS boundary.

One can derive such a cancellation via a microscopic calculation of the DBI4+CS
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action for the D8/D6 system, dimensionally reduced to 4d. Of course, from the viewpoint
of the 4d membrane the tension of space-time filling D6-branes extended along (—o0, 2]
and [2g, 00) is infinite. Nevertheless, one may compute how the energy of the system varies
as we modify the D8-brane position zy. Indeed, the DBI contribution to the action is given
by the sum of the following two terms:

20 2
sps = Ly R iptan?, (7.19)
s 03
]. 20 32/ © 3z 1 2
SDBI — —Vigs Nt dz'e’ R + Nyight dz' e’ dtdxr dz” (7.20)
Js —o0 20
with
1 1 8 80,
Vie. = =  ImQcy = —  ImQoy AH = Voy = —Vey | 7.21

where we have used that in our conventions O6-planes and BPS D6-branes are calibrated
by Im Qcy, and then the relations (7.10) and (7.11). Let us now consider an infinitesimal
variation zg — zg + £s€. The variation of these actions is

3 329 2T

0eSpp1 = "Ry Ro Yover dtdx'dx? (7.22)
8 MNeft — Nrigh 32 27 8 320 27
0 SDBI Rgs : 7] 8 tche R E dtdatdz? = Ro. Voy e R E dtdz'dx? .

(7.23)

That is, the dragging effect of the D6-branes ending on the D8-brane overcomes the effect
of its tension, acting like an additional coupling Q%fg = %eK/ 2Yey. This precisely com-
pensates the coupling of the 4d membrane made up from a D8-brane in the case n = 1 and
from an anti-D8-brane in the case n = —1, as claimed. Microscopically, this cancellation
is seen from the variation of the (anti-)D8-brane Chern-Simons action. By evaluating the
coupling to the RR potential Cy that corresponds to (7.16) and integrating over X4 one
obtains: 5 5 3ep.

SES = QDST;T Co = —qps nggs_chyeTO E—g dtdatdaz? . (7.24)
It is then easy to see that for qpg = 1 the variation J.SQ§ precisely cancels (7.22)+(7.23).
Therefore, the effect of the D6-branes can be understood as generating an effective coupling
QDg/DG Qs + QDG = ngpge’/?Vay. Indeed, notice that if one chose gng = —n then
the Freed—Witten anomaly would be opposite and the D6-branes would be extending
along z € (—00, zp]. This would result into Q%fg /D6 = —eX/2Yey, destabilising the system
towards zg — —o0.

Considering bound states

In general, the Chern-Simons action of a D8-brane reads

2 2 -
SB8 = Tg PlCAeP|A e =P A AR), (7.25)

where C = C1 + C3 + Cs + C7 + Cy and A(R) =1+ 2—14%@2 + ... is the A-roof genus.

These couplings encode that in the presence of a worldvolume flux and/or curvature, we
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actually have a bound state of a D8 with lower-dimensional D-branes. If the bound state
is BPS, then its tension will be a sum of D8 and D4-brane tensions. Taking also into
account the effect of the D6-branes ending on it we have that

T — Tpe + KF — K2 18, (7.26)

a

where T8, = e%/2t* K = i x¢ F NF Awg and K!? has been defined in (7.13). Similarly,
the Chern-Simons action of this bound state will give, upon dimensional reduction

qpsQie™ = QeDH8/D6 + K- KPP Qb =nTi™, (7.27)
where Qf, = neX/2te. Hence, again for n = 1 a D8-brane will satisfy the BPS condition

@ = T, while for n = —1 this will occur for an anti-D8-brane. One important aspect
of these corrections is that the induced D4-brane tension in (7.26) is in general negative.
Indeed, the curvature term KPP = — x €2(X6) A J is positive in the interior of
the Kéhler cone for Calabi—Yau geometries, inducing a negative D4-brane tension. In
the present case this is compensated by an induced negative D4-brane charge in (7.27).
However, such a compensation will no longer occur for the non-supersymmetric AdS, flux

backgrounds that we now turn to discuss.

7.4 Non-supersymmetric AdS, vacua

The type ITA flux potential obtained in [23] has, besides the supersymmetric vacua
found in [49], further non-supersymmetric families of vacua. This can already be seen by
the toroidal analysis of [32,49], and we generalised to arbitrary Calabi—Yau geometries in
chapter 3. A subset of such vacua was analysed in [107] in terms of perturbative and non-
perturbative stability, for the particular case of Xg = 6/( 3 x 3). It was found that one
particular family of vacua, dubbed type 2 in [107], was stable both at the perturbative and
non-perturbative level.* In the following we will extend this analysis to general Calabi—
Yau geometries in the smearing approximation, and to new membranes like those arising
from the D8/D6 configuration considered above.

The non-supersymmetric vacua dubbed type 2 in [107] are in one-to-one corres-
pondence with supersymmetric vacua, by a simple sign flip of the internal four-form flux
G4 — —G4. Because G4 enters quadratically in the 10d supergravity Lagrangian, the
energy of such a vacuum is similar to its supersymmetric counterpart and, as argued
in [107], one expects it to share many of its nice properties. It was indeed found in chapter
3 that such non-supersymmetric vacua (dubbed A1-S1 therein) exist for any Calabi—Yau
geometry, and that they are stable at the perturbative level. Instead of the (smeared)
supersymmetric relations (7.8) we now have

2 3
KS[H] = 5mgs[Rchy] y GQ = 0, £5G4 = éaa)“ = 1—0m ICaw“, G6 = 0,

(7.28)
and most features are analogous to the supersymmetric case. In particular, the AdSy
radius and vacuum energy are also given by (7.11) and (7.12), respectively.

4As we pointed out in chapter 3 the remaining non-supersymmetric families (type 3 - type 8) found
in [107] are not actual extrema of the flux potential, and only seem so when the potential is linearised as
in [107].
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Because the energy dependence with the flux quanta is the same, one should be
looking for similar non-perturbative transitions that jump to a vacuum of lower energy:
Those that decrease |é,| and those that increase |m| or |h|. The objects that will implement
such jumps will again be 4d membranes that come from (anti-)D4-branes and (anti-)D8-
branes. Because of the sign flip in G4, the role of the D4-branes will be exchanged with
that of anti-D4-branes with respect to the supersymmetric case.

Indeed, the relations (7.28) imply that (7.16) is replaced by

G6:377V014/\J, Gl():—577

Iy AJ3 7.29
Rys 6Rg, 47 (7.29)

with no further external fluxes. As a result we find the following 4d membrane couplings:

Qp2=0, ns = —nels/? . J, Qpe =0, Qps = *gn qpse’*Vay . (7.30)
By analogy with the supersymmetric case, we now find that the equality @) = T is realised
by D4-branes wrapping anti-holomorphic two-cycles, for n = 1, and holomorphic two-
cycles for n = —1. This essentially amounts to exchanging the roles of D4-brane and
anti-D4-brane, as advanced. If we chose the object with opposite charge (e.g. a D4-brane
wrapping a holomorphic two-cycle for n = 1) then we would have that Q = —7 and the
effects of the tension and the coupling to the flux background would add up, driving the
membrane away from the boundary. In general, it is not possible to find a D4-brane such
that @ > T, just like it is not possible to find it in supersymmetric vacua. This reproduces
the result of [107] that D4-brane decays are, at best, marginal. Regarding D8-branes, the
naive story is essentially the same as for A/ = 1 vacua. Since @pg remains the same,
Q"‘ng /D6 will compensate Tpg for n = ¢ps.

Now, the interesting case occurs when we consider bound states of D8 and D4-
branes, by introducing the effect of worldvolume fluxes and/or curvature corrections. In
a D8-brane configuration similar to the one in the supersymmetric case the tension is the
same:

TR — Tpe + KF — K2 18, (7.31)

a

In the large volume approximation Tpg > T173,, and so just like in the supersymmetric
case we need to consider a D8-brane whenever n = 1, or else T' > (). The coupling of the
corresponding 4d membranes is now different from (7.27), and reads

qosQNE" = Q%ﬁé/DG + KE-KP Qb'=n Tos— K -KP 1§, . (7.32)

a

As a result we find that
il T — 2 K~ KF TS, (7.33)

where we have imposed 11 = gpg. On the one hand, by assumption the D8-brane world-
volume flux induces pure D4-brane charge, which means that K!'T; @, > 0.° On the other

hand, generically K B4 > 0, since for a Calabi-Yau [198§]

— . c2(Xg) AN Jeoy >0, (7.34)
6

5Tf we consider fluxes that induce pure anti-D4-brane charge, their contributions would cancel in (7.33).
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with the equality occurring only at the boundary of the Kéhler cone. This means that the
curvature corrections are inducing negative D4-brane charge and tension on the D8-brane.
The effects of such negative tension and charge add up in the present non-supersymmetric
background, and they drag the D8-brane towards the AdS; boundary®. So if the world-
volume fluxes are absent or give a smaller contribution, we will have that Q%’gal > T]B%tal
and the energy of the configuration will be minimised at zp — co. As such, these D8/D4
bound states are clear candidates to realise the AdS instability conjecture of [75,188]. In
the next section we will argue that this is indeed the case.

While a remarkable result, one must realise that it does not apply to all non-
supersymmetric vacua of this sort. We need that the flux vacua contain space-time filling
D6-branes, or in other words that N > 0 in (7.7). If N = 0 it means that we cannot
consider a transition like the above in which m increases its absolute value, or in other
words that the D8-brane configuration described above cannot exist.” These are precisely
the kind of vacua considered in [107] which, even with these new considerations, would
a priori remain marginally stable. Moreover, if (7.34) vanished at some boundary of the
Kéhler cone, there would be a priori no instability triggered by D8/D4-brane bound states,
which would be marginal. In fact, this last statement is not true, but only a result of the
smearing approximation. As we will see, when describing the same setup but in terms of a
background that admits localised sources, corrections to the D8-brane tension will appear,
modifying the above computation.

7.5 AdS, instability from the 4d perspective

The results of the previous section suggest that non-supersymmetric AdSy x Xg
vacua with a flux background of the form 7.28 develop non-perturbative instabilities if
they contains space-time filling D6-branes. From the 4d perspective such an instability
would be mediated by a membrane that arises from wrapping a D8-brane on Xg, since it
becomes a membrane with Q > T upon dimensional reduction. However, the link between
the inequality () > T and a non-perturbative gravitational instability typically follows an
analysis similar to [81], implicitly relying on the thin-wall approximation. As pointed out
in [107], D8-branes are not in the thin-wall approximation unless the value of |m| is very
large, which is not generically true. Therefore in this section we would like to provide an
alternative argument of why these vacua are unstable.

For this we will make use of the symmetry between supersymmetric and non-
supersymmetric vacua mentioned in section 7.4. That is, for the same value of the fluxes
m, h and |é,| the saxion vevs are stabilised at precisely the same value in both supersym-
metric and non-supersymmetric vacua, and the vacuum energy (7.12) is also the same.
For simplicity let us consider a pair of supersymmetric and non-supersymmetric vacua in
which eg = m® = 0 and

e e I e e A (B (7.35)

In both backgrounds, a D8-brane without worldvolume fluxes will induce the following

%Notice that this mechanism is analogous to the one in [81], in which a D5-branes wraps the K3 in
AdS3 x S* x K3.

“Or it could at the expense of introducing anti-D6-branes, which would introduce a whole new set of
instabilities.
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shift of flux quanta as we cross it from z = 0o to z = —o0 as
m — mS 4+ 1 |ESNSY | — |3 4 K(SQ)\ , (7.36)
MY Y Y] e 4 K| = e - K| (7.37)

Because the absolute value of the four-form flux quanta é, are different after the jump
for the supersymmetric and the non-supersymmetric case, so are the vevs of the Kéhler
moduli and the vacuum energy. To fix this, let us add to the supersymmetric setup a
D4-brane wrapping a holomorphic two-cycle in the Poincaré dual class to 2K§2) [@?]. The
resulting 4d membrane can create a marginal bound state with the one coming from the

D8-brane, implementing the combined jump
mY — mS 41, |3 | — |3 — KéZ)| . (7.38)

Now both supersymmetric and non-supersymmetric jumps are identical, in the sense that
the variation of the scalar fields from the initial to the final vacuum is the same, and so are
the initial and final vacuum energies. As a result, the energy stored in the field variation
of both solutions should be identical. What is different is the tension of the membranes.
We have that

Tousy = Tpg + KT, > Tpg — KAOTE, = Tuusy (7.39)

assuming as before that (7.34) is met. Therefore, because the supersymmetric decay is
marginal, the non-supersymmetric one should be favoured energetically, rendering the
non-supersymmetric vacuum unstable.

7.6 Beyond the smearing approximation

The Calabi—-Yau flux backgrounds of section 7.3 and 7.4 can be thought of as an
approximation to the actual 10d solutions to the equations of motion and Bianchi iden-
tities, in which O6-planes and D6-branes are treated as localised sources. More precisely,
the smeared Calabi—Yau solution can be recovered from the actual solution in the limit of
small cosmological constant, weak string coupling and large internal volume, as derived in
chapter 6. Any of these quantities can be used to define an expansion parameter, so that
the actual 10d solution can be described as a perturbative series, of which the smeared
solution is the leading term. While a solution for the whole series (i.e. the actual 10d
background) has not been found yet, the next-to-leading term of the expansion was found
in chapter 6 for the case of the supersymmetric vacua. In the following we will review the
main results of that chapter, and then use the approach of [58] to construct, at the same
level of accuracy, a similar background with localised sources for the non-supersymmetric
vacua of section 7.4. As we will see, these more precise backgrounds do not affect signi-
ficantly the energetics of 4d membranes made up from D4-branes. However, as it will be
discussed in the next section, they yield non-trivial effects for membranes that correspond
to D8/D6 systems.

7.6.1 Supersymmetric AdS,

To incorporate localised sources to the type IIA flux compactification of section 7.3.1
one must first consider a warped metric of the form

ds? = ez‘élcisids4 + ds_%(s , (7.40)
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with A a function on Xg. Then, as pointed out in chapter 6, the Calabi—Yau metric
on X must be deformed to a metric that corresponds to an SU(3) x SU(3)-structure
solution with Gg = 0. Assuming as before that P.D.[(;?H] = h[llog] = h[lIpg], the first-
order correction to the smearing approximation can be described in terms of the following
equation

2
PAcyK = gngsReQCY + (N —4)6(Iog) (7.41)

where Acy = dEYd—i— aldTCY is constructed from the CY metric. The solution is of the form
K = ¢RefQ2cy + Rek, (7.42)

with k a (2,1) primitive current and ¢ is a real function that satisfies y ¢ =0 and

mh Vi
Aove =" =0, = »~0)?), (7.43)

1(1336 = xcy(ImQcy A d(Ilog)). In term of these quantities we can describe the

metric background and the varying dilaton profile as

where 9

J=Joy +0(g?), Q= Qcy + g5k + O(g?), (7.44a)
e =1+4g0+0(g2), € =gs(1—3gs)+0(g). (7.44b)

where we have taken g; as the natural expansion parameter. Notice that ¢ ~ —%f‘ near
IIpg, and so as expected the 10d string coupling blows up and the warp factor becomes
negative near that location. The function ¢ indicates the region Xg = {p € Xs|gs|0(p)| <
1} in which the perturbative expansion on gy is reliable; beyond that point one may use
the techniques of [199] to solve for the 10d supersymmetry equations. The background
fluxes are similarly expanded as

H = 27 g0 (Refloy + 9.K) — 3dRe (5 Qov) + O(g?). (7.450)
Gy = dl.y K + O(gs) = —Joy - d(4¢Im Qcy — *oy K) + O(gs) (7.45Db)
Gy = %ng A Joy 1% - ggsgo +Joy A gy tdimu + O(g?), (7.45¢)
Gs=0. (7.45d)

Here v is a (1,0)-form whose presence indicates that we are in a genuine SU(3) x SU(3)
structure, as opposed to an SU(3) structure. It is determined by

v = gs0cy fx + O(gg’) , with LAy fx = —gs8mp. (7.46)

It is easy to see that (7.44) and (7.45) reduce to the smeared solution in the limit g5 — 0.
Moreover, as shown in chapter 6, this background satisfies the supersymmetry equations
and the Bianchi identities up to order O(g?). As a cross-check of this result, we discuss in
Appendix F.1 how the 10d equations of motion are satisfied, to the same level of accuracy.

