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Abstract Sagnac interference experiment is theoretically
analyzed in the curved spacetime of the Rotating Acoustic
Black hole metric. The Zero and the infinite Sagnac delay has
been analyzed. The geodesic motion in the metric is discussed
very briefly to derive the formula for the Sagnac delay. For the
first time, the values of the two constant parameters related
to the metric of the acoustic black hole have been found to be
restricted within certain limit by the use of the formula for
the Sagnac delay. The equation for finding the sonic horizon
has also been deduced.

1 Introduction

A Black hole in Einstein’s theory of gravitation or general
relativity (GR) is essentially an extremely contracted state of
a massive body when all the mass of it has been concentrated
into its Schwarzschild radius creating such a curvature in
nearby region that even light cannot escape a predefined sur-
face called event horizon. Black holes (BH) are bodies caught
in an inexorable gravitational collapse [1] and remain out of
direct observation because no emission comes out of it. When
a BH forms a binary system with a main-sequence stars or
a protostar, mass from the later is accreted into the BH with
a very high velocity. The trajectory of this accreting mass
form a predictable geometry and emits high energy photons.
The indirect experimental evidences of several properties of
BH involve spectral and timing analyses of the data of these
high energy photons (mostly in UV and X-ray region) col-
lected through several satellite missions (NICER, NuSTAR,
CHANDRA, XMM-Newton, Suzaku and several others) as
both parts of the spectrum are absorbed in the earth’s atmo-
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spheric region [2]. Apart from the event horizon, a region
of spacetime called ergo-region [3] exists for a rotating BH.
By projecting a particle to it, energy can be extracted from
such a BH through a process named after Penrose who first
showed this. The wave analogue of Penrose process [3] is
called superradiance first proposed by Misner [4]. Although
with the application of cutting-edge technologies involving
several countries and availability of high power computa-
tional facilities, X-ray/UV astronomy gives several indirect
but measurable properties of BHs in binary systems, most
characteristic properties remain unrealizable. Very recently,
however, event horizon telescope reported picture of the event
horizon of a BH shot directly creating a breakthrough in the
experimental measurement of terrestrial BHs. This created
the first ever possibilities of observing phenomena related to
an isolated BH which was so far unattainable.

In 1981, Unruh [5] has proposed that certain aspects of
BH in GR is analogous to some characteristics of the flow
of liquid flowing in supersonic speed. As a moving fluid
drags sound wave along with its flows, supersonic flow traps
sound waves – much like trapping of electromagnatic waves
in geometric BHs. Hence this system is known as sonic or
acoustic black hole and was created in the laboratory in 2009
with Bose-Einstein condensate [6]. A system with drain-
ing bathtub-like feature with rotating inviscid and barotropic
fluid, consequently, resembles a rotating BH and is called
rotating acoustic black hole (ABH). Matt Visser [7,8] pro-
posed the metric of the ABH and discussed its properties anal-
ogous to any geometric BH in fair details. Few effects shown
by terrestrial BHs were observed for this type of analogous
BH in the laboratory like Hawking radiation [9–13]. A phe-
nomenon related to superradiance from BH, termed super-
resonance for ABH, first discussed by Basak and Majum-
dar [14,15] was also experimentally observed [16]. Another
remarkable feature of ABH is the use of its concept in engi-
neering and structural applications as vibration damping and
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its control and the absorption of sound in gases and liquids
and control of noise in structural design [17,18].

In the present paper we will discuss an effect known as
Sagnac effect after G. Sagnac [19] who was known to perform
it first (although later evidences showed that it had been per-
formed several times earlier, the name stuck; an account from
the historical perspective may be found in Refs. [20–22])
with a hope that the experiment can be performed in ABH.
The original set-up of Sagnac effect was an interference-type
experiment on board a rotating disc-like platform with visi-
ble light where the two beams in phase were made to travel a
round trip before meeting again at the position of the beam-
splitter to produce an interference fringe. The rotation of the
disc induces the required path difference and thus phase dif-
ference occurs between the corotating and counter rotating
beams. After Sagnac’s experiment it has been repeated sev-
eral times. Historically, this experiment has been cited to
nullify the validity of special relativity (SR). Although later
it was found to be quite consistent with SR, this experiment
indeed poses a counter intuitive challenge to it. The related
conceptual issues drew the attention of the community par-
ticularly in the last three decades.

