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The ladder operators in harmonic oscillators are a well-known strong tool for various problems in
physics. In the same sense, it is sometimes expected to handle the problems of repulsive harmonic
oscillators in a similar way to the ladder operators in harmonic oscillators, though their analytic solutions
are well known. In this paper, we discuss a simple algebraic way to introduce the ladder operators of
the repulsive harmonic oscillators, which can reproduce well-known analytic solutions. Applying this
formalism, we discuss the charged particles in a constant electric field in relation to the Schwinger effect;
the discussion is also made on a supersymmetric extension of this formalism.
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I. INTRODUCTION

The algebraic approaches to the potential problems in
quantum mechanics are commonly used ways from the
early state of those fields [1]. In particular, the harmonic
oscillators (HOs) give a good operative example of an
algebraic approach to the eigenvalue problems in terms of
the ladder operators, the annihilation and creation operators
(a,a") characterized by [a,a'] = 1. In such a dynamical
system, the eigenvalue problem of Hamiltonian can be
solved exactly by use of those ladder operators without
depending on the representation of the eigenstates [1,2]
and, if we take the coordinate representation of those states,
the eigenstates will be reduced to the well-known analytic
solutions expressed in terms of Hermite polynomials. The
use of ladder operators also provides necessary tools in the
field theories, since the dynamical degrees of freedom of
bosonic-free fields are decomposed into those of infinite
harmonic oscillators.

In comparison with HOs, the physical applications of
the repulsive harmonic oscillators (RHOS)1 are limited, since
the Hamiltonian of RHOs is parabolic and its eigenstates
are scattering states. The algebraic approaches to RHOs,
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however, have been tried from a few different viewpoints:
the dynamical groups including RHOs [3,4], the analytic
continuation of angular velocity @ — +iw in HOs [5-7], the
Bose systems in SUSY quantum mechanics [8,9], and so on.

On the other hand, it is known that the eigenvalue
problems of the RHO Hamiltonian are reduced to solve
Weber’s equation, which has analytic solutions, so-called
parabolic cylinder functions, or the Weber functions
[10,11]. The relation between the algebraic approaches
to RHOs and the analytic solutions, however, is not always
clear. It is also important to study the completeness of the
states constructed out of the algebraic approaches, since the
trace calculations in physical applications require such a
property of those states. The purpose of this paper is, thus,
to give a simple algebraic approach to the eigenvalue
problems of RHOs by introducing Hermitian ladder oper-
ators (A, A) characterized by [A, A] = i.

We can show that the dynamical variables of RHOs
can be represented in the functional spaces constructed out
of (A, A) with two cyclic states (¢, ¢) satisfying Agpy =
Ay = 0 [12]. Here, the {A"¢},} and {A"¢}(n € N) are
conjugate states which form orthonormal pairs, though
those themselves are not square integrable. Those pairs
become complex conjugate of each other in the x repre-
sentation. As the result, those states form a discrete basis of
a space of functionals @*, which includes the Hilbert space
‘H for the RHO. It is also shown that there exist continuous
bases {¢,., ¢, } (6 € R) in ®*, which are respective eigen-
states of A and A.

In the next section, we study those continuous and
discrete bases given in terms of the ladder operators with
their cyclic states. In that place, the completeness of those
bases is discussed carefully. The discussions are also made

Published by the American Physical Society
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on the eigenvalue problems of the RHO Hamiltonian by
considering the relation between the ladder operator for-
malism and the well-known analytic solutions.

In Sec. III, we discuss the applications of the present
ladder operator formalism to two topics: one is a problem
of charged particles under a constant electric field, the
problem of the Schwinger effect [13]. This dynamical
system is equivalent to RHO and the discrete basis in the
ladder operator formalism is shown to be useful to evaluate
that effect. As another topic, we study an extension of
RHOs to a model of supersymmetry (SUSY) quantum
mechanics by taking the advantage of the ladder operator
formalism, though such an extension has been discussed
from the early stages of RHOs. We focus our attention on
the fact that the Schwinger effect for fermions is closely
related to such an extended model.

Section IV is devoted to the summary of our results. In
the Appendixes, some mathematical problems used in the
text are discussed: the analytic solutions of Hamiltonian
eigenstates, a proof of completeness, and the evaluation of
the Schwinger effect for fermions.

