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Chapter 1

Introduction

1.1 The Strong Interaction and the Symmetries of Quantum
Chromodynamics

During the last thirty to forty years the description of the strong interaction via the theory
of Quantum Chromodynamics (QCD) has been generally accepted. Being a renormalizable,
non-abelian gauge Quantum Field Theory it is based on the invariance under local SU(3)
transformations in color space [1, 2, 3, 4, 5]. The mediating gauge bosons are the so-called
gluons Aaµ which carry a color index a and a Lorentz index µ. They transform according to
the adjoint representation of SUC(3). The other fields involved are the quarks, represented

by Grassmanian fields qfα, and the Grassmanian ghosts ca which are introduced in the
so-called “Faddeev - Popov - method”[6, 7]. However the appearance of ghosts is due to
the mentioned specific gauge fixing procedure and choosing a specific gauge, i.e. Landau
gauge. Moreover the ghosts do not couple directly to quarks they can be separated from
the related parts in the partition function Z[J, η̄, η] (c.f. Sec. 1.2).
The quarks in contrast to the gluons belong to the fundamental representation of the
mentioned color group and carry also a second index which is called “flavor” f = 1, . . . , Nf .
The current belief is we have three generations of quarks, namely up and down, strange
and charm, bottom and top, already ordered recording to their mass. With this three
fundamental entities as input the classical action of QCD reads

S[q̄, q, Aµ] =

∫
d4xLQCD (1.1)

whereas the Lagrangian density of QCD can be written as follows

LQCD = LYM + LGF + Lquarks. (1.2)

1
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The ghost fields (c̄a, ca) appear only in the gauge-fixing term of the Lagrangian LGF and
only couple directly to the Yang-Mills [8] sector. But as we tend to model this part in
the further scope of this work it is possible to neglect the ghosts contribution from this
point on. Applying all simplification to Eq. (1.2) and presenting two additional defini-
tions, the covariant derivative Dµ;αβ and the field strength tensor of the gluon field Fµν
that stem from the analogy with Quantum Electrodynamics (QED) the QCD Lagrangian
becomes

LQCD =

Nf∑
f=1

3∑
α,β=1

Z2q̄
f
α

(
ı̇6Dαβ − Zmmf

0 δαβ

)
qfβ −

1

2
tr(FµνFµν) + LGF (1.3)

with
Dµ;αβ = δαβ∂µ − ı̇g(tA)αβA

A
µ

and
Fµν = ∂µAν − ∂νAµ − ı̇g[A(B)

µ , A(C)
ν ]

where the abbreviation Aµ = AAµ t
A is used and (B),(C) account for different color indices

than A. The tA’s are the hermitian generators of the color group SU(3). In the fun-
damental representation these generators tA are proportional to the Gell-Mann-matrices
λA = 2tA and fulfill the following normalization condition and commutator relation

tr

(
λA

2

λB

2

)
=

1

2
δAB,

[
λA

2
,
λB

2

]
= ı̇fABC

λC

2
. (1.4)

The fABC are called structure constants of the corresponding Lie algebra su(3) and generate
the adjoint representation of the color group SU(3).
As can easily be seen the Lagrangian density LQCD fulfills conservation laws with respect

to parity and charge conjugation and if the current quark mass(es) mf
0 is/are set to zero

the QCD-Lagrangian is also invariant under a global transformation with respect to the
flavor degree of freedom. These transformations are of the form

qi −→ (UV )ijqj = e
ı̇θAV

(
λA

2

)
ijqj , (1.5)

qi −→ (UA)ijqj = e
ı̇γ5θAA

(
λA

2

)
ijqj . (1.6)

Both equations build up together the so-called “chiral transformations” whereas (1.5) is
called a “vector -” and (1.6) a “axial-vector transformation”. With the use of γ5 - matrices,
still being in the limit of vanishing quark masses, it is possible to divide the interactions
between the quarks into left-handed and right-handed quark fields qL & qR:

qR =
1

2
(1 + γ5)q , q̄R =

1

2
q̄(1− γ5), (1.7)

qL =
1

2
(1− γ5)q , q̄L =

1

2
q̄(1 + γ5). (1.8)
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Expressing the quark field q and the anti-quark field q̄ through qL and qR in LQCD and
using the properties of γ5, {γ5, γµ} = 0 and γ2

5 = 1, it is straightforward to see that the
term in (1.2) concerning the quarks splits into two independent parts. The left-handed and
right-handed fields are fully decoupled hence

q̄γµq = q̄RγµqR + q̄LγµqL.

Each of these terms is again invariant under a unitary transformation of the kind of Eq.(1.5)
with new phase angles θR and θL

qR −→ UV (θR)qR, (1.9)

qL −→ UV (θL)qL. (1.10)

The associated symmetry group of the Lagrangian (1.2) in the chiral limit can be broken
into semi-simple groups

UR(Nf ) × UL(Nf ) ∼= UL+R(1) × UL−R(1) × SUL(Nf ) × SUR(Nf ). (1.11)

The first term on the right-hand side is linked via Noether’s theorem to the baryon number
current JBµ ∼ q̄i(x)γµqi(x) which is conserved exactly in nature. As usual, when dealing
with Noether’s theorem the conserved current stems from an invariance of the theory, in
this case the invariance under a global phase shift for both left- and right-handed quarks.
The symmetry UL−R(1) on the other side is not apparent in the hadronic spectrum and
therefore must be broken. How this is done is subject to studies of the so-called UA(1)-
anomaly but is not part of this work. Nevertheless it has been the subject of several studies
(e.g. [9, 10, 11] or [12]).
The remaining symmetry group SUL(Nf ) × SUR(Nf ) is called chiral symmetry. It is
broken spontaneously, so that the hadronic vacuum is only invariant under one of the
SU(Nf ) subgroups, and later also explicitly due to the quark masses. In the case of the
spontaneous symmetry breaking Goldstone’s theorem predicts Nf − 1 massless Goldstone
bosons with negative parity. When dealing only with light-flavored quarks (namely up and
down) with masses of some MeV (mup ≈ 1.7 − 3.3 MeV, mdown ≈ 4.1 − 5.8 MeV [2])
the SUL(Nf = 2) × SUR(Nf = 2) chiral symmetry is approximately conserved and the
Goldstone bosons require a small mass because of the explicit breaking due to the light
quark masses of u/d. The lightest pseudo-scalar isotriplett of particles (namely the pions
π+, π0, π−) which carry a considerably smaller amount of mass than other mesons can be
identified with these obtained Goldstone bosons.
Including the strange-quark ( mstrange = 101+29

−21 MeV [2]) in the discussion eight Goldstone
bosons should be obtained. Nevertheless as the strange-quark mass is of the order of the
fundamental scale of QCD ΛQCD ∼ 200 MeV chiral symmetry is no longer well conserved
as in the two-flavor case. It is possible to identify the pions π, the kaons K and the η as the
related eight Goldstone bosons. The mesons including a strange quark (K’s and η) have
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a slightly higher mass due to the “more” explicit symmetry breaking of the s-quark mass
mstrange.
We disregard the remaining three quark flavors as their current masses are considerably
higher and their effect on low-energy processes can be neglected.

1.2 Non-perturbative Methods – from Green’s Functions to
Dyson-Schwinger Equations

On Green’s functions:
In the next few lines we want to introduce some theoretical concepts needed throughout
this work concerning Green’s functions, functional methods, Dyson-Schwinger equations,
etc. The classical action and the Lagrangian of QCD were already given in detail in Eq.
(1.1) and (1.2). Evaluating the corresponding equations of motion using the Lagrangian
would give a sophisticated way in classical mechanics to extract information. Nevertheless
in quantum theories formulated via the Feynman path integral [13] and Schwinger’s func-
tional approach [14, 15] new approaches are needed. One of these is the Dyson-Schwinger
approach where the “quantum” equations of motion of the Green’s functions are provided.
It is a quantum field theoretical, non-perturbative approach in the continuum, dealing with
the evaluation of an infinite tower of the, before mentioned, Green’s functions and rela-
tions between them. DSEs also have been shown to be successfully applicable in hadron
phenomenology via the combination with the framework of Bethe-Salpeter equations for
quark–anti-quark bound states.
To start from a point concerning Green’s functions we proceed as follows. The n-point
connected Green’s functions are defined as the time-ordered vacuum expectation value of
n Heisenberg creation or annihilation operators:

G(n) [Φ1 . . .Φn] :=〈Ω|T [φ1 . . . φn]|Ω〉 (1.12)

∼
n∏
i=1

G
(2)
0;i S[Φ1 . . .Φn]. (1.13)

Thereby the last line is a formal form of the so-called LSZ reduction formula [3, 16] where
∼ was used to indicate an equivalence of the pole structure on both sides. It indicates the
connection of an n-point Green’s function with the S-Matrix of n-particle scattering.

On Dyson’s approach to Green’s functions:
F. Dyson has developed two sets of equations in his papers 1949 about the S-matrix in QED
[17, 18] which are called Dyson equations. As well as LSZ they are also a manifestation of
the strong relation of Green’s functions with the S-matrix. While Dyson has given only two
equations for the 2-point- and the 3-point-function the principle can straightforwardly be



CHAPTER 1. INTRODUCTION 5

generalized to the case of n-particle Green’s functions. This can be done by summing up all
n-particle irreducible interactions in terms of Feynman diagrams. Following first Feynman’s
theory expanding in orders of the structure constant α, one draws all Feynman diagrams
contributing to the interaction of a certain process up to order α, sum them up and extract
finally observable quantities like the differential cross-section valid up to the order in α.
Following the example of renormalizability, i.e. if a theory is renormalizable to all orders in
perturbation theory (PT) it is assumed to be renormalizable non-perturbatively, the Dyson
resummation is also valid in the non-perturbative regime. Following Dyson’s approach, as
presented in [19], it is possible to write n-particle Green’s functions as self-consistent equa-
tions including either the T-matrix [20] or proper n-particle irreducible Green’s functions.
The latter is present in the second equation, (1.15), obtained through the introduction of
the n-particle interaction kernel K(n) which is shown in (1.16) to be a sum over all proper

k-particle irreducible interactions K
(k)
irr :

G(n) = G
(n)
0 +G

(n)
0 T (n)G

(n)
0 , (1.14)

G(n) = G
(n)
0 +G

(n)
0 K(n)G(n), (1.15)

whereas K(n) is given by

K(n) = K
(n)
irr +

∑
i

K
(n−1)
irr ⊗ G

(2)
0;i + . . . . (1.16)

It is easy to construct the equation showing an infinite sum of terms summed up to be the
n-particle Green’s function G(n) (shown below). Nevertheless this Dyson equation in spite
of being calculable up to any order n is still a perturbative equation since only finitely many
of all possible interactions are included. This is straightforward to see if the expression for
K(n), given in (1.16), is inserted into the equation below

G(n) = G
(n)
0 +G

(n)
0 K(n)G

(n)
0 +G

(n)
0 K(n)G

(n)
0 K(n)G

(n)
0 +

+G
(n)
0 K(n)G

(n)
0 K(n)G

(n)
0 K(n)G

(n)
0 + . . . .

(1.17)

On the Feynman path integral formalism and functional methods:
Having dealt with a classical theory up to this point it is necessary to introduce quantiza-
tion in order to obtain a quantum theory. This can be done via the method of canonical
quantization where for every field present in the theory a canonical momentum is needed to
arrive at canonical commutator relations. In this work however we would like to stick to an-
other approach called the Feynman path-integral approach. It allows both non-perturbative
and perturbative calculations and is already heavily used in lattice QCD (see e.g. [21]) and
Dyson-Schwinger studies (e.g. [22]). The approach is based on a functional integral over
all possible field configurations including all information about the theory. Examining this
functional integral it has been shown, [4], to be similar to a partition function of classical
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statistical mechanics. Also it is possible to derive all Green’s functions of the theory from
it (see Eq. (1.18) and (1.20) or [4]). Therefore the functional integral, written down in
Eq. (1.18), can also be seen as a “Generating functional” Z[J ] which depends only on
the sources J of the fields involved. Several mentioned properties are summed up in the
following two equations1:

Z[Ji] ∝ 〈 0,∞| 0,−∞〉Ji ,

Z[Ji] =

∫
DΦ e−S[Φ]+

∫
d̃4x JiΦi = 〈eJiΦi〉 =

∞∑
n=0

Gi1...in Ji1 . . . Jin . (1.18)

Herein the term
∫
d̃4xJiΦi is an abbreviation for a four-dimensional space-time integral

and possible sums over discrete (Lorentz, Dirac, flavor, color, ...) indices given by the

expression:
∑

a

∫
d̃4xJi;a(x)Φi;a(x) whereas a is a general index that subsumes the men-

tioned discrete symmetries. Introduced by J. Schwinger[14, 15] it is a supervector over all
contributing sources corresponding to fields in the action S.
In the case of QCD Eq. (1.18) becomes the following integral equation (again modelling
the Yang-Mills sector and thus neglecting gauge fixing contributions):

Z[jaµ, η̄, η] =

∫
D(Aµ;a, ψ, ψ̄) e−S[Aµ;a,ψ,ψ̄]+

∫
d̃4x [jaµ(x)Aµ;a(x)+η̄(x)ψ(x)+ψ̄(x)η(x)] (1.19)

with Aµ;a being bosonic fields representing the gluons and ψ and ψ̄ are the fermionic fields
of quarks and anti-quarks, respectively.
Unfortunately also the path-integral method has some problems, e.g. concerning its math-
ematical existence in continuous space-time or the sometimes emerging, to the numerically
needed Wick rotation related, difficulties appearing with singularities. Nevertheless the
action based formalism with the connection to the classical Euler-Lagrange equations cul-
minating in the quantum field theoretical framework of Dyson-Schwinger equations shows
analogies to statistical physics.
As mentioned it is sufficient for the definition of a Quantum Field Theory to write down
the generating functional. The Green’s functions of the theory can now be obtained as
functional derivatives with respect to the sources Ji and finally taking the sources to be
zero

Gfull
n [Φ1 . . .Φn] =

1

in
δ

δJ1
. . .

δ

δJn
Z[Ji]

∣∣∣∣
J=0

. (1.20)

Via the linked cluster theorem[4], the irreducible (connected) contributions toGfull
n [Φ1 . . .Φn]

can be extracted. It is simply necessary to subtract all partitionings of n-points giving rise
to disconnected contributions given by products of m-point functions (m < n). The gen-
erating functional for the irreducible (connected) Green’s functions is then given by the

1We will work in Euclidean spacetime throughout this work which is obtained by a Wick rotation in the
time component [23] (see therefore the appendix).
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expression

Wconn[J ] := ln {Z[J ]} = ln

{∫
DΦe−S[Φ]+

∫
d̃4x Ji(x)Φi(x)

}
, (1.21)

and the connected n-point Green’s functions are extracted through a Taylor expansion of
this functional

φconn
n [x1 . . . xn] =

1

in
δnWconn[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (1.22)

Further the normalizations are given by

Z[0] = 1 and W [0] = 0.

