

Study of positive parity band in ^{190}Tl

Snigdha Pal^{1,2,*}, G. Mukherjee^{1,2}, S. S. Nayak^{1,2}, S. Basu^{1,2},
Shabir Dar^{1,2}, Sneha Das^{1,2}, S. Chakraborty¹, R. Banik³, C.
Majumder⁶, R. Palit⁴, P. Dey⁴, A. Kundu⁴, Biswajit Das⁴, Vishal⁴,
R. Kumar^{2,5}, B. S. Naidu⁴, S. K. Jadhav⁴, and A. T. Vazhappilly⁴

¹Variable Energy Cyclotron Center, 1/AF Bidhannagar, Kolkata 700064, India

²Homi Bhaba National Institute, Anushaktinagar, Mumbai-400094, India

³Institute of Engineering and Management, Saltlake, Kolkata-700091, India

⁴Tata Institute of Fundamental Research,
Homi Bhaba Road, Colaba, Mumbai-400005, INDIA

⁵Reactor Physics Design Division, Bhaba Atomic Research Center, Mumbai-700085, India and

⁶Indian Institute of Technology Bombay, Powai, Mumbai-400076, India

Introduction

Study of nuclei near proton shell closure $Z=82$ is important as interplay between different shapes has been observed in this region. Many experimental investigations have been carried out on odd-odd thalium nuclei in recent times [1-3]. For odd-odd $\text{Tl}(Z=81)$ nuclei, proton Fermi level lies near $2s_{1/2}$, but intruder $h_{9/2}$ and $i_{13/2}$ Nilsson orbitals come down in energy at moderate deformation and neutron Fermi level lies above $N=100$, semi magic shell closure. Different negative and positive parity bands, based on the intruder configurations have been observed in odd-odd Tl nuclei [1-3] in this region.

Negative parity rotational bands based on $\pi h_{9/2} \otimes \nu i_{13/2}$ configuration are reported in $^{190,192}\text{Tl}$. However, there are several other positive and negative parity band structures in ^{192}Tl , which are not known in ^{190}Tl [4]. In our previous work in ^{190}Tl [5] we have observed a non-yrast negative parity band at lower excitation than in ^{192}Tl and established the spin parity of the states, but the positive parity structure remain illusive in this $N=109$ isotope. We present here the first observation of a positive parity band structure in ^{190}Tl , which is found to be much different compared to ^{192}Tl .

Experimental Details

The high spin states of ^{190}Tl was populated using the fusion-evaporation reaction $^{165}\text{Ho}(^{30}\text{Si}, 5n)$. The 157 MeV, ^{30}Si beam was obtained from the BARC-TIFR Pelletron LINAC facility in Mumbai, India and INGA was used to detect the prompt γ -rays. Other experimental details can be found in Ref.[5].

Analysis and Result

Details of data analysis can be found in Ref.[5]. A partial scheme of ^{190}Tl is shown in Fig. [1], which shows a newly identified band (B2). It decays to the ground state band B1 by three transitions, 1095, 942 and 749 keV. The gated spectra in Fig.[2] shows the new γ transitions. The DCO (Directional Correlation from Oriented states) ratio and integrated polarization asymmetry (IPDCO) ratio of the 1095 keV and 942 keV γ -rays confirm the positive parity of the band B2.

The dipole nature of these transitions are apparent from the DCO ratio measurement of 1095 keV ($R_{DCO} = 0.95(7)$) and 942 keV ($R_{DCO} = 1.01(9)$) connecting γ -rays gated by 272 keV (M1+E2) transition with measured mixing ratio of $\delta = 0.076$ [5]. With polarisation assymetry $\Delta_{IPDCO} > 0$, these connecting transitions are confirmed to be of electric type (E1), this in turns establishes the spin parity of the band B2 with 12^+ as bandhead.

