
 

Ladder operators in repulsive harmonic oscillator with application
to the Schwinger effect

Kenichi Aouda ,1,* Naohiro Kanda,1,† Shigefumi Naka,1,‡ and Haruki Toyoda2,§
1Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan

Junior College, Funabashi Campus, Nihon University, Funabashi 274-8501, Japan
2Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan

(Received 27 December 2019; accepted 15 June 2020; published 6 July 2020)

The ladder operators in harmonic oscillators are a well-known strong tool for various problems in
physics. In the same sense, it is sometimes expected to handle the problems of repulsive harmonic
oscillators in a similar way to the ladder operators in harmonic oscillators, though their analytic solutions
are well known. In this paper, we discuss a simple algebraic way to introduce the ladder operators of
the repulsive harmonic oscillators, which can reproduce well-known analytic solutions. Applying this
formalism, we discuss the charged particles in a constant electric field in relation to the Schwinger effect;
the discussion is also made on a supersymmetric extension of this formalism.
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I. INTRODUCTION

The algebraic approaches to the potential problems in
quantum mechanics are commonly used ways from the
early state of those fields [1]. In particular, the harmonic
oscillators (HOs) give a good operative example of an
algebraic approach to the eigenvalue problems in terms of
the ladder operators, the annihilation and creation operators
ðâ; â†Þ characterized by ½â; â†� ¼ 1. In such a dynamical
system, the eigenvalue problem of Hamiltonian can be
solved exactly by use of those ladder operators without
depending on the representation of the eigenstates [1,2]
and, if we take the coordinate representation of those states,
the eigenstates will be reduced to the well-known analytic
solutions expressed in terms of Hermite polynomials. The
use of ladder operators also provides necessary tools in the
field theories, since the dynamical degrees of freedom of
bosonic-free fields are decomposed into those of infinite
harmonic oscillators.
In comparison with HOs, the physical applications of

the repulsive harmonic oscillators (RHOs)1 are limited, since
the Hamiltonian of RHOs is parabolic and its eigenstates
are scattering states. The algebraic approaches to RHOs,

however, have been tried from a few different viewpoints:
the dynamical groups including RHOs [3,4], the analytic
continuation of angular velocityω → �iω in HOs [5–7], the
Bose systems in SUSY quantummechanics [8,9], and so on.
On the other hand, it is known that the eigenvalue

problems of the RHO Hamiltonian are reduced to solve
Weber’s equation, which has analytic solutions, so-called
parabolic cylinder functions, or the Weber functions
[10,11]. The relation between the algebraic approaches
to RHOs and the analytic solutions, however, is not always
clear. It is also important to study the completeness of the
states constructed out of the algebraic approaches, since the
trace calculations in physical applications require such a
property of those states. The purpose of this paper is, thus,
to give a simple algebraic approach to the eigenvalue
problems of RHOs by introducing Hermitian ladder oper-
ators ðA; ĀÞ characterized by ½A; Ā� ¼ i.
We can show that the dynamical variables of RHOs

can be represented in the functional spaces constructed out
of ðA; ĀÞ with two cyclic states ðϕ0; ϕ̄0Þ satisfying Aϕ0 ¼
Āϕ̄0 ¼ 0 [12]. Here, the fĀnϕ0g and fAnϕ̄0gðn ∈ NÞ are
conjugate states which form orthonormal pairs, though
those themselves are not square integrable. Those pairs
become complex conjugate of each other in the x repre-
sentation. As the result, those states form a discrete basis of
a space of functionals Φ×, which includes the Hilbert space
H for the RHO. It is also shown that there exist continuous
bases fϕσ; ϕ̄σgðσ ∈ RÞ in Φ×, which are respective eigen-
states of A and Ā.
In the next section, we study those continuous and

discrete bases given in terms of the ladder operators with
their cyclic states. In that place, the completeness of those
bases is discussed carefully. The discussions are also made
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on the eigenvalue problems of the RHO Hamiltonian by
considering the relation between the ladder operator for-
malism and the well-known analytic solutions.
In Sec. III, we discuss the applications of the present

ladder operator formalism to two topics: one is a problem
of charged particles under a constant electric field, the
problem of the Schwinger effect [13]. This dynamical
system is equivalent to RHO and the discrete basis in the
ladder operator formalism is shown to be useful to evaluate
that effect. As another topic, we study an extension of
RHOs to a model of supersymmetry (SUSY) quantum
mechanics by taking the advantage of the ladder operator
formalism, though such an extension has been discussed
from the early stages of RHOs. We focus our attention on
the fact that the Schwinger effect for fermions is closely
related to such an extended model.
Section IV is devoted to the summary of our results. In

the Appendixes, some mathematical problems used in the
text are discussed: the analytic solutions of Hamiltonian
eigenstates, a proof of completeness, and the evaluation of
the Schwinger effect for fermions.

II. LADDER OPERATORS IN REPULSIVE
HARMONIC OSCILLATORS

A. Summary of standard harmonic oscillators

To begin with, we summarize the ladder operator
approach to the problems of the usual harmonic oscillator,
to which the Hamiltonian operator of a massm particle with
the characteristic frequency ω of the oscillation in one-
dimensional space is given by

Ĥ ¼ 1

2m
p̂2 þmω2

2
x̂2 ¼ ℏω

2
ðâ†âþ ââ†Þ ¼ ℏω

�
N̂ þ 1

2

�
;

ð1Þ
where N̂ ¼ â†â and

â ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r
x̂þ iffiffiffiffiffiffiffiffiffiffiffiffiffi

2mℏω
p p̂;

â† ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r
x̂ −

iffiffiffiffiffiffiffiffiffiffiffiffiffi
2mℏω

p p̂: ð2Þ

By definition hΦjN̂jΦi ¼ kâΦk2 ≥ 0; then, because of
½â; â†� ¼ 1, one can verify that ½Ĥ; â†� ¼ ℏωâ†; ½Ĥ; â� ¼
−ℏωâ, and kĤΦk ≥ ℏω

2
on a state Φ normalized so that

kΦk2 ¼ 1.2 This means that starting from the ground state
Φ0 defined by âΦ0 ¼ 0 with kΦ0k2 ¼ 1, the states

Φn ¼
1ffiffiffiffiffi
n!

p â†nΦ0 ðn ¼ 0; 1; 2; 3;…Þ ð3Þ

satisfy the eigenvalue equations

ĤΦn ¼ ℏω

�
nþ 1

2

�
Φn ðn ¼ 0; 1; 2; 3;…Þ; ð4Þ

and the normalization hΦnjΦmi ¼ δn;m. The importance is
that the states fΦng really form a complete basis of the
functional space V, in which the canonical operators ðx̂; p̂Þ
are represented. Namely, in terms of the bra and the ket
states, the operator

Î ¼
X∞
n¼0

jΦnihΦnj ð5Þ

is the unit operator in the functional space V and one can
verify

hxjÎjx0i ¼ δðx − x0Þ; ð6Þ
where fjxig are the eigenstates of x̂ characterized by x̂jxi ¼
xjxi and hxjx0i ¼ δðx − x0Þ; ðx; x0 ∈ RÞ. Furthermore, if it is
necessary, the x representation ofΦn can be written explicitly
in terms of the Hermitian polynomial HnðxÞ so that

ΦnðxÞ ¼ hxjΦni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2nn!

ffiffiffiffiffi
mω
πℏ

pq
e−mωx2=2ℏHnðx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mω=ℏ

p Þ.