Sagnac effect is interesting in many ways. On the theoret-
ical side, it poses both conceptual and interpretational prob-
lems to relativistic physics as it is an experiment where the
optical effect is created by rotational motion or a uniformly
accelerating motion with, however, no dynamical effect of
acceleration involved. SR now has to stand face to face to
the challenge of its formulation in accelerating frame. The
formulation for Sagnac effect has also been used to propose
resolution to some longstanding relativistic paradoxes [21–
24] and to make ground to handle acceleration (rotation) in
SR [25]. Resolution to an important conceptual issue related
to the precise reason behind the origin of Sagnac effect has
been recently proposed by Bhadra, Ghosh and Raychaudhuri
[26].

The experimental arena has also been alive with sev-
eral arrangements to measure the Sagnac effect more and
more precisely and with other waves than light. Although
the ingenuine design of the experiment has been first con-
ceived to measure the velocity of earth with respect to the
pre-relativistic aether (and also earth’s rotation), the later
experimentalists have found that the experiment is worth
performing in its own right. One of the reasons is that the
correct measurement of the phaseshift will give the precise
dependence of γ -factor on the velocity of the frame thus
offering experimental verification of the SR. One of the most
important application of this effect is to make global posi-
tioning system (GPS) more precise with Sagnac Correction
[27] where the earth itself acts as the rotating platform. This
correction is also necessary in LISA-type interferrometers.
Sagnac correction due to the earth’s rotation has to be taken
in to account by Hafele and Keating [28,29] in their famous

experiment of 1971. General relativistic correction had not
been included into the final calculation for the obvious reason
that the experiment preceded the theoretical analysis.

All the theoretical calculations stated above had been
done in the background of flat spacetime of SR. In 1975,
Ashtekar and Magnon [30,31] first discussed Sagnac effect
in curved spacetime using the sophisticated language of dif-
ferential geometry. A nice simplified treatment was offered
by Tartaglia [32] for the Kerr metric following the metrical
treatment offered by Logunov [33] (and by Malykin [34] in
SR). Logunov–Tartaglia treatment has become quite standard
and followed by many [22,35,36].

In the present discourse, we analyse, using standard
method outlined in Refs. [22,30,32–34,36] of finding Sagnac
delay (SD), in the spacetime field of the ABH with the
hope that the experimentalists will find this experiment per-
formable in the laboratory. We, however do not propose any
design of the possible experiment as such nor do we per-
form any simulation. Indeed, no possibility for experimental
measurement of correction terms due to curvature of space-
time for geometric BH can be foreseen in near future because
true verification the correction terms without any weak field
approximation needs us to perform the experiment in the field
of a massive source like a terrestial BH. The only possibility
is that an experiment with ABH in laboratory can test the
correction term. One of our motivations to do this work is
precisely this anticipation. Moreover, the issue of existence
of two formulas for the SD [22,23,37] has yet to be settled
by achieving the precision to (at least) second order or more
of v/c. An experiment with ABH is performable in labora-
tory unlike, obviously, that for a general (geometrical) black
hole (GBH). Sagnac effect offers a simple way to discuss
the nature of orbits near event horizon [22,36] which will
be shown for this case of ABH too here. Geodesic motion in
ABH is also discussed very briefly to suit our purpose. More-
over, we have also deduced, taking cue from an earlier work,
an equation for the sonic horizon. The remarkable fact is that
from the expressions of the SD, the values of the parameters
A and B are found to be restricted within some limits. To our
knowledge, this is reported for the first time.