The functional derivative of Wconn[J ] with respect to the source Ji yields the expectation
value of the field Φ which can be seen as a classical field variable Φc

Φc(x, J) =
δ

ı̇δJ(x)
Wconn[J ]. (1.23)

This expression will be needed in the following definition of the generating functional for
the proper 1-particle irreducible (1 PI) Green’s functions. It is obtained via a functional
Legendre transform of Wconn[J ] given by

ı̇Γ[Φc] = Wconn[J ]− ı̇
∫
d4xJi(x)Φi;c(x), (1.24)

whereas Eq. (1.23) was inserted. Γ[Φc] is called “effective action” and generates the 1-PI,
or truncated, Green’s functions.

Leaning on the classical idea of the Euler-Lagrange equations where the action of the
theory is assumed to be extremal and thus is invariant under small changes in the field
variables, in quantum field theories one assumes the generating functional Z[J ] to be in-
variant under a change in the fields Φ(x) [24]. This can be written as a condition on the
functional integral:

0 =

∫
D [Φ] exp

{
−S[Φ] +

∫
JiΦi

} (
δ

δΦk
S[Φ]− Jk

)
=:
〈( δ

δΦk
S[Φ]− Jk

)〉
[J ]

(1.25)

Eq. (1.25), written for different generating functionals leads to one of the following master
equations for the infinite tower of Dyson-Schwinger equations(

− δS

δΦi

[
δ

δJ

]
+ Ji

)
Z[J ] = 0 ;

− δS

δΦi

[
δW

δJ
+

δ

δJ

]
+ Ji = 0 ;

δΓ[Φc]

δΦi
− δS

δΦi

[
Φc +

δ2W

δJδJ

δ

δΦc

]
= 0 ,

(1.26)

(1.27)

(1.28)
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for the full Green’s functions, the connected Green’s functions and the proper Green’s
functions respectively.

1.3 The σ - (f0(500)) - Particle, associated Theories, Experi-
ments and Scalar Mesons in the DSE–BSE framework

In this section we would like to shed some light on scalar mesons which have the same
quantum numbers as the vacuum, i.e. JPC = 0++. In particular we want to look at
the lightest scalar resonance which is called the f0(500) in [2]. As scalars share the same
quantum numbers as the vacuum they can condense into it and so break the global chi-
ral U(Nf ) × U(Nf ) symmetry. The detailed mechanism responsible for breaking chiral
symmetry in nature is an ongoing discussion since fifty years and far from being (entirely)
understood. In addition also the identification of scalar particles is tricky due to their large
decay widths and the opening of several decay channels within a short mass range. Hand in
hand with the large decay widths goes an overlap between resonances and the background
which hinder of course their easy resolution.
Also scalars are expected to mix considerably with scalar non-qq̄-states like tetra-quarks
(qq̄qq̄), glueballs or meson-meson bound states below 1800 MeV. Technically the mass and
width of a resonance in general can be identified by investigating the pole structure of the
process amplitude (i.e. T- or S-Matrix), in particular via the position of the nearest pole
at an unphysical sheet of the complex energy plane, (E − ı̇Γ/2). This is the Breit-Wigner
resonance formula. It is necessary to mention that this formula only agrees with the pole
position in the case of well-separated, most importantly narrow resonances.
Scalars are produced in various experiments including πN -scattering, pp̄-annihilation,
mesonic decays (J/ψ, B−, D−, K), γγ-formation and radiative φ-decays. Through isospin
(I = 0, 1/2, 1, 3/2, 2) the scalar particles are easily classified into f0’s (I = 0), a0’s (I = 1)
and K∗0 ’s (I = 1/2). Only the f0(500) (or σ) and the K∗0 (1430) are well-established today
but still far from being totally understood. Theoretically several models using two-body
unitarity, analyticity, Lorentz-invariance or chiral and flavor symmetry and techniques like
effective chiral field theories (e.g. the linear sigma model) have been investigated in parallel
to the experiments.
Having introduced scalar particles in general we turn now in particular to the lightest
scalar resonance, i.e. the f0(500) (σ). Being a scalar with isospin zero, JPC = 0++ as
the vacuum, the σ has first been introduced in the linear sigma model fifty years ago to
explain chiral symmetry breaking within that model. It is therefore often referred as the
“Higgs boson” of strong interaction as it is important for chiral symmetry breaking (χSB)
and thus for the generation of the proton mass, the η′-mass and the so-called “constituent
quark mass”.
This description and attempts, starting from a chiral Lagrangian (e.g. the NJL model
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[25, 26]), first have required the f0(500) mass and width to be Mσ ≈ 700 MeV & Γσ ≈
850 MeV. However in recent studies the σ was placed around 500 MeV [27]. The Particle
Data Group places the mass between 400 and 550 MeV and its width between 400 and
700 MeV [28]. Unfortunately the σ pole is difficult to determine due to its large width, the
inconsistency with the model of the Breit-Wigner resonance and the distortion by other
resonances like the f0(980) or the f0(1370) or by the background required by chiral sym-
metry. Precision concerning the pole determination in theory was finally obtained in the
last two decades since the f0(500) was formally “resurrected” in 1996 by Törnquist and
Roos [29] and culminated in a precise pole position within an uncertainty of less than 20
MeV by I. Caprini, G. Colangelo and H. Leutwyler [27]:

Mσ = 441
+16
−8

MeV, Γσ = 544
+18
−25

MeV. (1.29)

Therein the authors used a partial wave decomposition method due to Roy [30] and found
that the position of the σ pole depends only on the following three parameters: the isosin-
glet S-wave phase shift ∆δA(800) and the S-wave scattering lengths a0

0 and a2
0.

Other authors [31, 32, 33, 34] concern themselves with the nature of the σ, i.e. if it is a
conventional qq̄ state or some qq̄qq̄ [35], a meson-meson bound state or a scalar glueball
[36, 37]. In reality the f0(500) of course can be expected to be a superposition of all the
before listed. The determination of the main contributing component is model dependent,
still under investigation and left for future investigations to clarify.

As other scalar particles the σ is produced in e.g. πN-scattering or pp̄-annihilation and
data is in particular obtained from π−π, K−K̄, η−η and 4π systems in S-wave. Analysis
of several processes obtained the need of four poles, the σ and three other scalars, in the
region from the π−π threshold to ≈ 1600 MeV. Although data on the π−π S-wave phase
shift δIJ = δ0

0 was obtained already as early as Grayer [38] in 1974 the missing distinct
resonance structure under 900 MeV in pp̄-annihilation was somehow controversal. It was
nevertheless shown [38, 39] that also the pp̄-data is described well with the standard solu-
tion for the πN-data which allows the existence of the broad-width σ.

As can be seen in [2, 28] the σ decays strongly into two pions thus demanding the ap-
plication of non-perturbative methods. In this thesis we consider an iso-scalar qq̄ meson
to model the σ mentioned above. Within the framework of Dyson-Schwinger & Bethe-
Salpeter equations which rest on the Green’s functions of the underlying theory, QCD, we
will construct the QCD gap equation and quark–anti-quark bound states for the iso-scalar
and pseudo-scalar case and use them as an input for further considerations.
As in the DSE–BSE framework decay channels of particles are not dynamically included we
construct the particular decay of this iso-scalar quark–anti-quark bound state into π π and
further their recombination into this “σ” via the so-called triangle diagram Γσ→ππ and the
ππ-dressing Π (“diamond correction”) respectively. We want to stress at this point that
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wherever we mention the σ in the further scope of this work within the DSE–BSE approach
we actually mean an iso-scalar qq̄ state and not the experimentally observed f0(500). The
properties of the considered state are thus a priori only the ones of an idealized chiral
partner of the pion.

The outline of this thesis is the following: Chapter one has been used to introduce the
fundamental concepts of Green’s functions and their “quantum” equations of motion, the
Dyson-Schwinger equations (DSEs), chiral symmetry and its breaking as well as theoret-
ical and experimental facts about the f0(500). We therefore stuck to standard literature
[1, 3, 4, 24] and only tried to introduce the subject and emphasized what will be needed
throughout this thesis. Chapter two will deal with one of the most used Green’s function,
the quark propagator in QCD. As we deal with a tower of an infinite number of equations
of course our treatment of this two-point function will meet the necessity of a truncation
(see therefore chapter 2.2). In chapter three we will derive the framework of the so-called
homogenous Bethe-Salpeter equation (BSE) and apply it to the cases of an iso-scalar and a
pseudo-scalar meson. In both chapters we will give some numerical results. In chapter four
we will combine the theoretical concepts of the DSEs and the BSE to create the so-called
triangle diagram which gives the possibility to describe a decaying particle in the DSE -
BSE framework. Moreover we will include information on numerical results of the hadronic
decay width and the coupling strength. Finally in chapter five we combine two triangle
diagrams and two “bosonic propagators” to the diamond diagram, which we expect to hold
information and corrections on the mass and width of the iso-scalar σ meson considered
within the DSE-BSE framework. We conclude at the end of chapter five.



Chapter 2

Solving the Quark
Dyson-Schwinger Equation

2.1 The Quark DSE

In this chapter we will discuss the quark propagator Dyson-Schwinger equation and its
solution which will be needed as an input to solve the Bethe-Salpeter equation. Starting
with the first of equations (1.26) substituting the general Φi with the anti-quark field q̄ the
expression changes to(

−
δSQCD

δq̄(x)

[
δ

δj(x)
,

δ

δη(x)

]
+ η(x)

)
Z[j, η, η̄] = 0, (2.1)

which also is writeable as an expectation value:(
−
δSQCD

δq̄(x)

[
δ

δj
,
δ

δη̄

]
+ η(x)

)
Z[j, η̄, η] =

〈
−
δSQCD

δq̄(x)
+ η(x)

〉
[j,η,η̄]

= 0. (2.2)

Taking the derivative of Eq. (2.2) with respect to δ
δη(y) , it is possible to arrive at an expres-

sion which will be called the quark Dyson-Schwinger equation〈
δSQCD

δq̄(x)
q̄(y)

〉
= 1δ4(x− y) = Z2 (−6∂ + Zmm)〈 q(x) q̄(y) 〉

− Z1F ı̇ g

∫
d4z d4z′ δ4(x− z) δ4(x− z′) (γµt

A)〈 q(z) q̄(y)AAµ (z′) 〉,
(2.3)

11
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where several abbreviations were introduced which are given as follows:

S(x− y) := 〈 q(x) q̄(y) 〉 =
δ2W [j, η̄, η]

δη(y)δη̄(x)

∣∣∣∣
η̄=η=0

=

[
δ2Γ[AAµ , q̄, q]

δq̄ δq

]−1

(2.4)

〈 q(z) q̄(y)AAµ (x) 〉 =
δ3W [j, η̄, η]

δη(y)δη̄(z)δjaµ(x)

∣∣∣∣
η̄=η=0

=

∫
d4a d4b d4cDAB

µν (x− a)S(z − b)
δ3Γ[AAµ , q̄, q]

δq̄(c) δq(b)δABµ (a)
S(c− y).

(2.5)

There, S(x − y) is the fully dressed quark propagating from point y to x, DAB
µν (x − a) =

δABµ (a)

δjAµ (x)
is the dressed gluon propagator and

δ3Γ[AAµ , q̄, q]

δq̄(c) δq(b)δABµ (a)
is the dressed 1-particle irre-

ducible (truncated) quark - gluon vertex . Re-inserting all of these expressions in Eq. (2.3)
and changing to momentum space by applying a Fourier transformation the following re-
lation for the inverse quark propagator can be extracted:

S−1 (p, µ) = Z2(µ,Λ2)S−1
0 (p,Λ2)

− ı̇ g2(µ)Z1F (µ,Λ2)

∫ Λ

ε

d4k

(2π)4
γµ

λA

2
S(k, µ) ı̇ΓBν (p, k, µ)DAB

µν (q, µ),
(2.6)

where the bare quark propagator S−1
0 (p,Λ2) =

[
ı̇6p+ Zm(Λ2)m

]
was introduced. The gluon

momentum q is given as the difference between the internal and external quark momenta:
q = k − p. This is the Dyson-Schwinger equation for the quark propagator which is
pictorially shown in Fig. (2.1). It is also known as the QCD gap equation[1, 19, 40]. The
solution to this equation, the quark propagator, can now be written in terms of its intrinsic
structures. While propagating through space-time the quark does not change color or flavor
because only self interactions occur and the strong interaction is flavor-blind. Therefore it
is possible to implicitly specify the color and flavor structure in the quark and write the
general solution of the related DSE as

SαβABab(p) = Sαβ(p)⊗ 1√
Nc
δAB ⊗

1√
Nf

δab, (2.7)

where only the Lorentz/Dirac structure has not been resolved in detail. It is now possible
to solve this equation by making a suitable ansatz for Sαβ(p, µ) which is based on the
involved covariant structures. Eq. (2.8) shows a way of applying such an ansatz and further
extract two dressing functions which depend solely on the quark momentum p squared
(and the renormalization scale µ). We omit the Lorentz indices in the following for brevity,
writing them explicitly if necessary or advantageous for the reader. A second form, which
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Figure 2.1: The Dyson-Schwinger equation for the quark propagator in pictorial form;
straight and wiggly lines denote quark and gluon propagators respectively. Filled circles
denote the fully dressed gluon propagators and the fully dressed quark-gluon vertex, empty
circles the fully dressed quark propagator. The external momentum p in the first two graphs
has been omitted for brevity.