Given this new background, one may reconsider the computation of the tension and
coupling made in the smearing approximation. Let us for instance consider a D4-brane
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7.6. Beyond the smearing approximation

wrapping a two-cycle ¥. Instead of the expression for Gg in (7.16) we obtain

m 1
Gg = —volg A JCY57 (3 — 8gstp) — 5 *xoy d (JCY A dcf*) 64A + O(gg)
m 1 1 2
- 1 Sno Lo 2

where d° = i(dcy — dcy) and we have used that Joy A d°f = *cyd(Joyf). Since the
only difference with respect to the smearing approximation is an exact contribution, the
membrane coupling @ ps remains unchanged, and it is still given by Qp4 = ne’/2 s Joy.
As before, D4-branes wrapping holomorphic (n = 1) and anti-holomorphic (n = —1) two-
cycles will be BPS, and will feel no force in the above AdS, background, as expected from
supersymmetry.

7.6.2 Non-supersymmetric AdS,

Just like for supersymmetric vacua, one would expect a 10d description of the non-
supersymmetric vacua of section 7.4 compatible with localised sources. Again, the idea
would be that the smeared background is the leading term of an expansion in powers of
gs. In the following we will construct a 10d background with localised sources which can
be understood as a first-order correction to the smeared Calabi-Yau solution (7.28) in the
said expansion.

The main feature of the non-supersymmetric background (7.28) is that it flips the
sign of the RR four-form flux G4, while it leaves the remaining fluxes, metric, dilaton and
vacuum energy invariant. This means that the Bianchi identities (7.5) do not change at
leading order, and in particular the leading term for two-form flux G2 should have the
same form (7.45b) as in the supersymmetric case. Moreover, the localised solution is likely
to be described in terms of the quantities ¢ and k that arise from the Bianchi identity
of Go, at least at the level of approximation that we are seeking. Because of this, it is
sensible to consider a 10d metric and dilaton background similar to the supersymmetric
case, namely (7.44).

Regarding the background flux Gy, there should be a sign flip on its leading term,
but it is clear that this cannot be promoted to an overall sign flip, because the co-exact
piece of (G4, that contributes to the Bianchi identity, must be as in the supersymmetric
case. Since the harmonic and co-exact pieces of the fluxes are fixed by the smearing
approximation and the Bianchi identities, the question is then how to adjust their exact
pieces to satisfy the equations of motion. Using the approach of [58], we find that the
appropriate background reads

92 1
H= g%gs (ReQoy — 29,K) + 5dRe (v Qov) + O(g]) ,

Gy = diy K + O(gs), 7.48D)
m 3 4 1 1 2

Gy = _?JCY N Joy TO + ggs@ - 5JCY A gq dlmv + O(gs) ) (7'48C)

Ge =0, (7.48d)
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with the same definition for the (1,0)-from v. In Appendix F.1 we show that this back-
ground satisfies the 10d equations of motion up to order O(g?), just like the supersym-
metric case.

With this solution in hand, one may proceed as in the supersymmetric case and
recompute the 4d membrane couplings and tensions. If the result is different from the one
in the smearing approximation the difference could be interpreted as a gs correction. To
begin, let us again consider a D4-brane wrapping a two-cycle . The coupling of such a
brane can be read from the six-form RR flux with legs along AdS4, which reads

1
Gs = volA Joy—— (34 80:0) + — *cy d (Joy Ad°fy) e*d+0(g?)

50, 10
m 1 i 2
= voly A JCYQ (3 —4gsp) + 10 Acy —ddey (fidoy) + O(g5)
3n 1
= voly A Joy T Edde (fedoy) +0(g2). (7.49)

Remarkably, we again find that the first non-trivial correction to the smearing approxim-
ation is an exact form, and so it vanishes when integrating over . As a result, the 4d
membrane couplings Q75, = —neK/ 2 s J remain uncorrected at this level of the expansion,
and there is a force cancellation for D4-branes wrapping anti-holomorphic (n = 1) and
holomorphic (n = —1) two-cycles, just like in our discussion of section 7.4. Presumably, by
looking at higher-order corrections one may find one that violates the equality Q) = T}
in one way or the other, which would be a non-trivial test of the conjecture in [75]. Such
a computation is however beyond the scope of the present work. Instead, we will focus on
membranes whose coupling and tension departure from the smeared result already at this
level of approximation, namely those membranes arising from D8/D6 systems. To see how
this happens, one must first take into account that beyond the smearing approximation
such systems are described by Blonic configurations, as we now discuss.

7.7 Blonic membranes

A Dp-brane ending on a D(p + 2)-brane to cure a Freed-Witten anomaly consti-
tutes a localised source for gauge theory on the latter. When going beyond the smearing
approximation one should take this into account, and describe the combined system as a
Blon-like solution [200]. In this section we do so for the D8 /D6-brane system, and compute
the tension and flux coupling of the associated 4d membrane for both the supersymmetric
and non-supersymmetric backgrounds of the last section. As we will see, the Blonic nature
of the membrane will modify their coupling and tension of the membrane with respect to
the smeared result.

7.7.1 Supersymmetric AdS,

Let us consider a D8-brane wrapping Xg with orientation ¢qpg = +1 and extended
along the plane z = 2y in the Poincaré patch of AdS,. As pointed out above, due to the
non-trivial H-flux background we must have an excess of h D6-branes wrapping Ilpg and
extended to the right of the D8-brane, namely along (¢,z',22) x [20,00) C AdS. This

setup implies a Bianchi identity for the D8-brane worldvolume flux F = B + %F of the
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form

dF = H — eﬁ (o) - (7.50)
S

Because by construction the rhs is trivial in cohomology, this equation always has a solu-
tion. Moreover, if we are in the smearing approximation, we have that the rhs of (7.50)
vanishes, and so F must be closed. The energy-minimising configurations then correspond
to solving the standard F-term and D-term-like equations for F [97], which in our setup
means that F is a harmonic (1,1)-form of Xg such that 3F A J&y = F3. When we see such
a D8-brane as a membrane in 4d, this harmonic worldvolume flux is the one responsible
for the contribution K'Q%, to their flux coupling and tension.

If we describe our system beyond the smearing approximation, the D8-brane world-
volume flux can no longer be closed. Instead, it must satisfy a Bianchi identity that is
almost identical to the one of the RR two-form flux. Even when the harmonic piece of F
vanishes, we find that

G2 es

7= Go N m

BPS configurations with Dp-branes ending on D(p + 2)-branes, inducing a non-closed
worldvolume flux on the latter are usually described by Blon-like solutions [200], in
which the D(p + 2)-brane develops a spike along the direction in which the Dp-branes
are extended. A relatively simple configuration of this sort is given by the D5/D3 sys-
tem in type IIB flux compactifications, that was analysed in [201] from the viewpoint
of calibrations. In this setup a D5-brane wraps a special Lagrangian three-cycle A of a
warped Calabi-Yau compactification, and extends along the plane 23 = x% of R3. If
rH = —N, then N space-time filling D3-branes must end on the D5-brane, stretched

along (¢, zt,2?) x [23,00) C R'3 and located at a point p € A. This induces an internal

worldvolume flux on the D5-brane, solving the equation dF = N §(p) — \C,lgle/\‘) . To
render the configuration BPS it is necessary to give a non-trivial profile to the D5-brane
position field X3, such that dX3 = %, F. The resulting profile features a spike X3 ~ %
around the point p, which represents the N D3-branes ending on the D5. Therefore, the

D5-brane Blon configuration accounts for the whole energy of the D5/D3 system.

iy K + O(gs) - (7.51)

Our D8/D6 setup can be seen as a six-dimensional analogue of the D5/D3 system.
The presence of the worldvolume flux (7.50) can be made compatible with a BPS config-
uration if we add a non-trivial profile for the D8-brane transverse field Z. The relation
with the worldvolume flux is now given by

xcydZ = qpslm Qoy A F + (’)(gs) . (7.52)

This expression can be motivated in a number of ways. In Appendix F.2 we show that upon
imposing it the DBI action is linearised at the level of approximation that we are working,
as required by a BPS configuration. In Appendix F.3 we describe a similar configuration
in type IIB flux compactifications, that can then be mapped to the BPS Abelian SU(4)
instantons of Calabi—Yau four-folds [202]. Finally, notice that (7.52) implies that

Vi
AcyZ = lyqpgh 68 — os 7.53
cYy qosh O, Vey (7.53)

|hles
T

and so whenever gpgh = |h| we recover a spike profile of the form Z ~ near Ilpg, as
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expected. In fact we can draw the more precise identification

(7.54)

where we have imposed the BPS relation gpg = 1 = sign m. Notice that this identifies the
spike profile of the Blon solution towards the AdS4; boundary with the strong coupling
region near the O6-plane location, where our perturbative expansion on gs is no longer
trustable.

AdS, boundary

Z— +00

VA

Figure 7.2: Beyond the smearing approximation, the D8/D6 system of figure 7.1 becomes a
Blon-like solution for the D8-brane, with a Blon profile that peaks at the O6-plane location.

The relation (7.52) implies that the DBI action of the Blon can be computed in
terms of calibrations. Indeed, ignoring curvature corrections, the calibration for a D8-
brane wrapping Xg and with worldvolume fluxes is given by

_ i _ 1
—Im®, = -9, quglme oy + O(gs) =g, qug —6J(33Y +Joy + O(gs) , (755)
while that for D6-branes wrapping a three-cycle of Xg is

1
7P Imu+ImQ — 51/)Imw ATmQ +O(gs) = g: ' ITm Qcy + O(¢°),  (7.56)

s

Im®d_=g

at leading order in our expansion. Here ¥ and wg are a complex function and 2-form which

describe the SU(3) x SU(3) structure, and such that Q = %v Aw + O(g?), see chapter 5
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for details. Applying the general formulas of [201], we find that the Blon DBI action reads

dSP8, = dtAda' Nda?AeFqps Im®, —dZ Aelmd_ Ae

1

o 1 1
dt A dz' A de? A gle m Joy = 5Jov AF? 4 qosdZ NmQey A F

1

6
The last line coincides with our result of Appendix F.2, and with what is expected for
a Blon solution. Indeed, the first two terms of (7.57) correspond to the DBI action of
the magnetised D8-brane, while the third one corresponds to the D6-branes that stretch
towards the AdS, boundary. Nevertheless, notice that the middle term %ch AF? gives an
extra contribution to the DBI action compared to the smearing approximation of section
7.3.2. Indeed, when F is a harmonic form this term accounts for the contribution K}'T%,
in (7.26). When going away from the smearing approximation F will also have a co-exact
piece, given by (7.51), that will contribute to the DBI even if F'™ = (. Because it
induces a non-trivial D4-brane charge, one may interpret this extra contribution to the
D8-brane tension as a curvature correction induced by the non-trivial Blon profile, as
opposed to D6-branes sharply ending on the D8-brane, although it would be interesting to
derive this expectation from first principles. As we will see, this additional contribution
to the tension does not play much of a role in the present supersymmetric setup, but it is
crucial for the dynamics of Bionic membranes in non-supersymmetric backgrounds.

_ 1 2, -1 320 3 1 2
= —dtNdx  Ndx*Ng; eR JCY+2ch/\]: +xcydZ NdZ . (7.57)

Eq.(7.57) suggests how to generalise (7.52) to a relation describing the Blon profile
to all orders in g;. The natural choice is

%6dZ = —qpge? A Im®_ Ne T S (7.58)

where the Hodge star is performed with the exact, non-Calabi—Yau metric of Xg, and |5
means that we are only keeping the five-form component of the polyform on the rhs. With
this choice the Blon DBI action would read

dSP8 = dt Nda' Nda? AeFqps Im® Ne T — AP ugdZ NdZ (7.59)

as expected on general grounds. In addition, (7.57) encodes the force cancellation observed
for the D8/D6 system in the smearing approximation, which can now be derived for the
single object which is the Blonic D8-brane, and in the exact background. For this, notice
that the Chern-Simons part of the D8-brane action reads

dS’CDé3 = —dt ANdzt Ad? A %e%e“qm x6 \G N e 7| (7.60)

where @ is defined as in (7.15). Putting both contributions together and using the bulk
supersymmetry equation

dy elm®d_ + %Im B, =t ug NG, (7.61)
and (7.50) one finds that
dSBE; + dSCDS = —dt Adz' Adz® A ?qu de’® A e md_ + e%dH eAMmd_ Ae
(7.62)

3Z

R .
= —dt ANdx' A dz® A gqu d eFerlmd_ Ae " + —er 0(Ilpg) A Alm®_ Ne T

I
ls
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The first term of the second line is a total derivative that will vanish when integrating
over Xg, while the second term is an infinite contribution to the action, that accounts for
the DBI action of the |h| D6-branes extending along [zp, c0). Indeed, it is easy to see that
the leading piece of this term is of the form |h|g;16% (o) NIm Qcy = |h]g;1VHOGe32TOO,
with Zo = Z|n,, = 00. The relevant point is that Z is independent of 2z, and therefore
this second term is independent of the D&8-brane transverse position. Therefore, the total
energy of the Blonic 4d membrane will be independent of zy, even if contains some infinite
contributions. This matches the results obtained in the smearing approximation, and is
equivalent to the BPS equilibrium relation Q%ISOH =T DBéon.

The above computation is quite general, and essentially follows from some general
observations made in [97] applied to the present setup. It is nevertheless instructive to see
how (7.61), which is a key relation to achieve force cancellation for our Blonic D8-brane, is
satisfied for the background (7.44) and (7.45), in preparation for the non-supersymmetric
case. We have that

2

1 2
dy elmd_ = Sdd°fitxovGr = SGo = —gsp Jey +0(g2?), (7.63)
3 3 1
Rim ey = gQD8’G0’ —Joy + EJéY +0(93), (7.64)
A 1 3 1
€4A *6 NG = —idd%Y (f*ch) - gGDJCY - *CyGQ — éGo (1 - 49590) ng + 0(93/3) 5
(7.65)

and so one only has to impose = gpg and use that dd°f = —ddEY (fJcy) to show the
equality.

7.7.2 Non-supersymmetric AdS,

Let us now consider the D8-brane Blon in the non-supersymmetric AdS, background
of section 7.6.2. Notice that the metric and dilaton background are similar to the super-
symmetric case, and that the H-flux only changes by an exact piece at subleading order, so
that (7.51) remains intact. Because of this, the DBI action of the Blon should be identical
to the supersymmetric case, at least to the level of approximation that we are working,
and so should be the Blon profile (7.52). One may thus run a very similar argument to
(7.62) to see whether the D8-brane is in equilibrium or not with the background. If not,
the same computation will determine whether it is dragged towards the boundary or away
from it.