B. The case of repulsive harmonic oscillators

Now, for a repulsive harmonic oscillator, the
Hamiltonian operator Ĥr is given from Ĥ in Eq. (1) by
changing the sign of mω2

2
x̂2; and, a complete basis in the

same functional space Vr by means of new ladder operators
can be constructed in roughly parallel with Eqs. (1)–(6).
Namely, one can start with the expression

Ĥr ¼
1

2m
p̂2 −

mω2

2
x̂2 ¼ −

ℏω
2

ðĀAþ AĀÞ; ð7Þ

where

A ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r
x̂ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mℏω

p p̂;

Ā ¼
ffiffiffiffiffiffiffi
mω

2ℏ

r
x̂þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mℏω
p p̂: ð8Þ

By definition, A and Āð≠ A†Þ are Hermitian operators
themselves; however, they satisfy a similar algebra as that
of ðâ; â†Þ such as ½A; Ā� ¼ −½Ā; A� ¼ i. Further, in terms of
ðA; ĀÞ, the Hamiltonian operator Ĥr can be written as3

2kĤΦk2 ¼ hΦjĤ2jΦi ≥ hΦjĤjΦi2 ¼ ðℏωÞ2ðhΦjN̂jΦi þ 1
2
Þ2.

3In terms of the ladder operator ðâ; â†Þ defined in Eq. (1),
the Hamiltonian operator (7) can be represented as Ĥr ¼
− ℏω

2
ðâ†2 þ â2Þ. From this expression, carrying out the successive

canonical (≠ unitary) transformations by U1 ¼ e
i
2
â†2 and

U2 ¼ e−
i
4
â2 , one can find the relation between Ĥr and Ĥ such

that U2U1ĤrU−1
1 U−1

2 ¼ iĤ. The eigenvalue problem of Ĥr, thus,
can also be solved in terms of ðâ; â†Þ and these canonical
transformations.
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Ĥr ¼ −iℏω
�
Λþ 1

2

�
¼ −iℏω

�
Λ̄ −

1

2

�
; ð9Þ

where

Λ ¼ −iĀA and Λ̄ ¼ −iAĀð¼ Λþ 1Þ: ð10Þ
Since Λ† ¼ −Λ − 1ðΛ̄† ¼ −Λ̄þ 1Þ, the Hermiticity of the
operator Ĥr given in Eq. (9) is formally guaranteed.
The eigenvalue problem of Ĥr is, thus, reduced to those
of the operators Λ and Λ̄ð≠ Λ†Þ, which are commutable
with each other.
In order to solve the eigenvalue problem of Λ and Λ̄, let

us introduce eigenstates ðϕσ; ϕ̄σÞ defined by

Aϕσ ¼
� ffiffiffiffiffiffiffi

mω

2ℏ

r
x̂ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mℏω

p p̂

�
ϕσ ¼ σϕσ; ð11Þ

Āϕ̄σ ¼
� ffiffiffiffiffiffiffi

mω

2ℏ

r
x̂þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mℏω
p p̂

�
ϕ̄σ ¼ σϕ̄σ; ð12Þ

where the σ is a real parameter. Then, the particular states
ðϕ0; ϕ̄0Þ defined by Aϕ0 ¼ Āϕ̄0 ¼ 0 should be regarded as
the counterparts of Φ0 in the HO. It should be noticed that
in spite of the similarity of Eq. (11) to the coherent state
equation in the HO, the index σ of ϕσ runs over the real
continuous spectrum due to the Hermiticity of A and the
same is true for ϕ̄σ.
In the x representation, Eqs. (11) and (12) can be solved

explicitly, and we obtain

ϕσðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
mω

2ℏπ2
4

r
ei

mω
2ℏx

2−i
ffiffiffiffiffi
2mω
ℏ

p
σx; ð13Þ

ϕ̄σðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
mω

2ℏπ2
4

r
e−i

mω
2ℏx

2þi
ffiffiffiffiffi
2mω
ℏ

p
σx; ð14Þ

where the normalizations of those states are hϕσjϕσ0 i ¼
hϕ̄σjϕ̄σ0 i ¼ δðσ − σ0Þ. In this x representation, because of
ϕ̄σðxÞ ¼ hxjϕ̄σi ¼ ϕσðxÞ� ¼ hxjϕ�

σi, the “bar” becomes
simply complex conjugation, and the functional space of
fϕσg coincides with that of fϕ̄σg in the aggregate, though
ϕσ and ϕ̄σ are independent states. Further, one can find the
completeness of ðϕσ; ϕ̄σÞ in the formZ

dσhxjϕσihϕσjx0i ¼
Z

dσhxjϕ̄σihϕ̄σjx0i ¼ δðx − x0Þ:

ð15Þ
Thus, the states fϕσg and their conjugate fϕ̄σg are
continuous complete bases4 of the functional space Φ×,

which includes the Hilbert space H for the RHO in the
framework of the Rigged Hilbert space.5

In those continuous complete bases, fϕσg and fϕ̄σg,
the aspect of the states ðϕ0; ϕ̄0Þ ∈ Φ× satisfying Aϕ0 ¼
Āϕ̄0 ¼ 0 are characteristic. First, the ðϕ0; ϕ̄0Þ should be
regarded as the counterparts of the ground state Φ0 in the
HO. Second, those states become cyclic states ofΦ× in the
following sense: Writing ðϕð0Þ; ϕ̄ð0ÞÞ ¼ ðϕ0; ϕ̄0Þ, one can
verify that the states defined by

ϕðnÞ ¼ Ānϕð0Þ ðϕ̄ðnÞ ¼ Anϕ̄ð0ÞÞ; ðn ¼ 0; 1; 2;…Þ
ð16Þ

satisfy the eigenvalue equations

ΛϕðnÞ ¼ nϕðnÞ ðΛ̄ϕ̄ðnÞ ¼ −nϕ̄ðnÞÞ; ðn ¼ 0; 1; 2;…Þ:
ð17Þ

Namely, on the states ðϕðnÞ; ϕ̄ðnÞÞ, the Hamiltonian operator

Ĥr takes discrete eigenvalues (Fig. 1) such that

ĤrϕðnÞ ¼ −iℏωðnþ 1
2
ÞϕðnÞ

Ĥrϕ̄ðnÞ ¼ iℏωðnþ 1
2
Þϕ̄ðnÞ

)
; ðn¼ 0;1;2;…Þ; ð18Þ

which means that there are no ground states for Ĥr as
expected from its nonpositive structure.
Those fϕðnÞ; ϕ̄ðnÞg are the generalized eigenstates

belonging to Φ× instead of the Hilbert space for the
RHO. What is important is that the states fϕðnÞg and their
conjugate fϕ̄ðnÞg are orthogonal each other under the inner
product, which can be determined from the algebra of

ðA; ĀÞ and the normalization hϕ̄ð0Þjϕð0Þi≡ N0 ¼
ffiffiffiffi
i
2π

q
only.