=

−1 −1

+

q

kp p

incorporates, of course, the same Dirac structure, is obtained by introducing a, to A inverse,
dressing function Z(p2) and the mass function M(p2)

S(p, µ) =

[
1

ı̇6pA(p2, µ2) +B(p2, µ2)1D

]
=
−ı̇6pA(p2, µ2) +B(p2, µ2)1D
p2A(p2, µ2)2 +B(p2, µ2)2︸ ︷︷ ︸

form 1

= (2.8)

=

form 2︷ ︸︸ ︷
−ı̇6p

Zf (p2, µ2)

p2 +M(p2)2
+
Zf (p2, µ2)M(p2)

p2 +M(p2)2
1D. (2.9)

As both of them are equally valid because they are all expressions for S(p, µ) it is of course
possible to switch between the two forms by simple applying the relations between the
dressing functions, e.g. Zf (p2, µ2) = 1/A(p2, µ2). We will stick to the first, solving for
A(p2, µ2) and B(p2, µ2) but give plots for the dressing functions Zf (p2, µ2) and M(p2). So
inserting form 1 into equation (2.6) leads to[
ı̇6pA(p2) +B(p2)1D

]
= Z2(µ,Λ2)

[
ı̇6p+m0(Λ2)

]
− ı̇ g2(µ)Z1F (µ,Λ2)

N2
C − 1

2NC

∫ Λ

ε

d4k

(2π)4
γµ

[
1

ı̇6kA(k2) +B(k2)

]
ı̇Γν(p, k, µ)Dµν(q, µ),

(2.10)

where we have re-inserted the expression for the bare quark propagator (S−1
0 (p,Λ2)) and

left aside the µ-dependence of the dressing functions for brevity. Further the color struc-
tures of the dressed quark-gluon vertex and the gluon propagator were extracted and
traced-over using

ı̇ΓBν (p, k, µ) =
λB

2
ı̇Γν(p, k, µ) DAB

µν (q, µ) = δABDµν(q, µ), (2.11)

obtaining

trC

[
λA

2

λA

2

]
=
N2
C − 1

2NC
= CF , (2.12)
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with CF the Casimir invariant of the color group SU(NC). To solve Eq. (2.10) it is necessary
to know already the dressed gluon propagator and the full quark-gluon vertex by having
solved their Dyson-Schwinger equations before. This however turns out to be a even more
laborious task than solving the quark. Therefore one needs to find a way to simplify the
problem to a treatable form introducing ansaetze for both the gluon propagator Dµν(q, µ)
and the quark-gluon vertex Γν(p, k, µ).

2.2 The Rainbow Truncation and Modeling G((k − p)2)

As pointed out already at the end of the previous section both the dressed gluon propa-
gator and the dressed quark-gluon vertex are needed to solve the quark Dyson-Schwinger
equation. The latter can be expressed into twelve Lorentz covariants and their related
Lorentz invariants Ti(p, k):

ı̇Γν(p, k) = γν T1(p, k) + (p+ k)ν T2(p, k) + ( 6p+ 6k)(p+ k)ν T3(p, k) + . . . , (2.13)

where we neglected the dependence on the scale µ for brevity.
In general the fully dressed vertex is determined by its Dyson-Schwinger equation. Never-
theless to solve this DSE in full glory is a difficult task and has not been resolved yet. To
obviate calculating the vertex including the entire Lorentz structure it is possible to employ
an ansatz. Therefore let’s recall the case of the quark-photon vertex in QED which in order
to ensure gauge invariance has to fulfill a Ward-Takahashi identity (WTI) [41, 42]

(p− k)ν Γν(p, k) = S−1(p)− S−1(k). (2.14)

Inserting now the expression of the fully dressed quark propagator the simplest solution
for Γν fulfilling the WTI is given by a longitudinal term, the Ball-Chiu vertex [43]

ı̇ΓBCν (p, k) =
A(p2, µ) +A(k2, µ)

2
γν − ı̇

B(p2, µ)−B(k2, µ)

p2 − k2
(p+ k)ν

+
1

2

A(p2, µ)−A(k2, µ)

p2 − k2
(6p− 6k)(p+ k)ν .

(2.15)

However, in general the full quark-gluon vertex can also be written as the bare vertex γν
plus a self-energy correction Λν (c. f. Eq. (2.16))

Γν(p, k) = Z1F γν + Λν . (2.16)

The relevant step in the Rainbow truncation is to replace the complex structure, shown
e.g. in Eq. (2.13), or equally the difficult self-energy part of Eq. (2.16), by the projection
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onto a simple structure like the bare vertex γν dressed by a non-perturbative function that
solely depends on the exchanged gluon momentum q2 [44]

Γν(p, k) = γν
(
Z1F + Λ(q2)

)
. (2.17)

Equivalently also a form like the following has been used in the literature [45]

Γν(p, k, µ) = ΓAbel
ν (p, k, µ) G2(q2, µ)Z̃3(µ,Λ2)︸ ︷︷ ︸

Γ¬Abel(q2,µ)

, (2.18)

where the Abelian part can be given by the construction in Eq. (2.15) or, as used later on,
the bare vertex. The non-Abelian part shows an ansatz introducing ghost dressing G and
renormalization Z̃3 functions as multiplicative factors to the Abelian structure. All of the
information concerning the quark-gluon vertex presented on the last pages is considered in
Landau gauge except Eqn. (2.13) and (2.16), which are valid gauge-independently. Also in
Landau gauge the gluon propagator is given by an expression including the gluon dressing
function D(q2) and a transversal projector:

Dµν(q, µ) = −D(q2, µ)

q2

(
δµν −

qµqν
q2

)
= D(q2, µ)Dfree

µν (q2). (2.19)

Collecting now the expressions for the full quark-gluon vertex in Eq. (2.18) and the dressed
gluon propagator in Eq. (2.19) the entire information from the Yang-Mills sector can be
absorbed into a new quantity defined as follows:

G(q2, µ)

4π
= α(q2) :=

g2(µ)

4π
Z1F Z̃3︸ ︷︷ ︸

=Z2

D(q2, µ)G2(q2, µ). (2.20)

This is the renormalization-point dependent running coupling in Landau gauge QCD.
Re-inserting Eqs. (2.18),(2.19) and Eq. (2.20) into the quark Dyson-Schwinger equation
(one of Eqs. (2.6) - (2.10)) e.g. Eq. (2.6) yields

S−1 (p, µ) = Z2(µ,Λ2)S−1
0 (p,Λ2)

− 1

3π3

∫ Λ

ε
d4k 4π α(q2)Dfree

µν (q, µ)γµ S(k, µ) ı̇ΓAbel
ν (p, k, µ).

(2.21)

Choosing as a first approximation the bare quark propagator in the WTI (Eq. (2.14)) the
bare vertex can be employed as the sole term contributing to the structure of the quark-
gluon vertex in the, up to now not known, related piece in the quark DSE: ı̇ΓAbel

ν = γν .
It can be shown (e.g. [40]) that this fulfills the statement of a renormalization-point
independent mass function for the quark M(p2) in Landau gauge if an additional factor of
Z2 appears next to the bare vertex γν .
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Figure 2.2: Diagrammatic representation of the quark DSE in Rainbow truncation

=

−1 −1

+
p k p

q

With the quark-gluon vertex and the gluon propagator specified all unknown variables
have been at least partially illuminated and the left over unknown pieces are put into one
function G(q2)

Z1F

∫ Λ

ε

d4k

(2π)4
g2DAB

µν (q)
λA

2
γµS(k)ΓBν (p, k)

−→ Z2(µ,Λ2)
4

3

∫ Λ

ε

d4k

(2π)4
G(q2)Dfree

µν (q) γµS(k)γν ,

(2.22)

including

Dfree
µν (q) =

Tµν
q2

=
1

q2

(
δµν −

qµqν
q2

)
,

with G(q2) being the only unknown function. Going back to Eq. (2.10) using the obtained
information on the quark-gluon vertex and the gluon propagator needed to solve that
equation and using again form 1 of equation (2.8) we can separate the quark DSE into two
integral equations for the dressing functions A(p2) and B(p2). Thereby the only two pieces
left to solve are the involved Dirac structure and the function G(q2)

S−1 (p, µ) = Z2(µ,Λ2)S−1
0 (p,Λ2)

− Z2(µ,Λ2)

3π3

∫ Λ

ε
d4k G(q2)Dfree

µν (q, µ)γµ S(k, µ) ı̇ γν ,
(2.23)

A(p2) = Z2 − Z2
1

4p2

4

3

∫ Λ

ε

d4k

(2π)4

A(k2)

k2A2(k2) +B2(k2)

G((k − p)2)

(k − p)2(
δµν(k − p)2 − (k − p)µ(k − p)ν

)
trD [6pγµ 6kγν ]

, (2.24)

B(p2) = Z2 ZM m0 + Z2
1

4

4

3

∫ Λ

ε

d4k

(2π)4

B(k2)

k2A2(k2) +B2(k2)

G((k − p)2)

(k − p)2(
δµν(k − p)2 − (k − p)µ(k − p)ν

)
trD [γµ1γν ] .

(2.25)
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Finally we obtain the following two coupled integral equations to treat numerically:

A(p2) = Z2 +
Z2

π3

∫ Λ

ε
dk
k2

2

∫ 1

−1
dcos(θ)

A(k2)

k2A2(k2) +B2(k2)

G((k − p)2)

(k − p)2[
−2

3
k2 +

(
1 +

k2

p2

)√
k2
√
p2cos(θ)− 4

3
k2cos2(θ)

] (2.26)

B(p2) = Z2 ZM m0 +
Z2

π3

∫ Λ

ε
dk
k2

2

∫ 1

−1
dcos(θ)

B(k2)

k2A2(k2) +B2(k2)

G((k − p)2)

(k − p)2[
k2 + p2 − 2

√
k2
√
p2cos(θ)

]
.

(2.27)

Up to now the exact form of G((k − p)2) has not been specified, so we present a simple
model and a parametrization/model which are commonly used in Dyson-Schwinger - Bethe-
Salpeter studies (e.g. [19, 46, 47]) as an ansatz. Both models yield the feature of dynamical
chiral symmetry breaking in the infrared if tuned by suitable parameters D and ω (see
Eq. (2.28) and (2.29)). The first one mentioned being just a Gaussian to model the gluon
dressing [48] whereas the parametrization was used throughout different contributions to
meson Bethe-Salpeter studies [19, 46, 47]. Within this work we will use in general the simple
model as input for G((k−p)2) leaving the second model to prospective investigations in the
near future. Nevertheless we will give also results for the quark in this section that were
obtained by using the parametrization introduced by Maris and Tandy in 1999 [47]

GAWW ((k − p)2)

(k − p)2
=

4πD

ω6
(k − p)2 exp

(
−(k − p)2

ω2

)
, (2.28)

GMT ((k − p)2)

(k − p)2
=

4πD

ω6
(k − p)2 exp

(
−(k − p)2

ω2

)
+

4π γmF
1

2
ln

[
τ +

(
1 + (k−p)2

Λ2
QCD

)2
] .
(2.29)

The second equation was first introduced by [46] where there was also a δ - function term
involved that carried the infrared strength along with the finite width term also presented
in Eq. (2.29). The latter as well as the one with the delta function preserves the one-loop
renormalization group behavior of the quark Dyson-Schwinger equation and also show a
characteristic asymptotic behavior in the ultraviolet [47]. For the present case of solving
the quark we will simply stick to the chosen parameters given in that work to show some
results in agreement with both the simple model study (as shown in [48]) and the more
often considered parametrization of Eq. (2.29).
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2.3 Results

In this section we give the obtained results for the quark dressing functions using the two
versions of G((k−p)2) given at the end of the last section (see Eq. (2.28) & Eq. (2.29)). We
used D = 1 and ω = 0.5 for the ab initio unknown parameters of the effective interaction
G((k−p)2). In Fig. (2.3(a)) we show the mass function M(p2) = B(p2)/A(p2) as a function
of the positive, real, spacelike quark momentum squared. We give solutions for three
different current quark masses, namely m0(µ) → 0, m0(µ) = 5 MeV and m0(µ) = 115
MeV. These values stem from calculations in the MOM renormalization scheme at a related
scale equal to the cut-off Λ (for the Gaussian model) or µ = 19 GeV (for the model of
[47]). In comparison the related numbers in the PDG are given in the MS scheme at a
renormalization scale of 2 GeV. It is clearly visible that even in the limit for m0(µ) → 0
dynamical chiral symmetry breaking is occurring due to a substantial increase in the quark
mass function in the infrared regime. It is a typical feature of non-perturbative QCD and
shows the quark mass generation due to the gluon coupling which can be interpreted as
the so-called “constituent quark mass”. The quark dressing function Z(p2) = 1/A(p2) is
plotted in Fig. (2.3(b)). Again we give results for three different current quark masses.
Further interpretation and detailed knowledge can be found in several studies of the last
years (in particular in [22, 40, 45, 48, 49, 50]).
In Fig. (2.3(c)) we change the effective interaction and add, as shown above, a logarithmic
tail in the UV region. The results are therefore altered with respect to that change in
G((k− p)2). The quark mass function still obtains an substantial increase in the IR regime
(i.e. around and below 1 GeV) but now decreases logarithmically in the ultraviolet. This
is in agreement with the construction of G((k−p)2) which is due to the wanted asymptotic

behavior of α(q2)
k2→∞−→ πγm

ln k2 /Λ2
QCD

as constrained by one-loop perturbative QCD.

In the next section when dealing with the Bethe-Salpeter equation the quark propagator
will be needed in general for complex momenta. However the analytic continuation may
be difficult. Also, due to numerical treatment, the dressing functions A(p2) and B(p2) are
only known on a finite grid of real positive momenta. Nevertheless also in the complex
plane the quark must reduce to the free fermion propagator in the limit of large momenta
p. In Fig. (2.3) a sketch of the complex momentum plane is shown. Due to the composite
momentum dependence of the quark inside the Bethe-Salpeter equation the region where
it has to be known changes from the real axis to a parabolic region in the complex plane.
In addition complex conjugated poles are appearing at negative values of Re(p2) which
request careful numerical treatment.
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(a) The mass function M(p2) of the quark propagator using the simple Gaussian model for
three different current quark masses m0.
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(b) The quark dressing function Z(p2) for m0 → 0 and m0 = 5 and 115 MeV again using the
Gaussian model and plotting for three different quark masses m(µ).
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(c) The quark mass function M(p2) using the model of Maris and Tandy [47] for different
values of the current quark mass m(µ).

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Z
(p

2
) 

=
 1

/A
(p

2
) 

[G
e

V
]

p
2
 [GeV

2
]

 

mch
mu/d

ms

(d) The quark dressing function Z(p2) in the same approach. Again we give



CHAPTER 2. SOLVING THE QUARK DSE 21

Figure 2.3: A sketch of the analytic behavior of the quark propagator in the complex p2

plane as it is needed for the Bethe-Salpeter equation; the parabola indicates the region
where it has to be calculated whereas the crossed circles indicate the appearing poles.



Chapter 3

Relativistic Bound States and the
Bethe-Salpeter Equation

3.1 Derivation of the 4-point Dyson-Schwinger Equation and
the homogeneous Bethe-Salpeter Equation

In this chapter we want to lay a hand on the derivation of bound states in the functional
framework of Dyson-Schwinger and Bethe-Salpeter equations. For this to work we derive
first the homogeneous Bethe-Salpeter equation (BSE) using further functional derivatives
and the equations already stated in chapter 2. We thus arrive at an integral equation that
has to be solved numerically. Finally we give explicit results for the scalar and pseudo-scalar
case.