The key relation to look at is again the bulk supersymmetry equation (7.61). If
satisfied, the Blonic membrane will be at equilibrium for any choice of transverse position
zp. In the smearing approximation we have already seen that there is no equilibrium
whenever there is a non-trivial D4-brane charge induced by curvature or worldvolume
fluxes, c.f. (7.33), so we do not expect (7.61) to be satisfied. Evaluating the background
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(7.44) and (7.48) one finds that

1 2
dyg elmd_ = A0 fi++exGa = 1-Go (2 + g0) Jey + O(g23), (7.66)
3 3 1
M@y = Zqps|Go| —Joy + 2 Sy +0(g), (7.67)
N 1 3 1
et w6 NG = EddTCY (fJoy) + gGOJCY — x0oyGa — 6Go (1 —4gep) Jo&y + O(g23),

(7.68)

which results in®
A 3 4A, VA 3 6 4 3 4/3
dH e Imd_ +§Im<l>+—e *6)\G = —5dd (f*JCY)—gGOJCY—gGOQSQDJCY—FO( s )
(7.69)
Plugged into the DBI and CS actions, and again ignoring curvature terms, this translates
into
D8 D8 1 o R 3z 3 i 2 4 3

R s 3 4
:—thdxl/\d:UQ/\geSTO Sl GolJoy A F? + | GolgspdEy + ... (7.70)

where we have neglected terms that do not depend on zg, and in the second line we have
only kept terms up to order (’)(g;l/ 3). Out of the two remaining terms, one of them will
vanish when integrating over Xg, since y_ ¢ = 0. The other one finally gives

Blon, Blon,
QP — T = —l/2 L Jex A F24+0(g2). (7.71)
6
This result is perhaps not very surprising, because it reproduces the result (7.33) of the
smearing approximation when curvature corrections are omitted and F is a harmonic form.
However remember that in the present setup F is always non-vanishing, even when the
harmonic piece of F is set to zero. Therefore,
; l
AR = _eR/2 Joy AF? with  F=Zdl K (7.72)
Xe m

constitutes a correction to the previous result (7.33). Since a vanishing harmonic piece for
F is always a choice, there will always be some Blonic membrane whose charge-to-tension
ratio will be fixed by the curvature term 2KC(LQ)T§4 plus (7.72).

One may thus wonder what is the magnitude of A%ison compared to 2K, 6(12)
/ 3)

T3, as well
compared to a harmonic
two-form. Therefore A%ison gets an relative suppression of O(g;l/ 3) ~ 0_&2’/ 3, just like

both terms in (7.33). In other words, AB" and 2K 9T, 1,4 scale similarly with the string
coupling. As for the sign, it will be the result of two competing quantities, since

as its sign. For this notice that (7.51) is suppressed as O(gg

2APE" = 57wy Fy NFo — oy Fi AT, (7.73)

X6

8In the language of [102,203], this corresponds to a background where gauge BPSness is not satisfied,
and as a result some space-time filling D-branes may develop tachyons. One can however check that
D6-branes wrapping special Lagrangians of Xg, and in particular those on top of the orientifold, do not
develop any instability. It would be interesting to see if D8-branes wrapping coisotropic five-cycles [204]
could develop them.

123



Chapter 7. Non-perturbative instabilities of non-SUSY AdSy orientifold vacua

where F; = FOD and F, = FEO+0.2) | If we assume (7.51) we obtain

_ b
- 2G)y
Fp = FEOH02 — Gl Joy - d (20Im Qcy) - (7.75)

fl = ]:(1’1) JCY : 5]{7 = GalJCY -d (*CyK — QQDIHI Qcy) s (774)

Intuitively, a (1,1) component of F induces D4-brane charge on the Blon worldvolume,
and drags it away from the boundary, while a (2,0) + (0,2) component induces anti-D4-
brane charge and therefore the opposite effect. So if the integrated norm of F> wins over
that of F; the Blonic membrane suffers an additional force that draws it towards the
boundary of AdSy, providing a source of instability for the non-supersymmetric vacuum.

Computing Agison is in general non-trivial, but one may do so for toroidal or toroidal
orbifold geometries, where vacua of this sort can be constructed explicitly [32,107,205].
We have computed its value in Appendix F.4, for the particular case of 7%/( 2 x 3). The
result is

Ao/ o 2= Sy, (r.70

where T]§4 =K/ %VTQ is the tension of a fractional D4-brane wrapping the i*" two-torus.

As discussed in Appendix F.4 the factor (8h)? is related to the O6-plane intersections, while
the 1/24 is reminiscent of (7.13). It is thus tempting to interpret (7.76) as a curvature
correction to the Blon action induced by D6-brane intersections. This intuition matches
well with the positive sign in (7.76) that adds up to the effect of the Calabi—Yau curvature
corrections. Together, they mean that the induced charge and tension is negative compared
to that of D4-branes, and this drags the Blonic membrane towards the boundary of AdSy.
Following our previous discussion, this will induce a non-perturbative instability towards
non-supersymmetric vacua with larger values for |m| and less space-time filling D6-branes,
until none of the latter remain. A more general analysis of 7¢/( 5 x ) and other toroidal
orientifolds will be carried in [206]. Notice that even if we stabilise the Kéhler moduli away
from the orbifold limit as in [49,107], in the trustable regime in the blow-up modes are
significantly smaller than the untwisted Ké&hler moduli, and so the sign of (7.76) still
determines whether the Blonic contribution creates an excess charge for the membrane.
If the contribution A%igm is non-negative like K(S2)TS4 both effects will add up and, as a
consequence, a non-perturbative instability would be induced for vacua with D6-branes.

7.8 Conclusions

In this chapter we have revisited the non-perturbative stability of type IIA N =0
AdS; x Xg orientifold vacua, where Xg has a Calabi—Yau metric in the smeared-source
approximation. For our analysis we have used the results of [58] and chapter 6, which
give a description of these backgrounds beyond the Calabi—Yau approximation. Such a
description is quite accurate in the large-volume, weak-coupling regime, at least at regions
of X¢ away from the O6-plane location. However, as already pointed out, we are still
working with an approximate solution which will have further corrections at higher orders
in the expansion. At such a higher level of accuracy, and specially in non-supersymmetric
settings, there will be additional corrections that one should take into account, and which
are beyond the scope of the present analysis.
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7.8. Conclusions

Given our results, there are several open questions to be addressed. First, we have
unveiled a potential decay channel for ' = 0 AdS; vacua with space-time filling D6-
branes, triggered by nucleating D8-branes that take the system to a new A/ = 0 vacuum
with larger |Fp| and fewer D6-branes. There are two quantities that determine if this decay

channel exist, namely the curvature correction term KC(F) B4 to the D8-brane action and
the Blon correction AB™ defined in (7.72). The sharpened WGC for membranes [75]

predicts that Kc(lz)Tng + A%igon > 0, securing the decay channel. We have shown that
this is the case for a simple D6-brane configuration in Xg = 76/( 2 x 3), and it would
be interesting to extend our analysis to other configurations, other toroidal orbifolds and
more general Calabi—Yau geometries. It was shown recently in [206] that this is indeed
the case for most of the toroidal examples studied there, though there are configurations
that seem to be in tensions with what was expected from the WGC. It would however
remain to see if the two terms always add up to yield a positive quantity, the key question
being how A%igon behaves in general. Because F is a non-closed but nevertheless quantised
two-form, it could be that Agison is determined by the topological data of the problem, as

the simple result obtained for toroidal geometries would suggest.

More generally, the instabilities that we have discussed only apply to vacua with
space-time filling D6-branes. For instance, the explicit vacua discussed [49,107] were based
on toroidal orbifolds, but the H-flux and Fy quanta were chosen such that no D6-branes
were present. For these vacua and others alike, our results find no superextremal membrane
that could mediate the decay, since D4-branes saturate a BPS bound in the same sense
that they do in the smeared-source approximation analysis. It would be interesting to see
if pushing our analysis to the next term in the expansion one could find that Qps # Tpa
in N/ = 0 backgrounds, or if some other kind of corrections sourced by supersymmetry-
breaking effects creates an imbalance. If not, one may consider more exotic classes of
processes where four-form flux is discharged, like decays involve a mixture of bubbles
of nothing and D4-brane charge (see e.g. [196]) to fully test the sharpened WGC for
membranes.

In any event, we believe that the decay processes that we have studied are interesting
per se, and deserve further study. Notice for instance that after bubble nucleation the AdSy
flux dual to the Romans mass is not discharged, as in [81], but on the contrary it increases.
And the same happens with the 4d four-form flux dual to G4. From the 4d viewpoint there
is nothing wrong with this fact, as we jump to a new N'= 0 vacuum with lower vacuum
energy. Indeed, we have argued in 7.5 that these decays are favourable from the 4d
viewpoint, even when we are away from the thin-wall approximation. It would however
be interesting to carry a more detailed 4d analysis of this process, as well as to build the
explicit 4d solution. Moreover, it would be important to analyse the superextremality of
the membranes from a standard 4d viewpoint, like the analysis of the WGC for membranes
carried out in [197].

From the microscopic viewpoint, it would be interesting to see if our computations
can be generalised to other string theory settings. To start with, an analysis analogous to
the one performed in this chapter will be applied to the so-called A2-S1 branch of table 3.1
in [207]. Other obvious candidates are the class of type IIA orientifold compactifications
studied in [142,208], which share many similar properties with the ones considered in this
paper. But one may also consider other compactifications which share key ingredients
like scale separation and non-Abelian chiral gauge theories, and see if similar results are
obtained. After all, our results hint that N' = 0 4d EFTs with non-trivial gauge sectors
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are more susceptible to decay to vacua where such gauge sectors are absent. If true in
general, this would have deep implications for string theory model building, and probably
result into a new branch of implications of the Swampland Programme.
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Conclusions and final remarks

In this thesis we have explored the vacua structure of (massive) type IIA (CY) ori-
entifold compactifications with fluxes. We have done it with one eye on the swampland
program and one eye on the phenomenology applications. The constructions obtained
here can serve both as an arena to test the swampland conjectures and as a first step
in connecting string theory with our universe. We have been following the most natural
reasoning, starting with the basics and adding ingredients to make more complex elabor-
ations. We will close these pages by recapping what we have done and establishing what
questions are still open.

After motivating the work and recalling the very fundamental concepts in chapter 1,
we started in chapter 2 by reviewing (massive) type IIA Calabi-Yau orientifold compacti-
fications. Following mainly [24], we wrote the 4d AV = 1 effective action that describes this
scenario, adapted to our conventions and in the presence of fluxes. We first considered
only NSNS and RR fluxes, and then also added (non)-geometric fluxes. We explained
how the fluxes generate a potential for the moduli' that can be described in the SUGRA
language in terms of a superpotential W and a Kéhler potential K. In the presence of
only RR and NSNS, it was was shown in [30] that the potential can be rewritten in full
generality in a bilinear form, V = ()" Zp, result that was generalised in chapter 4 includ-
ing also (non)-geometric fluxes. We finished with section 2.3, listing the main swampland
conjectures tested in the thesis.

Having an effective action and a potential, the next step was to analyse the extrema
of the potential, to see what vacua the theory has. We started in chapter 3 by turning off
(non)-geometric fluxes and taking only NSNS and RR fluxes into account. The bilinear
form of the potential was very useful to perform a systematic search of vacua and to see
that de Sitter (dS) extrema cannot be obtained in this setup. We obtained several families
of SUSY and non-SUSY AdS, vacua -see table 3.1- generalising previous results [32,49],
computed in toroidal examples, to any CY orientifold. We analysed the validity of the
vacua obtained, verifying its perturbative stability and checking that they are in a regime
(large volume, weak coupling) in which we can trust the theory. We also saw they all have
separation of scales: the radius of the Calabi-Yau manifold can be made parametrically
smaller than the AdS4 radius, contradicting the strong form of the AdS distance conjecture
[75].

Having studied the extrema of the potential generated by RR and NSNS fluxes, we
added geometric fluxes and performed a similar analysis in chapter 4. We took an ansatz
for the fluxes in the vacuum -motivated by stability arguments- and exploited again the

'Massless scalar fields appearing in the effective action when compactifying that determine the geomet-
rical properties of the internal manifold.

127



Chapter 8. Conclusions and final remarks

bilinear form of the potential. We derived several families of SUSY and non-SUSY AdSy,
vacua which are summarised in table 4.1. As in the previous chapter, we studied the
validity of these new vacua, checking which of them are perturbatively stable. In this case
we were not able to find a regime in which the radius of the internal manifold can be made
parametrically smaller than the radius of the AdSy

After focusing on the 4d point of view in chapters 2-4, in chapter 5 we started the
analysis of the 10d uplift of the vacua obtained (recall that massive type IIA in a CY
orientifold does not solve all the internal equations). We began by reviewing the main
tools needed for a 10d analysis. We recalled how the SUSY equations can be rewritten in
a very elegant way using the language of polyforms and how SUSY constrains the internal
manifold to be either a SU(3) or a SU(3) x SU(3) structure manifold. Subsequently, we
went over the smearing problem, the fact that the 10d uplift cannot be in a SU(3) structure
manifold. For the vacua considered, with fluxes and O6-planes, the Bianchi identities
cannot be solved in SU(3) manifolds unless one considers smeared sources, which is not
describing the true physical situation. We saw that this happens both in the case of only
RR and NSNS fluxes and when geometric fluxes are added. We gave the smeared uplift
for both cases, agreeing with the previous results in the literature [34].

From chapter 6 until the end of the thesis, we focused on the case with only RR and
NSNS fluxes. In chapter 6 we studied the uplift of the SUSY vacua computed in chapter
3 going beyond the smeared uplift, and considering SU(3) x SU(3) structure manifolds.
To do so, we expanded the equations in terms of gs. At zeroth order the smeared uplift is
recovered. At first order the localised nature of the sources is taken into account -though
the intersection terms between different O6-planes decouple, since they appear at next
order-. We solved there all the equations of motion and the Bianchi identities at first
order. We did it in general and also explicitly for a particular toroidal example.

In the last chapter of the thesis, chapter 7, we used the machinery developed in
chapter 6 to study the non-perturbative stability of one of the families of non-SUSY vacua
obtained in chapter 3. Namely, the non-SUSY branch that is related to the SUSY one
changing G1on-SUSY — _GSUSY - According to a refined version of the WGC [75], there
should be branes in the spectrum of this background with @ > T, triggering its decay. In
the smearing approximation and both for the SUSY and non-SUSU vacua, we were able
to find only BPS branes, that is, branes with () = T and branes with Q < T'. Therefore,
the decay of the non-SUSY vacua can only be at best marginal in this approximation. We
had to go beyond the smeared uplift and generalise the results of chapter 6 to compute the
solution of the EOM at first order in the g, expansion for the non-SUSY background. In
this more accurate description, the SUSY spectrum continues to contain only BPS branes
and branes with Q) < T, as was expected. For the non-SUSY solution, D8 branes wrapping
the internal manifold with D6 branes ending on them can have @ > T, sourcing the decay
of the AdSy, as predicted by the refined form of the WGC.

