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Abstract

The studies of scattering amplitudes during recent years has uncovered many new features of

various theories that are invisible from the action point of view. One of the most interesting

features is the relation between gauge theories and gravity theories, known as double copy. The

most famous example is the relation between pure Yang-Mills theory and axion-dilaton gravity,

however over the years many more examples of this relation have been found. It is interesting

to understand what is special about these theories that can be related by double copy. Most

of the known examples of such theories have massless force carriers so a natural question is

can double copy be extended to massive theories? The work presented in this thesis suggests

that such massive theories must be strongly constrained since a naive attempt to double copy a

generic massive gauge theory leads to unphysical scattering amplitudes. In 4d the only known

examples are Kaluza-Klein theories of 5d massless gauge theories. However in 3d the situation is

different. The work of this thesis suggests that topologically massive gauge and gravity theories

are related by double copy. We observed this relation between scattering amplitudes (for 3,4

and 5 point tree level amplitudes) as well as between classical solutions. Also, we found a 3d

equivalent of Weyl double copy relating the Cotton tensor to a product of two gauge theory

field strength tensors.
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Carrillo González and Arshia Momeni for many interesting discussions and excellent teamwork

as well as my friends and fellow PhD students. I was supported by an STFC studentship.

ii



Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents

are licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence

(CC BY-NC). Under this licence, you may copy and redistribute the material in any medium

or format. You may also create and distribute modified versions of the work. This is on

the condition that: you credit the author and do not use it, or any derivative works, for a

commercial purpose. When reusing or sharing this work, ensure you make the licence terms

clear to others by naming the licence and linking to the licence text. Where a work has been

adapted, you should indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in

this licence or permitted under UK Copyright Law

iii



List of publications

During the PhD project the following papers have been published:

[1] L. Alberte, C. de Rham, A. Momeni, J. Rumbutis and A. J. Tolley, EFT of Interacting

Spin-2 Fields, JHEP 01 (2020) 131 [1910.05285].

[2] L. Alberte, C. de Rham, A. Momeni, J. Rumbutis and A. J. Tolley, Positivity Constraints

on Interacting Spin-2 Fields, JHEP 03 (2020) 097 [1910.11799].

[3] L. Alberte, C. de Rham, A. Momeni, J. Rumbutis and A. J. Tolley, Positivity Constraints

on Interacting Pseudo-Linear Spin-2 Fields, JHEP 07 (2020) 121 [1912.10018].

[4] A. Momeni, J. Rumbutis and A. J. Tolley, Massive Gravity from Double Copy, JHEP 12

(2020) 030 [2004.07853].

[5] A. Momeni, J. Rumbutis and A. J. Tolley, Kaluza-Klein from colour-kinematics duality for

massive fields, JHEP 08 (2021) 081 [2012.09711].
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Conventions

Scattering Kinematics: We consider all particles to be ingoing, so that their four-momenta

satisfy
∑

i pi = 0. In 4 particle scattering we define the Mandelstam variables to be

s = −(p1 + p2)
2, t = −(p1 + p3)

2, u = −(p1 + p4)
2, (1)

which are linearly dependent by s+ t+ u =
∑

4m2
i . Similarly Mandelstam variables for higher

point amplitudes are defined as sij = −(pi + pj)
2.

Metric Signature: The signature of the metric used in this work is mostly plus: (−,+,+, ..,+).

Scattering Amplitude: Our definition of the n-particle scattering amplitude, An, is the

following:

⟨f |Ŝ − 1̂|i⟩ = (2π)dδ(d)

(
n∑

i=1

pi

)
An({pi}), (2)

where |i⟩ is the initial state, |f⟩ is the final state, Ŝ is the S-matrix operator and pi are the

momenta of the particles.

Lie Algebra Generators of the Gauge Group: We use the following conventions for the

generators, Ta:

Tr[TaTb] = δab. (3)

These are related to the usual generators (for example in [1]) as Ta =
√
2ta. We define the

structure constants, fabc as

[Ta, Tb] = ifabcTc, (4)

which again are larger by a factor of
√
2 than the structure constants in [1]. In terms of these

fabc the field strength tensor F a
µν is written as:

F a
µν = ∂µA

a
ν − ∂νAa

µ +
1√
2
fabcA

b
µA

c
ν . (5)
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Chapter 1

Introduction

During recent years, the study of scattering amplitudes has uncovered a number of new mathe-

matical structures. One of the most surprising features discovered is a highly nontrivial relation

between gauge theory and gravity scattering amplitudes, known as double copy. The fact that

these theories are related can be quite surprising since perturbative calculations in general

relativity seem to be much more complicated than those in gauge theories, at least by using

Feynman diagrams. In fact the perturbative expansion of the Einstein-Hilbert term produces

an infinite number of two derivative interaction terms, whereas Yang Mills action contains only

a finite number of such terms. On the other hand one can anticipate the existence of such rela-

tions between gauge theory of gravity if they both can be embedded into a more fundamental

unifying theory such as string theory. The most studied and understood example of double

copy is the relation between (super) Yang-Mills and (super) gravity theories (in particular there

has been a lot of studies of amplitude relations up to five loops between super Yang-Mills and

N > 4 supergravity theories [2, 3, 4, 5, 6, 7, 8]), however by now there is a large number of

other theories related by double copy, including extensions with massive matter fields as well

and many more. At present it is not entirely clear what makes these theories special so that

they can be related by double copy (some work on this question has been undertaken in [9]).

In particular it is not obvious if double copy could be extended to theories with only massive

fields. Extension to the massive case is interesting for multiple reasons. First of all, massive

1
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gravity is a very interesting subject on its own since it is far less understood compared to general

relativity due to more complicated nature of its interactions. A better analytic understanding

of classical solutions and the Vainshtein mechanism would be desirable for this theory to be

used as a model of cosmic acceleration. If a double copy construction for ghost-free massive

gravity existed, it could simplify various calculations just like the standard double copy is used

for gravitational wave calculations in general relativity and may lead to new insights in the

non-linear interactions. This was the initial motivation for looking at a massive double copy

in [10] which will be outlined below. A careful treatment of higher point amplitudes lead us

to discover a problem with spurious poles1 that one generally encounters in trying to double

copy a generic massive theory. An example of a theory in which this problem occurs is massive

Yang-Mills, whose naive double copy as discussed below is observed to exhibit the spurious

poles explicitly in the 5 point amplitude [10]. The search for a way of avoiding these spurious

poles has revealed that in four spacetime dimensions the only known examples of massive gauge

theories that can be double copied are Kaluza-Klein theories associated with massless gauge

theory in five dimensions [11]. Since we know that these theories can be double copied in five

dimensions, the spurious pole cancellation in Kaluza-Klein theory works the same way as in the

massless case. However in three spacetime dimensions there is another way of avoiding these

unphysical singularities, and an example of that is topologically massive theories that can be

related by double copy [12]. In the work described in this thesis we have checked the amplitude

relation between topologically massive theories only up to 5 point level but our further investi-

gations of classical double copy [13] suggested that there might be all loop and all multiplicity

relations between the amplitudes of the two theories.

In the rest of this introduction chapter, I summarize the standard massless BCJ and classical

double copy formalism. Since a large part of this thesis will be about extending the double copy

formalism from massless to massive case, it is first necessary to understand the massless case.

I then introduce the relevant massive gauge and gravity theories which will play a significant

role in the remaining discussion.

1Spurious poles are poles in the scattering amplitude that are not associated with the exchange of physical
states.
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1.1 BCJ Double Copy

The Bern-Carrasco Johansson (BCJ) double-copy [2, 6] is a relation between the scattering

amplitudes of gauge and gravity theories. There are many different examples of this relation,

but the original and the most famous one is between (super) Yang-Mills and (super) gravity

[6]. It has been proven to hold for all n point tree level amplitudes and it is conjectured to

hold at loop level as well [14, 15, 16, 17]. This particular example of double copy can be

understood from a string theory point view by considering relations between open and closed

string amplitudes, known as KLT relations [18], and by looking at the low energy effective field

theories of these two string theories. However double copy was found to be more general, there

are known examples of double copy relations between two non-gravitational theories for example

the non-linear sigma models and DBI and special Galileon [19, 20, 21, 22, 23, 24, 25, 26]. Also,

there are many examples of relations between super Yang-Mills and supergravity theories [27].

Recently double copy has been extended for gauge theories with massive matter fields [28, 29].

The double copy procedure starts with writing the n point tree level gauge theory amplitude

in the following form2

An = gn−2
∑
i

cini∏
αi
Dαi

, (1.1)

where ci are colour factors, ni are kinematic factors containing products of momenta and

polarizations and Dα are propagator factors. The sum i runs over distinct Feynman graphs

with only (trivalent) cubic vertices. The kinematic factors are not unique since the colour

factors are related by Jacobi-type identities, ci+cj+ck = 0, which causes ambiguity in defining

n’s. To do double copy we need to fix this freedom by choosing n’s satisfying colour-kinematics

(CK) duality which states that the n’s have to satisfy the same algebraic relations as the c’s:

ci + cj + ck = 0,→ ni + nj + nk = 0. (1.2)

2Note that we are using the amplitude definition given in (2). All of our scattering amplitudes are given as
the momentum space delta function stripped amplitudes of ⟨{kf}|Ŝ − 1̂|{ki}⟩. i.e. we forgo the introduction of

an i as in Ŝ = 1̂ + iT̂ .
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Then the colour factors can be replaced by kinematic factors, ci → n̄i (these can be kinematic

factors of a different gauge theory) and the coupling constant to gravitational coupling constant,

g → κ/2, where κ =
√
32πG to get the double copy amplitude:

Mn = i
(κ
2

)n−2∑
i

n̄ini∏
αi
Dαi

. (1.3)

If we go in the opposite direction and replace n’s by c’s we obtained so called zeroth copy

amplitude:

A0
n = gn−2

∑
i

cic̄i∏
αi
Dαi

, (1.4)

corresponding to the amplitude of a bi-adjoint scalar theory, (the scalar field has indices of two

gauge group Lie algebras ϕaa′).

1.2 Classical Double Copy

Double copy relations go beyond scattering amplitudes. Many different classical solutions in

gauge and gravity theories have been found to be related by the so called classical double

copy. There are several different formulations of classical double copy, the most common one

is Kerr-Schild double copy. A metric in Kerr-Schild coordinates is of the following form

gµν = ḡµν + κkµkνϕ , (1.5)

where ḡµν is the background metric and kµ is a vector tangent to a null geodesic with the

respect to both ḡ and g:

ḡµνk
µkν = 0, kµ∇̄µkν = 0, (1.6)

where ∇̄ is the background covariant derivative and the indices are raised/lowered with ḡ. In

these coordinates the Ricci tensor is linear in ϕ [30]. Similarly the Kerr-Schild form of the

gauge field is:

Aa µ = caAµ = cakµϕ , (1.7)
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where ca is some constant colour factor. Again, this ansatz linearises the field strength tensor,

F a
µν , and the Yang-Mills equations of motion. Therefore, in both gravity and gauge theory the

equations of motion are linear relations between ϕ and the sources. For example, when ḡ = η

and we are in the vacuum, both Yang-Mills and gravity equations of motion are solved if ϕ

satisfies 2ϕ = 0 i.e. the equation of motion of a scalar. This can be interpreted as the zeroth

copy - bi-adjoint scalar field given by

Φaa′ = ca(c′)a
′
ϕ. (1.8)

Therefore we see that the classical Kerr-Schild double copy prescription is replacing ca by kµ

in order to relate zeroth (Φaa′ = ca(c′)a
′
ϕ), single (Aa

µ = cakµϕ) and double copy (hµν = ϕkµkν)

solutions. In general when sources are present one needs to relate them in order to find double

copy relations. Note that the graviton field in Kerr-Schild coordinates is traceless and symmetric

so the axion and dilaton fields that appear in BCJ double copy are not present here which means

that Kerr-Schild double copy is a relation between gauge theory and pure Einstein gravity. As

an example consider Schwarzschild solution in Kerr-Schild coordinates:

gµν = ηµν +
κ2M

8πr
kµkν , (1.9)

where kµ =
(
1, x

i

r

)
and r2 = xixi. The graviton field (or double copy) in this case is hµν =

κM
8πr
kµkν . Then the single copy is obtained by replacing κ

2
kµM → gca

Aa
µ =

gcakµ
4πr

. (1.10)

This solves Yang-Mills equations which are Maxwell equations in this case (since the Kerr-Schild

ansatz linearises the equation of motion):

∂µF
aµν = Jaν , (1.11)
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where Jaν is a static point source located at the origin:

Jaν = −gcavνδ3(x), (1.12)

where vµ = (1, 0, 0, 0). There are many other examples of Kerr-Schild double copy including

Kerr black holes, black branes, plane waves, shock waves [30] and (A)dS spaces [31].

A related but slightly different approach is to relate the Weyl curvature tensor to the field

strength tensor directly. This is known as Weyl double copy. At linearised order the Weyl

tensor can be related to the square of the YM field strength

W lin.
µνρλ =

1

2

F lin.
µν F

lin.
ρλ

eip·x
. (1.13)

This relationship is known to extend beyond linearised case for exact solutions of Petrov Type

D and Type N spacetimes when written in terms of spinors [32, 33]. Recently it has been

attempted to explained it from a twistor space perspective [34, 35, 36].

There is a wide range of applications of double copy. For example, double copy is used for UV

considerations of effective field theories [37, 38, 39, 40], efficient gravitational wave calculations

[41, 42, 43, 44, 45, 46] and relations between classical solutions in different theories [47, 30, 31,

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66]. The double copy has

been studied for scattering amplitudes [67, 68] and correlation functions [69, 70, 71, 72] around

more general backgrounds.

1.3 Massive Yang-Mills

Now we review the theories that will play a role in understanding massive double copy. The

first theory which will be the starting point in attempting to do massive double copy is massive

Yang-Mills. It can be thought of as the low energy effective action of Yang-Mills - Higgs theory,

obtained by integrating out the Higgs field. We consider the case of gauge symmetry breaking

which gives all gauge bosons the same mass, m. The cut off scale of the resulting effective field
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theory (EFT) is then the Higgs mass. In unitary gauge the leading (in 1/cutoff) terms in the

effective Lagrangian are the following:

LmYM = −1

4
tr(FµνF

µν)− 1

2
m2tr(AµA

µ), (1.14)

where g is the coupling constant. This theory is not renormalizable and should be understood

as an EFT which contains an infinite number of interactions suppressed by the cutoff scale.

For example, we could add a quartic interaction tr(AµA
µ)2 to (1.14). To better understand the

structure of this effective field theory we can reintroduce Stückelberg fields (Goldstone modes)

by the following replacement

Aµ →
√
2i

g
V (x)−1DµV (x) (1.15)

where Dµ = ∂µ − ig√
2
Aµ is the gauge covariant derivative and V (x) = exp

[
i√
2Λ
T aϕa(x)

]
where

ϕa(x) are the Stückelberg fields, so that the Lagrangian with the restored gauge symmetry is

LmYM = −1

4
tr(FµνF

µν)− Λ2tr(DµV D
µV −1), (1.16)

where Λ = m/g. It is manifestly gauge invariant under Dµ → U(x)−1DµU(x) under which

V (x) transform as V (x) → U(x)−1V (x) where U(x) = exp
[

i√
2Λ
T aξa(x)

]
and ξa(x) is the

gauge transformation parameter. The unitary gauge Lagrangian, (1.14), is recovered by fixing

the gauge ϕa = 0.

The highest cutoff scale of the resulting EFT is Λ = m/g (Goldstone mode decay constant).

Additional operators in the effective action could lower the cutoff, but we assume that is not

the case so Λ is the controlling scale. This allows to take the following decoupling limit: g → 0,

m → 0 for fixed Λ. This results in a theory containing a free massless spin-1 field and an

interacting non-linear sigma model

LDL = lim
g→0,Λ fixed

LmYM = −1

4

∑
a

(∂µA
a
ν − ∂νAa

µ)
2 − Λ2tr(∂µV ∂

µV −1). (1.17)



1.3. Massive Yang-Mills 8

This illustrates the ‘Goldstone equivalence theorem’ which states that the leading interactions

for the helicity-0 modes of the massive spin-1 states are determined by the effective field theory

for the Goldsone modes described by (1.17). Note that adding additional unitary gauge inter-

actions, such as tr(AµA
µ)2, would result in the addition of further irrelevant operators to the

nonlinear sigma model Lagrangian in the decoupling limit, which have been considered in the

double copy context for example in [37, 38, 39, 40].

The reason why we choose unitary gauge is that it is well suited for the tree amplitude calcula-

tions. This is because the expressions for off-shell vertices in massive and massless Yang-Mills

are the same, so the only difference in calculating amplitudes is the massive propagator:

−iη̂µν
p2 +m2

, (1.18)

where η̂µν = ηµν + pµpν/m
2. Similarly to the massless case [6] we express the tree level n-point

scattering amplitude of massive Yang-Mills as:

An = gn−2
∑
i

cini∏
αi
(−p2αi

−m2)
, (1.19)

where ci are colour factors which are products of the structure constants of the gauge group, ni

are the kinematic factors, i labels distinct Feynman diagrams and αi labels internal propagators

in the Feynman diagram. This is the same expression for the amplitude as in massless case but

the massless propagators p2αi
are replaced now by massive p2αi

+m2. However, the expressions

of kinematic factors, ni, in terms of products of polarizations and momenta are not the same

as in the massless case since they contain information about the massive polarization states in

the massive propagator η̂µν , and also, the external momenta now satisfy p2i = −m2 instead of

p2i = 0. Therefore, it is not guaranteed that the colour-kinematics duality still holds.
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1.4 dRGT Massive Gravity

If massive Yang-Mills, described in the previous section, can be double copied it should give a

massive gravity theory. A natural candidate (for massive graviton interactions in the double

copy) is dRGT theory of massive gravity [73], since it is the highest cutoff effective field theory

for interacting massive spin-2 fields just like massive Yang-Mills is the highest cutoff effective

field theory for massive spin-1 fields. In this theory the diffeomorphism symmetry is broken by

introducing the non-dynamical reference metric, fµν , in the action making the graviton massive.

Generic interactions in massive gravity action would lead to a theory that breaks down at the

scale Λ5 = (m4MPl)
1/5 due to appearance of Boulware-Deser ghost [74]. However, a specific

tuning of the interaction terms was found in [73, 75] which removes the ghost and raises the

cutoff scale to Λ3 = (m2MPl)
1/3 where the perturbative unitarity breaks down. This theory is

known as de Rham, Gabadadze and Tolley (dRGT) massive gravity.

Massive gravity is interesting from both a theoretical and a phenomenological point of view.

It is a candidate effective theory for gravity at large scales because it can explain the late-time

accelerated expansion of the universe without the tuning of the cosmological constant, i.e. it

can provide a solution to the cosmological constant problem. There are two different ideas of

how this can be achieved. The first idea is to allow the cosmological constant to be large but

make gravity weaker at large distances, relevant to cosmology. Then the effect of large cosmo-

logical constant on the acceleration of the universe can be much smaller than that in general

relativity. This is known as degravitation and the corresponding massive gravity solutions are

known as screening solutions. The second idea is called self-acceleration. It turns out that in

massive gravity it is possible to have zero cosmological constant (perhaps due to some symme-

try or mechanism forcing the vacuum energy to be zero) and still find accelerating cosmological

solutions with the Hubble scale of the order of the graviton mass. This acceleration can be

thought as being sourced by a condensate of massive gravitons. These two mechanisms are

opposite of each other but both screening and self-accelerating solutions are expected to be

present in massive gravity. For more details see [76, 77].

There are other important differences between massive and massless gravity due to different
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number of degrees of freedom. For example, even in the massless limit the Newtonian poten-

tial in massive gravity is different due to the helicity-0 graviton exchange between interacting

objects. This effect is known as vDVZ discontinuity [78, 79] which seems to be in contradiction

with solar system observations. However there is a region in which this helicity-0 contribution

is suppressed as first noted by Vainshtein [80]. The linear theory in this region breaks down

and the non-linearities become important which recover the result of general relativity. This

will be explained in a bit more detail after the description of the decoupling limit.

In unitary gauge the action of dRGT massive gravity can be written in terms of the following

variable [73]

Kµ
ν (f, g) = δµν −

(√
g−1f

)µ
ν
, (1.20)

where gµν is the dynamical metric and fµν is the non-dynamical metric that breaks diffeomor-

phism invariance. This variable Kµ
ν has a strange square root metric structure, which is required

in order to avoid having a ghost [73]. We will see in section 2.1.5 that this square root metric

structure has a straightforward Λ3 decoupling limit. The 4d Lagrangian in unitary gauge is

[77]

LmGR =
M2

Pl

2

√
−gR +

m2M2
Pl

4

√
−g

4∑
n=0

κn Un [K] , (1.21)

where 3

Un = εµ1...µn...µ4ε
ν1...νn...ν4Kµ1

ν1
...Kµn

νn δ
µn+1
νn+1

...δµ4
ν4
. (1.22)

When we expend the theory around a flat background gµν = ηµν + hµν the κ0 term gives rise

to a cosmological constant term and κ1 to a term linear in hµν i.e. a tadpole so if we want

flat space to be the solution of the vacuum equations of motion we set κ0 = κ1 = 0. The

κ2 coefficient will appear in the kinetic Fierz-Pauli term in the action so κ2 can be fixed by

canonical normalization of hµν . This corresponds to setting κ2 = 1. Explicitly the terms in the

3We use Euclidean conventions so that for flat spacetime ε0123 = ε0123 = 1, i.e. in the Lorentzian εµναβ =

−ηµµ′ηνν′ηαα′ηββ′εµ
′ν′α′β′

. As long as we are clear that we use one of them with all indices up and the other

with all indices down together with εi1...ikik+1...idε
i1...ikjk+1...jd = k! δ

jk+1...jd
ik+1...id

with the generalized Kronecker
delta expressed as a determinant of a matrix built out of δ’s.
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potential are

U2(K) = 2
(
[K]2 − [K2]

)
, (1.23)

U3(K) = [K]3 − 3[K][K2] + 2[K3] , (1.24)

U4(K) = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4] , (1.25)

where the squared brackets denote the trace. The free parameters are κ3 , κ4 as well as the

graviton mass m2. We will set fµν to be Minkowski metric, ηµν for scattering amplitude

calculations in Minkowski spacetime. It can be shown that the terms in (1.21) are the only

allowed interactions for which the equations of motion for all 5 propagating degrees of freedom

are second order [81].

If we consider this theory as an effective field theory its cutoff is Λ3 = (m2MPl)
1/3. This is

the highest possible cutoff for Lorentz invariant interacting massive spin-2 theories [73, 75] in

4 dimensions. From this point of view the action (1.21) should be thought of as the leading

terms in the expansion in 1/Λ3 and the sub leading terms should be of the form

∆L = Λ4
3

√
−g F [gµν , Kµν ,

∇µ

Λ3

,MPlRµνρσ] . (1.26)

where F contains the sum of all diffeomorphism invariant scalar operators4 with dimensionless

Wilson coefficients.

Similarly to massive Yang-Mills we can restore the diffeomorphism symmetry with Stückelberg

fields. Since the symmetry is broken by the non-dynamical metric fµν we can restore it by

making fµν transform as a tensor. This is achieved by the following replacement:

fµν → ∂µΦ
A∂νΦ

BηAB , (1.27)

where the Latin indices A,B have the same range as Lorentz indices. If we shift the Stückelberg

fields as ΦA(x) = xA + πA(x), then πA(x) is the analogue of the ϕa(x) in V (x) (1.16), and the

unitary gauge is πA(x) = 0. The full derivation of Λ3 decoupling limit can be found in [82].

4All breaking of diffeomorphism invariance is captured by the tensor Kµν , so if Kµν was transforming as a
tensor under diffeomorphism all terms in the Lagrangian would be diffeomorphism invariant.



1.4. dRGT Massive Gravity 12

Unlike the massive Yang-Mills case where in the decoupling limit the helicity-1 is free and

the only interactions are the helicity-0 self interactions, in massive gravity decoupling limit

the helicity-1 - helicity-0 interactions are still present as well as mixing between helicity-2 and

helicity-0 modes. However the helicity-1 modes appear quadratically so it consistent to truncate

the theory by switching them off, since they will not be sourced by the other helicity modes.

Then the decoupling limit action for helicity-0 and helicity-2 modes, without helicity-0 and

helicity-2 kinetic mixing terms (which are removed by a local field redefinition of h) is [77]

LDL = lim
m→0,MPl→∞,Λ3 fixed

LmGR =
1

4
hµνEhµν +

5∑
n=2

cnL(n)
Gal[π] + bhµνX

µν(Π) (1.28)

where

hµνEhµν = −εν1ν2ν3ν4εµ1µ2µ3µ4δ
µ1
ν1
hµ2
ν2
∂ν3∂

µ3hµ4
ν4
, (1.29)

Πµν = ∂µ∂νπ, b is a constant, X is defined as

Xµν(Π) = εµµ1µ2µ3
ενν1ν2ν3Πµ1

ν1
Πµ2

ν2
Πµ3

ν3
(1.30)

and L(n)
Gal are the Galileon terms

L(n)
Gal[π] = πUn−1(Π). (1.31)

There is still a coupling between helicity-2 and helicity-0 given by the last term in (1.28). It

cannot be removed by a local field redefinition only by a non-local one of the form hµν →

hµν + 2bDµνρσX
ρσ, where D = E−1 is the graviton propagator. Therefore, we see that the

decoupling limit of massive gravity in terms of local operators is a scalar theory with self

interactions given by the Galileon terms (1.31) (known as Galileon theory) coupled to a massless

spin-2 field.

From the decoupling limit we can see the origin of the vDVZ discontinuity [78, 79]. If we have

external matter minimally coupled to massive gravity through the energy-stress tensor Tµν then
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in the decoupling limit we have two additional terms:

1

MPl

hµνT
µν +

1

MPl

πT µ
µ . (1.32)

We see that for the sources where T µ
µ is non-zero we get an additional contribution to the

force between them given by the exchange of π at linear level. As mentioned before this

gives rise to vDVZ discontinuity since the massless limit of massive gravity does not agree

with general relativity. For example the Newtonian potential in this limit is −4GM
3R

rather

than −GM
R

as in linearized general relativity. However, the distance scale where the linearized

theory breaks down and non-linearities become important in massive gravity is different from

that of general relativity in which this distance scale for spherically symmetric solutions is the

Schwarzschild radius rS = 2GM . Instead, in Λ3 massive gravity this distance is the Vainshtein

radius rV =
(
GM
m2

)1/3
. Inside the region r ≪ rV we cannot trust the linearized theory and

it turns out non-linear interactions of π make its contribution to the Newtonian potential

suppressed relative to the hµν exchange [83] so the scalar ”fifth” force is screened inside this

region. For astrophysical sources and small graviton mass rV can be much larger compared to

rS so the solar systems tests (which would be in the region rV ) should be probing the non-

linear regime of massive gravity theory. The full theory of massive gravity is quite complicated

[73] so it is hard to obtained exact classical solutions and check if they exhibit the Vainshtein

screening mechanism. However it is believed that these features of massive gravity are captured

by the Galileon theory in which the screening mechanism has been studied mostly numerically

due to difficulties in doing analytic calculations in non-linear regime [84, 85, 86, 87]. Thus

we see why the double copy construction of massive gravity could be beneficial - it might

simplify the analytic calculations (just like it simplifies graviational wave calculations in general

relativity) allowing us to better understand the Vainshtein screening mechanism. This would of

course require non-perturbative construction of massive gravity solutions (since the perturbative

methods used in general relativity such as post-Newtonian or post-Minkowskian expansion

would not help to probe the non-linear dynamics) perhaps given by classical double copy.

Also, a double copy construction of massive gravity might give a simpler way of calculating

gravitational waveforms in this theory that could be tested experimentally.
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1.5 Topologically Massive Gauge and Gravity Theories

in 3d

As will be described in the second chapter of this thesis, there are interesting examples of dou-

ble copy relations between topologically massive gauge and gravity theories in three spacetime

dimensions. This section contains a short introduction of these theories. We start with topo-

logically massive Yang-Mills theory (TMYM) which propagates one spin-1 degree of freedom

and is given by a standard Yang-Mills term supplemented with a Chern-Simons term. The

TMYM action is

STMYM =

∫
d3x

1

g2

(
− 1

4
tr [F µνFµν ] + ϵµνρ

m

2
tr

[
Aµ∂νAρ +

2

3
AµAνAρ

])
, (1.33)

where m is the mass of the gauge field and g the coupling strength. The mass term is propor-

tional to the Chern-Simons level. Under gauge transformations, Aµ → U−1AµU +U−1∂µU , the

TMYM is not fully invariant, instead it changes by two terms:

STMYM → STMYM + δS1 + δS2 (1.34)

where

δS1 ∝
∫
d3xϵµναtr[∂µ

(
Aα∂νUU

−1
)
] (1.35)

and

δS2 ∝
∫
d3xϵµναtr[∂µUU

−1∂νUU
−1∂αUU

−1]. (1.36)

The first term, δS1, is a total derivative and it vanishes if we only consider gauge transformations

such that U(x) goes to the identity at infinity. The second term, δS2, does not vanish in the

non-Abelian case. Instead, it is equal to 8π2 m
g2
w(U), where w(U) is the winding number of

the gauge transformation which is an integer. Since the partition function should be invariant

under gauge transformations, Z =
∫
DAeiS =

∫
DAe

iS+i8π2 m
g2

w(U)
= Ze

i8π2 m
g2

w(U)
, 8π2 m

g2
w(U)
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must be an integer multiple of 2π so the mass of the gauge field must be quantized:

4π
m

g2
= integer. (1.37)

Pure Yang-Mills theory in 3d describes a single massless spin-1 degree of freedom, while pure

Chern-Simons theory is topological, with no propagating degrees of freedom. However, when

combined together into topologically massive Yang-Mills theory they describe a singe mas-

sive spin-1 degree of freedom [88]. A massive spin-1 field in a Lorentz invariant (including

discrete transformations such as parity) 3d theory would have 2 degrees of freedom, but this

theory breaks parity due to the parity odd Chern-Simons term. Unlike 4d massive Yang-Mills

theory, topologically massive Yang-Mills is renormalizable (in fact it is UV finite or super-

renormalizable) [88].

Pure Chern-Simons theory itself has some interesting properties even though it does not have

propagating degrees of freedom. The expectation value of a Wilson loop calculated along some

closed path in this theory can be related to the knot invariants of that path [89]. Also, it has

a connection to the 4d topological theta term Sθ =
∫
M4

tr[F ∧ F ] which is a total derivative

Sθ =
∫
M4
dK, where K = tr[(A∧dA+ 2

3
A∧A∧A)]. The 3d Chern-Simons term can be obtained

by considering Sθ on a manifold M4 with a boundary ∂M4 = M3 and using Stokes’ theorem:∫
M4
dK =

∫
∂M4

K =
∫
M3

tr[A ∧ dA+ 2
3
A ∧ A ∧ A] [88].

To see what effect Chern-Simons term has on the force mediated by Aµ, we can look at the

Abelian case, i.e. topologically massive electrodynamics (TME). The equation of motion with

the source Jν is

∂µF
µν +

m

2
ϵναβFαβ = Jν . (1.38)

This is solved by

Aµ =
1

−2+m2

(
ηµν +

1

m
ϵµνα∂α

)
Jν + gauge dependent term. (1.39)

This looks like the standard massive vector field but the source is “twisted”: J ′µ = Jµ −
m
2
ϵµαβ∂αJβ. This twisting transformation makes non-spinning sources create field profiles as

if they were spinning. In particular if J0 = eδ2(x) (describing point static charge) and Ji =
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gϵij∂jδ
2(x) (describing dipole current) then the electric and magnetic fields created by this

source are

Ei = F 0
i = (e+ gm)∂iY (r), B = ϵijFij = (e+ gm)∇2Y (r), (1.40)

where Y (r) = 1
2π
K0(mr). K0(x) is Bessel function which behaves as ln(x) at the origin and

e−x/
√
x at infinity, so the fields have a finite range due to the mediator being massive. Also,

we see that the electric field is not proportional to e and the magnetic field is not proportional

to g as in the case of normal electromagnetism. Instead they are both proportional to the

combination e+mg which means that there is a magnetic field even when g = 0 and an electric

field even when e = 0. Therefore, we see that the topological massive vector field sees the

source J as if it has a different classical spin. Also, for the specific choice of e + gm = 0 the

fields are zero so it is possible to have charge and current configurations that do not create

electromagnetic fields.

Topologically massive gravity (TMG) action is given by

STMG =
1

κ2

∫
d3x
√
−g
(
−R− 1

2m
ϵµνρ

(
Γα
µσ∂νΓ

σ
αρ +

2

3
Γα
µσΓ

σ
νβΓ

β
ρα

))
. (1.41)

Similarly to TMYM it is an addition of a gravitational Chern-Simons term to the Einsten-

Hilbert term. However, the sign of the Einstein-Hilbert term is opposite to the conventional

one; this is required so that the sign of the kinetic term of the physical spin-2 mode is correct

and the theory is ghost free. Like in TMYM case the change under gauge (diffeomorphism in

this case) transformation gives a term related to the topology of the gauge transformation. It

is easier to see this using the first order formalism, where we write TMG action in terms of

dreibein, eaµ, and the spin connection, ωa
bµ, one-forms

STMG =
1

κ2

∫ (
−ea ∧ dωa − ϵabcea ∧ ωb ∧ ωc − 1

2m

(
ωa ∧ dωa +

2

3
ϵabcω

a ∧ ωb ∧ ωc

))
,

(1.42)

where ωa
µ = 1

2
ϵabcωbcµ. The latin dreibein indices can be transformed with a local Lorentz

transformation Λa′
a , which leaves the Einstein-Hilbert term invariant but might change the

gravitational Chern-Simons term by a total derivative. Comparing this with (1.33) we see that
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the gravitational Chern-Simons term has a similar structure to the gauge theory Chern-Simons

term. In fact under local Lorentz transformations, δea = ϵabce
bλc, ωa

µ transforms just like a gauge

field: δωa = dλa + ϵabcωbλc [90]. Therefore, the change in the action under these local Lorentz

transformations will be also given by (1.36), however, in this case the gauge group (of local

Lorentz transformations) is non-compact SO(2, 1) and the homotopy of its maximal compact

subgroup, SO(2), is trivial [91], so the additional term vanishes and the action is fully gauge

invariant. Therefore, no quantization of the mass is required.

Similarly to TMYM, this theory describes a single massive degree of freedom but now it is

spin-2 [88]. Again, a massive spin-2 particle in a Lorentz invariant theory in 3d should have

2 degrees of freedom but the gravitational Chern-Simons term breaks parity. The Einstein-

Hilbert term alone in 3d gives no propagating degrees of freedom, that is why its negative sign

does not introduce ghosts. There is a similar construction of the gravitational Chern-Simons

term as in gauge theory case. This is done by considering the 4d Hirzebruch-Pontryagin den-

sity, 1
2
εµναβRµνρσR

ρσ
αβ, (which is a total derivative ∂µX

µ for some Xµ) and analogously to gauge

theory case relating its integral over 4d manifold to an integral over the boundary gives the 3d

gravitational Chern-Simons term [88].

To see how matter coupled to topological massive gravity interact again we consider the lin-

earised equation of motion (in de Donder gauge),

∂2hµν −
1

2
ηµν∂

2h+
1

m
∂ρϵ

ρλ
(µ∂

2hν)λ = κTµν . (1.43)

Similar to the TME case, it is possible to rewrite this as

(
−∂2 +m2

)
hµν = κ

m2

∂2

[
Tµν − ηµνT −

1

m
∂ρϵ

ρλ
(µTν)λ +

1

2m2

(
ηµν∂

2 + ∂µ∂ν
)
T

]
. (1.44)

The right hand side of this equation again is “twisted” transformation of the stress-energy

tensor, Tµν . The solution sourced by a stationary spinning particle at the origin, given by

T 0
0 = −Mδ2(r), T i

0 = −1
2
σϵij∂jδ

2(r), Tij = 0 is the following [92]:

h0i =
κ

m
(M +mσ)ϵij∂j(C(r)− Y (r)) (1.45)
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hij = (κ(M +mσ)Y (r)− 2κMC(r)) δij (1.46)

h00 = κ(M +mσ)Y (r), (1.47)

where C(x) = − 1
2π
ln(x) and Y (r) = 1

2π
K0(mr) as before. h0i gives a gravito-magnetic field

and is responsible for the frame dragging effect. In general relativity it would be zero for non-

rotating sources (σ = 0) but here it is non zero. Also, h00 gives a Newtonian potential and

we see that it is not just proportional to M but instead to M + mσ. This means that the

equivalence principle between gravitational and inertial mass is no longer true in this theory.

Note that M +mσ can be positive or negative so it is possible in this theory to have repulsive

gravity as well as the case M +mσ = 0 where gravitational field vanishes in linearised theory.

It is easy to notice from this short summary that these topologically massive gauge and gravity

theories share a lot of similarities; both can be obtained from 4d topological terms, both break

parity and describe a single massive degree of freedom and see the sources as if they were

“twisted”. As we shall see later there is strong evidence that these theories are related by

double copy to all orders.

1.6 Structure of the Thesis

The rest of the thesis is structured as following:

1. In the second chapter our proposed massive extension of BCJ double copy is introduced,

which was first discussed in [10], and the origin of unphysical poles is explained, following

an example of massive theories in which the double copy procedure gives these spurious

poles. An example of a theory avoiding the spurious poles is given, namely Kaluza-Klein

theory, and it is explained how the attempts of deforming this theory in order to find

new massive theories compatible with double copy fail. The massive double copy in 3d is

described where massive theories that are not Kaluza-Klein theories can avoid spurious

poles in the double copy amplitudes and an example of this relation is given between

topologically massive gauge and gravity theories.
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2. In the third chapter this relation between topologically massive gauge and gravity theo-

ries is explored further by considering eikonal high energy scattering as well as classical

solutions. This includes a newly found Weyl double copy analog for 3d - Cotton double

copy that has been observed in type N solutions [93].



Chapter 2

Massive BCJ Double Copy

In this chapter I will introduce a proposal for a double copy for massive theories, first given

in [10]. This chapter is organised as follows: first BCJ double copy in matrix notation will be

introduced, from which it will be easy to see spurious poles in the double copy of a generic

massive gauge theory. Then I discuss an example of a theory that has this problem - massive

Yang-Mills and an example of a theory which avoids spurious poles - Kaluza Klein theory. Then

I discuss a proposal [12] for massive double copy relation in three spacetime dimensions which

avoids spurious poles at least at 5 point level.

