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Abstract: In this work, we examine the thermo-magnetic characteristics and energy spectra of a
system exposed to both magnetic and Aharonov-Bohm (AB) fields with the existence of an interaction
potential that is pseudo-harmonic. Explicit calculations of the eigen-solutions are performed with
the expanded Nikiforov-Uvarov formalism. The confluent Heun function is used to represent the
equivalent wave functions. If the AB and magnetic fields are gone, quasi-degeneracy in the system’s
energy levels is shown by a numerical analysis of the energy spectrum. Additionally, we provided
a visual representation of how the AB and magnetic fields affected the system’s thermo-magnetic
characteristics. Our results show a strong dependence of thermo-magnetic properties on temperature,
screening parameters, external magnetic fields, and AB fields.

Keywords: energy spectra; thermo-magnetic properties; confluent Heun function; extended
Nikiforov-Uvarov (ENU) method

MSC: 80A05; 81505; 82B30; 82D40

1. Introduction

The transition from the three-dimensional non-relativistic equation to the
two-dimensional (2D) non-relativistic equation, which involves external magnetic fields, is

— — — —
achieved by mapping the momentum operator as P — (P —¢ ) , where A is a vector

field affected by either external magnetic, AB forces, or both; 1_; — ihe is the momentum
operator; and h, ¢ and e have their usual meanings [1-5]. The eigen-solutions of the 2D
can be mapped into 3D and not vice versa. Therefore, the 2D non-relativistic quantum
mechanics for particles moving and influenced by physical potential fields have enormous
applicability in several fields of physics. Also, if the eigen-solutions of the Schrodinger-like
equation (SE) with applicable solvable potential are known, then the quantum dynamics
of the particles can be investigated, such as thermo-magnetic properties [6-8], mass spec-
tra [9-11], quantum dots [12-16], thermodynamic properties [17-20], theoretic information
theory [21-25], optical properties [26-30], among others. In addition, the eigen-solutions
of the 2D Schrodinger equations (2D-SEs) have been used in the study of confinement in
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quantum dots and interband transitions in quantum pseudodots [31-33]. In one of the in-
vestigations, Filgueiras et al. [34] determined the energy spectra and eigenfunction for 2D
pseudo-harmonic quantum dots influenced by screw dislocation. The Dirac particles in 2D
with modified Poschl-Teller potential interaction have been investigated by Ferkous et al. [35].

Numerous researchers have made significant efforts to solve the 2D-SE interacting
with solvable potential models. For example, studies have been conducted on the 2D-SE
with a Hulthen potential when there is an AB field [36]. Similarly, Eshghi et al. [37] have
studied the Schrodinger equation in two dimensions for a particle with electric charge
interacting with mass-dependent Morse-plus-Coulomb potentials.

The 2D-SE eigen-solutions with the screened Kratzer potential have been examined by
Ikot et al. [38]. Ikhdair et al. have examined the SE solutions employing an AB field and a
constant magnetic field [39]. Additional reports have discussed how the hydrogen atom is
affected by AB, magnetic, and electric fields. Horchani et al. [40] investigated the magnetic
properties and energy spectra of a 2D-SE with an inverse square potential. Khordad and
Sedehi [41] examined the system’s thermodynamic properties while examining the 2D-SE
for a quantum dot with double ring-shaped potential. Vicente et al. [42] expanded on the
work of Khordad and Sedehi. Other applications of the 2D-SE include the study of energy
spectra, magnetic fields [43], and entropy. Khordad and Sedeh [31] used the Tsallis entropy
formulation, both extensive and non-extensive, in noncommutative phase space quantum
mechanics to determine the magnetic susceptibility of graphene. Ibragimov [44] used a
2D non-relativistic framework to study the thermodynamic features of parabolic quantum
dots. In two-dimensional non-relativistic quantum mechanics, the magnetic susceptibility
and magnetization of parabolic GaAs quantum dots were calculated by Alia et al. [45].

Recently, numerous researchers have directed considerable attention towards the
study of the non-relativistic harmonic oscillator problem. The significant applications of
quantum systems with pseudo-harmonic oscillators in atomic, molecular, and chemical
physics have led to much research on the topic [13].

