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Abstract

We investigate the possible role of nonmetricity in cosmology wit-
hin the framewirk of metric-affine space-time. It is shown that the
Weyl part of nonmetricity could play the role of inflaton field. We
investigate also cosmological consequences of gravitational theory ba-
sed on the complete relaxing of Riemannian constraints combined
with the requirement of local conformal invariance. Such a theory
turns out to be independent of the choice of measuring standards.
Nevertheless we demonstrate that there exists a mechanism of spon-
taneous gauge fixing through which the scale enters the theory. It
is shown that field equations admit of a de Sitter solution with no
cosmological constant. Various possible developments of the theory
are discussed in brief.

1" Introduction

Modern theoretical understanding of evolution of the universe is based
on cosmological applications of Einstein’s general relativity (GR). In this
way, in 1922, A.A.Friedmann derived equations describing an expanding
universe [1]. In nowadays A.Guth [2] suggested that, before the Friedmann
stage, the universe had passed through the inflationary stage during which
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its size was growing very rapidly. The inflationary scenario of evolution
of the universe is accepted now by many cosmologists mainly because it
solves many cosmological problems in elegant way. On the other hand,
solving cosmological problems inflation produces new problems connected
with its own existence. For instance, to obtain inflation within the frame-
work of GR one needs to take into consideration some material field (the
inflaton field) which produces and governs the process of inflation. The
simplest cosmological scenarios use for this aim a minimally coupled scalar
field. However, as was shown by Chernikov and Tagirov [3] such a field
has no physical sense in curved space-time. Moreover, they have shown
that, in curved space-time, the physical field is the conformally coupled
scalar field. Just this field has valid quasiclassical limit and other good
properties. Therefore with scalar inflaton we find ourselves in paradoxical
situation: the physical conformally coupled scalar field could not produce
inflation, and if inflation takes place it inevitably is caused by the unphy-

sical minimally coupled scalar field. Therefore a scalar inflaton is not an

appropriate cause of inflation.

The problem of conformal coupling has another side which looks as
follows. The inflationary stage is described by the de Sitter geometry
where the Ricci tensor R, is given by —3Rog,, where Ry =const. Hence
the Einstein equations

1
Ruy - 'igl“/R - —SFGTMV

in a de Sitter cosmology inevitably imply that T),, is not traceless, i.e., it
is not conformally invariant. Therefore the ordinary formulation of the de
Sitter cosmology requires the presence of masses or at least non-conformal
couplings in T),,. This fact looks somewhat suspicious because the de
Sitter cosmology should describe the early universe where the temperature
is so high that matter field mass scales should not be relevant and all the
matter fields at that stage can be described in a conformally invariant
way. Moreover, one might think that at very high temperatures even the
gravitational field should be conformally coupled. The price one has to pay
for breaking the conformal invariance at the de Sitter stage is the arising
of a non-vanishing, and usually huge, cosmological constant.

In this paper in order to avoid the difficulties of such kind we shall try
to go beyond the framework of GR by enlarging its geometrical structure.

|

|
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Really, concerning the geometrical nature of gravitation one may ask the
question: why is the space-time continuum Riemannian? At the microsco-
pical level there are no physical reasons for the existence of the Riemannian
structure on the space-time continuum. The existence of locally Lorentz
metric is guaranteed by special relativity while the existence of affinity is
guaranteed by the weak equivalence principle. Hence the existence of the
above two objects indicates that, in general, the space-time continuum is a
metric-affine manifold. Ehlers et al. [4] analyzed the separate roles played
by affinity and metric at the classical level when sufficiently large distan-
ces were considered. Let us note, however, that their analysis becomes
unapplicable when one considers scales close to the Planck length where
the very notions of the light cone and rigid rods lose their sense. To reach
GR one must impose two ad hoc mathematical constraints: (i) the affinity
must be metric compatible, and (ii) the affinity must be symmetric. There
are no evident physical reasons to impose these conditions in microworld.
A method of clarifying the physical meaning of the above constraints is
to construct a more general theory by relaxing them and then examining
the physical effect. Perhaps in this way one may deeper understand a
mysterious connection of gravity with the space-time structure.

