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Abstract 

We investigate the possible role of nonmetricity in cosmology wit­
hin the framewirk of metric-affine space-time. lt is shown that the 
Weyl part of nonmetricity could play the role of inflaton field. We 
investigate also cosmological consequences of gravitational theory ba­
sed on the complete relaxing of Riemannian constraints combined 
with the requirement of local conforma] invariance. uch a theory 
tums out to be independent of the choice of measuring standards. 
Nevertheless we demonstra.te that there exista a mecharusm of spou­
taneous gauge fixing through which the scale enters the theory. It 
is shown that field equations admit of a. de Sitter solution with no 
cosmological constant. Various possible developments of the theory 
are discussed in brief. 

1 · Introduction 

Modern theoretical understanding of evolution of the universe is based 
on cosmological applications of Einstein 's general relativity (GR). In this 
way, in 1922, A.A.Friedmann derived equations describing an expanding 
universe [1]. In nowadays A.Guth [2] suggested that, before the Friedmann 
stage, the universe had passed through the inflationary stage during whlch 
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its size was growing very rapidly. The inflationary scenario of evolution 
of the universe is accepted now by many cosmologists mainly because it 
salves many cosmological problems in elegant way. On the other hand, 
solving cosmological problems inflation produces new problems connected 
with its own existence. For instance, to obtain inflation within the frame­
work of GR one needs to take into consideration some material field (the 
inflaton field) which produces and governs the process of inflation. The 
simplest cosmological scenarios use for this aim a minimally coupled scalar 
field. However, as was shown by Chernikov and Tagirov [3] such a field 
has no physical sense in curved space-time. Moreover, they have shown 
that, in curved space-time, the physical field is the conformally coupled 
scalar field. Just this field has valid quasiclassical limit and other good 
properties. Therefore with scalar inflaton we find ourselves in paradoxical 
situation: the physical conformally coupled scalar field could not produce 
inflation, and if inflation takes place it inevitably is caused by the unphy­
sical minimally coupled scalar field. Therefore a scalar inflaton is not an 
appropriate cause of inflation. 

The problem of conforma! coupling has another side which looks as 
follows. The inflationary stage is described by the de Sitter geometry 
where the llicci tensor Rµv is given by -3Ro9µv where Ro =const. Hence 
the Einstein equations 

1 
Rµv - 29µvR = -87rGTµv 

in a de Sitter cosmology inevitably imply that Tµv is not traceless, i.e., it 
is not conformally invariant. Therefore the ordinary formulation of the de 
Sitter cosmology requires the presence of masses or at least non-conforma! 
couplings in Tµv· This fact looks somewhat suspicious because the de 
Sitter cosmology should describe the early universe where the temperature 
is so high that matter field mass scales should not be relevant and ail the 
matter fields at that stage can be described in a conformally invariant 
way. Moreover, one might think that at very high temperatures even the 
gravitational field should be conformally coupled. The price one has to pay 
for breaking the conforma! invariance at the de Sitter stage is the arising 
of a non-vanishing, and usually huge, cosmological constant. 

ln this paper in order to avoid the difficulties of such kind we shall try 
to go beyond the framework of GR by enlarging its geometrical structure. 
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Really, concerning the geometrical nature of gravitation one may a.sk the 
question: why is the space-time continuum lliemannian? At the microsco­
pical level there are no physical reasons for the existence of the Riemannian 
structure on the space-time continuum. The existence of locally Lorentz 
rnetric is guaranteed by special relativity while the existence of affinity is 
guaranteed by the weak equivalence principle. Hence the existence of the 
above two objects indicates that, in genera.l, the space-time continuum is a 
rnetric-affi.ne manifold. Ehlers et al. [4] analyzed the separate roles played 
by affinity and metric at the classical level when suffi.ciently large distan­
ces were considered. Let us note, however, that their analysis becomes 
unapplicable when one considers scales close to the Planck length where 
the very notions of the light cane and rigid rads lose their sense. Ta reach 
GR one must impose two ad hoc mathematical constraints: (i) the affinity 
must be metric compatible, and (ii) the affinity must be symmetric. There 
are no evident physical reasons to impose these conditions in microworld. 
A method of clarifying the physical meaning of the above constraints is 
to construct a more general theory by relaxing them and then examining 
the physical effect. Perhaps in this way one may deeper understand a 
mysterious connection of gravity with the space-time structure. 