The primary objective of this work is to solve the 2D-SE by utilizing the generalized
pseudo-harmonic oscillator, defined as [46]

e 20p

V(r) = Voe** (1 — e_“‘p)2 +V A=)

+ V2 1)
where Vj, V1, and V; elucidate the extent of the potential and & shows the screening parameter.
Equation (1) is simplified to the widely recognized pseudo-harmonic potential if we map
Vo — a% , Vi = ba?, Vo — ¢ and take the limitas 6 — 0, with a, b and ¢ being the potential
parameters of the pseudo-harmonic oscillator. However, due to the centrifugal barrier term
in the 2D-SE, such an equation cannot be solved in an exact form. Thus, an approximation
scheme needs to be employed in order to find approximate analytical solutions. The resulting
second-order differential equation (DE) arising from the 2D-SE with the generalized pseudo-
harmonic oscillator poses another challenge because one of the polynomials is of degree
four, which renders well-known analytical techniques such as the Nikiforov—Uvarov (NU)
method [47], the factorization method [48], the exact quantization rule [49], the NU Functional
Analysis (NUFA) method [50], and supersymmetric quantum mechanics [51] unsuitable for
its solutions. Therefore, we will use the extended Nikiforov—Uvarov (ENU) technique [52-54]
to solve this equation and study the thermo-magnetic properties, such as F, U, S, C, M, yx,
and I, for the generalized pseudo-harmonic oscillator.

The arrangement of the remaining paper is as follows: The expanded NU approach
for solving the SE in 2D is explained in Section 2. The theory of the partition function Z(p)
and thermo-magnetic characteristics are covered in Section 3. The results and comments
are presented in Section 4, and Section 5 summarizes the work.
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2. Two-Dimensional Schrédinger Equation with a Generalized Pseudo-Harmonic
Oscillator

The 2D Schrodinger formula, featuring generalized pseudo-harmonic potential, can
be written as [38-40]

672“‘0

1/.2 e\’ ®, —
{2“11 <1hv - EA> }l/)(p, @) = <Enm — VO62 P(l —e p)2 - Vlm - VZ)IP(Pf ?), (2

5
where y is the effective mass of the system, E;;;; denotes the energy level, and A is the
vector potential, which is given by

- Be™ % PAB
A= (0, (17 + — > 3)

—e ) 2mp’

where B shows the magnetic field applied externally and ® 45 is the AB field.

To find the analytical solutions of Equation (2), it is essential to use the Laplacian oper-
ator expressed in cylindrical coordinates and to use the Greenish—Aldrich approximation
scheme to deal with the centrifugal barrier term [55]:

p 2~ daPe (1 e_"‘F’)_z, o~ 2ae ™ (1 - e_"‘P)_l 4)

By substituting Equations (3) and (4) into Equation (2) and performing some algebraic
manipulations, Equation (2) transforms into

v 2 2_1Y),-2
2uE 2;1V062ap(1 _ e*“P)z 2uVy e 20p 2V, 4a?((mn)’—1)e 2

” 52 2 B TV Y A — —ap)2 - o
Riwm(@)+9 2 o e eyt h (1—e2) Rum(p) =0 )

(1—e%)*  (1—¢~%)

using the acronyms listed below:

(6)

and @ 4p is the flux quantum.
. 2u(E+V,
By setting &, = P‘(TZ)

Equation (5) then turns into

and using the following coordinate transformation x = e™*#,

dRum (%) | x(1 —x) dRym(x) 1 — (G +EHE)t + (265, +45) () =0 "
dx? x2(1—x) dx 24(1—x)2 | —(&hm +6%)x* +45x — X o
where 2uV; 1 2A 2uV
_ (=t 2 1 A 0N s _ 2HN
= (hZ“Z +4((m+77) 4)+ . +a2>,2 72 (8)

Equation (7) has three singularities at x = 0, 1 and oc. It resembles a hypergeometric-
type DE, which can be resolved using the ENU method of the form [52-54]

T.(s) dy(s 0.(s

P (s) +
By comparing Equations (7) and (9), we obtain the following polynomials:

Te(x) = x(1 —x),00(x) = ¥2(1 — x),

Oe(x) = — (4 + E+Z)xt + (263, +42) x> — (€3, + 6Z)x? +45x — & (10)
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The 7t(x) function polynomial takes the form

ol -1, o —%\* _

n(x) =% ( ‘- > —5(x) + G(x)oe(x) 1)
)
a(x) = 122 4 (A 4 Bx + sz) (12)
2
where

A=+, B=TFVT, 13

X'(x)+|B3-C)+—+

C=—(A+B)x/1+¢

The G(x) value is taken as a linear term of the form G(x) = Px + Q. The two position
values of the G(x) are given as