Having explored the vacua structure of type ITA orientifold compactifications, we
have opened the door to many interesting questions. First of all, there is the problem of
having dS vacua in string theory. We have seen that in type ITA orientifold compactifica-
tions they cannot be obtained with only RR and NSNS fluxes in the large volume, weak
coupling regime (where the vanilla SUGRA description is valid). But there is still room
to obtain them either in other regimes of string theory (in which nowadays we have less
control) or maybe with (non)-geometric fluxes. In this sense, one can try to generalise the
ansatz taken for the geometric fluxes in chapter 4, and explore the extrema of the potential
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for more complicated proposals. Also, non-geometric fluxes are still poorly understood, so
more research in this sense is needed.

Another very stimulating and urgent topic is the construction of scale separated
vacua in string theory. As of today, the only models yielding scenarios with this property
are (massive) type ITA orientifold compactifications. In the last years, the study of the
would-be CFT duals to these theories has been initiated [5,82-85], with the aim of shed
light in this problem using a different approach. As explained along the pages of this
thesis, the issue with the aforementioned constructions is that a full solution for the 10d
equations of motion is not known unless the O6-planes are smeared. In chapter 6 we made
a non-trivial step in this direction, showing that a solution beyond the smeared uplift
exists. But this is not the end of the story, since problems could appear at next orders.
The existence of a full-controlled 10d set-up with separation of scales between the internal
and the external manifold is another puzzle that we aim to solve in the future.

Finally, related to the previous problem, there is also the question of building non-
SUSY (meta)stable vacua in string theory”. This is crucial for string theory to describe
our universe. In this respect, there are still some non-SUSY vacua derived in chapters 3
and 4 whose non-perturbative stability should be checked. Indeed, for the so-called branch
A2-S1 in chapter 3 we are working in this problem in [207], in the lines of the non-SUSY
instability conjecture [75].

So, as is usually the case in science, we conclude with the idea that though this
thesis closes some questions, it opens up many new ones. This is precisely the beauty of
this job. Hopefully, we can continue contributing to solving some of them in the not too
distant future.

2Metastability is fine as long as the lifetime of the vacuum is large enough to accommodate our universe.
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Conclusiones y comentarios finales

En esta tesis hemos explorado la estructura de vacios de la teoria de cuerdas tipo IIA
(masiva) compactificada en orientifolds (de variedades de Calabi-Yau) incluyendo flujos.
Lo hemos hecho con un ojo puesto en el programa de la ciénaga (el swampland program) y
otro en las aplicaciones fenomenologicas. Las construcciones que hemos obtenido pueden
servir tanto como para testear las conjeturas del pantano (las swampland conjectures)
como un primer paso en la conexién de la teoria de cuerdas con nuestro universo. Hemos
ido seguimiento un razonamiento natural, empezando por lo mas simple y anadiendo in-
gredientes para construir escenarios mas complejos. Cerraremos estas paginas resumiendo
el trabajo realizado y comentando qué preguntas quedan todavia por responder.

Después de motivar la tesis y recordar los conceptos mas fundamentales en el capitulo
1, empezamos el capitulo 2 repasando la compactificacion de la teoria de cuerdas de tipo
ITA (masiva) en orientifolds de variedades de Calabi-Yau. Siguiendo principalmente [24],
derivamos la accién de supergravedad N' = 1 en 4d que describe este escenario, adaptada a
nuestros convenios y teniendo en cuenta la presencia de flujos. Primero consideramos solo
flujos de tipo RR y NSNS y luego anadimos también flujos (no)-geométricos. Explicamos
cémo los flujos generan un potential para los moduli' que puede ser descrito en el lenguaje
de supergravedad en términos de un superpotential W y un potential Kéhler K. En
presencia de flujos de tipo RR y NSNS, en [30] demostraron que el potential puede ser
reescrito, con total generalidad, como una expresién bilinear, V = (ﬁ)t Zp, resultado
que nosotros generalizamos en el capitulo 4 incluyendo también flujos (no)-geométricos.
Acabamos este capitulo con la seccién 2.3, haciendo un listado y repasando las principales
conjeturas de la ciénaga analizadas en esta tesis.

Teniendo una accién efectiva y un potencial, el siguiente paso fue analizar los exremos
de este potential, para ver qué vacios tiene la teoria. Empezamos esta tarea en el capitulo
3 apagando los flujos (no)-geométricos y considerando solo flujos de tipo NSNS y RR.
La forma de escribir el potential como una expresién bilinear fue muy 1til para llevar a
cabo una busqueda de vacios sistematica y para ver que no se puede obtener vacios de
tipo de Sitter (dS) en estas construcciones. Obtuvimos varias familias de vacios AdSy
tanto supersimétricas como no-supersimétricas -ver tabla 3.1- generalizando resultados
previos [32,49] calculados en ejemplos toroidales, a orientifolds de cualquier variedad
de Calabi-Yau. Analizamos también la validez de los vacios obtenidos, verificando su
estabilidad a nivel perturbativo y comprobando que estén en un régimen (volumen grande,
acoplo débil) en el que podamos confiar en la descripcién usada. También vimos que todos
estos vacios tienen separacién de escalas: el radio de la variedad de Calabi-Yau puede

LCampos escalares sin masa que aparecen en la accién efectiva al compactificar y que determinan las
propiedades geométricas de la variedad interna.
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hacerse paramétricamente mas pequeno que el radio de AdSy, contradiciendo la version
fuerte de la llamada AdS distance conjecture [75].

Habiendo estudiado los extremos del potencial cuando solo se incluyen flujos RR
y NSNS, en el capitulo 4 anadimos flujos geométricos para realizar un andslisis analogo.
Asumimos un cierto ansatz para los flujos geométricos en el vacio -motivado por argu-
mentos de estabilidad- e hicimos uso de la forma bilinear del potential. Encontramos de
nuevo varias familias de vacios AdSy tanto supersimétricas como no-supersimétricas -un
resumen puede verse en la tabla 4.1-. Como en el capitulo anterior, estudiamos la validez
de estos vacios, comprobando cudles de ellos son estables a nivel perturbativo. En este
caso no fuimos capaces de encontrar un régimen en el que el radio de la variedad interna
pueda hacerse paramétricamente mas pequeno que el radio de AdSy.

Después de centrarnos en el punto de vista 4-dimensional en los capitulos 2-4, en el
capitulo 5 empezamos el estudio del uplift 10-dimensional de los vacios obtenidos previa-
mente (recordemos que la ITA masiva compactificada en un orientifold de un Calabi-Yau
no resuelve todas las ecuaciones en las dimensiones internas). Empezamos repasando las
herramientas principales necesarias para un andlisis 10-dimensional. Recordamos cémo las
ecuaciones de supersimetria pueden reescribirse de una forma muy elegante utilizando el
lenguaje de las poliformas y cémo el hecho de exigir que cierta cantidad de supersimetria
se preserve al compactificar constrifie severamente la variedad interna: esta solo solo puede
tener o bien una estructura SU(3) o bien una esctructura SU(3) x SU(3). Seguidamente,
recordamos también el problema del smearing -lo que traduciremos como el problema de
la deslocalizacién- el hecho de que el uplift 10-dimensional no puede ser en una variedad
con escturctura SU(3). Para los vacios que estamos estudiando, con flujos y O6-planos, las
identiadades de Bianchi no tienen solucién en variedades de tipo SU(3), a menos que con-
sideremos que las fuentes estan deslocalizads, lo que no representa la verdadera situacion
fisica. Vimos que esto ocurre tanto en el caso en el que solo incluimos flujos RR y NSNS,
as6é como cuando anadimos flujos geométricos. Con esto en mente, obtivuimos el uplift
deslocalizado para ambos casos, de acuerdo con los resultados previamente derivados en
la literatura.

Desde el capitulo 6 hasta el final de la tesis, nos centramos en el caso en el que solo
incluimos flujos de tipo RR y NSNS. En este mismo capitulo, el capitulo 6, estudiamos
el uplift de los vacios supersimétricos calculados en el capitulo 3 yendo mas alla de la
aproximacién deslocalizada, considerando variedades con una estructura SU(3) x SU(3).
Para ello, expandimos todas las ecuaciones en términos de gs. A orden zero se recupera la
aproximacion deslocalizada. A primer orden la naturaleza localizada de las fuentes se hace
manifiesta -aunque no los términos de interseccién entre diferentes O6-planos, que vienen
a siguiente orden-. Resolvimos tanto las ecuaciones de movimiento como las identiades de
Bianchi a primer orden. Lo hicimos tanto en general como explicitamente para un ejemplo
toroidal.

En el ultimo capitulo de la tesis, el capitulo 7, usamos todo el formalismo desarrollado
en el capitulo 6 para estudiar la estabilidad no-perturbativa de una de las familias de vacios
no-supersimétricas obtenidas en el capitulo 3. En concreto, la rama no-supersimétrica que

, . . Jo . . . - imétri
estd relacionada con la rama supersimétrica mediante el cambio de signo G P —

—GiupCrSimétrica. Segiin una version refinada de la conjetura de la gravedad débil (la WGC
por sus siglas en inglés, Weak Gravity Conjecture) [75], el espectro de la teoria deberia
contener branas cuya carga satisfaciera ) > T, lo que provocaria el decaimiento del

vacio. En la aproximaciéon deslocalizada y tanto para los vacios supersimétricos como los
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no-supersimétricos, solo fuimos capaces de encontrar branas BPS, esto es, branas cuya
carga y tension satisfacen () = T y branas con () < T. Por tanto, el decaimiento de los
vacios no-supersimétricos en esta aproximacién solo puede ser, como mucho, marginal.
Tuvimos que ir mas alla del uplift deslocalizado y generalizar los resultados del capitulo
6, calculando también para el caso no-supersimétrico la solucién de las ecuaciones de
movimiento a primer orden en la expansiéon en gs. En esta descpricién mas precisa, el
espectro supersimétrico continua contenieno solo branas de tipo BPS y branas con @) <
T, como era de esperar. Sin embargo, para la soluciéon no-supersimétrica, D8 branas
envolviendo la variedad interna y con D6 branas acabando en ella pueden tener Q) > T,
provocando una inestabilidad del vacio AdS,4, como predice la forma refinada de la WGC.

Habiendo explorado la estructura de vacios de la tipo ITA compactificada en orienti-
folds, hemos abierto la puerta a muchas preguntas muy interesantes. En primer lugar esta
el problema de construir vacios dS en teoria de cuerdas. Hemos visto que en compactifica-
ciones en orientifolds de la IIA no pueden obtenerse si solo incluimos flujos RR y NSNS y
nos quedamos en el régimen de volumen grande y acopldo débil (donde la descripciéon mas
simple, en términos de una teoria de supergravedad sin correcciones, es suficiente). Esto
no significa que no puedan obtenerse en general. Podrian aparecer en otros régimenes de
la teorfa de cuerdas (en los que hoy en dia tenemos menos control) o puede que incluy-
endo flujos (no)-geométricos. En este sentido, uno podria tratar de generalizar el ansatz
que asumimos para los flujos geométricos en el capitulo 4, buscando otros extremos del
potential en propuestas mas complejas. Asi mismo, los flujos no-geométricos todavia no
se entienden completamente, por lo que se necesita més investigacion en esta direccion.

Otro tema muy estimulante, a la vez que urgente, es la construccién de vacios con
separacion de escalas en teoria de cuerdas. A dia de hoy, los inicos modelos con esta
propiedad que se conocen son las compactificaciones en orientifolds de la IIA (masiva).
En los ultimos afios se ha iniciado el estudio de las que serian las teorias CFT duales a
estos escenarios [5,82-85], con la idea de arrojar luz usando un enfoque distino. Como se
ha explicado a lo largo de las paginas de esta tesis, el problema de estas construcciones
es que solo se conoce una solucién completa a las ecuaciones 10-dimensionales cuando
los O6-planos se deslocalizan en las dimensiones internas. FEn el capitulo 6 dimos un
paso no trivial en esta direccién, demostrando que una primera solucién mas alld de la
aproximacion deslocalizada existe. Pero esto no cierra el asunto, ya que podrian aparecer
obstaculos en los siguientes 6rdenes de la expansion que realizamos. La existencia de una
solucién 10d que esté totalmente bajo control y en la que haya separaciéon de escalas entre
la dimensién interna y la externa es otro puzzle que esperamos que se resuelva en el futuro.

Finalmente, relacioando con el problema anterior, esta la cuestion de construir vacios
no-supersimétricos (meta)estables en teoria de cuerdas®. Esto es crucial si aspiramos a
que la teoria de cuerdas sea capaz de describir nuestro universo. En este respecto, todavia
queda comprobar la estabilidad no-perturbativa de algunas de las familias de vacios no-
supersimétricas derivadas en los capitulos 3 y 4. De hecho, para la llamada rama A2-S1
en el capitulo 3, estamos actualmente trabajando en ello [207], siguiendo el espiritu de la
non-SUSY instability conjecture [75].

Con todo ello concluimos, como es el caso habitual en la ciencia, con la idea de que
aunque esta tesis cierra algunas preguntas, abre muchas nuevas. Esta es precisamente
la belleza de este trabajo. Con suerte, esperamos poder seguir contribuyendo a resolver

2La metaestabilidad puede ser satisfactoria siempre que la vida media del vacio sea lo suficientemente
grande para acomodar la historia de nuestro universo.
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algunas de ellas en un futuro no muy lejano.
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Basic relations and conventions

On the one hand, we derive in this appendix some relations regarding the metrics
accompanying the kinetic terms of the Kéhler and complex moduli. On the other hand,
we define the operators used for the (non)-geometric fluxes in the main text and list the
Bianchi identities in the presence of these fluxes.

A.1 Relations for the Kahler metrics

As reviewed in section 2.1.3, type IIA compactifications on Calabi-Yau orientifolds
come with moduli spaces parameterised by Kéhler moduli and complex structure moduli.
These moduli spaces are endowed with a Kéhler geometry with the Kéhler metric being
proportional to the second derivative of the Kéhler potential:

1
K=Kk + KQ = —10g(ng22) = —log(g) — Kap = ZaAﬁBK, (Al)

where, following our notation, A = {t*,u*}, Gr = %K is a homogeneous function of
degree three on the ¢* and Qé is a homogeneous function of degree four on the u®. These
properties, along with the fact that K,, = 0, allow to compute some useful relations
regarding the Kéahler potential and the Kéhler metric. Let us start by noting that:

101G = 3G, utOunG = 4G . (A.2)
It will be convenient to write the explicit form of the metric in each sector:

3 3Kk 1 8,68,G 9,0,G
Koo =3¢ g K Kw=7 —c G

(A.3)

with Kap = Kapet®, Ko = Kapet?tc, and G = gé. Then, it is straightforward to check that:

= w0, K = —4, = 0,08K" 0, K0, K = 80,08K,
» K0, K = —4u?,

» K"9,K0,K = 16,
n 0, KM0,K = —86%,
n KM0,0,K0,K = 40, K, v U000 K = —0,K;

» U0 K = —2K,,,

= U KM = 2K,

and:
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d 2 2t°KC
Ko = K —gég—kT" ,

K™K, = K2,

Ky = te,

taaaKbc = _szca
Ky = 3Kte,

taaaKbc — 2Kbc’

d
IdeKab = *i 65g — % s 8a’CCb’CC — _53’

" 1CK, = 3ha

1 B, eIC, = SIC8E;

where implicitly we have defined 0y = Oye, 0y = Opa, KM Ky = 0y, K WL, = 6% and
KKy = 69.