Indeed for m ¼ nþ lðl > 0Þ, one can verify

hϕ̄ðmÞjϕðnÞi ¼ hϕ̄ð0ÞjAlAnĀnjϕð0Þi
¼ inhϕ̄ð0ÞjAlAn−1Ān−1jϕð0Þi
¼ � � � ¼ inn!hϕ̄ð0ÞjAljϕð0Þi; ð19Þ

which leads to hϕ̄ðmÞjϕðnÞi ¼ 0ðm > nÞ; the same is true for
the case m < n. Thus, the inner products between any m, n
states can be written as

hϕ̄ðmÞjϕðnÞi ¼ δm;nNnðNn ≡ inn!N0Þ; ð20Þ

4Because of UAðx̂; p̂ÞU−1
A ¼

� ffiffiffiffiffi
ℏ
mω

q
A;

ffiffiffiffiffiffiffiffiffiffi
ℏmω

p
Ā
�

with UA ¼
e−i

π
8
ðA2þĀ2Þ, the states jϕσi and jϕ̄σi are unitary equivalents to

jx ¼
ffiffiffiffiffi
ℏ
mω

q
σi and jp ¼ ffiffiffiffiffiffiffiffiffiffi

ℏmω
p

σi, respectively.

5For the quantum mechanics dealing with a continuous
spectrum, the rigged Hilbert space [14,15] Φ ⊂ H ⊂ Φ× is
useful to include continuous bases in the framework. Here, H
is the Hilbert space with a countable orthonormal basis such as
the fΦng in HOs. TheΦ is a dense subspace ofH associated with
a topology finer than that ofH: and theΦ× is the dual space ofΦ.
The fjϕσig; fjϕ̄σig, and fjxig are continuous bases of Φ×.
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which gives the meaning of fϕ̄ðnÞg without depending on
the representation. Here, the complexity of Nn’s again
implies that the fϕðnÞ; ϕ̄ðnÞg are not bases in a Hilbert space
in spite of the resemblance between those states and fΦng
in the HO.
Nevertheless, Eq. (20) suggests that the operator

Îr ≡
X∞
n¼0

1

Nn
jϕðnÞihϕ̄ðnÞj ð21Þ

plays the role of a unit operator in fϕðnÞg space. The

expectation Îr ¼ 1, can be confirmed through the equation

AÎr ¼
X∞
n¼1

in
Nn

jϕðn−1Þihϕ̄ðnÞj

¼
X∞
n¼0

iðnþ 1Þ
Nnþ1

jϕðnÞihϕ̄ðnþ1Þj

¼
X∞
n¼0

1

Nn
jϕðnÞihϕ̄ðnÞjA ¼ ÎrA; ð22Þ

which can be verified using iðnþ1Þ
Nnþ1

¼ 1
Nn
. In a similar way,

one can derive ĀÎr ¼ ÎrĀ. Since A and Ā are composing
elements of dynamical variables in RHOs, one can say
Îr ¼ c1; ðc ¼ constÞ in the sense of Schur’s lemma. Here,
the constant in the right-hand side is necessary to be c ¼ 1

because of Îrjϕð0Þi ¼ jϕð0Þi by Eq. (20). In Appendix B, we
will show directly

hxjÎrjx0i ¼ δðx − x0Þ; ð23Þ

which says that the imaginary parts of each term in the
right-hand side of Eq. (23) are cancelled out by the
summation with respect to n. Thus, by taking into account
ðjϕðnÞihϕ̄ðnÞjÞ† ¼ jϕ̄ðnÞihϕðnÞj and 1† ¼ 1, Eq. (21) is equiv-
alently represented as

Îr ¼
X∞
n¼0

1

N�
n
jϕ̄ðnÞihϕðnÞj; ð24Þ

from which one can write the spectral decomposition of Ĥr
so that

Ĥr ¼
X∞
n¼0

−iℏωðnþ 1
2
Þ

Nn
jϕðnÞihϕ̄ðnÞj ð25Þ

¼
X∞
n¼0

iℏωðnþ 1
2
Þ

N�
n

jϕ̄ðnÞihϕðnÞj: ð26Þ

The resultant equations, (24)–(26), also have the meaning
independent of the representation equation (21). Since
Ĥ†

r ¼ Ĥr, two types of spectral decomposition, (25) and
(26), are consistent and ðϕð0Þ; ϕ̄ð0ÞÞ are not ground states

corresponding to any lower bounds of Ĥr but rather, to the
cyclic states of Φ×.
The states fϕðnÞ; ϕ̄ðnÞg form a discrete basis of Φ× in

pairs in addition to those that are generalized eigenstates of
Ĥr. The eigenstates of Ĥr are not limited to those states;
we emphasize that the discrete basis fϕðnÞ; ϕ̄ðnÞg is closely
related to Weber’s functions, which are continuous eigen-
value solutions for an eigenvalue equation of Ĥr, by means
of the analytic continuation with respect to n. In order to
verify this, we take notice of the formula for a complex λ:

Āλ ¼ 1

Γð−λÞ
Z

∞

0

dte−Ātt−ðλþ1Þ ð27Þ

¼ 1

Γð−λÞ
Z

∞

0

dtt−ðλþ1Þe−i
4
t2e−t

ffiffiffiffi
mω
2ℏ

p
x̂e−t

1ffiffiffiffiffiffiffi
2mℏω

p p̂: ð28Þ

Here, Eq. (27) seems to hold on to the states such as
fϕ̄σ; σ > 0g, on which Ā becomes an operator with positive
eigenvalues. Applying Eq. (28) to ϕð0ÞðxÞ, such a constraint
will fade away in the sense of analytic continuation and we
obtain the expression