II. LADDER OPERATORS IN REPULSIVE
HARMONIC OSCILLATORS

A. Summary of standard harmonic oscillators

To begin with, we summarize the ladder operator
approach to the problems of the usual harmonic oscillator,
to which the Hamiltonian operator of a mass m particle with
the characteristic frequency @ of the oscillation in one-
dimensional space is given by

N 1 2 ) L1
H:%ﬁu%xz :7“’(&*&+aaw = hw<N+§>,

(1)
where N = aa and

a=4/— ,
2h tha)p

op Mmoo i .

a’'=./—3x- . 2
2h V2mho @)

By definition (®|N|®) = |[a®||> > 0; then, because of
[a,a] = 1, one can verify that [H,a'] = hwa', [H, 4] =
—hwa, and |[H®|| > on a state ® normalized so that

|®||? = 1.7 This means that starting from the ground state
@, defined by a®, = 0 with ||®,||> = 1, the states
1

q)n - ﬁ&}nq)o

(n=0,1,2,3,...) (3)
satisfy the eigenvalue equations

AP = (@2 |@) > (@]H|@) = (hw)*((D|V|®) +3)°.

HD, = ha)<n+%>q>n (n=0,1,2,3,...), (4
and the normalization (®,|®,,) = §,,,. The importance is
that the states {®,} really form a complete basis of the
functional space V, in which the canonical operators (%, p)
are represented. Namely, in terms of the bra and the ket
states, the operator

=Y (0,0, 5)
n=0

is the unit operator in the functional space V and one can
verify

(x|’ = 6(x = ), (6)

where {|x)} are the eigenstates of X characterized by %|x) =
x|x) and (x|x") = &(x — x), (x, X € R). Furthermore, if it is
necessary, the x representation of ®,, can be written explicitly
in terms of the Hermitian polynomial H,(x) so that

®,(x) = (x|®@,) = /55 \/%e_m‘”"z/%Hn(x\/m).

B. The case of repulsive harmonic oscillators

Now, for a repulsive harmonic oscillator, the
Hamiltonian operator H, is given from H in Eq. (1) by
changing the sign of %3%2; and, a complete basis in the
same functional space V, by means of new ladder operators
can be constructed in roughly parallel with Egs. (1)-(6).
Namely, one can start with the expression

N 1 maw? ho - _
H =—p>——32=——(AA + AA 7
=5 =R = =D (AA AR, ()
where
A= mw ., 1 .
\V2n tha)p’
- maw 1
=4 /—X+ D. 8
2h V2mho ®)

By definition, A and A(# A") are Hermitian operators
themselves; however, they satisfy a similar algebra as that
of (a,a") such as [A,A] = —[A, A] = i. Further, in terms of
(A,A), the Hamiltonian operator A, can be written as’

*In terms of the ladder operator (&,a") defined in Eq. (1),
the Hamiltonian operator (7) can be represented as H, =
— 10 (2™ + a2). From this expression, carrying out the successive
canonical (# unitary) transformations by U, = e and
U, = ¢~ one can find the relation between A, and A such
that U,U, H,U7'U;" = iH. The eigenvalue problem of H,, thus,
can also be solved in terms of (&,a") and these canonical
transformations.
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A 1 -1

H, = —ihw <A + 5) = —ihw (A — 5), (9)
where

A=—iAA and A= —iAA(: A+1). (10)

Since AT = —A — 1(A" = —A + 1), the Hermiticity of the
operator H, given in Eq. (9) is formally guaranteed.
The eigenvalue problem of H, is, thus, reduced to those

of the operators A and A(# A"), which are commutable
with each other.

In order to solve the eigenvalue problem of A and A, let
us introduce eigenstates (¢,, ¢,) defined by

Imw 1 . B
A¢a: ( ﬁx_mp)dk_aqﬁm (11)

- - mo ., 1 N\ - -

Ag, (x/ Tt mp)d»,, ofo. (12)
where the ¢ is a real parameter. Then, the particular states
(¢ho» o) defined by Agpy = Agpy = 0 should be regarded as
the counterparts of @, in the HO. It should be noticed that
in spite of the similarity of Eq. (11) to the coherent state
equation in the HO, the index ¢ of ¢, runs over the real
continuous spectrum due to the Hermiticity of A and the
same is true for ¢,.