2.0.1 BCJ Double Copy in Matrix Notation

This section contains a review of the BCJ double copy formalism for scattering amplitudes

with matrix notation, as introduced in [11, 12], which is useful to understand the issues with

spurious poles that arise when trying to square amplitudes including massive gauge fields. In

a generic gauge theory the n-point tree level amplitude, An, can be written as

An = gn−2cTD−1n , (2.1)

where g is the coupling, c is the vector of colour factors, D is the diagonal matrix with elements

given by products of inverse propagators and n is the column vector of kinematic numerators.

20
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The Jacobi identities and CK duality1 in matrix form can be written as

Mc = 0 → Mn = 0 , (2.2)

for a matrix M with entries ±1. Once a representation satisfying CK duality is found, the

corresponding amplitude in the gravitational theory, Mn, is given as

Mn = i
(κ
2

)n−2

nTD−1n . (2.3)

The kinematic factors directly calculated from Feynman diagrams may not satisfy Jacobi rela-

tions, therefore they must be shifted as

n→ n+∆n , (2.4)

such that the amplitude in (2.1) is unchanged. This can be achieved by setting

D−1∆n =MTv , (2.5)

where v is a vector to be determined. For a specific theory there could be some other form

of the shift that leaves the amplitude unchanged, however for a generic theory, where we only

know the Jacobi identities between colour factors, this is the most general shift. Such shifts

are usually referred to as generalized gauge transformations since in the massless case they can

be obtained by a gauge transformation and a field redefinition of the gauge field. In order to

satisfy the CK duality, the shifted n must obey the following equation

M(n+∆n) = 0 , (2.6)

1Note that unlike in massless case where CK duality is required for gauge invariance of the amplitudes, in
the massive case with no gauge symmetry it is not clear if CK has to be imposed. In fact it is possible that
some other representation of kinematic numerators is more physical for doing massive double copy due to some
other reasons. We leave this point for future work and assume that the rules for massive double copy are the
same as in the massless case even though this might be too restrictive.
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which combined with (2.5) gives

MDMTv = −Mn . (2.7)

The number of non-zero rows of M will be equal to the number of Jacobi identities, Nj.

Therefore, MDMT is block diagonal with a Nj × Nj symmetric block matrix A and all other

elements equal to zero. Mn will have at most Nj non-zero elements so we can write it as

Mn = (U, 0, ..., 0) . (2.8)

Note that the vector U measures the violation of the CK algebra. We can see that in order to

find the shifts we need to find v, for which we need to invert the matrix A:

v = −(A−1U, 0, .., 0) . (2.9)

It may be that A does not have full rank as it happens in pure Yang-Mills theory. In that case,

we can still invert A in the subspace orthogonal to all null eigenvectors of A if U is in that

subspace,

U · null(A) = 0, (2.10)

i.e. if there are certain relations between kinematic factors known as BCJ relations.

If we now substitute the shifted n back into (2.15) we obtain the following gravity amplitude:

−i
(κ
2

)−(n−2)

Mn = (n+∆n)TD−1(n+∆n)

= (n+∆n)TD−1n+ (n+∆n)TMTv

= nTD−1n+∆nTD−1n ,

(2.11)

where going from the first to the second line we expanded the expression and used (2.5), and

going from the second to the third line we used (2.6) to set the last term to zero. Now we can
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replace ∆n using (2.5) and (2.9) to obtain

−i
(κ
2

)−(n−2)

Mn = nTD−1n+ vTMn = nTD−1n− UTA−1U . (2.12)

Again, in the case when A does not have full rank, A−1 and U must be in the subspace

orthogonal to the null vectors.

2.0.2 Spurious Poles

Note that the poles ofMn come from kinematic configurations for which either D or A becomes

singular. Since D contains the physical poles in the gauge theory amplitude, spurious poles

could only arise from A. In particular, since, A−1 = 1

det(A)
(cofactor matrix) we see that the

double copy amplitude has the factor of det(A) in the denominator. In general this factor is

not equal to a product of physical poles and therefore it gives spurious poles.

Now let us consider the 4-point amplitude with all massive states with mass m in the adjoint

representation. We have a single Jacobi identity, cs + ct + cu = 0, so M has only one non zero

row equal to (1, 1, 1) and D = diag(s−m2, t−m2, u−m2). In this caseMn = (ns+nt+nu, 0, 0),

so U = ns + nt + nu and A is 1 × 1 matrix A = s −m2 + t −m2 + u −m2 = m2. Therefore,

using (2.12) the double copy of the massive 4-point amplitude is

−i
(κ
2

)−2

M4 =
n2
s

s−m2
+

n2
t

t−m2
+

n2
u

u−m2
− (ns + nt + nu)

2

m2
. (2.13)

This shows that no spurious poles arise for the 4-point amplitudes. The 5-point case is more

complicated and generically gives rise to spurious poles. An example of a massive gauge theory

that has this problem this will be described in the next section.
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2.1 Massive Yang-Mills and dRGT Massive Gravity

The most natural starting point for attempting to do massive double copy is to try square

the massive Yang-Mills theory which is obtained by adding a mass term to Yang-Mills theory

i.e. it is a low energy effective field theory of Yang-Mills coupled to Higgs field which spon-

taneously breaks the gauge symmetry in a way that all of the gauge bosons acquire the same

mass. We expect the double copy of this theory to contain a massive spin-2 field with self in-

teractions described by ghost-free dRGT massive gravity. These massive effective field theories

are described in 1.3 and 1.4. Some evidence that they could be related can be seen from their

decoupling limits described in the previous sections. The decoupling limit of massive Yang-

Mills theory is a non-linear sigma model while that of dRGT massive gravity is a Galileon-like

theory [94, 75, 73, 82] and it is known that the special Galileon theory can be obtained as a

double copy of a non-linear sigma model [20, 95, 21, 25, 26]. Also the possibility of this relation

was proposed before for example in [96].

While at 3 and 4 point level the double copy of this theory matches the amplitudes of a massive

gravity theory at higher points the relation fails due to appearance of spurious poles as was

first found by [97]. Despite this problem even up to 4pt level this massive double copy has some

interesting features. For example, the double copy procedure does not commute with taking

decoupling (high energy) limit. These features will be described in this section.

2.1.1 Degrees of Freedom

First we look at the spectrum of the double copy theory. The asymptotic states in the gravita-

tional theory are identified with the tensor products of gauge theory asymptotic states, ignoring

their colour indices. For example, if we double copy pure Yang-Mills theory we get the following

states:

Aµ ⊗ Aν = hµν ⊕Bµν ⊕ ϕ. (2.14)
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This is obtained by decomposing the tensor product of two vector (spin 1) representations of

Lorentz group into irreducible representations. hµν is the graviton, Bµν is a 2-form field and ϕ

is a massless scalar field known as dilaton. In the case of four dimensions and massless fields

Bµν is dual to a pseudo-scalar, known as axion. In terms of the number of degrees of freedom

it is 2× 2 = 2 + 1∗ + 1.

In the case of massive Yang-Mills, we still have (2.14) but all of the fields are massive: hµν

is a massive spin-2 field, Bµν is a massive 2-form field which in four dimensions is dual to a

massive spin-1 field and ϕ is a massive scalar. In terms of the number degrees of freedom now

we have 3× 3 = 5+ 3+ 1. Instead of working with the Bµν field we work with its dual massive

vector field, Aµ. We can see that just by the looking at the double copy of the free theory there

already is an interesting difference between the spectrum of massless and massive double copy:

the B field in the massive case is spin-1 rather than a spin-0 field like in the massless case.

2.1.2 Double Copy Construction of Scattering Amplitudes

Now that we know the spectrum on the massive gravity side we proceed to scattering ampli-

tudes. We assume that, just as in the massless case, the representation of the massive Yang-Mills

amplitude in (2.1) must satisfy the colour-kinematics duality [2], which states that when we

have three colour factors, ci, cj and ck related by the Jacobi identity, ci + cj + ck = 0, we need

the corresponding kinematic factors to obey the same algebraic relation: ni + nj + nk = 0.

In the massless case it has been conjectured [2] such choice of kinematic factors by choosing

a gauge and performing field redefinitions is always possible. We will see later that in the

massive case that is generally not true if we want to keep locality. However the four point case

is special and the kinematic factors calculated directly from (1.14) using Feynman rules satisfy

the colour-kinematics duality.

In the usual double copy procedure, once the correct representation for (2.1) is chosen, the colour

factors can be replaced with kinematic factors in order to obtain an amplitude of a gravitational

theory [6]. We follow the same procedure and conjecture that the following expression gives an
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amplitude in a massive gravity theory:

Mn = i
(κ
2

)n−2∑
i

niñi∏
αi
(−p2αi

−m2)
, (2.15)

where ñi are the kinematic factors of the second massive Yang-Mills. The products of Yang-

Mills polarization tensors in ni and ñi, ϵµ and ϵ̃ν respectively, are decomposed into polarization

tensors of the fields in the gravitational theory. This corresponds to decomposition of a tensor

product of two vector representations of the little group (for massive particles in 4d it is SO(3))

into irreducible representations. Schematically this is done as follows:

ϵ((jµ ϵ̃κ)) → ϵ(h)jkµν (2.16)

ϵ[jµ ϵ̃
k]
ν → ϵ(B)jk

µν , (2.17)

ϵjµϵ̃
κδjk ∝ ϵ(ϕ)µν . (2.18)

where j, k are little group indices, (()) denotes the symmetric traceless part corresponding to

the graviton polarization, ϵ(h), and the antisymmetric part denoted as [] corresponds to the

spin-1 polarization in terms of the B field, ϵ(B). However instead of working with the massive

Bµν field in this paper, we construct the action in terms of the vector field Aµ which is dual

to Bµν . The dualization procedure is explained in Appendix D. We define the map between B

field polarization tensor and A polarization vector to be:

ϵ(B)
µν =

i√
2m

εµνρσp
ρϵ(A)σ, (2.19)

where pσ is the four-momentum of the external state and the factor of
√
2 is required for the

correct normalization. The trace part of the tensor product, given in (2.18), is the polarization

tensor corresponding to the scalar, ϕ. As we show in Appendix C from explicit calculation in

helicity basis we find it to be

ϵ(ϕ)µν =
1√
3

(
ηµν +

pµpν
m2

)
, (2.20)

which up to a sign could equally have been fixed by the requirement that it is a tracefull,

transverse and normalized.
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2.1.3 Three-point Amplitude

We start with the simplest case - 3 pt amplitudes. For massive Yang-Mills the 3 pt amplitude

is exactly same as that of massless Yang-Mills:

A3(1
a, 2b, 3c) =

√
2gfabc(−ϵ1 · ϵ2 ϵ3 · p1 + ϵ1 · ϵ3 ϵ2 · p1 − ϵ1 · p2 ϵ2 · ϵ3). (2.21)

The difference is that now the on-shell momenta satisfy p2i = −m2 and there are 3 possible po-

larization states. Our conventions for these are given in Appendix B. The three-point amplitude

in dRGT massive gravity is as follows:

M3 =iκ
(
(ϵµν1 ϵ3µνϵ2αβp

α
1p

β
1 + 2ϵ1µνϵ

µα
2 ϵν3βp1αp2β + cyclic permutations of 1,2,3)

+
3

2
(1 + κ3)ϵ

µν
1 ϵ2ναϵ

α
3µm

2
)
,

(2.22)

where the coupling constant κ = 2/MPl. The first term is already proportional to the square

of Yang-Mills three-point colour-stripped amplitude if we write the polarization tensors as

products of two spin-1 polarization vectors, (ϵi)µν = (ϵi)µ(ϵ
i)ν

2, M3. Therefore, in order for

double copy to work we need to choose κ3 such that the second term vanishes, i.e. κ3 = −1. We

see that already at cubic level the double copy construction picks a particular one parameter

(κ4) subset of theories from 2-parameter family of massive gravity theories.

Since on the gravity side, in addition to massive spin 2 we have massive spin 0 and spin 1 states,

we have to construct the three point amplitudes for all possible scattering processes between

them. By applying (2.15) to three-point amplitudes explicitly we obtain the following relation:

M3 = i
κ

2
A3Ã3, . (2.23)

where the 3 point amplitudes have their structure constants, fabc, stripped off. By substituting

(2.21) and (2.16), (2.19) and (2.20) we get the following three-point vertices in a gravitational

theory:

2Note that only polarization tensors for helicity ±2 can be written as (ϵi)µν = (ϵi)µ(ϵ
i)ν , for helicities

±1, 0 we need to sum over the products of different helicities weighted by Clebsch–Gordan coefficients ϵλµν =∑
λ′λ′′ Cλ

λ′λ′′ϵλ
′

µ ϵλ
′′

ν .
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MAAh = i
κ

2

(
3

2
m2ϵµ1ϵ

ν
2ϵ3µν − pα1p

β
2 ϵ

µ
1ϵ

µ
2ϵ3αβ + pµ1p

ν
2ϵ

ν
1ϵ

α
2 ϵ3µα + pµ1p

ν
2ϵ

α
1 ϵ2µϵ3να

)
(2.24)

MAAϕ = −i κ

8
√
3

(
15m2ϵµ1ϵ2µ + 2p1νp2µϵ

µ
1ϵ

ν
2

)
(2.25)

Mϕhh = −i
√
3κ

4
m2ϵ2µνϵ

µν
3 (2.26)

Mϕϕh = −i3κ
4
p1µp2νϵ

µν
3 (2.27)

Mϕϕϕ = −i11
√
3

16
κm2 (2.28)

Mhhh = iκ
(
(ϵµν1 ϵ3µνϵ2αβp

α
1p

β
1 + 2ϵ1µνϵ

µα
2 ϵν3βp1αp2β + cyclic permutations of 1,2,3)

)
(2.29)

As mentioned before, Mhhh matches three graviton amplitude of massive gravity if we choose

κ3 = −1 (or c3 = 1/4 using the parametrization of the theory as in [75, 98]). The MAAh

and Mϕϕh amplitudes are different from those obtained from vector and scalar kinetic terms

minimally coupled to gravity (for example a minimally coupled scalar would give Mϕϕh =

−iκϵ3µνpµ1pν2. This is expected, since we know theories containing massive spin-2 field do not

have diffeomorphism symmetry, and we allow couplings between our fields and the reference

metric which in this case is the Minkowski metric. In this way we evade the usual equivalence

principle requirements for a massless spin-2 particle. As already mentioned we see that Mhhh

matches the 3 point amplitude of massive gravity with κ3 = −1.

2.1.4 Four-point Amplitude

At 4pt level we express the four-point amplitude of massive Yang-Mills in the form given in

Eq. (2.1) by defining the colour factors to be:

cs = fabefcde (2.30)

ct = fcaefbde (2.31)

cu = fbcefade. (2.32)
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so that

A4(1
a, 2b, 3c, 4d) = g2

(
csns

s−m2
+

ctnt

t−m2
+

cunu

u−m2

)
, (2.33)

where the kinematic factors are

ns = −
i

2
(ϵ1 · ϵ2p1 · ϵ3p1 · ϵ4 + 4ϵ2 · ϵ4p1 · ϵ3p2 · ϵ1 − 2ϵ2 · ϵ3p1 · ϵ4p2 · ϵ1 + 3ϵ1 · ϵ2p1 · ϵ4p2 · ϵ3

+ 4ϵ2 · ϵ4p2 · ϵ1p2 · ϵ3 − 4ϵ1 · ϵ4p1 · ϵ2(p1 · ϵ3 + p2 · ϵ3)− 3ϵ1 · ϵ2p1 · ϵ3p2 · ϵ4

− 2ϵ2 · ϵ3p2 · ϵ1p2 · ϵ4 − ϵ1 · ϵ2p2 · ϵ3p2 · ϵ4 + 4ϵ3 · ϵ4p1 · ϵ2p3 · ϵ1 − 4ϵ3 · ϵ4p2 · ϵ1p3 · ϵ2

+ 2ϵ1 · ϵ3p1 · ϵ2(p1 · ϵ4 + p2 · ϵ4 − p3 · ϵ4) + ϵ1 · ϵ2p1 · ϵ3p3 · ϵ4 + 2ϵ2 · ϵ3p2 · ϵ1p3 · ϵ4

− ϵ1 · ϵ2p2 · ϵ3p3 · ϵ4 + ϵ1 · ϵ4ϵ2 · ϵ3(m2 − s) + ϵ1 · ϵ3ϵ2 · ϵ4(−m2 + s) + ϵ1 · ϵ2ϵ3 · ϵ4t

− ϵ1 · ϵ2ϵ3 · ϵ4u), (2.34)

nt =
i

2
(ϵ1 · ϵ3p1 · ϵ2p1 · ϵ4 + 4ϵ2 · ϵ4p1 · ϵ3p2 · ϵ1 + ϵ1 · ϵ3p1 · ϵ2p2 · ϵ4 + 4ϵ3 · ϵ4p1 · ϵ2p3 · ϵ1

− 2ϵ2 · ϵ3p1 · ϵ4p3 · ϵ1 − 4ϵ2 · ϵ4p2 · ϵ3p3 · ϵ1 + 2ϵ2 · ϵ3p2 · ϵ4p3 · ϵ1 + 3ϵ1 · ϵ3p1 · ϵ4p3 · ϵ2

− ϵ1 · ϵ3p2 · ϵ4p3 · ϵ2 + 4ϵ3 · ϵ4p3 · ϵ1p3 · ϵ2 − 4ϵ1 · ϵ4p1 · ϵ3(p1 · ϵ2 + p3 · ϵ2)

− 3ϵ1 · ϵ3p1 · ϵ2p3 · ϵ4 − 2ϵ2 · ϵ3p3 · ϵ1p3 · ϵ4 − ϵ1 · ϵ3p3 · ϵ2p3 · ϵ4 + 2ϵ1 · ϵ2p1 · ϵ3(p1 · ϵ4

− p2 · ϵ4 + p3 · ϵ4) + ϵ1 · ϵ3ϵ2 · ϵ4s+ ϵ1 · ϵ4ϵ2 · ϵ3(m2 − t) + ϵ1 · ϵ2ϵ3 · ϵ4(−m2 + t)

− ϵ1 · ϵ3ϵ2 · ϵ4u), (2.35)

nu = − i
2
(4ϵ1 · ϵ4p1 · ϵ2p2 · ϵ3 − 4ϵ2 · ϵ4p2 · ϵ1p2 · ϵ3 − 4ϵ2 · ϵ4p2 · ϵ3p3 · ϵ1 + 4ϵ2 · ϵ3p2 · ϵ4p3 · ϵ1

− 4ϵ1 · ϵ4p1 · ϵ3p3 · ϵ2 + 4ϵ3 · ϵ4p2 · ϵ1p3 · ϵ2 + 4ϵ3 · ϵ4p3 · ϵ1p3 · ϵ2 − 4ϵ2 · ϵ3p2 · ϵ1p3 · ϵ4

+ 4ϵ1 · ϵ2p2 · ϵ3(p2 · ϵ4 + p3 · ϵ4)− 4ϵ1 · ϵ3p3 · ϵ2(p2 · ϵ4 + p3 · ϵ4) + ϵ1 · ϵ4ϵ2 · ϵ3s− ϵ1 · ϵ4ϵ2 · ϵ3t

+ ϵ1 · ϵ3ϵ2 · ϵ4(m2 − u) + ϵ1 · ϵ2ϵ3 · ϵ4(−m2 + u)),

(2.36)
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where the Mandelstam variables are defined as standard:

s = −(p1 + p2)
2, t = −(p1 + p3)

2, u = −(p1 + p4)
2, (2.37)

with all momenta incoming. These expressions for kinematic factors are very similar to those

obtained from massless Yang-Mills theory but there are two differences: the relation between

Mandelstam variables is now s + t + u = 4m2, rather than s + t + u = 0, and the locations of

the poles now are at s, t, u = m2. Because of that the terms coming from quartic Yang-Mills

vertex now have to be multiplied by s−m2, t−m2 and u−m2 in order to recast the amplitude

into the form (2.1).

In general, kinematic factors of a given scattering amplitude are not unique. They are not

invariant under field redefinitions. However in massless Yang-Mills theory for any choice of

kinematic factors of four-point amplitude, the colour-kinematics duality, cs + ct + cu = 0 →

ns+nt+nu = 0, is satisfied [99]. In our case of massive Yang-Mills theory, it is not immediately

clear whether this is still true. However, explicit calculation shows that our colour and kinematic

factors (directly calculated from usual Feynman rules) in (2.34),(2.35) and (2.36) still obey

ns + nt + nu ∝ p4 · ϵ4 = 0 and cs + ct + cu = 0. The fact that this still holds for the massive

theory can be understood by noticing that the only difference between massive and massless

kinematic factors is coming from the terms proportional to m2 in (2.34), (2.35) and (2.36) (in

fact we do not need to use the relation between s, t and u here). It is easy to see that these

six terms add to zero, therefore the value of ns + nt + nu is the same for massless and massive

theory and colour-kinematics duality for four-point amplitude still holds in the massive case.

We start with hh → hh amplitude which is calculated using (2.34), (2.35), (2.36), (2.15) and

(2.16). By comparing it with hh → hh amplitude calculated using dRGT massive gravity

action, MmGr
4 , we find the following:

M4 =MmGr
4 − i 3

16
κ2m4

(
ϵ1µνϵ

µν
2 ϵ3αβϵ

αβ
4

s−m2
+
ϵ1µνϵ

µν
3 ϵ2αβϵ

αβ
4

t−m2
+
ϵ1µνϵ

µν
4 ϵ3αβϵ

αβ
2

u−m2

)
, (2.38)
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with the free coefficients in the massive gravity action chosen to be κ3 = −1 and κ4 = 7
24

(c3 =
1
4
and d5 = − 7

192
using the parametrization of [75]). The second term on the right hand

side of (2.38) corresponds to a scalar exchange with three-point vertex given in (2.26).

Having fixed the spin-2 interactions, we then construct the scattering amplitudes for all other

2-2 scattering processes (for example hϕ→ AA) from the double copy prescription, and make

an ansatz for the action which gives these amplitudes. A couple of general features emerge.

We find that all 3 and 4 point amplitudes containing odd numbers of A are zero as one would

expect since A is a vector. Furthermore we find that none of the amplitudes scale with energy

more that E6 at high energies. Since all of them have κ2 = 4/M2
Pl in front (can be seen from

(2.15)), the lowest scale appearing in the resulting theory to this order is Λ3 = (MPlm
2)

1/3
, the

well-known highest possible scale for a Lorentz invariant theory of massive gravity.

As already stated, from (2.29) and (2.38) we see that the self interactions of h up to quartic

order in h can be described by dRGT massive gravity action. Anticipating that the n-point

scattering amplitudes are controlled by the scale Λ3 to all orders, it is natural to write the

interactions for all the fields in the dRGT form, taking particular care to choose combinations

which are natural from the point of view of the decoupling limit effective theory, namely those

that automatically lead to Λ3 interactions to all orders. This process is somewhat labourious,

and we quote only our final form for the action which is

S =

∫
d4x
√
−g

(
2

κ2
R[g] +

m2

κ2

4∑
n=2

κn Un [K]

− 1

2
∇µϕ∇µϕ− 1

2
m2ϕ2 − 1

4
FµνF

µν − 1

2
m2AµA

µ

−1

2
KµνFναF

α
µ +

1

8
Kµ

µFναF
να − 1

4
∇µϕ∇νϕ (Kµν − gµνKα

α)−
√
3

2

m2

κ
ϕ
(
KµνKµν −Kµ

µKν
ν

)
+

1

24
√
3

κ

m2
ϕ
(
[Φ]2 − [Φ2]

)
+
−3
8
√
3
κm2ϕ3 − κ√

3
m2AµAµϕ−

κ

16
√
3
F µνFµνϕ

+ quartic contact terms

)
,

(2.39)
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where gµν = ηµν + κhµν is the dynamical metric, fµν = ηµν is the reference metric, Kµ
ν =

δµν − (
√
g−1f)µν , Φµν = ∇µ∇νϕ and the crucial contact terms which fix the form of the 2-2

scattering amplitude are given in Appendix A. The indices are raised/lowered with g. The

self interactions of the scalar, ϕ, contain galileon interactions (the cubic term in (2.39) and

the quartic one in (A.1)), ϕ3 term and two additional two and four derivative contact terms

to this order. The action has been intentionally written in a manner which is diffeomorphism

invariant in terms of K. The reference metric η that breaks diffeomorphism invariances only

enters through K, and in this sense K is a ‘spurion’ field for the breaking of diffeomorphisms.

Since the S-matrix is invariant under field redefinitions, the cubic ϕ interactions are ambiguous

since we may for example use field redefinitions to trade the cubic Galileon term for a potential

ϕ3 and vice versa without changing the on-shell vertex. A similar story holds for the ϕK2 and

(∇ϕ)2K terms. However changing the off-shell structure in this way also changes the form of

the quartic interactions. Anticipating that the decoupling limit is a Galileon-like theory (which

is implicit in the Λ3 scale), we have intentionally chosen to put the cubic interactions in a form

for which the quartic interactions are also manifestly Galileon-like. In other words the desire

to have a Galileon-like decoupling limit theory gives us guidance in writing the nonlinear off-

shell structure of the theory that goes beyond what is immediately inferred from the on-shell

scattering amplitudes, even though the diffeomorphism symmetry is broken by the mass term.

That is the decoupling limit for the Stückelberg fields/Goldstone modes gives us an indication

of the best way to structure the interacting Lagrangian and this explains many of our choices

of interactions in (2.39) and Appendix A. Although we have not calculated beyond four-point

level, the implicit nonlinearly realized diffeomorphism symmetry present in the Stückelberg

formulation fixes a set of interactions at all orders as is familiar in effective theories with

broken symmetries.
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2.1.5 Λ3 Decoupling Limit

Having successfully constructed the interaction Lagrangian for the double copy effective theory,

at least to quartic order, it is useful to understand its decoupling limit. This will give us insight

into the interactions that arise beyond 2-2 scattering, and the overall structure of the effective

theory, but it will also allow us to understand better the connection between the massive

Yang-Mills decoupling limit and that for the double copy massive gravity theory. First of it

is instructive to understand what happens to the kinematic factors in the decoupling limit.

We will show that taking the decoupling limit and performing the double copy procedure

do not commute. The origin of this non-commutativity is that there are terms needed in

the kinematic factors to satisfy colour-kinematics duality that are singular in the decoupling

limit but nevertheless cancel out of the gauge theory amplitudes. However when we construct

the gravity amplitudes by squaring these kinematic factors, they no longer cancel and give

additional non-zero contributions that are finite in the decoupling limit. To be precise, the

kinematic factors which satisfy colour-kinematics duality ns + nt + nu = 0 take the form

ns =
s−m2

m3
Σ(s, t, u)+

1

m2
n̂s, nt =

t−m2

m3
Σ(s, t, u)+

1

m2
n̂t, nu =

u−m2

m3
Σ(s, t, u)+

1

m2
n̂u ,

(2.40)

where Σ(s, t, u) (triple crossing symmetric) and n̂i are finite as m → 0. Here Σ arises in a

manner similar to the generalized gauge transformations in the massless case, a fact which is

crucial to understanding why its contribution is finite. The explicit expressions for Σ and n̂i

are given in Eqs. (F.12), (F.13), (F.14) and (F.15). Since in the massive case s+ t+ u = 4m2

we have n̂s + n̂t + n̂u = −mΣ and so in the limit m → 0, n̂i by themselves satisfy colour-

kinematics duality. The 1/m3 behaviour in ni comes from helicity 0, 0, 0,±1 interactions since

the polarization tensor for a massive helicity-0 gluon scales as 1/m but that for helicity-1 is

finite as m→ 0. The term Σ cancels out of the gauge theory amplitudes

AmYM
4 = g2

(
csns

s−m2
+

ctnt

t−m2
+

cunu

u−m2

)
=

1

Λ2

(
csn̂s

s−m2
+

ctn̂t

t−m2
+

cun̂u

u−m2

)
, (2.41)
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by virtue of the colour relation cs + ct + cu = 0, demonstrating the natural decoupling limit

scaling.

By contrast, when we square to construct the gravity amplitudes, Σ survives as a contact term.

For instance the naive leading 1/m6 term enters in the gravity amplitudes in the combination

1

M2
Pl

(
nsn

′
s

s−m2
+

ntn
′
t

t−m2
+

nun
′
u

u−m2

)
∼ ΣΣ′

M2
Plm

6

(
(s−m2) + (t−m2) + (u−m2)

)
+. . . ∼ ΣΣ′

Λ6
3

+. . . ,

(2.42)

and hence it contributes at the Λ3 scale. Specifically this will show up as a non-zero spin-2,

helicity 0, 0, 0,±2 interaction. Similarly the naive 1/m5 term is suppressed by virtue of the

kinematic relation n̂s + n̂t + n̂u = −mΣ and we have in full as an exact statement

1

M2
Pl

(
nsn

′
s

s−m2
+

ntn
′
t

t−m2
+

nun
′
u

u−m2

)
=
−ΣΣ′

Λ6
3

+
1

Λ6
3

(
n̂sn̂

′
s

s−m2
+

n̂tn̂
′
t

t−m2
+

n̂un̂
′
u

u−m2

)
. (2.43)

Since Σ does not contribute to the gauge theory amplitudes, first taking the decoupling limit

of them (giving a non-linear sigma model) and performing the double copy procedure (giving a

special Galileon) will lead to a different result in which the ΣΣ′

Λ6
3
term is absent3. The kinematic

factors inferred from the decoupling limit n̂i(m = 0) will necessarily be finite in the decoupling

limit, and these do not correspond to the decoupling limit of the above kinematic factors (2.40)

which are singular. Indeed in the decoupling limit, the gauge theory kinematic factors come

purely from helicity-0 gluons by the Goldstone equivalence theorem. However, if we first double

copy and then take the decoupling limit then the helicity ±1 modes survive and we end up

with a different theory. The expressions of the amplitudes in the decoupling limit are given in

Appendix F.

Now we proceed to the the decoupling limit of the action of the double copy theory. We have

3It is of course technically true that if we only compute amplitudes in which the spin-1 helicity-1 polarizations
are set to zero, then Σ = Σ′ = 0 and we will recover the special Galileon amplitudes in the decoupling limit.
But this is an inconsistent procedure from the point of view of the gravity theory, and has no relation to the
massive gravity theory whose decoupling limit is a special Galileon. There may however exist an extension of
the recipe along the lines discussed in [100, 101, 46, 41] which allows for a consistent removal of additional
degrees of freedom.
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intentionally written the interacting Lagrangian (2.39) in as covariant form as possible, so that

the decoupling limit is easily derived. Following the standard recipe (see for example [77] for a

review), after denoting the reference metric from which Kµ
ν is constructed by

fµν = ∂µΦ
A∂νΦ

BηAB , (2.44)

we further decompose

ΦA = xA − 1

mMPl

V A − 1

Λ3
3

ηAB∂Bπ . (2.45)

so that we may identify V A as the helicity-1 and π as the helicity-0 modes of the spin-2 particle.

Further for the massive spin-1 state Aµ we replace it by

Aµ → Aµ +
1

m
∂µχ , (2.46)

where χ is the original Stückelberg scalar, the helicity-0 state of the spin-1. The normalizations,

which are standard, are chosen so that all the additional Stückelberg fields have a finite (and

non-zero) kinetic term in the decoupling limit. The metric may be denoted gµν = ηµν + κhµν .

Remembering that κ = 2/MPl, the decoupling limit is defined by m→ 0, κ→ 0 in such a way

that Λ3
3 = m2MPl is kept finite. The Lagrangian has been written in a judicious way to ensure

that no term diverges in this limit.

Crucially, we have

lim
m→0,Λ3fixed

Kµν =
Πµν

Λ3
3

:=
∂µ∂νπ

Λ3
3

, (2.47)

which explains the emergence of the Galileon symmetry for π in the decoupling limit, since Πµν

is invariant under π → π + c + vµx
µ, and our choice of K as the building block. Hence for all

terms in the Lagrangian for which the coefficients are finite in the Λ3 limit, it is sufficient to

replace Kµν by Πµν and the metric gµν by ηµν . The decoupling limit Lagrangian is found to be

(keeping track only of those terms which contribute to quartic order)

LDL =
1

2
hµνEhµν + hµνX

µν − 1

2
(∂µϕ)

2 − 1

2
(∂χ)2 + LA,V
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− 1

4Λ3
3

∂µϕ∂νϕ (Π
µν − ηµν [Π])−

√
3

4

1

Λ3
3

ϕ
(
ΠµνΠµν − Πµ

µΠ
ν
ν

)
+

1

12
√
3

1

Λ3
3

ϕ
(
[Φ]2 − [Φ2]

)
+

11

864

1

Λ6
3

ϕ
(
[Φ]3 − 3[Φ][Φ2] + 2[Φ3]

)
+

7

48Λ6
3

εµναβε
µ′ν′α′βΦµ

µ′ Π
ν
ν′Π

α
α′ϕ

+
11

8
√
3

1

Λ6
3

εµναβε
µ′ν′α′βΠµ

µ′Φ
ν
ν′Φ

α
α′ϕ−

11

24
√
3

1

Λ6
3

ϕ
(
[Π]3 − 3[Π][Π2] + 2[Π3]

)
, (2.48)

where all indices are raised and lowered with ηµν . We have separated out the spin-2 and spin-

1 helicity-1 contributions which even in the case of standard massive gravity is particularly

complicated [82], and they are schematically

LA,V = −1

4
FµνK

µναβFαβ −
1

4
FµνKµναβFαβ (2.49)

where Fµν = ∂µVν − ∂νVµ, Fµν = ∂µAν − ∂νAµ, and the kinetic term coefficients Kµναβ and

Kµναβ are tensors constructed from Πµν/Λ
3
3 and Φµν/Λ

3
3. Since Vµ and Aµ are not sourced, clas-

sically it is consistent to set them to zero. They would of course contribute in loop processes.

The tensor Xµν , which is characteristic of the massive gravity decoupling limit, needs to be

identically conserved to ensure that that hµν preserves spin-2 gauge invariance (linear diffeomor-

phisms) hµν → hµν + ∂µξν + ∂νξµ. This is the decoupling limit remnant of full diffeomorphism

invariance. Explicitly its form is

XaA = εabcdεABCD

[
1

2
δBb δ

C
c Π

D
d −

1

4Λ3
3

δBb Π
C
c Π

D
d +

1

24Λ6
3

ΠB
b Π

C
c Π

D
d +

1

24Λ6
3

ΦB
b Φ

C
c Π

D
d

− 1

72
√
3Λ6

3

ΦB
b Φ

C
c Φ

D
d −

1

8
√
3Λ6

3

ΦB
b Π

C
c Π

D
d

]
(2.50)

The tensor (2.50) is indeed identically conserved by virtue of the double ε structure. The full

decoupling limit action (2.48) is invariant under two separate Galileon symmetries π → π+vµx
µ,

ϕ → ϕ + uµx
µ and thus describes a bi-Galileon theory [102] coupled to a massless spin-2

field. Indeed it may be put in a more manifest bi-Galileon form by performing a ‘demixing’
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transformation that removes the mixed hπ and hππ terms, namely

hµν = h̃µν +
1

2
πδµν −

1

4Λ3
3

πΠµν . (2.51)

We may make use of the fact that up to total derivatives

1

2
hµνEhµν = −1

2
εabcdεABCDδ

A
a h

B
b ∂c∂

ChDd (2.52)

The resulting Lagrangian then takes the form

LDL =
1

2
h̃µνE h̃µν−

3

4
(∂π)2−1

2
(∂ϕ)2−1

2
(∂χ)2+Lint

bi-Galileon(ϕ, π)+
1

24Λ6
3

εabcdεABCDh̃
A
a Π̃

B
b Π̃

C
c Π̃

D
d +LA,V ,

(2.53)

where Π̃ab = ∂a∂bπ̃ and π̃ = π− 1√
3
ϕ. The term Lint

bi-Galileon contains standard cubic and quartic4

bi-Galileon interactions:

Lint
bi-Galileon = a0π(εεδ

2Π2) + ϕ
3∑

n=1

an(εεδ
2Φn−1Π3−n) + b0π(εεδΠ

3) + ϕ
4∑

n=1

bn(εεδΦ
n−1Π4−n) ,

(2.54)

where we have used the shorthand ϵϵXY ZW = εabcdεABCDX
A
a Y

B
b Z

C
c W

D
d and the coefficients

are given by (a0, a1, a2, a3) = (−1
8
,
√
3
8
,−1

8
, 1
24

√
3
) and (b0, b1, b2, b3, b4) = ( 5

96
,−25

√
3

144
, 1
6
, 197

√
3

432
, 11
864

).

The quartic interactions of the form h̃Π̃3 cannot be removed with a local field redefinition, as

is well known from the standard massive gravity case mentioned in the introduction. This is as

it should be since it is precisely these interactions that describe the nonzero helicity 0, 0, 0,±2

amplitudes that arise from the ΣΣ′ contact term in the decoupling limit, as described in equa-

tion (2.43) and implicit in the full answer (E.3) and explicit in (E.4). Indeed the combination

π̃ is exactly the combination which identifies the diagoanlized parts of π and ϕ that correspond

to the spin-1 helicity-0 polarization tensor squared ϵµ0ϵ
ν
0
5.

4Strictly speaking there are also quintic interactions, however since we have only fixed the Lagrangian by
reproducing the 2 − 2 scattering amplitude, we cannot take seriously the inferred coefficients of the quintic
interactions.

5To see this, note that at leading order in the decoupling limit Kµν ∼ 1
Λ3

3
∂µ∂νπ ∼ −

√
3/2 1

MPl
ϵλ=0
µν π. Since

in unitary gauge Kµν = 1
MPl

hµν +O(h2), the canonically normalizalized unitary gauge helicity-zero mode is in
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As noted in the introduction, since the decoupling limit of massive Yang-Mills is a nonlinear

sigma model and the double copy of the latter is the special Galileon, we might have expected

the massive gravity theory to be that corresponding to a special Galileon. Interestingly however,

this was never possible since the decoupling limit of dRGT massive gravity never gives rise to

a special Galileon. This is easily seen by the manner in which the Galileon interactions arise

from mixing with hµν . The decoupling limit of dRGT massive gravity for general κ3 and κ4 is

(ignoring helicity-1 contributions)

LDL = −1

2
εabcdεABCDδ

A
a h

B
b ∂c∂

ChDd + hµνX
µν , (2.55)

where

Xµν = εabcdεABCD

[
1

2
δBb δ

C
c Π

D
d +

1

4Λ3
3

(2 + 3κ3)δ
B
b Π

C
c Π

D
d +

1

4Λ6
3

(4κ4 + κ3)Π
B
b Π

C
c Π

D
d

]
. (2.56)

Since the special Galileon in four dimensions is a pure quartic Galileon, we need that after

performing the demixing

hµν = h̃µν +
1

2
πηµν +

1

4Λ3
3

(2 + 3κ3)πΠµν , (2.57)

there is no cubic Galileon term. This requires (2 + 3κ3) = 0 which does not correspond to the

value obtained from double copy. Even with this choice, we then have

LDL = −1

2
εabcdεABCDδ

A
a h̃

B
b ∂c∂

C h̃Dd +
1

8Λ6
3

εabcdεABCD(4κ4 + κ3)πδ
A
a Π

B
b Π

C
c Π

D
d

+
1

4Λ6
3

(4κ4 + κ3)ε
abcdεABCDh̃

A
aΠ

B
b Π

C
c Π

D
d , (2.58)

and so we only have a non-vanishing quartic Galileon term when there is also a non-zero hπππ

interaction which cannot itself be removed with a field redefinition since it contributes to the

±2, 0, 0, 0 scattering amplitude. Furthermore higher order n-point amplitudes will receive con-

effect −
√
3/2π, whence the combination arising in (E.5) is 2√

6
(−
√

3/2π + 1√
2
ϕ) = −π + 1√

3ϕ
= −π̃.
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tributions from intermediate graviton exchange which do not arise in the pure quartic Galileon

theory. Hence the special Galileon does not strictly speaking arise in standard massive gravity

in any form. Thus we see that taking decoupling limit and doing double copy do not commute,

since the double copy of decoupling limit of massive Yang-Mills gives special Galileon and the

decoupling limit of double copy theory gives a different Galileon-like theory.