Gi(x) =Px+Q
Ga(x) = Px - Q 14
where
P =B?>+2AC+2BC+¢k, —25+3, (15)
Q=-¢€,+&—-3%—-2BC—C?
From the theory of ENU, we derive the equation 7,(x) = T.(x) + 27(x) as
T(x) = =322 £ (A 1 Bx+ Cx2) (16)
We now use the definition
H, = _lm—’ — mgu +C, (17)
2 6
where C,, is the constant of integration. Thus, we derive the H,(x) polynomial as
n(n—1)
Hy(x) = 3nx Fn(B+2Cx) — T—b—n(n—l)x (18)
and its counterpart H(x) = G(x) + 7/(x) is obtained as
H(x):Px+Q—%—2xj:(B—l—2Cx) (19)

By equating H(x) = H,,(x) and setting C;; = 0, we determine the eigenvalues of the
energy two-dimensional SE with the generalized pseudo-harmonic oscillator as

R2a2E 3h%a?E h2a?  H2aln(n—1) N n*a?B(n+1+C) N h2a2C?

B ==V2= 5, 2 4p 61 2u 2u

(20)

wheren =0,1,2...
We now proceed to find the wave function. The first component can be calculated by
using values o(x) and 77(x) for ¢(x) as

(P(x) — XA(l _ x)—(A-‘rB-‘rC—%)e—(C—l)x 1)
The solution x,(x) is transformed into the confluent Heun differential of the form

Q+B—%+P+Q+B+2C—§
X 1—x

4 ““C“”}x’m n x(x) =0 @)

X 1—x
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The function x(x) satisfies the confluent Heun DE of the form [55-57]

d?H(z) , B +1 ~y+17dH(z) [ v _
R - +z—l] dz [z z—l}H(z)_O @3)
The solution of Equation (22) is given as
H(z) = Heun C(«, B',7v,6,1;2) (24)

where HeunC(a/, B',7y, 8,1, z) is the confluent Heun function and the parameters o/, ', v,
d, n are related with y’ and v as follows:

V %(“l _IB,_7+D‘,;B/) -7 (25)
v=3+p +y+ay+py)+n+6

Comparing Equations (22) and (23), we obtain

o' =(3-0C); ,B’+1_A 7+1_A+B+C—3;

W=Q+B-Ltv=P+Q+B+2C—3 (26)
Thus, the solution of Equation (22) becomes
xn(x) = Heun C(a’, B',7y,6,1; %) (27)
The entire wave function is obtained as
Yum(0) = NnLei’”q’ (=) (1~ e“’“’)7(A+B+C7%)e‘(c‘l)‘f“”Heun C(a, B, y,6,m;67%) (28)

\/2mp

where N, is the normalization constant.

3. Thermo-Magnetic Properties of Generalized Pseudo-Harmonic Oscillator

To investigate the thermo-magnetic characteristics of the system, the initial step in-
volves calculating the partition function Z(g), which is defined as [38—40]

A _pE 1
= ;6’ B= ksT (29)

where B is the inverse temperature parameter, E, is the energy spectra, and T is the absolute
temperature.

In the realm of statistical physics, the Z(B) is a fundamental distribution that enables
the calculation of various thermomagnetic properties of the system. With respect to Equa-
tion (29), once the Z(B) is established, key thermomagnetic characteristics like free energy
F(B), internal energy U(p), entropy S(pB), specific heat capacity C,(B), magnetization M(p),
magnetic susceptibility x(B), and persistent current I() can be systematically computed
with the help of the following relations [38—40]:

F(B) = -5 InZ(p); u<ﬁ>:—a““2“”,s<ﬁ>= —kp 250 Co(B) = ks -
M8) = () (520 o) = 222 109 =~ 50

4. Results and Discussion

The numerical study of our results for the energy spectra and the thermo-magnetic
properties reported in Sections 2 and 3 for the 2D-SE with a generalized pseudo-harmonic
oscillator is given in this section. In this study, we investigate the influence of the magnetic
and AB fields on the energy spectra and thermodynamic properties of a generalized pseudo-
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harmonic oscillator. In the numerical computation, we take V) = 2.0 eV; V; = 3.0 eV,
V2 = 3.0 eV and reduced mass y = 0.5 eV.