In the x representation, Egs. (11) and (12) can be solved
explicitly, and we obtain

+] mw

Oo (x) = Y hl

a)ﬁ(x) = 4/_2n;1w26—i%x2+i %a’x’ (14)
T

where the normalizations of those states are (¢,|¢,) =
(psls) = 6(6 —&'). In this x representation, because of
Do (x) = (xldpg) = ¢o(x)" = (x|p5), the “bar” becomes
simply complex conjugation, and the functional space of
{¢,} coincides with that of {¢,} in the aggregate, though
¢, and ¢, are independent states. Further, one can find the

completeness of (¢, ¢,) in the form

i%xz —i 2mw

7 ax’ (13)

[ dotsiga) @,10) = [ dolld) bl = o).
(15)
Thus, the states {¢,} and their conjugate {¢,} are

continuous complete bases® of the functional space ®*,

“Because of U, (%, p)U;' = (,/%A,\/hmw/_l) with U, =
e~KAHAY) the states |¢,) and |¢,) are unitary equivalents to

|x = /o) and |p = Vhmwo), respectively.

mw

which includes the Hilbert space H for the RHO in the
framework of the Rigged Hilbert space.5

In those continuous complete bases, {¢,} and {¢,},
the aspect of the states (¢, ¢y) € @ satisfying Ag, =
Agy = 0 are characteristic. First, the (¢, ¢,) should be
regarded as the counterparts of the ground state @ in the
HO. Second, those states become cyclic states of @ in the
following sense: Writing ((j)(o),g;ﬁ(())) = (¢ho» o), one can
verify that the states defined by

by =A"o) (D) =A"(0)) (n=0,1,2,...)
(16)

satisfy the eigenvalue equations

Apy =y (Apy = —nd,y). (n=0,1,2,...).
(17)

Namely, on the states (¢, (Zﬁ(,,)), the Hamiltonian operator
H, takes discrete eigenvalues (Fig. 1) such that

I:Irfﬁ(n) = —iha)(n + %)gb(n)

- . . }, (n=0,1,2,...), (18)
Hr¢(n) = zha)(n +§)¢(n)

which means that there are no ground states for H, as
expected from its nonpositive structure.

Those {¢(,). ¢} are the generalized eigenstates
belonging to @ instead of the Hilbert space for the
RHO. What is important is that the states {¢,)} and their

conjugate {qZ(,l)} are orthogonal each other under the inner
product, which can be determined from the algebra of

(A, A) and the normalization (éﬁ(o) ) =Ny = \/% only.
Indeed for m = n + I(I > 0), one can verify

(D) = (bo)|A'A"A"|¢hq))
in( o) |ATA" A" b))

co = 1"nlgo) A b)) (19)

which leads to (¢, |¢(,)) = 0(m > n); the same is true for
the case m < n. Thus, the inner products between any m, n
states can be written as

<§$(m) |¢(n)> = 5m,nNrL (Nn = inn!NO)7 (20)

SFor the quantum mechanics dealing with a continuous
spectrum, the rigged Hilbert space [14,15] @ C H C ®* is
useful to include continuous bases in the framework. Here, H
is the Hilbert space with a countable orthonormal basis such as
the {®, } in HOs. The ® is a dense subspace of H associated with
a topology finer than that of H: and the ®* is the dual space of ®.
The {|¢,)}, {|¢,)}, and {|x)} are continuous bases of d*.
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FIG. 1. There are many types of complete bases in the
representation space of H,. On the discrete bases ((},’)(,,),qfﬁ(n)),

the A , takes the eigenvalues shown in the figure on the left of the
vertical axis.

which gives the meaning of {z])(n)} without depending on
the representation. Here, the complexity of N,’s again
implies that the {¢b,,), ¢, } are not bases in a Hilbert space

in spite of the resemblance between those states and {®, }
in the HO.
Nevertheless, Eq. (20) suggests that the operator

n 2. 1 -

plays the role of a unit operator in {¢,} space. The
expectation I, = 1, can be confirmed through the equation

which can be verified using ’5\',’—“) =

~ =y In a similar way,
n+ n

one can derive A, = I,A. Since A and A are composing
elements of dynamical variables in RHOs, one can say
I, = cl, (¢ = const) in the sense of Schur’s lemma. Here,
the constant in the right-hand side is necessary to be ¢ = 1
because of 1,,|$ o)) = ¢ (o)) by Eq. (20). In Appendix B, we
will show directly

(el ) = 8(x = ), (23)
which says that the imaginary parts of each term in the
right-hand side of Eq. (23) are cancelled out by the
summation with respect to n. Thus, by taking into account
(160D DT = ld()) (d(w] and 17 = 1, Eq. (21) is equiv-
alently represented as

(24)

(o]
=> 5o
n=0''n

from which one can write the spectral decomposition of H,
so that

L &a—ih 1 i
re w ) (D) (25)
n=0 n
S iho(n+3)
- ;% D)) (D) (26)

The resultant equations, (24)—(26), also have the meaning
independent of the representation equation (21). Since
H = H,, two types of spectral decomposition, (25) and
(26), are consistent and ((]5(0), ‘}(0)) are not ground states
corresponding to any lower bounds of H, but rather, to the
cyclic states of @*.