Āλϕð0ÞðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
mω

2ℏπ2
4

r
1

Γð−λÞ
Z

∞

0

dt

× t−ðλþ1Þe−i
4
t2e−t

ffiffiffiffi
mω
2ℏ

p
xei

mω
2ℏ ðxþit

ffiffiffiffiffi
ℏ

2mω

p
Þ2

¼ e
iπ
4
λ

ffiffiffiffiffiffiffiffiffiffi
mω

2ℏπ2
4

r
e−

1
4
ðe−iπ4

ffiffiffiffiffi
2mω
ℏ

p
xÞ2

Γð−λÞ
Z

∞

0

dt̄

× t̄−ðλþ1Þe−1
2
t̄2e−t̄ðe

−iπ
4

ffiffiffiffiffi
2mω
ℏ

p
xÞ

¼ e
iπ
4
λ

ffiffiffiffiffiffiffiffiffiffi
mω

2ℏπ2
4

r
DλðzÞ; ð29Þ

where t̄ ¼ e
iπ
4 t and z ¼ e−

iπ
4

ffiffiffiffiffiffiffi
2mω
ℏ

q
x. The last equality in

Eq. (29) shows the relationship [16] between Āλϕð0ÞðxÞ and

FIG. 1. There are many types of complete bases in the
representation space of Ĥr. On the discrete bases ðϕðnÞ; ϕ̄ðnÞÞ,
the Ĥr takes the eigenvalues shown in the figure on the left of the
vertical axis.
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Weber’s functionDλðzÞ (Appendix A). In a similar manner,
one can verify that

Aρϕ̄ð0ÞðxÞ ¼ e−
iπ
4
ρ

ffiffiffiffiffiffiffiffiffiffi
mω

2ℏπ2
4

r
DρðizÞ; ð30Þ

which can be regarded as the analytic continuation of the
relation ϕ̄ðnÞðxÞ ¼ ϕ�

ðnÞðxÞ with respect to n. We note that if

the λ in Eq. (29) and the ρ in Eq. (30) give the same

eigenvalue of iĤr
ℏω , then λþ 1

2
¼ −ðρþ 1

2
Þ or ρ ¼ −ðλþ 1Þ.

Therefore, DλðzÞ and D−ðλþ1ÞðizÞ are independent eigen-

states of iĤr
ℏω belonging to the same eigenvalue λþ 1

2
. This is

a well-known result of discrete eigenstates in the eigenvalue
problem of RHOs [10,11]. In terms of Weber’s D function,
the completeness condition (23) can also be represented as

hxjÎrjx0i ¼
X∞
n¼0

1

Nn
ϕðnÞðxÞϕ̄ðnÞðx0Þ�

¼
X∞
n¼0

in

Nn

�
mω

2ℏπ2

�1
2

DnðzÞDnðiz0Þ�: ð31Þ

In summary, the complete bases fϕσðxÞg and fϕ̄σðxÞg
are respective eigenstates of A and Ā belonging to con-
tinuous eigenvalues fσ ∈ Rg, but those are not eigenstates
of Ĥr. On the other hand, the eigenstates fϕðnÞðxÞ; ϕ̄ðnÞðxÞg
are eigenstates of Ĥr with discrete eigenvalues correspond-
ing to the analytic continuation ω → �iω of the eigenval-
ues in Eq. (4). The fϕðnÞðxÞϕ̄ðnÞðxÞg form a discrete basis of
Φ× in pairs. The fDλðzÞ; λ ∈ Rg are analytic solutions of
an eigenvalue equation for Ĥr; another aspect ofDλðzÞ is an
analytic continuation of ϕðnÞðxÞ with respect to n. The
eigenstates fϕðnÞðxÞ; ϕ̄ðnÞðxÞg and fDλðzÞ; DρðizÞg stand

on the same footing as scattering states of Ĥr unless any
boundary conditions are added.

III. TOPICS RELATED TO THE PRESENT
RHO FORMALISM

The complete bases fϕσg or fϕðnÞ; ϕ̄ðnÞg based on ladder
operator ðA; ĀÞ give us useful ways to handle the problems
related to RHOs; in what follows, we exhibit two simple
examples.

A. Schwinger effect

We note that the RHO is effectively realized by a particle
interacting with a specific gauge field. Let us consider the
scalar field Φ in four-dimensional spacetime for mass m
particles under gauge fields Aμ satisfying6

½Π̂μðAÞΠ̂μðAÞ þ ðmcÞ2�ΦðxÞ ¼ 0; ð32Þ

where Π̂μðAÞ ¼ p̂μ − g
c A

μ and g ¼ �jej. We here set up the
gauge potentials in such a way that ðA0

cðxÞ;AcðxÞÞ ¼
ð−Ex1; 0ÞðE ¼ const > 0Þ, which produces the uniform
electric field E along the x1 direction. Then,

Π̂ðAcÞ2 ¼ 2mĤ01 þ p̂2⊥; ð33Þ

where p̂⊥ ¼ ðp̂2; p̂3Þ and

Ĥ01 ¼
1

2m
p̂2
1 −

1

2m

�jejE
c

�
2
�
x1 þ c

gE
p̂0

�
2

: ð34Þ

Further, in terms of the canonical variables defined by the

unitary transformation, UE ¼ e
i
ℏð c

gEÞp̂0p̂1

so that

ðXμÞ ¼ ðUExμU−1
E Þ ¼

�
x0 −

c
gE

p̂1; x1 þ c
gE

p̂0; x2; x3
�
;

ð35Þ

ðP̂μÞ ¼ ðUEp̂μU−1
E Þ ¼ ðp̂μÞ; ð36Þ

the Hamiltonian operator (34) can be written as

Ĥ01 ¼
1

2m
P̂2
1 −

mω2

2
X2
1; ð37Þ

where the angular frequency is defined by ω ¼ jejE
mc . This

means that the H01 is just the Hamiltonian of the RHO
defined in the phase space ðXμ; PμÞ.
Now, the classical action of the gauge field under

consideration is SG½Ac� ¼ 1
2

R
d4xE2 and the one loop

correction due to the scalar field Φ adds the quantum effect
SQ½Ac� ¼ −iℏ logfdetðΠ̂ðAcÞ2 þ ðmcÞ2Þg−1 to SG½Ac�.7
The resultant effective action of gauge fields Seff ½Ac� ¼
SG½Ac� þ SQ½Ac� becomes

Seff ½Ac� ¼ SG½Ac� − iℏ
Z

∞

0

dτ
τ
e−iτððmcÞ2−iϵÞtrðe−iτΠ̂½Ac�2ÞÞ

ð38Þ

disregarding unimportant additional constant. Namely,
under the classical background gauge field Aμ

c, the scalar
QED gives rise to the transition amplitude h0inj0outi∼
Ne

i
ℏSeff ½Ac�ðjNj2 ¼ 1Þ, which defines an unitary S-matrix

element for a real Seff ½Ac�. If the S matrix contains pair
productions, under which the state of the electric field is
constant in time, then ImSeff ½Ac� ≠ 0 and we have

6diagðημνÞ ¼ ð−þþþÞ.