4.1. Energy Spectra

The energy distribution of Equation (20) shows that the electronic state of the gen-
eralized pseudo-harmonic system depends on the magnetic field, AB field, and screen-
ing parameters. Tables 1-3 display the energy spectrum for the 2D-SE with generalized
pseudo-harmonic potential when magnetic and AB fields and the screening parameters
are present. Table 1 shows the energy spectra of the pseudo-harmonic oscillator both with
and without the AB and magnetic fields. In Table 1, the energy splitting increases in the
absence of the AB and magnetic fields at m = —1,0,1, and one can see in Table 1 that
the energy level rises as the values of the principal quantum number n increase. Also,
it is evident that in the absence of both magnetic and AB fields (i.e., B = ®4p5 = 0€V),
with a screening parameter of « = 0.5 ~!, quasi-degeneracies are observed in the states
Eo—1 = Epp = —0.5002101903687386 and E; 1 = E;; = —0.5502101903368789, that
is, some energy states become degenerate for different values of n and m. Additionally,
when either the AB or the magnetic field is absent, the energy levels increase and the
spacing between the states also increase. Under these conditions, quasi-degeneracies are
observed to occur in two states, and the system’s energy levels become less constrained.
Conversely, when both fields are present, these degeneracies are removed but some ac-
cidental quasi-degeneracies are still present. This clearly shows that the application of
the external magnetic fields B and ® 45 removed the degeneracy in the energy levels of
the system. When the screening parameters are increased to 0.1 ! and 0.5 ~!, as shown
in Tables 2 and 3, respectively, the energy level increased more with increasing screening
parameters, and some generate states are observed for different values of n and m.

Table 1. The generalized pseudo-harmonic oscillator’s numerical bound state solution under the
influence of the AB and magnetic field with a constant magnetic quantum number but a variable
principal quantum number for « = 0.05.

m n (B=®yp=0)eV (B=0.5 &4 =0) eV (B=0, ®yp =0.5) eV (B=0.5 &4 =0.5) eV
0 0 —0.49816948010519724 —0.5486874718707808 —0.4986798170517881 —0.5507784605268133

1 —0.54816948010519710 —0.5986874718707806 —0.5486798170517879 —0.6007784605268132

2 —0.59900281343853080 —0.6495208052041144 —0.5995131503851212 —0.6516117938601464

3 —0.65066948010519710 —0.7011874718707807 —0.6511798170517880 —0.7032784605268132

-1 0 —0.5002101903687386 —0.5506869722180028 —0.4986798170517881 —0.5507784605268133
1 —0.5502101903687389 —0.6006869722180030 —0.5486798170517879 —0.6007784605268132

2 —0.6010435237020721 —0.6515203055513363 —0.5995131503851212 —0.6516117938601464

3 —0.6527101903687385 —0.7031869722180026 —0.6511798170517880 —0.7032784605268132

1 0 —0.5002101903687386 —0.5506869722180028 —0.5027586914629940 —0.5547725285457203

1 —0.5502101903687389 —0.6006869722180030 —0.5527586914629938 —0.6047725285457206

2 —0.6010435237020721 —0.6515203055513363 —0.6035920247963276 —0.6556058618790539

3 —0.6527101903687385 —0.7031869722180026 —0.6552586914629939 —0.7072725285457202
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Table 2. The generalized pseudo-harmonic oscillator’s numerical bound state solution under the
influence of the AB and magnetic field with a constant magnetic quantum number but a variable

principal quantum number for « = 0.10.