2 Nonmetricity as a Cause of Inflation . 

We shall work with a metric-affine space-time with no constraints imposed 
on the metric 9µv or on the connection r'~v• so that 9µv and r"µv are 
completely independent gravitational variables. The nonmetricity tensor 
TtV,\µv is defined according to the relation 

W,\µv = \7 ,\9µv• (1) 

It is convenient to split W,\µv in the following way 

(2) 

where W" is proportional to the trace of the nonmetricity tensor and W ,\µv 
· is its traceless part · 

1 p - p w" = -w · w,\p = o. 8 ,\p ' (3) 
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U sing ( 1 ) one can represent the full affine connection fµvp in the form 

rµvp = {µvp} + Sµ11 p - S/p - S/11 .+ ~(W':,p - W 11 µp - wpµJ (4) 

where Sµvp is the torsion tensor 

sµ - rµ - 1 (rµ rµ ) vp = [vp] - 2 vp - pv · 

The curvature tensor Rf3µv is defined according ta 

Raf3µv = 8µfaf3v -- 811 faf3µ + ra>.µr"f3v - ra>. 11 r"f3µ· 

Let us define the Ricci tensor Rµv by the formula 

Rµv = ~(R"µav + Rµai), (Rµv =/; Rvµ), 

and the segmental curvature tensor f2µv by 

· f2µv = lR"aµv = 8,,Wµ - âµWv. 

(5) 

(6) 

(7) 

(8) 

Now, let us turn ta the choice of the gravitational Lagrangian. As 
is well known, [5) the main problem in the metric-affine gravity with the 
Hilbert type Lagrangian 

L = aR; a= M;/16rr (9) 

(Mp is the Planck mass) is its projective invariance, i.e., this Lagrangian 
is invariant under the transformations 

(10) 

As a consequence, four degrees of freedom associated with the Weyl vector 
Wµ remain completely undetermined by the field equations obtained from 
this Lagrangian. It is well known [5) that for a viable gravitational theory 
.the projective invariance must be broken. There are several ways ta do 
this. Remind that in GR this problem is solved by imposing the metric 
condition V >.9µ11 = 0 that implies lVµ = O. Here we break the projective 
invariançe by including terms proportional ta the square of the Weyl vector 
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Wµ Wµ into the gravitation al Lagrangian. Details and justification for this 
approach have been given elsewhere [6]. The total gravitational Lagrangian 
has the form 

(11) 

where k is a dimensionless constant, ~ = Wµ Wµ and U ( 0 is a foncti­
on (a "potential") which is not projectively invariant. Such form of the 
Lagrangian could be arisen, as well, in the result of a spontaneous break­
down of the scale invariance in the initially conformally invariant theory 
in a me tric-affine space-ti~e ( see section 3). In any way we can regard 
the fonction U( ~) as an effective potential analogons to that arising for a 
scalar field in modern cosmology. Equations of motion following from this 
Lagrangian, after some transformations, can ~e represented in the form 

- 1 - 1 
Rµv - 29µvR = -

20 
Tµvi 

V an"v + 2U'(0Wv = O; 

rµv>. = {1111>.} - ô~W>.; 

Sµv>. = 9µ[v W>.J; 

W,\1w =O. 