The paper is organized as follows. In the next subsec-
tion 1.1 we brief about the Sagnac delay in SR and related
topics to set the stage for our present treatise. We very briefly
discuss the standard results of SD and comment over it. In
Sect. 2 we present our main result of the Sagnac delay term
for the ABH. In the following two Sects. 2.1 and 2.2, we
discuss the appearance of zero and infinite Sagnac delay
and their significances. Section 3 is, in a sense, out of our
main sequence of development where we briefly discuss the
geodesic equations of ABH spacetime although no rigorous
analysis is provided. In the last section we presented our argu-
ment to restrict the values of the constants present in ABH,
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namely A and B, using the expressions obtained for SD and
comment over it.

1.1 Sagnac delay

Although the experimentally observed quantity in Sagnac
experiment is the interference fringe shift formed at the
screen like any interferometer, it has now become custom-
ary to write the theoretical formula in terms of the Sagnac
delay (SD) which is the difference between the round-trip
times of the counter-rotating and corotating beams while they
meet at the beamsplitter (screen) again after the round-trip.
The special relativistic result is given by

�t = 4πωr2

c2 γ, (1)

where �t and ω are the SD and the angular velocity of the
platform respectively. r is the radius of the circular path of
the beams, c and γ being the velocity of light in vacuum and
the relativistic gamma-factor.

The appearance of γ in the formula created a debate
because that did not appear in the original Sagnac’s formula
and was perhaps first pointed out by Selleri [37]. There was
no scope for any empirical way to settle the issue that needs
to measure to a precision of v2/c2 as v << c. The issue
was discussed at length by Ghosal et al. in relation to Ehren-
fest paradox [23]. Another formula that is widely used while
discussing Sagnac-type experiments is given by [23,38]

�t = 2Lv

c2 , (2)

where v = ωr and L is the length of the path. This for-
mula forces the Sagnac formula out from the area dependence
[20,39] and rightly shows its dependence of the velocity of
the platform. Indeed it was shown proposing a gedanken
experiment resembling Sagnac effect which uses a suit-
able experimental arrangement – called linear Sagnac effect
[23,40], that SD does not depend on the area enclosed by
the tracks of the circumnavigating rays (an experiment per-
formed by Wang et. el. corroborates this). However, recently
Bhadra, Ghose and Raychaudhuri have showed by proposing
a gedanken experiment that the origin of the Sagnac effect
has to be attributed to the asymmetrically placed observers
with respect to the journeys of light [26] settling the age-old
problem of explanation of the effect on-board the rotating
platform.

2 Sagnac effect in a rotating acoustic black hole metric

In this section we investigate the Sagnac delay around a rotat-
ing accoustic black hole which is analogous to (2 + 1)D
shrinking fluid vortex. We employ the general relativistic
treatment of Sagnac effect as mentioned earlier. Such a treat-
ment is possible once we have a metric defined on the related
spacetime – which uniquely describes the spacetime. Ear-
lier we have seen such an approach of treating superradi-
ance (superresonance) simply using the metric of the ABH
[14,15]. The metric of ABH is given by (see, for example
Visser [7,8])

ds2 = −
(

1 − A2 + B2

c2
s r

2

)
dt2 +

(
1 − A2

c2
s r

2

)−1

dr2

−2B

cs
dφ dt + r2 dφ2, (3)

where A, B are constants and cs is the velocity of phonon in
that fluid medium. Note that A = 0 means no radial flow [7].
The BH may be the vortex in a superfluid HeII with sink at
the centre.

We allow the signals to move a round trip in counter rotat-
ing directions with suitable arrangements and then to meet
again. The radius remaining constant (r = 0), this condition
has the usual meaning ds = 0. If � is the angular velocity
of the signal (the sonic wave), then φ = �t . This gives two
solutions for � given by

�± = B ± √
c2
s r

2 − A2

csr2 . (4)

For the observer on board the platform (the vortex) rotat-
ing with an angular velocity ω0t , we write φ0 = ω0t . We
also note that dφ is the difference of the two values of φ0.
Therefore

dφ = φ0+ − φ0−

= 4πω2
0c

2
s r

4 − 4πω0csr2
(
c2
s r

2 − A2
)1/2

B2 −
[(
c2
s r

2 − A2
)1/2 − ω0csr2

]2 . (5)

Thus the SD is given by

δτ = dφ

ω0

[
−

(
1 − A2 + B2

c2
s r

2

)
− 2B

cs
� + r2�2

]
. (6)