2.1.6 5pt Amplitudes and Spurious Poles

In this section, we will analyze the 5-point amplitude which we will show has spurious poles.

We can write the 5-point amplitude as

A5 = g3
15∑
i=1

cini

si −m2
, (2.59)

where the 15 colour factors of the adjoint representation fields are:

c1 ≡ fa1a2bf ba3cf ca4a5 , c2 ≡ fa2a3bf ba4cf ca5a1 , c3 ≡ fa3a4bf ba5cf ca1a2 ,

c4 ≡ fa4a5bf ba1cf ca2a3 , c5 ≡ fa5a1bf ba2cf ca3a4 , c6 ≡ fa1a4bf ba3cf ca2a5 ,

c7 ≡ fa3a2bf ba5cf ca1a4 , c8 ≡ fa2a5bf ba1cf ca4a3 , c9 ≡ fa1a3bf ba4cf ca2a5 ,

c10 ≡ fa4a2bf ba5cf ca1a3 , c11 ≡ fa5a1bf ba3cf ca4a2 , c12 ≡ fa1a2bf ba4cf ca3a5 ,

c13 ≡ fa3a5bf ba1cf ca2a4 , c14 ≡ fa1a4bf ba2cf ca3a5 , c15 ≡ fa1a3bf ba2cf ca4a5 . (2.60)



2.1. Massive Yang-Mills and dRGT Massive Gravity 40

There are 9 independent Jacobi identities that can be written in the form Mc = 0, where

c = (c1, .., c15), and with the matrix M given by

M =



0 0 1 0 −1 0 0 1 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0 0 0 1 0 0 0

−1 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 −1 0 1 0 0 1 0 0 0 0 0 0 0 0

0 −1 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 −1 1 0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 −1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



, (2.61)

Meanwhile, the matrix of propagators, D, is given by

D =diag{D12D45, D15D23, D12D34, D23D45, D15D34, D14D25, D14D23, D25D34,

D13D25, D13D24, D15D24, D12D35, D24D35, D14D35, D13D45} ,
(2.62)

where Dij = −(pi+pj)2−m2 = sij−m2. Using momentum conservation we find that there are

only 5 independent Mandelstam invariants; here, we choose them to be s12, s13, s14, s23 and s24.

In order to find the shift of kinematic numerators, ∆n, we need to build and invert the 9 × 9

matrix A defined in (2.7). Explicit calculation of the determinant of A at 5-points gives:

det(A) = m8(
∏
i<j

Dij)P (skl,m) , (2.63)
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where P (skl,m) is a polynomial of the Mandelstam invariants and the mass, given as:

P (skl,m) = 320m8 + 36m6(9s12 + 4(s13 + s14 + s23 + s24))

+m4
(
117s212 + 108s12(s13 + s14 + s23 + s24) + 4 (s13(13s14 + 4s23 + 17s24)

+4s213 + 4s214 + 17s14s23 + 4s14s24 + 4s223 + 13s23s24 + 4s224
))

+ 2m2
(
9s312 + 13s212(s13 + s14 + s23 + s24) + s12 (s13(10s14 + 6s23 + 17s24)

+4s213 + 4s214 + s14(17s23 + 6s24) + 2(2s23 + s24)(s23 + 2s24)
)

+2
(
s213(s14 + 2s24) + s13

(
s214 + s14(s23 + s24) + s24(s23 + 2s24)

)
+s23

(
s24(s14 + s23) + 2s14(s14 + s23) + s224

)))
+ 2s24

(
s23
(
s212 + s12(s13 + s14)− s13s14

)
+ s12(s12 + s13)(s12 + s13 + s14)

)
+ (s12(s12 + s13 + s14) + s23(s12 + s14))

2 + s224(s12 + s13)
2 , (2.64)

with
∏

i<j Dij the product of all 10 physical poles. The complicated polynomial, P (skl,m),

cannot be expressed as a product of physical poles and it appears in the denominator of A−1

of double copy answer in (2.12), therefore it seems that by double copying a generic theory of

adjoint fields, all of the same mass gives an unphysical amplitude. Also, by explicit calcula-

tions we found the residue of this spurious pole being non-zero. Therefore, the relation between

massive Yang-Mills and massive gravity fails at higher points. One of the goals of the rest of

this thesis and ongoing work is to find a way around this issue with the spurious poles.

2.2 Kaluza-Klein Theories

In the previous section we saw that the double copy of a generic massive gauge theory introduces

spurious poles at 5pt and higher multiplicity amplitudes preventing an interpretation of the re-

sulting double copy as a local field theory. It is natural to ask if there are any massive gauge

theories avoiding this problem. This question was first analysed in [97] where certain conditions

on the mass spectrum of the theory were derived, that are necessary to avoid the spurious poles.
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These spectral conditions were derived by requiring the massive propagators to satisfy the same

algebraic relations as the massless ones, ensuring the rank of the massive KLT matrix (or A

matrix in (2.9) in our language) to be the same as in the massless case, where spurious poles

do not appear. However, massive Yang-Mills theory does not satisfy those conditions and it

remains unclear whether the spurious poles can be removed by adding new irrelevant operators

or new fields to the massive Yang-Mills action. For example, as suggested in [103] the spuri-

ous poles could signal a presence of a new massive state that has to be included in the spectrum.

On the other hand, there is at least one known theory of interacting massive spin-1 states

which satisfies these spectral conditions: Kaluza-Klein (KK) gauge theory. It is known that for

5 dimensional (5d) theories on 4d Minkowski ×S1 which are compatible with colour-kinematics

duality, the double copy procedure works after we compactify the theory to four dimensions

(4d). The condition for the absence of spurious poles in 4d is essentially automatically satisfied

by virtue of the kinematics and mass spectrum implied from 5d, together with the charge con-

servation inherited from 5d compactified translation invariance. Thus as an example, pure 5d

Yang-Mills compactified on an S1 automatically gives a 4d theory of interacting massive spin-1

states for which colour-kinematics duality is respected, and for which there is a known double

copy.

In this section we explore whether there are other consistent effective field theories for inter-

acting massive spin-1 states, which still respect colour-kinematics duality, for which there is a

possibility of developing a double-copy. Since the conditions necessary to remove the spurious

poles are highly non-trivial, and it is not straightforward to satisfy them, we will rather fix the

spectrum and charge assignments of our interacting effective field theory to be identical to that

of 5d Yang-Mills compactified on an S1. This allows us to avoid the automatic appearance of

spurious poles, and still gives us considerable freedom in choosing local interactions. In partic-

ular, we do not require that our 4d theory respects the full compactified 5d gauge invariance,

rather only that it preserves 4d gauge invariance, together with a global U(1) symmetry which

is the remnant of 5d translations. There are then a huge number of distinct operators which
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can be included in the EFT which are consistent with the symmetries and are unconstrained by

other low energy criteria.6 Our goal then is to explore this huge space of effective field theories

to establish whether there are other possible cases which admit colour-kinematics duality.

Remarkably we find that if we demand the naive extension of CK duality for massive states

proposed in [10, 97] to an array of scattering amplitudes with different external states, the huge

freedom in our EFT coupling constant space is reduced, and to the order we have calculated,

namely up to 5pt amplitudes and order 1/Λ4 in an EFT expansion, the unique solution which

allows for CK duality is the Kaluza-Klein compactification of the 5d theory

L5d =

(
−1
4
tr(F 2) +

G5d

Λ2
tr(F 3)− 9G2

5d

16Λ4
tr([F, F ]2)

)
+O(Λ−6) (2.65)

which in the uncompactified 5d limit is known to admit a double copy. In this sense, and

to the order we have calculated, we are in effect able to ‘derive’ Kaluza-Klein theory as the

only consistent EFT which admits colour-kinematics duality for a given spectrum of states and

charges. Whilst this result is very powerful, it is also disappointing in terms of limiting the

search for other examples of interacting massive theories which may admit a double copy.

Our results stop short of being a proof of the inevitability of Kaluza-Klein given our chosen

spectrum of states as we have not considered all possible EFT operators that arise up to the

calculated EFT order 1/Λ4, nor have we computed 6pt or higher amplitudes. At each order

a multitude of new contact terms can be included in the EFT expansion. Nevertheless, it be-

comes quite readily apparent that as the order of amplitude is increased, given the increasing

number of constraints required in order to satisfy colour-kinematics, it becomes increasingly

hard to find any remaining freedom beyond that from the compactification of the known CK

compliant higher derivative operators.

We begin this section with a review of the conditions necessary to remove spurious poles and

6We do expect these couplings to be constrained by other assumptions for example by positivity bounds on
the scattering of massive spin-1 states similar to those considered in [104, 105].
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a brief derivation of the BCJ relations for massive theories, with some mild assumption on

the exchanged particles. In section 2.2.2 we specify the large class of effective field theories

we consider and begin the process of putting constraints on the multiple different coupling

constants by demanding that the 4pt amplitudes respect the BCJ relations. Whilst this process

leaves some freedom, this remaining freedom is removed by considering BCJ relations for the

5pt function as we do in section 2.2.9. In section 2.2.16 we briefly consider some alternative

possible EFT operators.

2.2.1 Spectral conditions and massive BCJ relations

As described in section 2.0.1 in a generic theory, the matrix A in (2.12) will be invertible and

the inverse of A will have elements with poles at locations which are some complicated expres-

sions of masses in the theory giving spurious poles in the double copy amplitude. Specifically

the location of the spurious poles will be determined by detA = 0 and since detA is in general

a complicated function of kinematic invariants and masses, the poles will typically be uncor-

related with those demanded by locality and unitarity. Hence while it is possible to construct

kinematic factors which respect CK duality, the resulting gravitational theory defined by (2.15)

cannot be interpreted as a local field theory. This is for example the situation that arises for

the proposed double copy of massive Yang-Mills as discussed in the previous section.

One way of ‘solving’ this problem would be look what happens in the massless case in which

double copy does not give unphysical poles. Setting the mass to zero in (2.62) and calculating

A (which is the 9 × 9 non-zero block of MDMT ) reveals that A is singular, i.e. has rank 5

instead of 9 as in the massive case. Now, as mentioned in 2.0.1 the CK duality can only be

satisfied if the vector U is in the subspace orthogonal to null vectors of A and then A can be

inverted in this subspace:

U · null(A) = 0 (2.66)

Since there are 4 null vectors we have 4 conditions that components of U have to satisfy. These
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components are linear in kinematic numerators and can also be expressed in terms of partial

amplitudes, in terms of which these relations are known as the BCJ relations [2]. These relations

are satisfied for Yang-Mills so to satisfy CK we need to invert A in 5 dimensional subspace in

which the expression of A−1 is much simpler and only contains physical poles. This mechanism

of spurious pole cancellations is similar at higher points.

Now returning to the massive case, if we restrict to massive theories where only one mass is

exchanged mass per channel and all the fields are in the adjoint representation, we see that we

can copy this spurious poles cancelling mechanism from the massless case to the massive one by

carefully choosing the spectrum of the theory. In particular the spurious poles are guaranteed

to cancel if the components of D satisfy the same algebraic relations as in the massless case

and massive analogs of BCJ relations are satisfied. Then the rank of A will be the same as in

massless case and the expression for A−1 in the subspace orthogonal to null vectors will have a

similar form without spurious poles. This idea was first proposed in [97] where the requirement

for D to satisfy the same relations as in massless case was called spectral conditions. The

analysis there was done in KLT language which is equivalent to our analysis in BCJ language

[11].

We illustrate these spectral conditions in the simplest case of 4pt amplitude (even though as

showed in 2.0.1 there are no spurious poles in the case of single mass at 4pt). In 4pt pure

Yang-Mills amplitude we have one Jacobi identity, cs+ ct+ cu = 0 (so M has only one non-zero

row, {1, 1, 1}) and D = diag{s, t, u} which obeys TrD = s+ t+ u = 0. A is then 1× 1 matrix

A equal to TrD = 0 so its rank is zero. Now if we have a massive gauge theory and we scatter

m1,m2,m3,m4 with D = diag{s −m2
12, t −m2

13, u −m2
14}, imposing the same condition as in

the massless case A = TrD = 0, we get

s+ t+ u−m2
12 −m2

13 −m2
14 = m2

1 +m2
2 +m2

3 +m2
4 −m2

12 −m2
13 −m2

14 = 0, (2.67)

which is the 4pt spectral condition of [97]. Since A has one null one-component vector, (2.66)

gives

ns + nt + nu = 0, (2.68)
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which is just the Jacobi identity for kinematic factors. However, now this is a constraint on n’s

since the value of this equation cannot be shifted by shifting n’s (since the matrix A is zero)

so for example the n’s directly calculated from Feynman diagrams must satisfy CK straight

away. There is a BCFW recursion proof of BCJ relations [106, 107, 108] so in theories for which

BCFW recursion works, like pure YM, the lower point BCJ relations (and spectral conditions)

imply the higher point ones. As mentioned before just from 4pt considerations alone, it is not

necessary to impose (2.67), since no spurious poles appear in the 4pt amplitude.

At five points for a gauge theory with all of the fields in the adjoint representation of the gauge

group the colour factors are given in (2.60) and the matrixM of 9 independent Jacobi identities

given by (2.61). Again we assume that there is a single mass exchange for each colour factor

but now the masses in the D matrix (2.62) are different Dij = −(pi+pj)2−m2
ij = sij−m2

ij. To

impose the spectral conditions we required the 9× 9 block matrix in (2.7), A, to be of rank 5,

such that there are 4 BCJ relations between the n’s just like in the massless case. By imposing

the five 5pt spectral conditions of [97]

m2
15 = 2m2

1 −m2
12 −m2

13 −m2
14 +m2

2 +m2
3 +m2

4 +m2
5

m2
25 = m2

1 −m2
12 + 2m2

2 −m2
23 −m2

24 +m2
3 +m2

4 +m2
5

m2
34 = 2m2

1 −m2
12 −m2

13 −m2
14 + 2m2

2 −m2
23 −m2

24 + 2m2
3 + 2m2

4 +m2
5

m2
35 = −m2

1 +m2
12 +m2

14 −m2
2 +m2

24 −m2
4

m2
45 = −m2

1 +m2
12 +m2

13 −m2
2 +m2

23 −m2
3 , (2.69)

one can check that the matrix A, which is given explicitly in Appendix G, has rank 5 as in

the massless case. The conditions (2.69) can also be derived by demanding that that 4pt

spectral condition is satisfied on every 4-point amplitude that appears in factorization channels

for internal propagators going on-shell as shown in Fig. 2.8. Since A has rank 5 it has four

null-eigenvectors given in (G.2). Now to satisfy CK we need the kinematic factors to satisfy

the 5pt BCJ relations. Usually they are written in terms of partial amplitudes (for example in
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[97]) but we write them in terms of kinematic factors:

D2
12(−(D15D34n4 +D23D45n5 +D34D45n2)) +D12(D15(D23(D14n8 +D34(−n1 + n13 + n6)

−D45n3)−D24D34n4 +D25D34n7) +D23(D14D25n5 −D24n5(D35 +D45)

+D34D35n11) +D34n2(D14D25 −D24D45))−D15D23D24(D34(n1 − n12) + n3(D35 +D45))

= 0,

(2.70)

D14(D15D34(D12n4 −D25n7)−D23(−D12D45n5 +D24D25n5 +D34D35n11) +D12D34D45n2

+D15D23(−D24n8 +D34(n1 − n13 − n6) +D45n3)−D24D34n2(D25 +D35))

+D2
14(−(D15D23n8 +D23D25n5 +D25D34n2)) +D15D24D34(D23(n14 − n6)− n7(D25 +D35))

= 0,

(2.71)

−D15(D12D34n4(D24 +D45) +D13D24D34n4 +D23D45(−D14n8 +D34(n1 + n10 − n6) +D45n3)

+D23D24(D34(n1 − n15) +D45n3)−D25D34D45n7)−D45((D23n5 +D34n2)(D12(D24 +D45)

−D14D25) +D13D34(D23n11 +D24n2)) = 0,

(2.72)

D15(D12D25D34n4 −D23D24(n8(D13 +D14) +D34(n6 − n9)) +D23D25(−D14n8

+D34(n1 + n10 − n6) +D45n3)−D25D34n7(D24 +D25))−D25((D23n5 +D34n2)

(D14(D24 +D25)−D12D45) +D13D23(D24n5 −D34n11)) = 0.

(2.73)

Of course, these are the same BCJ relations as in the massless case, with the replacement

sij → Dij in [2]. In other words this mechanism of spurious pole cancellation in massive dou-

ble copy is just considering massive theories in which all algebraic relations between partial
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amplitudes and propagators are the same as in massless theories, compatible with the colour-

kinematics duality. It is straightforward to generalize this procedure to n-pt amplitudes by

requiring the rank of A to be reduced by the number of BCJ relations at that order. The key

idea of having a local double copy is to require the reduced rank matrix to admit an inverse

without spurious poles.

Now having established the spectral conditions the questions is what theories satisfy it? As

mentioned before one known class of examples is Kaluza-Klein theories obtained by compat-

ifying 5d massless theories obeying the CK. This is because the massive propagators in the

Kaluza-Klein theory, Dij, satisfy the same algebraic relations as the massless propagator in

5d since dimensional reduction is just a rewriting a theory in terms of different variables. If

the 5d kinematic factors satisfy the massless BCJ relations, then the kinematic factors of the

compactified theory should obey massive BCJ relations as well.

Furthermore the spectral conditions (2.67) and (2.69) follow automatically from 5d momentum

conservation which in 4d terms can be interpreted as charge conservation for a global U(1)

charge. It remains unclear whether there are other nontrivial solutions of these spectral condi-

tions other than that given by Kaluza-Klein theories. Given this, in what follows we shall follow

the opposite approach. We shall construct effective theories with the same spectrum and global

U(1) charge conservation properties as Kaluza-Klein, so that the spectral conditions (2.67) and

(2.69) are automatically satisfied. We then ask what freedom there exists in the form of their

interactions, which will necessarily alter the kinematic factors ni, such that they still satisfy

the BCJ relations (2.70)–(2.73). According to our procedure, as long as the latter are satisfied,

it is possible to solve for v, hence for ∆n, and hence determine new local kinematic factors

n+∆n which do respect CK duality, from which a double copy theory may be constructed as

described in section 2.0.1.

2.2.2 KK inspired action

We consider a 4d effective field theory of interacting massless scalar and massive and mass-

less vectors fields with the same spectrum as Kaluza-Klein theory. In particular, the massive
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states will be charged under a global U(1) symmetry, the remnant of 5d translation symmetry,

and the mass will be proportional to the charge, with the infinite spectrum of charges integer

spaced. The massive vectors will further transform in the adjoint representation of some gauge

group G. We shall express the action for the massive states in 4d unitary gauge7, i.e. we

will not introduce any Stückelberg fields which arise naturally from compactification from the

higher dimensional gauge symmetry [109], meaning that the quadratic part of the action for

the massive states is a complex gauged Proca theory. The remaining 4d gauge symmetry, the

gauge freedom of the 4d massless gluon, is however made manifest.

In the EFT context, there is still a huge freedom in the choice of interactions between the

states, even given the assumed 4d gauge symmetry and global U(1) symmetry. In order to make

calculational progress we will restrict to what remains a very large set of possible interactions.

This set is chosen by the requirement that all the terms in the 4d action do indeed arise from

compactification of 5d pure Yang-Mills together with the following additional operators:

1

Λ2
tr(F 3) (2.74)

and

−9
16Λ4

tr([Fµν , Fαβ][F
µν , Fαβ]). (2.75)

We chose these higher order operators because it was shown in [110] that they are compatible

with colour-kinematics duality. These particular operators are among those appearing in the

low energy EFT of open bosonic and super string theory at O(α′2). However both of these

EFTs also contain some operators that are are incompatible with CK duality which is based on

cubic graphs with colour factors made of structure constants. For example the colour factor of

tr(F µ
ν F

ν
ρ F

ρF σ
µ ) is tr(T

aT bT cT d), which contains the totally symmetric colour structure, dabcd,

that cannot be expressed purely in terms of antisymmetric structure constants, fabc. However,

7This is unitary gauge for the gauge symmetries which are broken by the mass for the spin-1 states and has
nothing to do with the unbroken 4d gauge symmetry G. In other words, if we did not choose any gauge in 5d
theory, reducing it to 4d would give Stückelberg fields such that the 4d action would have a non-linearly realised
full 5d gauge symmetry. By choosing unitary gauge we set all of Stückelberg fields to zero.
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coefficient Interactions coefficient Interactions

LAAA gijk DAAA LF 4

AAAA1 cijkl (DA)4

LAAϕ g′ijs AAϕ LF 4

AAAA2 Cijkl m2(DA)2A2

LAAAA gijkl AAAA LF 4

AAAϕ1 cijks m(DA)2Aϕ

LAAϕϕ gijss AAϕϕ LF 4

AAAϕ2 Cijks m3A3Dϕ

LAAA0 gi AAF 0 LF 4

AAϕϕ1 cijss (DA)2(Dϕ)2

LF 3

AAA0 Gi DADAF 0 LF 4

AAϕϕ2 c
(2)
ijss (mA)2(Dϕ)2

LF 3

AAA1 Gijk (DA)3 LF 4

AAϕϕ3 c
(3)
ijss (mA)2(Dϕ)2

LF 3

AAA2 Ĝijk mimjDAAA LF 4

AAϕϕ3 c
(3)
ijss (mA)2(Dϕ)2

LF 3

AAϕ G′
ijs ADϕDA LF 4

ϕϕϕϕ cϕ4 (Dϕ)4

LF 3

Aϕϕ G0ss DϕDϕF 0 LF 4

AAAAA1 cijklm (DA)3A2

LF 3

AAAA1 Gijkl DADAAA LF 4

AAAAA2 Cijklm m2(A)4DA

LF 3

AAAA2 Ĝijkl mimjAAAA LF 4

ϕAAAA1 cijkls m(A)3DADϕ

LF 3

AAϕϕ1 Gijss AADϕDϕ LF 4

ϕAAAA2 Cijklm m(DA)2(A)2ϕ

LF 3

AAϕϕ2 Ĝijss AϕDADϕ LF 4

ϕAAAA3 Ĉijkls (m)3(A)4ϕ

LF 3

AAAϕ1 Ĝijks mAAADϕ LF 4

ϕϕAAA1 cijkss DA(A)2(Dϕ)2

LF 3

AAAϕ2 Gijks mAADAϕ LF 4

ϕϕAAA2 Cijkss A(DA)2(Dϕ)2

LF 3

AAAAA Gijklm DAAAAA LF 4

ϕϕAAA3 Ĉ
(3)
ijkss m2(A)3Dϕϕ

LF 3

ϕAAAA Gijkls mAϕAAA LF 4

ϕϕAAA4 Ĉ
(4)
ijkss m2(A)3Dϕϕ

LF 3

ϕϕAAA1 Gijkss DϕϕAAA LF 4

ϕϕAAA5 Ĉ
(5)
ijkss m2(A)3Dϕϕ

LF 3

ϕϕAAA2 Ĝijkss DAϕAϕA LF 4

ϕϕϕAA1 cijsss mA2DϕDϕϕ

LF 4

ϕϕϕAA2 c
(2)
ijsss mA2(Dϕ)2ϕ LF 4

ϕϕϕAA3 c
(3)
ijsss mA2(Dϕ)2ϕ

Table 2.1: Coefficients of the interactions.

to cancel such colour structures it is possible to take a certain linear combination of open

bosonic (bs) and superstring (ss) amplitudes at the order O(α′2), Aα′2

bs − Aα′2
ss [110]. This

particular combination is the one corresponding to the operators in (2.74) and (2.75). Since

KLT relations are linear in amplitudes the linear combination of two amplitudes is guaranteed

to satisfy them, so the reason why these particular operators satisfy CK can be understood as

a low energy limit of KLT relations between a linear combination of the ampltitudes in two

theories satisfying them, that cancels the colour structures which are not made of fabc.

Crucially though we allow each of the coefficients of the various invariant terms in the action

to be arbitrary, and in principle to be different for different interacting massive states. In doing

so, the 4d action loses any further remnant information of the underlying 5d gauge symmetry.

Thus while KK theory lies as a special point in our chosen class of EFTs, the class as a whole

is still huge.
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Specifically then, we have an action with an uncharged massless scalar field ϕ and multiple

charged massive vector fields Ai transforming as matter fields in adjoint representation of some

non-Abelian group G for which A0 is the gauge connection. To order 1/Λ4 the Lagrangian is

given as:

L = LF 2

+ LF 3

+ LF 4

, (2.76)

where LF 2
, LF 3

and LF 4
contain the operators appearing in the compactification of tr(F 2),

tr(F 3) and tr([Fµν , Fαβ][F
µν , Fαβ]) respectively that contribute to up to 5pt amplitudes. They

are as follows:

LF 2

= tr
(
−1

2
DµϕD

µϕ− 1
4
F 0
µνF

0µν − 1
2

∑
i∈Z̸=0

1
2
|DµA

i
ν −DνA

i
µ|2−2giAiµA−iνF 0

µν +m2
i |Ai

µ|2
)

+LAAA + LAAϕ + LAAϕϕ + LAAAA , (2.77)

LF 3

=
1

Λ2
tr

GF 0
µνF

0νρF 0µ
ρ +

∑
i∈Z̸=0

(
3GiDµA

iνDνA
−iρF µ

0ρ

)
+LF 3

AAA1 + LF 3

AAA2 + LF 3

AAϕ + LF 3

Aϕϕ + LF 3

AAAA1 + LF 3

AAAA2 + LF 3

AAϕϕ1 + LF 3

AAϕϕ2 + LF 3

AAAϕ1

+LF 3

AAAϕ2 + LF 3

AAAAA + LF 3

ϕAAAA + LF 3

ϕϕAAA1 + LF 3

ϕϕAAA2 , (2.78)

LF 4

= LF 4

AAAA1 + LF 4

AAAA2 + LF 4

AAAϕ1 + LF 4

AAAϕ2 + LF 4

AAϕϕ1 + LF 4

AAϕϕ2 + LF 4

AAϕϕ3 + LF 4

ϕϕϕϕ

+LF 4

AAAAA1 + LF 4

AAAAA2 + LF 4

ϕAAAA1 + LF 4

ϕAAAA2 + LF 4

ϕAAAA3 + LF 4

ϕϕAAA1 + LF 4

ϕϕAAA2

+LF 4

ϕϕAAA3 + LF 4

ϕϕϕAA1 + LF 4

ϕϕϕAA2, (2.79)

where,

Dµ = ∂µ + igA0
µ , F 0a

µν = ∂µA
0a
ν − ∂νA0a

µ +
g√
2
fabcA0b

µ A
0c
ν , (2.80)

and schematically, the interacting terms with the relevant coefficients are in table 2.1. The

exact terms are given in the Appendix G.1.

We write couplings only of distinct operators coming from the compactification of the 5d Yang-
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Mills. The couplings of identical operators coming from different 5d terms are combined. For

example, we get the interactions of the form

fabef cde
∑

i,j,k,l∈Z̸=0

(
Aia

[µA
jb
ν]A

kc[µAldν]
)
, (2.81)

from the compactification of LF 2
as well as LF 4

, which has 1
Λ4 . We combine the couplings into

a single one, gijkl. Hence, the coupling gijkl is dependent on the scale Λ. Note that in KK

theory gijkl = g2 + 18m1m2m3m4

Λ4 G2.

Demanding the global U(1) symmetry imposes charge conservation at each vertex as in KK

theory
n∑

I=1

miI = 0 (2.82)

for every non-zero couplings where I = 1, ..., n labels the legs of the vertex. Note that mi is

really labelling the charge of Aiµ so we allow negative valuesm−i = −mi with the understanding

that the mass is |mi|. The condition (2.82) ensures that the spectral conditions are satisfied

[97]. Since we have considered the EFT expansion of the action only up to 1/Λ4 order, it is

only consistent to calculate scattering amplitudes up to this order, which is precisely what we

will do in Section 2.2.3 and Section 2.2.9 for the 4pt and 5pt functions respectively.

2.2.3 4-point amplitudes

In this section we constrain the couplings of the Lagrangian by calculating 2-2 scattering am-

plitudes up to 1/Λ4 in the EFT expansion (for self consistency since we only add irrelevant

operators up to 1/Λ4 in our action) and requiring the numerators to satisfy the 4pt colour-

kinematic duality, ns + nt + nu = 0. We consider the scattering processes where the couplings

are not fixed by 4d gauge invariance, for example, we do not consider A0A0 → A0A0.
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Figure 2.1: Feynman diagrams for the ϕϕ→ ϕϕ process. Note that the bold curly line represents
a gluon and mij = 0.

2.2.4 ϕϕ→ ϕϕ

As the simplest example, let us first consider all the external states to be the massless scalars.

By charge conservation, any exchanged state must be massless, and the only possibility for our

chosen theory is the massless gluon. The Feynman diagrams for this process are in Fig. 2.1 and

the four point amplitude is found to be:

iAϕϕϕϕ =
i

2Λ4st(s+ t)

(
cust(s− t)(− 18cϕ4(s+ t)2 + 3G0ss(s+ t)

(√
2gΛ2 + 6G0ss(s+ t)

)
+gΛ2

(
gΛ2 + 3

√
2G0ss(s+ t)

)
)− (s+ t)

(
cst(s+ 2t)(− 18cϕ4s

2 + g2Λ4 − 6
√
2gG0ssΛ

2s

+18G2
0sss

2)− cts(2s+ t)
(
−18cϕ4t2 + g2Λ4 − 6

√
2gG0ssΛ

2t+ 18G2
0sst

2
)))

(2.83)

The BCJ relation gives the following condition

−i (cϕ4 −G
2
0ss) (3s

2t+ 2s3 − 3st2 − 2t3)

Λ4
= 0,

which is satisfied if

cϕ4 = G2
0ss. (2.84)

This simple example already illustrates the power of demanding CK duality. From a low energy

EFT point of view, there is no reason for the Wilson coefficient for the quartic (Dϕ)4 operator

to be associated with that for the cubic DϕDϕF 0 operator. Demanding CK duality enforces

the relation ‘quartic coupling= cubic coupling squared’. Note that in this particular amplitude,

no massive states are involved. We shall find that this general idea translates into constraints



2.2. Kaluza-Klein Theories 54

Figure 2.2: Feynman diagrams of the AA → AA process for the general case. The curly lines
represents massive spin-1 fields.

on nearly all the quartic operators from demanding CK duality. In the remainder, we will

not include the explicit expression for the scattering amplitudes and BCJ relations as they

are overly complicated, but shall give only the implied conclusion for the constraints on the

coupling constants.

2.2.5 General condition

We first calculate the 2-2 scattering amplitude of spin-1 fields with massesmI , with I = 1, 2, 3, 4

labelling the amplitude legs, such that
∑4

I=1miI = 0, but for which charge conservation forbids

the exchange of massless states. To avoid cumbersome notation we shall replace the charge

label i for the massive state with the leg label I so that miI is denoted mI . Similarly a coupling

GiI iJ is replaced with GIJ . Furthermore, for cubic interactions between 3 charged states, for

which the charge of the 3rd state is fixed by charge conservation, we shall drop the 3rd label.

So for example Gi1i2i3 for which m3 = −m1 −m2 may be written in short hand as G12. The

interacting terms LAAA, LAAAA and LAAϕ lead to the following amplitude (see Fig. 2.2):

iA4 ∝
(
V AAA
g12

+ V AAA1
G12

+ V AAA2
Ĝ12

) i

s−m2
12

(
V AAA
g34

+ V AAA1
G34

+ V AAA2
Ĝ34

)
+
(
V AAA
g13

+ V AAA1
G13

+ V AAA2
Ĝ13

) i

t−m2
13

(
V AAA
g24

+ V AAA1
G24

+ V AAA2
Ĝ24

)
+
(
V AAA
g14

+ V AAA1
G14

+ V AAA2
Ĝ14

) i

u−m2
14

(
V AAA
g23

+ V AAA1
G23

+ V AAA2
Ĝ23

)
+
(
V AAAA
g1234

+ V AAAA1
G1234

+ V AAAA2
Ĝ1234

+ V AAAA1
c1234

+ V AAAA2
C1234

)
,

(2.85)
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where V
ABC(D)
gijk(l) represents the three or four point vertex with the relevant coupling, gijk(l) or

Gijk(l). The coupling gij is a simplified notation for gijk with mI + mJ + mK = 0. Here we

assume that the couplings are symmetric in all of their indices, for example gjik = gjik = gkji

so that the AiAjAk vertex without 1/Λ2n corrections has the same structure as the pure Yang-

Mills three point vertex. Later we will explore what happens if we do not assume that. By

finding the numerators of (2.85) and imposing the colour-kinematic duality, ns + nt + nu = 0,

we find the following constraints on the couplings:

g1234 −
18m1m2m3m4

Λ4
c1234 = g12g34 = g13g24 = g14g23 =

G2
1234

c1234
,

G1234 = G12g34 = G13g24 = G14g23 = g12G34 = g13G24 = g14G23,

Gij = Ĝij, G1234 = Ĝ1234, c1234 = C1234,

c1234 = G12G34 = G13G24 = G14G23 .

(2.86)

As mentioned in section 2.2.2, g1234 can be scale dependent as it is the combination of two

terms coming from the compactification of LF 2
and LF 4

. Therefore the coefficient of 1/Λ4 in

the equation above, c1234, does not have to be zero.

2.2.6 mI +mJ = 0

Further focusing on the case of 2-2 scattering amplitude of spin-1 fields with masses mI , I =

1, 2, 3, 4, such that mI +mJ = 0 means that the exchange diagrams can now be mediated by

the massless states, A0 and ϕ. First we consider the case where two pairs of masses add up to

zero then the second case where four pairs of masses add up to zero.

First case: Without loss of generality, we consider m1+m2 = 0, which implies m3+m4 = 0.

Moreover, we assume that none of the masses are individually zero. These conditions lead to

an exchange of gluon and scalar in the s-channel and exchange of massive spin-1 field in the

t-channel and the u-channel. Hence, from the interacting terms LAAA, LAAAA and LAAϕ we get

the following amplitude (see Fig. 2.3): :
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Figure 2.3: Feynman diagrams of the AA→ AA process for the first case of mI +mJ = 0, i.e.
m1 +m2 = 0 and m3 +m4 = 0. The bold curly line represents a gluon, where m12 = 0 and the
straight line a scalar field. The last diagram, where we have a scalar exchange in the t-channel
contributes to the second case of mI +mJ = 0 where m1 = −m2 = m3 = −m4.

iA4 ∝
(
V AAA0
g + V AAA0

gi
+ V AAA0

Gi
+ V AAA0

Ĝi

) i
s

(
V AAA0
g + V AAA0

gi
+ V AAA0

Gi
+ V AAA0

Ĝi

)
+
(
V AAϕ
g′12s

+ V AAϕ
G′

12s

) i
s

(
V AAϕ
g′34s

+ V AAϕ
G′

34s

)
+
(
V AAA
g13

+ V AAA1
G13

+ V AAA2
Ĝ13

) i

t−m2
13

(
V AAA
g−1−3

+ V AAA1
G−1−3

+ V AAA2
Ĝ−1−3

)
+
(
V AAA
g1−3

+ V AAA1
G1−3

+ V AAA2
Ĝ1−3

) i

u−m2
14

(
V AAA
g−13

+ V AAA1
G−13

+ V AAA2
Ĝ−13

)
+
(
V AAAA
g1−13−3

+ V AAAA1
G1−13−3

+ V AAAA2
Ĝ1−13−3

+ V AAAA1
c1−13−3

+ V AAAA2
C1−13−3

)
.

(2.87)

By finding the numerators of (2.87) and imposing the colour-kinematic duality, ns+nt+nu = 0,

we find the following constraints on the couplings:

g1−13−3 −
18m2

1m
2
3

Λ4
c1−13−3 = g2 = g13g−1−3 = g1−3g−13,

Gij = Ĝij, gi = g −Gi
3
√
2m2

i

Λ2
, g′1−1sg

′
3−3s = g2m1m3,

Ĝ1−13−3 = G1−13−3 = G3g = G1g = G13g−1−3 = g13G−1−3 = G1−3g−13 = g1−3G−13 =
g′1−1sG

′
3−3s

m1m3

,

c1−13−3 = C1−13−3 = G1G3 = G1−3G−13 = G13G−1−3.

(2.88)
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Figure 2.4: Feynman diagrams of the AA→ ϕϕ process for mI +mJ = 0 case. The bold curly
line represents a gluon, where m12 = 0 and the straight line a scalar field.

When m4 = m3 = 0 we find that

Gi = G, c1−100 = C1−100 = G2 . (2.89)

Second case: Now we consider four pairs of masses to be zero, for example, m1 + m2 =

m1 + m3 = m3 + m4 = m2 + m4 = 0 and m1 ̸= 0. These conditions lead to an exchange of

gluon and scalar in the s and t channels and exchange of massive spin-1 field in the u-channel.

Hence, from the interacting terms LAAA, LAAAA and LAAϕ we get the following amplitude (see

Fig. 2.3):

iA4 ∝
(
V AAA0
g + V AAA0

gi
+ V AAA0

Gi

) i
s

(
V AAA0
g + V AAA0

gi
+ V AAA0

Gi

)
+
(
V AAϕ
g′1−1s

+ V AAϕ
G′

1−1s

) i
s

(
V AAϕ
g′−11s

+ V AAϕ
G′

−11s

)
+
(
V AAA
g1−1

+ V AAA1
G1−1

+ V AAA2
Ĝ1−1

) i
t

(
V AAA
g−11

+ V AAA1
G−11

+ V AAA2
Ĝ−11

)
+
(
V AAϕ
g′1−1s

+ V AAϕ
G′

1−1s

) i
t

(
V AAϕ
g′−11s

+ V AAϕ
G′

−11s

)
+
(
V AAA
g11

+ V AAA1
G11

+ V AAA2
Ĝ11

) i

u−m2
11

(
V AAA
g−1−1

+ V AAA1
G−1−1

+ V AAA2
Ĝ−1−1

)
+
(
V AAAA
g1−1−11

+ V AAAA1
G1−1−11

+ V AAAA2
Ĝ1−1−11

+ V AAAA1
c1−1−11

+ V AAAA2
C1−1−11

)
.