3.1.1 Obtaining the 4-point Green’s Function

Having shown how to obtain the 2-point Green’s function, in particular for the quark in
QCD, we turn now to the 2-body problem. To obtain information on the level of Green’s
functions we need to consider not two but four derivatives. In the case of a fermion–anti-
fermion system it is necessary to take three more derivatives of the master equation (1.26)
with respect to the quark source at points y and y′ and the anti-quark source at point
x′. After several steps of algebra using various definitions and results from the previous
sections the 4-point Green’s function is obtained as follows: Being defined as the fourth
derivative of the generating functional of connected Green’s functions Wconn[Ji], the 4-point
connected Green’s function is defined analogously to other Green’s functions in chapter 2

22
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= +G K G

Figure 3.1: The 4-point fermion–fermion Green’s function, also sometimes known as the
inhomogeneous Bethe-Salpeter equation.

as

G(4)(x, y;x′y′) :=
δ(4)W [jaµ, η, η̄]

δη(y′) δη̄(x′) δη(y) δη̄(x)
. (3.1)

Bringing now the included pieces together and using an identity for the functional derivative
of the product of Z[A, q, q̄] with G(4)(x, y;x′y′) it is possible to arrive at the following
Dyson-Schwinger equation for the 4-point Green’s function G(4)(x, y;x′y′)[

Z2 (ı̇6∂x − Zmm)− e 6Aa(x)− eγµ
δ

ı̇δjaµ(x)

]
G(4)(x, y;x′y′)

∣∣∣∣
jaµ=0

=

= δ4(x− y)S(x′, y′)− δ4(x−y′)S(x′, y).

(3.2)

Including the result for the 2-point Green’s function (c.f. 2.6)

(Z2(6∂x′ − Zmm)− Z1FΣx′)S(x′, y) = δ4(x′ − y), (3.3)

Eq. (3.2) becomes

(Z2(6∂x′ − Zmm)− Z1FΣx′) (Z2(6∂x − Zmm)− Z1FΣx)G(4)(x, y;x′y′) =

= δ4(x− y)δ4(x′ − y′)− δ4(x− y′)δ4(x′ − y)

+ (Z2( 6∂x′ − Zmm)− Z1FΣx′)

[
eγµ

δ

δjaµ(x)
− Z1F Σx

]
G(4)(x, y;x′y′),

(3.4)

where Eq. (3.3) was inverted and the part in brackets multiplied to the left hand side of the
equation. Further the term including the functional derivative was brought on the right-
hand-side. Introducing now a convolution integral to define the kernel K(x, x′; z, z′) (c.f.
Eq. (3.5)) it is straightforward to obtain an equation, that will be called inhomogeneous
Bethe-Salpeter equation

(Z2( 6∂x′ − Zmm)− Z1FΣx′)

[
eγµ

δ

δjaµ(x)
− Σx

]
G(4)(x, y;x′y′)|jaµ=

=:

∫
d4z d4z′K(x, x′; z, z′)G(4)(z, y;z′, y′).

(3.5)
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K = + + +

+ ...+ +

Figure 3.2: The first few terms of a skeleton expansion of the kernel K constructed out of
1-particle irreducible terms.

The kernel K is given through the sum of all 2-particle irreducible graphs which cannot
be disconnected cutting two fermionic lines. The first few terms are visible in Fig. (3.2).
Inserting the expression for K into Eq. (3.4) leads to the result for the 4-point function
G(4)(x, y;x′y′) as an inhomogeneous integral equation with kernel K(x, x′; z, z′)

(Z2( 6∂x′ − Zmm)− Z1FΣx′) (Z2(6∂x − Zmm)− Z1FΣx)G(4)(x, y;x′y′) =

= δ4(x− y)δ4(x′ − y′)− δ4(x− y′)δ4(x′ − y)

+

∫
d4z d4z′K(x, x′; z, z′)G(4)(z, y; z′, y′).

(3.6)

Often it is also convenient to give the Bethe-Salpeter equation in momentum space. This
can be done easily by Fourier transformation which is not explicitly given here but can
be found in numerous studies about the subject [1, 22]. In addition we change to center-
of-mass coordinates and introduce for the coordinate representation the center-of-mass
coordinate X and the relative coordinate x given in the first line of Eq. (3.7) and their
respective conjugated variables in momentum space, P and p listed below. With these
definitions, namely

X = ηx+ η̄y x = x− y
p1 = ηP + p p2 = η̄P − p

η + η̄ = 1, (3.7)

whereas η and η̄ are arbitrary momentum partitioning parameters, the 4-point Dyson-
Schwinger equation and its solution, the 4-point Green’s function can be re-expressed in
terms of the introduced momentum space variables P and p∫

d4 p′

(2π)4

[
D̃(P, p, p′) + K̃(P, p, p′)

]
G̃(4)(P, p′, p′′) = δ4(p− p′′). (3.8)

Used is further a new variable D̃(P, p, p′) which is defined as the product of two inverse
fermion propagators involved as the inhomogeneous term in the 4-point Dyson-Schwinger
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equation. Its detailed definition can be seen below

D̃(P, p, p′) := (2π)4 δ4(p− p′)S−1(p1)S−1(−p2). (3.9)

Thus we have arrived at a 4-point Dyson-Schwinger equation for a two-particle system
and its solution, the 4-point Green’s function in the coordinate and the momentum space.
Nevertheless to solve the Dyson-Schwinger equation completely it is necessary to know the
kernel-function K which is a priori a sum over infinitely many graphs and thus cannot
be calculated easily if even possible. It is therefore necessary to truncate the kernel to a
treatable form.
Moreover up to this point the equations used did not explicitly extract information on
bound states. Nevertheless if there exists one it will of course contribute to the 4-point
Green’s function G(4)(x, y;x′y′). These contributions and their extraction from the general
Dyson-Schwinger equation for the 2-particle system will be the subject of the next section
and is known as the homogeneous Bethe-Salpeter equation [51].

3.1.2 Extracting the Pole Structure – the homogeneous Bethe-Salpeter
Equation

In the next few lines we will take a look on how bound states will appear in the 4-point
Green’s functions as intermediate states in scattering theory, give the resulting equation,
called the homogeneous Bethe-Salpeter equation and apply a truncation to the kernel matrix
K which is necessary to render the obtained system treatable. As a first step we return to a
representation of the 4-point function as a vacuum expectation value 〈T [Φ(x1) . . .Φ(xn)]〉.
To investigate intermediate bound states in e.g. a k to n−k scattering we further consider
only the case where k < n fields Φ can all be time-ordered before the left over fields Φk+1 to
Φn. The time-ordered product can then be written as two time-ordered products with an
Θ-function to account for the separation. In the case of an interacting fermion–anti-fermion
system this can be written as

G(4)(x, y;x′y′) =
∑
α

∫
d3P

(2π)2 2ω
〈0|T

[
ψ(1)(x)ψ(2)(y)

]
|P, α〉 〈P, α|T

[
ψ̄(1)(x

′)ψ̄(2)(y
′)
]
|0〉

× −1

2πı̇

∫ ∞
−∞

dω
e−ı̇ωt

ω + ı̇ε︸ ︷︷ ︸
Θ(t)

.

(3.10)

We can now define a new function χ as a transition element from the vacuum containing two
fields ψ and ψ̄ into a bound state with total momentum P and internal quantum numbers
α. χ will be called the Bethe-Salpeter amplitudes. Eqs. (3.11) - (3.12) show the definition
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of the Bethe-Salpeter amplitudes and their re-expression in momentum variables. Further
applying the transition to the center-of-mass frame and switching to momentum space
variables, like in the previous section, we can re-express the 4-point Green’s function

χ(x, y, P ) : = 〈0|T
[
ψ(1)(x)ψ(2)(y)

]
|P, α〉

= χ(P, x)e−ı̇P ·X ,
(3.11)

χ(P, p) =

∫
d4 p

(2π)4
χ(P, x)eı̇ p·x, (3.12)

χ̄(x′, y′, P ) : = 〈P, α|T
[
ψ̄(1)(x

′)ψ̄(2)(y
′)
]
|0〉. (3.13)

Inserting these definitions and, as stated above, change to momentum space it is possible
to obtain the following result for G(4):

G̃(4)(P, p, p′) =
∑
i

ı̇

(2π)4

χP (Pi, p) χ̄P (Pi, p
′)

P 2 +M2
i + ı̇ε

∣∣∣∣
P 2
i =−M2

i

+ regular terms(P, p, p′). (3.14)

This expression can be re-inserted in Eq. (3.8) and after multiplying by P 2 + M2
i and

letting P 2 → −M2
i (i.e. compare the residues at the pole P 2 = −M2

i ) we obtain an
integral equation for the wavefunction χ(Pi, p) which is called the homogeneous Bethe-
Salpeter equation for the amplitude:∫

d4 p′

(2π)4

[
D̃(Pi, p, p

′) + K̃(Pi, p, p
′)
]
χP (Pi, p

′) = 0

χP (Pi, p) = S(p1 = p+)S(−p2 = −p−)

∫
d4 p′

(2π)4
K̃(Pi, p, p

′)χP (Pi, p
′).

(3.15)

(3.16)

More generally the entities [D̃−K̃] and G(4)(P, p, p′) in Eq. (3.8) can be expanded in powers
of (P 0−P 0

i ) at the position of the pole. From this expansion it is possible to derive both the
homogeneous BSE and the later discussed normalization condition if Eq. (3.8) is fulfilled
with respect to the order (P 0−P 0

i )−1 and to order (P 0−P 0
i )0, respectively. Defining now

the Bethe-Salpeter vertex function Γ(Pi, p) as

χP (Pi, p) =: S(p1 = ηPi + p) ΓP (Pi, p)S(−p2 = η̄Pi − p), (3.17)

shifts the involved quark propagators S(p1) and S(p2) in Eq. (3.16) from outside the integral
to the inside and so the homogeneous BSE becomes

[Γ(P, p)]ab =

∫
d4 k

(2π)4
K̃cd
ab(P ; p, k) [S(k+)Γ(P, k)S(−k−)]dc , (3.18)
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whereas a, b, c and d denote Lorentz indices. In addition the integration momentum has
been changed to k for convenience. The quark propagators carry momentum k+ = k+ ηP
and k− = k − η̄P fulfilling k+ − k− = P and k = η̄k+ + ηk−. The momentum partitioning
fulfilling η + η̄ = 1 will be chosen to be η = η̄ = 1

2 in the calculations. Pictorially the
Bethe-Salpeter equation is shown in Fig. (3.3) also including the respective momenta. As
in the section concerning the 4-point Dyson-Schwinger equation the kernel function K is
not specified up to now. To solve the homogeneous BSE, present in whatever form, it is
necessary to find a treatable form of this kernel, i.e. a truncation. Moreover as an input
for the BSE one has to solve first the needed quark propagators in a parabolic region.
The parabolic region is obtained as the quark dressing functions A(p2) and B(p2) are now

needed as functions of complex momenta squared, i.e. k2
± = k2 − M2

4 ± ı̇Mk4 (c.f. Fig.
(2.3)).

Figure 3.3: The homogenous Bethe-Salpeter equation in pictorial form also showing the
included momenta.

In addition, QCD is also characterized by a rich intrinsic structure which is also reflected
in the associated Green’s functions of the theory as well as in the S-Matrix. Through the
underlying symmetry groups of the involved structures, which can be identified as Lorentz,
Dirac, flavor and color structures, objects in QCD carry a corresponding Lorentz, Dirac,
flavor and color index. With this structures it is possible to expand first the QCD Green’s
functions in terms of the mentioned intrinsic entities and later also the Bethe-Salpeter
amplitudes (BSA) as they inherit the same structure as well. This is linked to the fact
that in QCD two types of irreducible representations, the fundamental (e.g. quarks, anti-
quarks) and the adjoint (gluons), appear. These representations are connected with the
Lie algebra of the related Lie group thus inheriting not only the same intrinsic but also
the algebraic structure. This implies linear space properties and thus via the definition
of a scalar product leads to orthogonality. In return it is possible to expand the group
structure of the Green’s functions onto a suitable basis. Although the Bethe-Salpeter
amplitudes are not per definition defined as vacuum expectation values of fundamental
fields they feature the Dirac, flavor and color structures of their parent 4-point Green’s
functions. In Eq. (3.19) and (3.20) this intrinsic structures of both the Green’s function
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and the Bethe-Salpeter amplitudes are sketched

G̃(4)(p) =
∑
µαaA

FµαaA(p) · [Lµ(p)⊗Dα(p)⊗ s
a(p)⊗ cA(p)] , (3.19)

ΓM (P, p) =
∑
i

FP
2=−M2; i(p2, p · P ) τM ;i(P, p, γ)⊗ 1√

3
δAB̄ ⊗ s

I
ab̄, (3.20)

where first L, D, s and c correspond to elements of a particular representation of the
underlying structure group, i.e. Lorentz, Dirac, flavor and color respectively. Further, in
Eq. (3.20) for the BSA, τMi represents the Dirac basis element(s) (also carrying Lorentz
indices), while sIab and δAB account for the specific flavor and color structure of the meson
under consideration. How to obtain the different components of this decomposition is
described in appendix A.2.

As we want to implement chiral symmetry and its dynamical breaking correctly, i.e. e.g.
the pion as the Goldstone boson being massless in the chiral limit, it is necessary to truncate
the quark propagator self-energy as well as the meson Bethe-Salpeter kernel consistently
with this constraint. The axial-vector Ward-Takahashi identity (avWTI) [41, 42] ensures
this correct implementation of chiral symmetry as well as its breaking (χSB) and relates the
quark self-energy to the quark–anti-quark kernel in the pseudo-scalar BSE. In addition it
is possible to obtain a generalized Gell-Mann–Oakes–Renner relation for all pseudo-scalar
mesons and current quark masses [46, 52, 53] through the avWTI. The avWTI can be
written as follows:

{γ5 Σ(−p−) + Σ(p+) γ5}αβ = −
∫

d4 k

(2π)4
Kαγ,δβ(P, p, k) {γ5 S(−k−) + S(k+) γ5}γδ .