When the angular velocity of sonic wave is equal to the angu-
lar velocity of the observer (� = ω0), we obtain

δτ =
4πr

[(
c2
s r

2 − A2
)1/2 − ω0csr2

] [
ω2

0c
2
s r

4 − 2Bω0csr2 − c2
s r

2 + (A2 + B2)
]1/2

ω2
0c

2
s r

4 − 2ω0csr2
(
c2
s r

2 − A2
)1/2 + c2

s r
2 − (A2 + B2)

. (7)
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A stationary observer is an observer who does not see
the metric change in his motion. The related Killing vector
is denoted by uμ = ul (1, 0, 0, ω) where ω = dφ/ dt is the
angular velocity of the observer. The equation governing this
quantity in case of circular geodesic motion is

ω2r2 − 4
B

cs
ω −

(
1 − A2 + B2

c2
s r

2

)
= 0, (8)

giving

ω± = 2B ± (
3B2 − A2 + c2

s r
2
)1/2

csr2 . (9)

Putting this value of ω in place of ω0 in the expression of
SD,we obtain

δτ± = 4πr
[(
c2
s r

2 − A2)1/2 −2B ± (
3B2 − A2 + c2

s r
2)1/2

]

×B1/2
[
4B − 2

(
3B2 − A2 + c2

s r
2)1/2

]1/2

×
[
c8
s r

8 − 4(A2 + B2)c6
s r

6 + (6A4c4
s + 10A2B2c4

s

−66B4c4
s )r

4 − (12A4B2c2
s − 132A2B4c2

s − 135B6c2
s

+4A6c2
s )r

2 + A8 + 62A4B4 + 9B8

+4A6B2 + 180A2B6
]−1

. (10)

This delay depends on the constants A and B and the
phonon velocity in the medium. There are two values of the
delay depending upon the value of ω and denotes whether the
orbit is direct or retrograde. Note that the expression restricts
the value of the constants A and B depending on the radius
and the phonon by demanding the real values of the delay
δτ± for obvious reason. We will discuss the issue later in the
appropriate place.

Note that the ABH metric (3) turns into a (2 + 1)D
Minkowskian metric if

A = B = 0.

This essentially means that

�v = A

r
r̂ + B

r
φ̂ = 0 (11)

where �v is the velocity profile [14]. Hence, ABH ceases to
exist for vanishing A and B. Also, as mentioned earlier, there
is no radial flow in the fluid for A = 0. Consequently, there
should not be any special relativistic limit for analogue grav-
ity as such. This is also evident from the way the metric is
usually established [8]. Moreover, it is known that black hole
type situation will not be created unless A < 0.

In GR, any metric reduces to the Minkowskian one when
the mass function appearing in the metric vanishes. Conse-
quently any general relativistic formula immediately reduces
to the special relativistic one at this limit.

Interestingly, the expression for the Sagnac delay in ABH
(Eq. (10)) vanishes once A and B are set to zero and there

remains no SR counterpart whatsoever. This corroborates the
fact stated above that for this case the flow ceases to exist, and
hence the blackhole too. Moreover, in the general relativistic
case, it is always possible to expand the formula to obtain a
pure SR term (or, the original Sagnac formula (1)) and a series
containing the mass term. This separation, obviously, means
nothing in the present context. Hence, the original Sangac
formula (classical or special relativistic) is unattainable from
the present expression under any circumstance.

2.1 Zero Sagnac delay

Sagnac delay is the difference between the round-trip times
of the counter and co-rotating light beams which creates the
interferences fringe shift. If the delay is zero, both beams
reach the observer simultaneously. In flat spacetime, this
essentially means that the observer does not rotate at all.
Even for non-rotating spacetime such as Schwarzschild one,
Sagnac delay can never be zero unless the beam-splitter stops
rotating [21,22]. But in curved spacetime it essentially means
that the observer is non-rotating relative to the local space-
time geometry – the observer is locally non-rotating which
is termed as dragging of inertial frame [41]. The observer
considers both the directions perfectly equivalent [36]. The
expressions for radius can be obtained by solving the van-
ishing numerator of the SD (10) algebraically for r . We find
that the SD vanishes at the radii

r+ = 1

cs

(
A2 + B2

16

) 1
2

, (12)

and

r++ = 1

cs

(
A2 + B2

)1/2
. (13)

We plot in Fig. 1 the vanishing Sagnac delay against the radius
r where it occurs for some chosen value of the parameters.
The values are so chosen as to be consistent with their domain
of definition discussed later in Sect. 5 and the values do not
have any particular significance but to show the functional
characteristics.