(2.90)
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By finding the numerators of (2.90) and imposing the colour-kinematic duality, ns+nt+nu = 0,

we find the following constraints on the couplings 8:

g1−1−11 −
18m4

1

Λ4
c1−1−11 = g2 = g11g−1−1, gi = g −Gi

3
√
2m2

i

Λ2
, g′1−1sg

′
−11s = g2m2

1,

Ĝ1−1−11 = G1−1−11 = G−1g = G1g = G11g−1−1 = g11G−1−1 =
g′1−1sG

′
−11s

m2
1

,

c1−1−11 = C1−1−11 = G1G−1 = G1−1G−1−1.

(2.91)

2.2.7 AA→ ϕϕ

Now we consider the case where m3 = m4 = 0 and we calculate the AA → ϕϕ amplitude. A

gluon is exchanged in the s-channel and a massive spin-1 field in the t and u-channel. From

the terms LAAA, LAAϕϕ, LAAϕ and LϕϕA we have (see Fig. 2.4):

iA4 ∝
(
V AAA0
g + V AAA0

gi
+ V AAA0

Gi

) i
s

(
V A0ϕϕ
g + V A0ϕϕ

G0ss

)
+
(
V AAϕ
g′1−1s

+ V AAϕ
G′

1−1s

) i

t−m2
1

(
V AAϕ
g′1−1s

+ V AAϕ
G′

1−1s

)
+
(
V AAϕ
g′1−1s

+ V AAϕ
G′

1−1s

) i

u−m2
1

(
V AAϕ
g′1−1s

+ V AAϕ
G′

1−1s

)
+

(
V AAϕϕ
g1−100

+ V AAϕϕ1
G1−1ss

+ V AAϕϕ2

Ĝ1−1ss
+ V AAϕϕ1

c1−1ss
+ V AAϕϕ2

c
(2)
1−1ss

+ V AAϕϕ3

c
(3)
1−1ss

)
.

(2.92)

Colour-kinematics duality puts the following constraints on the couplings:

gi−iss = g2, Gi =
2g′2i−is −m2

1g(g + gi)

3
√
2gm2

1

Λ2

m2
1

, ci−iss = G0ssGi, c
(2)
i−iss =

G
′2
i−is

m2
1

,

c
(3)
i−iss = G0ssGi +

√
2Λ2

6m2
1

g (G0ss −Gi) , Ĝi−iss = gGi,

Gi−iss = −gGi +
2g

′2
i−isG0ss

gm2
1

−
3
√
2G

′2
i−is

Λ2
.

(2.93)

8We found another set of solution where the quartic operators G1−1−11 = Ĝ1−1−11 = 0 but G14 ̸= Ĝ14 which
is incompatible with the result obtained from the general case.
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Figure 2.5: Feynman diagrams of the Aϕ→ AA process for mI = 0 case.

2.2.8 mI = 0

In this section, we calculate 2-2 scattering amplitude of one massless external state and three

massive spin-1 fields satisfying mI + mJ + mK = 0. We consider the massless state to be a

scalar with m2 = 0 (note that the case where the massless state is a gluon reproduces the same

results as in the general case and we will give the constraints at the end of this section for

completeness). The amplitude for this process is the following (see Fig. 2.5):

iA4 ∝
(
V AAϕ
g′1−1s

+ V AAϕ
G′

1−1s

) i

s−m2
1

(
V AAA
g34

+ V AAA1
G34

+ V AAA2
Ĝ34

)
+
(
V AAA
g13

+ V AAA1
G13

+ V AAA2
Ĝ13

) i

t−m2
13

(
V AAϕ
g′4−4s

+ V AAϕ
G′

4−4s

)
+
(
V AAA
g14

+ V AAA1
G14

+ V AAA2
Ĝ14

) i

u−m2
14

(
V AAϕ
g′3−3s

+ V AAϕ
G′

3−3s

)
+
(
V AAAϕ1

Ĝ134s
+ V AAAϕ2

G134s
+ V AAAϕ1

c134s
+ V AAAϕ2

C134s

)
,

(2.94)

Note that in this case we have m1 +m3 +m4 = 0, so:

g34(−3−4) = g341, g13(−1−3) = g134, g14(−1−4) = g143,

G34(−3−4) = G341, G13(−1−3) = G134, G14(−1−4) = G143,

(2.95)

where we assume that gijk and Gijk are fully symmetric in their indices and (±I±J) represents

±mI ±mJ . Hence, in our simplified notation we have g34 = g13 = g14 and G34 = G13 = G14 in

this case. Imposing the colour-kinematic duality on Aϕ→ AA, we get the following constraints:
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g′4−4s

g′3−3s

=
m4

m3

,
g′1−1s

g′3−3s

=
m1

m3

, G34 = Ĝ34

G13g
′
4−4

m4

=
G14g

′
3−3

m3

=
g13G

′
4−4s

m4

=
g14G

′
3−3s

m3

= Ĝ134s = G134s,

c134s = C134s =
G1−1sG34

m1

=
G4−4sG13

m4

=
G3−3sG14

m3

.

(2.96)

The conditions on couplings where one external state (m2 = 0) is a gluon can be derived from

(2.86) by setting g12 = g24 = g23 = g and g1234 = g2 which leads to gi = g − Gi
3
√
2m2

i

Λ2 and

g34g = g2 so gij = g for arbitrary i, j, and G1g = G13g which, when combined with (2.86) and

(2.89), implies Gi = Gij = Ĝij = G, i.e. we fix all cubic couplings except for G0ss. The two

quartic AAAA0 couplings coming from LF 3

AAA1 and LF 3

AAA2 in (G.4) are both equal to G34g by

gauge invariance so BCJ relation does not impose an additional constraint on them.

Summary of results: Combining all of the constraints obtained from different cases and

different processes we obtain the results summarized in table 2.2. These match the values of

couplings of the 4d KK theory of 5d Yang-Mills with coupling
√
2πRg plus

√
2πRG
Λ2 tr(F 3) −

9πRG2

8Λ4 tr([Fµν , Fαβ][F
µν , Fαβ]) operators, where R is the radius of the S1, if G0ss = G, but this

is not fixed from 4pt processes. The reason for this is that LF 3

Aϕϕ vertex in (G.4) is zero when A

is on-shell. This means that the only 4pt processes that can constrain G0ss are ϕϕ → ϕϕ and

AA→ ϕϕ but as we saw in the previous sections there is a freedom between G0ss and quartic

Λ4 coefficients in both of these processes. Therefore, this coupling can only be fixed by 5pt

scattering.

2.2.9 5-point amplitudes

In this section we consider different 5pt scattering amplitudes of external massive and massless

fields and find the CK constraints on contact couplings imposed by the BCJ relations. Since we

know from the previous section that all 3pt and 4pt couplings, except for G0ss, are fixed to be

that of KK theory, the only remaining freedom at 5pt is that from the as yet undetermined G0ss,
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coefficient CK constrained value coefficient CK constrained value

LAAA gijk g LF 3

AAϕϕ1 Gijss g(2G0ss −G)− 3
√
2m2

iG
2

Λ2

LAAϕ g′ijs mig LF 3

AAϕϕ2 Ĝijss gG

LAAAA gijkl g2 +
18mimjmkml

Λ4 G2 LF 3

AAAϕ1 Ĝijks gG

LAAϕϕ gijss g2 LF 3

AAAϕ2 Gijks gG

LF 4

AAF 0 gi gi = g −G3
√
2m2

i

Λ2 LF 4

AAAA1 cijkl G2

LF 3

AAF 0 Gi Gi = G LF 4

AAAA2 Cijkl G2

LF 3

AAA1 Gijk G LF 4

AAAϕ1 cijks G2

LF 3

AAA2 Ĝijk G LF 4

AAAϕ2 Cijks G2

LF 3

AAϕ G′
ijs miG LF 4

AAϕϕ1 cijss G0ssG

LF 3

Aϕϕ G0ss not constrained LF 4

AAϕϕ2 c
(2)
ijss G2

LF 3

AAAA1 Gijkl gG LF 4

AAϕϕ3 c
(3)
ijss G0ssG+

√
2Λ2

6m2
i
g (G0ss −G)

LF 3

AAAA2 Ĝijkl gG LF 4

ϕϕϕϕ cϕ4 G2
0ss

Table 2.2: Coefficients of the interactions constrained by the demands of colour-kinematics
duality.

and the additional 1/Λ2 and 1/Λ4 suppressed quintic operators. We focus on the cases where

we have multiple quintic contact terms whose coefficients are not fixed by gauge invariance.

For instance, the A0AAAA operators are clearly fixed by determining the AAAA interactions

by gauge invariance. As we will show below the remaining undetermined cubic coupling G0ss

is fixed by considering CK duality for ϕϕAAA scattering. In addition we shall find that the

quintic contact terms are fixed in terms of a single coupling constant. This result is perhaps not

so surprising since there are more BCJ relations to be satisfied, more independent contractions

of polarizations and momenta, yet fewer overall free coefficients for quintic contact terms.

2.2.10 General case

We consider the 5-point scattering amplitude of five external spin-1 fields of mass mI , I =

1, 2, 3, 4, 5 such that m1+m2+m3+m4+m5 = 0 and there are no I, J such that mI +mJ = 0.

Only massive spin-1 fields are exchanged in the 25 diagrams contributing to the amplitude

(note that we have 15 kinematic factors as we can absorb the quartic contact terms into cubic

diagrams). The two types of diagrams are shown in Fig. 2.6 and we obtained all 25 diagrams by

relabelling the external states of these two. We then calculate the kinematic numerators and 5pt

BCJ relations given in (2.70) - (2.73) and require them to be zero which gives us the constraints
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Figure 2.6: Five point diagrams for the general case.

Figure 2.7: Five point diagrams for the general case when m1 +m2 = 0. The bold curly line
represents a massless gluon, where m12 = 0 and the straight line a massless scalar.

on quintic contact term coefficients. We use Table 2.2 for the cubic and quartic couplings and

find that all the three coefficients, Gijklm, cijklm and Cijklm are fixed by (ϵ1 · ϵ2)(ϵ4 · ϵ5)(ϵ3 · p1)

term in (2.70) to be of the same values as in KK theory:

Gijklm = g2G, cijklm = Cijklm = gG2. (2.97)

2.2.11 m1 +m2 = 0

Next we consider the 5-point scattering amplitude of five external spin-1 field such that m1 +

m2 = 0. In this case, 6 out of the 30 diagrams have a massless particle exchange, a gluon and

a scalar. These diagrams are shown in Fig. 2.7. In exactly the same way as in previous case,

(2.70) alone forces the quintic couplings to be as in (2.97).
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Figure 2.8: Factorization limits of the 5-point amplitude. By only imposing the 4-point BCJ
relations on A4 for all possible factorizations, the 5-point BCJ can be satisfied

2.2.12 AAAAA without Λ−2n operators

Let us temporarily take a step back, and consider the AAAAA amplitude at leading order in

the EFT expansion, Λ0. We find that imposing the constraints from AA → AA scattering is

enough for the BCJ relation to hold at 5-point, at least to this order in the EFT expansion.

This can be seen by taking the factorization limits of the 5-point amplitude and imposing BCJ

relations on the sub 4-point amplitudes (see Fig. 2.8). To show our procedure of checking the

BCJ at 5-point, consider the amplitude for this process as:

A5 = g24g15g3(2+4)
(...)

D15D24

+g24g35g1(2+4)
(...)

D24D35

+g24g135(2+4)
(...)

D24

+other contributions (2.98)

where (...) represents the contraction of polarizations, momenta and the colour factors. From

(2.86), we express the quartic coupling g135(24) as a product of two cubic diagrams:

g135(24) = g35g1(3+5),

= g15g3(1+5),

= g13g5(1+3).

(2.99)

We also express the 9 remaining contact couplings in terms of products of cubic ones. We

combine all 30 equalities (3 equalities per contact coupling), simultaneously solve them and we

get 24 constraints. Once these constraints imposed on the kinematic factors, the 5-point BCJ

relation is satisfied. We conclude that for our theory, the BCJ relations at 5-point are satisfied

and can be obtained from the coupling conditions derived at 4-point. This is consistent with
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Figure 2.9: The six types of diagrams for ϕϕAAA process. The bold curly line represents a
gluon and the straight line a scalar field.

the fact that BCJ relation can be proved recursively using BCFW recursion for theories in

which amplitudes can be constructed that way [106]. Of course this will not be true if we add

1/Λ2n corrections because the 5pt contact term couplings there are independent from 3 and 4pt

couplings.

2.2.13 ϕϕAAA

Now we consider two massless scalars and three massive vectors with the diagrams shown in

Fig. 2.9. By inspection of the (ϵ3 · p1)(ϵ5 · p2)(ϵ4 · p2), (ϵ3 · ϵ4)(ϵ5 · p2) and (ϵ5 · ϵ4)(ϵ3 · p2) terms in

(2.70) and (2.73) we are able to finally fix G0ss = G (which fixes all 4pt couplings as in (2.2))

and the four quintic couplings to be of their KK values:

Gijkss = Ĝijkss = g2G, cijkss = Cijkss = Ĉ
(3)
ijkss = Ĉ

(4)
ijkss = Ĉ

(5)
ijkss = gG2. (2.100)

2.2.14 ϕAAAA

Now we consider the first state to be a scalar, and the remaining states to be massive vectors.

Let us first assume there are no pairs of vectors for which mI +mJ ̸= 0. Then the four types

of diagrams are shown in Fig. 2.10. Inspecting the (ϵ2 · ϵ3)(ϵ4 · ϵ5) and (ϵ2 · ϵ3)(ϵ4 · p1)(ϵ5 · p2)
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Figure 2.10: The four types of diagrams for ϕAAAA process.The straight line is a scalar field.

terms in (2.70) and (2.72) fix the four quintic couplings to be of their KK values:

Gijkls = Ĝijkls = g2G, cijkls = Cijkls = Ĉijkls = gG2. (2.101)

From this we can consider two special cases where either a single or a double pair of massive

vectors satisfy mI +mJ ̸= 0.

mI +mJ = 0

Case 1: Consider again one scalar and four vectors but only one pair of masses add up to

zero, for example, we consider m2 +m3 = m4 +m5 = 0. There are more diagrams now which

are shown in Fig. 2.11. We use the constraint G0ss = G obtained from ϕϕAAA. Now inspecting

the (ϵ2 · ϵ3)(ϵ4 · ϵ5) and (ϵ2 · ϵ3)(ϵ4 · p2)(ϵ5 · p3) terms in (2.71) fixes the four quintic couplings to

be of their KK values given in (2.101).

Case 2: We consider once again one scalar and four vectors but their masses now satisfy

m2 = −m3 = −m4 = m5. The diagrams still look like the ones in Fig. 2.11 but now we have

more channels with scalar or massless gluon exchanges. Just as before (ϵ2 · ϵ3)(ϵ4 · ϵ5) and

(ϵ2 · ϵ3)(ϵ4 · p2)(ϵ5 · p3) terms in (2.71) fix the four quintic couplings to be of their KK values

given in (2.101).
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Figure 2.11: The five types of diagrams for ϕAAAA process when mi+mj = 0. The bold curly
line represents a gluon and the straight line a scalar field.

Figure 2.12: The six types of diagrams for ϕϕϕAA process. The bold curly line represents a
gluon and the straight line a scalar field.

2.2.15 ϕϕϕAA

Finally we consider three scalars and two vectors with the diagrams shown in Fig. 2.12. We

now make use of the constraint G0ss = G obtained from ϕϕAAA. In this case we only have

the 1/Λ4 quintic operators and by inspecting ϵ4 · ϵ5 and (ϵ5 · p2)(ϵ4 · p1) terms in (2.70) we fix

their coefficients to be:

cijsss = c
(2)
ijsss = c

(3)
ijsss = gG2. (2.102)

2.2.16 Non-symmetric couplings

In the previous sections we assumed the couplings gijk, gijkl and Gijkl to be fully symmetric in

all of the indices. This is of course what we obtain from KK reduction, however it is obviously

not the most general possibility. In this section we will briefly consider more general couplings
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that are not symmetric. Now the cubic and quartic AAA and AAAA vertices (without 1/Λ2n

corrections) are not of the same form as Yang-Mills vertices. For example, the Λ0 terms

contributing to three point vertex A1A2A3 are:

1√
2
fabc

(
g123∂[µA

1a
ν]A

2bµA3cν + g231∂[µA
2b
ν]A

3cµA1aν + g312∂[µA
3c
ν]A

1aµA2bν
)
, (2.103)

which gives a different Feynman rule than 3pt Yang-Mills vertex. For example, the on shell

vertex coming from this term is

A3(1
a, 2b, 3c) ∝ fabc

(
− (g123 + g231)ϵ1 · ϵ2 ϵ3 · p1 + (g123 + g312)ϵ1 · ϵ3 ϵ2 · p1

− (g312 + g231)ϵ1 · p2 ϵ2 · ϵ3
)
,

(2.104)

which is of different structure than Yang-Mills 3pt vertex,

A3(1
a, 2b, 3c) ∝ fabc (−ϵ1 · ϵ2 ϵ3 · p1 + ϵ1 · ϵ3 ϵ2 · p1 − ϵ1 · p2 ϵ2 · ϵ3) . (2.105)

Similarly we may consider non-symmetric A1A2A3A4 couplings:

LAAAA = fabef cde(g1234A
1a · A3cA2b · A4d + g1243A

1a · A4dA2b · A3c)

+ facef bde(g1324A
1a · A2bA3c · A4d + g1342A

1a · A4dA3c · A2b)

+ fadef bce(g1423A
1a · A3cA2b · A4d + g1432A

1a · A2bA3c · A4d),

(2.106)

LF 3

AAAA = fabef cde

(
G1234D[µA

a
1ν]D

[νA
bρ]
2 Ac

3ρA
µd
4 +G1324D[µA

a
1ν]D

[νA
bρ]
3 Ac

2ρA
µd
4

+G1423D[µA
a
1ν]D

[νA
bρ]
4 Ac

2ρA
µd
3 +G2413D[µA

a
2ν]D

[νA
bρ]
4 Ac

1ρA
µd
3

+G2314D[µA
a
2ν]D

[ν3
bρ]
4 Ac

1ρA
µd
4 +G3412D[µA

a
3ν]D

[ν3
bρ]
4 Ac

1ρA
µd
2

)
,

(2.107)

where any other operators obtain by permuting 1, 2, 3, 4 labels of one of these operators does

not give a new operator. Note that if we allow for non-symmetric couplings we do not need

to write LF 3

AAAA2 term from (G.4) because these operators are already included in (2.106). For
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simplicity we only considered A1A2 → A3A4 scattering amplitude with these non-symmetric

couplings up to 1/Λ2 order. We found that by imposing the BCJ relation we do not get a new

solution, i.e. all the couplings must be symmetric as before.

2.2.17 Combining all results

We see that imposing BCJ relations for all 4 and 5 point amplitudes and combining all of the

constrains fixes all 3, 4 and 5 point couplings to be of the same value as in the Kaluza-Klein the-

ory obtained from compactification of the 5d Lagrangian
(

−1
4
tr(F 2) + G5d

Λ2 tr(F
3)− 9G2

5d

16Λ4 tr([F, F ]
2)
)

on an S1. Our results may be interpreted as the statement that Kaluza-Klein theory may be

derived from the requirement that a specific spectrum of states which automatically satisfy

the spectral conditions, admit a local double copy. While the fact that Kaluza-Klein theory

is a consistent solution is itself not surprising, one might of thought that allowing for higher

derivative/irrelevant operators in the EFT expansion would give us more freedom, and could be

used to relax some of the constraints of the BCJ relations. To the order that we have calculated

this situation does not arise.

It remains the case that there could still be some freedom in higher point amplitudes or at

higher orders in the EFT expansion. At a given order in the EFT expansion, there are in gen-

eral many other operators in the adjoint representation that could be included, in particular

non-symmetric couplings of the type considered in section 2.2.16, as well as operators which

do not appear in the Kaluza-Klein compactification of 5d Yang-Mills plus its higher derivative

terms. Another possibility is to add multiple fields in different representations in 5d and to

consider their compactification. We leave it to future works to explore or otherwise exclude

these possibilities.

Given our results, it would be extremely helpful to have other nontrivial solutions of the spectral

conditions. However, ultimately it may be necessary to relax the naive rules of the double copy

to account for interacting theories with massive states, or similarly to account for higher order
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operators in an EFT expansion. By trying to mirror the massless double copy procedure as

closely as possible, we have also forced ourselves into working with massive theories that are

related to massless ones (in this case massless ones in higher dimensions), and to a large extent

this explains the limitation of our results.

2.3 Avoiding Spurious Poles in 3D

Having seen that it is hard to find a massive theory compatible with colour kinematics duality

in 4D that is not a Kaluza-Klein theory we now move to 3D. Upon closer inspection the

polynomial appearing in the denominator of 5pt double copy amplitude given in (2.64) has a

special structure, it can be expressed as:

P (skl,m) = 16 det(pi · pj) , i, j < 5 , (2.108)

where det(pi · pj) is the Gram determinant of the momenta of 4 out of the 5 external states.

Note that P (skl,m) ̸= 0, only if the spacetime dimension is larger than 3 because we cannot

have 4 independent vectors in less than four dimensions. Therefore it is zero in our 3D case

and A has a null eigenvector, which corresponds to a BCJ relation. First, we need to check

if U is orthogonal to that null vector, that is, if the BCJ relation is true. If that is the case,

we can invert A in the subspace orthogonal to the null vector. Otherwise, we cannot satisfy
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colour-kinematics duality. In 3D, the null vector, e0, turns out to have a very simple form:

e0 =



ϵ(1, 2, 3)

−ϵ(1, 2, 4)− ϵ(1, 3, 4) + ϵ(2, 3, 4)

ϵ(1, 2, 3) + ϵ(1, 2, 4)

−ϵ(1, 3, 4)

ϵ(1, 2, 4)− ϵ(2, 3, 4)

ϵ(1, 2, 3) + ϵ(1, 2, 4)− ϵ(2, 3, 4)

−ϵ(1, 2, 4)− ϵ(1, 3, 4)

ϵ(2, 3, 4)

ϵ(1, 2, 3) + ϵ(1, 2, 4) + ϵ(1, 3, 4)



. (2.109)

In the result above, we have expressed the Mandelstam variables in terms of the products of

the 3D Levi-Civita tensor and momenta, ϵ(i, j, k) = ϵµνσp
µ
i p

ν
jp

σ
k , as explained in the Appendix

H.2. As mentioned before the vector U must satisfy

U · e0 = 0 , (2.110)

in order to be able to satisfy the colour-kinematics duality.

For generic kinematics, all 9 components of the null vector are non-zero so we can use the

freedom of adding the null eigenvector to v in (2.9) to eliminate v’s ninth component9. In other

words, we can restrict ourselves to an 8-dimensional subspace to invert the 8× 8 submatrix of

A. This 8× 8 matrix, however, still has a complicated polynomial in its determinant:

detA8x8 = −2m6

(∏
i<j

Dij

)
P1(skl,m) , (2.111)

9We pick the ninth component as a specific example, but we can alternatively choose any other component
since the final answer does not depend on which component we choose.
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with P1(skl,m) given by

P1(skl,m) = 4(ϵ(1, 2, 3) + ϵ(1, 2, 4) + ϵ(1, 3, 4))2 , (2.112)

where as before we have used the special 3D kinematics from Appendix H.2 to simplify this

expression. At first sight, it appears like we are in trouble again, this polynomial seems to give

spurious poles in the double copy of the 5-point amplitude for a generic 3D theory. However

we will show that the amplitude does not have spurious poles if (2.110) is satisfied.

One way of seeing the cancellation of the spurious poles is by considering the pseudo-inverse of

the matrix A:

(A+ εI)−1 =
1

det(A+ εI)
C , (2.113)

where C is the cofactor matrix of (A + εI). Explicit calculation of these quantities gives the

following:

det(A+ εI) = −ε 8m6

(∏
i<j

Dij

)
e0 · e0 +O(ε2) , (2.114)

and

Cij = −8m6

(∏
i<j

Dij

)
(e0)i(e0)j + ε

(
wi(e0)j + wj(e0)i +Kije0 · e0

)
+O(ε2) , (2.115)

with wi a vector and Kij a matrix. We can see that in the limit ε → 0, UT (A + εI)−1U =

UTCU

det(A+εI)
is finite if U is orthogonal to e0, that is, if the BCJ relation in (2.110) is satisfied.

Moreover the factor of e0 · e0 in the denominator cancels out since only Kij contributes to the

double copy amplitude. This contribution can be expressed as:

lim
ε→0

UT (A+ εI)−1U =− UTKU

8m6
(∏

i<j Dij

)
=

9∑
i=1

(
u2i

m2Di

)
+

(u1 − u2 + u3 − u4 + u5 + u6 − u7 − u8 + u9)
2

m2D35

+
1

8m2ϵ(1, 3, 4)ϵ(2, 3, 4)

6∑
i=1

qiU · ei

(2.116)
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where qi is a linear combination of the components of U , ei are 9-component vectors linear in

U components and polynomial in Mandelstam variables. Above, we used shorthand notation

for the propagators Di = {D34, D12, D45, D23, D15, D14, D25, D13, D24}.

Let us first look at the terms in the second line of (2.116). They contain only physical poles and,

as we will see in the following, are consistent with factorization of the scattering amplitude.

When Di goes on shell, (2.116) goes to u2i /(m
2Di) where ui is the violation of the 4pt BCJ

relation associated to this factorization channel. The second term in the second line of (2.116)

corresponds to the violation of the 10th Jacobi identity which is not independent from the 9

Jacobi identities encoded in U =Mn. Nevertheless, it is needed to have the correct factorization

in the D35 → 0 limit. As an explicit example, we now illustrate the factorization of the 5pt

double copy amplitude, M5, when D12 → 0. In this limit the nTD−1n term in the 5-point

double copy (2.12) goes to

1

D12

(
n2
1

D45

+
n2
3

D34

+
n2
12

D35

)
, (2.117)

which is easy to see since D matrix is diagonal and given in (2.62). Meanwhile, from (2.116)

we find that the UTA−1U term goes to

1

D12

(
u22
m2

)
=

1

D12

(
(−n1 + n3 + n12)

2

m2

)
, (2.118)

since U is a linear combination of the kinematic factors, U = Mn (in particular u2 = −n1 +

n3 + n12). Using the fact that the 5pt gauge theory amplitude, A5, factorises into the 3-point

amplitude A3(12I) and the 4-point amplitude A4(I345), where I is an intermediate state., we

can write the following expression for the kinematic factors in this limit:

n1 = −nsA3(12I), n3 = ntA3(12I), n12 = nuA3(12I), (2.119)

where ns, nt and nu are the kinematic factors of the 4pt amplitude A4(I345) (if we identify

s45 = s, s34 = t, s35 = u and c1 = −fa1a2bcs, c3 = fa1a2bct, c12 = fa1a2bcu). Substituting

(2.117), (2.118) and (2.119) into (2.12) we get the following expression for the 5pt double copy
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amplitude in D12 → 0 limit:

M5 →
A3(12I)

2

D12

(
n2
s

s−m2
+

n2
t

t−m2
+

n2
u

u−m2
− (ns + nt + nu)

2

m2

)
=
M3(12I)M4(I345)

D12

,

(2.120)

where we used the 3pt double copy relation M3(12I) = A3(12I)
2. This shows that the 5pt dou-

ble copy amplitude correctly factorizes into the 3-point and 4-point double copy amplitudes.

This argument can be repeated for all other factorization channels.

Now we analyze the third line of (2.116) which appears to have unphysical poles. However, we

will show that the residues of these poles are zero if the BCJ relation in (2.110) is satisfied.

To show this, we note that we can write the third line of (2.116) with different expressions for

{qi, ei} which correspond to different ways of splitting the answer into qi and ei. In Appendix

H.1, we give two explicit expression for {qi, ei}. We have checked numerically that one of these

expressions has the property that, for kinematics when ϵ(1, 3, 4) = 0, all ei||e0. Similarly, for

the other expression, all ei||e0 when ϵ(2, 3, 4) = 0. Therefore, if U · e0 = 0, then U · ei = 0

on the residues of these unphysical poles; so these residues are zero. We conclude that the

condition in (2.110) is sufficient for the double copy to give a physical amplitude at 5-points

in 3D with all fields with the same mass and in the adjoint representation. Note that this is

quite different from the usual requirement of having 4 BCJ relations like in massless Yang-

Mills. Here one relation is enough. Now, an interesting question arises: which theories in

three spacetime dimensions satisfy (2.110)? To tackle this question, in the following sections

we will introduce the topologically massive theories. First, we will analyze the 3, 4, and 5-point

amplitudes of TMYM and how to write them in terms of kinematic numerators that satisfy

the colour-kinematics duality. Afterwards, we will look at the TMG case and show how this

corresponds to the double copy of TMYM.
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2.4 Topologically Massive Yang-Mills

The explicit expression of TMYM action in our conventions is

STMYM =

∫
d3x

(
− 1

4
F aµνFaµν + ϵµνρ

m

12

(
6Aaµ∂νAρ

a + g
√
2fabcA

aµAbνAcρ
))

, (2.121)

where m is the mass of the gauge field and g the coupling strength. The equations of motion

can be easily obtain from (1.33) and read

DµF
µv +

m

2
ϵvαβFαβ = 0 , (2.122)

where Dµ = ∂µ − ig√
2
Aµ, Fµν = F a

µνT
a, with F a

µν the Yang-Mills field strength and T a the

generators of the gauge group. In the following, we choose to work in Lorenz gauge where

∂µA
µ = 0, and Aµ = Aµ aT a. It is easy to see that plane waves of the form Aµ = εµeip·x are

solutions to the linearised equations of motion as long as the polarisation vectors, ε, satisfy

εaµ +
i

m
ϵµνρp

νεaρ = 0 . (2.123)

This equation constrains the allowed polarisations of the topologically massive gauge field.

Note that we will be denoting the polarisations with ε, to distinguish them from the Levi-

Civita symbol denoted with ϵ. Another important ingredient for our scattering amplitudes

calculation is the propagator of the gauge field. In an arbitrary gauge the colour stripped

propagator is

Dµν [α] =
−i

p2 +m2

(
ηµν −

pµpν
p2
− im

p2
ϵµνσp

σ

)
− iα

p4
pµpν . (2.124)

We will work in Landau gauge where α = 0, hence,

Dµν =
−i

p2 +m2

(
ηµν −

pµpν
p2
− im

p2
ϵµνσp

σ

)
. (2.125)

When we look at the gravitational case, we will see how the graviton propagator can arise

as the “square” of this one. Given their simplicity, we also present here the three-point and
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four-point off-shell vertices:

V µνρ
3 =

ig√
2
fa1a2a3

(
mϵµνρ + iηµν(pρ1 − p

ρ
2) + iηµρ(pν3 − pν1) + iηνρ(pµ2 − p

µ
3)

)
, (2.126)

V µνρσ
4 =

ig2

2

(
(cs − ct)ηµσηνρ + (cu − cs)ηµρηνσ + (ct − cu)ηµνηρσ

)
, (2.127)

where

cs = fa1a2bf ba3a4 , cu = fa2a3bf ba1a4 , ct = fa3a1bf ba2a4 . (2.128)

In the following we construct the three, four, and five-point amplitudes of TMYM and show

how to shift the kinematic numerator so that they satisfy the colour-kinematics duality.

2.4.1 TMYM Scattering Amplitudes

3-point Amplitude The three-point on-shell amplitude is:

A3 = g

(
√
2(ee13pe12 − ee23pe21 + ee12pe23) +

im√
2
ϵµνρε1µε2νε3ρ

)
, (2.129)

where we have defined eeij ≡ εiµε
µ
j and peij ≡ piµε

µ
j . Using the equation of motion for the

polarisation vectors, ε1, ε2, ε3, as given in (2.123), one can express the first term as follows :

(ee13pe12 − ee23pe21 + ee12pe23) = −
3im

2
ϵµνρε1µε2νε3ρ . (2.130)

Hence, the 3-point amplitude of topological massive Yang-Mills can be written as:

A3 = −ig
√
2mϵµνρε1µε2νε3ρ . (2.131)

4-point Amplitude The 4-point TMYM amplitude can be expressed as follows:

A4 = g2
(

csns

s−m2
+

ctnt

t−m2
+

cunu

u−m2

)
, (2.132)
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where the colour factor are given in (2.128) and the kinematic factors are computed using

Feynman rules. It is possible to simplify these factors by using the reconstruction methods

explained in [111, 112]. Doing this we find the simpler expressions

ns =
−i
32s

(
ee12ee34(16m

4 − 12s2 + 36m2t− 35st− 11t2)

−ee13ee24(16m4 + 72m2s+ 23s2 + 11(4m2 + s)t)

+ee14ee23(−160m4 + s(12s+ 11t) + 4m2(40s+ 11t))

)
,

nt =
i

8t

(
− ee12ee34(4m4 + 29m2t+ 3t2)− ee13ee24(4m2 − 2s− t)(m2 + 3t)

+ee14ee23(4m
4 + 29m2t+ 3t2)

)
,

nu =
−i
32u

(
ee12ee34(672m

4 − 424m2t+ (s+ t)(12s+ 65t))

−ee13ee24(672m4 − 424m2t− (41s− 12t)(s+ t))

+ee14ee23(−848m4 + 12s2 + 53st− 12t2 + 8m2(20s+ 33t))

)
.

(2.133)

These kinematics factors do not satisfy automatically the colour-kinematics duality, i.e. ns +

nt + nu ̸= 0. Since we are interested in finding the double copy of TMYM, we need to shift

the numerators such that the colour-kinematics duality is satisfied. The new kinematic factors

read

n̂s = ns−
(ns + nt + nu)(s−m2)

(m2)
, n̂t = nt−

(ns + nt + nu)(t−m2)

(m2)
, n̂u = nu−

(ns + nt + nu)(u−m2)

(m2)
,

(2.134)

which indeed satisfy the CK duality

n̂s + n̂t + n̂u =

(
ns + nt + nu

m2

)(
4m2 − (s+ t+ u)

)
= 0 , (2.135)

given that s+ t+ u = 4m2.
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5-point Amplitude The TMYM 5-point amplitude can be written as in (2.59). Just as

in the previous case, the kinematic factors calculated directly from the Feynman rules do not

satisfy the CK algebra. Their explicit expressions are complicated so we do not show them

here, but they can be found in the ancillary Mathematica file, FivePointKinematicFactors.m,

included in the submission of [12]. The shifted numerators that satisfy the CK duality can be

found as explained in Section 2.3. The 9 component vector U was constructed using (2.8), and

we used the 8 × 8 submatrix of A, A8x8 for constructing the shifted kinematic factors. In the

construction of A8x8, we can eliminate any arbitrary nth column and nth row since the final

result does not depend on this.

2.5 Topologically Massive Gravity and the Double Copy

The action for TMG is

STMG =
1

κ2

∫
d3x
√
−g
(
−R− 1

2m
ϵµνρ

(
Γα
µσ∂νΓ

σ
αρ +

2

3
Γα
µσΓ

σ
νβΓ

β
ρα

))
. (2.136)

Note that the sign of the Einstein-Hilbert term is the opposite to the conventional one; this is

required so that the physical spin-2 mode is not ghostly as mentioned in the introduction. The

equations of motion are given by

Gµν +
1

m
Cµν = 0 , (2.137)

where Gνµ ≡ Rνµ − 1
2
Rgνµ is the Einstein tensor and Cµν ≡ εµαβ∇α

(
Rν

β − 1
4
gνβR

)
the Cotton

tensor which is the 3D analogue of the Weyl tensor.

We now proceed to analyze some elements that are required for the scattering amplitude compu-

tations, and how these elements themselves can be constructed as a double copy of the analogue

Yang-Mills object. First, we obtain the linearised equations of motion by expanding around

flat space as gµν = ηµν + κhµν . We will work in de Donder gauge where ∂µh
µν − 1

2
∂νh = 0.
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As in the Yang-Mills case, the plane wave solution hµν = εµνe
ip·x is a solution of the linearised

equations of motion when

(
δµαδ

ν
β +

i

2m
(ϵνρσp

ρδσαδ
µ
β + ϵµρσp

ρδσαδ
ν
β)

)
εαβ = 0 . (2.138)

This again restricts the allowed polarisations of the massive graviton. It is interesting to notice

that we can already see a double copy relation at this level. The on-shell polarisation tensors

of TMG can be written as the square of the on-shell polarisation vector of TMYM

εµν = εµεν . (2.139)

If εµ satisfies (2.123) then the polarisation tensor defined above will satisfy (2.138). When we

write our scattering amplitudes below, we will be using this relation and writing them in terms

of the polarisation vectors εµ.

It is also instructive to look at the propagator of topologically massive gravitons. In an arbitrary

gauge this reads

Dµνρσ = Dµνρσ + α
i

4q2

(
− 4ηµ(σηρ)ν +

(
2ην(σP

ρ)µ
1 + νσ ↔ µρ

))
, (2.140)

with

Dµνρσ =
i

p2 +m2

(
− 3ηµνηρσ +

(
ηρσP µν

1 + µν ↔ ρσ

)
+ 2P

µ(σ
1 P

ρ)ν
1 −

(
P

µ(ρ
2 P

σ)ν
1 + P

ν(ρ
2 P

µ)σ
1

)

− m2

p2

(
2ηµνηρσ − 2ην(σP

ρ)µ
1 +

2

p2
ηµ(σpρ)pν

)
− 1

p4
pµpνpρpσ

)
,

(2.141)

where Xa(bXc)d = 1
2
(XabXcd +XacXbd) and

P ab
1 = ηab − papb

p2
, P ab

2 = P ab
1 −

im

p2
ϵabcpc . (2.142)
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As before, we will work in de Donder gauge where α = 0; hence Dabcd = Dabcd. A double copy

between the propagators of TMYM and TMG has been proposed in [113]. It was shown that

they can be related as

Dµνρσ =
(
p2 +m2

)
Dρ(µDν)σ , (2.143)

which matches the TMG case if we ignore terms that vanish when they are contracted to

conserved currents. For the gravitational case, we do not show the explicit expression of the

off-shell vertices since this is quite involved and gives no insights to our discussion. We will

now go ahead and compute the three, four, and five -point amplitudes of TMG and show how

they correspond to the double copy of TMYM.