(12) 

(13) 

(14) 

(15) 

(16) 

where the tilde above a letter <lenotes the ordinary Riema:nnian part of 
corresponding geometrical abject, and the prime denotes the derivative 
with respect to ~. The stress-energy tensor Tµ 11 is equal to 

(17) 

As it is seen from the above equations a remarkable fe,ature of the 
theory with the Lagrangian ( 11) is that the Weyl vector here plays the 
role of a source of the Riemannian part of curvature. On the other hand, 
just the Riemannian part of connection governs the dynamics of the Weyl 
vector field Wµ as it is seen from Eq. (13). Due ta this equation there is 
no place for the projective invariance. One may consider this theory ta be 
equivalent to usual GR with some external massive vector field. But an 
.essential difference is that here this field is internai and is a part of the full 
nonmetrical connection, as it is seen from Eq. (14). Moreover, this field 
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via the algebraic relation (15) also determines the torsion properties of the 
metric-affine space-tiine. 

Let us consider what cosmological consequences follow from the theory 
described by the Lagrangian (11). The nonmetrical properties essential for 
cosmology are contained in the stress-energy tensor ( 17) of the Weyl vector 
field. In general the stress tensor of this field need not be isotropie, so 
we may assume that space-time will not be Friedmann-Robertson-Walker 
type. Instead, we may take an anisotropie metric. Let us take a Bianchi 
type-1 metric 

(18) 

Let Wz be the nonzero spatial component of the Weyl vector field. We 
shall be interested in homogeneous solutions, so that Wµ = Wµ(t). This 
leads to the fact that in the metric (18) Eq. (13) for W11 implies that 
Wt = 0 for such solutions, and we have for the only nonzero component 
Wz the following equation: 

.. [ a b] . 2 
Wz + 2~ - b Wz + kU'Wz = o. 

The gravitational equati9ns (12) for this metric are: 

âb â2 1 
2-+- = -e, 

ab a2 2a 
a ab ;; 1 1 - + - + - = - -px = - -p 
a ab b 2a 2a Y' 

a à2 1 
2-+- =--pz 

a a2 2a 
with the conservation law 

. [ â bl â b 
(! + 2~ + b (! + 2~Px + t;Pz = 0, 

w here the energy density (! and pressures Px, Pz for the Weyl field are 

kW2 

(! = 2 b2z + U, 

kw 2 

Px= 2 b2z - U, 

Pz = -e + 2ÇU'. 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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Let us note that different inflation scenarios within the framework of GR 
for a material vector field have been considered by Ford [7]. In our. ap­
proach only a chaotic-type scenario is acceptable because in this case the 
nonmetricity field tends to zero at the end of inflation. Thus consider the 
case when initially Wz was nonzero and slowly varying field (so that one 
can neglect the time derivative terms in (24)-(26)) but at la.te times it 
evolves toward zero. To obey these requirements the potential U(Ç) must 
have a minimum at Ç = O(Ç = W'j /b2 ). Moreover it must be su:fficiently 
fiat for large Ç in order that the douration of inflation would be sufficiently 
long. With these assumptions supposing that 

(27) 

we obtain Px = Py ~ Pz 
quasi-de Sitter stage 

~ -e, and the universe rapidly cornes to the 

a(t) = b(t) = eHt (28) 

with the slowly varying Hubble par.ameter 

H = (U/6a) 1l 2
• (29) 

Let us consider an explicit form of a suitable potential U(Ç): 

( m2ç) 
U(() = Uoln 1 + 2Uo (30) 

where one may consider U0 as a lower boundary of inflation below which 
the inequality (27) is broken and the potential becomes rapidly falling. 
The potential (30) mathematically has no upper boundary. Nevertheless 
one can consider its physical upper boundary 

(31) 

so that inflation takes place in the region 

(32) 

Due to the high degree of flatness of the potential (30) the process of in­
flation may be sufficiently long and the value of expansion during inflation 
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may be extremely large. However in order to obtai.n adequate inflation one 
needs considerable fine- tuning. 

The field Wz during inflation evolves according to the following equa­
tion 

(33) 

For large Ç ( Ç ~ Uom- 2 ) U' ~ 0, so the field is a slowly falling ( at ·most 
linearly) fonction. On the other hand, for small Ç (Ç ~ U0m-2 ) one has 
U ~ l/2m2Ç and the field Wz obeys the equation 

In the case 

2 . .. . m 
Wz + HWz + k Wz = o. 