The states {¢(,), ()} form a discrete basis of @* in
pairs in addition to those that are generalized eigenstates of
H,. The eigenstates of H, are not limited to those states;
we emphasize that the discrete basis {¢/,). (}5(,,)} is closely
related to Weber’s functions, which are continuous eigen-
value solutions for an eigenvalue equation of H,, by means
of the analytic continuation with respect to n. In order to
verify this, we take notice of the formula for a complex 4:

- 1 © _
A _ — dte—Att—(M-l) 27
=y &)

1 / ), Jmme L3
=— dir ) =i o=V ES P (28
0 s (28)

Here, Eq. (27) seems to hold on to the states such as
{¢,:6 > 0}, on which A becomes an operator with positive
eigenvalues. Applying Eq. (28) to ¢ (x), such a constraint
will fade away in the sense of analytic continuation and we
obtain the expression

Jmo 1

[T a
202> T(=1) A

maw

X t_(j""_l) _ﬁtze_t Xel’;;l)()H»lt 2mw)2

Zmu
in maw e 4
= e} d—
2hn?

e_;<e 4 /2:20)

= [0, 2). (29)

where 7= ¢%t and z = 7%/ 2"—f§“’x. The last equality in
Eq. (29) shows the relationship [16] between A*¢ g (x) and

Aty (x) =

x 7~4+1) o=
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Weber’s function D,(z) (Appendix A). In a similar manner,
one can verify that

7 _in, 4 M@ .
Al (x) = e % f/zhﬂsz(lz), (30)

which can be regarded as the analytic continuation of the
relation ¢, (x) = () (x) with respect to n. We note that if

the A in Eq. (29) and the p in Eq. (30) give the same

eigenvalue of 2=, then A +4 = —(p+3) or p = —(A+ 1).
Therefore, D;(z) and D_;,)(iz) are independent eigen-
states of ’;Z; belonging to the same eigenvalue 1 + % This is
a well-known result of discrete eigenstates in the eigenvalue
problem of RHOs [10,11]. In terms of Weber’s D function,
the completeness condition (23) can also be represented as

o0 1 .
T ) = iy () iy ()
n=0 n
B ;]:/_” (%)2 ”(Z)Dn(lzl)* (31)

In summary, the complete bases {¢,(x)} and {¢,(x)}
are respective eigenstates of A and A belonging to con-
tinuous eigenvalues {o € R}, but those are not eigenstates
of H,. On the other hand, the eigenstates {¢, (x). ¢, (x)}
are eigenstates of A, with discrete eigenvalues correspond-
ing to the analytic continuation @ — +i® of the eigenval-
ues in Eq. (4). The {¢ ) (x)cZI(,,) (x)} form a discrete basis of
@* in pairs. The {D,(z); 41 € R} are analytic solutions of
an eigenvalue equation for A ,; another aspect of D, (z) is an
analytic continuation of ¢, (x) with respect to n. The

eigenstates {¢h,)(x). ) (x)} and {D,(z),D,(iz)} stand
on the same footing as scattering states of A, unless any
boundary conditions are added.

III. TOPICS RELATED TO THE PRESENT
RHO FORMALISM

The complete bases {¢,} or {4, g?ﬁ(,l)} based on ladder
operator (A, A) give us useful ways to handle the problems
related to RHOs; in what follows, we exhibit two simple
examples.

A. Schwinger effect

We note that the RHO is effectively realized by a particle
interacting with a specific gauge field. Let us consider the
scalar field @ in four-dimensional spacetime for mass m
particles under gauge fields A* satisfying6

°diag(n,,) = (= + ++).

A A

M AA) + (mePlox) =0, (32)
where [T#(A) = p* — 9A¥ and g = =£|e|. We here set up the
gauge potentials in such a way that (A%(x),A.(x)) =
(=Ex!',0)(E = const > 0), which produces the uniform
electric field E along the x! direction. Then,

M(A.)? = 2mHo + 3, (33)
where p; = (P, p3) and
N 1 1 [le|E\2 c 2
Hy=—p>—— (2= Lo 500 . (34
01 =5 P 2m< . ) XA EP (34)

Further, in terms of the canonical variables defined by the
. . L) p0p!
unitary transformation, Uy = eiGEP' P! g0 that

(X) = (Upx*Ug') = (xo S pl +iﬁ°,x2,x3>,

gE gE
(35)
(P") = (Uep*UE") = (M) (36)
the Hamiltonian operator (34) can be written as
. 1 . ma?
Hy = —P1——X2, 37
o1 =5 1 7 (37)

where the angular frequency is defined by w = % This
means that the H; is just the Hamiltonian of the RHO
defined in the phase space (X*, P*).