7In the expression of SQ½Ac�, use has been made of the
well-known formulas fdetðMÞg−1 ¼ e−tr logM and tr logM ¼
−tr

R
∞
0

dτ
τ e

−iτðM−iϵÞðþconstÞ.
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jh0inj0outij2 ∼ e−
2
ℏImSeff ½Ac� ≠ 1. This ratio, the Schwinger

effect, can be evaluated by calculating the “trace” in Eq. (38).
For this purpose, it is convenient to use fjX0i ⊗

jϕðnÞðX1Þi ⊗ jX⊥ig as the base states in the trace calcu-
lation. Then, by taking 1 ¼ P∞

n¼0
1
Nn

jϕðnÞihϕ̄ðnÞj andR
dX1ϕ̄ðnÞðX1Þ�ϕðnÞðX1Þ ¼ Nn into account, we obtain

1

ℏ
ImSeff ½Ac� ¼ −Re

Z
∞

0

dτ
τ
e−iτððmcÞ2−iϵÞ

× trðe−iτð2mĤ01þP̂2⊥ÞÞ

¼ −Re
Z

∞

0

dτ
τ
e−iτððmcÞ2−iϵÞ X∞

n¼0

e−τ2mℏωðnþ1
2
Þ

×
Z

dX0d2X⊥δð0Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4πiℏ2τ

r �2

: ð39Þ

Putting here V0 ∼
R
dX0, V⊥ ∼

R
d2X⊥ as cutoff volumes

in X0; X⊥ spaces, respectively, the right-hand side of this
equation becomes, with ϵ ¼ þ0,

rhs ¼ δð0ÞV0V⊥Re
�

i
4πℏ2

Z
∞

ϵ

dτ
τ2

e−iτðmcÞ2

2 sinhðτmℏωÞ
�

¼ δð0ÞV0V⊥
iðmcÞ2
16πℏ2

P
Z

∞

−∞

dz
z2

e−iz

sinh ðz ℏω
mc2Þ

¼ δð0ÞV0V⊥
m2

8π2c2

�jejE
m2c

�
2X∞
n¼1

ð−1Þnþ1

n2
e−

nπc2
ℏ ðm2c

jejEÞ;

ð40Þ

where the P denotes the principal value in the zð¼ τðmcÞ2Þ
integral. Further, since mc and ℏ

mc play, respectively, the
roles of typical momentum and the length in this system,
we may put

δð0Þ¼
Z

dP0

2πℏ
e

i
ℏP

0·0∼
mc
2πℏ

; V1

mc
ℏ

∼1

�
V1∼

Z
dX1

�
ð41Þ

and so δð0ÞV0V⊥ ∼ Vð4Þ
ðmcÞ2
2πℏ2 with Vð4Þ ¼ V0V1V⊥.

Therefore, we finally arrive at the expression

1

ℏ
ImSeff ½Ac� ∼

Vð4Þm4

16π3ℏ2

�jejE
m2c

�
2X∞
n¼1

ð−1Þnþ1

n2
e−

nπc2
ℏ ðm2c

jejEÞ:

ð42Þ

The result just coincides with the formula of the pair
creation given by Schwinger for scalar QED [13,17].

B. Extension to SUSY quantum mechanics

The present ladder operator formalism of RHOs is easily
extended to one of SUSY quantum mechanics [18–21]. To
this end, let us introduce the Fermi oscillators characterized
by fb;b†g¼1;b2¼b†2¼0, which can be represented in
two-dimensional vector space so that

b ¼
�
0 0

1 0

�
; b† ¼

�
0 1

0 0

�
: ð43Þ

In terms of ðb; b†Þ, the supersymmetric extension of Ĥr
should be

Ĥr ¼ −iℏωð−iĀAþ b†bÞ ¼ −iℏω
�
Λ̄ 0

0 Λ

�
: ð44Þ

Then the generators of SUSY transformation defined by

Q ¼ −i
ffiffiffiffiffiffiffi
ℏω

p
Ab† ¼

ffiffiffiffiffiffiffi
ℏω

p �
0 −iA
0 0

�
;

Q̄ ¼ −i
ffiffiffiffiffiffiffi
ℏω

p
Āb ¼

ffiffiffiffiffiffiffi
ℏω

p �
0 0

−iĀ 0

�
; ð45Þ

are characterized by the algebras

½Q;A� ¼ fQ; b†g ¼ 0;

½Q; Ā� ¼
ffiffiffiffiffiffiffi
ℏω

p
b†; fQ; bg ¼ −i

ffiffiffiffiffiffiffi
ℏω

p
A; ð46Þ

½Q̄; Ā� ¼ fQ̄; bg ¼ 0;

½Q̄; A� ¼ −
ffiffiffiffiffiffiffi
ℏω

p
b; fQ̄; b†g ¼ −i

ffiffiffiffiffiffiffi
ℏω

p
Ā; ð47Þ

and

½Q; Ĥr� ¼ ½Q̄; Ĥr� ¼ 0; fQ; Q̄g ¼ Ĥr: ð48Þ

If we introduce Q1 ¼ 1ffiffi
2

p ðQ̄þQÞ and Q2 ¼ iffiffi
2

p ðQ̄ −QÞ,
the last equations can also be written as

fQi;Qjg ¼ δijĤr; ði; j ¼ 1; 2Þ: ð49Þ

Those algebras should be compared with that of N ¼ 2
SUSY quantum mechanics, though Qi (i ¼ 1, 2) are not
Hermitian operators. The zero-point oscillation of Ĥr is
removed by this supersymmetry.
In spite of the formal resemblance of the present

dynamical system to SUSY quantum mechanics of HOs,
the true nature of both dynamical systems are fairly
different as can be seen from Q̄ ≠ Q†, the nonpositive
structure of Ĥr, and so on. On the discrete complete basis
fϕðnÞ; ϕ̄ðnÞg, the eigenvalue equation ĤrjϕEi ¼ EjϕEi can
be solved easily: for n ¼ 1; 2;…,
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Eþ
n ¼ −iℏωn doublet