2 

..\
2 = 4~ - H 2 > 0 

k 

(34) 

(35) 

this equation has a solution in the form of damping oscillations which can 
be written as 

Wz = Aexp(-~Ht)sin~À(t-B) (36) 

where A' and B are two arbitrary constants. Thus one may consider the 
region 0 ~ U ~ Uo as corresponding to the reheating stage. In order to 
obtain some quantitative information about this stage one needs to tak~ 
into consideration the interaction of matter with torsion and nonmetricity. 
However in the presence of material sources of torsion and nonmetricity 
the resulting equations will be essentially different from (12)-(16). Let us 
note that due to the fact that Wz tends to zero, the stress tensor of the 
Weyl field vanishes, so the problem of anisotropy at late times does not 
arise in this scenario. 

In the example considered above we have assumed that inflation goes 
with the same rates in ail directions (a(t) = b(t) = expHt). But there is 
no need for this assumption in cosmology. A.il that is needed is that the 
universe expands by the factor greater than 1028 in ail directions. However 
this process may go anisotropically, i.e., at different rates along different 
axes but under condition that at later. stages the anisotropy disappears. 
The process of anisotropie inflation for the material vector field was consi­
dered in detail by Ford (7). It may be relevant also in the case of inflation 
driven by vector nonmetricity. 
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As we have seen from the above consideration, nonmetricity in its 
Weylian form could have played the role of geometrical inflaton field in 
metric-afline cosmology. By the end of the process norlmetricity disappe­
ars, so that space-time becomes Riemannian (or Riemann-Cartan type in 
the presence of material torsion sources). As it is easy to see, here the Weyl 
nonmetricity produces the cosmological term responsible for inflation be­
cause the conforma! invariance is broken from the. very beginning (by the 
Einstein-Hilbert term in the Lagrangian). In the next section we consider 
a more general situation when the conforma! invariance is preserved but 
the de-Sitter stage nevertheless exists. 

3 Scale-Covariant Metric-Affine Cosmology 

In this section we represent main cosmological results of scale-covariant 
metric-afline gravity. For details we refer the reader to [8]. Let us füst 
introduce the main mathematical notions to be used in further considera­
tion. 

Generalized conformai transformations in a metric-affi.ne space have 
the form [8]: 

9~11 e2.\(x)9µ11; (37) 

W~ = Wµ + ÔµÀ(x); (38) 

W
1
\ 11 = W.\µ 11 ; (39) 

S'\ 11 = S.\µ 11 • (40) 

A localized geometrical quantity A transformed under (37) according 
to the law A' = en.\(x) A is called to be of power n .. If A further behaves as 
a tensor relative to the ordinary coordinate transformations, it is called a 
co-tensor of power n. If n = 0 it is called an in-tensor. By detinition 9µ 11 

is a co-ten~or of power 2, while 9µ11 is a co-tensor of power -2.' It is easy to 
check that, if Aµ is a co-vector of power n, the quantity 

(41) 

called the co-covariant derivative of Aµ, is also a co-tensor of the same po­
wer n. Now we are ready to construct scale-covariant gravitational theory 
in terms of co-covariant abjects. ' 
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The requirement of scale invariance in general means that we want 
to have a possibility to choose an arbitrary standard of length, or gauge 
at each space-time point. This leads to the idea of gauge transformati~ 
on of metric (37) where >.( x) is an arbitrary fonction of the coordinates. 
Therefore we want our theory to satisfy the following two conditions: 

• It is locally Lorentz invariant; 

• It is locally conformally invariant. 

The second requirement forbids the presence of the Hilbert-Einstein 
te~m"' R in the action integraJ. This fa.et was known still to Weyl [9]. For 
tlus he was forced to take an a t ion învolving the square of the cuna.ture 
scalar "' R2• This led to unsatisfactory higher order field equa.tions. 