Now, the classical action of the gauge field under
consideration is Sg[A.] =1 [d*xE? and the one loop
correction due to the scalar field ® adds the quantum effect
SolA] = —iflog{det(TI(A.)> + (mc)®)}™' to Sg[A.].
The resultant effective action of gauge fields S.[A.] =
SGlAc] + SglA.] becomes

o . . .
Scff[Ac] _ SG[AC] _ lfl/ —Te_”((mc>2_’€)tr(e_lTH[Ac]z))
0 T

(38)

disregarding unimportant additional constant. Namely,
under the classical background gauge field A%, the scalar
QED gives rise to the transition amplitude (0;,[04y) ~
NeiSerlAd(|N|?> = 1), which defines an unitary S-matrix
element for a real Si[A.]. If the S matrix contains pair
productions, under which the state of the electric field is
constant in time, then ImS.[A.]# 0 and we have

"In the expression of SplA.], use has been made of the
well-known formulas {det(M)}~! = e™"°¢M and trlogM =
—tr [ 4r e~ M=) (1 const).
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{04 0gue) |2 ~ e #mSeAc] £ 1. This ratio, the Schwinger
effect, can be evaluated by calculating the “trace” in Eq. (38).
For this purpose, it is convenient to use {|X°) ®

g (X")) ® |X )} as the base states in the trace calcu-
lation._ Then, by taking 1=377,5 lp()) (h(ny| and
JdX'p(X')* ¢y (X') = N, into account, we obtain

1 odr . .
EImSCff[AC] = —Re/ _Te—l‘r((mc)z_ze)
0 T

x tr(e—ir(zmﬁm+i’i))

— —Re /°° ﬂe—if((mc)z—ie) Z e—erhw(nJr%)
0 ’ n=0

« / dXOX ,5(0) Q/%)z (39)

Putting here Vo ~ [dX°, V| ~ [d*X as cutoff volumes
in X%, X, spaces, respectively, the right-hand side of this
equation becomes, with ¢ = 40,

i © dr e—ir(mc)2

hs =6(0)V,V  Re| —= 29 (B
rhs 0)VoVy e<4ﬂh2[ T22sinh(rmfla))>
z'(mc)2P/°° dz e

1677 s 2% sinh (z 22

n=1

= 6(O)VOVL

=6(0)VyV, —— )
(0)Vo L8722 \m2ec n? ¢

(40)

where the P denotes the principal value in the z(= 7(mc)?)
integral. Further, since mc and % play, respectively, the
roles of typical momentum and the length in this system,
we may put

dP’ ., mc me
5(0) = ip0.o 1 ~ X!
(0) /2meh wn V' h <V1 /d )
(41)

and so 5(0) VO Vl ~ V(4) % with V(4) = V()V] VL'

Therefore, we finally arrive at the expression

1
% ImS off 3 .

n

V(Y S
167372 \m?c -

(42)

The result just coincides with the formula of the pair
creation given by Schwinger for scalar QED [13,17].

B. Extension to SUSY quantum mechanics

The present ladder operator formalism of RHOs is easily
extended to one of SUSY quantum mechanics [18-21]. To
this end, let us introduce the Fermi oscillators characterized
by {b.b"}=1,b>=b">=0, which can be represented in
two-dimensional vector space so that

0 0 0 1
b= , b = .
1 0 0 0
In terms of (b, b"), the supersymmetric extension of H,
should be

(43)

. , . . (A O
H, = —ihw(—iAA + b'h) = —ihw . (44)
0 A
Then the generators of SUSY transformation defined by

0 = —iVhwAb = \/%(8 _SA>,

Q:—i\/%/ib:\/%( QA 8), (45)
—i
are characterized by the algebras
[0.A] = {0.b"} =0,
[0.A] = Vhwb',  {0.b} = —iVAwA, (46)
[0.A] ={0Q.b} =0,
[0.A] = —Vhob,  {0,b"} = —-iVhoA, (47)

and

[0.7]=[0.7]=0. {0.0}=",. (48
If we introduce Q, = %(Q + Q) and Q, = \/LE(Q -0),
the last equations can also be written as

{Qia Qj} = 5:'/7:@’ (i,j = 1,2)- (49)
Those algebras should be compared with that of N =2
SUSY quantum mechanics, though Q; (i = 1, 2) are not
Hermitian operators. The zero-point oscillation of 7:(, is
removed by this supersymmetry.