It is suggested to be a MR band. In MR band, level energy (E) and spin (I) follow the pattern $(E-E_0) \propto A(I-I_0)^2$, where E_0 and I_0

*Electronic address: snigdha.pal@vecc.gov.in

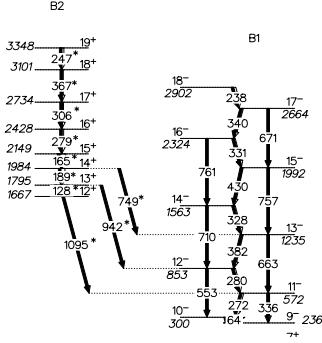


FIG. 1: Partial level scheme of ^{190}Tl . The new γ rays are indicated by asterisks.

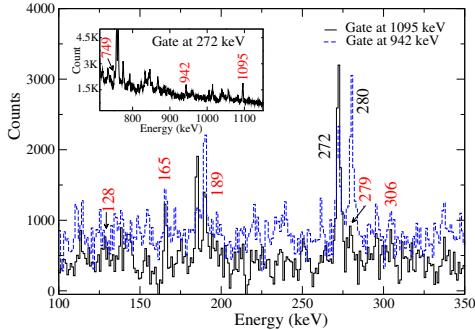


FIG. 2: Coincidence γ -ray spectra gated by 1095 keV, 942 keV and 272 keV (inset).

are bandhead energy and spin, respectively. In Fig. [3], the plot of $(E-E_0)$ vs. $(I-I_0)^2$ for B2 band is shown and the fitted curve is in good agreement with the experimental points. Also, the last two points lie on a different straight line, indicating a different configuration for these states. In alignment (i_x) vs rotational frequency ($\hbar\omega$) plot (inset in fig.3) a back-bending phenomenon is observed which suggests that particle alignment takes place at about the rotational frequency of $\hbar\omega \sim 0.26$ MeV. This is in sharp contrast to the rotational band observed for the positive parity band in ^{192}Tl [1], indicating smaller deformation for the positive parity band in ^{190}Tl .

Summary

Excited states of ^{190}Tl has been studied using heavy ion fusion evaporation reaction. A

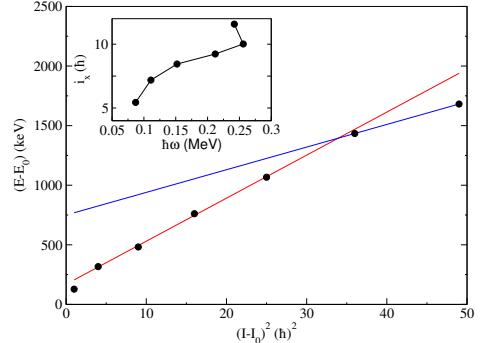


FIG. 3: Relative energy (E) vs square of spin (I) curve for band B2 built on the 12^+ bandhead. E_0 and I_0 are the bandhead energy and spin, respectively. Experimental alignment (i_x) as a function of rotational frequency ($\hbar\omega$) for band B2 is shown (in inset) (Harris parameters are chosen to be $J_0 = 8\hbar^2 \text{ MeV}^{-1}$ and $J_1 = 40\hbar^4 \text{ MeV}^{-3}$).

new positive parity band is observed for the first time in this nucleus. Further analysis is going on and final results will be presented at the symposium.

Acknowledgments

The authors acknowledge the operators and support staff at the BARC-TIFR Pelletron for providing a good beam of ^{30}Si . Also the help of the INGA community is gratefully acknowledged.

References

- [1] L.L. Riedinger et al., Proc. Workshop Gammasphere Physics, Berkeley, California, 1-2 December 1995, World Scientific, Singapore, p.98 (1996)
- [2] Soumik Bhattacharya et al., PRC 95, 014301 (2017).
- [3] H. Pai et al., PRC 85, 064313 (2012).
- [4] C. Y. Xie et al., PRC 72, 044302 (2005).
- [5] Snigdha Pal et al., Proceedings of the DAE Symp. on Nucl. Phys. 66 (2022)