2.2 Infinite Sagnac delay

The SD will be infinitely large when the denominator of the
expression of δτ in Eq. (10) is zero. This is an eighth degree
polynomial for r . The zeros of this function gives the radii
where the SD is infinite. Infinite SD signifies that the rota-
tional speed of the fluid vortex is equal to the speed of the
phonon. Exact solutions will be complicated although we do
not venture to find it as it is not that necessary for our purpose.
Rather, we draw a representative curve with set of values of
the parameters. The red dots represent the two values of the
radii of the orbits where the Sagnac delay would be infinite
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Fig. 1 Zero Sagnac delay

Fig. 2 Infinite Sagnac delay

for the chosen values of the parameters. Other values are
either imaginary or negative hence they are not shown here
(Fig. 2).

3 Geodesic equation

In this section, we discuss the geodesic equations of acous-
tic spacetime at length. We follow the standard method of
Lagrangian [42]. The related Lagrangian in this case is

L = −1

2

(
1 − A2 + B2

c2
s r

2

)
ṫ2

+1

2

(
1 − A2

c2
s r

2

)−1

ṙ2 − 2B

cs
φ̇ ṫ + r2φ̇2, (14)

where by the overhead dot, as per convention, we denote a dif-
ferentiation with respect to some affine parameter λ along the
geodesic. The corresponding canonical momenta are given

by

pt = ∂L
∂ ṫ = −

(
1 − A2+B2

c2
s r

2

)
ṫ − B

cs
φ̇,

pr = ∂L
∂ṙ =

(
1 − A2

c2
s r

2

)−1
ṙ ,

pφ = ∂L
∂φ̇

= − B
cs
ṫ + r2φ̇.

(15)

The equality of the related Hamiltonian to the Lagrangian
H = pμ ẋμ − L = L has the usual and naïve interpreta-
tion that the problem does not have any potential term. The
constants of motion related to the timelike Killing vector ∂t
and ∂φ are given by

E = −
(

1 − A2+B2

c2
s r

2

)
ṫ − B

cs
φ̇,

J = − B
cs
ṫ + r2φ̇.

(16)

E is a constant identified with energy at infinity. We thus find

φ̇ = (EB − Jcs) csr2 + J (A2 + B2)

r2
(
A2 − c2

s r
2
) , (17)

and

ṫ = Ec2
s r

2 + J Bcs
A2 − c2

s r
2 . (18)

The radial timelike geodesic for J = 0 is given by

ṙ =
[
c2
s

(
E2 − 1

)
r2 + A2

]1/2

csr
. (19)

From Eqs. (17) and (19) the expression of the orbits is found
to be given by

dr

dφ
=

(
A2 − c2

s r
2
)

EBc2
s r

[
c2
s

(
E2 − 1

)
r2 + A2

]1/2
, (20)

or,

φ =
∫

EBc2
s r(

A2 − c2
s r

2
) [(

E2 − 1
)
c2
s r

2 + A2
]−1/2

dr. (21)

The integral is hyperbolic in nature and the solution is given
by

r = A

c
√
E2 − 1

[
E2 tanh2

(
B

A
φ + ξ

)
− 1

]1/2

. (22)

The quantity ξ arises as the integration constant and acts like a
phase variable. Again a representative polar plot is given here.
As was done earlier, the chosen values of the constants have
no particular significance except for their restricted values
(Fig. 3).