(3.21)
A pictorial form is given in Fig. (3.4), where the crossed circles denote inserted γ5’s, white
circles denote full propagator, grey ones full vertices and grey boxes represent the qq̄-kernels.
The approach of [54] represents a qq̄-kernel derivation via functional derivatives of the quark

+ =
− pp

−+

− pp −+

pp − p− p

+

+ −

−
−− K K

Figure 3.4: The axial-vector Ward-Takahashi identity: the white circles indicate full prop-
agators, the grey ones full vertices and the crossed ones inserted γ5-matrices.

self-energy. Following this approach also several other studies (e.g. [12, 47, 48, 53]) use the
same construction of a vector-vector interaction qq̄-kernel that fulfill the avWTI linking it
to the quark propagator but model the remaining effective interaction in various ways. In
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this work we will also simply consider this most trivial setup corresponding to the lowest
order in the demanded symmetry preserving truncation scheme, i.e. a bare quark-gluon
vertex ı̇γµ. It is directly linked to the truncation which was presented in Sec. 2.2, called
the Rainbow truncation.
Taking this simple setup requiring the avWTI to be fulfilled one arrives at a gluon ladder
exchange with bare quark-gluon vertices for the qq̄-kernel. A detailed expression is given
in the following equation:

Kαγ,δβ(P, p, k) = Z2
2

G(q2)︷ ︸︸ ︷
4πα(q2)

q2

(
λa

2

)
AC

(
λa

2

)
BD

(ı̇γµ)αγ

=:Tµνq︷ ︸︸ ︷(
δµν − qµqν

q2

)
(ı̇γν)βδ. (3.22)

The function G (or equally α) thereby incorporates the gluon propagator and the quark-
gluon dressing functions as well as the coupling strength g of QCD. The λa’s account
for the color structure and are of course the SU(3)C Gell-Mann matrices. Due to the
isospin symmetry and equal masses of the contributing quarks the flavor structure does
not contribute in this case. With this result the task to solve the Bethe-Salpeter equation
is put forward in a treatable form. Only the function α(q2) is still unknown. However it
is identical to the function used in the calculation of the quark propagator in the Rainbow
truncation through the connection of the avWTI. The truncation scheme is therefore named
the Rainbow-Ladder truncation (RL).
In pictorial form the Bethe-Salpeter equation changes from Fig. (3.3) where the kernel
function K was not known a priori to the form where a simple gluon-ladder exchange has
been put in the place of the kernel function K (c.f. Fig. (3.5)).

Figure 3.5: The homogeneous Bethe-Salpeter equation in pictorial form with a bare gluon
exchange kernel shown emphasized in dark grey.

3.2 Normalization and the Pion Decay Constant

To obtain information on physical observables in the framework of Bethe-Salpeter equations
it is further necessary to properly normalize the obtained amplitudes. Formerly the needed
condition is obtained via the pole expansion of the 4-point Dyson-Schwinger equation being
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fulfilled to order (P 0 − P 0
i )0, i.e. that the residue in the 4-point qq̄ Green’s function is

unity [40, 49]. The standard form has been first discussed by Leon and Cutkosky [55] and
is built of two terms, one including the derivatives of the quark propagators with respect
to Q2 and the second taking the derivative of the kernel also with respect to the total
momentum squared. There Pµ is the total momentum of the meson at the i th pole, i.e. it

fulfills P 2 = −M2
i (in Euclidean space-time). The bound state vertex functions Γ

i/j
M ’s are

calculated on the mass shell, i.e. resulting in a fixed value of P 2. Therefore the derivative
in the first term only acts on the quark propagators S(k). They carry different momentum
k+ = k + ηQ and −k− = k − η̄Q respectively which shows the momentum partitioning
of the total bound state (BS) momentum. Eq. (3.23) shows the described form of the
normalization condition as it was first introduced by Leon and Cutkosky

δij = 2
∂

∂Q2
trD

∫
d4 k

(2π)4[
3

(
Γ̄iM (−P, k)S(k +Q/2)ΓjM (P, k)S(k −Q/2)

)
+

∫
d4 q

(2π)4
[χ̄iM ]ab(−P, q)Kcd;ba(Q; q, k)[χjM ]dc(P, k)

]
.

(3.23)

In the Rainbow-Ladder truncation the kernel K is independent of the total momentum P
and thus the second term in the normalization condition can be neglected which leaves only
the first term to be calculated. In this case it can also be further simplified by substituting
the BS amplitude for the product between the quark propagators and the vertex function
(see therefore the definition of the vertex function, Eq. (3.17)). A second, but equivalent
condition has been put forward by Nakanishi [56] which has received interest lately due to
its applicability in beyond RL studies [57, 58],(

d ln(λ)

dP 2

)−1

= trD

∫
k

3 Γ̄(−P, k)S(k+)Γ(P, k)S(k−), (3.24)

with λ being the associated eigenvalue which is introduced in the numerical treatment
of the homogeneous Bethe-Salpeter equation. Further Γ̄(−P, k) is the charge conjugated
Bethe-Salpeter vertex function defined via

Γ̄(−P, p) := CΓT (−P,−p)C−1, (3.25)

with C = −γ2γ4, the charge conjugation matrix. The minus sign in the argument, in
front of the total momentum P, is a convention to signal the opposite momentum flow in
the vertex. Diagrammatically the normalization condition in the RL truncation is visible
in Fig. (3.6). With the Bethe-Salpeter amplitudes now properly normalized it is possible
to calculate physical observables like the leptonic decay constants. These constants are
obtained in general [47] via

fP Pµ = 〈0|q̄bγµγ5q
a|P ab(P )〉. (3.26)
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Figure 3.6: The normalization condition for the Bethe-Salpeter equation. Black filled
circles and grey filled circles denote BS vertices and fully dressed quarks respectively.

In particular for the leptonic decay constant marking the pion coupling to the point axial
field, i.e. the pion decay constant fπ, is given as

fπ = Z2
3

M2
π

tr

∫
d4 k

(2π)4
Γπ(−P, k)S(k+) γ5 6P S(k−), (3.27)

where the trace runs over Dirac matrices.Furthermore, in the chiral limit, it is possible
to relate the quark mass dressing function Bχ to the first dressing function of the pion
Bethe-Salpeter amplitude Eπ via the pion decay constant [53] (see the appendix (A.2) for
further information on the coefficient E):

Eπ(P, p) = Bχ(p2)/fπ. (3.28)

3.3 Numerical Treatment and Results

To obtain a solution for the Bethe-Salpeter equation for mesons it is necessary to han-
dle the obtained equation numerically because an analytic exact solution is only possible
in simple adaptions, e.g. the case of two scalar particles interacting via a scalar mass-
less particle [23, 59]. In order to render the equation treatable with numerical methods
one introduces a covariant Dirac basis τj(P, k) and expands the Bethe-Salpeter ampli-
tudes in this basis as seen in Eq. (3.29). Thereby F i

M (P 2, p2, p · P ) is an element out
of
{
EM(P 2, p2, p · P ),FM(P 2, p2, p · P ),GM(P 2, p2, p · P ),HM(P 2, p2, p · P )

}
. Projecting on

single basis elements τi leads to a matrix-vector multiplication structure in the space of
the Dirac covariants. In addition it is also possible to add information about the flavor
and color space properties of the amplitudes. Including all information concerning Dirac,
Lorentz, flavor and color structures the Bethe-Salpeter amplitudes look like

ΓM (P, p) =
N∑
i=1

{τi;M (P, p, γ)}αβ F i
M (P 2, p2, p · P ) ⊗ δAB̄√

3
⊗ s

I
ab̄. (3.29)
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Eq. (3.29) is inserted into the Bethe-Salpeter equation (Eq. (3.18)) for the vertex function
and all contributing terms on the right hand side (r.h.s.) of Eq. (3.18) except the invariant
functions F i

M (P 2, p2, p · P ) are combined into one entity, which is called kernel matrix K.
This kernel matrix has the following form:

Kij(P, p, k) F j
M (P 2, k2, k · P ) :=

4

3

∫
d−4k trD

[
τi(P, p)K(P, p, k)Sa(k + P/2)τj(P, k)Sb(k − P/2)

]
F i
M (P 2, k2, k · P ),

(3.30)

with d−4k = d4k
(2π)4

. In addition the quark propagator function has to be known exactly for

needed momenta in the complex plane where η̄ = η = 1
2 has been chosen for the quark

needed in a symmetric region in the complex plane. The quark propagator’s, i.e. S(k±),
dressing functions A(k2

±) and B(k2
±) thus have to be known in a parabolic region in the

complex plane because of P in k± is equal to P = ı̇M . The vertex of this parabola can be
identified to be x0 = (−1

4M
2, 0) in Euclidean space-time having used η2 = η̄2 = 1

4 .

Putting now Eq. (3.30) back into the Bethe-Salpeter equation using several discussed ex-
pansions one obtains a matrix-vector multiplication in the covariant basis τi(P, p). Each
element of the matrix therefore includes certain Dirac basis elements, flavor and color
structure and the four dimensional integral over k -space. The BSE takes the form

F i,A = Ki,Aj,B F j,B. (3.31)

A and B are multi-indices that represent the discretized momentum dependence needed
numerically to treat the four dimensional integral involved. The i and j indices label the
components. To solve this matrix-vector multiplication it is necessary to remember that
the homogeneous Bethe-Salpeter equation is only valid on the mass shell and fulfills the
condition P 2 = −M2

i . The kernel matrix depends, as also the invariant functions F i do,
on P 2 and k ·P as well as k2 and k ·p. As it is therefore of need to know the value of P 2 for
a certain bound state a priori to be able to evaluate the kernel matrix, it is necessary to
pursue the following strategy: A suitable approach to obtain a valid bound state with mass
Mi is to investigate the spectrum of K with respect to P 2, i.e. omit fixing P 2 ab initio but
search for a certain P 2 where the BSE is fulfilled. Thus one obtains an eigenvalue problem
for the matrix K depending on P 2. The homogeneous BSE is obtained if a certain value
for P 2 gives an eigenvalue of λ = 1

λ(P 2) ~F(P 2, p2, P · p) = K(P 2, p2, k2, P · k, P · p, p · k) · ~F(P 2, k2, P · k). (3.32)

The corresponding eigenvectors are the Bethe-Salpeter vertex functions spanned in the
Dirac basis τi;M (P, p).
Fig. (3.7) shows the masses of the iso-scalar σ meson and the pseudo-scalar pion both
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calculated for different current quark masses m0 between the chiral limit and the strange
quark mass around 100 MeV. In Fig. (3.7) we name the state a ”bare” state because we
want to avoid confusion between the investigated iso-scalar qq̄ state and the experimental
σ. Moreover, the latter has been shown to miss the typical q̄q-behavior in the large Nc-limit
[31, 32] and therefore the ”bare” state is not expected to match the experimentally observed
properties e.g. the typical broad width expected for the σ. Nevertheless the result for the
pion is in good agreement with the Gell-Mann–Oakes–Renner relation which demands the
pion to be massless in the chiral limit. This is clearly visible in the down left corner.
Further the iso-scalar qq̄ state has a value around 660 MeV for a current quark mass of 5
MeV and is not massless in the chiral limit because it is not protected by chiral symmetry.
Further detailed calculations in the discussed approach and related interpretations have
been investigated already and can be found in numerous studies [19, 40, 46, 47, 48, 49, 53].
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Figure 3.7: The masses of the bare sigma and the pion with rising current quark mass
m0(µ) using the Gaussian effective interaction of Chap.2 .



Chapter 4

Calculating Observables: the
σ → ππ Triangle Diagram

Having derived expressions for the quark propagator in chapter 2 and the homogeneous
Bethe-Salpeter equation in chapter 3 it is possible to obtain information on hadronic decays
through the calculation of related quantities. In particular we will give detailed information
for the coupling strength of the σ into two pion and the width of the decaying σ into two
pions. We will describe the mesonic decay via the triangle diagram, which has been used
in perturbative studies [9, 10] as well as non-perturbative ones [12, 60, 19] to describe the
specific hadronic 1- to 2-particle decay. In the first section of this chapter we will give an
expression for the invariant amplitude of σ → ππ. Further we will solve for the color and
flavor structure (details will be given in the appendix) of the invariant M-matrix (i.e. the
invariant amplitude) and introduce new momentum variables P and Q whose definitions
also can be found in the appendix. We will continue with giving explicit expressions for the
coupling strength gσ→ππ and the decay width Γσ→ππ. Finally we will give some exemplary
numbers for the decay under consideration ( i.e. σ → ππ).

4.1 Building the Triangle Diagram

In the following, the quark propagator S(p) and the normalized Bethe-Salpeter amplitudes
Γ(P, p) are used as input to calculate coupling strength and decay width of a specific
process, i.e. the scalar σ meson decaying into two pions. Nevertheless we still deal with
the ”bare” σ particle which is a q̄q-state and thus we do not expect finding values that
actually fit with values in [2]. But first we derive some quantities needed to describe the
process of a particle into two (or generally many) particles. We emphasize that we only

34
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introduce terms like the S-matrix or the invariant amplitude M and that the reader is
encouraged to read in standard literature like [1, 3, 4] if deeper knowledge is required.
We start with some general expressions on how to obtain the invariant amplitude (also
called ”M-matrix” in scattering theory [20]) starting from the S-matrix S. As is commonly
known [3, 4, 20] in scattering theory the S-Matrix describes the unitary transition from
asymptotic incoming states to outgoing states and is therefore also sometimes called the
“infinite time evolution operator U(∞)” [1, 3, 19]. Therefore it is possible to write a matrix
element Sfi between an incoming state i and an outgoing state f as

Sfi = 〈f |i〉. (4.1)

Further the matrix element can be decomposed into a part not interacting with anything
else (i.e. a delta functional between incoming and outgoing state) and a part handling
possible interactions, which is called the T-matrix. It is the latter part that is of interest
because only there scattering occurs and particles in general interact with each other

Sfi = δfi + Tfi. (4.2)

Extracting the information on the energy-momentum conservation of the process under
consideration the T-matrix splits into the part related to momentum and an invariant
amplitude, also known as the “invariant transition matrix element” [20], still describing
processes of (an) incoming particle(s) i scattering or colliding into final particle(s) f

Tfi = (2π)4 δ(4)(pf − pi)Mfi. (4.3)

As we deal in general with huge numbers of particles colliding in elementary particle ex-
periments we need adequate quantities as observables. Such an observable is the scattering
cross-section which describes the probability of finding a certain final state f after a scat-
tering process of, in general, i incoming particles (given in Eq. (4.4)). Alongside a normal-
ization factor the cross-section consists of an integral over phase-space and the absolute
value squared of the invariant amplitude Mfi

dσf = N
∫
dΠf |Mfi|2. (4.4)

Thus having expressed the cross-section in terms of the invariant amplitude we consider
now the specific case of the matrixMfi of a meson, described by its Bethe-Salpeter ampli-
tude, into two mesons, also described by its respective Bethe-Salpeter vertex functions. We
denote the three of them by Γ1,2,3. Further sticking to the idea of the decay process being
described by a diagram like the one represented in Fig. (4.1) we denote the invariant am-
plitude by a trace over color, flavor and Dirac structures over a four-dimensional Euclidean
integral in momentum space. This is known as the impulse approximation introduced by
Mandelstam [61]. The integrand is constructed by considering the Bethe-Salpeter vertex
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Figure 4.1: The Triangle diagram in a pictorial form describing the decay of the σ into two
pions showing the internal quark loop and the included momenta.

functions of the initial and final states as well as the propagators connecting the amputated
legs of the BS amplitudes. A general expression for such a process is given in (4.5)

M = trDfc

{∫
d−4k Γ2 S3 Γ1 S2 Γ3 S1

}
. (4.5)