A.2 (Non)-geometric fluxes

In type ITA orientifold compactifications, geometric and non-geometric fluxes are
defined in terms of their action on the basis of p-forms of table 2.1, that correspond to the
harmonic representatives of p-form cohomology classes of a would-be Calabi—Yau manifold
Xe. In this framework, and following the conventions in [54], the action of the different
NS fluxes on each p-form is determined as

H/\lz—hﬂﬂu, HANaoy=—h,Ps,
qua:_fa,uﬁua qua:faua,ua
fdau:—fa“(ba, fapt == fl'ao%,

(A.4)
Qra*=Q", p", Qro* ="y,
Qbau:_Qauwaa QD/B“:QQ#WOH
Reds =R, ", Reo,=R,1,

and we also have that HABH = ReB# = 0. The NS flux quanta are h,, fq ., fo*, Q%u, Q**, R, €
. This specifies the action of the twisted differential operator (2.26) on each p-form, and

in particular the superpotential (2.28) and the RR potential transformation (2.32) leading

to the D-term potential.

Constraints from Bianchi identities

On compactifications with geometric and non-geometric fluxes, one important set of
consistency constraints are the flux Bianchi identities. In our setup, these can be obtained
by imposing that the twisted differential D in (2.26) satisfies the idempotency constraint

D? = 0 when applied on the p-form basis of table 2.1 [56]. Applying the definitions (A.4),

one obtains'

h'ufalu:O’ hNQau:O7 faﬂfa”:07 fa,u AO&,LL:O’
RMQ@#:O’ Rﬂfaﬂzo’ QaNQa,u,:O’ fa#Qau:O, (A5)
foc[u Qau] =0, h[u Ru] - fa[u Qau] =0.

!Compared to [56], in our setup the flux components h*, R*, f,*, Q, faM and Qau are projected out.
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Analysis of the Hessian in the presence of RR and
NSNS fluxes

In this appendix we analyse the properties of the matrix of second derivatives of the
potential, or Hessian. As discussed in section 3.3.1, due to our Ansatz (4.53) the Hessian
can be written as

Hop = 0003V |vac =2 a7t Z1 957+ 15 - (B.1)

For the solutions in table 4.1 within the branches A1-S1 and A2-S1 (or equivalently for
the solutions of the form (3.49) with €, = 0) one can write and explicit expression for H

in terms of the parameters A, B,C € . Ordering the derivatives as Ogu, Ope, Oye, Opa
one finds that:

aofﬁ"t Z1 86% =

4A%K?p*0, KO, K 4ACK 20, KK, 0 0
AACKPP0, KKy, —C K ap + C2K. Ky 0 B (C3KKqp — C1Kakp)
e 212 3C3
0 O C5IC Kaﬂ TlcaaK]Cb
0 B (C3KKqp — CaKaKp) %K@amca —CEKKap + C2Ko K
(B.2)
with
=9
012:2% 1+B? C2 =/ 142B%+4C? |
2
032552(1+20), Cy = p* (1 +40),
C2 = 16A%p7, Cc2 = §ﬁ2 B% +4C? |
C2 = j* B? +80? + 144A% ; (B.3)
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and that
0 0 0 0
0 o1l 0 —Bo1Kap
St oo K
T Z =
Qe Zutly =™ | 0 Aok 0, KO5K — 4K o 0 ’
0 —BoiKy 0 —(BUg—l—QCO’l) Kab
(B.4)
with o1 = %/ﬁ, o9 = % —2A 2Kp? and 03 = %Kﬁ?
Already from this expression one can see that modes of the form
(2%, 0,0, 0) such that EFOuK|vac =0, (B.5)

are zero modes of the Hessian. Since in the branch S1 0, Klvac o hy, such zero modes
correspond to axionic modes of the the complex structure moduli that do not appear in
the superpotential (2.24). In fact, one can easily see that such directions do not appear in
(4.2), and therefore are flat directions of the potential.

In the following we will analyse further specific properties of H for the branches
A1-S1 and A2-S1. For the former we will compute the mass spectrum for canonically
normalised fields, finding that all tachyons satisfy the BF bound. For the latter we will
directly show that H is positive semidefinite, and therefore it contains no tachyons. Instead
of tachyons, we will see that it contains additional zero modes compared to the other
branches, in such a way that massless modes arrange into complex scalars.

B.1 Branch A2-S1

Let us first consider the Hessian in the branch A2-S1 and, as stated above, show that
it is positive semidefinite. By Sylverster’s law of inertia, for showing that one may consider
H in any basis, without the need to express it in the basis of canonically normalised fields.
Consider the expression (B.1), which in the case at hand reads:

LK20,K0,K  —iK8,KK, 0 0
— KKKy —LKKa + 2Kk 0 BRK
H|pz-g1 = e p?
0 0 LK20,K0sK K0 KK,
0 B q TKOKKy  —3KKap + £KaKy
(B.6)
with B = +1/2.
Now, any (real) positive semidefinite matrix is a n X n symmetric matrix M such
that, for all non-zero x in " satisfies #7 M2 > 0. If one decomposes it as M = ; M;,
and ech of the components satisfy
e Mz >0 (B.7)
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B.1. Branch A2-S1

then it is straigtforard to see that

"Mz >0 — 2TMz= wTZMiac >0, (B.8)
i

which proves that M is positive semidefinite.

In the following we will use this property to show that (B.6) is positive semidefinite.
We first decompose (B.6) as

H|xz-s1 =" (X +Y +2Z), (B.9)
where
1 1
K20, K0, K —§K9,KKq 0 0 00 0 0
—1K9, KK, KKy 00 00 0 0
X = Y = :
0 0 00 0 0 £K20,.K93K iK0.KK,
0 0 00 0 0 £KIKK, akCs
and
0 0 0 0
0 —IKKap+ 3K Ly 0 BRK
Z =
0 0 0 0
0 BRK 0 —3KKab + 3KaKs

We need to prove that each of these three matrices is positive semidefinite. Starting with
X, one can see that the non-trivial block can be decomposed as the following product

£K20,K0,K —L1K8,KKs 2K9,K 0\ (4 0\ [(LKko,K —¥2K,
— K9, KK, $Kaks ~¥k, o) \0 K® 0 0
(B.10)

That is, it can be written as a Gramian matrix, which implies its positive-semidefiniteness.
The same statement applies to the non-trivial block of the matrix Y, which reads

LK29,K8,K L1K8,KKp ¥2K09,K 0\ (4 0\ (KoK V2K,
1Ko, KK, 5Kk V2, o) \0 K% 0 0
(B.11)
Things are slightly more involved for the non-trivial block of the matrix Z. This
reads
—g/CICab + 3Ky :t%lC/Cab
5 (B.12)
j:%lC/Cab —%/C/Cab + 3K K
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where we have considered for both choices of sign in B = +1/2. In this case one can
rewrite (B.12) as:

9 1 =F1 —%K’Cab + %K;alcb i%ICaICb
3 (KoKp — KK ap) + . (B.13)
F1 1 :t%/Cale —%/CICab + %ICCL’Cb

The first matrix is a tensor product of two positive semidefinite matrices. The second one
satisfies:

—2KKap + TKaKs 2K, .
b b q
q p a

£2K.Ky —2KKa + 5KaKs
5 a b 7 a b 4 a b 2 a b 7 a b
= _§’C’Cabq q + glCaleq q + glCaleq P’ — gK’Cabp P+ glCalep P
2 5 2
= Kl (q" £%) " " + 3 (KaKy = KKa) 40" + 5 (KaKp = KKap) p"p" + Kalop"p" > 0
(B.14)

where we have used that all the metrics involved are positive semidefinite. Therefore Z is
also positive semidefinite.

Notice that the Hessian matrix (B.6) has further zero modes beyond the ones cor-
responding to the flat directions (B.5). These are of the form

(0, 0, Z¥, 0) such that EFOLK |vac =0, (B.15)

and are nothing but the complex structure saxions that pair up with the axionic flat
directions into complex scalar field. This time, as these fields appear in the potential via
(3.3), they will not be flat directions of the potential. One can check that they develop a
quartic potential, as discussed in section B.3 below.

B.2 Branch A1-S1

In this branch the Hessian (B.1) takes a block-diagonal form, namely

A 0
_ K2
Hlai-si=ep" o (B.16)
where
8 8C
K20, K0, K 8¢Ko, KK,
A= : (B.17)
C C
KO KK,  —5+5% KKa+ S2K.Ky
K? £0,K03K — 55-Kap B K0 KK,
S= : (B.18)
B K0 KKy — B KKap + $ KKy

with C' = £3/10. Therefore, one can analyse the spectrum of axions or saxions separately.
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B.2. Branch A1-S1

Axionic sector

Let us first analyse the axionic sector. One can rewrite A as:

Y29,k 0\ (4 0\ (VKoK CV2K,
A= n

CV2K, 0) \0 K 0 0

0 0

+ : (B.19)
0 3-8 (KKp— KKap) + ZEC KoKy

so for C' = 130 (i.e., the supersymmetric branch) the matrix A (B.19) is a sum of positive
semidefinite matrices, whereas for C = —% the second one is not positive semidefinite.

In order to compute the physical mass spectrum we need to express the Hessian in
a basis of canonically normalised fields. For this, notice that the Kéhler metrics for the
Kahler and complex structure fields can be decomposed as:

3 3K, 3Ky 3 KuKs NP P
Kw=gp ¢ Ke =775z tog ¢ Ke =Ki +Ky,  (B20)
19,Go,G 1 30,G0,G 0,0,G NP P
e R e R B2y

with G = G2, as defined below (2.14). Here K., and KNP stand for the primitive and
non-primitive factors of the Kéhler moduli metric, which act on orthogonal subspaces of
dimension A" — 1 and 1. A similar decomposition holds for the metric of the dilaton-
complex structure sector, now acting on spaces of dimension N and 1, with /N the number

of complex structure moduli. In terms of this decomposition, the matrix A in the non-
SUSY branch C' = — 3 reads

10
128 42 7-NP 4
ﬁIC K;w —%ICE?VKICQ
A = . (B.22)
4 64 P 176 NP
—%IC&,KICG EICQKab + mICQKab

Now, the effective Lagrangian describing the axion spectrum will be of the form

a KI,V vac 0 a v ]‘ v a ~ v
L D (9" ob™) ’0‘ Koplone aﬁb +5 (€0 [er2A]m f}b : (B.23)

with A given by (B.22) in the non-supersymmetric case. One can now define a basis of
canonically normalised fields by performing the change of basis

€ b — (€ b &b, (B.24)

where b is the vector along the subspace corresponding to K(%P\vac, with unit norm, and
similarly for € with K\F|vac. Finally, €% with g =1,...,N and b® with a = 1,... "' —1

174
correspond to vectors of unit norm with respect to Kﬁy\vac and K}:b\vac, respectively. One
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can see that in this new basis A has the form

8 2
4
. 16 i 5ﬁ§
A=—"1]53 15 K2 (B.25)
5 0 ’
4
9

and so the Hessian eigenvalues in the canonically normalised basis are

8 1
2 4.0 4}. B.26
45{ 57 7 ( )

Finally, one must compare such masses with the BF bound

eKK?p

3 1252
2 K
= —Viac = . B.2
|mpr]| 4V T (B.27)
In term of it one finds that the spectrum reads
8 160 160
2 2
=¢—, —, 0, —>m B.28
m { 9 ) 9 ) ) 9 } ‘ BF| ) ( )

and so the tachyon in this sector does not induce an instability.

For completeness, let us finish this section by computing also the spectrum for the
SUSY case. Proceeding exactly as before but taking C' = 1% it is straightforward to obtain
the following eigenvalues for the canonically normalised Hessian:

8 (44
K12 <2
Kep*— < — 1, 0 1 B.29
e p 45 { 5 ) ) ) } M ( )
or in terms of the BF bound:

352 40 40
mQZ{, 0. 9}]mBF|2. (B.30)

Saxionic sector

Let us now analyse the spectrum in the saxionic sector. Notice that this time the
matrix (B.18) is independent of the sign of C, and so the tachyonic directions that one
may find will be common to the supersymmetric and non-supersymmetric branches of the
kind A1-S1. Since the supersymmetric branch should not contain any classical instability,
neither should there be one for its non-supersymmetric counterpart. Let us nevertheless
confirm this expectation explicitly.

As before we first rewrite (B.18) as
176 12 JcNP _ 16 -2 P 8
mlc K/JV - ﬁ’(: KHV ﬁ’CC{)QK,Cb
S = . (B.31)
8 48 76
%KaaKle T5’C2Ktljb + %’CQK%P
Then we perform a change of basis for the saxions

(" %) — (o t uf tY), (B.32)
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with analogous definitions as in (B.24). In this basis the matrix S reads

11 _ 4
5, 7
A 16 | —=
§— 2 ;1 K2, (B.33)

and so the Hessian eigenvalues in the canonically normalised basis are

e5K2p 3, % —3. 3. (B.34)

27
75

where now the tachyonic eigenvalue has a degeneracy of N, as it corresponds to the
‘primitive’ complex structure saxions u”. Comparing with the BF bound one finds

2
mi= 8, B0 58 el (B.35)

As expected, the tachyonic directions in this sector do not induce a classical instability.

B.3 Complex structure saxions

In the superpotential (2.24) only one linear combination of dilaton and complex
structure moduli appear. As a direct consequence we have N axionic flat directions of the
potential, where NN is the number of complex structure moduli. In the following we would
like to analyse the potential that it is induced for their saxionic partners. This question is
particularly relevant for the branch A2-S1 of vacua, where such saxionic modes are found
to be massless.

Let us consider the linear combinations of complex structure and dilaton moduli
U' = £ 4 iu’ not appearing in the superpotential (2.24). Then, one can check that they
satisfy the property
[0yi K] e = 0. (B.36)
Using this it is straightforward to see that at the vacuum

au”i‘/v|vac = ef 8uzK‘7 + eKauiV =0, (BS?)

vac

00Vl = € 040KV +0,0,V = AlF0,0,K] (B.38)

vac vac

where we have defined V = ¢ 5V and

(B.39)

Replacing the values for the constants A, B,C for the different branches in the second
equation, one recovers the corresponding sector of the Hessian. In particular, one can
check that (B.39) vanishes for the branch A2-S1, as expected.
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One may then proceed and compute further derivatives of the potential at the va-
cuum:

0410101V |vac = €5 0,100, KV + 8,10,:0,;V :A[eKauiaulaqu} ,

vac vac

(B.40)
Kuium + KujumKuiul + KulumKuiu]’)} 4+ ...

vac

(B.41)

Byyi 0,3 Oyt O V |vae = 12842 [eK (K

udul

where the dots stand for terms proportional to A. As the term in brackets is a product
of kinetic terms, in the case A = 0 we obtain a non-vanishing, positive quartic coupling.
This completes the proof that the branch A2-S1 features a positive semidefinite potential
in the vicinity of the vacuum.