Later, ira (10] returned to Weyl's theory, but modîfied it. In order to 
preserve the Hilbert-Einstcin term he introduced a co-scalar f3 of power -1 
so that the action with th term ,...., {PR wa.s confonnally invariant. ln vie~ 
of t]~e ~ossibility of gaug transformations, the fonction {J is arbitrary. By 
a sUJtable transformation {J -+ {3' = exp(->.),6 one can make f3 = 1. This 
gives the so- ·alled "Eh\stein gauge", since the formalism of GR corresponds 
to f3 = 1. 

In our approach we shall follow Dirac's ideas. Thus in our manifold 
there exlst at least three fondamental notions: distan e, parralelism, and 
gauge. The notion of gauge is introduced in the meaning of the conformal 
transformation such as Weyl's original point of view so there exists the . , 
not10n of gauge only when there exists the notion of distance. Consequently 
the notion of parallelism is 1ndependent of not only the notion of dlstance 
but also of gauge. The freedom of gauge will be describecl by the co-scalar 
f3 of power -1. Therefore the Lagrangian density, in general, will depend 
on the gravitational variables g1~11 ,r>.µ11 and on the scalar fi.eld {J. Let us 
emphasiz here an essential dlfference from standard scalar-tensor theories: 
the field fJ in our approach does n.ot represent a.n additional gravitational 
variable while in scala.r-tensor theodes · [11] it does. In our approach f3 
expresses only the freedom in choie of units. 

For simplicity here we do not consider the material Lagrangian referring 
the reader to [8] where a comlete theory is considered. Following Dirac (10], 
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let us take the gravitational Lagrangian density l 9 in the form 

i.e~= FY (µ' R - ~n""w" + kg""v "µV"µ+~µ·) (42) 

where {J( x) is a co-scalar of power -1, k and >. are dimensionless constants 
(numbers). Let us emphasize that each term of {,9 separately is conformally 
invariant contrary to the case of a conformal scalar field in the Riemannian 
space where the conformai invariance for the scalar field is fulfilled only 
for the total Lagrangian with spedal choice of a constant by the R term. 

In the absence of material sources equations of motion for the confor­
mally covariant gravity take a simple forrn: 

w ÀtW = O; (43) 

(44) 

(45) 

(46) 

(47) 

Eq.( 43) restricts our space-time to be of Weyl-Cartan type. Note that 
Eq.(47) is not an independent equation and is a consequence of the other 
equations an of Bianchi 's identities and hence the scalar field (3 is not 
determined by the field equations. This gauge freedom is .the result of 
confomal invariance. Therefore a complete set of equations in this case 
reduces to four equations (43), (44), (45) and (46). 

Using Eq.( 46) one can represent ~he term {3 2 R in the form 

where R is the Riemàrlnian part of R. 
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Substituting this into the action integral, after removing the total di­
vergence, we obtain for the gravitational action without matter 

1 

s = J Fu (,a2 R + (k + 6)gPO"V p V u.B + 6,82WO"Wu­

-8,82Wq Su+ >..,84 - Jf!µ"flµv) d4x. (49) 

In the Einstein gauge where. f3 = {30 =const we obtain 

S = j Fu (/35R + k/35WuWu + >../3~ - ~Oµ"flµv) d4x. (50) 

From this one can see that in this gauge our theory corresponds to Einste­
in 's gravity interacting with a massive vector field. The essential difference 
is that this vector field is a part of the full connection of the Weyl-Cartan 
space-time 

(51) 

We shall call hypothetic particles corresponding to the massive Weyl field 
as "weylons". 

By fixing the gauge we have introduced into the t;heory a standard of 
length which can be expressed via the Planck length lp/ as 

l - 1 
pl - 4...fi /30 . 