In spite of the formal resemblance of the present
dynamical system to SUSY quantum mechanics of HOs,
the true nature of both dynamical systems are fairly
different as can be seen from Q # QF, the nonpositive
structure of 7:(,, and so on. On the discrete complete basis
{d ) $(n)}. the eigenvalue equation H,|¢pr) = E|¢pg) can
be solved easily: for n = 1,2, ...,
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E; = —ihwn doublet

o~ ( ;ﬂ)) ) ® )

#7) = F|¢n>—(_#§¢“’) (50)

E;, = ihwn doublet

where |-) = (8) and |+) = (é) Here, the mapping
p) = \/le”7|¢Z>, (n>1) can be

) = i\/%kﬁn*), and so the states |¢;), (n=1,2,...)
form a tower of super pairs. In the same sense, the states
|5, (n = 1,2, ...) form another tower of super pairs.

In contrast, the states |¢p5) and |¢]) belonging to the
same eigenvalue Ei =0 are two super singlets, which
satisfy Q;¢5) = Qil¢g) =0, (i = 1, 2). Therefore, in the
space of states {|¢g),{|¢F)}}, the supersymmetry is
realized as a good symmetry; that is, SUSY is not broken.
The same is true for the space of states {|¢), {|¢)}}. In
each space, the operators Q; work as the generators of
supersymmetry; however, there arises no mapping between
those two spaces by Q; (Fig. 2).

In the context of this SUSY quantum mechanics, we
emphasize the following: in the Schwinger effect for
fermions, the SUSY quantum mechanics of the RHO plays
an effective role in its background; that is, topics III.A and
IL.B are not independent in this effect.

The Dirac field V¥ interacting with an external gauge field
A¥ obeys the U(1) symmetry field equation®

inverted by

(r - T(A) + mc)¥ =0 (y-TI(A) = p,I1(A)).  (52)
When we multiply this equation by —(y - [1(A) — mc) from
the left, the field equation becomes the second order form
such that

[~(7 - T1(A))* + (me)’]¥ = 0. (53)

Here, if we use the configuration of gauge potentials
(A%(x),A.(x)) = (=Ex',0) as in Eq. (33), then with ¢** =

flr*.v] and F,, = 0),(A.),, we obtain

¥The gamma matrices are normalized so that {y#, y*} = =25,

A

> T |¢3)
Lt e
1o ) -~ -

FIG. 2. The eigenvalues of 7, in an extended SUSY quantum
mechanics are illustrated. The states with the superscript + are
pair states mapped by Q or Q. The states |¢; ) and | ) are fixed
states under those mapping.

N A hg
_(}/ : H(Ac))z = H(Ac)z - 70/41/1:}“/
=TI(A,)? - hg o1
c

N n
=2mH,, +ﬁi—7g(i01 ®oc)E.  (54)

Carrying out the unitary transformation in 4-spinor space
by U = ¢ @ €7, Eq. (54) becomes

y-TI(A)?UT
1
= { <—1AA + 2)] — mhwic; ® o3 + p?

(—zAA+bTb 0 )} e
—iAA+ ot )] TP

(55)

_ F lelE
where we have used 63 ® 63 =03 ® [b",b] and w = e

as before. The result implies that the spectra of upper
components of ¥ = UW¥ are those of the supersymmetric
Hamiltonian 7:(,; on the other side, the spectra of lower
components of ¥ are governed by ., which is obtained
from 7, changing the role of (b,b'). Thus, one can
evaluate the Schwinger effect for fermions again according
to the procedure of Egs. (39) and (40) (Appendix C).

IV. SUMMARY

In this paper, we have discussed the eigenvalue problems
of RHOs in terms of ladder operators (A, A) introduced by
an analogous way to the ladder operator (@, a") in HOs.
The nonpositive property of the Hamiltonian operator A, in
RHOs is a result of the property of ladder operators such as
AT=A, AT=A, and [A,A] =i. Then, the eigenstates
A¢, = o¢, and A, = 6¢,(c € R) are able to normalize
so that (¢,|py) = (¢p,|d,) = 6(c —’). Namely, the
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{¢s, ¢} are continual bases of the space of functionals ®*
including the Hilbert space H of the RHO in the framework
of rigged Hilbert space. Those continual bases are not
eigenstates of H,, but rather the states related to {|x), |p)}
by a unitary transformation.

On the other hand, the states ¢(,) = A”q’)(o) and &5(,,) =

Ay (n € N) with (¢, P(0)) = (o, o) are eigenstates
of H, belonging to the eigenvalues =ihw(n+1).
Since those states satisfy the normalization of the form
(@ (m)|D(n)) = OnNy» it can be shown that the {¢ (). P(n) }
form a discrete complete basis of @ in pairs. Contrary to
this, the discrete eigenstates {®,,} of the Hamiltonian for a
HO are the basis of a Hilbert space.