2.5.1 TMG Scattering Amplitudes

3-point Amplitude The 3-point amplitude of TMG can be simplified by using the 3-point

relations in Appendix H.2, which arise from the polarisation vector equations of motion. After

using these relations, the 3-point TMG amplitude can be written as follows:

M3 = 2iee12ee13ee23m
2κ , (2.144)

(where eeij = εiµε
µ
j and peij = piµε

µ
j as before) which is equivalent to:

M3 = −i (ϵµνρϵ1µϵ2νϵ3ρ)2m2κ . (2.145)

From this, we can see that the three-point double copy relation

M3 = i
κ

2
A3A3 , (2.146)

is satisfied with A3 given by (2.131) and M3 by (2.145). We conclude that at 3-points, the

double copy of TMYM is TMG.
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4-point Amplitude We compute the 4-point amplitude directly from the Feynman rules and,

given its length, only show our result in the Appendix H.3. Here, we focus on understanding if

it corresponds to the TMYM double copy. At 4-points, the double copy relation is the following:

M4 = i
(κ
2

)2( n̂2
s

s−m2
+

n̂2
t

t−m2
+

n̂2
u

u−m2

)
, (2.147)

where n̂ satisfies the colour-kinematics duality. To find the TMYM double copy, we plug-in

the kinematic numerators from (2.134). The analytic expressions obtained for the TMYM

double copy are highly involved and complicated to simplify. In this case, we can simplify

them by using the Breit coordinate system. It is well known that it is advantageous to use this

coordinate system to investigate the analytic properties of the amplitude (see e.g.[114]). For

elastic scattering processes, the momenta in the Breit coordinate system are defined as

pµ1 = (
√
p⃗ 2 +m2, p⃗ ) , pµ2 = (E,−p⃗ + λe⃗ ) ,

pµ3 = (
√
p⃗ 2 +m2,−p⃗ ) , pµ4 = (E, p⃗ + λe⃗ ) ,

(2.148)

where e⃗ · p⃗ = 0, |e⃗ |= 1, and the arrow denotes 2-dimensional spatial vectors. Note that all

momenta are incoming. We choose the following directions, p⃗ = (p, 0) and e⃗ = (0, 1). In terms

of Mandelstam variables we have,

t = −4p2, E =
√
p2 +m2 + λ2 =

s− 2m2 + t/2√
4m2 − t

, (2.149)

and the external polarisations are obtained from (H.13). The explicit expressions for the shifted

numerators in this coordinate system are given in (H.11). Once we simplify the double copy of

TMYM using these relations, we find that it indeed corresponds to the 4-point amplitude in

(H.10). Therefore, we conclude that at 4-point TMG is the double copy of TMYM.

Another way to check the double copy of TMYM that does not require a specific coordinate

system is to use the simplified kinematic numerators in (2.133). However, it is still is compli-

cated to see that TMG is the double copy of TMYM. This can only be seen once we relate the
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product of polarisations and Mandelstam variables as shown in (H.5). These relations are sat-

isfied on-shell and were obtained by using random on-shell momenta and polarisation vectors.

Our numerical method used to obtain these random kinematics is explained in Appendix H.4.

Therefore, we can conclude that once (H.5) is imposed, the 4-pt TMG is the double copy of

TMYM.

5-point Amplitude At 5-points, we have shown that the double copy in 3D has no spurious

poles as long as (2.110) is satisfied. We have verified numerically that the TMYM vector U

satisfies this equation for multiple random on-shell kinematics. Thus, there are no spurious poles

in the double copy of the TMYM 5-point amplitude. We obtained the 5-point TMYM double

copy using (2.12) and compared it with the 5-point amplitude of TMG computed from Feynman

rules. Because of the complexity of the analytic expression of the TMG 5-point amplitude, we

only compared the values of both amplitudes evaluated on random kinematic configurations.

Some examples of these values are given in Table H.1. We found that they agree exactly, further

confirming the absence of spurious poles in the double copy of the 5-point TMYM amplitude.

2.6 Discussion

In this section we explored BCJ double copy of the amplitudes in massive theories. While the

first attempt to double copy massive Yang-Mills failed to give a physical amplitude at five and

higher point level, it revealed that the spectrum of a massive gauge theory that is compatible

with double copy is strongly constrained. Then we analyzed the constraints that arise on a large

class of low energy effective theories for a tower of interacting massive spin-1 states coupled

to a massless gluon and scalar, by demanding that they respect colour-kinematic duality, a

necessary precursor to a double copy, without introducing any spurious poles. The mechanism

of spurious pole cancellation was the same as in massless case as suggested in [115].

Since in general, the spectral conditions of [115] are difficult to solve, we have made the expe-

dient choice that the spectrum of states should be identical to that that arises in Kaluza-Klein

theories, specifically the standard compactification from five dimensions on an S1, together
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with demanding the preservation of the associated global U(1). This ensures that spectral

conditions are identically satisfied. There is nevertheless a huge class of effective field theories

which satisfy these requirements. Thus it is only necessary to impose the BCJ relations in

order to ensure colour-kinematics duality is kept intact. Our analysis shows that that at least

to quintic order in the Lagrangian, and up to order 1/Λ4 in the effective field theory expansion,

the unique theory within our class which respects the colour-kinematics duality is the theory

obtained from compactification of the 5d Lagrangian

(
−1
4
tr(F 2) +

G5d

Λ2
tr(F 3)− 9G2

5d

16Λ4
tr([F, F ]2)

)
(2.150)

on an S1. The latter is of course known to admit a local double copy, including the higher

derivative operators [110], which can be understood as a particular combination of operators

appearing in open bosonic string and superstring low energy effective action, that contains only

the colour factors built of the structure constants (in order for BCJ double copy formalism to

work). Interestingly, while 4pt processes alone could not fix all of cubic and quartic couplings,

we found that by combining them with 5pt processes we fixed all the cubic, quartic and quintic

interactions. This showed that despite a very large freedom that we have in our action with

arbitrary couplings, the BCJ relations eliminate all of it. Therefore, it seems that if we restrict

ourself to theories where the spurious poles cancel in the same way as in massless theories we

are only left with Kaluza-Klein theories and in order to find new massive double copy examples

we need a different mechanism of spurious pole cancellation.

Such a new mechanism has been found in 3d (at least for 5 point tree level amplitudes). The

special kinematics arising in a three-dimensional spacetime allow us to construct a well-defined

massive double copy that does not require a tower of massive states. Here, we have shown

how the spurious poles that generically appear in 5-point amplitudes can be avoided with a

single BCJ relation. This BCJ relation was written in terms of the kinematic numerators, or

more precisely, in terms of the breaking of the CK algebra for the kinematic factors, i.e., the

vector U . It is possible to rewrite this relation in terms of partial amplitudes; nevertheless, the

expression for the BCJ relation is largely involved as seen in (H.14). An explicit example of a

theory that satisfies such BCJ relation was found to be Topologically Massive Yang-Mills and
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its double copy is well defined and corresponds to Topologically Massive Gravity. The expres-

sions for these scattering amplitudes become quite involved at higher points, and required the

use of numerical methods to verify our results. It is quite likely that there are better variables

in which the double copy relation becomes cleaner. For example, it would interesting to see

if using spinor-helicity variables, similar to [113], can lead to more compact expressions that

allow to prove the 5-point amplitude double copy analytically.

The fact that topologically massive theories satisfy a double copy relation makes us ponder

how do these theories fit in the larger web of relations for scattering amplitudes [21]. Examples

of scalar effective field theories in this web have been shown to satisfy a double copy relation

which is inherited from that of YM and gravity. It is interesting to note that a common fea-

ture of these theories is that they exhibit conformal invariance at a given spacetime dimension

[9, 116]. In our case, while the gravitational Chern-Simons term is conformally invariant, the

whole action including the Einstein-Hilbert term is not. Similarly, TMYM does not have con-

formal invariance. It is not clear if there is a similar feature or an obvious way of relating

these theories to the broader web of amplitude relations, but it would be interesting to explore

that possibility. Similarly, it is compelling to understand how does the different versions of

the classical double copy work for topologically massive theories? This will be explored in the

second part of this thesis.

Besides TMYM, it is interesting to understand if other 3D theories can also have a well-defined

double copy, and if these theories need to satisfy the BCJ relation in (2.110). To understand

this, we can explore the simple case of massive Yang-Mills in 3D. By following the procedure in

Section 2.3, we can analyze the 5-point massive Yang-Mills amplitude. As in 4D, the local nu-

merator factors calculated directly from the Feynman rules do not satisfy the colour-kinematics

duality, i.e., (2.2) is not satisfied. In order to satisfy CK duality, we need to perform the shifts

(2.4) and solve (2.7) to find v. However, if we consider the amplitude with external polarisations

that satisfy the TMYM equations of motion, that is, (2.123), the local kinematics of massive

Yang-Mills calculated directly from the Feynman rules satisfy the colour-kinematics duality
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and do not require any shifts. In that case, the double copy will only have physical poles. This

shows that the polarisations of TMYM play a special role in giving rise to a physical double

copy. It would be interesting to understand if these are the only polarisations that remove the

spurious poles in the massive Yang-Mills double copy, or if a generalized procedure should be

found in order to construct a double copy for more general polarisations.

So far, the massive double copy has only been explored for tree-level processes. It will be

intriguing to understand how this generalizes to loop order. A simpler task towards this goal

consists of understanding higher corrections in the eikonal limit. At tree-level, we can already

see an interesting structure arising. The 4-point amplitudes of the TMYM and TMG in the

eikonal limit, s→∞ and t≪ m2, read

ATY M = g2
ms√
t
ct

−m2
, iMTMG =

−κ2

2

s2

t
= 2

(κ
2

)2 (ms√
t

)2
−m2

. (2.151)

We can immediately observe a double copy relation arising, given that in this limit the propa-

gator is t−m2 → −m2. This is not the standard relation, instead it has an extra factor of 2. In

fact, it is straightforward to understand this extra factor. In the 4-point double copy, (2.13), the

kinematic factor nt dominates in the eikonal limit which gives rise to iM = 2
(
κ
2

)2 n2
t

m2 . Given

this new feature arising already at tree-level, we would like to understand how this procedure

works at higher orders in the eikonal limit. This will be explored in the second part of the

thesis, where we look at these theories coupled to matter fields and study eikonal scattering

and classical double copy.



Chapter 3

Massive Classical Double Copy in 3d

3.1 Introduction

In this chapter we will take a step forward in understanding the topologically massive double

copy involving matter fields. First, we introduce the topologically massive theories including

a minimal coupling to matter fields in Section 3.2. We take a look at the 2-2 scattering of

scalars through a massive mediator and find that the double copy requires an extra contact

term interaction between the scalars. This extra term becomes subdominant in the eikonal

limit in which the sources are highly energetic and their stress-energy tensor becomes traceless,

leading to the standard double copy relation as suggested in [117]. Given this, we will explore

the eikonal limit in more detail in Section 3.3. We take advantage of the fact that both abelian

and non-abelian objects can double copy to the same gravitational object [118] and look at the

linearized TMYM case, that is, Topologically Massive Electrodynamics (TME). We prove that

the TMG and TME amplitudes exponentiate in the eikonal limit, but a simple double copy

relation as in the massless 4d case does not arise. Instead, we show that information beyond

the eikonal limit is required to construct the correct massive double copy. Nevertheless, we

can construct a simple double copy for the phase shift. To further understand the double copy

relation of topologically massive theories in the high-energy limit, we take a look at the classical

solutions generated by a highly energetic particle in Section 3.4. We show that a coordinate

85
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space Kerr-Schild double copy can be obtained for wave solutions when taking into account a

special set of boundary conditions. In the process, we show how the choice of iϵ prescription

for obtaining the phase shift is related to the boundary conditions of the topologically massive

field. Lastly, we in Section 3.5 by discussing the 3d equivalent of Weyl double, which is a way

of directly relating the Cotton curvature tensor to the field strength tensor. This relationship

holds in curved backgrounds for wave solutions. We give an explicit proof for Type N spacetimes

and show few explicit examples.

3.2 Topologically Massive Theories with Matter Cou-

plings

In this section we briefly review the actions of Topologically Massive Yang-Mills (TMYM) and

Topologically Massive Gravity (TMG) theory with a minimal coupling to matter. The action

of TMYM with a source is,

STMYM =

∫
d3x

(
− 1

4
F aµνFaµν + ϵµνρ

m

12

(
6Aaµ∂νAρ

a + g
√
2fabcA

aµAbνAcρ
)
+

g√
2
AµaJµa

)
,

(3.1)

where m is the mass of the gauge field and g the coupling strength. The equations of motion

can be easily obtain from (3.1) and read

DµF
µν +

m

2
ενργFργ =

g√
2
Jν , (3.2)

where Dµ = ∂µ − ig√
2
Aµ, Fµν = F a

µνT
a, with F a

µν the Yang-Mills field strength and T a the

generators of the gauge group. A large simplification occurs when we consider an ansatz for

the gauge field of the form Aµ a = caAµ such that the equations of motion become linear and

read

∂µF
µν +

m

2
ενργFργ =

g√
2
Jν , (3.3)

where F µν is the Maxwell field strength since we have linearized the theory.



3.2. Topologically Massive Theories with Matter Couplings 87

On the gravitational side, we use the conventions κ2 = 16πG and gµν = ηµν + κhµν . Therefore,

the action of TMG is,

STMG =
1

κ2

∫
d3x
√
−g
(
−R− 1

2m
ϵµνρ

(
Γα
µσ∂νΓ

σ
αρ +

2

3
Γα
µσΓ

σ
νβΓ

β
ρα

)
+ LMatter

)
, (3.4)

and the equations of motion are,

Gµν + Cµν/m = −κ2Tµν/2 , (3.5)

where Gµν = Rµν − 1
2
Rgµν is the Einstein tensor and

Cµν = ϵµαβ∇α(R
ν
β −

1

4
gνβR) (3.6)

is the Cotton tensor. Despite the fact that the action is third order in derivatives, the theory

is ghost free [88], due to a ϵµνρ structure of the gravitational Chern-Simons term which makes

the theory to be second order in time derivatives. The equations of motion largely simplify if

we consider a Kerr-Schild ansatz for the graviton field hµν = ϕkµkν for which the equation of

motion is linear.

3.2.1 2-2 Scattering of Matter

In this subsection, we look at the scattering of minimally coupled massive scalars through a

topologically massive mediator and analyze their double copy relation 1. We take the mass

of the scalars to be that of the topologically massive mediators 2. We write the tree level 2-2

scattering amplitude of scalars in the adjoint representation coupled to TMYM as

A4 = g2
3∑

i=1

cini

si −m2
, (3.7)

1In all the scattering amplitude calculations presented here, we work in Lorenz gauge for TMYM and in de
Donder gauge for TMG.

2When the mass of the scalar, m, is not the same as the mass of the mediator, M , the double copy of A4

can be written as MDC
4 = M4 +

P (s,t,u)
stu , where P is a polynomial. This P (s,t,u)

stu term has massless poles and
their residues are proportional to m2 −M2. If we require that MDC

4 only has contributions from the exchange
of a massive mediator and contact terms, we have to set M = m.
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where the kinematic factors are given by

ns =
i

2
(u− t)− 2m

ϵµνρp
µ
1p

ν
2p

ρ
3

s
,

nt =
i

2
(s− u)− 2m

ϵµνρp
µ
1p

ν
2p

ρ
3

t
,

nu =
i

2
(t− s)− 2m

ϵµνρp
µ
1p

ν
2p

ρ
3

u
, (3.8)

where s = −(p1 + p2)
2, t = −(p1 + p3)

2 and u = −(p1 + p4)
2. Here, the coupling to TMYM

is given by Eq. (3.1) with Jµ a = fabc∂µϕbϕc. It looks like there are massless poles in (3.8)

however, the residues of these poles are zero. This is generic feature of the amplitudes in

topologically massive theories due to 1/p2 terms in the propagators (2.125) and (2.141) that

do not correspond to a pole of a physical particle exchange. It is likely that there is another

choice of kinematic variables in which these massless poles are not present.

Similarly, the minimally coupled scalar scattering amplitude in TMG is given as

M4 =

(
8ϵµνρp

µ
1p

ν
2p

ρ
3m (4m2 − 2s− t)− 32im4s+ 8im2 (s2 + st+ t2) + it3

t (m2 − t)
+

8ϵµνρp
µ
1p

ν
2p

ρ
3m (−4m2 + s+ 2t) + i (−32m4t+ 8m2 (s2 + st+ t2) + s3)

s (m2 − s)
−

i (−8iϵµνρpµ1pν2p
ρ
3m(s− t) + 192m6 − 112m4(s+ t) + 4m2 (5s2 + 8st+ 5t2)− (s+ t)3)

(−4m2 + s+ t) (−3m2 + s+ t)

)
κ2

16
,

(3.9)

where we have used s+ t+u = 4m2 to express u in terms of s and t. The double copy of (3.7),

MDC
4 , differs from (3.9) by

M4 −MDC
4 = −im2κ2, (3.10)

which means that we can match them by adding a contact term, −κ2m2

4!
ϕ4, in the action of

TMG with a minimally coupled scalar. This non-trivial realization of the double copy reduces

to the trivial case when taking the high-energy (large s and small t) limit. In such a limit, the

contact term contribution becomes subdominant since the scattering through the topologically

massive graviton grows as s2. In the rest of this section we explore in detail the double copy in

the eikonal limit and leave the analysis of the double copy with more general matter for future
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studies.

3.3 Double Copy in the Eikonal Limit

The high-energy limit of scattering processes has been largely studied due to its connections

to classical backgrounds, which was first explored in [119]. Recently, the focus on the eikonal

limit3 has increased given the ability of obtaining classical observables that describe the inspiral

phase of the coalescence of compact binaries from the phase shift [120, 121, 122, 123, 124, 125,

126, 127, 128, 129, 130, 131, 132, 133]. In this limit, it has been shown that a simple double

copy relation arises in 4 dimensions [47, 134, 135]. Since the eikonal amplitude includes infor-

mation at all loop orders, a double copy relation for topologically massive eikonal amplitudes

will be the first hint for an all orders double copy.

We proceed to analyse in detail the topologically massive double copy in the eikonal limit where

we expect it to hold without requiring extra interactions on the gravitational side. We consider

the 2-2 scattering of external scalar fields with the following kinematics,

pµ1 =

(
1

2pv

(
q 2

4
+m2

)
, pv,

q

2

)
, pµ3 =

(
−1
2pv

(
q 2

4
+m2

)
,−pv, q

2

)
, (3.11)

pµ2 =

(
pu,

1

2pu

(
q 2

4
+m2

)
,−q

2

)
, pµ4 =

(
−pu, −1

2pu

(
q 2

4
+m2

)
,
−q
2

)
. (3.12)

These momenta are on-shell, p21 = p22 = p23 = p24 = −m2, and satisfy the momentum conservation

condition pµ1 + pµ2 + pµ3 + pµ4 = 0. Here we work in lightcone coordinates (u, v, x1),

u =
1√
2

(
x0 − x1

)
, v =

1√
2

(
x0 + x1

)
. (3.13)

3Note that our definition of eikonal limit is the limit when the center of mass energy is larger than any other
scale. There is a different definition of eikonal limit when the center of mass energy is much larger than the
momentum transfer but smaller than the mass of interacting objects.
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The independent Mandelstam invariants are

s = −(p1 + p2)
2 =

(4m2 + 8pvpu + q2)2

32pupv
(3.14)

t = −(p1 + p3)
2 = −q 2 . (3.15)

In the eikonal limit, the momenta pv and pu are much larger than q and m and hence s ≈

−u >> t and s >> m2.

In the following, we compute the eikonal amplitude to all orders for TMG and TME. We

focus on the Abelian case for simplicity since we expect that in the eikonal limit both Abelian

and non-Abelian cases double copy to the same gravitational solution, as in both cases the

same diagrams contribute to the eikonal scattering amplitude. Also, we know that eikonal

amplitudes are related to classical shock wave solutions, which are solutions to both Abelian

and non-Abelian theories.

3.3.1 Eikonal resummation in TMG

In 4d, it has been shown that the ladder and cross-ladder diagrams for massive particles of

arbitrary spin, which are expected to dominate in the eikonal limit, re-sum in impact parameter

space [136]. The eikonal 2− 2 amplitude to all loop orders is given by

iMeik (s, t) = 2s

∫
dD−2⃗beiq⃗·⃗b

(
eiδ(s,⃗b) − 1

)
, (3.16)

where the leading order in t/s and m2/s eikonal phase reads

δ(s, b⃗) =
1

2s

∫
dD−2q⃗

(2π)D−2
e−iq⃗·⃗bMtree(s, t = −(q⃗)2) , (3.17)

with Mtree(s, t = −(q⃗)2) the 4-point, tree level scattering amplitude given by the t-channel

graph in the eikonal limit. Furthermore, this phase can be expressed in terms of the square

of 3-point amplitudes by applying a BCFW-like shift. We prove the eikonal resummation for



3.3. Double Copy in the Eikonal Limit 91

topologically massive theories in Appendix I. For TMG Mtree is given as

Mtree(s, t = −(qy)2) =
−iκ2s2m

2(qy)2(qy + im)
. (3.18)

To compute the phase shift explicitly, we see that we need to regulate the following divergent

integral,

δ =
−iκ2sm

4

∫ ∞

−∞

dq

2π

1

q2(q + im)
e−ibq , (3.19)

that is, we need to choose some iϵ prescription for integrating around the pole at q = 0. We

will see later that this freedom corresponds to the freedom in choosing boundary conditions of

the shockwave solution corresponding to this scattering process and we will make the choice

best suitable for double copy. Following [137] we shift q → q − iϵ and close the integration

contour in the lower half plane when b > 0 and in the upper half plane when b < 0. This way

the contour at infinity goes to zero and we can evaluate (3.19) as a contour integral. It picks

the residue of the pole at q = −im when b > 0, and the residue of the pole at q = 0 when

b < 0. Therefore we can write

δ =
κ2sm

4

(
−Resq=−im

(
1

q2(q + im)
e−ibq

)
θ(b) + Resq=0

(
1

q2(q + im)
e−ibq

)
θ(−b)

)
. (3.20)

Evaluating the residues we get that the phase shift is given by

δ =
κ2s

4m

(
e−mbθ(b) + (1−mb)θ(−b)

)
. (3.21)

Then the eikonal amplitude reads

iMeik = 2s

∫ ∞

−∞
dbe−ibq

(
exp

(
iκ2s

4m

(
e−mbθ(b) + (1−mb)θ(−b)

))
− 1

)
. (3.22)

Note that this could be explicitly evaluated in terms of incomplete gamma functions as in

[138]. To understand the connection between the boundary conditions and regularization of

the integral, we can see what happens if we choose a different iϵ prescription for the q = 0 pole,
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for example if we shift it as q → q + iϵ. Then phase shift changes by

κ2sm

4

(
−Resq=0

(
1

q2(q + im)
e−ibq

))
=
κ2s

4m
(1−mb) . (3.23)

We will see in Section 3.4.1 that this correspends to homogeneous solution of TMG equations

of motion that can only be fixed by boundary conditions.

3.3.2 Eikonal resummation in TME

The sum of all loop diagrams for TMYM is complicated due to the different colour factors

arising at each loop order. Since we are interested in shock wave solutions which are also

solutions of the linearised theory here we will consider the eikonal amplitude in topological

massive electrodynamics (TME) of two scalars of charge Q. From now on we slightly change

the notation by absorbing the 1/
√
2 factor into Q. In other words, the covariant derivative

acting on the scalar is now Dϕ = (d− igQA)ϕ. The calculation of the TME eikonal amplitude

is given in Appendix I and the expressions are very similar to the TMG case:

iAeik = 2s

∫ ∞

−∞
dbe−ibq

(
eiδ − 1

)
, (3.24)

where the phase shift reads

δ =
1

2s

∫ ∞

−∞

dqy

2π
Atree(s, t = −(qy)2)e−ibqy , (3.25)

and Atree is given as

Atree(s, t = −(qy)2) =
2sg2Q2

qy(qy + im)
. (3.26)

Evaluating this explicitly and choosing the same contour of integration as in the TMG case

gives

δ = −ig
2Q2

2
2

(
−Resq=−im

(
1

q(q + im)
e−ibq

)
θ(b) + Resq=0

(
1

q(q + im)
e−ibq

)
θ(−b)

)
, (3.27)
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which finally leads to a compact expression for the TME phase shift

δ = −g
2Q2

m

(
e−mbθ(b) + θ(−b)

)
. (3.28)

3.3.3 Double Copy of Eikonal Amplitudes and Phase Shift

After showing that the exponentiation in the eikonal limit is a feature of TMG and TME

amplitudes just like in the gravity and Yang-Mills case in 4d, we would like to understand if

a simple double copy relation arises in this limit just like in 4d [47]. To do so, it is useful to

write the n− 1 loop diagrams of the TME eikonal amplitude as

iAn−1

(
√
2g)2n

=
i

n!

(
1

2s

)n−1 ∫ ∞

−∞
dbe−ibq

(∫ ∞

−∞

dqy

2π

sQ2(qy − im)

qy((qy)2 +m2)
e−ibqy

)n

. (3.29)

comparing this with ,

iAn−1

(
√
2g)2n

∼
∫
cN

D
, (3.30)

where c is the colour factor, N is the kinematic factor and D is the product of all propagators

(which also includes the factor of (2s)n−1 which comes from propagators), we can identify

c = Q2n, N = (s(1− im/qy))n and D = (2s)n−1((qy)2 + m2)n. Following the prescription

of leaving propagators untouched and exchanging colour (in this case electric charge Q) for

kinematics, we can now find the double copy by considering the replacement Q2 → s(1−im/qy)

which leads to

iMD.C.
n−1

(iκ/2)2n
=

1

n!

(
1

2s

)n−1 ∫ ∞

−∞
dbe−ibq

(∫ ∞

−∞

dqy

2π

s2(qy − im)

(qy)2(qy + im)
e−ibqy

)n

. (3.31)

When comparing to the TMG result in Eq. (I.12), Eq. (I.13) and Eq. (I.14), we can see that

there is a mismatch in the amplitudes. Naively, this could be interpreted as requiring new

degrees of freedom on the double copy side. Nevertheless, we will show that this is not the

case, and instead it is just an artifact of the massive double copy.
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We now proceed to understand the origin of the mismatch between the double copy and TMG

eikonal amplitude by looking at the tree level result in detail. We start by looking at the

eikonal limit of the kinematic factors of the four-point scalar amplitude in topological massive

Yang-Mills:

ns = nu = −is
2
, nt = s

(
i± m√

−t

)
, (3.32)

where the ± sign comes from ϵµνρp
µ
1p

ν
2p

ρ
3 = ±1

2

√
stu. We see that in the Yang-Mills amplitude

the t channel dominates since the s and u channels are suppressed by 1/s:

Aϕ4 → g2
ctnt

t−m2
. (3.33)

However, when constructing the massive double copy we have a new term proportional to

(ns + nt + nu)
2 coming from requiring the CK duality. In this term all channels contribute

equally:

ns + nt + nu = ± ms√
−t
. (3.34)

Therefore, the double copy of this amplitude is not simply proportional to n2
t :

−i
(κ
2

)−2

M4 =
n2
s

s−m2
+

n2
t

t−m2
+

n2
u

u−m2
− (ns + nt + nu)

2

m2
→ n2

t

t−m2
− (ns + nt + nu)

2

m2

= −2ms2(m± i
√
−t)

t(t−m2)
,

(3.35)

which correctly reproduces the TMG eikonal amplitude. This tells us that to correctly double

copy the scattering amplitude in the eikonal limit we require information beyond the eikonal

limit. Alternatively, one could further require that |t|≪ m2 in which case a simple double copy

relation arises if we take Q2 → ms√
−t

and note that in this limit the propagators are given by −m2

[12]. Nevertheless, restricting to the large mass limit would lead to an incorrect computation

of the phase shift as can be seen from the previous sections.

Note that despite this issue at the level of the scattering amplitudes, a double copy for the

phase shift will arise in the same way as in the 4d Yang-Mills and gravity case. To see this,
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one should note that given our choice of boundary conditions, the phase shift is only physical

for y > 0. On this side of the shock wave, the phase shift scales as expected for a scattering

through a massive mediator of spin J, that is, δ ∼ sJ−1e−mb. Thus we see that

δTME

g2
=
Q2

m
e−mb −−−→

Q2→s

δTMG

(κ/2)2
=

s

m
e−mb . (3.36)

3.4 Double Copy of Classical Solutions

In this section, we will relate the eikonal amplitudes computed above to classical field profiles

for the graviton and the gauge field. We do so by interpreting the 4-point scalar amplitudes as

the scattering of a scalar off a shock wave background, which in turn is generated by a point-

particle with large momentum (the second scalar). Since it is possible to write the gravitational

shock wave in Kerr-Schild coordinates, we will explore if we can construct a classical double

copy for such solutions. For the standard massless Yang-Mills and Gravity cases, the double

copy of shock waves has been explored in various contexts [47, 139, 118, 140].

We proceed by looking at the Kerr-Schild double copy, single copy and zeroth copy ansatze and

understanding the equations of motion that they satisfy. Given a metric of the form

gµν = ηµν + κkµkνϕ , (3.37)

where ηµν is the Minkowski metric and kµ is null and geodetic, the single copy is given by

Aa µ = caAµ = cakµϕ . (3.38)

To understand if this ansatz gives a solution to TMYM we look at the trace reversed TMG

equations with one upper and one lower index

Rµ
ν +

1

m
Cµ

ν = −κ
2

2
(T µ

ν − Tgµν ) . (3.39)
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Contracting this equation with a Killing vector V µ one finds

∇λF
λµ +

1

m
ϵµαβ∇α∇λFλβ +

V ν

V λkλ
(Xµ

ν + Y µ
ν ) =

κ

2
Jµ , (3.40)

Jµ ≡ 2V ν

V ρkρ

(
T µ
ν − δµνT −

1

2m
ϵµαν∇αT

)
, (3.41)

where ∇ is the covariant derivative of η and

Xµ
ν ≡ −∇̄ν

[
Aµ

(
∇̄λk

λ +
kλ∇̄λϕ

ϕ

)]
, (3.42)

Y µ
ν ≡ F ρµ∇̄ρkν − ∇̄ρ

(
Aρ∇̄µkν − Aµ∇̄ρkν

)
. (3.43)

We see that the equation of motion in TMG is third order in derivatives. This suggests that in

order to solve it we will need more boundary conditions compared to general relativity where

the equations of motion are second order. We will see later that in fact the boundary conditions

play important role in the classical double copy relations between shockwaves in TMYM and

TMG; the relations are only manifest for a specific choice of boundary conditions. This is

different from the usual massless case where classical double copy relations are apparent at the

level of equations of motion, without imposing any boundary conditions.

The equation for the single copy largely simplifies when we consider wave solutions. In such

case, the source either vanishes or corresponds to a particle sourcing a shock wave so that the

trace of the stress energy tensor vanishes. Furthermore, we can work with lightcone coordinates

such that

ηµνdx
µdxν = −2dudv + dy2 . (3.44)

Meanwhile, the Kerr-Schild and Killing vector are given by

kµdx
µ = −du , Vµdx

µ = dv , k · V = 1 (3.45)

The single copy equation of motion now reads

∇λF
λµ +

1

m
ϵµαβ∇α∇λFλβ = gJµ = 2gV νT µ

ν , (3.46)
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where we have taken κ/2→ g. We note that the single copy does not automatically satisfy the

linearized equation of motion of TMYM unless the covariant derivatives pull out factors of the

mass and give

εµργkγ∇ρ

(
∇2ϕ

m2

)
= εµργkγ∇ρϕ . (3.47)

This is satisfied as long as the zeroth copy, ϕaã = cacãϕ, satisfies the linearized massive biadjoint

scalar equation of motion for a vacuum solution or away of a localized source. To see that this

is a consistent requirement, we obtain the zeroth copy eom by contracting Eq. (3.46) with the

Killing vector V and find

∇2ϕ+
mϵµλρVµ(∇λϕ)kρ

k · V
+ k · Z = g

J · V
k · V

≡ j , (3.48)

where

Zν ≡ (V ρkρ) ∇̄µ

(
ϕ∇̄[µkν] − kµ∇̄νϕ

)
+mϵµλρVµ(∇λkρ)ϕ . (3.49)

Considering again the case of wave solutions, we find that the zeroth copy satisfies the following

equation of motion

∇2ϕ+mϵµλρVµ(∇λϕ)kρ = j = 2V νV µT µ
ν . (3.50)

Requiring consistency of the double copy restricts the zeroth copy to satisfy ∂yϕ = −mϕ. Thus,

the Kerr-Schild double copy for TMG waves fixes the zeroth copy to satisfy

ϕ = Ae−my , (3.51)

where A is a constant. It is trivial to see that plane waves will satisfy the double copy relation.

Hence, in the following we analyze in detail the more involved case of shock wave solutions.

3.4.1 Shock Waves

Shock wave solutions are closely related to scattering amplitudes in the eikonal limit. A probe

particle moving in a shock wave background will experience a time delay which can also be

computed by considering the 2 to 2 scattering in the eikonal limit of such particle with the
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massless particle generating the shock wave. Understanding the double copy of shock wave

solutions could give a hint of an all order double copy relation. Here, we will analyze in detail

how to construct a double copy for these classical solutions. In TMG, these solutions have

been previously studied in [138, 137, 141] where an important feature is highlighted, the need

to choose boundary conditions to fully fix the metric. In the following, we construct the TMG,

TME and biadjoint scalar shock waves by choosing a special case of boundary conditions that

makes the double copy relation explicit.

We start by constructing the shock wave solution in TMG for a source

T µν = Eδ(u)δ(y)δµv δ
ν
v , (3.52)

with energy E. The metric can be written in lightcone Kerr-Schild coordinates with the Kerr-

Schild scalar given by

ϕ = δ(u)g(y) , (3.53)

where g satisfies

g′′′(y) +mg′′(y) = κEmδ(y) . (3.54)

The TMG shock wave is not fixed by requiring asymptotic flatness as in the GR case. Since

flatness only requires g′′(y) = 0, given a solution g1 of Eq. (3.54), g2 = g1 + c(u)G is an asymp-

totically flat shock wave as long as G′′ = 0. So one could ask if there are certain boundary

conditions that allow for a double copy relation in coordinate space. Since we would like to

connect our classical solution to the eikonal amplitudes, we will choose our boundary conditions

such that they are consistent with the phase shift calculation in the previous section.

The 2-2 amplitude in the eikonal limit can be reproduced by considering the propagation of a
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point particle in the shock wave background. Following [138]4, we change the coordinate v to

v → v +
κ

2
θ(u)g(y) (3.55)

which changes dv → dv + κ
2
(δ(u)g(y)du+ θ(u)d(g(y))) so the metric is now

ds2 = −2dudv + dy2 − κ θ(u) du d(g(y)) . (3.56)

For u < 0 the metric if Minkowski in u, v, y coordinates but for u > 0 it is Minkowski in

u, v + κ
2
g(y), y coordinates. Therefore, we can write the wavefunction of the incoming particle

with momentum p (in u < 0 region) as

ψin =
1

(2π)3/2
eip·x , (3.57)

while for outgoing particle of momentum p′ (in u > 0 region) it is

ψout =
1

(2π)3/2
eip

′·x+ 1
2
ip′vκg(y) . (3.58)

The scattering amplitude Meik defined as

δ(pv − p′v)δ(pu − p′u)M
p.p.
eik (qy = p′y − py) =

∫
d3xψin(x)ψ

∗
out(x) , (3.59)

is equal to

Mp.p.
eik =

∫ ∞

−∞

dy

2π
ei(−qy− 1

2
κp′vg(y)), (3.60)

where for our kinematics p′ − p = −p2 − p4 = q and pu = E so p′v = s
2E

. This matches the

result in (3.22) if

g(y) = −κE
m

(
e−myθ(y) + (1−my)θ(−y)

)
, (3.61)

4Note that there is a minus sign in front of q in (3.60) compared to [138], since the shock wave geometry
is sourced by particle 1 and the incoming test particle is particle 2. Therefore py − ky of [138] is equal to
py2 + py4 = −q in our convention.
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when taking into account the non-relativistic normalization and conventions:

Mp.p.
eik = δ(q) +

Meik

4πs
. (3.62)

We can see that this choice gives boundary conditions such that in one side (y > 0) of the

shock wave the metric is Cartesian, i.e., limy→∞ hµν = 0, while for y < 0 it is flat, even if it

is in non-Cartesian coordinates. A different choice of boundary conditions would correspond

to adding some homogeneous solution of (3.54). Now we can connect this freedom of choosing

boundary conditions to the freedom in regulating the divergent integral in the eikonal scattering

amplitude calculation given in Section 3.3.1. We can easily see that changing the phase shift

by (3.23) corresponds to adding a homogeneous solution of (3.54), since a function linear in y

is a homogeneous solution of (3.54).

We now proceed to compute the shock wave for linearized TMYM, that is, TME in a similar

manner. Consider a source Jµ = Qδ(u)δ(y)δµv and an ansatz for the shock-wave solution in

TMYM of the form

Aa = −caδ(u)f(y)du . (3.63)

Plugging this in the TMYM eom gives

f ′′(y) +mf ′(y) = −gQδ(y) . (3.64)

As in the gravitational case, the shock wave is not fully determined by requiring that the field

strength vanishes at infinity. In this case, given a solution f1 of Eq. (3.64), f2 = f1 + c(u)F is

also a shock wave with asymptotically vanishing field strength as long as f ′ = 0. This leaves

us with the freedom of imposing stronger boundary conditions on the gauge field to fully fix it.

We will proceed as in the gravitational case and fix this boundary condition by looking at the

eikonal scattering amplitudes. We consider the scattering amplitude for the propagation of a

point particle in the shock wave gauge background. Similar to the TMG case, we first perform
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a gauge transformation on A

A→ A+ d(θ(u)f(y)) = θ(u)f ′(y)dy . (3.65)

The wavefunction of a point particle with charge Q moving in an electromagnetic field, satisfying

DµDµψ = 0, can be written as

ψ = eigQ
∫ x Aµdxµ+ip·x , (3.66)

where the integral can be taken over any path that ends at x. We choose the path so that it

starts in the u < 0 region. The wavefunction of the incoming particle with momentum p (in

the u < 0 region) is then

ψin =
1

(2π)3/2
eip·x , (3.67)

while for the outgoing particle with momentum p′ (in the u > 0 region) is

ψout =
1

(2π)3/2
eigQ

∫ y f ′(y′)dy′+ip′·x =
1

(2π)3/2
eigQf(y)+const.+ip′·x . (3.68)

Additionally, we choose the path such that the constant of integration is zero. Then by (3.59)

the point-particle scattering amplitude, Ap.p.
eik , is equal to

Ap.p.
eik =

∫ ∞

−∞

dy

2π
e−iqy−igQf(y). (3.69)

Matching this to the eikonal amplitude in Eq. (3.28) and (I.20), and taking into account the

non-relativistic normalization of the point particle amplitude in Eq. (3.62) we find that

f(y) =
gQ

m

(
e−myθ(y) + θ(−y)

)
. (3.70)

This choice corresponds to boundary conditions in which the field strength is zero for y < 0

and on the other side of the shock wave we have limy→∞Aµ = 0.