B.4 Adding mobile D6-branes

In the presence of mobile D6-branes and for each extremum found in section 3.5,
one can show that the formalism developed in section 3.3.1 is still valid. The matrix of
second derivatives takes the form:

N . -
8ozaﬁ’vl|vac - aocaﬁ ‘/1/ + V2/ |Vac =2 aofyl le 857/ + 77/5 )

with the correspondent redefinition of {2}, 9.7, 13} incorporating the open string moduli
and {V{, VJ} introduced in (3.87). The matrix Z/ is defined, analogously to (3.12), such
that V{ = ' Z/ 7" is quadratic on quantities that vanish in the vacuum. Looking at (3.87)
it is straightforward to see that:

7, = . (B.42)
0 0 0 KW 0 0
0 0 0 0 GY 0
0 0 0 0 0 GY



B.4. Adding mobile D6-branes

Regarding the new 9,7"’s its explicit expression can be computed directly from (3.86):
Oeny' = hy, 0, 0, 0, 0, 0 |,

O = pe—0pei, Kacad® — fipeis %5, 0, —peiy 0

057" = pis —paiy 0, 0, 0, 0,

O = 0, 0, 0, —pAKOIO,K — pKO.e, 0, 0 ,

OeAt = 0, —2pCKye, —pBse

o, —3pAKD, K — 3pK.e,0,0 +
+ 0, O flpi—3HEp, . —Or K¢+ K9P fi pyi, —30igtpu, pei
OyAt = 0, By flpj—2HEP, . —K®py — K4 fion;, O . (B.43)

Finally, the 7’s are obatined by direct computation rewriting the second derivatives of
Vy as:

-t A = St oA =
80485‘/2/‘\1% = 277th/186’7/ = 20,7 Z’lnb’ (B.44)
The result is:
ﬁf“t = 07 07 Oa 07 07 0 )

ﬁbdt =p 0, 0, %Kbclccd, 0, 0, _%ngGk] )

' =p 0. 0, 0, 0, 0, —AFKG

ue' =p 0, COKKq, BOKt*, 2%2—4A K Ko—20,K0K , 0, 0 +

+5 0, 0, 0, e XKpKg,0, e“K¥& 0, 0 ,

H; — fi
Tt =p 0, %Kbd, %Kb%cd, Ko,aél, —%K2fkaj, %/@fﬁij +f
2 t_>0.0. 0. 0 @]C?Gi?i _@]CQ@ 10‘ t B.45
Mg =p U, U 0, 0 RIS, = RIS+ G e (B.45)
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Fluxes and axion polynomials

C.1 Axionic flux orbits and the P-matrices

From the superpotential it is easy to read the gauge-invariant flux-axion polynomials
(4.4) and (4.5). Then, as in the Calabi-Yau case [30], one can check that all the remaining
entries of p4 can be generated by taking derivatives of the master polynomial pg. Indeed,
in our more general case one finds that

Ipo _ Opo ~ 9o _ - Opo _
obr Pa bbb Kabe p° bbb ObE Kabe P 5 afK = PK (Cl)
090 = apO = Kabe ﬁCK s 8p0 = Kabe PK

ek — Pl Gpagpback DD DR

while all the other derivatives vanish. Just like in [30], one can understand these relations
from the fact that the matrix R in relating quantised and gauge invariant fluxes can be

written as X«
R = " Fate™Prc (C.2)

with P, and Pk nilpotent matrices. Indeed, given (4.6) one can check that

06 0 0 0 0 0 0 ]
0 0 Kape 0 0 0 0 0
00 0 46 0 0 0 0
00 0 00 0 0 0
Fa=lo 0 0 o 0 &ték 0 o |’ (©3)
00 0 00 0 Kupdk 0
00 0 00 0 0 b0k
00 0 00 0 0 0 |
and
0000 & 0 0 0]
0000 0 66k 0 0
0000 0 0 4,0 0
pe=|0000 0 0 0 o (C.4)
0000 0 0 0 0
0000 0 0 0 0
0000 0 0 0 0
0000 0 0 0 0
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C.2 Curvature and sGoldstino masses

In this appendix we will show that the directions (4.19) minimise respectively R,_;79* g%gcq?

and R,5,69"9°g"g°. To do so we will follow closely [136,137].
Curvature

Before talking about the extrema conditions, there are some relations that must be
introduced. Consider a Kéhler potential depending on some set of complex chiral fields
#* obeying a no-scale type condition:

where K4 = V4K, K4 = GABKB and G5 = 0405K. Taking the derivative with
respect to Vp in (C.5) one obtains:

K+ KAVpK, =0, (C.6)
and deriving now with respect to V¢ we find:
IWeKp+KAVeVpKy=0. (C.7)
Equation (C.7) can be contracted with K€K D and KP to obtain respectively
RopynKCKMENKP = 2p, RepunKMKNKP = 2K . (C.8)

We will need these two last relations to study the extrema of Rz, DgAgB gch

sGoldstino masses

As discussed in section 4.2.1, the relevant parameter to compute the sGoldstino
masses is

G = g ~ Rapenf PO 17, (C.9)

which we are interested in maximise. In this sense, it was shown in [137] that the extrema
of (C.9) are given by the fpa satisfying the implicit relation:

fon = Tapop /SIS (C.10)
Rugenfd 1816 18
Using the results above it is now straightforward to see that fo4 = eio‘%, a €  are
solutions of (C.10) and therefore extrema of (C.9).

Type IIA on a CYj;

The moduli space metric of IIA on a CYj3 orientifold is described from the Kéhler
potential:

K =Kk + Kg, (C.11)
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where the subindex K refers to the Kéhler sector whereas we use ) for the complex sector.
All the relations discussed above can be applied independently to Kx with p = 3 and to
K¢ with p = 4. In particular, this shows that (4.19) extremise respectively R,_;79°9°9¢g?
and Ru,;p&g”gﬁg” g%. Regarding the character of the points one can show that they are

minima by doing small perturbations around these directions.

If one just considered the Kéhler sector or the complex sector (meaning taking
Kg = 0 in the first case and K7 = 0 in the second case) this would be the end of the
story. Nevertheless, since in general we want to have both contributions, there appear
some subtleties one has to take into account. The point is that now R,z~ DgAgB g% gP
does not have just “one" contribution but two independent contributions:

Rupcp99%9%9" = Rozgag® " 99" + Ryuipsg"9°9" 9" (C.12)

and the novelty is that it new extremum appears :

Kq, €K, (C.13)

with @ € | which is precisely the one discussed below (4.21). Doing again a small
perturbation around the points, it can be shown that now both f64 = emK—g,O and

fi= o, ei@Be  are saddle points of (C.12) whereas (C.13) is a minimum.

Va

C.3 Analysis of the Hessian

In this appendix we will compute the Hessian of the scalar potential and study its
properties. We will first focus on the F-term potential, whose complexity will require a
detailed analysis and the use of a simplified version of our Ansatz. Once the associated
Hessian matrix has been found, we will evaluate the result in both the SUSY and the non-
SUSY branches independently, in order to obtain information regarding their stability.
Finally, we will briefly discuss the general behaviour of the D-term potential Hessian
matrix.
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F-term Potential

Starting from (4.35) and evaluating the second derivatives along the vacuum equa-
tions we obtain:

L OV .
€ 85085)‘ ’vac :8p)\pcr + 29 Pac Pb) 5 (C,14a)
ke OV, ) )
K&@@iﬂ |Vac =8pa/)a + 8,00/)@0 + 29b ’Cabdpcapd, (C'14b)
_x 0?Vp
" pergue e =0 (C.14¢)
_x 0%V, .
K@{U@iﬂ |vac :28agb PboPc (C.14d)
_x 0%V, ~c c ~e ~ c _ 8Kk? ~
K@T@Z)’Vac :8Pan + SPOICabcp + 29 dlCace]defp pl+ 29 dlcabcpdp + Tgabp2
+ 2" pappuu (C.14e)
_x O*Vp .
€ K&ugaba lvac =200c" pappv (C.14f)
0%V, 16K 8K?
-K F cd ~e ~c ~
a1 A.p lvVac =20, Icace —K ac —0 ac ; C.14
oo b9 pap”+  —g=RbJac T —g=hGac PP (C.14g)
0%V
aTaFu/\lvac :VFaoa)\K - VF&,K&\K
+ e aaﬁACWPupu + tatb(akﬁacuypa,upby - 8paa/)b>\) =+ 2gabpacrpb)\} )
(C.14h)
0%V,
ﬁk&c =Vp0s0.K — VpO, KO, K + eK {_4Ka/3bpba + 4’Caﬁpa
~8Pa0 Pop ' t" — 8ppo Papttt’ + 205" payuppt” + 28agbcpbW“pw} ,
(C.14i)
0*Vp

D e =VEOVK — V0K O K + ¢ |0,009% pepa + 20CakCo?
16K 8IKC SIC 45C2 o
+ 8KuKpgea + T]Cabgcd + ?Kaﬁbgcd + ?Kbaagcd + Taaabgcd F; pd

Ko ) ~ )
+?Kabp2 - 8Kabpcpcuuy + SKabpptu + 2CHVpaupbu + 8a8b96dpcupduu'uuy

(C.14j)
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If we now introduce the ansatz (4.53) and make use of the decomposition of the metric in
its primitive and non primitive parts -see (4.45)- we are left with:

e_K(ii‘(;Ff)\|vac =(8F* + éFQ)/@@AK@aK +29% Pac Py » (C.15a)
K a(zi‘gz; —|vac =(8BE — §CF)IC28GK6UK + (84— %C)icpaa : (C.15b)
K(fgi‘gﬂ'm 0, (C.15¢)
e—K;;,g;m — —16BK pas . (C.15d)
_K(m|vac =2 pappow + (8B + gCQ + %D2 + %FQ)ICQ&zKGbK
+ (8AC — 8BD — gcﬂ — §D2)K;/cab, (C.15¢)
K ;bzgiglm = —16EKpao (C.15f)
_Kj;‘(;idvac =(—16BC + §0D)K/Ca,,, (C.15g)
ok OV =82+ Do ok - S et - L - dpp o Loy
+ 295 Pac P (C.15h)
e—Km!m (8% + LF)K20uK0,K — 5 FKpao (C.151)
—K;;?;JV&C _(8B? + 302 + 302 + §F2)/c2aaKabK +(—96B% — 202 + gzﬂ)/c;cab
26 (C.150)

where we have used the following relations

abgactc = _29ab ; ( )
O0sOxC" 0, KO0, K = 32¢cp,, (C.17)
(C.18)

(C.19)

a(zaIJ.QCClac[{&i-[{ = 329ab )
8aabgcdtctd = 69ab .

Unfortunately, it is not possible to provide a general description of the stability using the
results above. As discussed in section 4.4, for an arbitrary p,, one needs to know explicitly
the internal metric. Only if we restrict ourselves to the case in which p,, has rank one are
we able to derive a universal analysis. Therefore, from now on we will set

F
P = ~ 15K K10, K. (C.20)
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Appendiz C. Fluzes and azxion polynomials

Plugging this expression back into (C.15) the on-shell second derivatives of the potential
are finally reduced to:

0%V, 1
-K F _(RE2 L T 2\x2
e agvagk'm (8E* + S FY)K*0, KO K , (C.21a)
0%V, 2 2
—-K F _ _Z _Z 2
e 8508ba|vac_(8EB 3AF 9CF))C 0, KO, K , (C.21Db)
e 0%V,
(& Kaé_o_iaz/\’vac :0, (Cle)
2
K ;ggga%c ngFICQE)aK&,K, (C.21d)
0%V, 4 2 2
-K F _ 2 T2 A2 A2\ 2
e 6ba6bb|m (8B~ + 90 + 9D + 9F V20, KO K
4 4
+ (8AC — 8BD — 502 — §D2)ICICab, (C.21e)
0%V, 4
-k Y VF _ 2
e 5 (%aym 3EF/C 0, K0, K , (C.21f)
2
—K%MC =(—16BC + gCD)ICICab, (C.21g)
0%V, 1 G 1 4 1
—-K r 2 2 2 Hv 2 2 2
———|vac =(8E? + = F)K?0, KO\K — £~ (16E* — —F* — —DE + -CF)K?,
" Gurgun e (87 + 5 F7) A G 3 3PE+3CF)
(C.21h)
0%V, 5
-k Y VF —(_RE2 L 2 m2\x2 .
8u08tayvac (—8E% + 18F VK20, KO, K , (C.21i)
A% 2 8
-K Y VF _ 2 2, 42 2 O 2y4-2
e g e =(84% +16B% 4 5C% 4 32E7 — S FY)K*0, KO, K,
4
+(—96B? — 202 + gFQ)ICICQ,,. (C.215)

In order to make the computations manageable, we follow the same procedure as in B
and consider a basis of canonically normalised fields by performing the following change
of basis:

(€46 = £b,¢m 0", (1) = a,duf e (C22)
where b, é,a are unit vectors along the subspace corresponding to gé\gp |lvac
cﬁfyp lvac and b, 0 &h uf 1 correspond analogously to vectors of unit norm with

respect to gl];b|vac Cf;,|vac . We can then rearrange the Hessian H in a 8 x 8 matrix with

Notice that & = 1,...,h"" = 1; o =1,...,R>%
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basis (é, b, £, b0 4,1, uf, %) so that it reads

BERTS  f, 0 0 0 280 0
Hyo Hyy 0 3%/E5F Hys 0 0
0 0 0 0 0 0 0 0
- 0 0 0 H 0 0 0 H
Hp = 5K2F? 44 8 C.23
F 0 2820 0 Hys Hs 0 0 (C.23)
2o Hy 0 Hss Hes 0 0
0 0 0 0 0 0 Hpm 0
0 0 0 Hy 0 0 0 Hsg
where we have defined:
8Dp?2 —96BrDp + 32C5% + 96 ApCr + 864Bp? + 24
Hayy = F FDp + F9+ FCp + o+ ’ (0‘24)
8Dp? + 48Bp Dy + 8Cr? — 48ARC
Hyy =22 12008 F; F FUF (C.25)
192FEp? — 48DpEp + 12CF — 20
Hys = — 22 Lot R (C.26)
3456 B — 8Cp? + 576 Bp? + 864 A% — 80
66 = a a 9 a i , (C.27)
192Er% — 16DpEp + 4Cp — 4
Hyp =122577 10 5 r4aCr -4 (C.28)
16CE> Bp? —
Hes — 6Cr +5976 F 87 (0.29>
20 24
Hys =83 8BpEp — TF - TF (C.30)
320rDf — 192BrC
Hyg == (C.31)
16CrDp — 96 BpC
Hig = — ——— ot (C.32)
5
Hse =8V/3 E—8EF2 : (C.33)

Note that (C.23) defines a symmetric matrix whose components are determined once we
chose a vacuum. In other words, given an extremum of the potential, one just needs to
plug the correspondent {Ar, Bo, Cr, Dr} into (C.23) to analyse its perturbative stability.
The physical masses of the moduli will be given by 1/2 of the eigenvalues of the Hessian.

Once the explicit form of Hessian has been introduced, we are ready to discuss the
spectrum of the two branches obtained in the main text. This will be done in detail below.