4 Sonic horizon

The event horizon of a sonic black hole is that boundary
where the speed of the fluid crosses the sound velocity barrier
– from supersonic to subsonic. Its position is indicated by the
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Fig. 3 Plot of orbit, r = r(φ), with A = 0.9, B = 0.7, cs = 1,
E = 1.5 and ξ = 10

overlapping zone of the velocities of the fluid and the spatial
distribution curve of the sonic velocities as shown by Yang
et al. [43]. The fluid velocity is given by the expression

�v(�r , t) = ρ̇(t)

ρ(t)
�r , (23)

with ρ(t) being the system distribution width parameter
and ρ0(t) being the initial distribution width. Again ρ(t) =
(A0 sin ωt + B0)

1/2 where

A0 =
⎡
⎣

(
ρ2

0

2
+ h̄2

2m2�2ρ2
0

)2

− C2h̄2

2C1m2�2

⎤
⎦

1/2

,

B0 =
(

ρ2
0

2
+ C2h̄2

2C1m2�2ρ2
0

)
,

which dictate that the system distribution width shows an

oscillatory nature between the maximum value (B0 + A0)
1
2

and the minimum value (B0 − A0)
1
2 with the frequency ω.

The phonon velocity is given by the formula

cs(�r , t) =
(g0

m

) 1
2 C0

ρ(t0)
3
2

exp

[ −r2

2ρ(t)2

]
, (24)

where g0 is the nonlinear interaction term, The boundary
location of the sonic horizon radius rs is determined by the
solution of the following equation

[v(r, t) − cs(r, t)]r=rs = 0. (25)

This relation gives an equation for the determination of sonic
radius rs

r2 + 2ρ(t)2 ln(r) + 2ρ(t)2 ln

⎡
⎣(

m

g0

) 1
2 ρ̇(t)

ρ(t)

ρ
3
2
0

C0

⎤
⎦ = 0.

(26)

This equation is highly nonlinear and can be solved numeri-
cally with the choice of appropriate values of the parameters
obtained from experimental considerations.

5 Discussion

In this paper we have discussed the general relativistic Sagnac
effect in the acoustic blackhole using standard methods
outlined by Malykin [34] for flat spacetime, Ashtekar and
Magnon [30] in curved spacetime, simplified by Tartaglia
[32] and followed by several authors. Raychaudhuri [22,36]
showed that Sagnac effect can be used as a tool to understand
several features of spacetime, flat or curved. Sagnac effect in
(2 + 1)D was first discussed by Raychaudhuri [36] in BTZ
spacetime. The discussion of the effect in any given metric
reveals many interesting features of the spacetime and the
present case is no different. The metric of ABH (3) has two
artibrary constants A and B and no particular information of
their domain is available in the literature. With the analysis
presented here we can throw some light over it.

Whatever this paper presents is essentially a theoreti-
cal analysis without mentioning anything about the possi-
ble experimental ingradients. The reason is that the present
authors are unaware of the related experiments, nor they con-
sider themselves capable enough to do so. The calculation
presented here is from the perspective of laboratory frame.
Phonons are to be generated by creating suitable perturba-
tions in the rotating fluid to observe the interference pattern
created from the perspective of the laboratory.

Although we repeatedly used the word beamsplitter fol-
lowing the standard description (arrangement) of the optical
phenomenon, in ABH there is no necessity of the beamsplit-
ter. Indeed, no direct analogy can be drawn with the optical
phenomenon for the reason that here the career of the sig-
nals itself creats the blackhole. Rather, the phonon is to be
created by perturbation into the fluid itself. The resulting
phonons will rotate in both the directions naturally as it do
in any normal fluid.