If this concept is applied to the particular case of the the σ decaying into π + π it is
necessary to insert the related amplitudes for the iso-scalar σ and the pseudo-scalar pion.
In the following we chose to replace Γ1 with the incoming Bethe-Salpeter amplitude of
the σ, Γσ, and Γ2,3 with the associated pion amplitudes Γπi and Γ̄πi , one incoming, one
outgoing. Further we also used the cyclic property of the trace to arrive at the following
expression for the invariant amplitude Mσ→ππ

Mσππ = trDfc

{∫
d−4k Γσ(Pσ, q1)S2(p2) Γπ;3(Pπ, q3)S1(p1) Γ̄π;2(−Pπ, q2)S3(p3)

}
. (4.6)

Isolating the color and flavor structure of Eq. (4.6) it is possible to evaluate the related
traces in color and flavor space. A detailed description of how this is done can be found in
the appendix (c.f. A.4). Here we will only concern ourselves with the resulting expressions
and list them again for convenience.
The color trace is of a simple form since we deal only with hadronic states which need to
be color-singlets. Thus the color trace is just a product of Kronecker - delta in color space
resulting in a factor of Nc in general and in the case of QCD, as considered here, a factor
of three

trc

{
δAB̄σ δF̄ B̄δEF̄π δD̄EδCD̄π δAC

}
= trc {1c} = Nc

here
= 3. (4.7)
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Turning to the flavor structure the σ as an uncharged particle can decay into three different
pairs of pions. The resulting flavor structure traces are given below and result all in a factor
of 1√

2
modulo a sign:

σ → π0π0:

trf
{
σ π0 π0

}
= trf

{
1√
2
1f

1√
2
σ3

1√
2
σ3

}
=

1

2
√

2
trf {1f} =

1√
2
, (4.8)

σ → π+π−:

trf
{
σ π+ π−

}
=

1√
2
, (4.9)

σ → π−π+:

trf
{
σ π− π+

}
= − 1√

2
. (4.10)

Having handled the up to now easy extractable color and flavor structure the resulting
equation is written as the following (c.f. Eq. (4.11)). There new momentum variables were
introduced which represent convenient variables to expand our investigation to another
diagram in chapter five which involves the triangle of σ → ππ. The related investigation
and transition from the former momentum dependence on the total and relative momenta of
the BS amplitudes and the involved quark momenta to the new incoming total momentum
P and the ”relative” momentum between the outgoing pions can be found also in the
appendix (c.f. A.3). Further we turn to a numerical treatment to extract information on
the involved Dirac structure and the left over 4-dimensional integral and their respective
solutions

Mσππ(P 2, Q2, P ·Q) =

Nc trDf

{∫
d4k

(2π)4
Γσ(P, k +Q/2)S2(k − P/2 +Q/2)×

× Γπ;3(P/2−Q, k − P/4)S1(k −Q/2)×

× Γ̄π;2(P/2 +Q, k + P/4)S3(k + P/2 +Q/2)

}
. (4.11)

In the next section we turn to the description of two observables, the coupling strength
and the Breit-Wigner decay width for the process under consideration and describe them
by means of the invariant amplitude Mσ→ππ and eventually additional factors.

4.2 Coupling Strength & Decay Width

Having expressed the invariant amplitude in terms of BS amplitudes and quark propagators
as obtained in the last section it is possible to use the relation between the cross-section
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and the invariant amplitude to calculate the coupling strength gσππ and the Breit-Wigner
decay width Γσ→ππ of the specific decay σ → ππ. First although the corresponding ef-
fective coupling strength between the σ and the two pions can be defined as the matrix
element between the incoming |σ(Pσ)〉 and the outgoing 〈π(Pπ)π(Pπ)| pion states (c.f. [62])
or equally the form factor F when all external particles are considered on-shell [19], i.e.
gσππ = F (P 2, Q2, P · Q)|P 2

i =−M2
i

where F (. . .) is given in the invariant amplitude via

Mσππ = F (P 2, Q2, P ·Q) · 1. So we can write the coupling strength as the already known
traces over the 4-dimensional integral of the product of BS - amplitudes and quark prop-
agators (c.f. Eq. (4.12)) fixing the bound state amplitudes of the σ and the π for their
respective on-shell bound state mass values

gσππ = 〈π(Pπ)π(Pπ)|σ(Pσ)〉 =

=Mσππ(P 2, Q2, P ·Q)|P 2
i =−M2

i

= Nc
1√
2

trD

∫ Λ

ε
d−4k {Γσ(P, k +Q/2)S2(k − P/2 +Q/2)×

×Γπ;3(P/2−Q, k − P/4)S1(k −Q/2)×

× Γ̄π;2(P/2 +Q, k + P/4)S3(k + P/2 +Q/2)
}
. (4.12)

The color and flavor traces were again already solved in the last expression of Eq. (4.12)
and again as in the case of the BSE we intend to solve the remaining Dirac structure
and momentum space integrals by applying numerical techniques. As in Sec. 3.3 the BS
amplitudes Γi are expanded in a covariant basis (c.f. appendix A.2) and their respective
invariant amplitudes (c.f. Eq. (3.29)). The quarks are expressed in the already discussed
dressing functions A(p2) and B(p2). With a little help from an algebraic solver [63] the
Dirac structure can be solved and the remaining integration can be executed numerically.
Results for the coupling strength will be given in the last section of this chapter. In
addition again considering a the scalar σ-particle decaying into two pions it is possible
to calculate a Breit-Wigner decay width for this particular process. It is advantageous
to link the Breit-Wigner decay width to the scattering cross-section given as follows in
Eq. (4.13)

Γ =
1

2M

∑
f

∫
dΠf |Mfi|2. (4.13)

Thereby the integral runs over the phase-space of final states
∫
dΠf . The variable M is the

mass of the decay particle and Mfi is the already discussed invariant amplitude obtained
as above (Sec. 4.1). We are left to obtain an expression for the phase-space integral. For a
process like the decay of the σ into two final particles, the pions, the phase-space integral is
given through a double integral over the as incoming defined outgoing momenta k2 and k3.
Further in Eq. (4.14) an energy-momentum conservation delta functional is present and the
former 4-dimensional integration has been split into space-like and time-like integrations
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with the time-like ones already evaluated∫
dΠf =

∫
d−3~k2

∫
d−3~k3

(2π)4 δ(4)(k1 + k2 + k3)

(−2ı̇)

√
M2

2 + ~k2
2(−2ı̇)

√
M2

3 + ~k2
3

.

(4.14)

The delta functional further simplifies the expression and leaves only one integration over
~k2 and a one-dimensional delta functional over the time-like components

∫
dΠf = −

∫
d−3~k2

2π

4

√
M2

2 + ~k2
2

√
M2

3 + ~k2
2

δ

(
M1 −

√
M2

2 + ~k2
2 −

√
M2

3 + ~k2
2

)
.

(4.15)

It is then possible to separate the radial and angular parts of the remaining integral and

solve the angular part in a straight forward manner. The left over integral in d(

√
~k2

2) is
again solved with the help of the apparent delta-functional

∫
dΠf = −1

4

∫
d2Ω

(2π)2

∫
d

(√
~k2

2

) ~k2
2√

M2
2 + ~k2

2 +

√
M2

3 + ~k2
2

δ(

√
~k2

2 − ξ). (4.16)

Finally a general expression for the phase-space integral of a particle with massM1 decaying
into two particles with masses M2 and M3 can be given and is shown in Eq. (4.17)∫

dΠf = − ξ

4πM1
. (4.17)

whereas ξ is given by the expression in Eq. (4.18) in terms of the three bound state masses
M1, M2, M3

ξ =

√
(M1 +M2 +M3)(M1 −M2 +M3)(M1 +M2 −M3)(M1 −M2 −M3)

2M1
(4.18)

= λ(M2
1 ,M

2
2 ,M

2
3 ), (4.19)

λ(. . .) being the Källen function and the bound state masses squared of the incoming and
outgoing particles, i.e. M2

i , appearing as arguments. In the present case where the involved
pions are considered in the iso-symmetric limit and thus all share the same mass one deals
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with two identical final particles and M2 can be set equal to M3. Thus Eq. (4.17) turns
into an expression of only the mass of the decaying particle and the mass of one of the final
particles, e.g. M2. In the case of the considered hadronic decay of the σ into two pions the
equation changes accordingly whereas M1 is substituted by the mass of the σ meson and
M2 is the mass of the pseudo-scalar bound state, i.e. the pion∫

dΠf = − 1

8π

√
1− 4M2

π

M2
σ

(4.20)

Recombining the obtained expression for the phase-space integral with the other needed
components for Eq. (4.13) and calculating the sum over possible final states resulting in a
factor of three it is possible to obtain a final expression for the Breit-Wigner decay width.
The factor three is possible due to identical results with respect to color space and only a
sign difference in the possible decays in flavor space

Γσ→(ππ) = 3 g2
σππ

√
1− 4M2

π/M
2
σ

16πMσ
. (4.21)

4.3 Results

In this section we will present some ideas on how to arrive at results for the discussed
coupling strength gσππ and the decay width Γσππ. We will only investigate one set of
parameters as needed for the effective coupling in the quark DSE and meson BSE and fix
the mentioned parameters to D = 1 and ω = 0.5. Further we will first model the pion
Bethe-Salpeter amplitudes for the pion through the related quark-mass dressing functions
of the quark propagators but in general calculate the triangle including the full structure
of all amplitudes and propagators. Moreover, in principle it will be necessary to test for
different settings, i.e. alter the choice of D and ω, choose other forms for the effective
coupling, as well as also include contributions beyond the Rainbow-Ladder approximation
to yield qualitative and quantitative results that are model and truncation independent.
Further, if we take a look at the involved momenta of the pion BS amplitudes, it is clearly
visible that they can in general occupy complex values. Even though the pions can be
calculated at the soft point, i.e. P 2 = −M2

i , and in fact that is what we have done, the
respective relative momentum stays complex. Therefore as we know the BS amplitudes
only for real relative momenta k (or p), it is necessary to think of a analytic continuation of
the BS amplitudes to complex relative momentum if the total momentum Pπ stays fixed.
A suitable method to accomplish this has been investigated and applied in [19] and we just
apply the same techniques to alter the needed BS amplitudes for the pions accordingly.
From known experimental measurements of the f0(500) it is possible to infer that, for a
mass of Mσ ∼ 420− 550 MeV and a decay width of Γσ→ππ ∼ 0.40− 0.64 GeV the coupling
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strength takes a value around gσππ ∼ 1.932− 2.611 GeV.
Within [62] a finite temperature analysis of the triangle for a similar truncation has also
been presented, which, in the limit T → 0 yields the following results for the mass, the
decay width and the coupling strength: Mσ = 590 MeV, gσππ = 2.2 GeV and therefore
Γσ→ππ ' 0.22 GeV.
We postpone the presentation of our own detailed numerical results including simple cal-
culations and the full structure implementation of all concerning BS amplitudes to future
publications.



Chapter 5

The σ − ππ − σ Diamond Diagram,
Conclusions and Outlook

In the last chapters we derived and calculated expressions for the quark propagator (c.f.
Chap. 2), the Bethe-Salpeter amplitudes for the iso-scalar σ meson and the pseudo-scalar
pion case (c.f. Chap. 3) and finally in Chap. 4 these intermediate results were used to con-
struct the decay of the σ into two pions aiming at information about the coupling strength
between the three involved particles and the decay width Γσ→ππ.
Up to now the σ was considered as a pure qq̄-state as can be straightforwardly seen recon-
sidering the calculation in Chap. 3 for the iso-scalar case. Nevertheless the obtained mass
lies around 670 MeV and thus differs considerably from other approaches, e.g. [27], that
place the σ around 441 MeV. In addition not having considered complex momenta P no
information up to now was given about the decay width of the σ.
The goal of this chapter is now to use the obtained pieces of information to construct a
diagram contributing to the self-energy Πσ(P 2) of the σ meson involving the dominant [2]
process of the σ decaying into to pions. As of the, in general, complex nature of Πσ(P 2) it
is possible to end up with an altered value for the mass of the σ and also an altered decay
width (compared to Chap. 4). Intuitively one would expect that the lowest order contri-
bution to the σ-self-energy is a process where the σ emits a pion and reabsorbs it again.
However this process is forbidden by parity. Therefore the lowest order diagram including
the iso-scalar σ and the π and contributing to the self-energy Πσ(P 2) is a diagram of the
form of Fig. (5.1). It accounts for the σ decaying into two pions and again recombining
into the σ. Such a type of diagram is called “diamond diagram” due to its shape. Further
this type of diagram has already been under investigation in different studies concerning
problems like e.g. the η′-mass calculation in [12]. In the following section we will construct
an expression for the diamond diagram and give insights and suggestions what we expect
from its calculation. Further we will give an outlook what has to be done to calculate the
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diagram and what is expected to happen to the mass of the σ and its decay width.

5.1 Constructing the Diamond Diagram

Before constructing the diamond we turn briefly back to the expression for the triangle
diagram. As it is an ingredient for the diamond it is advantageous to redefine the triangle
invariant amplitude Γσ→ππ as a sum over two times the same product of BS amplitudes and
quark propagators only with the S1–quark propagator’s momentum altered. This accounts
for a possible change of orientation of the internal loop momentum Q. With this changes
taken into account the invariant matrix element for the triangle diagram, as depicted in
Fig. (4.1), becomes

Γσ→ππ = Nc
1√
2

∫ Λ

ε
d−4k

{
trD

[
Γσ(P, kQ+) S2(kP,Q−+ )×

×Γπ;3(P/2−Q, k − P/4) S1(kQ−)×

×Γ̄π;2(P/2 +Q, k + P/4) S3(kP,Q++ )
]

+

+ trD

[
Γσ(P, kQ+) S2(kP,Q−+ )×

×Γπ;3(P/2−Q, k − P/4) S1(kQ+)×

×Γ̄π;2(P/2 +Q, k + P/4) S3(kP,Q++ )
]}

. (5.1)

Again the color and flavor structure have been already solved and their respective expres-
sions are apparent in Eq. (5.1) as the prefactors Nc and 1√

2
. Further a short notation for

the momenta was introduced to obtain a more concise expression. Thereby superscripts
“P ” and “Q” symbolize the involved momenta besides k and the subscripts “+” and “−”
give the related signs with a factor of 1

2 . Two examples how these rules are applied are
shown in Eq. (5.2)

kP,Q++ = k + P/2 +Q/2 and kQ+ = k +Q/2. (5.2)

Turning to Fig. (5.1) the self-energy of the σ meson in lowest order impulse approximation
is given by the diamond diagram, an 4-dimensional integral in Q, the internal loop mo-
mentum, over a product of four terms. The already calculated triangle contributes twice,
one time as already calculated in Sec. 4.3 and another time as the complex conjugated
expression. As missing connections between the triangle amplitudes we put an expression
that accounts for the wanted intermediate pole structure. A suitable form is given by the
propagator of a “bare”, bosonic and massive particle which is denoted by Dπ(p). These
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Figure 5.1: The diamond diagram as appearing in the impulse approximation: Double and
straight lines denote mesons (σ, π) and quarks respectively. The dashed bows account for
the involved relative momenta in the triangle and the loop momentum in the diamond.
Further black filled circles denote BS amplitudes whereas grey filled circles denote fully
dressed quarks.

stem from the general idea that the quark triangles should be connected by two 4-point
Green’s functions, each connecting two internal quarks on each side with again two on
the other. But as we want to emphasize especially the case of the pions contributing to
the σ–self-energy a pole ansatz, as in the BSE, is applied to the 4-point Green’s functions
leading again to a term of the form Γ Γ̄

P 2+M2
i

. Having included the amplitudes Γ and Γ̄

already in the expression(s) for the triangle we are left only to add the denominator terms
DM (p) := 1

P 2+M2
i

. The self-energy of the σ thus is given in Eq. (5.4)) with the “bare pion

propagators” involved given by the expression in Eq. (5.3)

DM (p) =
1

p2 +M2
M

, (5.3)

Π(P 2) = trDfc∫
d−4Q Γσ→ππ(P 2, Q2, P ·Q) Dπ(P/2 +Q) Dπ(P/2−Q) Γ̄σ→ππ(P 2, Q2,−P ·Q).