SUSY light spectrum

We consider now the Hessian of the F-term potential associated to the supersy-
memtric branch of solutions. As explained in sections 4.3.4 and 4.3.5 this solution is
characterised by

Ap=—3/8, Bp = —3Ep/2, Cr=1/4, Dp = 15Ep . (C.34)
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Then, one just has to plug (C.34) into (C.23), diagonalize and divide by 1/2 to obtain the
corresponding mass spectrum. The result is:

1

1 1
m? = F2e5K2 0, —5 0+ 16E%), —— + 56 E% + 3

B 1+ 160E% + 2304E%, A5, A6, A7, As

(C.35)
where the \; are the four roots of

0 = — 160380 + 18662400E% + 62547240960 E+ + 2721784135680 E% + 29797731532800E%
+ (—19971 — 33191568 E% — 4174924032E % — 74992988160E%)18)

+ (4483 + 1392480 E2 + 55800576 E%) (18X)% + (—133 — 13392E2) (18))° + (18))* .
(C.36)

In order to discuss the stability, we must compare (C.35) to the BF bound, which for this
case takes the value:

3 9
m}2BF = ZV|Vac = _(Tﬁ + 9E127)€K’C2F2 . (037)

It is straightforward to see that the first non-zero eigenvalue can be rewritten as:

1 8
m3 = -5+ 16E7) = §m2BF. (C.38)

Regarding the other masses, although they can also be written as functions of the mpp
their expressions are not that illuminating. In this sense, one can check that the third
eigenvalue is always positive, whereas m? has a negative region -respecting the the BF
bound- for |[Fr| 0.1. Finally, the dependence of the four remaining eigenvalues with
Ep, conveyed as implicit solutions of (C.36), has to be studied numerically. One finds
that only one of them enters in a negative region -again above mQB - for |[Ep|  0.04.

We conclude that the SUSY vacuum may have up to three tachyons, though only
one is preserved for [Er| 0.1. None of them violates the BF bound, as it is expected
for this class of vacua. To finish this part of the appendix, let us also write the tachyonic
directions:

» m3. Direction: u”.”

= m3. Direction: linear combination of % and ¢2.

» mZ = F2efK2\5 (lowest solution of (C.36)). Direction: combination of all non
primitive directions, i.e. &, b, & and t.

Non-SUSY branch

We end this section of the appendix by analysing the Hessian of the F-term potential
associated with the non-SUSY solutions. As it was studied in detail in the main text, this
branch has to be defined implicitly in terms of the Ap and Cr solving equation (4.69)
(check table 4.1 and figure 4.1 for details). In consequence, trying to explore the stable
regions analytically is, in practice, impossible, and things must be computed numerically.
What we have done is to extract the physical Ap and Cr satisfying (4.69), plug them into

2For the complex axions, the direction £* is the one with zero eigenvalue.
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(C.23) -Bp, Dp and Ep are determined once Ap and Cp are chosen- and study the mass
spectrum. Despite the numerical approach, results can be obtained easily.

After performing a complete analysis, we conclude that a single mode is responsible
for the stability of the solution. In other words, seven out of the eight masses respect
the BF bound at every point of the Non-SUSY branch. Therefore, the behaviour of the
aforementioned mode is precisely the one which determines the unstable region (red points)
in figure 4.2. For the sake of completeness, let us write it explicitly:

-1
m? = — F2eK K2 [9(12/1% —1)((24p + Cp)(6Ap + CF) — 1)} [—9 + TTT6A% + 5184 A%C
+4ApCp(2 4 Cp)(C% —5CF +9) + 1296 A% (C2 — 2) + 144A3.CR(C% + Cp — 9)
~Cp(Cr = 2)(C} +6Cp — 1) + 6AFL(CE + 8C} — 46CF + 4Cp +45)| . (C.39)
As it happened in the SUSY case for the mode with mass %m% 7, the direction of the
mode with mass (C.39) is given by w”. It is worth to point out that we are not saying
that the other modes do not yield tachyons, but they are always above the BF bound. As

discussed below figure 4.2, these other tachyons are localised close to the regions where
m? defined in (C.39) violates the BF bound.

D-term potential

We perform a similar analysis with the D-terms. Starting from (4.36) and evaluating
the second derivatives along the vacuum equations, we obtain that the only non-vanishing
second partial derivatives of the potential Vp are

a(zi‘gl;u :%(%Cwa}\f{gaﬁﬁgﬁé + %Cuacw\g PRy (C.40)
312;“th¢1 :%CuoaxKaaéaﬁﬁZﬁé QIICCQ C;waAKgaﬁngﬁ? (C.41)
g;‘g;b S CON ) /ca 9hg™? — ZEQ 9,9

zﬁza of 27555 L0, Ko\Kg*® — %ﬁ’g“ﬁ (C.42)

If we now take into consideration the ansatz (4.53) together with the Bianchi identity
Jauft = 0, we have that, on-shell, 9, Kpk = 0. Hence the saxionic sector of the D-term
Hessian becomes

12 ~af3 Ao AN 0
0adpVp = RN Pl (C.43)

which is clearly positive-semidefinite for any choice of the geometric fluxes.
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Hodge star and 10d conventions

The Hodge star operator in d dimensions acting on a p-form «,, 3, is defined by

_ 1 T b1 i G
iy = s lgleinag 0y Ay (D.1)
Therefore
*qa A\ B = (- B)dvoly, (D.2)
where
1 Bgei
oa-f= aaii...z‘pﬁ 2. (D.3)

The pure spinors ¥ and W5 are chosen with the normalisation
(W[ = (20)%? dvoly (D.4)
where the Mukai pairing is given by

) =&na(x) |top (D.5)

o is the operator reversing the order of the indices of a form, and {&, x} are arbitrary
(poly)forms.

We choose J and €2 such that
dvolg = —%J/\J/\J: —iReQ/\ImQ. (D.6)
This in turn implies that
*6Q = —if), *6J:—%J/\J, *W =J AW (D.7)

where W is a primitive (1, 1)-form.
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SU(3) x SU(3)-structure compactifications

In this Appendix we will give more details about the pure spinor approach to
supersymmetry. We give the general solution for the SUSY equations in manifolds of
SU(3) x SU(3) structure.

E.1 SU(3) x SU(3) 0 #0

We now show the generic case, # # 0. The local solution in [172] belongs to this
class; however, we will see in the next section that this is unlikely to be promoted to a
global solution.

Again there are first some purely geometric equations:

d(e*4 =% cos v sinf) =0 , (E.1a)
BA
= do E.1b
Rev 2usinf ' ( )
1 —A
d Mjw =2pue” “Im(v A wy) (E.1c)

where again J, and wy, are given by (6.16).

Then we have the fluxes, which are completely determined:
H=dB, G=¢eP'F. (E.2)

So for example Go = Fo + BFp, but Gog = Fy. The F}, are given by

B = —cot(0)Jy + tan¢Imw , (E.3a)
Fy = —Jy - d(e™® cos pImv) + 5pue~ A% cosp cos (E.3b)
Fy = Fycot 0y — Jy - dRe(cos e v A wy) (E.3c)
+ pcospe A7? [(5 + 2tan?4)) sin 0Jy + 2sin fRev A Imv — 2 cos 0 tan? Q,Z)Imwzp} )
J2
F, = F02 S,;g 7 +d costpe ?(Jy ATmu — cot Re(v A wy)) (E.3d)
i
1 cos 6 p cos he~?
Fg = ———=—volg F; E.
6 cos? wVO 6 “04in3p 3 sin 6 (E.3e)

F is automatically closed; this implies the Bianchi identity for G4, which is dG4+HAGy =
0.
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E.2 SU(3) x SU(3) 0 =0

The case 8 = 0 has been discussed in subsection 6.2.2.2. Here we will show that for
this case, Gg = €'F |g =0, as claimed in the main text.

Explicitly, what we have to compute is:

0
Gg = Fs + F0b¢+ Fz/\b¢/\b¢+F4/\b¢, (E4)

where we are already using (5.19) and (6.19¢). Taking into account the expression for Fy
-eq (6.19¢)-, Fy -eq.(6.19¢)- and b = tan(¢)Imw, (E.4) reads:

Ge = pe 34 cos(1)Im wy ARev Almov A dlmw
1
~3 tan®(y)Imw A Tmw A lel dRe pe v nw, . (E.5)

Let us massage the second term:

1
— —tan?(¢)Imw A Imw A JJl dRe pe 34w Awy,

2
= —% tan?(¢)5% A J,Lzl dRe pe v Awy, (E.6)
writing j2 as
4% = cos (w)Jd, mj ARev Almv = cos2(¢)2J3, me ARev Almuw,
to obtain:
sin? )?
_Tji A JJl dRe pe*?’Av Nwy + cos?> 2 Rev Almuw A A lel dRe pe*?’Av A Wy,
(E.7)
We can use now -see [172]-:
[JJl ,JwA} =h,  hwp=(3—kwg, (E.8)
to rewrite (E.7) as
sin? )2
- A J;t Ty A+1 dRe pe v Awy +
+ cos? ? Rev Almuv A qul Jy AN +1 dRe pe 34 A Wy - (E.9)
Finally, taking into account that the supersymmetry equations imply:
Jy Nd pe™Re(v Awy) =0, dRev = dA A Rev, (E.10)
the second term of (E.5) can be written as:
—pe 34 cos? ? Imwy ARev Almu Adlmu, (E.11)
and therefore:
Ge=0. (E.12)
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E.3 Proof of the source balanced equation

Let us show how the source balanced equation (6.33) can be derived. First consider
the following Mukai pairing

dgl,elm &_ = <F dy e m &_ > +dXs , (E.13)

with X5 defined as in (6.34). We can evaluate the left-hand side using the Bianchi iden-
tity (2.18) in the presence of O6-planes and D6-branes, while the right-hand side can be
evaluated using the supersymmetry equation (6.10b). We obtain

—3u F,Im &, +¢* <F,*)\ F > +dXs= 03 . efTmd_ . (E.14)

This expression can be rewritten by noting that taking the Mukai pairing of (6.10b) with
®, yields

((Re @, Im &) = et <<1>+,*>\ E > . (E.15)

The existence of the SU(3) x SU(3)-structure implies a generalised Hodge decomposition
of the space of polyforms, according to their eigenvalues under two generalised complex
structures (J4+,J-). Under this decomposition @ is of type (3,0). This means that
the right-hand side of (E.15) only receives a contribution from the (—3,0) component of
*x\ [, and so we can replace x\ F with —i [’ (see, for example [155]). We can therefore
write (E.15) as

p(Re ®,Im &) = —ie*d &, F . (E.16)

Now using (E.16) we have that (E.14) reads

3pe™ ™ (Re @4, Im @) — > Fy AxFy + dX5 = 6)

source’
k

Almd_ ,  (E.17)

proving the desired relation.

It is important to note that integrating (E.17) over the manifold leads to a constraint
which does not differentiate between a local and smeared source, and therefore can be
solved already for the SU (3)-structure case. If X5 was a completely general function, then
the solution to the integral of (6.33) would guarantee a local solution for some choice of X.
However, X5 is not an independent function, it is fixed by the fluxes and the polyforms,
and therefore such a local solution is not guaranteed.
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F.1 10d equations of motion

In this appendix we will discuss how the SUSY (7.45) and the non-SUSY back-
grounds (7.48) presented in the main text solve the 10d equations of motion. The Bianchi
identities, which also must be satisfied, were discussed in great detail in chapter 6 for
the SUSY case so we will limit ourselves to emphasise the changes the non-SUSY case
introduces. The full set of equations of motion were presented in sections 5.1.2 and 5.1.3.

RR and NSNS field equations, SUSY case

In our approximation, the internal part of the first equation of (5.4) is
0=d 64A *aoy Go  + €4AH3 A*xcyGy + O (gs) =0+0 (gs) , (Fl)

where we have used that G is known up to O (gs) -see (7.45b). Since the natural scaling
of a p-form is gs © / 3, the total error we are making in solving this equation is O(gg/ 3).

The internal part of second equation, at our level of approximation, reads

4A

0=d e sy Gy = 4g,e™Gody A Joy + —d*oy (Joy Adlmv) + O(¢2),  (F.2)

S

it is more or less straightforward to check that

1
—d*cy (Joy A dlmv) = 4Gogs *cy (Joy Adeyp) = —4GogsJoy N dp, (F.3)

S

which cancels out the first term of (F.2) and satisfies the equation up to order O(g2)
compared to the natural scaling of a three-form.

The third equation of (5.4) is trivial, since G¢ = 0 and so it remains to check
equation (5.4d), which is the most cumbersome. We will go term by term and write just
the internal parts to make the computation clearer. At the level of approximation that
we are working the second term in the RHS is

12 3
e xg Gy A Go = gGod@ ANm Qey — 5(;0 *cy G2 + O(gs) (F.4)
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while the first term reads

2 1
d e 2 H =d e 2074 & gGogse_AReQ — 5dRe(v-Qcy)  +O(gs)

2 " e—2¢+4A
= £Gogsd e 234 mo — ——5—d*6 dRe (- Qay) + O(gs)
(F.5)
The first contribution to (F.5) can then be rewritten as
2 —2¢+34 2Go
5G0gsd e ImQ = = (4dIm Qcy — *cyGe) + O(gs) , (F.6)
whereas for the second contribution, a long calculation shows that
o—20+4A
_Td *¢ dRe (v - Qoy) = —4Gode AN Im Qcy + O(gs) - (F.7)
Finally, putting everything together (5.4d) reduces to
12 8 2 3
0= —+; -4 e*Godo A m Qcy + —s ol e Gy *xoy Ga + O(gs), (F.8)

which, as a 4-form equation, we are solving it with an error O(gz/ 3).

Non-supersymmetric case

In the non-SUSY solution, only the fields H and G4 change, so it is enough to check
the equations involving these quantities.

Let us start by the Bianchi identities, which we ignored in the previous section. To
start with we can look at

dGy =Gy NH. (Fg)

The changes in Gﬁon‘SUSY appear in the harmonic and the closed parts, so the LHS is the
same as the G$YSY. The changes in H""SUSY are of order (’)(gz/ 3), giving a contribution
beyond the order at which (F.9) is being solved: we can ignore them and recover the RHS
of the SUSY solution as well. The other Bls which could be sensitive to the non-SUSY
novelties are dG9 and dHs. For both of them, the changes appear beyond the order of
approximation in which they are being solved, so we can just neglect them.

Regarding the equations of motion, for G4 the internal part now reads
4A

24
d €4A *oy Gy = —fgse4AG0d<p AN Joy —

- 569 d*cy (ch/\dlmv)+0(g§) :O+O(93)7

(F.10)

where we have used (F.3). As in the SUSY case, it is solved at total order O(g3).

Finally, the equation for H is again the most tedious. Following the reasoning of
the previous section, we will directly write each of the contributions to the internal part.
On the one side

12 3
et *6 G4 N Go = —gGodgo AIm Qcy + EGO *xay Ga + O(gs) , (F.ll)
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on the other side
12 8
d e 20t H = 5 Godo ANTm Qoy — =Go xoy Ga + O(gs) , (F.12)

and (5.4d) reduces to

12 12 S
0= - +5 MGdpAImQoy+ —c+2+1 ¢Goxoy Ga+0(gs), (F13)

which is again solved at total order O(gz/ 3).

Einstein and dilaton equations

To show how our expressions satisfy these two last constraints, equations (5.5)-(5.7),
we will use the results derived in [58], focusing again on the changes introduced by the non-
SUSY case. At leading order the equations evaluated for the non-SUSY solution coincide
with the equations evaluated in the SUSY background, so they are satisfied in the first
case provided they are solved in the second case -as it happens-. When the changes come
into play, they do it at least at order |Fy|? ~ e=2¢|H3|? ~ C’)(g;l/?’). Nevertheless, to solve
the equations at this order, we need to consider terms in e and e~? which are beyond
our approximation. In other words, the modifications introduced in the non-SUSY case
are seen by the Einstein and dilaton equations at the next order in the expansion.

F.2 DBI computation

The Blonic D8-brane system of section 7.7 is defined by the profile (7.52) for the
transverse D8-brane position. In this appendix we check that this relation fulfils the basic
requirement of a BPS condition, in the sense that it linearises the DBI action of the
D8-brane, at least at the level of approximation at which we work in the main text.