m n (B=®yp=0)eV (B=0.5 ®4p=0) eV (B=0, ®4p =0.5) eV (B=0.5 &4 =0.5) eV
0 0 —0.5442083329787297 —0.5947495497297974 —0.5462499999999997 —0.5999303898080100
1 —0.6442083329787298 —0.6947495497297975 —0.6462499999999998 —0.6999303898080100
2 —0.7475416663120633 —0.7980828830631310 —0.7495833333333333 —0.8032637231413431
3 —0.8542083329787296 —0.9047495497297973 —0.8562499999999995 —0.9099303898080098
-1 0 —0.5523648181630274 —0.6027415718988567 —0.5462499999999997 —0.5999303898080100
1 —0.6523648181630275 —0.7027415718988568 —0.6462499999999998 —0.6999303898080100
2 —0.7556981514963610 —0.8060749052321903 —0.7495833333333333 —0.8032637231413431
3 —0.8623648181630272 —0.9127415718988565 —0.8562499999999995 —0.9099303898080098
1 0 —0.5523648181630274 —0.6027415718988567 —0.5625224910277047 —0.6158562181041680
1 —0.6523648181630275 —0.7027415718988568 —0.6625224910277048 —0.7158562181041681
2 —0.7556981514963610 —0.8060749052321903 —0.7658558243610378 —0.8191895514375012
3 —0.8623648181630272 —0.9127415718988565 —0.8725224910277045 —0.9258562181041678
Table 3. The generalized pseudo-harmonic oscillator’s numerical bound state solution under the
influence of the AB and magnetic field with a constant magnetic quantum number but a variable
principal quantum number for « = 0.50.
m n (B=®yp=0)eV (B=0.5 &4 =0) eV (B=0, ®yp =0.5) eV (B=0.5 &4 =0.5) eV
0 0 —0.8171626902482387 —0.8684644504490260 —0.8684644504490260 —0.9345058160807120
1 —1.3171626902482387 —1.3684644504490260 —1.3684644504490260 —1.4345058160807120
2 —1.9004960235815722 —1.9517977837823595 —1.9517977837823595 —2.0178391494140455
3 —2.5671626902482387 —2.6184644504490260 —2.6184644504490260 —2.6845058160807120
-1 0 —1.0163266272276377 —1.0637864531836625 —0.8684644504490260 —0.9345058160807120
1 —1.5163266272276377 —1.5637864531836625 —1.3684644504490260 —1.4345058160807120
2 —2.0996599605609716 —2.1471197865169960 —1.9517977837823595 —2.0178391494140455
3 —2.7663266272276380 —2.8137864531836625 —2.6184644504490260 —2.6845058160807120
1 0 —1.0163266272276377 —1.0637864531836625 —1.2457041729001368 —1.3031582608094352
1 —1.5163266272276377 —1.5637864531836625 —1.7457041729001368 —1.8031582608094352
2 —2.0996599605609716 —2.1471197865169960 —2.3290375062334703 —2.3864915941427687
3 —2.7663266272276380 —2.8137864531836625 —2.9957041729001370 —3.0531582608094350

4.2. Partition Function

Figure 1 presents plots of the Z() for a generalized pseudo-harmonic oscillator as
functions of temperature (T), external magnetic (B), the AB flux, and the screening parame-
ter o. In Figure 1a, we illustrate the Z () versus temperature at B = 0.5T and ® 45 = 0.5,
with different screening parameter values « = 0.01, 0.1, and 1.0, respectively. The Z(B) de-
clines when screening parameters are increased at fixed values of temperature, the magnetic
field, and the AB flux. At a lower temperature T less than 10 K, the three curves moved
away from each other, and the lower screening parameter has a higher Z() compared to
those with the higher screening parameter, as can be seen in Figure 1a. Figure 1b illustrates
how the Z(B) changes in response to a magnetic field at a constant temperature and AB flux
for different values of the screening parameter. Here, the Z() increases as the screening
parameter rise alongside the magnetic field. One can also observe in Figure 1b that the
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curves were linear with almost zero Z(8), but as the magnetic field is increased above 20T,
the three curves separated away from each other. This demonstrates the linearly increasing
Z(pB) and above the magnetic field of 20T, the Z(B) increases monotonically with increasing
magnetic field B(T). The plot of the Z(p) versus AB field for T = 1.0K, B = 0.5T and
several values of the screening parameter x = 0.05, 0.08, and 0.1 is shown in Figure 1c.
Figure 1c displays the dependence of the Z(B) on the AB flux for a fixed temperature and
magnetic field, demonstrating a decrease as the screening parameter rises. It is observed
that the low screening parameter has a higher Z(g) as seen in Figure 1c. Figure 1d is the
plot of the Z(p) versus the screening parameter for B = 0.5T, ®45 = 0.5 and various
temperature values T = 1.0 K, 2.0 K, and 3.0 K. Figure 1d shows the behaviour of Z(p)
versus the screening parameter at fixed magnetic and AB fields, indicating a decrease in
the Z(p) as temperature increases and the screening parameter rises. These figures collec-
tively highlight the complex interplay between temperature, external fields and screening
parameters on the Z(B) of the generalized pseudo-harmonic oscillator. Finally, Figure 1d
shows that the Z() decreases monotonically with the increasing screening parameter with
the conditions B = 0.5T, ® 45 = 0.5 and various temperature values T = 1.0 K, 2.0 K, and
3.0K.