2 Nonmetricity as a Cause of Inflation

We shall work with a metric-affine space-time with no constraints imposed
on the metric g,, or on the connection I"\W, so that g,, and F'\W are
completely independent gravitational variables. The nonmetricity tensor

Wy is defined according to the relation
Wi = Vaguu. 1)
It is convenient to split Wi in the following way
W = W + 2Wig,, (2)

where W) is proportional to the trace of the nonmetricity tensor and WM,,

‘is its traceless part

1 S
W,/ w,, =0. (3)

W, = -
A= §
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Using ( 1 ) one can represent the full affine connection I'*, vp in the form

. 1
P“up = “up} + S“up - Su#p - 'Sp#u.+ §(W‘:/p - Wuup - Wp#u) (4)
where $%,, is the torsion tensor
S§h, = I‘“[”p] (F — Dk (5)
The curvature tensor R 5, is defined according to
, A A
R ﬂl“’ = a F ’3‘/ = (9,,Faﬂu + Fa/\#r ﬁl/ — Ot/\ul‘\ ﬁﬂ»' (6)

Let us define the Ricci tensor R, by the formula

RIW - (R pov + R;wu (RIU/ # RV#)? (7)

and the segmental curvature tensor 2, by

Q. Couy = OLW, — O,W,. (8)
Now, let us turn to the choice of the gravitational Lagrangian. As
is well known, [5] the main problem in the metric-affine gravity with the

Hilbert type Lagrangian

E S
&

L = aR; (9)

(M, is the Planck mass) is its projective invariance, i.e., this Lagrangian
is invariant under the transformations

o= M}/16r

I‘/\uv = F/\;w + 6—2)“'; Juv — Guv- (10)
As a consequence, four degrees of freedom associated with the Weyl vector
W, remain completely undetermined by the field equations obtained from
this Lagrangian. It is well known [5] that for a viable gravitational theory
the projective invariance must be broken. There are several ways to do
this. Remind that in GR this problem is solved by imposing the metric
condition Vyg,, = 0 that implies W, = 0. Here we break the projective

invariance by including terms proportional to the square of the Weyl vector
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W,W* into the gravitational Lagrangian. Details and justification for this
approach have been given elsewhere [6]. The total gravitational Lagrangian
has the form ;

L=+-g (aR + EQ“"QW + U(f)) (11)
where k is a dimensionless constant, { = W,W* and U({) is a functi-
on (a ¢ potentlal”) which is not projectively invariant. Such form of the
Lagrangian could be arisen, as well, in the result of a spontaneous break-
down of the scale invariance in the initially conformally invariant theory
in a metric-affine space-time (see section 3). In any way we can regard
the function U(&) as an effective potential analogous to that arising for a
scalar field in modern cosmology. Equations of motion following from this
Lagrangian, after some transformations, can be represented in the form

= L= 1

R;w - §guuR = _-Q_QTMI; . (12)
V,Q°, +2U'(6)W, = 0; (13)
Th5 = {a} — W (14)
Suu/\ = gp,[l/W)\]; (15)

Wi = 0. (16)

where the tilde above a letter denotes the ordinary Riemannian part of
corresponding geometrical object, and the prime denotes the derivative
with respect to £, The stress-energy tensor T}, is equal to
Ty =k {9, — igm,ﬂagﬂaﬁ — 9, U +2U'W,W,. (17)
As it is seen from the above equations a remarkable feature of the
theory with the Lagrangian (11) is that the Weyl vector here plays the
role of a source of the Riemannian part of curvature. On the other hand,
just the Riemannian part of connection governs the dynamics of the Weyl
vector field W, as it is seen from Eq. (13). Due to this equation there is
no place for the projective invariance. One may consider this theory to be
equivalent to usual GR with some external massive vector field. But an

-essential difference is that here this field is internal and is a part of the full

nonmetrical connection, as it is seen from Eq. (14). Moreover, this field
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via the algebraic relation (15) also determines the torsion properties of the
metric-affine space-time.