Lastly, we look at the zeroth copy, ϕaã = cacãS, shock wave which is a solution of the linearized
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bi-adjoint scalar equations of motion:

(∇2 −m2)S = −λδ(u)δ(y) . (3.71)

The scalar field shock wave solution is

S =
λ

2m

(
e−myθ(y) + emyθ(−y)

)
δ(u) . (3.72)

Note that for the scalar case, there is no analog of having the curvature, or field strength van-

ishing, or an extra freedom in the solution from choosing boundary conditions. In fact, in this

case the field approaches 0 at both y = ±∞.

Now, we can proceed to construct the double copy of the TMYM shock wave to understand if it

corresponds to the TMG shock wave. We can immediately see that this construction is highly

dependent on our choice of boundary conditions. If we simply look at the equations of motion,

we would naively conclude that the double copy of the TMYM shock wave does not correspond

to the TMG shock wave. Instead, it would suggest that the source on the gravitational side is

given by Tuu = E
m
δ(u)∂yδ(y) with all other components being zero. Nevertheless, one should

be careful since we need to choose the appropriate boundary conditions to completely fix the

shock wave solutions. Considering the special choice used in the computations above, we can

see that the Kerr-Schild double copy holds on the y > 0 side of the shock wave. In this side

of the shock wave, the condition for the Kerr-Schild zeroth copy, Eq. (3.51), is fulfilled and the

double copy relation is satisfied when we consider the replacements:

κ

2
←→ g ←→ 1 , 2E ←→ Q←→ λ , (3.73)

where the factor of 2 is standard in relating the Kerr-Schild sources as seen in Eq. (3.46). On

the other hand, the relation does not hold for y < 0, but this should not cause alarm, since on

that side of the shock wave the spacetime is flat and the field strength vanishes. Hence, the

apparent mismatch is simply explained by the choice of boundary conditions on that side of
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the shock wave which obscures the double copy relation. This conclusion is similar to the time

delay computation presented in [137]. Naively, computing the time delay, ∆x− = δ(s, b)/|p−|,

using the phase shift in Eq. (3.21) and (3.28) will give a non-zero result on the y < 0 which is

unphysical since in this side of the shock wave the space is flat (the field strength vanishes).

3.4.2 Gyratons

Now we consider a generalization of the shock wave metric by adding a classical spin to the

source. In this subsection, we will construct such solutions for TMG, TMYM, and the biadjoint

scalar. In gravitational settings, this type of solutions have been dubbed gyratons and their

metric is

ds2 = −2dudv + dy2 + κϕ(u, y)du2 + 2κα(u, y)dudy . (3.74)

The stress tensor is now given by

Tµν =
(
Ekµkν + σk(µϵ

αβ
ν) kα∂β

)
δ(u)δ(y) , (3.75)

where E is the energy of the source and σ its spin. Writing ϕ = g(y)δ(u), the TMG equation

of motion now gives

∂2y (g
′(y)δ(u)− 2∂uα(u, y))+m∂y (g

′(y)δ(u)− 2∂uα(u, y)) = κmδ(u) (Eδ(y)− σδ′(y)) . (3.76)

We see that outside the sources the equation of motion is similar to that of the shock wave but

now the y derivative of ϕ is shifted to ∂yϕ = ∂yϕ− 2∂uα. The metric (3.74) is invariant under

the following transformation [142]:

v → v + κ λ(u, y), α→ α− ∂yλ, ϕ→ ϕ− 2∂uλ . (3.77)

We can fix this gauge freedom by imposing

∂yα = 0 . (3.78)
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Now if we assume α has the same u dependence as ϕ(u, y) = g(y)δ(u), i.e. α(u, y) = α(y)δ(u),

then the gauge condition implies that α(y) = constant. Then the solution of (3.76), with the

same boundary conditions for ϕ as before, is given as

g =
κ

m
(E +mσ)e−myθ(y) +

κ

m
(E +mσ − Emy)θ(−y) , (3.79)

α = 0 . (3.80)

Here we have chosen α = 0 so that the metric is in Cartesian coordinates on the y > 0 side of

the gyraton. Note that with this choice the metric is in Kerr-Schild coordinates as in the shock

waves case.

It is interesting to note that the inclusion of classical spin changed the expression of the shock-

wave Kerr-Schild scalar on the physical side (y > 0) by shifting the energy as

E → E
(
1 +m

σ

E

)
. (3.81)

This type of energy shift was originally found when looking at gravitational anyons in [92]. It

is not surprising that the same shift arises for gyratons, since we can think of them as being

sourced by highly-boosted anyons. Alternatively, this shift can be obtained by shifting the y

coordinate as y → y − σ/E and taking the small σ/E limit. This shift is reminiscent of the

spin deformations of 3-point on-shell amplitudes in 3d [143], which in 4d are related to the

Newman-Janis shift[144, 145, 146, 147, 148, 149]. We will see in the following that this shift

also arises for the TME and biadjoint scalar gyratons.

On the gauge theory side we can consider the following gauge field:

Aa = ca(φ(u, y)du+ β(u, y)dy), (3.82)
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which gives only one non-vanishing component of field strength Fuy = −∂yφ + ∂uβ just like

in the shock wave case. Expressing φ = f(y)δ(u), the equation of motion with the spinning

source,

Jµ =
(
Qkµ +Q′ϵαβµ kα∂β

)
δ(u)δ(y) , (3.83)

gives the following:

∂y (f
′(y)δ(u)− ∂uβ(u, y)) +m (f ′(y)δ(u)− ∂uβ(u, y)) = g (Qδ(u)δ(y)−Q′δ(u)δ′(y)) . (3.84)

We now choose to impose the Lorenz gauge condition which implies

∂yβ = 0 , (3.85)

but we still have some residual freedom from choosing boundary conditions which we fix by

picking the same boundary conditions as in the shock waves case, that is, that the field strength

vanishes on one side of the shock wave and on the other side the gauge field vanishes asymp-

totically. With this choice, we get the following solution:

f = g
Q+mQ′

m

(
θ(y)e−my

)
+ g

Q

m
θ(−y), (3.86)

β = 0. (3.87)

An important feature of this choice is that the gauge field is null, as required by the Kerr-Schild

single copy ansatz.

Finally, we construct the zeroth copy solution for a spinning source. The linearized equation

of motion reads

(∇2 −m2)S = − (λδ(u)δ(y)− λ′δ(u)δ′(y)) , (3.88)
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and its solution is given by

S =
1

2m

(
(λ+mλ′)e−myθ(y) + (λ−mλ′)emyθ(−y)

)
δ(u) . (3.89)

Consequently, we see that Kerr-Schild double copy works in a similar way as before in the

region y > 0 where the curvature (field strength) is non-zero, with the replacements now given

by

κ

2
←→ g ←→ 1 , 2(E +mσ)←→ Q+mQ′ ←→ λ+mλ′ . (3.90)

3.4.3 dRGT Shock Waves

As a special case, we will analyze the massive double copy of shockwaves in d ≥ 4. Although

it is known that the double copy construction fails to reproduce dRGT massive gravity at 5-

points due to the appearance of spurious poles, it would be interesting to understand if it is

possible that the 4-point double copy holds beyond tree-level. A simple example that that can

help us understand this consists of analyzing the classical shock wave solutions since this can

be entirely reproduced from looking at the 2-2 eikonal scattering. In dRGT, the shock wave

solutions for a stress tensor of the form T µν = Eδ(u)δ(x⃗− x⃗0)δµv δνv can be written in Kerr-Schild

form as

ds2 = −2 dudv + dx⃗2 + κδ(u)F (x⃗) du2 , (−∇2 +m2)F (x⃗) = κEδ(x⃗− x⃗0) . (3.91)

In fact, this is a solution to the equations of motion for a massive graviton with an arbitrary

potential [150], even if such cases include ghosts. The Kerr-Schild vector and scalar are given

by

kµdx
µ = −du , ϕ = δ(u)F (x⃗) . (3.92)

Thus, the single copy is given by

Aµ a = −caδ(u)F (x⃗) δµv . (3.93)
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Using this in the massive Yang-Mills equations of motion and considering the replacements in

Eq. (3.73), we find

(−∇2 +m2)F (x⃗) δ(u) = gQδ(x⃗− x⃗0) , (3.94)

which tells us that this indeed corresponds to a shock wave solution of massive Yang-Mills with

a source Jµ = Qδ(u)δ(x⃗ − x⃗0)δµv . One should note that this double copy relation holds for all

d ≥ 4. This simple relation might be a hint that the loop level massive double copy holds at

4-points for massive gravity.

3.5 Cotton Double Copy

Having seen that the Kerr-Schild double copy between shockwave solutions of TMYM and TMG

holds on the non trivial side of the shockwave, y > 0, where the curvature and field strength are

non-zero, raises a question: can we get a cleaner formulation of double copy by directly relating

the curvature to the field strength? In 4d this is known as Weyl double which is summarized

in the introduction. However in 3d the Weyl tensor is zero so another formulation of double

copy is needed. It turns out that the Cotton tensor plays the the Weyl tensor role, therefore

we attempt to relate Cotton tensor of TMG to the field strength tensor of TMYM. Since the

Weyl double copy is usually formulated in terms of spinors we will use 3d spinor formalism for

Cotton double copy.

Since we will be interested in curved backgrounds we write the action of TMYM in a curved

spacetime as

STMYM =

∫
d3x
√
−g

(
− 1

4
F aµνFaµν +

g√
2
AµaJµa

+εµνρ
m

12

(
6Aaµ∂νAρ

a + g
√
2fabcA

aµAbνAcρ
))

, (3.95)

where m is the mass of the gauge field, g the coupling strength, and εµνρ is the Levi-Civita

tensor given by εµνρ =
√
−gϵµνρ, with ϵµνρ the Levi-Civita symbol. As before, we will consider

gauge fields and sources of the form Aµ a = caAµ and Jµ a = caJµ, with ca a constant color
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charge, so that the equations of motion become linear and read

∇µF
µν +

m

2
ενργFργ =

g√
2
Jν , (3.96)

where Fµν is the linearised Yang-Mills field strength. As we saw in the previous sections the

double copy of TMYM corresponds to TMG theory whose action (including the cosmological

constant),

STMG =
1

κ2

∫
d3x
√
−g

(
−R + 2Λ + LMatter

− 1

2m
εµνρ

(
Γα
µσ∂νΓ

σ
αρ +

2

3
Γα
µσΓ

σ
νβΓ

β
ρα

))
, (3.97)

where κ2 = 16πG, and Λ is the cosmological constant. The equations of motion read

Gµν + Cµν/m = −κ2Tµν
2
− Λgµν , (3.98)

where Gµν is the Einstein tensor and Cµν = εµαβ∇α(R
ν
β − 1

4
gνβR) the Cotton tensor.

We proceed to understand whether one can construct an analogue of the Weyl double copy

for topologically massive theories. When trying to generalise this to 3d, one immediately hits

a roadblock since the Weyl tensor is zero. Instead, we will look at the analogue of the Weyl

tensor in 3d which is the Cotton tensor. In 3d, the Cotton tensor is invariant under conformal

transformations and thus is zero for conformally flat spacetimes, just like the Weyl tensor for

d > 3. Since the Cotton tensor appears in the TMG equations of motion, Eq. (3.98), this tells

us that we could write it as a square of terms in the TMYM equations of motion. By a simple

counting of derivatives, we see that an appropriate ansatz is

C lin.
µν = −1

4

(
∂λF lin.

λ(ν

)(
εµ)ργ(F

ργ)lin.
)

eip·x
, (3.99)

which is satisfied for plane waves. Note that we can use the TMYM equations of motion, (3.96),

to rewrite this relation in a simpler form. Considering only localised sources, outside of the
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source we have

C lin.
µν =

m

2

⋆F lin.
(µ

⋆Fν)lin.

eip·x
, (3.100)

where ⋆Fρ = εµνρF
µν/2 is the dual field strength. In the following section we will use this

relation as motivation for the Cotton double copy.

3.6 3d Spinor formalism for the Cotton double copy

The spinor formalism in 3d has been considered in [151, 152, 153]. It uses the fact that the

3d Lorenz group SO(2, 1) is isomorphic to SL(2,R)/Z2 to rewrite the tangent space Lorentz

transformations. This allows us to write a vector in tangent space as

va = −(σa)ABv
AB, (3.101)

where the sigma matrices, σa, form a basis of SL(2,R) that satisfy the Clifford algebra

(σa)AB(σb)
B
C + (σb)AB(σa)

B
C = 2ηabϵAC . (3.102)

We choose the sigma matrices as

σA
B =

1√
2


 0 1

−1 0

 ,

 0 1

1 0

 ,

 1 0

0 −1


 . (3.103)

Note that σAB and σAB are symmetric.

To move between coordinate space and tangent space we use the frame eµa that satisfies

ηab = eµae
ν
bgµν . Thus, we can write a vector in coordinate space as vµ = −eµa(σa)ABv

AB.

The SL(2,R) indices, A,B = 1, 2, are lowered and raised with the 2d Levi-Civita sym-

bol ϵAB according to the following conventions ψA = ψBϵ
BA , ψA = ϵABψ

B [152]. In the

following, it will be useful to work with a spinor basis given by a dyad (ι, o) that satisfies
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ιAι
A = oAo

A = 0 , ιAo
A = −1. Thus we can write ϵAB = 2ι[AoB].

Now we proceed to expressing the linearised TMYM field strength tensor, Fµν , in terms of

spinors. Contracting the Lorentz indices with σ matrices gives FABCD, which must be antisym-

metric with respect to exchanging AB to CD. Using this antisymmetry property and that the

fact that antisymmetrization with respect two indices A and B must be proportional to ϵAB,

it is easy to see that FABCD must be of the following form:

FABCD = fBDϵAC + fACϵBD , (3.104)

where fAB = fBA can be interpreted as the dual field strength fµ = −σµ
ABf

AB ∝ ϵµαβFαβ.

Then substituting this into the equation of motion (3.96) in vacuum (Jν = 0) and expressing

everything in terms of spinor indices we get

∇C
(AfB)C =

m√
2
fAB . (3.105)

Now we use the Bianchi identity, dF = 0, which in terms of spinors is

∇EFFABCD +∇ABFCDEF +∇CDFEFAB = 0. (3.106)

Contracting this with ϵEC and ϵBD and substituting (3.104) gives ∇C
[FϕA]C = 0, which implies

that symmetrization on the left hand side of (3.105) is redundant. Therefore the equation of

motion of fAB can be written as

∇C
AfBC =

m√
2
fAB . (3.107)

Similarly, we need to write TMG equation of motion in terms of spinor equivalents of curvature

tensors. In a vacuum 3d spacetime (Tµν = 0), the TMG equations of motion can be written as

Gµν := Rµν −
1

2
Rgµν = −1

6
Rgµν −

1

m
Cµν , (3.108)

since contracting the indices of the equation of motion and using the fact that Cµν is traceless
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gives Λ = −R/6. This implies that the Cotton tensor is proportional to the traceless part of

the Ricci tensor, Φµν , on the solutions of the equations of motion:

Cµν = −m
(
Rµν −

R

3
gµν

)
= −mΦµν . (3.109)

The definition of the Cotton tensor, Cµν = εµαβ∇α(R
ν
β − 1

4
gνβR), together with contracted

Bianchi identity, ∇µGµν = 0, which in terms of spinors is

∇ABΦABCD +
1

6
∇CDR = 0, (3.110)

implies that the Cotton spinor is related to the spinor corresponding to the traceless part of

Ricci tensor, ΦABCD, in the following way [152]

CABCD = −
√
2∇E

(AΦBCD)E. (3.111)

The fact that Cµν is symmetric and trace free implies that CABCD is totally symmetric. Substi-

tuting the spinorial version of (3.109) into this equation gives the following equation of motion

for the Cotton spinor:

∇E
(ACBCD)E =

m√
2
CABCD. (3.112)

Using the Bianchi identity (3.110) in vacuum whereR = −6Λ is constant implies that∇E
[AΦB]CDE =

∇E
[ACB]CDE = 0, therefore the symmetrization of the indices of the left hand side of (3.112) is

redundant so the equation of motion for the Cotton spinor can be written as

∇EACBECD =
m√
2
CA

CDE . (3.113)

Motivated by the linear relationship found in Eq. (3.100), we propose that the analogue of the
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Weyl double copy between the Cotton and field strength spinors is 5

CABCD =
m

2

f(ABfCD)

S
. (3.114)

Below we will proof that this relationship is satisfied for Type N spacetimes with a scalar

field S satisfying the massive Klein Gordon equation with a non-minimal coupling in curved

spacetimes. Note that (3.114) follows the KLT double copy philosophy. In our case S plays the

role of the KLT kernel and can be thought of as a linearised solution of the massive biadjoint

scalar when considering the ansatz Sab = cacbS; this is commonly referred to as the zeroth

copy.

3.7 Algebraic classification of tensors in 2+1 d

Now we briefly review the 2+1 d analog of classification of tensors in 3+1 d. First we need to

introduce the concept of principal spinor. A symmetric n-index spinor, ϕAB...E can be written

as

ϕAB...E = α(AβB...δE), (3.115)

where the spinors α, β, ...,δ are called principal spinors of ϕ. This can be seen by contracting

ϕAB...E with n factors of an arbitrary spinor ξA = (ξ1, ξ2), which gives (ξ2)
n times an n th degree

polynomial in ξ1/ξ2:

ϕAB...Eξ
AξB...ξE = (ξ2)

n

(
ϕ11...1

(
ξ1
ξ2

)n

+ nϕ21...1

(
ξ1
ξ2

)n−1

+ ...+ ϕ22...2

)
. (3.116)

By the fundamental theorem of algebra this polynomial must be a product of its roots, zi:

(ξ2)
n

n∏
i=1

(
ξ1
ξ2
− zi

)
=

n∏
i=1

(ξ1 − ziξ2) , (3.117)

5The mass factor in Eq. (3.114) is a choice of conventions. It could be absorbed in S or we could write the
relation for the traceless Ricci spinor since the TMG equations tell us that CABCD = −mΦABCD, where the
traceless Ricci tensor is given as Sµν ≡ Rµν −Rgµν/3 = σµ

ABσ
µ
CDΦABCD.
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which can be written as

ϕAB...Eξ
AξB...ξE = αAξ

AβBξ
B...δEξ

E, (3.118)

where, for example, we can choose αA = (1, z1), βA = (1, z2) etc. This gives (3.115) because

ξ is arbitrary. Since symmetric traceless tensors correspond to totally symmetric spinors, they

can be classified by the multiplicity of the principal spinors.

As was shown in (3.104) a two-form can be written in terms of symmetric spinor fAB. Once a

basis for spinors (ι, o) is chosen, fAB can be expanded as

fAB =
(
Φ0ι

2 + 2Φ1ιo+ Φ2o
2
)
(AB)

, (3.119)

and its algebraic classification [154] is found in Table 3.1. Different types correspond to different

ways of how a symmetric real (fAB = f̂AB where hat denotes conjugation) spinor can be a

product of principal spinors. We see that this classification corresponds to classifying the dual

field strength fµ as spacelike, timelike or null.

Table 3.1: Algebraic classification of two form field in 2+1 d [154].

fµf
µ Normalization Principal spinors

> 0 Φ1 = 0,Φ2/Φ0 < 0 fAB = α(AβB) with α̂A = αA, β̂A = βA
< 0 Φ1 = 0,Φ2/Φ0 > 0 fAB = α(Aα̂B)

= 0 Φ0 = 0,Φ1 = 0,Φ2 = ±1 fAB = ±α(AαB) with α̂A = αA

Similarly, as mentioned before, the spinor equivalent of a symmetric tensor and traceless rank-2

tensor is totally symmetric. In such case, one can write the corresponding spinor as

CABCD =
(
Ψ0ι

4 + 4Ψ1ι
3o+ 6Ψ2ι

2o2 + 4Ψ3ιo
3 +Ψ4o

4
)
(ABCD)

, (3.120)

and the algebraic classification [154] is found in Table 3.2. The curvature scalars Ψi are the

analogous of the 3+1 d Newman–Penrose (NP) scalars [155]. Like in 4d the symmetric tensors

can be classified by the multiplicity of their principal spinors, however in 3d a further classi-

fication can be obtained, since when two principal spinors, α and β, are not proportional to

each other, α can either be proportional to the conjugate spinor of β, β̂, (whose components in
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Lorentzian signature are β̂A = (βA)
∗) or not. In the rest of this thesis we will focus on type N

spacetimes. One can in principle look for double copy relations in type D spacetimes. However,

it was shown in [156] that all type D solutions of TMG are equivalent to the biaxially squashed

Anti-de Sitter space which is not an asymptotically flat space, therefore it is not obvious what

should be the corresponding single copy solution in TMYM and on which background it should

be defined.

Table 3.2: Algebraic classification of a rank 2, totally symmetric, traceless tensor in 2+1 d [154].
If we restrict ourselves to real principal spinors, αA, βA, γA, δA, we have the same Petrov types
as in the standard 3+1 classification. Note that the spinor dyad (ι, o) will change under Lorentz
transformations, which in turn induces a change on the NP scalars, Ψi, so the normalization
changes under Lorentz transformations.

Type Normalization Principal spinors

I Ψ1 = Ψ3 = 0,Ψ0 = Ψ4, 3Ψ2/Ψ0 < −1 ΦABCD = α(AβBγCδD) with α̂ = α, β̂ = β, γ̂ = γ, δ̂ = δ

IZ Ψ1 = Ψ3 = 0,Ψ0 = −Ψ4 ̸= 0 ΦABCD = α(AβBγC γ̂D) with α̂ = α, β̂ = β

IZZ Ψ1 = Ψ3 = 0,Ψ0 = Ψ4, 3Ψ2/Ψ0 > 1 ΦABCD = ±α(Aα̂BβC β̂D)

II Ψ1 = Ψ3 = Ψ4 = 0,Ψ2/Ψ0 < 0 ΦABCD = α(AαBβCγD) with α̂ = α, β̂ = β, γ̂ = γ

IIZ Ψ1 = Ψ3 = Ψ4 = 0,Ψ2/Ψ0 > 0 ΦABCD = ±α(AαBβC β̂D) with α̂ = α

D Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0,Ψ2 ̸= 0 ΦABCD = ±α(AαBβCβD) with α̂ = α, β̂ = β

DZ Ψ1 = Ψ3 = 0,Ψ0 = Ψ4 = 3Ψ2 ̸= 0 ΦABCD = ±α(AαBα̂Cα̂D)

III Ψ0 = Ψ1 = Ψ2 = Ψ4 = 0,Ψ3 = 1 ΦABCD = α(AαBαCβD) with α̂ = α, β̂ = β

N Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0,Ψ4 = ±1 ΦABCD = ±α(AαBαCαD) with α̂ = α

O Ψ0 = Ψ1 = Ψ2 = Ψ3 = Ψ4 = 0, ΦABCD = 0

3.8 Type N solutions

We will consider Cotton double copy for Type N solutions of TMG in Minkowski and Anti-de

Sitter (AdS) backgrounds. For AdS we will work in Poincare coordinates in which the AdS

metric is written as

ds2AdS =
L2

y2
(
−2dudv + dy2

)
, (3.121)

where L is the AdS radius.

For Type N solutions, which encode transverse radiation, the Cotton spinor and field strength
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spinor can be written as

CABCD = Ψ4oAoBoCoD , fAB = Φ2oAoB , (3.122)

where ψ4 and Φ2 are Newman-Penrose (NP) scalars. In this case, the double copy can simply

be expressed as

Ψ4 =
mΦ2

2

2S
. (3.123)

We will now prove that the Cotton double copy holds for type N spacetimes in curved back-

grounds by deriving the equation of motion of the zeroth copy S.

We start by substituting (3.122) into (3.113) and (3.107), and contracting the equations with

ι and o to get:

oA∇A
C log Ψ4 + 4oAι

B∇A
CoB − ιAoB∇A

CoB =
m√
2
oc , (3.124)

oA∇A
C log Φ2 + 2oAι

B∇A
CoB − ιAoB∇A

CoB =
m√
2
oc , (3.125)

oBoC∇CAoB = 0 . (3.126)

From the Cotton double copy in (3.123), together with Eqs. (3.124) and (3.125), we find

oA∇A
C logS − ιAoB∇A

CoB = − m√
2
oc . (3.127)

To show that S satisfies the Klein-Gordon equation with a non-minimal coupling term first we

write ∇µ∇µS as

−∇AB∇ABS = −ϵAC∇C
B∇ABS = 2ιCoA∇C

B∇ABS. (3.128)

Then, one can use the Leibniz rule and (3.127) to eliminate the derivatives of S:

2ιCoA∇C
B∇ABS = −2ιC∇C

BoA∇ABS

+ 2ιC∇C
B

(
SιAo

D∇ABoD −
m√
2
SoB

)
.

(3.129)
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Expanding (3.129) and using (3.127) to eliminate ∇S terms we get:

−∇AB∇ABS = S

(
2ιC∇C

BιAo
D∇ABoD

+ 2ιCιA∇C
Bo

D∇ABoD + 2ιDιA∇A
Co

DιEo
F∇ECoF

−m
√
2
(
ιC∇C

Bo
B + ιDιA∇A

Co
DoC − ιCιEoF∇ECoF

)
+m2 + 2ιCιAo

D∇C
B∇ABoD

)
.

(3.130)

The first three terms as well as the terms linear in m add up to zero by (3.126). The term with

the second derivative of o can be related to curvature spinors by the following relation [152]:

∇D(A∇B)
DoC =

1

2
ΦABCDo

D +
1

24
R (ϵACoB + ϵBCoA) , (3.131)

where ΦABCD is the spinor equivalent of the traceless Ricci tensor which is proportional CABCD,

see footnote 5. By substituting (3.122), we see that the term proportional to ΦABCD does not

contribute. Therefore we find that

2ιCιAo
D∇C

B∇ABoD =
1

6
R .

Finally, substituting everything into (3.130) we get

−∇AB∇ABS = 2S =

(
m2 +

1

6
R

)
S. (3.132)

This proves that the Cotton double copy is satisfied for Type N solutions with the zeroth copy

given by a linearized massive bi-adjoint scalar with a non-minimal coupling. Note that we

obtained the same non-minimal coupling as in the 4d zeroth copy [56, 55, 34], but in 3d it

does not give a conformally invariant equation. We will now show explicit examples of Type N

spacetimes where the Cotton double copy holds.
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3.8.1 pp-waves

We analyze the double copy relation for plane-fronted waves with parallel propagation (pp-

waves). For TMG, any solution that admits a null Killing vector, well-defined through all

space, is a pp-wave solution 6 [158]. In flat space the metric of pp-waves can always be written

as [156]

ds2 = dy2 − 2 du dv + e−myf(u)du2, (3.133)

where u, v are lightcone coordinates. Now the pp-wave metric in AdS space reads

ds2 = dy2 − 2e2
y
Ldu dv + e

(1−mL)
L

yf(u)du2, (3.134)

Note that we can obtain the dS solution by taking L→ iL. On the TMYM side, we can write

the pp-wave solution as

Aa = cae−myg(u)du, (3.135)

for the Minkowski, AdS, and dS cases. In Table 3.3 we show the NP scalars for the corresponding

pp-waves in Minkowski and AdS. One can easily see that the scalar S, which is computed using

the Cotton double copy in Eq. (3.123) satisfies

(∇2 −m2 − R

6
)S(u, y) = (∂2y −m2 +

1

L2
)S = 0 . (3.136)

Ψ4 Φ2 S

Mink. m3

4
e−myf(u) − m√

2
e−myg(u) g(u)2

f(u)
e−my

AdS m3

4
e−( 3

L
+m)yf(u) − m√

2
e−( 2

L
+m)yg(u) g(u)2

f(u)
e−( 1

L
−m)y

Table 3.3: In this table we show the NP-scalars for the Cotton spinor and the dual field strength
spinor. We also show the scalar S constructed from the Cotton double copy in Eq. (3.123).

6The nomenclature of pp-waves for the non-zero cosmological constant case can be misleading since the null
Killing vector is not covariantly conserved [157].
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3.8.2 Shock waves and gyratons

Minkowski

We now consider solutions with a source corresponding to a fast moving particle whose stress

tensor is traceless and is given by

Tµν =
(
Ekµkν + σk(µϵ

αβ
ν) kα∂β

)
δ(u)δ(y) , (3.137)

where the null vector kµ is defined as kµdx
µ = du, E is the energy of the source particle and σ

is its classical spin. Note that this source can be thought of as a boosted gravitational anyon. If

the particle has no classical spin (σ = 0) then it generates shockwaves; otherwise, the solutions

are dubbed gyratons. In flat space, both of these solutions have a metric of the form 7

ds2 = dy2 − 2 du dv + κF (u, y)du2. (3.138)

For these solutions, we have that the only non-zero NP Cotton scalar is

Ψ4 = −
1

4
∂3yF (u, y) , (3.139)

where F satisfies the following equation of motion

∂3yF (u, y) +m∂2yF (u, y) = κmδ(u) (Eδ(y)− σδ′(y)) . (3.140)

On the gauge theory side, we will also consider a boosted spinning source whose current is

given by

Jµ =
(
Qkµ +Q′ϵαβµ kα∂β

)
δ(u)δ(y) , (3.141)

7Note that the gyraton metric is generically written as ds2 = −2dudv+ dy2 + κF (u, y)du2 + 2κα(u, y)dudy,
where the cross term proportional to α(u, y) allows us to see the rotation explicitly [142]. Here we have chosen
a gauge where α = 0.



3.8. Type N solutions 119

where Q is the electric charge and Q′ contributes, together with Q, to the magnetic flux. We

consider the following gauge field

Aa = caG(u, y)du, (3.142)

which linearises the TMYM equations of motion and gives only one non-vanishing component

of field strength Fuy = −∂yG(u, y). Hence the only non-zero NP field strength scalar is

Φ2 =
1√
2
∂yG(u, y) , (3.143)

where G satisfies

∂2yG(u, y) +m∂yG(u, y) = gδ(u) (Qδ(y)−Q′δ′(y)) . (3.144)

Then the scalar S in the Cotton double copy, Eq. (3.114), is given as

S = −m(∂yG(u, y))
2

∂3yF (u, y)
. (3.145)

Equations (3.140) and (3.144) imply that outside the sources the following is true:

(∇2 −m2)S(u, y) = 0. (3.146)

To see the double copy for an explicit gyraton or shock wave solution, we need to pick boundary

conditions for the metric. As realised in [138], we cannot have the same coordinate chart on

both sides of the shockwave. In section 3.4.1 we showed that a useful prescription to observe

the double copy relation is to a consider boundary conditions where the metric is flat for y < 0

and Cartesian for y > 0 [137]. Then we can solve (3.140) imposing these boundary conditions:

F (u, y) =
κ

m
(E +mσ)e−myδ(u)θ(y) +

κ

m
(E +mσ − Emy)δ(u)θ(−y) . (3.147)

Choosing the analogue boundary condition in TMYM, namely Fµν = 0 for y < 0 and limy→∞Aµ =
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0, leads to

G(u, y) = g
Q+mQ′

m
δ(u)

(
θ(y)e−my

)
+ g

Q

m
δ(u)θ(−y). (3.148)

On the y < 0 side of the gyraton, the double copy is trivial since Ψ4 = Φ2 = 0. On the other

hand, in the y > 0 side the NP scalars are

Φ2 = −
g(Q+mQ′)√

2
e−myδ(u), Ψ4 =

κ(E +mσ)m2

4
e−myδ(u). (3.149)

They are proportional to those of the flat space pp-waves in Table 3.3 times δ(u). The analog

of gyratons in the zeroth copy satisfies:

(∂2y −m2)S(u, y) = (λ+ λ′∂y)δ(y)δ(u), (3.150)

which is solved by (with the boundary conditions similar as before)

S(u, y) = −(λ− λ′m)

2m
e−myδ(u)θ(y)− (λ+ λ′m)

2m
emyδ(u)θ(−y), (3.151)

We see that making the replacement gm(Q+mQ′)2

2(λ−λ′m)
→ κm2

4
(E + mσ) leads to the double copy

relation in Eq. (3.123). Note that the shockwave solutions can be obtained by setting σ = 0

and Q′ = 0. We then see that the gyraton NP scalar is obtained from the shockwave one by

the shift E → E
(
1 +m σ

E

)
in TMG and Q → Q(1 +mQ′

Q
) in TMYM, which arise from spin

deformations of on-shell 3-point amplitudes [143] and was originally found for gravitational

anyons [92].

Anti-de Sitter space

We proceed to consider gyraton solutions of TMG and TMYM in a three dimensional AdS

background (the background metric is defined in (3.121)). Just like gravitational shockwaves
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in AdS, the gyraton solution can be written in Poincare coordinates as

ds2 =
L2

y2
(
−2dudv + dy2 + δ(u)F (y)du2

)
, (3.152)

where F satisfies:

y

L
F ′′′ +mF ′′ −mF ′

y
= κm

(
E
L

y
δ(y − y0)− σδ′(y − y0)

)
, (3.153)

where y0 ̸= 0 is the location of the source in the bulk and we will assume mL > 1. As before,

we need to fix the boundary conditions to find the explicit solution. We choose to have the

same boundary conditions as in the Minkowski case in the flat space limit. This is equivalent to

imposing Brown-Henneaux boundary conditions and requiring a regular solution in the bulk.

The explicit solution with these boundary conditions is

F (y) =− κL2mE

2 (1− (Lm)2)[
2
(
1 +

σ

E
((1 +mL)/L)

)( y

y0

)1−Lm

θ (y − y0)

+

(
(1− Lm)

(
y

y0

)2

+

(
1 +

2σ

EL

)
(1 + Lm)

)
θ (−y + y0)

]
.

(3.154)

On the non-trivial side of the gyraton solution, y > y0, we have that the only non-zero Cotton

NP scalar is

Ψ4 = −
1

2

y

L
δ(u)F ′′′(y) =

κ

2
E
(
1 +

σ

E
((1 +mL)/L)

)
L2m2

(
y

y0

)−1−Lm

δ(u) .

(3.155)

On the other hand, the linearised gyraton solution for TMYM in an AdS background is given

by

Aa = caδ(u)G(y)du, (3.156)
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where the function G satisfies

y4

L4

(
G′′ +

1 + Lm

y
G′
)

=
y3

L3
g
(
Qδ(y − y0)−Q′ y

L
δ′(y − y0)

)
.

(3.157)

The explicit gyraton solution with boundary condition analogue to the gravitational case,

namely Fµν = 0 for y < y0 and limy→∞Aµ = 0, is given by

G(y) = −gQ
m[(

1 +
Q′

QL
(1 +mL)

)(
y

y0

)−Lm

θ (y − y0)

+

(
1 +

Q′

QL

)(y0
L

)3
θ (−y + y0)

]
.

(3.158)

Thus we have that for y > y0 the only non-zero dual field strength NP scalar is

Φ2 = 2δ(u)
y

L
f ′(y)

= 2gQ(1 +
Q′

Q
((1 +mL)/L))δ(u)

(
y

y0

)−Lm

.

(3.159)

Lastly, we consider the linearised biadjoint scalar, Saã = cacãS, living in an AdS background

with a non-minimal coupling as in Eq. (3.132) and sourced by (λ + λ′ y
L

∂
∂y
)δ(y − y0)δ(u) The

gyraton solution is now given by

S = − λL

2my0

[(
1−mλ′

λ

)(
y

y0

)1−Lm

θ (y − y0)

+

(
1 +m

λ′

λ

)(
y

y0

)1+Lm

θ (−y + y0)

]
δ(u) ,

(3.160)

where we chose boundary conditions by requiring that the field vanishes deep in the bulk and

as we approach the AdS boundary. We note that this solution corresponds to the scalar that

arises from Eq. (3.123), which shows that the Cotton double copy is satisfied for AdS shock

waves as expected. Again the shockwave solutions can be obtained by setting σ and Q′ to

zero. In a similar manner to the flat space case, one can consider shifts of the charge and
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energy to obtain the gyraton double copy from shockwaves. In this case the shifts are given

E → E
(
1 + σ

E
((1 +mL)/L)

)
for the TMG case and Q→ Q(1 + Q′

Q
((1 +mL)/L)) in TMYM.

In future work, we will explore whether the origin of these shifts can be traced down to spin

deformations of three-point correlators.

3.9 Discussion

We have analyzed the high-energy limit of topologically massive theories from two different

perspectives. First, by looking at the scattering amplitudes in the eikonal limit; and second,

by looking at the shock wave solutions for both a spinless and a spinning source. In the former

analysis, we found that to construct the double copy of the eikonal amplitudes, we need infor-

mation outside of the eikonal limit at tree-level. This is in stark difference with the massless

d ≥ 4 case where a simpler double copy relation arises. In the latter, we obtained a double

copy relation which is only manifest for a specific choice of boundary conditions. Along the

way, we showed how the eikonal amplitude is related to the classical shockwave solutions and

how the choice of iϵ prescription required to regulate the phase shift corresponds to the choice

of boundary conditions of the topologically massive field. This allowed us to choose the appro-

priate prescriptions to make the coordinate space double copy clear on the non-trivial (where

the curvature and field strength are non-zero) side of the shockwave. This suggested that a

cleaner double copy relation might arise when looking at the curvature and field strength, as in

the 4d Weyl double copy, instead of looking directly at the fields, as in the Kerr-Schild double

copy case. We have constructed a double copy relation for topologically massive theories that

gives the Cotton spinor as the square of the dual field strength spinor in curved spacetime

backgrounds. This generalises the 4d Weyl double copy to 3d spacetimes. We have focused on

Type N spacetimes, which correspond to radiative solutions, gave a proof of the Cotton double

copy for gravitational waves and showed explicit examples. Other examples that we didn’t

look at explicitly can be found in [157, 159]. It would be interesting to understand whether

the double copy holds for Type D solutions, which describe fields around isolated objects such

as black holes. Previous analysis studying the scattering of massive fields, which represent
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isolated objects, through topologically massive mediators [13, 143, 117] have shown that this is

not straightforward, and further investigations should clarify this intriguing case.

Several open questions remain when it comes to fully understanding the massive double copy.

Regarding scattering amplitudes, it has not been shown if the double copy relation holds for six

and higher-point amplitudes or for loop corrections. In the special case of topologically massive

theories, a complete understanding of the situation when including couplings to generic matter

is lacking. Some progress has been made in [113, 143, 117] and we have contributed to clarifying

the situation in the high-energy limit in this work. Nevertheless, a broader exploration for more

generic sources for both classical solutions and scattering amplitudes is still missing.