We can also show that Weber’s D functions, the special
functions known as analytic solutions of the eigenvalue
equation for A, with continuous eigenvalues, are obtained
by means of the analytic continuation of {¢,). (}5(,,)} with

respect to n. The D functions and {¢,), JJ(n)} stand on the

same footing as the scattering states of H, unless any
boundary conditions are added.

As good applications of this ladder operator formalism,
we have shown two topics: the Schwinger effect in scalar
QED and an extension of RHO to SUSY quantum
mechanics. In the first, the Hamiltonian of particles
interacting with a constant electric field is shown to be
canonically equivalent to one of RHOs and so the knowl-
edge of RHOs is useful to handle the problem of pair
production by the electric field. Indeed, it has been shown
that the discrete complete bases {¢(,)., &)(n)} characterized
by Eq. (21) give a simple way to evaluate such a production
rate within the framework of quantum mechanics.

Second, we have tried to extend the present RHO system
to a supersymmetric dynamical system; the extended
Hamiltonian 7:[, is again a nonpositive Hermitian operator
constructed out of fermionic oscillators (b, b') and ladder
operators (A, A). The ladder operator formalism gives rise
to two towers of super-pair states |¢F) and @)
(n=1,2,...), which belong to the eigenvalues E, =
—ihwn and E;, = ihwn, respectively. In addition to this,
the n = O states |¢y) and |¢]) exist as two singlet states,
which satisfy Q;|¢g) = Q;|dg) = 0, (i = 1,2). Namely, in
each space of super-pair tower states, SUSY is realized as a
good symmetry, though the SUSY in this model is an
extended concept from the standard one as can be seen
from Q] # Q;.

Furthermore, we have brought up the following: if we
consider the Dirac fields interacting with an external electric
field, then the supersymmetric structure of RHOs will be
implicitly included in a loop effect of those Dirac fields.
According to this line of approach, we have shown the way
to evaluate the Schwinger effect for fermions in Appendix C.

The knowledge on the complete bases in RHOs under
the ladder operator formalism is expected to give useful

tools in various problems other than the topics discussed in
this paper. For example, the Hamiltonian ﬂ, is able to take
continuous eigenvalues on the states (¢,, ¢,); in the space
of those eigenstates, the SUSY may show a different feature
from the standard analysis. Those are interesting future
problems.
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APPENDIX A: WEBER’S FUNCTIONS
AS THE ENERGY EIGENVALUE FUNCTIONS
FOR THE RHO

We here summarize the standard way to make the
eigenvalue functions of the RHO reduce to Weber’s
functions.

In the x representation with p = —i# % the eigenvalue
equation of H, can be written as

( & mo

2
ma” 5 _ _
e 2 " E)I/IE()C) 0. (A1)

Introducing here the variable z defined by

w | R > 2mo &®
TN 20 (a’x2 ih dzz)’ (42)
Eq. (A1) with wg(x(z)) = wg(z) gives rise to
i d? iE 1
——xEq.(Al) = [—5+——-22 =0. (A3
B (AL = (44 ae =12 Jws(e) =0, (A

Writing i£ = 2 + 1 and wg(z) = w;(z), Eq. (A3) becomes
the standard form of Weber’s equation

Fwil2) | <,1

1 2

+§—Z>wl(z) =0.

For w;(z) = e?ltzzwi(z), Eq. (A4) can also be written as

& d
(Cl,zz—ZdZJrﬂ)Vm(Z) =0.

e (A4)

(AS)

To solve Eq. (AS5), let us use the Fourier-Laplace
representation
w(2) = [ dre5,00), (A6)
r
where I is a path from a to b in the complex ¢ plane. Then

under the integration by parts with respect to ¢, Eq. (AS)
with Eq. (A4) gives
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Zl  Imz

0 » Rez

=

FIG. 3.

Contour C in a complex plane.

G+ (e =0 @

on the condition that [e=*{tf,(1)}]% = 0. Equation (A7)
can be solved easily so that f,(r) = conste™" t~(*+1); since
the boundary conditions are satisfied by (a, b) = (0, o) for
Rel < 0 on the real ¢ axis, and we finally obtain the integral
representation for w,(z) = ¢ ¥ i, (z)(= D,(z)) in such a
form as [16,22]

e [ e )
DA(Z):F(—/I) o M et A
DD e [ b, ()
27i c

where C is the contour given in Fig. 3. It is not difficult to
rewrite the contour integral in Eq. (A9) to the path integral
in Eq. (A8) by taking into account I'(1 + 1) sin(—zA) =
e}

The function D, (z) is Weber’s D function’ (Parabolic
cylinder function) [22], by which the independent solutions
of Eq. (Al) for {£=2+1 are given as D,(z) and
D_;_(iz).