jϕ−
n i ¼

�
0

ϕðnÞ

�
¼ j−i ⊗ jϕðnÞi

jϕþ
n i ¼

Qffiffiffiffiffiffiffiffiffi
ℏωn

p jϕ−
n i ¼

�− iffiffi
n

p AϕðnÞ
0

�
ð50Þ

E−
n ¼ iℏωn doublet

jϕ̄þ
n i ¼

�
ϕ̄ðnÞ
0

�
¼ jþi ⊗ jϕ̄ðnÞi

jϕ̄−
n i ¼

Q̄ffiffiffiffiffiffiffiffiffi
ℏωn

p jϕ̄þ
n i ¼

�
0

− iffiffi
n

p Āϕ̄ðnÞ

�
; ð51Þ

where j−i ¼
�
0

0

�
and jþi ¼

�
1

0

�
. Here, the mapping

jϕþ
n i ¼ Qffiffiffiffiffiffiffi

ℏωn
p jϕ−

n i, ðn ≥ 1Þ can be inverted by

jϕ−
n i ¼ i Q̄ffiffiffiffiffiffiffi

ℏωn
p jϕþ

n i, and so the states jϕ�
n i, ðn ¼ 1; 2;…Þ

form a tower of super pairs. In the same sense, the states
jϕ̄�

n i; ðn ¼ 1; 2;…Þ form another tower of super pairs.
In contrast, the states jϕ−

0 i and jϕ̄þ
0 i belonging to the

same eigenvalue E�
0 ¼ 0 are two super singlets, which

satisfy Qijϕ−
0 i ¼ Qijϕ̄þ

0 i ¼ 0; (i ¼ 1, 2). Therefore, in the
space of states fjϕ−

0 i; fjϕ�
n igg, the supersymmetry is

realized as a good symmetry; that is, SUSY is not broken.
The same is true for the space of states fjϕ̄þ

0 i; fjϕ̄�
n igg. In

each space, the operators Qi work as the generators of
supersymmetry; however, there arises no mapping between
those two spaces by Qi (Fig. 2).
In the context of this SUSY quantum mechanics, we

emphasize the following: in the Schwinger effect for
fermions, the SUSY quantum mechanics of the RHO plays
an effective role in its background; that is, topics III.A and
III.B are not independent in this effect.
The Dirac fieldΨ interacting with an external gauge field

Aμ obeys the Uð1Þ symmetry field equation8

ðγ · Π̂ðAÞ þmcÞΨ ¼ 0 ðγ · ΠðAÞ ¼ γμΠðAÞμÞ: ð52Þ

When we multiply this equation by −ðγ · Π̂ðAÞ −mcÞ from
the left, the field equation becomes the second order form
such that

½−ðγ · Π̂ðAÞÞ2 þ ðmcÞ2�Ψ ¼ 0: ð53Þ

Here, if we use the configuration of gauge potentials
ðA0

cðxÞ;AcðxÞÞ ¼ ð−Ex1; 0Þ as in Eq. (33), then with σμν ¼
i
2
½γμ; γν� and Fμν ¼ ∂ ½μðAcÞν�, we obtain

−ðγ · Π̂ðAcÞÞ2 ¼ Π̂ðAcÞ2 −
ℏg
2c

σμνFμν

¼ Π̂ðAcÞ2 −
ℏg
c
σ01E

¼ 2mĤ01 þ p̂2⊥ −
ℏg
c
ðiσ1 ⊗ σ1ÞE: ð54Þ

Carrying out the unitary transformation in 4-spinor space
by U ¼ e

iπ
4
σ2 ⊗ e

iπ
4
σ2, Eq. (54) becomes

−Uðγ · Π̂ðAcÞÞ2U†

¼ 2m

�
−iℏω

�
−iĀAþ 1

2

��
−mℏωiσ3 ⊗ σ3 þ p̂2⊥

¼ 2m

�
−iℏω

�
−iĀAþ b†b 0

0 −iĀAþ bb†

��
þ p̂2⊥;

ð55Þ

where we have used σ3 ⊗ σ3 ¼ σ3 ⊗ ½b†; b� and ω ¼ jejE
mc

as before. The result implies that the spectra of upper
components of Ψ̃ ¼ UΨ are those of the supersymmetric
Hamiltonian Ĥr; on the other side, the spectra of lower
components of Ψ̃ are governed by Ĥ0

r, which is obtained
from Ĥr changing the role of ðb; b†Þ. Thus, one can
evaluate the Schwinger effect for fermions again according
to the procedure of Eqs. (39) and (40) (Appendix C).

IV. SUMMARY

In this paper, we have discussed the eigenvalue problems
of RHOs in terms of ladder operators ðA; ĀÞ introduced by
an analogous way to the ladder operator ðâ; â†Þ in HOs.
The nonpositive property of the Hamiltonian operator Ĥr in
RHOs is a result of the property of ladder operators such as
A† ¼ A, Ā† ¼ Ā, and ½A; Ā� ¼ i. Then, the eigenstates
Aϕσ ¼ σϕσ and Āϕ̄σ ¼ σϕ̄σðσ ∈ RÞ are able to normalize
so that hϕσjϕσ0 i ¼ hϕ̄σjϕ̄σ0 i ¼ δðσ − σ0Þ. Namely, the

0

1

2

-1

-2

FIG. 2. The eigenvalues of Ĥr in an extended SUSY quantum
mechanics are illustrated. The states with the superscript � are
pair states mapped by Q or Q̄. The states jϕ−

0 i and jϕ̄þ
0 i are fixed

states under those mapping.

8The gamma matrices are normalized so that fγμ; γνg ¼ −2ημν.
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fϕσ; ϕ̄σg are continual bases of the space of functionalsΦ×

including the Hilbert spaceH of the RHO in the framework
of rigged Hilbert space. Those continual bases are not
eigenstates of Ĥr, but rather the states related to fjxi; jpig
by a unitary transformation.
On the other hand, the states ϕðnÞ ¼ Ānϕð0Þ and ϕ̄ðnÞ ¼

Anϕ̄ð0Þ ðn ∈ NÞ with ðϕð0Þ; ϕ̄ð0ÞÞ ¼ ðϕ0; ϕ̄0Þ are eigenstates
of Ĥr belonging to the eigenvalues �iℏωðnþ 1

2
Þ.