Let us consider what cosmological consequences follow from the theory
described by the Lagrangian (11). The nonmetrical properties essential for
cosmology are contained in the stress-energy tensor (17) of the Weyl vector
field. In general the stress tensor of this field need not be isotropic, so
we may assume that space-time will not be Friedmann-Robertson-Walker
type. Instead, we may take an anisotropic metric. Let us take a Bianchi
type-I metric

ds? = ~dt? + a*(t)(de? + dy?) + bX(¢)d2. (18)

Let W, be the nonzero spatial component of the Weyl vector field. We
shall be interested in homogeneous solutions, so that W, = W,(t). This
leads to the fact that in the metric (18) Eq. (13) for W, implies that
Wy = 0 for such solutions, and we have for the only nonzero component
W, the following equation:

: @ bfl. 2
The gravitational equations (12) for this metric are:
ab  a® 1
. 25 o3 Pyl (20)
a ab b 1 1
E-I-%‘FE——%%:——%P@/, (21)
i a? 1
2'('1' + P %pz (22)
with the conservation law
a b a b
R T LA a U
e+[a+ng+2apx+bpz 0, (23)

where the energy density ¢ and pressures pg, p, for the Weyl field are

kW2
0= > b; + U, (24)
kW2
P:=—0+ 2£UI- (26)
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Let us note that different inflation scenarios within the framework of GR
for a material vector field have been considered by Ford [7]. In our.ap-
proach only a chaotic-type scenario is acceptable because in this case the
nonmetricity field tends to zero at the end of inflation. Thus consider the
case when initially W, was nonzero and slowly varying field (so that one
can neglect the time derivative terms in (24)-(26)) but at late times it
evolves toward zero. To obey these requirements the potential U(£) must
have a minimum at £ = 0(§( = W2/b?). Moreover it must be sufficiently
flat for large £ in order that the duration of inflation would be sufficiently
long. With these assumptions supposing that

U > 26U’ (27)

we obtain p;, = py, ® p, & —p, and the universe rapidly comes to the
quasi-de Sitter stage

a(t) = b(t) = e (28)
with the slowly varying Hubble parameter
H = (U/6a)?. (29)
Let us consider an explicit form of a suitable potential U (£):
m2e |
= 14— 30
0(e) = Uotn (1+ 75 (30)

where one may consider Uy as a lower boundary of inflation below which
the inequality (27) is broken and the potential becomes rapidly falling.
The potential (30) mathematically has no upper boundary. Nevertheless
one can consider its physical upper boundary

Unaz & M, (31)

S
so that inflation takes place in the region
Us 5 U 5 Uiogs (32)

Due to the high degree of flatness of the potential (30) the process of in-
flation may be sufliciently long and the value of expansion during inflation
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may be extremely large. However in order to obtain adequate inflation one
needs considerable fine-tuning.
The field W, during inflation evolves according to the following equa-

tion
2

k
For large £ (£ > Upm™2) U’ ~ 0, so the field is a slowly falling (at most
linearly) function. On the other hand, for small ¢ (¢ < Uym=2) one has
U & 1/2m%¢ and the field W, obeys the equation

W, + HW, + ZU'W, = 0. (33)

2

W, + W, + lnk—Wz = 0. (34)
In the case )
m? )
/\2=4T—H2>0 (35)

this equation has a solution in the form of damping oscillations which can
be written as

W, = Aexp (—%Ht) sin %/\(t - B) ' (36)

where A and B are two arbitrary constants. Thus one may consider the
region 0 $ U S Up as corresponding to the reheating stage. In order to
obtain some quantitative information about this stage one needs to take
into consideration the interaction of matter with torsion and nonmetricity.
However in the presence of material sources of torsion and nonmetricity
the resulting equations will be essentially different from (12)-(16). Let us
note that due to the fact that W, tends to zero, the stress tensor of the
Weyl field vanishes, so the problem of anisotropy at late times does not
arise in this scenario.

In the example considered above we have assumed that inflation goes
with the same rates in all directions (a(t) = b(t) = exp Ht). But there is
no need for this assumption in cosmology. A]l that is needed is that the
universe expands by the factor greater than 10?8 in all directions. However
this process may go anisotropically, i.e., at different rates along different
axes but under condition that at later stages the anisotropy disappears.
The process of anisotropic inflation for the material vector field was consi-
dered in detail by Ford [7]. It may be relevant also in the case of inflation
driven by vector nonmetricity.
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As we have seen from the above consideration, nonmetricity in its
Weylian form could have played the role of geometrical inflaton field in
metric-affine cosmology. By the end of the process nonmetricity disappe-
ars, so that space-time becomes Riemannian (or Riemann-Cartan type in
the presence of material torsion sources). As it is easy to see, here the Weyl
nonmetricity produces the cosmological term responsible for inflation be-
cause the conformal invariance is broken from the very beginning (by the
Einstein-Hilbert term in the Lagrangian). In the next section we consider
a more general situation when the conformal invariance is preserved but
the de-Sitter stage nevertheless exists.