APPENDIX B: ANOTHER PROOF OF I,=1

By the definitions of ¢, and c}ﬁ(,,)

expression

, we obtain the

<x|mx/>=il¢ (o ()"

-\ \/ 2’1;@ Z (e ERA"Y e 5
7’
= mo ee 2AA’* 'M 2€,2hxrz
V 2hn?
= 2_” MO ima ~2iA" /B (A7) jimer? (B1)
i\ 2an?

The D function is normalized so that D,(z),(n =0,1,...)
reduces to e‘izzHe" (z), where {H, (z)} are the Chebyshev-
Hermite polynomials.

Here, we have used the formula e?+? = ¢@ebe—3ab] for
[a. b ) = [[a.b],b] =0, with a= e-—A’* Ty and
b= e TA” \/ﬁ p. Remembering, further,

34" \/ / dle™k kA" (B2)
and using again e@*? = edebe=3al we arrive at

ma) 2 _ me I% w, 12
(x|1,]x) 1/ i3 / dkeF —kA” pigiix
= /3t / dke ¢~V FAVEY
2hn o

i 2?, mn{x /Zrzu —k) /%}2

ma .me.»2 2mw mw 2 | imw. 12
e’zhx X e~ TRxx +z X+
2hn?

x/ dke™ V) —

Therefore, I, is nothing but the unit operator for the present
RHO system.

=6(x—x). (B3)

APPENDIX C: THE SCHWINGER EFFECT
FOR FERMIONS

The action of the Dirac field ¥ obeying Eq. (52) with the
gauge fields A% is Sp[¥,A.] = [d*xP(y - TI(A,) + mc)¥,
(¥ =¥7y"). Then the path integral result Sy[A.]=
—ihlog [ DYDY¥er> = —iATrlog(y - [T+ mc) + const is
the quantum correction to Sg[A.] =3 [d*xE* so that
Sett[Ac] = SG[A:] + SplA.] becomes the effective action

of A... Here, the “Tr” involves the trace over four-component
spinor space. To evaluate the Tr in S,[A_ ], we notice that

C%Trlog[y-fl—F (mc) + a]
_ g~ ) +{(me) +a}
—(y - 11)? + {(mc) + a}?

_ {(mc) +a}
=(r - 1)* + {(mc) + a}’

d 1 dr . . .
S Lt —it=(y 1) +{(mc)+a}>—ie 1
da < 2 I‘/) T ¢ ’ (C )

in consideration of which the trace of odd powers of y
matrices vanishes. Integrating this equation with respect to a
from a; to a,, we obtain

Trlog [y - [T 4 (mc) + ay] = Trlog [y - L1+ (mc) + ay]
:—ITI‘/ dT l‘r{yH +1e}
2 0 T
% [e—ir{(mc)-‘raz}z _ e—ir{(mc)—}—al}z]‘

(€2)
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Setting a, =0 and a; = —(y - I14 mc) + 1, we get the

expression
eit (y11)2

. 1 dr .
Trlog(y - 11 + mc) = _ETr/ ! e—it{(me)*—ie}

0 T

(C3)

disregarding an unimportant additional constant. Then
remembermg Eq. (54) and using eittEd” — = cosh (7 th)—i—
0% sinh (7 hLCE), Eq. (C3) becomes

Trlog(y-TT+mc)

1 oo ¢ hgE
= —5 X 4t1‘/ Te_n(HZJr(mc) —i€) cosh <Ti> (C4)
0 Cc

T

by virtue of the trace of ¢°! vanishes. Here, the “tr”

denotes the trace in the functional space, which yields

—irll* _ 1

= 8(0)VoV 1 () smiemio
the case of scalar QED. Therefore, we arrive at the
expression with € = +0

. E
tre with @ = £ | as in

Trlog(y - X1+ mc)

— —5(0) V()VL

(mc)? /°° dz %
X — , C5
4zih* J.  z* tanh (z22) (©5)

where z = 7(mc)?. The integration with respect to z in
Eq. (C5) can be carried out in the same manner as Eq. (40)
except replacing the residue (—1)" of 1/ sinh(zAw/mc?) by
1 of 1/ tanh(zhw/mc?). The resultant formula correspond-
ing to Eq. (42) in the case of Dirac fields becomes

1 .
A.] = —ReTrlog [y - II(A.) + mc]

EImSeff[
m*  [le|E\2 1 s
~ V( 4)Q 322 8ﬂ3h2 ( ) Z_Z

n-|"’

(Co)

This formula is nothing but the one given originally by
Schwinger [13].
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