Correspondingly the mass of the weylon expressed via the Planck mass 
~~ . 

mweyl = Mpl f"E. 
4 y; 

It is important to remark that by fixing the gauge we do not break the 
conforma! invariance explicitly. Really, one can choose another constant 
value for {3, e.g. /3 = /3b =/:- /30 and obtain the same result (50) with /3o 
replaced by f3b. Ail that was happened is that standards of measurements 
were changed that, by the very sense of gauge theory, did not influence 
physical laws. 

Until the gauge is nqt fixed it is meaningless to speak about massive 
particles in the usual sense. However the above fixation of gauge was 
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done by hand. One ma.y ask then: is there anything in the world that 
could fix the gauge in a conformally invariant theory? Let us investigate 
this issue using the a.nalogy with a sponta.neous symmetry breaking. This 
possibility can be realized if the potential for the scalar field f3 adroits 
minima different from f3 = O. At first glance it is not possible since, in 
general, as it is seen from ( 49), the potential for (3 con tains only the term 
>../34 ., Consider, however, a de Sitter cosmology which is described by space­
time of a constant Riemannian curvature. In the de Sitter space-time we 
have 

where R0 =const. 

Rµv = -3RoDµv; 

R = -12Ro 

(52) 

(53) 

In this case the term /32 R can be included into the P<?tential V(,B), so 
that it has the form -

V(f3) = -12Rof32 + >..(34. (54) 

For the minimum (30 of this potential we have 

f35>.. = 6Ro, . (55) 

so that our model describes either de Sitter or an~i-de Sitter geometry 
depending on the sign of >... In bath cases the potentia.l ca.n be represented 
in the form 

V(/3) = >..(34 - 2>..,B~,82 (56) 

with the quartic and quadratic terms having opposite relative signs in­
dependent of the sign of >... Therefore, in this case, the gauge is rigidly 
fixed by the geometry via Eq.(55) a.nd just the geometry is responsible for 
arising of a scale. 

Let us write clown equations of motion ( 44 )-( 4 7) for this case. Because 
these equations are conformally covariant they are valid for a particular 
choice of a gauge. Substituting (52), (53) and (55) into them, after simple 
calculations, we obtain respectively 

rweyl _ O· 
µv - ' 

V unuv = 2k,B5Wv; 

Svµ>..= 9v[>..WµJ; 

Vu Wu - WuWu = O, 

(57) 

(58) 

(59) 

(60) 
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h T weyl • h w ere µv is t e energy momentum tensor of the massive Weyl field: 

Combining (58) with (60) we find the relation 

(62) 

so that (57) is identically satisfied. 
One can take Wµ = 0 as a solution to (62). In this case the space-time 

continuum becomes Riemannian because torsion also vanishes as it is seen 
from (59). Therefore the solution with the de Sitter form of the Riemannian 
part of curvature is the vacuum solution of conformally invariant gravity 
in a metric-affine space-time just as the Schwarzschield solution is the 
vacuum solution for Einstein gravity within the framework of Riemannian 
geometry. It is useful to compare this result with the situation in the 
previous section where the conforma! invariance was broken explicitly from 
the very beginning. There, as a result, the energy momentum tensor of 
weyl?ns was responsible for arising of cosmological constant producing the 
de Sitter stage, whereas the Weyl vector field itself played the role of the 
infl.aton field. The situation presented here is quite different. 

Let us note that if one takes into consideration matter without hyper­
momentum one can check that the field equations also. admit a de Sitter 
solution with no cosmological constant [8). 

It is important to remark that direct consequence of conformai inva­
riance is that all the masses arising in such a theory are proportional to 
/30. Therefore the ratio of masses is independent of the choice of gauge f30. 
The same is valid for lengths and time intervals. This means that such a 
theory describes physical phenomena independently of the choice of mea­
suring standards. This property is very natural and important for physical 
theory because any real measuring process represents nothing more than 
a comparison of the measured quantity with some quantity,accepted as a 
standard, i.e., only the ratio of quantities has direct physical. sense. An ex­
planation of these ratios, however, lies beyond the ability of the conformai 
invariant theory. 