3 Scale-Covariant Metric-Affine Cosmology

In this section we represent main cosmological results of scale-covariant
metric-affine gravity. For details we refer the reader to [8]. Let us first
introduce the main mathematical notions to be used in further considera-
tion.

Generalized conformal transformations in a metric-affine space have
the form [8]:

g;w = 62)‘(2)911.11; (37)
W, = W,+9\(z); : (38)
W, = W (39)
S, = 8. (40)

A localized geometrical quantity A transformed under (37) according
to the law A’ = e"*(#) A4 is called to be of power n. If A further behaves as
a tensor relative to the ordinary coordinate transformations, it is called a
co-tensor of power n. If n = 0 it is called an in-tensor. By definition v
is a co-tensor of power 2, while g"" is a co-tensor of power -2. It is easy to
check that, if A, is a co-vector of power n, the quantity

Vi, E 034, — T4, — WA, (41)

called the co-covariant derivative of A,, is also a co-tensor of the same po-
wer n. Now we are ready to construct scale-covariant gravitational theory
in terms of co-covariant objects.



100 . E.A.Poberii

The requirement of scale invariance in general means that we want
to have a possibility to choose an arbitrary standard of length, or gauge,
at each space-time point. This leads to the idea of gauge transformati-
on of metric (37) where A(z) is an arbitrary function of the coordinates.
Therefore we want our theory to satisfy the following two conditions:

o It is locally Lorentz invariant;
e It is locally conformally invariant.

The second requirement forbids the presence of the Hilbert-Einstein
term ~ R in the action integral. This fact was known still to Weyl [9]. For
this he was forced to take an action involving the square of the curvature
scalar ~ R?, This led to unsatisfactory higher order field equations.

Later, Dirac [10] returned to Weyl’s theory, but modified it. In order to
preserve the Hilbert-Einstein term he introduced a co-scalar f of power -1,
so that the action with the term ~ 32 R was conformally invariant. In view
of the possibility of gauge transformations, the function f is arbitrary. By
a suitable transformation f — ' = exp(—A)f one can make f = 1. This
gives the so-called “Einstein gauge”, since the formalism of GR corresponds
tof3=1.

In our approach we shall follow Dirac’s ideas. Thus in our manifold
there exist at least three fundamental notions: distance, parralelism, and
gauge. The notion of gauge is introduced in the meaning of the conformal
transformation such as Weyl’s original point of view, so there exists the
notion of gauge only when there exists the notion of distance. Consequently
the notion of parallelism is independent of not only the notion of distance
but also of gauge. The freedom of gauge will be described by the co-scalar
[ of power -1. Therefore the Lagrangian density, in general, will depend
on the gravitational variables gu,,,I‘*#,, and on the scalar field #. Let us
emphasize here an essential difference from standard scalar-tensor theories:
the field B in our approach does not represent an additional gravitational
variable while in scalar-tensor theories [11] it does. In our approach f
expresses only the freedom in choice of units.

For simplicity here we do not consider the material Lagrangian referring
the reader to [8] where a comlete theory is considered. Following Dirac [10],
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let us take the gravitational Lagrangian density £, in the form

£y =T (PR 200 k0,000 000) (0D
{

where f3(z) is a co-scalar of power -1, k and A are dimensionless constants
(numbers). Let us emphasize that each term of £ separately is conformally
invariant contrary to the case of a conformal scalar field in the Riemannian
space where the conformal invariance for the scalar field is fulfilled only
for the total Lagrangian with special choice of a constant by the R term.
In the absence of material sources equations of motion for the confor-

mally covariant gravity take a simple form:

W)\;w =0; (43)

1

1 = "y
2 (R(uu) - §guuR> =3 (Qu Do = 79 Lapll ﬁ) +

+8 (30w 09,8 — 0,698 + 508" (44)
o907, = 246V, (45)

BSuur = gu[,\%u]ﬂ; (46)

BR -k [gm’%ﬁ,ﬂ - 23"%7,,[3] +224° = 0. (47)

Eq.(43) restricts our space-time to be of Weyl-Cartan type. Note that
Eq.(47) is not an independent equation and is a consequence of the other
equations an of Bianchi’s identities and hence the scalar field 8 is not
determined by the field equations. This gauge freedom is the result of
confomal invariance. Therefore a complete set of equations in this case
reduces to four equations (43), (44), (45) and (46).