(a) (b)
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Figure 1. The variation of the Z(B) for the generalized pseudo-harmonic oscillator against

(a) temperature for different values of the screening parameter («); (b) the magnetic flux B(T)
for different values of the screening parameter («); (c) the AB flux (® 4p) for different values of the
screening parameter (x); and (d) the screening parameter («) for different values of temperature (T).

4.3. Helmholtz Free Energy

Figure 2a—d present the plots depicting the Helmholtz free energy versus tempera-
ture (T), the magnetic field (B), the AB flux (®4p), and the screening parameter («). In
Figure 2a, the Helmholtz free energy increases with rising screening parameters at increas-
ing temperatures. Figure 2b shows how the Helmholtz free energy varies with the magnetic
field for a fixed temperature and AB flux, highlighting that an increase in the screening
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parameter leads to higher free energy as the magnetic field rises. Figure 2c presents the
relationship between the Helmholtz free energy and AB flux for a constant temperature
and magnetic field, demonstrating an increase in free energy with increasing screening
parameters. Figure 2d depicts the variation of free energy with screening parameters at
a constant temperature and AB flux for different magnetic field strengths, indicating a
decrease in free energy as the magnetic field intensity rises. These figures collectively depict
the dependencies of the Helmholtz free energy on temperature, the magnetic field, the
AB flux, and the screening parameter, which provides insights into the thermodynamic

properties of the system under investigation.

(a) (b)
. ] —4 ; ! ! . :
0 ‘t --a 1
ey, - o -
e, TS o -6/, ~
“, ~ e,
-2 ~ < """'u ~ o 1 ,,""' ~ ~ ]
< ~ e, S e ~ -8 = = o NS
3 S ~ N ~ < T, N
) ~ ‘e, ~ _ ~ e, ~
N ~ ., ~ 2 ~ « e, ~
X4 S e, S o J S -10 ~ " ]
] ~ < ,, ~ ) S o ’u,,,,'
& = = B=05, ¢, =0.5, & =0.01 ~ s ~ o o,
R -12 .,
_¢ "t B =0.5, ¢, = 0.5,  =0.10 ~ o ‘| = = = T=1,¢,p =05, a=001 ~ o ‘,, . =
= = B=05¢,3 =05 ¢ =100 S e 14, e T=1, $sp = 0.5, @ =0.10 S e -
Yo = = T=1,¢,5=05a=100 So
-8 1 -16 .
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10
T (K) B ()
(c) (G))
_--~ 0,——————_—_--—_————-’
~ -~
-6.0 ~ -~ 4 =20 1 “\““.‘
~ KU ITTTTIII 1
S e 403 TP TTILLL
R o ~ R E = = T=10,B=0.1, 4,5 =05
Q —6. o, ~ 1 = H V2
N TS L0B=050=008" ", S o § -60 | v T=3.0, B =03, gap = 0.5 .
a 1 R = = T=50,B=05, 4,5 =05 ]
S g T=1.0,B = 0.5, « = 0.08 RN S N SO a8 °. -
=~ - - T=10B=050=010 ""'x,, = _100" B T ]
S e ao - «Q,,,’ 1
- Ne
-6.6 S~ - . -120t1 ]
-~ -~ - I
~140
0 2 4 6 8 10 0 1 2 3 4 5
248 @

Figure 2. The plot of free energy for the generalized pseudo-harmonic oscillator against (a) tempera-
ture for different values of the screening parameter («); (b) the magnetic flux B(T) for different values
of the screening parameter («); (c) the AB flux (® 4p) for different values of the screening parameter

(«); and (d) the screening parameter («) for different values of temperature (T).