4 eoncluding Remarks 

We have shown that the approach based on the complete relaxing of Ri­
emannian constraints combined with the requirement of local scale inva­
riance represents a consistent framework for gravitational theory. The 
consequence of conforma! invariance is that the theory describes the world 
in which only Tatios of physicaJ quantities have direct physical sense inde­
pendently of the choice of conformai gauge. The other consequence is tha.t 
the theory intrinsically possesses a de fütter solutfon with no cosmological 
constant. We also have showu that there exists a. natural mechanism of 
spontan.eous gauge fixing, in the result of which the universe acquires an 
absolute standard of units. However thjs mechanism works under very spe­
cial conditjons. The problem of searclting a plausible breaking mechanism 
for conformai symmetry in general is not so simple. In this connection 
it is of interest an attempt recently undertaken in this direction by Wo­
od and Papini [12). They introduced "a.toms'' as small classic~ regions 
in surrounding space-time with nonmetrjcity where the Weyl vector is ze­
ro, and therefore the conformai invariance inside such "atoms" is broken. 
In their approach just small regions of spa.ce-time ("atoms") produce an 
absolute standard of units and, moreover, they also .determine the global 
geometry of space-time. In our approach an opposite point of view was 
proposed, according to which just the global geometry of spàce-time pro­
vides us with an absolu te standard of units. Whether this scope is correct 
further investigations will show. 

Consider now the question about the physical meaning that could be 
given to the gauge field {3. In our approach f3 expresses only our freèdom 
in choice of measuring standards. However, /3 determines all the masses 
in the universe in a unique way. This circumstance prompts the thought 
that, generally speaking, f3 might play the role of the universal mâss fonc­
tion through wltich Mach's principl-e could enter into the theory. Such an 
interpretation of /3 in the framework of lliemannian geoinetry wa.s actively 
developed by Narlika.r [13). As a result he obtained quite different cosmo­
logy in which, in order to explain observational data, there is no need in 
the in.ilationary stage and, moreover, there are no space-time singularfües. 
For details we refer the reader to his original works [13, 14). It should be 
noted that such an interpretation can be applied in the case of metric-a.ffine 
space-time as well. Moreover it can be done in a consistent and elegant 

8 3aKa3 636 
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way. To see this consider the geometrical structure of our theory. It is 
evident that the field /3 has no geometrical origin and is brought into the 
theory from outside. The only need in this field is to ensure the conformai 
invariance of the theory. However one may try to connect it with the geo­
metry of space-time. Really, in order to ensure conformai invariance one 
may use the term WµW µR instead of /3 2 R. In this way no non-geometrical 
quantities enter into the theory, and the mass fonction mentioned above 
will be connected with the proper nonmetricity of space-time. First step 
in this direction was doue by Obata et al. [15]. Taking the nonmetricity 
tensor to be linear in the metric tensor they obtained a theory which under 
a special choice of the mass fonction resembles either the Brans-Dicke or 
the Hoyle-Narlikar theory. However these results were obtained under con­
dition that the Weyl vector has the gradient form, so that the tensor flµv 

vanishes identically in their approach. In more general case when flµv is 
nonzero equations of motion will be more complicated. Nevertheless such 
an approach, as we think, might represent a perspective direction in the 
development of metric-affine gravity. 

At last let us concern in brief the fate of nonmetricity in the evolving 
universe. There is no direct experimental evidence in favor of its presence 
in space-time surrounding us today. Therefore it should disappear during 
evolution of the universe, or at least its influence could manifest itself in 
sonie unexplained up to now physical phenomena. Here we have shown 
that nonmetricity could have played the role of the inflaton field and had 
disappeared when inflation came to the end. Another possibility was pro­
posed in the recent paper of Israelit and Rosen [16] in which "weylons" 
were interpreted as the dark matter of the universe. In any way the gra­
vitational theory in a metric-affi.ne _space-time offers reach possibilities to 
researchers, and further investigations are needed in order to elucidate the 
role of nonmetricity, if any, in surrounding physical world. 
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