Using Eq.(46) one can represent the term B%R in the form

B2R = 5 — 6%, (807 B) + 697V, Vo s + 682 W W, — 86°W°S,, (48)

where R is the Riemarinian part of R.
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Substituting this into the action integral, after removing the total di-
vergence, we obtain for the gravitational action without matter
\

5= /ﬁ (ﬂ"’fi + (k + 6)g°"V, Vo B + 65°WIW,—

~8BW7 S, + Mg inﬂ"n,w) da. (49)

In the Einstein gauge where 8 = 8y =const we obtain
S = / v—g (ﬂgii + kBEW W, + \33 - im"nw) d'z.  (50)

From this one can see that in this gauge our theory corresponds to Einste-
in’s gravity interacting with a massive vector field. The essential difference
is that this vector field is a part of the full connection of the Weyl-Cartan

space-time
M, ={MN) - aw,. (51)

We shall call hypothetic particles corresponding to the massive Weyl field
as “weylons”.

By fixing the gauge we have introduced into the theory a standard of
length which can be expressed via the Planck length I, as

= 1
" 4o
Correspondingly the mass of the weylon expressed via the Planck mass
My, is
Myyeyl = 'Aﬁ E
& 4 Vr°
It is important to remark that by fixing the gauge we do not break the
conformal invariance explicitly. Really, one can choose another constant
value for 8, e.g. B = B} # Bo and obtain the same result (50) with 8o
replaced by f). All that was happened is that standards of measurements
were changed that, by the very sense of gauge theory, did not influence
physical laws. _
Until the gauge is not fixed it is meaningless to speak about massive
particles in the usual sense. However the above fixation of gauge was

|
|
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done by hand. One may ask then: is there anything in the world that
could fix the gauge in a conformally invariant theory? Let us investigate
this issue using the analogy with a spontaneous symmetry breaking. This
possibility can be realized if the potential for the scalar field 8 admits
minima different from 8 = 0. At first glance it is not possible since, in
general, as it is seen from (49), the potential for § contains only the term
XB%. Consider, however, a de Sitter cosmology which is described by space-
time of a constant Riemannian curvature. In the de Sitter space-time we
have

E _3ROguU’ (52)

R=—12R, (53)

where Rg =const, 5
In this case the term $%R can be included into the potential V(£), so

that it has the form

V(8) = —12Rof% + \B*. (54)
For the minimum Gy of this potential we have
ﬂg)‘ = 6R01 ; (55)

so that our model describes either de Sitter or anti-de Sitter geometry
depending on the sign of A. In both cases the potential can be represented
in the form

V(B) = A3* — 22538 (56)
with the quartic and quadratic terms having opposite relative signs in-
dependent of the sign of A. Therefore, in this case, the gauge is rigidly
fixed by the geometry via Eq (55) and just the geometry is responsible for
arising of a scale. .

Let us write down equations of motion (44)-(47) for this case. Because
these equations are conformally covariant they are valid for a particular
choice of a gauge. Substituting (52), (53) and (55) into them, after simple
calculations, we obtain respectively

Tuev! = ¢ (57)

V.Q°, = 2kBW,; (58)
Suur = Gp Wy (59)

V., W’ — W,W° =0, (60)
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where Tﬁ‘,’fyl is the energy momentum tensor of the massive Weyl! field:
Tweyl _ 1 Q° 1 of 2 1 : o
puy = ’2' U Do - Zguugaﬂﬂ + kﬂo §9uuWaW - WuWu .

61
Combining (58) with (60) we find the relation =
w,Wwkt =0, (62)

so that (57) is identically satisfied.

One can take W, = 0 as a solution to (62). In this case the space-time
continuum becomes Riemannian because torsion also vanishes as it is seen
from (59). Therefore the solution with the de Sitter form of the Riemannian
part of curvature is the vacuum solution of conformally invariant gravity
in a metric-affine space-time just as the Schwarzschield solution is the
vacuum solution for Einstein gravity within the framework of Riemannian
geometry. It is useful to compare this result with the situation in the
previous section where the conformal invariance was broken explicitly from
the very beginning. There, as a result, the energy momentum tensor of
weylons was responsible for arising of cosmological constant producing the
de Sitter stage, whereas the Weyl vector field itself played the role of the
inflaton field. The situation presented here is quite different.