Chapter 4

Conclusion

4.1 Summary of Thesis Achievements

In this work, we have explored the possibility of extending the double copy procedure to massive

gauge and gravity theories. First we checked if massive Yang-Mills theory can be related to

dRGT massive gravity theories which can be expected from the decoupling limits of the two

theories (namely non-linear sigma model and special Galileon) that are known to be related

by double copy. However, while double copy of 3 and 4 point massive Yang-Mills amplitudes

gives massive gravity amplitudes the relation fails at higher points, due to the appearance of

spurious poles. The decoupling limit argument is found to be incorrect due to an interesting

feature of massive double copy - taking the decoupling limit and doing double copy do not

commute and the decoupling limit of massive gravity theory obtained from double copy of 4

point massive Yang-Mills amplitudes is not special Galileon. Even though the relation between

these particular theories was found to fail it led to further exploration of what massive theories

can be double copied without having spurious poles. One obvious example we explored is

Kaluza-Klein theories. We have tried to find new massive theories that can be double copied

by deforming the couplings in a Kaluza-Klein theory obtained by compatifying a 5d Yang-Mills

theory on a circle. However, we were not be able to find any new theories this way, since

imposing the necessary conditions for double copy to be physical (spectral conditions and BCJ
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relations) lead back to the coupling of the original Kaluza-Klein theory. While this result

does not prove in general that the only massive theory compatible with double copy in 4d is

Kaluza-Klein theory, the vast amount of freedom that is available in choosing different coupling

for different fields suggests that massive theories that can be double copied are very strongly

constrained.

The situation in 3d was found to be more interesting. We found a new mechanism in 3d of how

spurious poles can cancel in 5 point amplitudes which is completely different from how it works

in massless and Kaluza-Klein theories (in particular the number and the form of BCJ relations

is different). Then we found an example of this mechanism - double copy relation between

topological massive gauge and gravity theories. This relation was only explicitly checked for

3, 4 and 5 point amplitudes but the further work on eikonal amplitudes and classical double

copy suggests that these topologically massive theories could be related at all orders. This

study of classical double copy between these theories revealed some interesting features. First

of all the eikonal amplitudes themselves are not directly related since the double copy of the

eikonal amplitudes needs information outside of the eikonal limit at tree-level. However, once

the classical solutions are obtained from these eikonal amplitudes, the double copy relation is

manifest for a specific choice of boundary conditions. By exploring relations between type N

solutions we found that there is a cleaner double copy relation directly between the curvature

and the field strength tensor. This is a 3d equivalent of Weyl double copy - Cotton double

copy. We proved that this relation holds for type N spacetimes and explored several explicit

examples.

4.2 Future Work

There are a lot of future directions one can take to get a better understanding of massive

double copy. It is still not clear whether the spurious pole problem in double copying massive

Yang-Mills could be fixed by adding extra fields or irrelevant operators to the action.

Also it would be interesting to continue looking for new massive gauge theories in 4d that can

be double copied. Following our work on Kaluza-Klein theories it would be interesting to see if
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the freedom in deforming couplings is eliminated at all orders and if more general deformations

of Kaluza-Klein theory (adding operators that do not appear in the compactified theory) leads

to the same result.

A lot of questions about massive double copy in 3d still remain unanswered. It is not clear

if there are any other examples of the new spurious pole cancellation mechanism. As for

topological massive theories it would be interesting to explore relations between more general

classical solutions, higher point tree and loop amplitudes to understand if these two theories

are really related at all orders.

If double copy relation between topologically massive gauge and gravity theories holds at all

orders it would be interesting to understand its origin. For example the double copy relaiton

between massless Yang-Mills and gravity can be understood from string theory as low energy

limit of KLT relations between open and closed string amplitudes. Is there a string theory origin

for the relations between these topologically massive theories? On the other hand, recently there

has been done a lot of work in understanding classical Weyl double copy relations from twistor

space [36, 35]. It would be interesting to check if its 3d equivalent - Cotton double copy could

also be explained similarly using mini-twistor space suitable for 3d [160, 161].

The existence of a 3D massive double copy opens a path for a profuse amount of questions as

we have discussed above. We hope that this exploration will stimulate future explorations to

advance our understanding of the applicability of the double copy.



Appendix A

Contact Terms in the Double Copy of

Massive YM

Below are the various contact terms needed in (2.39) to reproduce the desired quartic interac-

tions. All terms are written in a covariant form, with the understanding that they enter the

action with a
√
−g prefactor.

L(4)
ϕϕϕϕ =

11

3456

κ2

m4
ϕ
(
[Φ]3 − 3[Φ][Φ2] + 2[Φ3]

)
+

21

128
κ2∇µϕ∇µϕ ϕ ϕ+

−1
96

κ2

m2
∇ρϕ∇σϕΦρσ ϕ

(A.1)

where we have used Φµν = ∇µ∇νϕ.

L(4)
AAAA =

−1
512

κ2

m2
(F µνFµν)

2 +
3

256

κ2

m2
F µνFνρF

ρσFσµ (A.2)

L(4)
AAhh =

−3
16

FµνFρσKµρKνσ +
−1
4
F µνFµσKνρKρσ +

−1
16

εµναβε
µ′ν′α′β′

F µ
µ′F

ν
ν′Kα

α′Kβ
β′ (A.3)
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L(4)
hhϕϕ =

7

48
εµναβε

µ′ν′α′βΦµ
µ′ Kν

ν′Kα
α′ϕ+

3

8
εµναβε

µ′ν′α′β∇µϕ∇µ′Kν
ν′Kα

α′ϕ

+
−17
48

m2 ϕ ϕ KµνKµν +
1

24

1

m2
εµναβε

µ′ν′α′β′∇µϕ ∇µ′ϕ ∇νKα
α′∇ν′Kβ

β′

+
1

12

1

m2
εµναβε

µ′µα′β′∇ρϕ ∇νϕ ∇µ′Kα
α′∇[ρKβ

β′] +
1

48

1

m2
εµναβε

µ′ν′α′β′
Φµ

µ′Φ
ν
ν′Kα

α′Kβ
β′

(A.4)

L(4)
hϕϕϕ =

−1
144
√
3

κ

m4
εµναβε

µ′ν′α′β′Kµ
µ′Φ

ν
ν′Φ

α
α′Φ

β
β′ +

−19
48
√
3
κKµν∇µϕ∇νϕ ϕ

+
11

16
√
3

κ

m2
εµναβε

µ′ν′α′βKµ
µ′Φ

ν
ν′Φ

α
α′ϕ

(A.5)

L(4)
hhhϕ =

1

12
√
3

1

κ
εµναβε

µ′ν′α′β′Kµ
µ′Kν

ν′Kα
α′Φ

β
β′ +

−2√
3

1

κ
∇[βKν]α∇[βKµ]αKµ

νϕ

+
8√
3

1

κ
Rρσ

µνKµ
ρKν

σϕ+
−11
12
√
3

m2

κ
ϕ
(
[K]3 − 3[K][K2] + 2[K3]

) (A.6)

with ∇[µAν]ρ =
1
2
(∇µAνρ −∇νAµρ)

L(4)
AhAϕ =

1

8
√
3
κm2AµAνKµνϕ+

1

16
√
3

κ

m2
F µνF ρσKνρΦµσ +

−1
16
√
3

κ

m2
∇ρF µν∇σFµνKσ

νϕ

+
−1
4
√
3

κ

m2
∇νF µρFµσ∇ρKσ

νϕ+
−1
8
√
3

κ

m2
∇ρF ν

σ∇ρF
µσKµνϕ+

−1
8
√
3

κ

m2
FµνFρσ∇µ∇σKνρϕ

(A.7)

L(4)
AϕAϕ =

1

384

κ2

m4
F µνFµνΦ

ρσΦρσ +
1

64
κ2 F µνFµρϕϕ+

−1
48

κ2

m2
F µνF ρ

ν∇ρϕ∇µϕ

+
−11
32

κ2m2AµAµϕϕ+
1

192
κ2AµAν∇µϕ∇νϕ

+
−1
192

κ2

m4
∇ρFµν∇σF µν∇ρϕ∇σϕ+

1

128

κ2

m2
∇ρFµν∇ρF µνϕϕ

+
−1
192

κ2

m4
∇ρF µ

ν ∇µF
σ
ρ∇νϕ∇σϕ+

1

96

κ2

m4
∇ρF µν∇σF

σ
ν ∇ρϕ∇µϕ

(A.8)



Appendix B

Polarizations in 4d

The four momenta in the centre of mass frame with scattering angle θ and three momenta

p = 1
2

√
s− 4m2 is defined as:

pµ = (

√
s

2
, p sin θ, 0, p cos θ). (B.1)

We define the polarization vectors in the helicity basis as follows:

ϵµλ=1 =
1√
2
(0,− cos θ,−i, sin θ) ,

ϵµλ=−1 =
1√
2
(0, cos θ,−i,− sin θ) ,

ϵµλ=0 =
1

m
(p, E sin θ, 0, E cos θ) .

(B.2)

where θ is the scattering angle in the centre of mass frame and p the three-momentum. The

polarizations clearly satisfy the transverse and completeness relations,i.e

pµϵ
µ
λ = 0 ,

3∑
λ=1

ϵµλ(ϵ
ν
λ)

∗ = ηµν +
pµpν

m2
,

(B.3)
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where (ϵµλ)
∗ = (−1)λϵµ−λ. The polarization tensors for the spin-2 field with different helicities are

constructed from the polarization vectors with appropriate Clebsch-Gordan (CG) coefficients

as (we review the construction in detail in C),

ϵµνλ=±2 = ϵµ±ϵ
ν
± ,

ϵµνλ=±1 =
1√
2
(ϵµ±ϵ

ν
0 + ϵµ0ϵ

ν
±) ,

ϵµνλ=0 =
1√
6
(ϵµ+ϵ

ν
− + ϵµ−ϵ

ν
+ + 2ϵµ0ϵ

ν
0) .

(B.4)

The polarization tensors satisfy the transverse, traceless and completeness relations

pµϵ
µν
λ = 0 , ϵµµλ = 0 ,

2∑
λ=−2

ϵµνλ (ϵαβλ )∗ =
1

2

(
GµαGνβ +GµβGνα − 2

3
GµνGαβ

)
,

(B.5)

where Gµα = ηµν + pµpν

m2 .



Appendix C

Construction of gravity states from

massive Yang-Mills

As mentioned in 2.1.1, from the tensor product of two massive spin-1 states we get a massive

spin-2, a massive spin-1 and a massive spin-0 on the gravity side. In this section we review

how the gravity on-shell states are constructed from such product, i.e, |1, λ1 > ⊗|1, λ2 >. The

polarization tensor of the particle of spin J with helicity λ is given as,

ϵJ,λµν =
∑
λ′λ′′

CJ,λ
λ′λ′′ϵ

λ′

µ ϵ
λ′′

ν , (C.1)

where λ = λ′ + λ′′. We start from the spin-0 state which is obtained from |0, λ >= |1, λ′ >

⊗|1, λ′′ >, with λ = 0 = λ′+λ′′. This polarization state is obtained by considering the following:

ϵ(ϕ)µν ≡ ϵ0,0µν =
∑
λ′λ′′

C0,0
λ′λ′′ϵ

λ′

µ ϵ
λ′′

ν

=
1√
3

(
ϵ0µϵ

0
ν − ϵ+µ ϵ−ν − ϵ−µ ϵ+ν

) (C.2)
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where C0
λ′λ′′ are the CG coefficients given in (C.7). By substituting (B.2), we can see that (C.2)

can be expressed as:

ϵ(ϕ)µν =
1√
3

(
ηµν +

pµpν
m2

)
. (C.3)

Hence, the factor of 1√
3
in (2.20) which follows from the CG coefficient.

The spin-2 state is obtained from |2, λ >= |1, λ′ > ⊗|1, λ′′ >, with −2 ≤ λ ≤ 2.

ϵ2,λµν =
∑
λ′λ′′

C2,λ
λ′λ′′ϵ

λ′

µ ϵ
λ′′

ν . (C.4)

To give an explicit example, the helicity λ = +2 is,

ϵ2,+2
µν =

∑
λ′λ′′

C2,+2
λ′λ′′ ϵ

λ′

µ ϵ
λ′′

ν ,

=C2,+2
+1+1ϵ

+1
µ ϵ+1

ν ,

=1× ϵ+1
µ ϵ+1

ν .

(C.5)

In this work we use the polarization states to be a superposition of different helicities and we

do not focus on specific choices, for example for the graviton polarisation we have,

ϵ(h)µν =
+2∑

λ=−2

αλϵ
2,λ
µν . (C.6)
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Spin-2 : C2,2
++ = C2,−2

−− = 1,

C2,1
0+ = C2,1

+0 = C2,−1
−0 = C2,−1

0− =
1√
2
,

C2,0
+− = C2,0

−+ =
1√
6
, C2,0

00 =

√
2

3
,

Spin-1 : C1,1
+0 = −C1,1

0+ = C1,−1
0− = −C1,−1

−0 =
1√
2

C1,0
+− = −C1,0

−+ =
1√
2
, C1,0

00 = 0

Spin-0 : C0,0
+− = C0,0

−+ =
−1√
3
, C0,0

00 =
1√
3

(C.7)



Appendix D

Dualization of the massive B field in 4d

We follow the dualization procedure explained in [162]. The Stückelberg action of free massive

2-form field, B, is

S =

∫
−1

2
dB ∧ ∗dB − 1

2
(mB − dλ) ∧ ∗(mB − dλ), (D.1)

where λ is a 1-form Stückelberg field which is needed to restore the gauge symmetry which acts

on the fields as follows:

B → B + dΛ,

λ→ λ+mΛ.

The first step in the dualization procedure is to rewrite the action in terms of field strengths,

H = dB and G = mB − dλ. To do that we need to impose Bianchi identities,

dH = 0, (D.2)

dG−mdB = 0, (D.3)
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with Lagrange multipliers. We first do it for G:

S =

∫
−1

2
dB ∧ ∗dB − 1

2
G ∧ ∗G+ A ∧ d(G−mB), (D.4)

where A is a 1-form Lagrange multiplier imposing (D.3). By integrating the last term by parts

we can find the equation of motion for G to be

G = − ∗ dA. (D.5)

Substituting this back to the action and integrating by parts the last term we get

S =

∫
−1

2
dB ∧ ∗dB − 1

2
dA ∧ ∗dA+ A ∧mdB. (D.6)

Now we can replace dB by H and impose (D.2) with a scalar Lagrange multiplier, χ. This

gives the following

S =

∫
−1

2
H ∧ ∗H − 1

2
dA ∧ ∗dA+ A ∧mH + χdH. (D.7)

Now again we integrate last term by parts and find the equation of motion for H to be

H = − ∗ (mA− dϕ). (D.8)

Substituting this back in the (D.7) gives the Stueckelberg action for massive spin-1 field, A,

known as Proca action:

S =

∫
−1

2
dA ∧ ∗dA− 1

2
(mdA− dχ) ∧ ∗(mdA− dχ), (D.9)

where χ is now the Stückelberg scalar field. From (D.8) we can see that in unitary gauge,

χ = 0, the relation between the B and A fields is dB = − ∗mA which in coordinate basis can

be written as:

Aµ = − 1

2m
εµνρσ∇νBρσ. (D.10)
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This means that the relationship between the polarization vector of A, ϵ(A), and the polarization

tensor of B, ϵ(B), will be of the form:

ϵ(A)
µ ∝ i

m
εµνρσp

νϵ(B)ρσ, (D.11)

where the overall constant can be found by requiring ϵ
(A)
µ to be normalised (i.e. consistent with

(B.3)). This relation can be inverted by multiplying both sides by the ε tensor and p, which

using p2 = −m2 and imposing normalisation condition gives (2.19).



Appendix E

Double Copy of the 4-Point Scattering

Amplitude in the Decoupling Limit

We take the Λ3 decoupling limit,

m→ 0, Mpl →∞, keeping Λ3 = (m2Mpl)
1/3 fixed, (E.1)

of the full scattering amplitude obtained from double copy with external states arbitrary su-

perpositions of h and ϕ fields defined as: (setting the vectors to zero for simplicitly)

ϵ1µν = αT1ϵ
2,+2
µν (p1) + αT2ϵ

2,−2
µν (p1) + αT3ϵ

2,+1
µν (p1) + αT4ϵ

2,−1
µν (p1) + αT5ϵ

2,0
µν (p1) + αSϵ

0,0
µν (p1),

ϵ2µν = βT1ϵ
2,+2
µν (p2) + βT2ϵ

2,−2
µν (p2) + βT3ϵ

2,+1
µν (p2) + βT4ϵ

2,−1
µν (p2) + βT5ϵ

2,0
µν (p2) + βSϵ

0,0
µν (p2),

ϵ3µν = γT1ϵ
2,+2
µν (p3) + γT2ϵ

2,−2
µν (p3) + γT3ϵ

2,+1
µν (p3) + γT4ϵ

2,−1
µν (p3) + γT5ϵ

2,0
µν (p3) + γSϵ

0,0
µν (p3),

ϵ4µν = σT1ϵ
2,+2
µν (p4) + σT2ϵ

2,−2
µν (p4) + σT3ϵ

2,+1
µν (p4) + σT4ϵ

2,−1
µν (p4) + σT5ϵ

2,0
µν (p4) + σSϵ

0,0
µν (p4).

(E.2)

This gives the following amplitude:

M4 → i
stu

2304

(
6αT3βT3γSσS − 6αT4βT3γSσS − 6αT3βT4γSσS + 6αT4βT4γSσS + 10αT5βT5γSσS

− 6αT3βSγT3σS + 6αT4βSγT3σS − 6
√
2αT5βT3γT3σS − 6

√
2αT3βT5γT3σS + 6αT3βSγT4σS
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− 6αT4βSγT4σS − 6
√
2αT5βT4γT4σS − 6

√
2αT4βT5γT4σS + 10αT5βSγT5σS

− 6
√
2αT4βT3γT5σS − 6

√
2αT3βT4γT5σS − 2

√
2αT5βT5γT5σS + 11αT5βSγS

√
2σS

+ 6αT5βT4γT3

√
2σS + 6αT4βT5γT3

√
2σS + 6αT5βT3γT4

√
2σS + 6αT3βT5γT4

√
2σS

+ 6αT3βT3γT5

√
2σS + 6αT4βT4γT5

√
2σS + 2αT2βSγS

√
3σS + 4αT5βT5γT1

√
3σS

+ 4αT5βT5γT2

√
3σS + 4αT5βT1γT5

√
3σS + 4αT5βT2γT5

√
3σS + 4αT2βT5γT5

√
3σS

+ 2αT5βT1γS
√
6σS + 2αT5βT2γS

√
6σS + 2αT2βT5γS

√
6σS + 2αT5βSγT1

√
6σS

+ 2αT5βSγT2

√
6σS + 2αT2βSγT5

√
6σS − 6αT3βSγSσT3 + 6αT4βSγSσT3

− 6
√
2αT5βT3γSσT3 − 6

√
2αT3βT5γSσT3 + 12αT5βT5γT3σT3 − 6

√
2αT5βSγT4σT3

− 12αT5βT5γT4σT3 − 6
√
2αT3βSγT5σT3 − 12αT5βT3γT5σT3 + 12αT5βT4γT5σT3

− 12αT3βT5γT5σT3 + 12αT4βT5γT5σT3 + 6αT3βSγSσT4 − 6αT4βSγSσT4

− 6
√
2αT5βT4γSσT4 − 6

√
2αT4βT5γSσT4 − 6

√
2αT5βSγT3σT4 − 12αT5βT5γT3σT4

+ 12αT5βT5γT4σT4 − 6
√
2αT4βSγT5σT4 + 12αT5βT3γT5σT4 − 12αT5βT4γT5σT4

+ 12αT3βT5γT5σT4 − 12αT4βT5γT5σT4 + 10αT5βSγSσT5 − 6
√
2αT4βT3γSσT5

− 6
√
2αT3βT4γSσT5 − 2

√
2αT5βT5γSσT5 − 6

√
2αT3βSγT3σT5 − 12αT5βT3γT3σT5

+ 12αT5βT4γT3σT5 − 12αT3βT5γT3σT5 + 12αT4βT5γT3σT5 − 6
√
2αT4βSγT4σT5

+ 12αT5βT3γT4σT5 − 12αT5βT4γT4σT5 + 12αT3βT5γT4σT5 − 12αT4βT5γT4σT5

− 2
√
2αT5βSγT5σT5 + 12αT3βT3γT5σT5 − 12αT4βT3γT5σT5 − 12αT3βT4γT5σT5

+ 12αT4βT4γT5σT5 − 28αT5βT5γT5σT5 − αS

(
− 11
√
2βT5γSσS − 2

√
6βT5γT1σS

− 2
√
6βT5γT2σS + 6βT3γT3σS − 6βT4γT3σS − 6βT3γT4σS + 6βT4γT4σS − 2

√
6βT2γT5σS

− 10βT5γT5σS − 2βT2γS
√
3σS − 2

√
6βT5γSσT1 − 4

√
3βT5γT5σT1 − 2

√
6βT5γSσT2

− 4
√
3βT5γT5σT2 + 6βT3γSσT3 − 6βT4γSσT3 − 6

√
2βT5γT3σT3 − 6

√
2βT4γT5σT3

− 6βT3γSσT4 + 6βT4γSσT4 − 6
√
2βT5γT4σT4 − 6

√
2βT3γT5σT4 − 2

√
6βT2γSσT5

− 10βT5γSσT5 − 4
√
3βT5γT1σT5 − 4

√
3βT5γT2σT5 − 6

√
2βT4γT3σT5 − 6

√
2βT3γT4σT5

− 4
√
3βT2γT5σT5 − βS

(
6γT3σT3 − 6γT4σT3 − 6γT3σT4 + 6γT4σT4 + 10γT5σT5 − γS

(
− 17σS − 2

√
3σT1 − 2

√
3σT2 − 11

√
2σT5

)
+ 11γT5σS

√
2 + 2γT1σS

√
3 + 2γT2σS

√
3

+ 2γT5σT1

√
6 + 2γT5σT2

√
6 + 2γT1σT5

√
6 + 2γT2σT5

√
6
)
+ 6βT5γT4σT3

√
2
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+ 6βT3γT5σT3

√
2 + 6βT5γT3σT4

√
2 + 6βT4γT5σT4

√
2 + 6βT3γT3σT5

√
2 + 6βT4γT4σT5

√
2

+ 2βT5γT5σT5

√
2 + 2βT1

(
− γSσS −

√
2γT5σS −

√
2γSσT5 − 2γT5σT5

)√
3
)

+ 6αT5βT4γSσT3

√
2 + 6αT4βT5γSσT3

√
2 + 6αT5βSγT3σT3

√
2 + 6αT4βSγT5σT3

√
2

+ 6αT5βT3γSσT4

√
2 + 6αT3βT5γSσT4

√
2 + 6αT5βSγT4σT4

√
2 + 6αT3βSγT5σT4

√
2

+ 6αT3βT3γSσT5

√
2 + 6αT4βT4γSσT5

√
2 + 6αT4βSγT3σT5

√
2 + 6αT3βSγT4σT5

√
2

+ 4αT5βT5γSσT1

√
3 + 4αT5βSγT5σT1

√
3 + 4αT5βT5γSσT2

√
3 + 4αT5βSγT5σT2

√
3

+ 4αT5βT1γSσT5

√
3 + 4αT5βT2γSσT5

√
3 + 4αT2βT5γSσT5

√
3 + 4αT5βSγT1σT5

√
3

+ 4αT5βSγT2σT5

√
3 + 4αT2βSγT5σT5

√
3 + 2αT1

(
βT5

(
2γT5σS + γS

√
2σS + 2γSσT5

+ 2γT5σT5

√
2
)
− βS

(
− γSσS −

√
2γT5σS −

√
2γSσT5 − 2γT5σT5

))√
3

+ 2αT5βSγSσT1

√
6 + 4αT5βT5γT5σT1

√
6 + 2αT5βSγSσT2

√
6 + 4αT5βT5γT5σT2

√
6

+ 2αT2βSγSσT5

√
6 + 4αT5βT5γT1σT5

√
6 + 4αT5βT5γT2σT5

√
6 + 4αT5βT1γT5σT5

√
6

+ 4αT5βT2γT5σT5

√
6 + 4αT2βT5γT5σT5

√
6
)
. (E.3)

This amplitude simplifies considerable if we focus on scattering processes of the form +2XXX.

We may easily see that X can only be a scalar mode and this amplitude then takes the form

M4(+2XXX) =
istu

96
√
6
(βT5 +

1√
2
βS)(γT5 +

1√
2
γS)(σT5 +

1√
2
σS) . (E.4)

The combination βT5 +
1√
2
βS is precisely the combination of polarizations that picks out the

helicity-0 squared term ϵµ0ϵ
ν
0

βT5ϵ
µν
2,0 + βSϵ

µν
0,0 =

2√
6
(βT5 +

1√
2
βS)ϵ

µ
0ϵ

ν
0 +

1√
6
(βT5 −

√
2βS)(ϵ

µ
+ϵ

ν
− + ϵµ−ϵ

ν
+) . (E.5)

Since the helicity +2 mode has polarization tensor ϵµ+ϵ
ν
+ we recognize that M4(+2XXX) is the

double copy of the +1000 massive Yang-Mills amplitude and comes specifically from the ΣΣ′

contact term (2.43).



Appendix F

Decoupling limit of massive Yang-Mills

amplitude

In this section we derive the decoupling limit of the massive Yang-Mills amplitude which is

expected to be the amplitude of NLSM, derive the kinematic factors and double copy it to

show that we recover the 4 point amplitude of a special Galileon. We also show that taking

the decoupling limit and performing the double copy do not commute. From (2.1), the 4-point

amplitudes of massive Yang-Mills is expressed as:

AmYM
4 =

m2

Λ2

(
csns

s−m2
+

ctnt

t−m2
+

cunu

u−m2

)
, (F.1)

with the n’s given by (2.34), (2.35) and (2.36). By plugging the polarization vectors which are

arbitrary superpositions of all helicities given as:

ϵ1µ = α1ϵ
+1
µ (p1) + α2ϵ

−1
µ (p1) + α3ϵ

0
µ(p1),

ϵ2µ = β1ϵ
+1
µ (p2) + β2ϵ

−1
µ (p2) + β3ϵ

0
µ(p2),

ϵ3µ = γ1ϵ
+1
µ (p3) + γ2ϵ

−1
µ (p3) + γ3ϵ

0
µ(p3),

ϵ4µ = σ1ϵ
+1
µ (p4) + σ2ϵ

−1
µ (p4) + σ3ϵ

0
µ(p4),

(F.2)
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and four momenta into the n’s, they can be rearranged in the following form (as mentioned in

(2.40)):

ns =
s−m2

m3
Σ(s, t, u)+

1

m2
n̂s, nt =

t−m2

m3
Σ(s, t, u)+

1

m2
n̂t, nu =

u−m2

m3
Σ(s, t, u)+

1

m2
n̂u ,

(F.3)

with ns + nt + nu = 0 and n̂s + n̂t + n̂u = −mΣ. The explicit expressions for the n̂’s and

Σ(s, t, u) are given in (F.12) and (F.13) (F.14) (F.15). The amplitude can be written as,

AmYM
4 =

m2

Λ2

(
csns

s−m2
+

ctnt

t−m2
+

cunu

u−m2

)
, (F.4)

=
1

Λ2

(
csn̂s

s−m2
+

ctn̂t

t−m2
+

cun̂u

u−m2

)
+

1

mΛ2
Σ(s, t, u) (cs + ct + cu) , (F.5)

and as mentioned in the introduction, the last term which seems at first ill defined in the

decoupling limit m→ 0, Λ fixed, is zero by virtue of Jacobi identity. Focusing on the non-zero

term, the amplitude in the dcoupling limit is as follows:

ADL
4 = lim

m→0, Λfixed

1

Λ2
AmYM,

= −i 1

12Λ2

(
cs(t− u) + ct(u− s) + cu(s− t)

)
α3β3σ3γ3.

(F.6)

We see that only helicity-0 polarization states remain interacting in this decoupling limit. The

kinematic factors of this amplitude are,

ns = −
is

12
(t− u), nt = −

it

12
(u− s), nu = − iu

12
(s− t). (F.7)

Note that in this limit we have s+ t+ u = 0 and can see that the colour-kinematics duality is

satisfied.
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Using the kinematic factors of this amplitude we double copy it and obtain the following:

ADC = i
α2
3β

2
3γ

2
3σ

2
3

16Λ6
3

stu, (F.8)

which is equal to the scattering amplitude of a galileon theory.

It seems that we could have defined the kinematic factors of the full massive Yang-Mills theory

without the 1/m3 terms in (F.3) since they cancel in the full amplitude. However without them

the colour-kinematics duality is not satisfied. This is in contrast to the massless double copy

where at four-points any representation of kinematic factors satisfy this duality. If we tried to

double copy, i.e.

1

M2
Pl

(
nsn

′
s

s−m2
+

ntn
′
t

t−m2
+

nun
′
u

u−m2

)
=
−ΣΣ′

Λ6
3

+
1

Λ6
3

(
n̂sn̂

′
s

s−m2
+

n̂tn̂
′
t

t−m2
+

n̂un̂
′
u

u−m2

)
, (F.9)

without using Σ(s, t, u), we would have obtained a theory whose Λ3 decoupling limit is the

special galileon because only n̂ terms could have contributed to the double copy amplitude, i.e.

we would have obtained

ADC
n̂2 =

i

M2
pl

3∑
i=1

n̂in̂
′
i

m4si
= i

α2
3β

2
3γ

2
3σ

2
3

16Λ6
3

stu, (F.10)

where i = 1, 2, 3 labels s, t, u respectively. However, in our case, when we square Σ(s, t, u) ,

they sum to a 1/m4 contribution to the double copy scattering amplitude

ADC
Σ2(s,t,u) =

i
(α3β3γ3 (σ2 − σ1) + α3β3 (γ2 − γ1)σ3 + γ3σ3 (α3 (β1 − β2) + (α1 − α2) β3))

2

8Λ6
3

stu,

(F.11)

which contains helicity ±1 polarizations and the decoupling limit of the resulting theory is not

the double copy of the decoupling limit of the massive Yang-Mills, i.e. the operations of taking

decoupling limit and performing double copy do not commute.
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The explicit expressions for Σ(s, t, u), n̂s, n̂t, n̂u are given below:

Σ(s, t, u) = i

√
stu (α3β3γ3 (σ1 − σ2) + α3β3 (γ1 − γ2)σ3 + γ3σ3 (α3 (β2 − β1) + (α2 − α1) β3))

2
√
2

(F.12)

n̂s = −
i

4
(
4m2 − s)

(16(α2(− β2γ1σ1 + β2γ2σ2 − β3γ3σ2 + β3γ1σ3) + α1(β1γ1σ1 − β3γ3σ1

− β1γ2σ2 + β3γ2σ3) + α3(β2γ3σ1 + β1γ3σ2 − β1γ1σ3 − β2γ2σ3))m6 − 4(4u(α1β1 + α2β2

− α3β3)(γ1σ1 + γ2σ2 − γ3σ3) + t(− α3(β1 − β2)(γ3(σ1 − σ2) + (γ1 − γ2)σ3) + α2β3(γ3(σ1

− σ2) + (γ1 − γ2)σ3) + 4α3β3(γ1σ1 + γ2σ2 − γ3σ3)− 2α2β2(3γ1σ1 + γ2σ2 − 2γ3σ3)

+ α1(β3γ3(σ2 − σ1) + β3(γ2 − γ1)σ3 − 2β1(γ1σ1 + 3γ2σ2 − 2γ3σ3))) + s(α1(5β1γ1σ1

+ 9β3γ3σ1 − 5β1γ2σ2 − 11β3γ2σ3 − 16β1γ3σ3) + α2(− 5β2γ1σ1 + 5β2γ2σ2 + 9β3γ3σ2

− 11β3γ1σ3 − 16β2γ3σ3) + α3(− 11β2γ3σ1 − 11β1γ3σ2 + 9β1γ1σ3 + 9β2γ2σ3 − 4β3(4γ1σ1

+ 4γ2σ2 − 9γ3σ3))))m
4 + 2

√
2
√
stu(α2β2(− 9γ3σ1 + 7γ3σ2 − 9γ1σ3 + 7γ2σ3) + α1β1(

− 7γ3σ1 + 9γ3σ2 − 7γ1σ3 + 9γ2σ3) + α2β3(− 9γ1σ1 − 7γ2σ2 + 12γ3σ3) + α1β3(7γ1σ1

+ 9γ2σ2 − 12γ3σ3) + α3(β2(− 9γ1σ1 − 7γ2σ2 + 12γ3σ3) + 12β3(γ3σ1 − γ3σ2 + γ1σ3

− γ2σ3) + β1(7γ1σ1 + 9γ2σ2 − 12γ3σ3)))m
3 + 2s(t(α3β2(− 6γ3σ1 + 5γ3σ2 − 6γ1σ3

+ 5γ2σ3) + α2β3(− 6γ3σ1 + 5γ3σ2 − 6γ1σ3 + 5γ2σ3)− 2α2β2(3γ1σ1 − γ2σ2 + 5γ3σ3)

+ α3β1(5γ3σ1 − 6γ3σ2 + 5γ1σ3 − 6γ2σ3) + α1β3(5γ3σ1 − 6γ3σ2 + 5γ1σ3 − 6γ2σ3)

+ 2α1β1(γ1σ1 − 3γ2σ2 − 5γ3σ3)− 2α3β3(5γ1σ1 + 5γ2σ2 − 13γ3σ3)) + 2u(α3β3(− 3γ1σ1

− 3γ2σ2 + 5γ3σ3) + α1β1(γ1σ1 + γ2σ2 − 3γ3σ3) + α2β2(γ1σ1 + γ2σ2 − 3γ3σ3))

+ s(α2(β3(9γ3σ2 − 14γ1σ3)− 2β2(γ1σ1 − γ2σ2 + 8γ3σ3)) + α1(β3(9γ3σ1 − 14γ2σ3)

+ 2β1(γ1σ1 − γ2σ2 − 8γ3σ3)) + α3(− 14β2γ3σ1 − 14β1γ3σ2 + 9β1γ1σ3 + 9β2γ2σ3

− 4β3(4γ1σ1 + 4γ2σ2 − 11γ3σ3))))m
2 − 2

√
2s
√
stu(α2β2(γ3(σ2 − 3σ1) + (γ2 − 3γ1)σ3)
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− α1β1(γ3(σ1 − 3σ2) + (γ1 − 3γ2)σ3)− α2β3(3γ1σ1 + γ2σ2 − 3γ3σ3) + α1β3(γ1σ1 + 3γ2σ2

− 3γ3σ3) + α3(3β3(γ3σ1 − γ3σ2 + γ1σ3 − γ2σ3)− β2(3γ1σ1 + γ2σ2 − 3γ3σ3) + β1(γ1σ1

+ 3γ2σ2 − 3γ3σ3)))m+ 4s3α3β3γ3σ3 + s2(s(− 2α2β3γ3σ2 + 4α2β3γ1σ3 + 4α2β2γ3σ3 + α1(

− 2β3γ3σ1 + 4β3γ2σ3 + 4β1γ3σ3) + α3(4β2γ3σ1 + 4β1γ3σ2 − 2β1γ1σ3 − 2β2γ2σ3

+ β3(4γ1σ1 + 4γ2σ2 − 17γ3σ3))) + 2(u((α1β1 + α2β2)γ3σ3 + α3β3(γ1σ1 + γ2σ2 − 4γ3σ3))

+ t(3α1β1γ3σ3 + 3α2β2γ3σ3 − α1β3(γ3(σ1 − 2σ2) + (γ1 − 2γ2)σ3) + α2β3(2γ3σ1 − γ3σ2

+ 2γ1σ3 − γ2σ3)− α3(β2(− 2γ3σ1 + γ3σ2 − 2γ1σ3 + γ2σ3) + β1(γ3σ1 − 2γ3σ2 + γ1σ3

− 2γ2σ3)− 3β3(γ1σ1 + γ2σ2 − 3γ3σ3)))))
)

(F.13)

n̂t =
i

4 (s− 4m2)2

(
− 64(− α3(β3γ1σ1 + 4β2γ3σ1 + β3γ2σ2 + 4β1γ3σ2) + α3(β1γ1 + β2γ2

+ 4β3γ3)σ3 + α1(3β2γ2σ1 + β3γ3σ1 + 5β1γ2σ2 − 4β3γ2σ3 − β1γ3σ3) + α2(5β2γ1σ1

+ 3β1γ1σ2 + β3γ3σ2 − 4β3γ1σ3 − β2γ3σ3))m8 − 16(t(α3(4γ3(β1σ1 + β2σ2) + (3β1γ1

− 7β2γ1 − 7β1γ2 + 3β2γ2)σ3 − 4β3(− 2γ2σ1 + γ2σ2 + γ1(σ1 − 2σ2) + γ3σ3))− α2(β2(

− 16γ1σ1 + 5γ2σ1 + 5γ1σ2 − 2γ2σ2 + 4γ3σ3) + β3(7γ3σ1 − 3γ3σ2 − 4γ2σ3) + β1(5γ1σ1

+ 6γ1σ2 + 5γ2σ2 − 8γ3σ3)) + α1(β3(3γ3σ1 − 7γ3σ2 + 4γ1σ3) + β1(2γ1σ1 − 5γ2σ1 − 5γ1σ2

+ 16γ2σ2 − 4γ3σ3)− β2(5γ1σ1 + 6γ2σ1 + 5γ2σ2 − 8γ3σ3)))− 2s(− 2α3(β3γ1σ1 + 4β2γ3σ1

+ β3γ2σ2 + 4β1γ3σ2) + 2α3(β1γ1 + β2γ2 + 4β3γ3)σ3 + α1(7β2γ2σ1 + 2β3γ3σ1 + 9β1γ2σ2

− 8β3γ2σ3 − 2β1γ3σ3) + α2(9β2γ1σ1 + 7β1γ1σ2 + 2β3γ3σ2 − 8β3γ1σ3 − 2β2γ3σ3)))m
6

− 8
√
2
√
stu(α1(β3γ1σ1 − 5β3γ2σ1 − β1γ3σ1 + 5β2γ3σ1 + 4β3γ2σ2 + 4β1γ3σ2 − (β1γ1

− 4β1γ2 + 5β2γ2 + 5β3γ3)σ3) + α3(β2(− 4γ1σ1 + 5γ2σ1 − γ2σ2 + 5γ3σ3) + 5β3(γ3σ1

− γ3σ2 + γ1σ3 − γ2σ3) + β1(4γ2σ2 + γ1(σ1 − 5σ2)− 5γ3σ3)) + α2(− 5β1γ3σ2 + 5β1γ1σ3