It is evident from the brief treatise on Sagnac effect that
the Sagnac delay (Eq. (10)) should obviously be real. Hence
we find

r2 >
A2

c2
s

. (27)
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Moreover, imposing the same consideration we must have

B2 >
1

2
B

(
3B2 − A2 + c2

s r
2
)1/2

. (28)

Depending on whether B is greater or less than 1, the inequal-
ity sign will change its direction upon squaring. If we con-
sider B > 1, we obtain

B2 >
1

4

(
3B2 − A2 + c2

s r
2
)

which yields A2 + B2 > c2
s r

2. This is unacceptable as it
reverses the signature of the time coordinate in the metric.
The equality is also excluded due to the metric signature.
The only option left, (B < 1), reverses the direction of the
inequality sign and gives

A2 + B2 < c2
s r

2 (29)

which is consistent with the signature of the metric. Also, we
must have B > 0 due to the metric signature. So we conclude
that

0 < B < 1. (30)

The null geodesic at fixed radius is given by

−
(

1 − A2 + B2

c2
s r

2

)
dt2 − 2B

cs
dφ dt + r2 dφ2 = 0. (31)

The velocity profile of any circle around the the sink (taken
at r = 0), gives the change of phase of the wavefunction
of the fluid along that circle to be dφ = 2πκB [14,15]
where κ is the proportionality constant which depends on
the microscopic properties of the fluid. Hence we obtain

dt =
[

16B4κ2π2

c2
s

+ 16B2κ2π2r2
(

1 − A2+B2

c2
s r

2

)]1/2 − 4B2κπ
cs

2
(

1 − A2+B2

c2
s r

2

) ,

(32)

or

dt = 2κπBcsr
2 −B + r

(
c2
s − A2

)1/2

c2
s r

2 − A2 − B2 . (33)

The value of κ can thus be obtained inducing the value of
dφ in Eq. (5).

κ = dφ

2πB
= 1

2πB

4πω2
0c

2
s r

4 − 4πω0csr2
(
c2
s r

2 − A2
)1/2

B2 −
[(
c2
s r

2 − A2
)1/2 − ω0csr2

]2 .

(34)

Now, from Eq. (33) we obtain

A < cs, (35)

which means that the value of A must be less than the veloc-
ity of phonon in that medium. We exclude the equality due
to Eq. (17) through Eq. (20) as it ensures a discontinuity.
Equations (30) and (35) give the domain of definition of the

parameters A and B. Note that these quantities A and B are
related to the velocity profile of the acoustic blackhole.

The ergosphere of the ABH is formed at [8]

rergo =
√
A2 + B2

cs
. (36)

The limits of the values of A and B also restricts the values of
the radius of the ergosphere. This also restricts the value of the
horizon radius. This corroborates the fact that acoustic black
hole occurs when A < 0 [8]. These domains of definition of
the constants also impose restrictions on the velocity profile
of the fluid

�v = A

r
r̂ + B

r
φ̂,

at a given radius.
ABH is a state of fluid which simulates blackhole-like fea-

tures that has been created in the laboratory and the emission
of Hawking radiation and superradiance have been experi-
mentally verified. We calculated the Sagnac delay for ABH
and analysed the zero Sagnac delay and infinite Sagnac delay
for the spacetime metric graphically. Infinite Sagnac delay
was first discussed by Raychaudhuri [21,22]. There and in
Ref. [36] it revealed some interesting facts. We expect that
this remarkable effect can be experimentally observed in
ABH in near future. The astonishing prediction of Hawking
radiation, though proposed way back in 1975 still remained
unattainable in the astrophysical scales due to the limita-
tions of our observational skills [9], has been observed for
ABH created in the laboratory [10]. Suitable procedure for
such a setup may be suggested and designed by competent
hands. The experimental verification of this effect can logi-
cally be extended to other spacetime metrics too and expected
to reveal the nature of the spacetime considered.

Now, the pertinent question that arises here is what we
expect from such a study of Sagnac effect. As we know, the
measurement of the delay (or the related fringe shift) in the
gravitational field is important for the GPS as well as in the
defense studies application. Although it is true that analogue
gravity shares a little with the Einstein’s geometric theory of
gravity, the result found here, if be experimentally confirmed,
will speak for the already obtained results from GR since an
equivalent mathematical treatment is followed in both cases.
The infinite or zero Sagnac delay are two possible interesting
observations which probably may not be performable in geo-
metric cases at present and in near future. But these speak of
some interesting characteristics of the spacetime concerned.
If this can be experimentally tested in analogue gravity, we
may be assured of that the same conclusions drawn using
the similar method for geometric cases are correct and hence
acceptable.
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