Let us note that if one takes into consideration matter without hyper-
momentum one can check that the field equations also admit a de Sitter
solution with no cosmological constant [8].

It is important to remark that direct consequence of conformal inva-
riance is that all the masses arising in such a theory are proportional to
Bo. Therefore the ratio of masses is independent of the choice of gauge fo.
The same is valid for lengths and time intervals. This means that such a
theory describes physical phenomena independently of the choice of mea-
suring standards. This property is very natural and important for physical
theory because any real measuring process represents nothing more than
a comparison of the measured quantity with some quantity accepted as a
standard, i.e., only the ratio of quantities has direct physical sense. An ex-
planation of these ratios, however, lies beyond the ability of the conformal
invariant theory.
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4 Concluding Remarks

We have shown that the approach based on the complete relaxing of Ri-
emannian constraints combined with the requirement of local scale inva-
riance represents a consistent framework for gravitational theory. The
consequence of conformal invariance is that the theory describes the world
in which only ratios of physical quantities have direct physical sense inde-
pendently of the choice of conformal gauge. The other consequence is that
the theory intrinsically possesses a de Sitter solution with no cosmological
constant. We also have shown that there exists a natural mechanism of
spontaneous gauge fixing, in the result of which the universe acquires an
absolute standard of units. However this mechanism works under very spe-
cial conditions. The problem of searching a plausible breaking mechanism
for conformal symmetry in general is not so simple. In this connection
it is of interest an attempt recently undertaken in this direction by Wo-
od and Papini [12]. They introduced “atoms” as small classical regions
in surrounding space-time with nonmetricity where the Weyl vector is ze-
ro, and therefore the conformal invariance inside such “atoms” is broken.
In their approach just small regions of space-time (“atoms”) produce an
absolute standard of units and, moreover, they also determine the global
geometry of space-time. In our approach an opposite point of view was
proposed, according to which just the global geometry of space-time pro-
vides us with an absolute standard of units. Whether this scope is correct
further investigations will show.

Consider now the question about the physical meaning that could be
given to the gauge field . In our approach 3 expresses only our freedom
in choice of measuring standards. However, § determines all the masses
in the universe in a unique way. This circumstance prompts the thought
that, generally speaking, 8 might play the role of the universal mass func-
tion through which Mach’s principle could enter into the theory. Such an
interpretation of 4 in the framework of Riemannian geometry was actively
developed by Narlikar [13]. As a result he obtained quite different cosmo-
logy in which, in order to explain observational data, there is no need in
the inflationary stage and, moreover, there are no space-time singularities.
For details we refer the reader to his original works [13, 14]. It should be
noted that such an interpretation can be applied in the case of metric-affine
space-time as well. Moreover it can be done in a consistent and elegant

8 3aka3 636
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way. To see this consider the geometrical structure of our theory. It is
evident that the field § has no geometrical origin and is brought into the
theory from outside. The only need in this field is to ensure the conformal
invariance of the theory. However one may try to connect it with the geo-
metry of space-time. Really, in order to ensure conformal invariance one
may use the term W“W”R instead of S2R. In this way no non-geometrical
quantities enter into the theory, and the mass function mentioned above
will be connected with the proper nonmetricity of space-time. First step
in this direction was done by Obata et al. [15]. Taking the nonmetricity
tensor to be linear in the metric tensor they obtained a theory which under
a special choice of the mass function resembles either the Brans-Dicke or
the Hoyle-Narlikar theory. However these results were obtained under con-
dition that the Weyl vector has the gradient form, so that the tensor 2,
vanishes identically in their approach. In more general case when 2, is
nonzero equations of motion will be more complicated. Nevertheless such
an approach, as we think, might represent a perspective direction in the
development of metric-affine gravity.

At last let us concern in brief the fate of nonmetricity in the evolving
universe. There is no direct experimental evidence in favor of its presence
in space-time surrounding us today. Therefore it should disappear during
evolution of the universe, or at least its influence could manifest itself in
some unexplained up to now physical phenomena. Here we have shown
that nonmetricity could have played the role of the inflaton field and had
disappeared when inflation came to the end. Another possibility was pro-
posed in the recent paper of Israelit and Rosen [16] in which “weylons”
were interpreted as the dark matter of the universe. In any way the gra-
vitational theory in a metric-affine space-time offers reach possibilities to
researchers, and further investigations are needed in order to elucidate the
role of nonmetricity, if any, in surrounding physical world.
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