The DBI action of a D8-brane wrapping Xg is given by

27
B =~ dide'da’ A6 0 det (gay + 0uZOWZ + Fup) (F.14)
s Xe
where the D8-brane transverse position Z is seen as a function on Xg. For BPS configura-
tions the integrand simplifies, in the sense that the square root linearises and corresponds
to integrating a six-form over Xg. To see how this happens for the Blon configuration, let
us use the matrix determinant lemma to rewrite things as

det (gap + 0uZ0WZ + Fop) = detg det I+g'F 140Z-(9g+F)'-0Z . (F.15)

Then using that F is antisymmetric one can deduce that

ta t3  tg det
det T+g 'F :1—22+82—:+dit§,

(F.16)
where t;, = Tr ¢! F*. Using in addition the Woodbury matrix identity we obtain

i 2k
0Z - (g + ]-“)_1 .0Z =07 - Z g_lf g_1 - 07 . (F.17)
k=0
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One may then combine all these expressions to compute (F.15). Recall however that
our unsmeared background description is only accurate below O(g2) corrections in the g
expansion. As pointed out in [2,58] a flux of the form (7.51) is suppressed as O(gg/ 2)
compared to a harmonic two-form and, because of (7.52), the same suppression holds
for 0Z. This means that we are only interested in terms up to quadratic order in the
worldvolume flux or 97 in the DBI action, or equivalently up to quartic order in (F.15).
That is, we are interested in computing the following terms

~ ~n 2 ~ ~ 2
1—%Tr}'2 14 (02)* +% Tr F? —%Tr]-"l— oz-F (F.18)

where F = g&l{]: ,and (02)% = g%bYﬁaZﬁbZ , etc. To proceed we split the worldvolume
flux as in section 7.7.2

Fi=g tFOY o F = g L pE0+02) (F.19)

assuming that F (1Y) ig primitive, and use the following identity

=y 1 =9 2 =9 =9 = £ 12
TF = TP TR TR 44T [FLRP (F.20)
to arrive to
1 =0 1 2 21 2 ) 9 9 4 = 212 = 2
l—ZTr]: —I—§(8Z) (02)*Tr F*+Tr Fy Tr F5 + (02)* —Tr [Fi,Fe)* — 0Z - F
(F.21)

Finally, one can see that (7.52) and primitivity imply that
. _ 2 ~ 2 ..
(02)* = —Tr F3, 0Z - F = 0z -F1 =-Tr [F,FR? , (F.22)

and so we are left with
1 7o 1 2 2 1 52 72 2
When plugged into (F.14) this translates into

2 3z
S8 = —g—g dtdz'dz’g; e 7
S

1 1
—gJev + 3oy AF +xevdZ NdZ + O(g))

(F.24)
where we used that in our approximation F; = F(Y is a primitive (1,1)-from, and as
a result —% Tr .7:12dv01X6 = xgyF1 AN F1 = Joy A Fi1 A Fi. Finally, we have expanded

3z

346 — g=1 1 O(g,) and eF—er 1-— ﬁif;%go + O(gg/g), and used that ¢ = 0.

X6

F.3 Blonic strings and SU(4) instantons

The Blonic solution found in section 7.7 is not unique of type ITA flux compactific-
ations. It can also be found when one wraps a D7-brane on the whole internal manifold of
type 1IB warped Calabi-Yau compactifications with background three-form fluxes. The
advantage of this type IIB setup compared to the type IIA one considered in the main
text is two-fold: 4) we know the exact 10d background and i) we can directly connect it
to the Abelian SU(4) instanton solutions that define Donaldson-Thomas theory [202].
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F.3. Blonic strings and SU(4) instantons

IIB Blonic strings

Let us consider a type IIB warped Calabi—Yau compactification, namely a metric
background of the form
ds® = eQAds%Lg + e_QAds?XG , (F.25)
where Xg is endowed with a Calabi—Yau metric. On top of it we can add background fluxes
Hj3 and F3 which are quantised harmonic three-forms of Xg sourcing the warp factor. Let
us consider the case in which ¢;2[H] is Poincaré dual to a three-cycle class with a special
Lagrangian representative Il calibrated by Im Q¢y. That is:

(72[H] = P.D.[II] = ¢.35(10), (F.26)

S
where 0(II) is the bump delta-function of Xg with support in II.

We now wrap a D7-brane on the internal six-dimensional space, as in [201, section
6], and extended along (¢,2!,0,0). The Freed-Witten anomaly induced by the H-flux can
be cured by a D5-brane wrapping —II, extended along (t,z!,0, 2% > 0) and ending on the
D7-brane. This configuration describes a 4d string to which a 4d membrane is attached.
Microscopically this is due to the Freed—Witten anomaly. Macroscopically it as a result
of of the type IIB axion Cj gaining an F-term axion-monodromy potential generated by
the internal H-flux [209-211].

The Bianchi identity for the D7-brane worldvolume flux reads
dF = H —¢;'6(10), (F.27)
and finding its solution works as in [2, section 5], see also [183, section 3.4]. We have that
(YF = diy K = —Joy - d(@Im Qoy — xoyK) (F.28)

up to a harmonic piece. Here the function ¢ satisfies x, ¢ =0 and

Y
Acy® = % —6@® 6P = xoy ImQAS(ID)] (F.29)

while the three-form current K is defined as in (7.42) with the replacement ¢ — ¢/4. The
main difference with respect to the type IIA solution is that this one is exact. The 10d
BPS configurations is therefore described by a Blon solution with profile

xoydX?® =ImQcy A F, (F.30)

from where we deduce that X3 = —¢,(. This would correspond to a DBI action such that
27

Sbhi = — g didatda’y] . e det (gap + €240, X30, X3 + Fop)
S 6
21 1,2 —1 ety 1 3
= 5 dtdx dz*g, N —TJCY + 5]:/\ F N Joy + *cydX® A d)((%‘,?)l)
S 6

as would follow from the results of [201].

Besides being an exact solution, the D7-brane setup has the interesting feature that
the transverse space to the D7 is given by R x S'. As a result one is able to relate the D7
Blon system to a gauge configuration that is defined on R x S x Xg. The natural object
where such a gauge theory is defined is a D9-brane dual to the Blonic D7-brane. As we
will now discuss, this construction leads us directly to the setup where Donaldson—Thomas
theory is defined.
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Appendiz F. Tools for the non-SUSY analysis

The Donaldson—Thomas setup

In a Calabi—Yau four-fold Xg we can define a complex star operator x that maps a
(0, g)-form « to a (0,4 — g)-form %« such that

1. e
a N o = Z\a\QQ (F.32)

where € is the holomorphic four-form of Xg, normalised such that Q A Q = 16 dvol Xg- 1t
turns out that x maps (0, 2)-forms to (0, 2)-forms, and that 2> = 1. One can then define two
eigenspaces of (0, 2)-forms such that xax = +ay. In particular, one may take the (0, 2)-
component of a real non-Abelian gauge flux F on Xg and demand that xF%2? = —F02 or
in other words that F2’2 = 0. This is one of the conditions of Donaldson-Thomas SU (4)
instanton equations [202], that read

F? =0, (F.33a)
FAJ3=0. (F.33b)

To connect with the more familiar Hodge star operator *, one can use that, when
acting on (0, g)-forms, * = %Q A * [212]. Therefore we deduce that

1-
«F)? = £ F20 (F.34)
From here we deduce that Fi’z = 0 is equivalent to

1

sReF%? = + ReQNF, (F.35a)
1

*ImFO’QleZImQ/\F — FAFAImQ=0. (F.35b)

and also implies

1
Tr ReF*? AsReF%? = Tr ReF}” AReF” — ReF’* AReF? AReQ. (F.30)

The dictionary

To connect with the D7 Blon configuration, we consider the Donaldson—Thomas
equations for an Abelian gauge theory in the following Calabi—Yau background

R x S' x Xg, (F.37)

2 23} and holomorphic four-form

with with complex coordinates {w = x + if, 2!, 2
Qy = (dx + 1df) A Q3. (F.38)

We now consider a gauge field strength of the form
F = Fx; + FBion (F.39)

where Fx, is a two-form on Xg and

FBion = Fridx A dz' + c.c. (F.40)
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so that there is no component of the flux along df, and as a result F* = 0.

The dictionary with the D7 Blon configuration can then be done by simple dimen-
sional reduction along R x S'. After that, we recover a gauge theory on Xg with gauge
field strength Fx, and a non-trivial profile for the transverse position field X, seen as a
function on Xg

0X = —Fpdz". (F.41)

Notice that
1 = 1 =
Foon = dZ Ndv = 5 OX +0X A (dw +do) = Foin = —5d@NOZ.  (FA2)

Therefore to satisfy (F.33a) we need to impose

1 ~ = ) ~
do NOX = —5 44 QuAFx, — 0X = % sxs QAFxy (F.43)
from where we deduce the following relations

*XGdZ = ImQ3 A ./'—"X6 , (F.44)
*XGdCZ = ReQ3 A FXG . (F.45)

Eq.(F.44) corresponds to the Blon equation of section 7.7, while (F.45) looks like a new,
independent equation. In principle we would expect that it also satisfied by the Blon
solution, and so it would be interesting to understand its implications. Notice that we can
also translate (F.33a) into the condition

Pt = sm AOXAde = FiP =t 0300X | (F.46)
which in turn implies
2,0 1 1 )
ReFy, = 1% (dX N1ImQ3) = 1 d(¢Im Q3) , (F.47)
ImFy) = —i %3 (dX A Refs) = i x5 d (PRes3) . (F.48)

Eq.(F.47) corresponds to (7.75) adapted to this setup, while (F.48) is equivalent to (F.45).
Finally, imposing (F.33b) amounts to require that Fy, is primitive, as the Blon solution
fulfils.

The relation between the solutions to the Bianchi identity of the form (F.27) and
the Abelian SU(4) instanton equations of [202] was already pointed out in [183, section
3.4]. We find it quite amusing that a Blonic D7-brane and the corresponding worldvolume
flux on a D9-brane give a neat physical realisation of this correspondence. It would
be interesting to understand if this description has any implications for the theory of
invariants developed in [202].

F.4 A toroidal orbifold example

In this appendix we compute the Blon correction to the D8/D6-system tension A]]%igon
defined in (7.72), for the particular geometry Xg = T%/( 2 x o) in the orbifold limit.
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Appendiz F. Tools for the non-SUSY analysis

This case was already analysed in [2] whose notation we follow up to small modifications.
The Calabi-Yau structure is defined as

Joy = 4mtidx’ Ady', (F.49)
ReQcy = p minmf’ —np —np?-ns® (F.50)
ImQcy = plap — merm3a; — 1300 — TIT2Q3) (F.51)

where

. R 7 t1t2t3
' =RuR,;, 1= R—y_ . p=28r%] e 87 R, R2R,s (F.52)
xl

and we have the following basis of bulk three-forms

o = dat A dx® A daB, B2 = dy' Ady? Ady?,
a1 = dat Ady? Ady?, B = dy' A da? A da?,
as = dy' Adz? Ady?, 6% = dat A dy? A da?,
ag = dyt Ady? Ada?, B2 = dat Ada® A dy?.

The Blon worldvolume flux can be derived from (7.51) and the results in [2, section
6.2], generalised to the case where the torus radii are not equal. We obtain

l
F = idEYK = hlsxcy dxoy BoB’ — Bif' — Baff® — B3’
1 . 1271 (y1,y2,93) +7] n n
=hy. 2 22 = 2 —dyy A dys — ——dyy A dys + ——dy1 A dys
T G 8 T |Tiy1,2,93] Tl Tal2 T3t3

o127 (y1,w2,23)+7] ny

NoT nsT
— 3 dxo N\ drs — ﬁdyl A dzxs + ﬁdyl A dxg
|Tly1,22,23] Tit1 to t3

82t (x1,y2,23)+7]

ni1T n nyT:
— 3 ! 1dy2 Adxs — idl'l A dzxs + ﬁdaﬁl A dys
|T21 y2,23] 1 toTo t3
pi2mit[(e,@ays)+i] noT ne
= 5 17 dxo N dys — ﬂdazl A dys + idﬂjl A dzo R (F53)
T2t 22,3 t1 to T3t3

where the functions B; are defined as in [2, eq.(6.18)], 77 has entries that are either 0 or 1/2
2
and |ﬁx17x2’y3|2 = (nl/Rx1)2 + (ng/RIz)2 + n3/R,s and similar for the other indices
Using the above expression together with (F.49), we arrive to

F2A Joy = thz Z Z ei27r(ﬁ-ﬁ+r?z-n)

- 72 et2mi-(x1,m2,y3) +i2m-(x1,y2,23)
7,7 O£ite 3 0£me 3

1 |ﬁ|331,z2,y3’m|§1,y2,$3

1 eiQTr?’?L-(gﬂ ,272,23)+i27rﬁ~(y1,y2,y3)

miny + ... | dry Adzo Adxs A dyr Adys N dys .

t17'12 ’5’31,12,$3|m’§1,y2,y3

(F.54)
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Now we would like to compute F? A Joy integrating each piece of (F.54), but
to perform these integrals we first need to regularise them. We do so by smearing the
O6-plane over a region of radius ~ fg, which is the region of Xg where the supergravity
approximation cannot be trusted. In practice this corresponds to a truncation of the
summation over the Fourier modes labelled by # and m. This allows us to interchange
the order between summation and integration. We then take the limit when the cut-off of
the sum N diverges, returning to our original system with a localised O6-plane. For the
first piece of the integral we obtain

. 27 (77417 )
lim e’ ( Y
N—oo Z ;

{0#£7€ 3||7|<N} 11

{0£me 3||i|<N}

o (o 2
= lim > > ¢z (i) 5 mm 3 §(n1 +m)d(n2)d(ng)d(mz)d(ms)
{67&776 3)|7|< N} 77,77 tl’n’xl,xZ,yS‘m’zl,yZ,xS
{0#me 3||A|<N}

2p4 2
Z Zez2fml n— 7] anmlTl ) (F.55)

nt
O£nie T 17

7-12 et2mi-(x1,m2,y3)+i2mmh-(21,y2,23)

|_"

ming

1 —
T6 t1 |n|ml,12,y3 z1,y2,x3

Repeating a similar process for all the contributions in (F.54) and adding them
together we conclude

1 > 1
= FEINJoy =203t o+ 1a) Y 5 Y emmimem)
3 cy 1+ t2 +t2) 22

5 Xo 7,17
< 1W
= — 64h>%(t] + ty + t3) =
1+ 2 +13 z:: 2
8h)?
= — (12) 7r2(t1 +t9 + t3) , (F56)

where we have taken into account that the integration space of Xg = T%/( o x o) is 1/4
of that of T°. Notice that the result goes like the square of the number of D6-branes, and
therefore as their pairwise intersection. Indeed, in this case the Ilpg is composed of 4 x 8
different three-cycles, with each group of 8 three-cycles wrapping the same class of T:

P.D.[Tog] = 88%) — 8[8"] - 8[8%] - 857). (F.57)

Two different three-cycles intersect over one one-cycle, so there are 64 intersections arising
from each pair of classes. Finally, because there are h D6-branes wrapping Ilpg, this
factor increases to (8h)2. It would be interesting to generalise this result to more involved
D6-brane configurations, and in particular those where they do not lie on top of O6-planes.
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