Since those states satisfy the normalization of the form
hϕ̄ðmÞjϕðnÞi ¼ δm;nNn, it can be shown that the fϕðnÞ; ϕ̄ðnÞg
form a discrete complete basis of Φ× in pairs. Contrary to
this, the discrete eigenstates fΦng of the Hamiltonian for a
HO are the basis of a Hilbert space.
We can also show that Weber’s D functions, the special

functions known as analytic solutions of the eigenvalue
equation for Ĥr with continuous eigenvalues, are obtained
by means of the analytic continuation of fϕðnÞ; ϕ̄ðnÞg with
respect to n. The D functions and fϕðnÞ; ϕ̄ðnÞg stand on the
same footing as the scattering states of Ĥr unless any
boundary conditions are added.
As good applications of this ladder operator formalism,

we have shown two topics: the Schwinger effect in scalar
QED and an extension of RHO to SUSY quantum
mechanics. In the first, the Hamiltonian of particles
interacting with a constant electric field is shown to be
canonically equivalent to one of RHOs and so the knowl-
edge of RHOs is useful to handle the problem of pair
production by the electric field. Indeed, it has been shown
that the discrete complete bases fϕðnÞ; ϕ̄ðnÞg characterized
by Eq. (21) give a simple way to evaluate such a production
rate within the framework of quantum mechanics.
Second, we have tried to extend the present RHO system

to a supersymmetric dynamical system; the extended
Hamiltonian Ĥr is again a nonpositive Hermitian operator
constructed out of fermionic oscillators ðb; b†Þ and ladder
operators ðA; ĀÞ. The ladder operator formalism gives rise
to two towers of super-pair states jϕ�

n i and jϕ̄�
n i

ðn ¼ 1; 2;…Þ, which belong to the eigenvalues Eþ
n ¼

−iℏωn and E−
n ¼ iℏωn, respectively. In addition to this,

the n ¼ 0 states jϕ−
0 i and jϕ̄þ

0 i exist as two singlet states,
which satisfyQijϕ−

0 i ¼ Qijϕ̄þ
0 i ¼ 0; (i ¼ 1, 2). Namely, in

each space of super-pair tower states, SUSY is realized as a
good symmetry, though the SUSY in this model is an
extended concept from the standard one as can be seen
from Q†

i ≠ Qi.
Furthermore, we have brought up the following: if we

consider the Dirac fields interacting with an external electric
field, then the supersymmetric structure of RHOs will be
implicitly included in a loop effect of those Dirac fields.
According to this line of approach, we have shown the way
to evaluate the Schwinger effect for fermions in Appendix C.
The knowledge on the complete bases in RHOs under

the ladder operator formalism is expected to give useful

tools in various problems other than the topics discussed in
this paper. For example, the Hamiltonian Ĥr is able to take
continuous eigenvalues on the states ðϕσ; ϕ̄σÞ; in the space
of those eigenstates, the SUSYmay show a different feature
from the standard analysis. Those are interesting future
problems.
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APPENDIX A: WEBER’S FUNCTIONS
AS THE ENERGY EIGENVALUE FUNCTIONS

FOR THE RHO

We here summarize the standard way to make the
eigenvalue functions of the RHO reduce to Weber’s
functions.
In the x representation with p̂ ¼ −iℏ ∂

∂x, the eigenvalue
equation of Ĥr can be written as�

−
ℏ2

2m
d2

dx2
−
mω2

2
x2 − E

�
ψEðxÞ ¼ 0: ðA1Þ

Introducing here the variable z defined by

x ¼ e
iπ
4

ffiffiffiffiffiffiffiffiffiffi
ℏ

2mω

r
z;

�
d2

dx2
¼ 2mω

iℏ
d2

dz2

�
; ðA2Þ

Eq. (A1) with ψEðxðzÞÞ ¼ wEðzÞ gives rise to

−
i
ℏω

× Eq:ðA1Þ ¼
�
d2

dz2
þ iE
ℏω

−
1

4
z2
�
wEðzÞ ¼ 0: ðA3Þ

Writing iE
ℏω ¼ λþ 1

2
and wEðzÞ ¼ wλðzÞ, Eq. (A3) becomes

the standard form of Weber’s equation

d2wλðzÞ
dz2

þ
�
λþ 1

2
−
z2

4

�
wλðzÞ ¼ 0: ðA4Þ

For w̃λðzÞ ¼ e
1
4
z2wλðzÞ, Eq. (A4) can also be written as�
d2

dz2
− z

d
dz

þ λ

�
w̃λðzÞ ¼ 0: ðA5Þ

To solve Eq. (A5), let us use the Fourier-Laplace
representation

w̃λðzÞ ¼
Z
Γ
dte−ztfλðtÞ; ðA6Þ

where Γ is a path from a to b in the complex t plane. Then
under the integration by parts with respect to t, Eq. (A5)
with Eq. (A4) gives
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d
dt

ftfλðtÞg þ
�
tþ λ

t

�
ftfλðtÞg ¼ 0 ðA7Þ

on the condition that ½e−ztftfλðtÞg�ba ¼ 0. Equation (A7)
can be solved easily so that fλðtÞ ¼ conste−

1
2
t2t−ðλþ1Þ; since

the boundary conditions are satisfied by ða; bÞ ¼ ð0;∞Þ for
Reλ < 0 on the real t axis, and we finally obtain the integral
representation for wλðzÞ ¼ e−

1
4
z2w̃λðzÞð¼ DλðzÞÞ in such a

form as [16,22]

DλðzÞ ¼
e−

1
4
z2

Γð−λÞ
Z

∞

0

dte−zt−
1
2
t2t−ðλþ1Þ ðReλ < 0Þ ðA8Þ

¼ −
Γðλþ 1Þ

2πi
e−

1
4
z2
Z
C
dte−zt−

1
2
t2ð−tÞ−ðλþ1Þ; ðA9Þ

where C is the contour given in Fig. 3. It is not difficult to
rewrite the contour integral in Eq. (A9) to the path integral
in Eq. (A8) by taking into account Γðλþ 1Þ sinð−πλÞ ¼
π

Γð−λÞ.
The function DλðzÞ is Weber’s D function9 (Parabolic

cylinder function) [22], by which the independent solutions
of Eq. (A1) for iE

ℏω ¼ λþ 1
2

are given as DλðzÞ and
D−λ−1ðizÞ.