4.4. Mean Energy

Figure 3a—d displays the variations of the mean energy of a generalized pseudo-
harmonic oscillator as functions of temperature, the magnetic field applied externally,
the AB flux, and the screening parameter. While the magnetic field and AB flux remain
constant, Figure 3a illustrates how the mean energy falls with rising temperature as the
screening parameter increases. Figure 3b illustrates the variation of the mean energy with
the magnetic field for a fixed AB flux and screening parameter, showing a decrease in
the mean energy as the temperature increases alongside the magnetic field. Figure 3c
shows the relationship between mean energy and the AB flux at a constant magnetic
field and temperature, indicating a decrease in mean energy with increasing screening
parameters. Figure 3d depicts the variation of mean energy with screening parameters for
a fixed magnetic field and AB flux, showing a diminution in mean energy with a rise in
temperature to a minimum screening parameter value, after which it increases with further

increases in the screening parameter.
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Figure 3. The plot of internal energy for the generalized pseudo-harmonic oscillator against
(a) temperature for different values of the screening parameter («); (b) the magnetic flux B(T)
for different values of the screening parameter («); (c) the AB flux (® 4p) for different values of the
screening parameter («); and (d) the screening parameter («) for different values of temperature (T).

4.5. Entropy

The entropy plots for the generalized pseudo-harmonic oscillator with varying tem-
perature, external magnetic fields, AB fields, and screening parameters are presented in
Figure 4. Figure 4a illustrates the dependence of entropy on temperature at fixed magnetic
and AB fields, with varying values of the screening parameter. Increasing the screening
parameter correlates with a decrease in entropy for the generalized pseudo-harmonic os-
cillator. Figure 4b displays the variation of entropy versus magnetic field B for a fixed AB
field and screening parameter and varies temperature. In this case, as the magnetic field
increases, the entropy rises with a rise in temperature. The plot of the entropy against the
AB field for various values of the temperature with a fixed magnetic field and screening
parameter is shown in Figure 4c. Under these conditions, a rise in temperature causes an in-
crease in entropy. Figure 4d shows the behavior of the relationship between the entropy and
the screening parameter for fixed magnetic and AB fields. By increasing the temperature,
an increase in the entropy of the generalized pseudo-harmonic system is observed.

4.6. Specific Heat Capacity

In Figure 5, we show the plots of specific heat capacity versus temperature, the
magnetic field, the AB field, and the screening parameter. The variation of the specific
heat capacity as a function of temperature is displayed in Figure 5a. It is seen here that
the heat capacity increases with an increase in screening parameters for fixed magnetic
and AB fields. Figure 5b shows the heat capacity versus the magnetic field for a fixed AB
field and screening parameter with varied temperatures. As temperature is increased, the
heat capacity decreases under these conditions. The behavior of the heat capacity as a
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function of the AB field for a fixed magnetic field and the screening parameter for a range
of temperature values are displayed in Figure 5c. In this case, the heat capacity decreases
with an increase in temperature when the magnetic field and screening parameter are
fixed. Figure 5d shows the plot of the heat capacity as a function of the screening for fixed
magnetic and AB fields and various temperatures. When the temperature of the system
increases under these conditions, the heat capacity of the generalized pseudo-harmonic
oscillator decreases also.
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Figure 4. The plot of entropy for the generalized pseudo-harmonic oscillator against (a) temperature
for different values of the screening parameter («); (b) the magnetic flux B(T) for different values of
the screening parameter (x); (c) the AB flux (® 4p) for different values of the screening parameter (x);
and (d) the screening parameter («) for different values of temperature (T).

4.7. Magnetization

Figure 6 presents the magnetization of the generalized pseudo-harmonic oscillator
across varying parameters, including temperature, the magnetic field, the AB field, and the
screening parameter. Figure 6a illustrates the magnetization as a function of temperature,
with magnetic and AB fields held constant while varying the screening parameter. In
Figure 6b, the plot depicts the magnetization’s change in relation to the magnetic field,
keeping AB field and screening parameter values fixed. Figure 6¢ shows the relationship
between magnetization and the AB field while maintaining constant values for temperature,
the magnetic field, and the screening parameter. Figure 6d explores the dependency of
magnetization on the screening parameter, with the magnetic field and AB field held
constant. Across Figure 6a—d, it is evident that increasing the screening parameter and
temperature under a fixed magnetic field and AB field enhances the magnetization of the
generalized pseudo-harmonic oscillator.
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Figure 5. The plot of specific heat capacity for the generalized pseudo-harmonic oscillator against
(a) temperature for different values of the screening parameter («); (b) the magnetic flux B(T) for
different values of the screening parameter («); (c) the AB flux (®4p) for different values of the
screening parameter («); and (d) the screening parameter («) for different values of temperature (T).
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Figure 6. The plot of magnetization for the generalized pseudo-harmonic oscillator against
(a) temperature for different values of the screening parameter («); (b) the magnetic flux B(T)
for different values of the screening parameter («); (c) the AB flux (® 4p) for different values of the
screening parameter (); and (d) the screening parameter («) for different values of temperature (T).
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4.8. Magnetic Susceptibility