(5.4)

To solve now for Π(P 2) it is straightforward to plug in the associated expressions of the
triangles as functions of the two momenta P and Q and solve the four dimensional integral
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in Q. However solving this integral entails the necessity to investigate its particular analytic
structure as it is needed at points including pole contributions from the pion propagators.
Nevertheless a principle value calculation gives a first estimate on the sign of the shift ∆P 2

of the real part of P 2
σ . Moreover considering in general a full calculation of the diamond

correction it is not likely that the imaginary shift which contributes to the width Γ will
be identical to the one calculated in the “triangle diagram” Γσ→ππ. They may however be
compatible. Obtaining numerical results is however a still ongoing task and thus beyond
the scope of this work. Therefore we conclude with a qualitative discussion of the process
shifting the presentation of numerical results to future publications.

5.2 Outlook and Concluding Remarks

In this thesis we gave explicit expressions for the quark Dyson-Schwinger equation and
its solution, the quark propagator in Landau gauge. We showed results for both involved
dressing functions for two different types of effective interactions. We also considered briefly
the needed case in the complex plane. Further the Bethe-Salpeter equation was derived and
explicitly applied to the cases of the iso-scalar qq̄ σ and the pseudo-scalar pion. In analogy
to other calculations [19] we constructed the invariant matrix element for the σ-decay into
two pions which is the dominating decay of the f0(500). We discussed elsewhere obtained
results. Finally we gave an expression for the lowest order diagram of the σ–self-energy
in impulse approximation to investigate the behavior of the mass and the width of the
iso-scalar qq̄ state. From the PDG [28] the f0(500) is known to have a mass between 400
and 550 MeV and a width of 400 to 700 MeV. We arrive at mass of about 660 MeV and
expect that in our ongoing calculations the mass of the bare qq̄ σ-meson will decrease, due
to the contributions from the diamond diagram. Further we described the decay of this
iso-scalar state into two pseudo-scalar pions introducing a coupling strength gσππ and a
decay width Γσ→ππ. In this context and also via a fully calculated diamond correction we
expect extractable information on the width of the particle.
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Appendix A

Technical Details

A.1 Euclidean Space-Time

In Chap. 1 we stated briefly that we will work in Euclidean spacetime but not how to obtain
the transition between it and the commonly known Minkowski spacetime. In this appendix,
starting from usually taken Minkowski coordinates we will derive Euclidean coordinates
that will simplify dealing with the metric as well as the calculation of integrals. Further we
will also give expressions for known quantities of the Clifford algebra as well as an integral
measure. We start with a 4-vector in Minkowski spacetime, defined via the first expression
in Eq. (A.1),

xMµ =

(
x0

~x

)
= (x0, x1, x2, x3)T , and gµν = ηµν =


1
−1

−1
−1

 , (A.1)

including the definition of the metric tensor gµν given in the second part of the equation.
The scalar product between two vectors in Minkowski space is further represented by(

xMµ
)2

= ηµν xMµ xMν = ηµν x
µ;M xν;M = x2

0 − ~x2 = x2
0 − x2

i . (A.2)

Through a Wick rotation in the complex plane of the time-component x0 → −ı̇x4 it is
possible to map the (3+1)d Minkowski spacetime to a 4d Euclidean spacetime with the
definition of a general 4-vector now given by

xEµ =

(
~x

ı̇x0 =: x4

)
, and gµν = δµν =


1

1
1

1

 , (A.3)
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and the metric tensor simplified to the unit matrix δµν . Again constructing a scalar product,
this time including the new metric tensor, one arrives at the following slightly simpler
expression for the scalar product between two, in this case, identical 4-vectors in Euclidean
spacetime. It should be stressed that the square of a vector in Euclidean space catches a
relative minus sign compared to the Minkowski space

(
xEµ
)2

= δµν x
E
µ x

E
ν =

4∑
a=1

x2
a = x2

i − x2
0 = −

(
xMµ
)2
. (A.4)

Furthermore, these relations can be used to extract information on the transformation
properties of 4-dimensional integrals which were often used throughout this thesis. It is
straightforward to calculate that the integral over coordinate space catches a factor −ı̇
whereas the momentum integral only takes up a factor ı̇:∫ ∞

−∞
d4xM = −ı̇

∫ ∞
−∞

d4xE , (A.5)∫ ∞
−∞

d4kM = ı̇

∫ ∞
−∞

d4kE . (A.6)

The idea can be further applied to different structures of 4-vectors but in particular we want
to discuss here the changes in Clifford algebra and thus the effect of Euclidean spacetime
on gamma matrices. In Minkowski space the Dirac matrices fulfill the Clifford algebra
and thus the anti-commutator relation (Eq. (A.7)). Through the requirement that the
gamma matrices in Euclidean space should fulfill the same algebra we end up with an
anti-commutator relation for the Euclidean gamma matrices. Thus the definitions of the
gamma matrices in Euclidean spacetime can be seen in Eq. (A.9){

γµ;M , γν;M
}

= 2gµν , (A.7){
γEµ , γ

E
ν

}
= 2δµν , (A.8)

γE4 = γM0 , (A.9)

γEi = −ı̇γMi . (A.10)

In analogy to the case in Minkowski space (A.11) it is moreover possible to define a quantity
γ5 that commutes with all other newly defined γEs which is called again γE5 but with a
superscript E indicating the different metric

γM5 = ı̇γ0γ1γ2γ3 =

(
0 1

1 0

)
, (A.11)

γE5 := −γE1 γE2 γE3 γE4 =

(
0 1

1 0

)
. (A.12)
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In addition the standard representation of the gamma matrices in Euclidean spacetime is
briefly given through the expressions in Eq. (A.13). It is now possible to calculate the
Feynman slash (also known as the slash product) of a 4-coordinate xM and a 4-momentum
kM . For simplicity we only state here one of both calculations, i.e. the one for the 4-
coordinate xM , which is given in Eq. (A.14). The Minkowski Feynman slash thereby
amounts to minus ı̇ times the Euclidean Feynman slash,

γEi =

(
0 −ı̇σi
ı̇σi 0

)
, γE4 =

(
1 0
0 −1

)
, (A.13)

6xM = xM0 γM0 − xMi γMi = −ı̇xE4 γE4 − xEi (ı̇γEi ) = −ı̇
4∑
i=1

xEi γ
E
i = −ı̇6xE . (A.14)

With all expressions in mind we turn to the derivations in chapters one to four where we
would like to emphasize two changes due to the transistion from Minkowski to Euclidean
metric. The first one is the change in the “on-shell” condition (Eq. (A.15)) where the
total momentum squared in Euclidean spacetime becomes “minus” the mass squared and
thus the total momentum becomes imaginary. This also plays a crucial role where the
quark propagator has to be calculated in the complex plane when it is used as input in the
Bethe-Salpeter equation

(PMµ )2 = M2 Wick rot.
=⇒ (PEµ )2 = −M2. (A.15)

Further, when dealing with Euclidean coordinates it is simple to transform to spherical
coordinates (Eq. (A.17)), introducing the absolute value

√
xE;2 and three angles α, θ and

φ. Through a second transformation of α and θ

xEµ =


x1

x2

x3

x4

 −→ √x2


sin(α) sin(θ) sin(φ)
sin(α) sin(θ) cos(φ)

sin(α) cos(θ)
cosα

 =
√
x2


√

1− z2
√

1− y2 sin(φ)√
1− z2

√
1− y2 cos(φ)√

1− z2y
z

 , (A.16)

using the definitions z := cos (α) and y := cos (θ) it is possible to rewrite the 4-vector once
again in terms of

√
x2, z, y and φ. This result can be used straightforwardly to rewrite the

4d integral over dx4 in terms of these newly obtained variables∫ ∞
−∞

dx4 =

∫ ∞
−∞

dx1 dx2 dx3 dx4 =

∫ ∞
0

k3 dk

∫ 2π

0
dφ

∫ π

0
sin (α)2 dα

∫ π

0
sin (θ) dθ, (A.17)

∫
dx4

(2π4)
−→ 1

(2π4)

∫ ∞
0

dx2 x2

2

∫ 1

−1
dz
√

1− z2

∫ 1

−1
dy

∫ π

−π
dφ. (A.18)
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A.2 Constructing a covariant basis

In this appendix we want to give some details of how the Bethe-Salpeter amplitudes are
constructed. In particular we expected in Eq. (3.29) that the BS amplitudes could be
decomposed into Dirac/Lorentz, flavor and color structure. All three of them depend on
the quantum numbers of the particle under consideration and thus have to be adapted if
different particles are considered. In this section we will restrict our description to the two
cases of iso-scalar and pseudo-scalar particles with quantum numbers JPC = 0++ and 0−+.
How to obtain the flavor and color structure for the Bethe-Salpeter amplitude we shift once
again to appendix (A.4). We are left over with only Dirac/Lorentz structure and thus can
simplify the amplitude of Eq. ( 3.29) to

ΓM (P, q) =
∑
i

Fi;M (P 2, q2, q · P ) τi;M (P, q). (A.19)

As can be seen in Eq. (A.19) it is possible to span the Bethe-Salpeter amplitude in Dirac
space onto a basis with basis elements τi;M and coefficients Fi;M . The basis elements
depend on the same momenta as the general amplitude whereas the coefficients solely
depend on the squares of the related momenta. Moreover to investigate orthogonality and
linear independence we define the scalar product between two basis-elements to be given
by the trace of their product

〈τi|τj〉 = tr(τ i · τ j) = δij . (A.20)

Having clarified how to obtain linearly independent elements we turn now to the particular
case of an iso-scalar meson and construct its basis in Dirac space. As we want to get a basis
for a scalar particle we suspect to obtain scalar basis elements. As is visible in Eq. (A.19)
the Bethe-Salpeter amplitude depends on three different quantities which we will use to
construct a basis, i.e. Pµ, qµ and γµ. Scalar products between the single 4-vectors can be
constructed in six ways. However three of them are proportional to the unit element 1 and
two of them give 0. Thus we are tempted to take the unity (1) as a first basis element and
because P and q are orthogonal to the unit element we can also choose one of them to be
the second basis element. Nevertheless as Eq. (A.21f) is non-vanishing, obviously P and
q are not orthogonal. This can be corrected through a Gram-Schmidt procedure step and
leads to Eq. (A.22) substracting the non-orthogonal part from the vector q leaving three
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orthogonal basis vectors 1, P and qT = q − P q.P
P 2

tr(1 · 1) = 1, (A.21a)

tr(1 · 6P ) = 0, (A.21b)

tr(1 · 6q) = 0, (A.21c)

tr(6P · 6P ) = 4P 2 · 1, (A.21d)

tr(6q · 6q) = 4q2 · 1, (A.21e)

tr(6P · 6q) = 4q.P, (A.21f)

q =⇒ q − P q.P
P 2

. (A.22)

To check if the two newly chosen basis elements are really orthogonal one again applies the
trace and indeed obtains zero for the traced product between P and qT

tr(6P · (6q − 6P q.P
P 2

)) = 0. (A.23)

Having found three linear independent basis elements it is still necessary to check if there
could be more basis elements. In the case of the iso-scalar state it is possible by considering
scalar products of already obtained scalar products, e.g. 6q 6P , to find a fourth basis element
given by the commutator of the scalar product ı̇ [6q, 6P ]. Checking out of convenience also
the other possible scalar products gives nothing new since Eqs. (A.24a) - (A.24b) are both
proportional to the unit element and scalar products of more terms also just reproduce the
dependence on the mentioned four elements

6q 6q = q2 · 1, (A.24a)

6P 6P = P 2 · 1. (A.24b)

In addition we also list them in Table A.1 For the pseudo-scalar case we remember the
fact that the γ5 matrix is negative under parity and thus we obtain basis elements for the
pseudo-scalar meson states by multiplying the obtained basis by a factor of γ5. Finally the
orthonormalised basis elements for the iso-scalar and the pseudo-scalar qq̄ state are given
in detail in Table A.1.