APPENDIX B: ANOTHER PROOF OF Îr = 1

By the definitions of ϕðnÞ and ϕ̄ðnÞ, we obtain the
expression

hxjÎrjx0i¼
X∞
n¼0

1

Nn
ϕðnÞðxÞϕ̄ðnÞðx0Þ�

¼
ffiffiffiffiffiffi
2π

i

r ffiffiffiffiffiffiffiffiffiffi
mω

2ℏπ2

r X∞
n¼0

1

n!
ðe−iπ

2 ĀA0�Þneimω
2ℏx

2

ei
mω
2ℏx

02

¼
ffiffiffiffiffiffi
2π

i

r ffiffiffiffiffiffiffiffiffiffi
mω

2ℏπ2

r
ee

−iπ
2 ĀA0�

ei
mω
2ℏx

2

ei
mω
2ℏx

02

¼
ffiffiffiffiffiffi
2π

i

r ffiffiffiffiffiffiffiffiffiffi
mω

2ℏπ2

r
ei

mω
2ℏx

2

e−2iA
0� ffiffiffiffi

mω
2ℏ

p
xe

i
2
ðA0�Þ2eimω

2ℏx
02
: ðB1Þ

Here, we have used the formula eâþb̂ ¼ eâeb̂e−
1
2
½â;b̂� for

½½â; b̂�; â� ¼ ½½â; b̂�; b̂� ¼ 0, with â ¼ e−
iπ
2A0� ffiffiffiffiffi

mω
2ℏ

p
x and

b̂ ¼ e−
iπ
2A0� −1ffiffiffiffiffiffiffiffiffi

2mℏω
p p̂. Remembering, further,

e
i
2
ðA0�Þ2 ¼

ffiffiffiffiffiffi
i
2π

r Z
∞

−∞
dke−

i
2
k2þikA0� ðB2Þ

and using again eâþb̂ ¼ eâeb̂e−
1
2
½â;b̂�, we arrive at

hxjÎrjx0i¼
ffiffiffiffiffiffiffiffiffiffi
mω

2ℏπ2

r
ei

mω
2ℏx

2

Z
∞

−∞
dke−

i
2
k2e−ið

ffiffiffiffiffi
2mω
ℏ

p
x−kÞA0�

ei
mω
2ℏx

02

¼
ffiffiffiffiffiffiffiffiffiffi
mω

2ℏπ2

r
ei

mω
2ℏx

2

Z
∞

−∞
dke−

i
2
k2e−ið

ffiffiffiffiffi
2mω
ℏ

p
x−kÞ

ffiffiffiffi
mω
2ℏ

p
x0

×e
i
4
ð

ffiffiffiffiffi
2mω
ℏ

p
x−kÞ2ei

mω
2ℏfx0−ð

ffiffiffiffiffi
2mω
ℏ

p
x−kÞ

ffiffiffiffiffi
ℏ

2mω

p
g2

¼
ffiffiffiffiffiffiffiffiffiffi
mω

2ℏπ2

r
ei

mω
2ℏx

2

×e−i
2mω
ℏ xx0þimω

ℏ x2þimω
2ℏx

02

×
Z

∞

−∞
dkeik

ffiffiffiffiffi
2mω
ℏ

p
ðx−x0Þ ¼δðx−x0Þ: ðB3Þ

Therefore, Îr is nothing but the unit operator for the present
RHO system.

APPENDIX C: THE SCHWINGER EFFECT
FOR FERMIONS

The action of the Dirac field Ψ obeying Eq. (52) with the
gauge fields Aμ

c is SD½Ψ; Ac� ¼
R
d4xΨ̄ðγ · Π̂ðAcÞ þmcÞΨ;

ðΨ̄ ¼ Ψ†γ0Þ. Then the path integral result SQ½Ac� ¼
−iℏ log

R
DΨDΨ̄ei

ℏSD ¼ −iℏTr logðγ · Π̂þmcÞ þ const is
the quantum correction to SG½Ac� ¼ 1

2

R
d4xE2 so that

Seff ½Ac� ¼ SG½Ac� þ SQ½Ac� becomes the effective action
ofAc. Here, the “Tr” involves the trace over four-component
spinor space. To evaluate the Tr in SQ½Ac�, we notice that
d
da

Tr log½γ · Π̂þ ðmcÞ þ a�

¼ Tr
−ðγ · Π̂Þ þ fðmcÞ þ ag
−ðγ · Π̂Þ2 þ fðmcÞ þ ag2

¼ Tr
fðmcÞ þ ag

−ðγ · Π̂Þ2 þ fðmcÞ þ ag2

¼ d
da

�
−
1

2
Tr

Z
∞

0

dτ
τ
e−iτ½−ðγ·Π̂Þ2þfðmcÞþag2−iϵ�

�
; ðC1Þ

in consideration of which the trace of odd powers of γ
matrices vanishes. Integrating this equationwith respect to a
from a1 to a2, we obtain

Tr log ½γ · Π̂þ ðmcÞ þ a2� − Tr log ½γ · Π̂þ ðmcÞ þ a1�

¼ −
1

2
Tr

Z
∞

0

dτ
τ
eiτfðγ·Π̂Þ2þiϵg

× ½e−iτfðmcÞþa2g2 − e−iτfðmcÞþa1g2 �: ðC2Þ

0

C

FIG. 3. Contour C in a complex plane.

9The D function is normalized so that DnðzÞ; ðn ¼ 0; 1;…Þ
reduces to e−

1
4
z2HenðzÞ, where fHenðzÞg are the Chebyshev-

Hermite polynomials.
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Setting a2 ¼ 0 and a1 ¼ −ðγ · Π̂þmcÞ þ 1, we get the
expression

Tr logðγ · Π̂þmcÞ ¼ −
1

2
Tr

Z
∞

0

dτ
τ
eiτðγ·Π̂Þ2e−iτfðmcÞ2−iϵg

ðC3Þ

disregarding an unimportant additional constant. Then

remembering Eq. (54) and using eiτ
ℏg
c Eσ

01 ¼ cosh ðτ ℏgE
c Þþ

iσ01 sinh ðτ ℏgE
c Þ, Eq. (C3) becomes

Trlogðγ · Π̂þmcÞ

¼−
1

2
×4tr

Z
∞

0

dτ
τ
e−iτðΠ̂

2þðmcÞ2−iϵÞcosh
�
τ
ℏgE
c

�
ðC4Þ

by virtue of the trace of σ01 vanishes. Here, the “tr”
denotes the trace in the functional space, which yields
tre−iτΠ̂

2 ¼ δð0ÞV0V⊥ð 1
4πiℏ2τÞ 1

2 sinhðτmℏωÞ with ω ¼ jejE
mc as in

the case of scalar QED. Therefore, we arrive at the
expression with ϵ ¼ þ0

Tr logðγ · Π̂þmcÞ

¼ −δð0ÞV0V⊥ ×
ðmcÞ2
4πiℏ2

Z
∞

ϵ

dz
z2

e−iz

tanh ðz ℏω
mc2Þ

; ðC5Þ

where z ¼ τðmcÞ2. The integration with respect to z in
Eq. (C5) can be carried out in the same manner as Eq. (40)
except replacing the residue ð−1Þn of 1= sinhðzℏω=mc2Þ by
1 of 1= tanhðzℏω=mc2Þ. The resultant formula correspond-
ing to Eq. (42) in the case of Dirac fields becomes

1

ℏ
ImSeff ½Ac� ¼ −ReTr log ½γ · Π̂ðAcÞ þmc�

∼ Vð4Þ
m4

8π3ℏ2

�jejE
m2c

�
2X∞
n¼1

1

n2
e−

nπc2
ℏ ðm2c

jejEÞ:

ðC6Þ

This formula is nothing but the one given originally by
Schwinger [13].
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