Figure 7 depicts the variations in the magnetic susceptibility of the generalized pseudo-
harmonic oscillator in relation to temperature, magnetic fields, AB fields, and screening
parameters. Figure 7a depicts a plot of magnetic susceptibility against temperature, demon-
strating that increasing the screening parameter reduces magnetic susceptibility for fixed
magnetic and AB fields. Figure 7b depicts the variation in magnetic susceptibility versus the
magnetic field. When the AB and screening parameters are maintained constant, increasing
the temperature causes a reduction in magnetic susceptibility, as seen in Figure 7b. Figure 7c
depicts a plot of magnetic susceptibility in relation to the AB field. When the magnetic
field and screening parameter are fixed, increasing the temperature causes a commensurate
rise in magnetic susceptibility. Figure 7d plotted the magnetic susceptibility against the
screening parameter. Magnetic susceptibility increases with increasing temperature for
constant magnetic and AB fields.
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Figure 7. The plot of magnetic susceptibility for the generalized pseudo-harmonic oscillator against
(a) temperature for different values of the screening parameter («); (b) the magnetic flux B(T) for
different values of the screening parameter («); (c) the AB flux (®4p) for different values of the
screening parameter («); and (d) the screening parameter («) for different values of temperature (T).

4.9. Persistent Current

Figure 8§ illustrates the variations of the persistent current characteristics of the gener-
alized pseudo-harmonic oscillator across varying parameters, including temperature, the
magnetic field, the AB field, and the screening parameter. Figure 8a displays the persistent
current as a function of temperature, with magnetic and AB fields held constant while
the screening parameter varies. In Figure 8b, the plot depicts how the persistent current
changes with the magnetic field, maintaining fixed AB field and screening parameter values.
Figure 8c illustrates the behavior of the persistent current versus the AB field, with tempera-
ture, the magnetic field, and the screening parameter kept constant. Figure 8d examines the
relationship between the persistent current and screening parameters while maintaining
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fixed values for the magnetic field and AB field. Across Figure 8a—d, an increase in both the
screening parameter and temperature under fixed magnetic and AB fields results in higher

persistent currents for the generalized pseudo-harmonic oscillator.
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Figure 8. The plot of the persistent current for the generalized pseudo-harmonic oscillator against
(a) temperature for different values of the screening parameter («); (b) the magnetic flux B(T) for
different values of the screening parameter («); (c) the AB flux (®4p) for different values of the
screening parameter («); and (d) the screening parameter («) for different values of temperature (T).

5. Conclusions

In this article, the generalized pseudo-harmonic oscillator is studied under the non-
relativistic 2D-SE framework. Under specific conditions, this potential simplifies the stan-
dard pseudo-harmonic oscillator, which finds diverse applications across various branches
of physics. Using the ENU method, we derived the energy spectra and corresponding
eigenfunctions stated as a function of confluent Heun functions. Leveraging the energy
spectra from Equation (20) and the Z(B) given in Equation (29), we conducted a detailed in-
vestigation of thermo-magnetic properties, such as free energy F(f), internal energy U(B),
entropy S(B), the specific heat capacity C, (B), magnetization M (), magnetic susceptibility
X(B), and the persistent current I(p) for the generalized pseudo-harmonic oscillator. The
study systematically examines the influence of temperature and other parameters on these
thermo-magnetic properties, employing graphical illustrations to elucidate their dependen-
cies and behaviors. Finally, this investigation is performed within the limit of the minimal
coupling for the 2D Schrodinger equation, but recently, the effects of strong coupling to the
quantum states have been reported [58-60].
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