We use the obtained basis to construct the Dirac structure of the iso-scalar σ Bethe-Salpeter
amplitude with coefficients E, F, G and H (c.f. Eq. (A.25)), which depend as discussed
above only on the squared momenta P 2, q2 and q · P . An analogous construction can be
made for the pseudo-scalar pion Bethe-Salpeter amplitude Γπ(P, q)

Γσ(P, q) =

[
Eσ(P 2, q2, q · P )

1

2
1 + Fσ(P 2, q2, q · P ) ̂6P + Gσ(P 2, q2, q · P )̂6qT +

+ Hσ(P 2, q2, q · P )
[
6̂q , ̂6P] ]. (A.25)
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Table A.1: The Lorentz-covariant basis of the Bethe-Salpeter amplitudes

scalar case: 0++ pseudo-scalar case: 0−+

τ1(P, q) 1
21

γ5
2 1

τ2(P, q) ı̇
2
√
−P 2
6P ı̇ γ5

2
√
P 2
6P

τ3(P, q)
ı̇

2
√

(P.q)2

P 2 − q2

(6q − 6P P.q
P 2 )

ı̇ γ5

2
√
q2 (P. q)2 − (P.q)4

P 2

(6q (P. q)− 6P (P.q)2

P 2 )

τ4(P, q) 1
4

1√
q2 P 2 − (P. q)2

[
( 6q − 6P P. q

P 2
) , 6P

]
1
4

1√
q2 P 2 − (P. q)2

[
( 6q − 6P P. q

P 2
) , 6P

]

A.3 Kinematics of the Triangle Diagram

Figure A.1: The triangle diagram: kinematics and involved momenta

In this appendix we want to discuss the kinematics of the triangle diagram introduced
in Chap. 4. As input therein quark propagators and Bethe-Salpeter amplitudes were
used. Assuming overall energy-momentum conservation, which is also expressed through
Eq. (A.26), the momenta contributing in a general consideration of the Bethe-Salpeter
equation are the incoming total momentum Pi of the composite particle under considera-
tion, the relative momentum qi and the outgoing quark ( i.e. qi;+) and outgoing anti-quark
momentum qi;−

0 = Pσ − Pπ2 − Pπ3 . (A.26)

Their definitions can be seen in Eq. (A.27)

Pi = qi;+ − qi;−,
qi = η̄qi;+ + ηqi;−,

}
qi;+ = qi + ηiPi,

qi;− = qi − η̄iPi.
(A.27)
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The variables η and η̄ account for the momentum partitioning between the two constituent
particles of the Bethe-Salpeter equation. They have to be fixed a priori before the cal-
culation and will depend on the Bethe-Salpeter amplitude under investigation but are in
general free to choose between 0 and 1 as they only need to fulfill η+ η̄ = 1. We have seen
in the case of the BSE calculation that the momentum partitioning parameters, however,
affect the region in the complex plane where the constituent quark and anti-quarks for the
BSE have to be calculated.
If one considers now the triangle diagram it is necessary to take three total momenta,
three relative momenta and three quark momenta into account. We therefore introduce
the following notation (also already used in [19]): Capital P ’s will label the total momenta
of the BS amplitudes, the q’s the relative momenta and the p’s will account for the quark
momenta needed in the diagram. As can be seen already in (A.26) all BS amplitudes
were considered as incoming states. In the context of the triangle diagram this should
not affect the calculations, however when the triangle is taken as an input for another
diagram the right momentum flow has to be taken into account. Through the definition
of the momenta of the quarks contributing to the BSE and the identification of them with
the quark propagators it is straightforward to rewrite the quark momenta in terms of the
relative momenta as well as the partitioning parameters and the total momenta of the
particles. Written in a compactified notation, each internal quark line in the triangle has
two restricting equations

p1 = q3 − η̄3P3,

p2 = q3 − η3P3,

p2 = q1 − η̄1P1,

p3 = q1 − η1P1,

p3 = q2 − η̄2P2,

p1 = q2 − η2P2.



p1 : q3 − η̄3P3 = q2 + η2P2

p2 : q3 − η3P3 = q1 + η̄1P1

p3 : q1 − η1P1 = q2 + η̄2P2

(A.28)

Thus we get relations between the relative momenta leading to a re-expression of the
relative momenta of the pions, visible in Fig. (A.1). In Eq. (A.29) we give the relative
momenta q2 and q3 as functions of the relative momentum of the particle at position
1 and all contributing total momenta. Furthermore the quark momenta can also be re-
expressed as functions of the same momenta q1, P1, P2 and P3 and their related partitioning
parameters:

q3 = q1 − η̄1P1 − η3P3,

q2 = q1 − η1P1 + η̄2P2.
(A.29)

Further, as the triangle is considered in the iso-symmetric case with equal-mass constituent
quarks, it is convenient to choose the momentum partitioning of the BSE at point 1 sym-
metrically to 1

2 . If considering in particular the iso-scalar σ decaying into two pions point
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1 will also be identified as the decaying iso-scalar BS amplitude

η1 = ησ =
1

2
= η̄σ = η̄1, (A.30)

which leaves us just with four unknown momentum partitioning η’s besides the four mo-
menta with which we expressed all others.
If one wants now to study a certain process via a practical calculation it is necessary to
select a certain frame of reference. Two choices are the well-known Breit-frame or the
rest-frame of the decaying particle. For the purpose of this work we will stick to a frame
in which the σ is at rest and thus the total momentum of the iso-scalar σ becomes most
simplest (c.f. Eq. (A.31)). Nevertheless the calculation must, of course, be independent
of the chosen frame. Thus considering the particular triangle diagram of the iso-scalar σ
decaying into two pions we identify point 1 in Fig. (A.1) as the σ and the points 2 and 3 as
the pions. Moreover the relative momentum of the iso-scalar particle will just be given by
q1 whereas the pion-related momenta are adjusted to account for outgoing pseudo-scalar
particles, i.e. they pick up a factor of (-1). The total momenta P2 and P3 also change
sign

Pσ := P1
at rest

=


0
0
0

ı̇Mσ

 ; qσ := q1

Pπ2,π3 := −P2,3 ; qπ2,π3 := −q2,3.

(A.31)

Having now obtained expressions for all momenta appearing in the triangle diagram it is
advantageous to seek a smaller set to calculate the process. Fixing the total momentum
of the decaying σ as a first variable, it is possible to choose the partition of momentum
flow between the final pion states symmetrically and we can write the total momenta of
the pions at points 2 and 3 as

Pσ = P ; Pπ2 =


0
0
κ

ı̇
√
M2
π + κ2

 , Pπ3 =


0
0
−κ

ı̇
√
M2
π + κ2

 . (A.32)

The difference between them then yields the definition of a new variable

Q :=
1

2
(Pπ2 − Pπ3) =


0
0
κ
0

 , (A.33)

with κ being defined as a momentum partitioning between the pion momenta contribut-
ing

κ =

√
M2
σ

4
−M2

π . (A.34)
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With this new momentum variable Q the total momenta of the pions also can be rewritten
in terms of only these two newly incorporated variables, i.e. the “incoming” momentum
P and the “relative” momentum between the “outgoing” particles Q. The first is given
through the σ whereas the latter is obtained via the entity κ linking the masses of the
decaying iso-scalar and the resulting pseudo-scalar particle states together

Pπ2 =
1

2
P +Q, Pπ3 =

1

2
P −Q. (A.35)

Applying the same procedure to the relative momenta of the Bethe-Salpeter amplitudes
their expressions yield dependencies on three, already mentioned, momentum variables:

q1 = qσ, (A.36)

q2 = −qπ2 = qσ +
1

2
P − η̄2

(
1

2
P +Q

)
, (A.37)

q3 = −qπ3 = qσ −
1

2
P + η2

(
1

2
P −Q

)
. (A.38)

As the triangle is essentially an internal quark loop diagram it is necessary to introduce
also a loop momentum for the quark loop which will be integrated over. All our momenta
are already expressed via the two external variables P and Q as well as qσ. As we want to
decrease moreover the region in the complex plane where the Bethe-Salpeter amplitudes
have to be known we choose the integration variable as

k := qσ −
1

2
Q. (A.39)

Due to iso-symmetric limit we can take also

η2 = η̄2 =
1

2
= η3 = η̄3, (A.40)

yielding a short summary of all included momenta as functions of the loop momentum k,
the total momentum P and the relative momentum between the pions Q:

qσ = k +
1

2
Q,

−qπ2 = . . . = k +
1

4
P,

−qπ3 = . . . = k − 1

4
P,

(A.41)

(A.42)

(A.43)
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p1 = . . . = k − 1

2
Q,

p2 = . . . = k − 1

2
P +

1

2
Q,

p3 = . . . = k +
1

2
P +

1

2
Q,

(A.44)

(A.45)

(A.46)

P1 = Pσ = P,

Pπ2 =
1

2
P +Q,

Pπ3 =
1

2
P −Q.

(A.47)

(A.48)

(A.49)

We leave out the final step of considering the squares of this expressions as they are also
needed in the Lorentz-invariant coefficient functions of the Bethe-Salpeter amplitudes as
well as the quark dressing functions.

A.4 The flavor and color Structure of the Triangle Dia-
gram

In appendix A.2 we discussed the construction of the Bethe-Salpeter amplitudes concerning
the Dirac/Lorentz structure but omitted the flavor and color degrees of freedom. In this
section we want now to catch up and describe the included flavor and color structures
which will also be needed as input for the construction of the triangle diagram. We will
first construct flavor matrices using group theoretical properties then discuss the case of
color.

A.4.1 Flavor

We deal with only two flavors of quarks, i.e. up and down, in the iso-symmetric limit where
both share the same mass. These two form a doublet (u d)T under transformations with
respect to the group SU(2). The quarks thereby transform in the so-called fundamental
representation, denoted by 2, whereas the anti-quarks transform in the complex-conjugated
fundamental representation 2̄. In the further scope of this section we will give transfor-
mation properties and finally arrive at the generators of the underlying symmetry group.
Further on, in the case of mesons we need to combine a quark and an anti-quark via the
combination of the two representations (2 and 2̄)

SU(2)⊗ SU(2) : 2⊗ 2̄ = 1a ⊕ 3s, (A.50)
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with 1a being an antisymmetric iso-singlet state and 3s a symmetric iso-triplet state re-
sulting from group theoretical considerations.
The up- and down-quark each have isospin 1

2 and isospin projection +1
2 and−1

2 respectively.
Analogously to common quantum mechanics it is possible to derive matrix representations
for the isospin-projection operators τ1;2;3 and construct with them ladder operators τ+ and
τ− to raise and low the isospin as it is equivalently done in the theory of angular momen-
tum, e.g. [64]. For convenience we state the isospin projection of u, i.e. τ3u is equal to
1
2 and the respective expression for d gives τ3d = −1

2 . The ladder operators then raise
and lower the isospin accordingly, i.e. e.g. τ+d = u. With this properties in mind we can
deduce the matrix representations of the τi’s which look like

τ1 =
1

2

(
0 1
1 0

)
=
σ1

2
, τ2 =

1

2

(
0 −ı̇
ı̇ 0

)
=
σ2

2
, τ3 =

1

2

(
1 0
0 −1

)
=
σ3

2
, (A.51)

τ+ =

(
0 1
0 0

)
, τ− =

(
0 0
1 0

)
. (A.52)

In the same manner it is possible to get information on the complex conjugate fundamental
representation. There, one can either postulate the complex conjugate representation 2̄ or
derive the matrix representations for the respective isospin projection and ladder operators
accordingly in comparison to the fundamental representation of the quarks. How this is
done can be seen in standard literature on quantum mechanics (e.g. [64]) and therefore
is skipped here for the sake of brevity. We just state again the resulting matrix represen-
tation for the projectors and ladder operators τ̄i. If the complex conjugate fundamental
representation is postulated the resulting generators are connected to the already obtained
fundamental representation for the quarks via

τ̄i = −τ∗i . (A.53)

The ladder operators can then evaluated to be

τ̄+ =

(
0 0
−1 0

)
, τ̄− =

(
0 −1
0 0

)
. (A.54)

To construct now meson states out of the mentioned product space SU(2) ⊗ SU(2) it is
necessary to reconsider the example theory of angular momentum. There eigenstates of
the rotation operator are classified by the quadratic Casimir operator, J2, and the 3-axis
projection, J3, in a unique way. The Casimir in the case of SU(2) is given by∑

i

τ2
i =

∑
i

τ̄2
i =

3

4
1 (A.55)

which is related to a total isospin of 1
2 . To specify now an irreducible representation of

the product group SU(2) ⊗ SU(2) the use of Clebsch-Gordon coefficients is needed. We
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therefore express a composite state in isospin space in analogy with the case of angular
momentum and case of the spin-1

2 electron in quantum mechanics as

|j,m〉 =
∑
m1,m2

|j1,m1; j2,m2〉 〈j1,m1; j2,m2|j,m〉, (A.56)

whereas j was the total angular momentum or spin of the composite state, m its projection
onto the 3-axis and the analogous variables for the single momentum/spin states j1;2 and
m1;2. Following the treatment of angular momentum one fixes a particular j, in the con-
sidered case of two quark flavors this ammounts to 1

2 , chooses the maximal (or minimal)

related projection mmax(j) and applies one of the two composite ladder operators T 2⊗2̄
−

or T 2⊗2̄
+ to obtain all other m(j)s. The lowering ladder operator needed to construct all

composite states in the case of angular momentum theory is given in Eq. (A.57)

J−|j,m〉 =
√

(j +m) (j −m+ 1)|j,m− 1〉. (A.57)

In the case of the combined isospin symmetry to create mesons as quark–anti-quark bound
states the lowering ladder operator is given through the direct sum of obtained ladder
operators in isospin space

T 2⊗2̄
− = τ− ⊕ τ̄−. (A.58)

To evaluate now the resulting states in the product space it is advantageous to choose a
suitable basis. As was stated in the beginning the u- and d-quarks form a doublet, thus,
applying the outer product of the product space, gives a 2 × 2 matrix. A suitable basis
for hermitian 2 × 2 matrices is given by the Pauli matrices σi and the unit matrix 1. We
therefore span the outer products in this basis obtaining e.g. for the isospin τ = 1, τ3 = 1
case

|ud̄〉 =

(
1
0

)
⊗
(

0
1

)
=

(
0 1
0 0

)
=

1

2
(σ1 + ı̇σ2) , (A.59)

which corresponds, as written down already, to the ud̄ mesonic state. Applying now the
mentioned ladder operator in the product space yields all other τ = 1 states, listed as
follows

s
+ = |ud̄〉 =

1

2
(σ1 + ı̇σ2) , (A.60)

s
0 =

1√
2

(
|dd̄〉 − |uū〉

)
= − 1√

2
σ3, (A.61)

s
− = −|dū〉 = −1

2
(σ1 − ı̇σ2) , (A.62)

s
s =

1√
2

(
|dd̄〉+ |uū〉

)
=

1√
2
1f . (A.63)
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Using now these results for the flavor structure of the Bethe-Salpeter amplitudes it is
possible to construct the flavor trace for the triangle diagram. Thereby the iso-scalar
meson is given via the singlet state in flavor space whereas the pseudo-scalar mesons are
known to be an iso-triplet and thus incorporate one of the three triplet flavor structures
s+;0;−.

A.4.2 Color

Analogously to the case of flavor it is possible to investigate the case of color. As well as in
the previous section the quarks transform according to the fundamental representation of
the underlying symmetry group. In the case of color, however, the construction of singlets,
triplets, octets, etc. is drastically simplified by the fact that hadrons are color singlets.
Thus it is only necessary to construct an antisymmetric color singlet state. In direct com-
parison to Eq. (A.63) color singlets are constructed out of the fundamental representation
accounting for the quarks and the complex-conjugated fundamental representation dealing
with the anti-quarks

SU(3)⊗ SU(3) : 3⊗ 3̄ = 1a ⊕ 8s. (A.64)

In analogy to Eq. (A.63) the color singlet case can be constructed with r,b and g the color
degrees of freedom red, green and blue. Further for two arbitrary colors the unit element
is expressed through a δ-functional in color space

c
s =

1√
3

(
|rr̄〉+ |gḡ〉+ |bb̄〉

)
=

1√
3
1C =

1√
3
δAB̄. (A.65)
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