+ β2(− 4γ3σ1 + γ3σ2 − 4γ1σ3 + γ2σ3) + β3(− 4γ1σ1 + 5γ1σ2 − γ2σ2 + 5γ3σ3)))m
5 − 4((

− 5α3(β3γ1σ1 + 4β2γ3σ1 + β3γ2σ2 + 4β1γ3σ2) + 5α3(β1γ1 + β2γ2 + 4β3γ3)σ3

+ α1(19β2γ2σ1 + 5β3γ3σ1 + 21β1γ2σ2 − 5(4β3γ2 + β1γ3)σ3) + α2(21β2γ1σ1 + 19β1γ1σ2
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+ 5β3γ3σ2 − 5(4β3γ1 + β2γ3)σ3))s
2 + t(− 2α3(β2γ3(15σ1 + σ2) + β1γ3(σ1 + 15σ2)

+ β3(5γ1σ1 + 3γ2σ1 + 3γ1σ2 + 5γ2σ2)) + α3(13β1γ1 + 5β2γ1 + 5β1γ2 + 13β2γ2

+ 52β3γ3)σ3 + α1(− 2β1γ1σ1 + 5β2γ1σ1 + 5β1γ2σ1 + 22β2γ2σ1 + 13β3γ3σ1 + 5β1γ1σ2

− 24β1γ2σ2 + 5β2γ2σ2 + 5β3γ3σ2 − 2(β3γ1 + 15β3γ2 + 5β1γ3 + 3β2γ3)σ3) + α2(5β1γ1σ1

− 24β2γ1σ1 + 5β2γ2σ1 + 5β3γ3σ1 + 22β1γ1σ2 + 5β2γ1σ2 + 5β1γ2σ2 − 2β2γ2σ2 + 13β3γ3σ2

− 2(15β3γ1 + β3γ2 + 3β1γ3 + 5β2γ3)σ3))s+ t2(8α3β3(γ1 − γ2)(σ1 − σ2)− 4α3(β1

− β2)(γ3(σ1 − σ2) + (γ1 − γ2)σ3) + α2(β2(− 21γ1σ1 + 5γ2σ1 + 5γ1σ2 − 5γ2σ2 + 8γ3σ3)

+ 4β3(γ3σ1 − γ3σ2 + γ1σ3 − γ2σ3) + β1(5γ1σ1 + 3γ2σ1 + 3γ1σ2 + 5γ2σ2 − 8γ3σ3))

+ α1(4β3(− γ3σ1 + γ3σ2 − γ1σ3 + γ2σ3) + β1(5γ2σ1 − 21γ2σ2 + 5γ1(σ2 − σ1) + 8γ3σ3)

+ β2(5γ1σ1 + 3γ2σ1 + 3γ1σ2 + 5γ2σ2 − 8γ3σ3))))m
4 + 2

√
2
√
stu(s(α1(β3γ1σ1 − 5β3γ2σ1

− β1γ3σ1 + 5β2γ3σ1 + 4β3γ2σ2 + 4β1γ3σ2 − (β1γ1 − 4β1γ2 + 5β2γ2 + 5β3γ3)σ3) + α3(β2(

− 4γ1σ1 + 5γ2σ1 − γ2σ2 + 5γ3σ3) + 5β3(γ3σ1 − γ3σ2 + γ1σ3 − γ2σ3) + β1(4γ2σ2 + γ1(σ1

− 5σ2)− 5γ3σ3)) + α2(− 5β1γ3σ2 + 5β1γ1σ3 + β2(− 4γ3σ1 + γ3σ2 − 4γ1σ3 + γ2σ3) + β3(

− 4γ1σ1 + 5γ1σ2 − γ2σ2 + 5γ3σ3))) + t(α3(β2(− 17γ1σ1 + 5γ2σ1 + 5γ1σ2 − 9γ2σ2

+ 24γ3σ3) + 24β3(γ3σ1 − γ3σ2 + γ1σ3 − γ2σ3) + β1(9γ1σ1 − 5γ2σ1 − 5γ1σ2 + 17γ2σ2

− 24γ3σ3)) + α2(β2(− 17γ3σ1 + 9γ3σ2 − 17γ1σ3 + 9γ2σ3) + β3(− 17γ1σ1 + 5γ2σ1 + 5γ1σ2

− 9γ2σ2 + 24γ3σ3) + 5β1(γ3σ1 − γ3σ2 + γ1σ3 − γ2σ3)) + α1(β1(− 9γ3σ1 + 17γ3σ2 − 9γ1σ3

+ 17γ2σ3) + 5β2(γ3σ1 − γ3σ2 + γ1σ3 − γ2σ3) + β3(9γ1σ1 − 5γ2σ1 − 5γ1σ2 + 17γ2σ2

− 24γ3σ3))))m
3 + 2s((− α3(β3γ1σ1 + 4β2γ3σ1 + β3γ2σ2 + 4β1γ3σ2) + α3(β1γ1 + β2γ2

+ 4β3γ3)σ3 + α1(4β2γ2σ1 + β3γ3σ1 + 4β1γ2σ2 − 4β3γ2σ3 − β1γ3σ3) + α2(4β2γ1σ1

+ 4β1γ1σ2 + β3γ3σ2 − 4β3γ1σ3 − β2γ3σ3))s2 + t(α2(− 4β2γ1σ1 − β3γ3σ1 + 8β1γ1σ2

+ 12β3γ3σ2 + β3(γ2 − 23γ1)σ3 + (β1 − 11β2)γ3σ3) + α1(− 4β1γ2σ2 − 11β1γ3σ3

+ β2(8γ2σ1 + γ3σ3) + β3(12γ3σ1 − γ3σ2 + γ1σ3 − 23γ2σ3)) + α3(β2(− 23γ3σ1 + γ3σ2

− γ1σ3 + 12γ2σ3) + β3(γ2σ1 − 11γ2σ2 + γ1(σ2 − 11σ1) + 36γ3σ3) + β1(γ3σ1 − 23γ3σ2

+ 12γ1σ3 − γ2σ3)))s+ t2(α1(− 8β1γ2σ2 − 9β1γ3σ3 + β2(4γ2σ1 + 4γ1σ2 + γ3σ3)

+ β3(7γ3σ1 − 11γ3σ2 + 7γ1σ3 − 11γ2σ3)) + α2(β3(− 11γ3σ1 + 7γ3σ2 − 11γ1σ3 + 7γ2σ3)



147

+ β1(4γ2σ1 + 4γ1σ2 + γ3σ3)− β2(8γ1σ1 + 9γ3σ3)) + α3(β2(− 11γ3σ1 + 7γ3σ2 − 11γ1σ3

+ 7γ2σ3) + β3(γ2σ1 − 9γ2σ2 + γ1(σ2 − 9σ1) + 32γ3σ3) + β1(7γ3σ1 − 11γ3σ2 + 7γ1σ3

− 11γ2σ3))))m
2 + st

√
2
√
stu(2α1β1(γ3(σ1 − 3σ2) + (γ1 − 3γ2)σ3) + α1β3(− 2γ1σ1

− 6γ2σ2 + 7γ3σ3) + α3(− 2β1γ1σ1 + 6β2γ1σ1 − 7β3γ3σ1 − 6β1γ2σ2 + 2β2γ2σ2 + 7β3γ3σ2

+ 7(β3(γ2 − γ1) + (β1 − β2)γ3)σ3) + 2α2β2(3γ3σ1 − γ3σ2 + 3γ1σ3 − γ2σ3) + α2β3(6γ1σ1

+ 2γ2σ2 − 7γ3σ3))m+ s2t(2s(− β3γ3(α1σ1 + α2σ2) + (2α2β3γ1 + 2α1β3γ2 + α1β1γ3

+ α2β2γ3)σ3 + α3(β3γ1σ1 + 2β2γ3σ1 + β3γ2σ2 + 2β1γ3σ2 − (β1γ1 + β2γ2 + 3β3γ3)σ3)) + t(

− 2β3γ3(α2(σ2 − 2σ1) + α1(σ1 − 2σ2))− 2β3(α2(γ2 − 2γ1) + α1(γ1 − 2γ2))σ3 + 4(α1β1

+ α2β2)γ3σ3 + α3(− 2γ3(β1σ1 − 2β2σ1 − 2β1σ2 + β2σ2)− 2(β1γ1 − 2β2γ1 − 2β1γ2

+ β2γ2)σ3 + β3(4γ1σ1 + 4γ2σ2 − 11γ3σ3))))
)

(F.14)

n̂u = − i

4 (s− 4m2)2

(
192(α3(− β3γ1σ1 + β2γ3σ1 − β3γ2σ2 + β1γ3σ2) + α1(β1γ1σ1 − β2γ2σ1

+ β3γ2σ3 − β1γ3σ3) + α2(− β1γ1σ2 + β2γ2σ2 + β3γ1σ3 − β2γ3σ3))m8 − 16(2s(α2(

− 7β1γ1σ2 + 3β2γ2σ2 − 6β3γ3σ2 + 13β3γ1σ3) + α1(3β1γ1σ1 − 7β2γ2σ1 − 6β3γ3σ1

+ 13β3γ2σ3) + α3(13β2γ3σ1 + 13β1γ3σ2 − 6β1γ1σ3 − 6β2γ2σ3 − 12β3γ3σ3)) + t(α3(β2(

− γ3σ1 + 5γ3σ2 − 8γ1σ3 + 4γ2σ3) + 4β3(− 3γ1σ1 + 2γ2σ1 + 2γ1σ2 − 3γ2σ2 + γ3σ3)

+ β1(5γ3σ1 − γ3σ2 + 4γ1σ3 − 8γ2σ3))− α2(β2(− 26γ1σ1 + 5γ2σ1 + 5γ1σ2 − 8γ2σ2

+ 12γ3σ3) + β3(8γ3σ1 − 4γ3σ2 + γ1σ3 − 5γ2σ3) + β1(5γ1σ1 + 6γ1σ2 + 5γ2σ2 − 8γ3σ3))

− α1(β3(− 4γ3σ1 + 8γ3σ2 − 5γ1σ3 + γ2σ3) + β1(− 8γ1σ1 + 5γ2σ1 + 5γ1σ2 − 26γ2σ2

+ 12γ3σ3) + β2(5γ1σ1 + 6γ2σ1 + 5γ2σ2 − 8γ3σ3))))m
6 − 8

√
2
√
stu(α3(β2(− 13γ1σ1

+ 5γ2σ1 − 8γ2σ2 + 19γ3σ3) + 19β3(γ3σ1 − γ3σ2 + γ1σ3 − γ2σ3) + β1(8γ1σ1 − 5γ1σ2

+ 13γ2σ2 − 19γ3σ3)) + α2(− 5β1γ3σ2 + 5β1γ1σ3 + β2(− 13γ3σ1 + 8γ3σ2 − 13γ1σ3

+ 8γ2σ3) + β3(− 13γ1σ1 + 5γ1σ2 − 8γ2σ2 + 19γ3σ3)) + α1(β1(− 8γ3σ1 + 13γ3σ2 − 8γ1σ3

+ 13γ2σ3) + 5β2(γ3σ1 − γ2σ3) + β3(8γ1σ1 − 5γ2σ1 + 13γ2σ2 − 19γ3σ3)))m
5
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+ 4((α1(3β1γ1σ1 − 19β2γ2σ1 − 32β3γ3σ1 + 59β3γ2σ3 + 17β1γ3σ3) + α2(− 19β1γ1σ2

+ 3β2γ2σ2 − 32β3γ3σ2 + 59β3γ1σ3 + 17β2γ3σ3) + α3(59β2γ3σ1 + 59β1γ3σ2 − 32β1γ1σ3

− 32β2γ2σ3 + 17β3(γ1σ1 + γ2σ2 − 4γ3σ3)))s
2 + t(α2(β2(50γ1σ1 − 5γ2σ1 − 5γ1σ2 + 8γ2σ2

+ 10γ3σ3) + β3(6γ3σ1 − 22γ3σ2 + 41γ1σ3 − 7γ2σ3)− β1(5γ1σ1 + 22γ1σ2 + 5γ2σ2

− 6γ3σ3)) + α1(β3(− 22γ3σ1 + 6γ3σ2 − 7γ1σ3 + 41γ2σ3) + β1(8γ1σ1 − 5γ2σ1 − 5γ1σ2

+ 50γ2σ2 + 10γ3σ3)− β2(5γ1σ1 + 22γ2σ1 + 5γ2σ2 − 6γ3σ3)) + α3(β1(− 7γ3σ1 + 41γ3σ2

− 22γ1σ3 + 6γ2σ3) + β2(41γ3σ1 − 7γ3σ2 + 6γ1σ3 − 22γ2σ3) + 2β3(5γ1σ1 + 3γ2σ1 + 3γ1σ2

+ 5γ2σ2 − 38γ3σ3)))s+ t2(4α3((β1 − β2)(γ3(σ1 − σ2) + (γ1 − γ2)σ3)− 2β3(γ1 − γ2)(σ1

− σ2))− α2(β2(− 21γ1σ1 + 5γ2σ1 + 5γ1σ2 − 5γ2σ2 + 8γ3σ3) + 4β3(γ3σ1 − γ3σ2 + γ1σ3

− γ2σ3) + β1(5γ1σ1 + 3γ2σ1 + 3γ1σ2 + 5γ2σ2 − 8γ3σ3))− α1(4β3(− γ3σ1 + γ3σ2 − γ1σ3

+ γ2σ3) + β1(− 5γ1σ1 + 5γ2σ1 + 5γ1σ2 − 21γ2σ2 + 8γ3σ3) + β2(5γ1σ1 + 3γ2σ1 + 3γ1σ2

+ 5γ2σ2 − 8γ3σ3))))m
4 + 2

√
2
√
stu(t(α3(β2(− 17γ1σ1 + 5γ2σ1 + 5γ1σ2 − 9γ2σ2

+ 24γ3σ3) + 24β3(γ3σ1 − γ3σ2 + γ1σ3 − γ2σ3) + β1(9γ1σ1 − 5γ2σ1 − 5γ1σ2 + 17γ2σ2

− 24γ3σ3)) + α2(β2(− 17γ3σ1 + 9γ3σ2 − 17γ1σ3 + 9γ2σ3) + β3(− 17γ1σ1 + 5γ2σ1

+ 5γ1σ2 − 9γ2σ2 + 24γ3σ3) + 5β1(γ3σ1 − γ3σ2 + γ1σ3 − γ2σ3)) + α1(β1(− 9γ3σ1 + 17γ3σ2

− 9γ1σ3 + 17γ2σ3) + 5β2(γ3σ1 − γ3σ2 + γ1σ3 − γ2σ3) + β3(9γ1σ1 − 5γ2σ1 − 5γ1σ2

+ 17γ2σ2 − 24γ3σ3))) + s(α3(β2(− 25γ1σ1 + 5γ2σ1 − 12γ2σ2 + 33γ3σ3) + 33β3(γ3σ1

− γ3σ2 + γ1σ3 − γ2σ3) + β1(12γ1σ1 − 5γ1σ2 + 25γ2σ2 − 33γ3σ3)) + α2(− 5β1γ3σ2

+ 5β1γ1σ3 + β2(− 25γ3σ1 + 12γ3σ2 − 25γ1σ3 + 12γ2σ3) + β3(− 12γ2σ2 + 5γ1(σ2 − 5σ1)

+ 33γ3σ3)) + α1(β1(− 12γ3σ1 + 25γ3σ2 − 12γ1σ3 + 25γ2σ3) + 5β2(γ3σ1 − γ2σ3)

+ β3(12γ1σ1 − 5γ2σ1 + 25γ2σ2 − 33γ3σ3))))m
3 − 2s((α1(− 4β2γ2σ1 − 14β3γ3σ1

+ 26β3γ2σ3 + 11β1γ3σ3) + α2(− 4β1γ1σ2 − 14β3γ3σ2 + 26β3γ1σ3 + 11β2γ3σ3)

+ α3(11β3γ1σ1 + 26β2γ3σ1 + 11β3γ2σ2 + 26β1γ3σ2 − 14β1γ1σ3 − 14β2γ2σ3

− 32β3γ3σ3))s
2 + t(α2(− β1(8γ1σ2 + γ3σ3) + β2(12γ1σ1 + 23γ3σ3) + β3(15γ3σ1 − 21γ3σ2

+ 37γ1σ3 − 10γ2σ3)) + α1(β3(− 21γ3σ1 + 15γ3σ2 − 10γ1σ3 + 37γ2σ3)− β2(8γ2σ1 + γ3σ3)

+ β1(12γ2σ2 + 23γ3σ3)) + α3(β1(− 10γ3σ1 + 37γ3σ2 − 21γ1σ3 + 15γ2σ3) + β2(37γ3σ1
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− 10γ3σ2 + 15γ1σ3 − 21γ2σ3) + β3(23γ1σ1 − γ2σ1 − γ1σ2 + 23γ2σ2 − 72γ3σ3)))s+ t2(α2(

− β1(4γ2σ1 + 4γ1σ2 + γ3σ3) + β2(8γ1σ1 + 9γ3σ3) + β3(11γ3σ1 − 7γ3σ2 + 11γ1σ3

− 7γ2σ3))− α1(β2(4γ2σ1 + 4γ1σ2 + γ3σ3)− β1(8γ2σ2 + 9γ3σ3) + β3(7γ3σ1 − 11γ3σ2

+ 7γ1σ3 − 11γ2σ3)) + α3(β1(− 7γ3σ1 + 11γ3σ2 − 7γ1σ3 + 11γ2σ3) + β2(11γ3σ1 − 7γ3σ2

+ 11γ1σ3 − 7γ2σ3) + β3(9γ1σ1 − γ2σ1 − γ1σ2 + 9γ2σ2 − 32γ3σ3))))m
2 −
√
2s(s

+ t)
√
stu(2α2β2(γ3(σ2 − 3σ1) + (γ2 − 3γ1)σ3)− 2α1β1(γ3(σ1 − 3σ2) + (γ1 − 3γ2)σ3)

+ α2β3(− 6γ1σ1 − 2γ2σ2 + 7γ3σ3) + α1β3(2γ1σ1 + 6γ2σ2 − 7γ3σ3) + α3(β2(− 6γ1σ1

− 2γ2σ2 + 7γ3σ3) + 7β3(γ3σ1 − γ3σ2 + γ1σ3 − γ2σ3) + β1(2γ1σ1 + 6γ2σ2 − 7γ3σ3)))m

+ s2(s+ t)(s(2(α1(− β3γ3σ1 + 2β3γ2σ3 + β1γ3σ3) + α2(− β3γ3σ2 + 2β3γ1σ3 + β2γ3σ3))

+ α3(4β2γ3σ1 + 4β1γ3σ2 − 2β1γ1σ3 − 2β2γ2σ3 + β3(2γ1σ1 + 2γ2σ2 − 5γ3σ3)))

+ t(4α1β1γ3σ3 + 4α2β2γ3σ3 − 2α1β3(γ3(σ1 − 2σ2) + (γ1 − 2γ2)σ3) + 2α2β3(2γ3σ1 − γ3σ2

+ 2γ1σ3 − γ2σ3) + α3(β3(4γ1σ1 + 4γ2σ2 − 11γ3σ3)− 2(β2γ3(σ2 − 2σ1) + β1γ3(σ1 − 2σ2)

+ β2(γ2 − 2γ1)σ3 + β1(γ1 − 2γ2)σ3))))
)

(F.15)



Appendix G

BCJ Relations in 5pt Massive

Amplitudes

In 5pt scattering the size of block diagonal matrix A (defined by (2.7)) is 9 × 9 and it can be

expressed as:

A =



B1 D12D34 0 0 −D15D34 0 D25D34 0 0

D12D34 B2 D12D45 0 0 0 0 0 0

0 D12D45 B3 D23D45 0 0 0 D13D45 0

0 0 D23D45 B4 D14D23 0 0 0

−D15D34 0 0 D15D23 B5 0 0 0 −D15D24

0 0 0 D14D23 0 B6 D14D25 0 0

D25D34 0 0 0 0 D14D25 B7 −D13D25 0

0 0 D13D45 0 0 0 −D13D25 B8 D13D24

0 0 0 0 −D15D24 0 0 D13D24 B9



,
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where the Bi’s are:

B1 = D12D34 +D15D34 +D25D34,

B2 = D12D34 +D12D35 +D12D45,

B3 = D12D45 +D13D45 +D23D45,

B4 = D14D23 +D15D23 +D23D45,

B5 = D15D23 +D15D24 +D15D34,

B6 = D14D23 +D14D25 +D14D34,

B7 = D13D25 +D14D25 +D25D34,

B8 = D13D24 +D13D25 +D13D45,

B9 = D13D24 +D15D24 +D24D35.

(G.1)

Imposing the spectral conditions (2.69), reduces the rank of A from 9 to 5, where the following

vectors form the basis for the null space of A:

uT1 =

(
0,
D24

D12

,− D24

D12 +D13 +D23

, 0,− D24

D12 +D13 +D14

, 0, 0, 0, 1

)
,

uT2 =

(
− D13

D12 +D13 +D14 +D23 +D24

, 0,− D13

D12 +D13 +D23

, 0,− D13

D12 +D13 +D14

, 0, 0, 1, 0

)
,

uT3 =

(
− D12 +D23 +D24

D12 +D13 +D14 +D23 +D24

, 0,−D12 +D23 +D24

D12 +D13 +D23

,−−D12 −D23 −D24

D23

, 0, 0, 1, 0, 0

)
,

uT4 =

(
D14

D12 +D13 +D14 +D23 +D24

,
D14

D12

, 0,−D14

D23

, 0, 1, 0, 0, 0

)
.

(G.2)

These null vectors determine the BCJ relations via (2.10), expressed here as linear relations on

the kinematic factors. To obtain (2.70), (2.71), (2.72) and (2.73) once the spectral condition is

applied, we consider linear combinations of uTα in (2.10),

∑
α

βαu
T
αU = 0, (G.3)

the values of βα for a given BCJ relation is given in the following table:
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β1 β2 β3 β4

(2.70) A1 -A1 -A1 0

(2.71) -A2 A2 A2
D24

D14
A2

(2.72) 0 -A3 -A3 0

(2.73) 0 A4
D12+D23

D12+D23+D24
A4 0

Table G.1: Values of βα in (G.3) in order to reproduce the four BCJ relations, where
A1 = D12(D12 +D13 +D14)D23(D12 +D13 +D14 +D23 +D24),
A2 = D14(D12 +D13 +D14)D23(D12 +D13 +D14 +D23 +D24),
A3 = (D12 +D13 +D14)D23(D12 +D13 +D23)(D12 +D13 +D14 +D23 +D24),
A4 = −(D12 +D13 +D14)D23(D12 +D23 +D24)(D12 +D13 +D14 +D23 +D24).
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G.1 Interacting terms in KK inspired action

Here are the explicit expressions of the terms listed in Table 2.1:

LAAA =
1√
2
fabc

∑
i,j,k∈Z ̸=0

gijk
(
(D[µA

i
ν])

aAjbµAkcν
)
,

LAAϕ =
i√
2
fabc

∑
i,j∈Z̸=0

g′ijs
(
Aia

µ A
jbµϕc

)
,

LAAAA =
−1
8
fabef cde

∑
i,j,k,l∈Z̸=0

gijkl

(
Aia

[µA
jb
ν]A

kc[µAldν]
)
,

LAAϕϕ =
−1
4
fabef cde

∑
i,j∈Z ̸=0

gijss
(
Aia

µ A
jcµϕbϕd

)
,

LF 3

AAA1 =
4

Λ2
fabc

∑
i,j,k∈Z̸=0

Gijk

(
D[µAiν]DνA

jρD[ρAkµ]

)
,

LF 3

AAA2 =
3

Λ2
fabc

∑
i,j,k∈Z̸=0

Ĝijk

(
mimjA

aiµAbjνD[νA
kc
µ]

)
,

LF 3

AAϕ =
−6i
Λ2

fabc
∑

i,j∈Z̸=0

G′
ijs

(
AiaµDρϕbD[ρA

jc
µ]

)
,

LF 3

Aϕϕ =
3

2Λ2
fabcG0ss

(
DµϕaDνϕbF 0c

νµ

)
,

LF 3

AAAA1 =
3
√
2

Λ2
fabef cde

∑
i,j,k∈Z̸=0

Gijkl

(
D[µAiaν]D[νA

jb
ρ]A

kcρAdl
µ

)
,

LF 3

AAAA2 =
−3

2
√
2Λ2

fabef cde
∑

i,j,k∈Z ̸=0

Ĝijkl

(
mimjA

ia
µ A

jbνAkcµAld
ν

)
,

LF 3

AAϕϕ1 =
3

2
√
2Λ2

fabef cde
∑

i,j,k∈Z ̸=0

Gijss

(
Aia

µ A
jb
ν D

µϕcDνϕd
)
,

LF 3

AAϕϕ2 =
3
√
2

Λ2
fabef cde

∑
i,j,k∈Z̸=0

Ĝijss

(
AiaµϕbD[µA

jc
ν]D

νϕd
)
,

LF 3

AAAϕ1 =
−3i√
2Λ2

fabef cde
∑

i,j,k∈Z ̸=0

Ĝijks

(
mkA

ia
µ A

jb
ν A

kcµDνϕd
)
,

(G.4)
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LF 3

AAAϕ2 =
−3
√
2i

Λ2
fabef cde

∑
i,j,k∈Z ̸=0

Gijks

(
miA

jaµϕbAicνD[µA
kd
ν]

)
,

LF 3

AAAAA =
3

2Λ2
fa1bcf ba2a3f ca4a5

∑
i,j,k,l,m∈Z ̸=0

Gijklm

(
D[µAia1ν]Aja2νAka3ρAla4

ρ Ama5µ
)
,

LF 3

ϕAAAA =
3i

2Λ2
fa1bcf ba2a3f ca4a5

∑
i,j,k,l∈Z̸=0

Gijkls

(
miA

ia1µϕa2Aja3νAka4
µ Ama5

ν

)
,

LF 3

ϕϕAAA1 =
−3
2Λ2

fa1bcf ba2a3f ca4a5
∑

i,j,k∈Z ̸=0

Gijkss

(
Dµϕa1ϕa2Aia3νAja4

µ Aka5
ν

)
,

LF 3

ϕϕAAA2 =
3

2Λ2
fa1bcf ba2a3f ca4a5

∑
i,j,k∈Z ̸=0

Ĝijks

(
D[µA

ia1
ν] ϕ

a2Aja3µϕa4Aka5ν
)
,

(G.5)

LF 4

AAAA1 =
−9
Λ4
fabef cde

∑
i,j,k,l∈Z

cijkl

(
D[µAiaν]D[αA

jb
β]DµA

ck
ν D

[αAldβ]
)
, (G.6)

LF 4

AAAA2 =
9

Λ4
fabef cde

∑
i,j,k,l∈Z

Cijkl

(
miA

iaµD[αA
jb
β]mkA

ck
µ D

[αAldβ]
)
,

LF 4

AAAϕ1 =
18i

Λ4
fabef cde

∑
i,j,k∈Z

cijks

(
miA

iaµD[αA
jb
β]Dµϕ

cD[αAld
β]

)
,

LF 4

AAAϕ2 =
−9i
Λ4

fabef cde
∑

i,j,k∈Z

Cijks

(
miA

iaµmjA
jbνDµϕ

cmkA
ld
ν

)
,

LF 4

AAϕϕ1 =
−9
Λ4
fabef cde

∑
i,j∈Z

cijss
(
D[µAiaν]Dαϕ

bDµA
ck
ν D

αϕd
)
,

LF 4

AAϕϕ2 =
9

2Λ4
fabef cde

∑
i,j∈Z

c
(2)
ijss

(
miA

iaµDνϕ
bDµϕ

cmjA
jdν
)
,

LF 4

AAϕϕ3 =
9

2Λ4
fabef cde

∑
i,j∈Z

c
(3)
ijss

(
miA

iaµDνϕ
bDνϕcmjAjdµ

)
,

LF 4

ϕϕϕϕ = − 9

4Λ4
fabef cde cϕ4

(
DµϕaDνϕ

bDµϕ
cDνϕd

)
LF 4

AAAAA1 =
−18√
2Λ4

fa1a2bfa3cbf ca4a5
∑

i,j,k,l,m∈Z ̸=0

cijklm

(
D[µAia1ν]D[αA

ja2
β] D[µA

ka3
ν] A

la4αAma5β
)
,

LF 4

AAAAA2 =
9√
2Λ4

fa1a2bfa3cbf ca4a5
∑

i,j,k,l,m∈Z ̸=0

Cijklm

(
mimkA

ia1µD[αA
ja2
β] A

ka3
µ Ala4αAma5β

)
,

LF 4

ϕAAAA1 =
−9i√
2Λ4

fa1a2bfa3cbf ca4a5
∑

i,j,k,l∈Z ̸=0

cijkls

(
mjD

µϕa1D[αA
ia2
β] A

ja3
µ Aka4αAla5β

)
,
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LF 4

ϕAAAA2 =
−18i√
2Λ4

fa1a2bfa3cbf ca4a5
∑

i,j,k,l∈Z ̸=0

Cijkls

(
mjD

[µAia1ν]Aja2
β D[µA

ka3
ν] ϕ

a4Ala5β
)
,

LF 4

ϕAAAA3 =
−9i√
2Λ4

fa1a2bfa3cbf ca4a5
∑

i,j,k,l∈Z ̸=0

Ĉijkls

(
mimjmkA

ia1µAja2
β Aka3

µ ϕa4Ala5β
)
,

LF 4

ϕϕAAA1 =
9√
2Λ4

fa1a2bfa3cbf ca4a5
∑

i,j,k∈Z̸=0

cijkss

(
Dµϕa1D[αA

ia2
β] Dµϕ

a3Aka4αAla5β
)
,

LF 4

ϕϕAAA2 =
18√
2Λ4

fa1a2bfa3cbf ca4a5
∑

i,j,k∈Z̸=0

Cijkss

(
D[µAia1ν]Dβϕ

a2D[µA
ka3
ν] ϕ

a4Ala5β
)
,

LF 4

ϕϕAAA3 =
−9√
2Λ4

fa1a2bfa3cbf ca4a5
∑

i,j,k∈Z̸=0

Ĉ
(3)
ijkss

(
mimjA

ia1µDβϕ
a2Aja3

µ ϕa4Aka5β
)
,

LF 4

ϕϕAAA4 =
−9√
2Λ4

fa1a2bfa3cbf ca4a5
∑

i,j,k∈Z̸=0

Ĉ
(4)
ijkss

(
mimjA

ia1µDβϕ
a2Aja3βϕa4Aka5

µ

)
,

LF 4

ϕϕAAA5 =
−9√
2Λ4

fa1a4bf ca3a5fa2bc
∑

i,j,k∈Z̸=0

Ĉ
(5)
ijkss

(
mjmkA

ia1µDβϕ
a2Aja3

µ ϕa4Aka5β
)
,

LF 4

ϕϕϕAA1 =
−9i√
2Λ4

fa1a5bfa2bcfa3a4c
∑

i,j∈Z ̸=0

cijsss
(
mjA

ia1µAja2νDµϕ
a3Dνϕ

a4ϕa5
)
,

LF 4

ϕϕϕAA2 =
−9i√
2Λ4

fa1a4bfa3bcfa2a5c
∑

i,j∈Z ̸=0

c
(2)
ijsss

(
miA

ia1µAja2νDµϕ
a3Dνϕ

a4ϕa5
)
,

LF 4

ϕϕϕAA3 =
−9√
2Λ4

fa1a2bfa3cbf ca4a5
∑

i,j∈Z ̸=0

c
(3)
ijsss

(
miDµϕ

a1Aia2
β Dµϕ

a3ϕa4Ala5β
)
.

Here a, b, c, d, e are the indices of the adjoint representation of the gauge group and various

numerical factors are chosen such that in the case of 4d KK reduction of 5d Yang-Mills with

coupling g plus G
Λ2 tr(F

3) and −9G2

16Λ2 tr([F, F ]
2) operators all couplings appear without any nu-

merical factors, i.e. they are expressed as products of g and G.



Appendix H

Double Copy in 3d

H.1 Explicit Expressions of qi and ei

In this appendix we give the explicit expressions for qi and ei which were introduced in (2.116).

Since we can split this expression in different ways, we have the freedom to choose different

expressions for qi and ei. Here we show two different cases that are useful to understand the

residues at the spurious poles. One possible choice for qi and ei is

q1 = −u2 − u4 − u7 + u9 ,

q2 = 0 ,

q3 = −u2 − u4 − u7 + u9 ,

q4 = u1 − u2 + u3 − u4 + u6 − u7 + 2u9 ,

q5 = u2 + u3 + 2u4 + u5 + u6 + u7 − u9 ,

q6 = u3 + u4 + u5 + u6 ,

156
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e1 =
1

2



−m2 (15s12 + 17s13 + 4s14 + 10s23 + 6s24) + 46m4 + s212 + 2s213 + s14s23 + s13s24 + s12 (4s13 + s14 + s23 + s24)

−m2 (−7s12 − 11s13 − 14s14 − 7s23 − 3s24) − 31m4 − 2s213 + s12 (−2s13 − 3s14) − 4s13s14 − 2s13s23 − 3s14s23 + s13s24 − 2s14s24

−m2 (8s12 + 13s13 − 5s14 + 4s23 + 4s24) + 32m4 + 2s213 − 2s214 + s12 (3s13 + s14)

0

−m2 (7s12 + 11s13 + 14s14 + 7s23 + 3s24) + 31m4 + 2s213 + 4s13s14 + s12 (2s13 + 3s14) + 2s13s23 + 3s14s23 − s13s24 + 2s14s24

−m2 (22s12 + 28s13 + 18s14 + 17s23 + 9s24) + 77m4 + s212 + 4s213 + 4s13s14 + 2s13s23 + 4s14s23 + 2s14s24 + s12 (6s13 + 4s14 + s23 + s24)

−m2 (7s12 + 4s13 + 9s14 + 6s23 + 2s24) + 14m4 + s212 + 2s214 + s14s23 + s13s24 + s12 (s13 + s23 + s24)

−m2 (−14s12 − 15s13 − 23s14 − 13s23 − 5s24) − 45m4 − s212 − 2s213 − 2s214 − 4s13s14 − 2s13s23 − 4s14s23 + s12 (−3s13 − 3s14 − s23 − s24) − 2s14s24

−m2 (8s12 + 13s13 − 5s14 + 4s23 + 4s24) + 32m4 + 2s213 − 2s214 + s12 (3s13 + s14)



,

e2 =



m2 (2s12 + 2s23 + 2s24) − 10m4 + s13s14

m2 (−2s12 − 5s14 − 2s23 − 2s24) + 10m4 + s14 (s12 + s13 + s23 + s24)

m2 (2s12 − 4s14 + 2s23 + 2s24) − 10m4 + s14 (s13 + s14)

0

m2 (2s12 + 5s14 + 2s23 + 2s24) − 10m4 + s14 (−s12 − s13 − s23 − s24)

m2 (4s12 + 5s14 + 4s23 + 4s24) − 20m4 + s14 (−s12 − s23 − s24)

s14

(
4m2 − s14

)
−m2 (2s12 + 9s14 + 2 (s23 + s24)) + 10m4 + s14 (s12 + s13 + s14 + s23 + s24)

2m2 (s12 − 2s14 + s23 + s24) − 10m4 + s14 (s13 + s14)



,

e3 =
1

2



−m2 (7s12 + 5s13 + 2 (2s14 + s23 + s24)) + 10m4 + s212 + s14s23 + s13 (2s14 + s24) + s12 (2s13 + s14 + s23 + s24)

−m2 (s12 + 3s13 + 4s14 + s23 + s24) + 5m4 + s12s14 + s14s23 + s13 (2s14 + s24)

(s13 − s14)
(
−

(
m2 − s12

))
0

4m2s14 + m2s23 + m2s24 + s12

(
m2 − s14

)
+ s13

(
3m2 − 2s14 − s24

)
− 5m4 − s14s23(

m2 − s12

) (
5m2 − s12 − 2s13 − s23 − s24

)
−m2 (7s12 + 4s13 + 5s14 + 2s23 + 2s24) + 10m4 + s212 + s14s23 + s13 (2s14 + s24) + s12 (s13 + 2s14 + s23 + s24)

−
(
m2 − s12

) (
5m2 − s12 − s13 − s14 − s23 − s24

)
(s13 − s14)

(
−

(
m2 − s12

))



,

e4 =



−2m2 (s12 + s13 + s23) + 8m4 + s13s23

m2 (11s12 + 6s13 + 4s14 + 11s23 + 4s24) − 28m4 − s13 (s12 + s23 + s24) − (s12 + s23) (s12 + s14 + s23 + s24)

−m2 (11s12 + 6s13 + 2s14 + 4s23 + 4s24) + 26m4 + s13 (s12 + s23 + s24) + s12 (s12 + s14 + s23 + s24)

0

−m2 (11s12 + 6s13 + 4s14 + 11s23 + 4s24) + 28m4 + s13 (s12 + s23 + s24) + (s12 + s23) (s12 + s14 + s23 + s24)

−m2 (13s12 + 8s13 + 4s14 + 13s23 + 4s24) + 36m4 + (s12 + s23) (s12 + s14 + s23 + s24) + s13 (s12 + 2s23 + s24)

m2 (9s12 + 2 (2s13 + s14 + s23 + 2s24)) − 18m4 − s13 (s12 + s24) − s12 (s12 + s14 + s23 + s24)

m2 (2s12 + 2s13 + 2s14 + 9s23) − 10m4 − s13s23 − s23 (s12 + s14 + s23 + s24)

−m2 (11s12 + 6s13 + 2s14 + 4s23 + 4s24) + 26m4 + s13 (s12 + s23 + s24) + s12 (s12 + s14 + s23 + s24)



,

e5 =



−2m2 (s12 + s13 + s23) + 8m4 + s12s13

s12

(
2m2 − s14

)
−

(
4m2 − s23

) (
2m2 − s14

)
+ s13

(
s24 − 2m2

)
−2m2 (2s12 + s13 + s14 + s23 + s24) + 16m4 + s12s13 + s12s14

0

s12

(
s14 − 2m2

)
+

(
2m2 − s14

) (
4m2 − s23

)
+ s13

(
2m2 − s24

)
−4m2s23 + s12

(
−4m2 + s13 + s14

)
+ s14

(
s23 − 4m2

)
+ 16m4 − s13s24

2m2
(
−4m2 + s14 + s24

)
+ s12

(
2m2 − s14

)
−2m2 (s13 − s14 − s23 + s24) − s14s23 + s13s24

−2m2 (2s12 + s13 + s14 + s23 + s24) + 16m4 + s12s13 + s12s14



,

e6 =



−m2 (7s12 + 2 (2s14 + s23 + s24)) + 10m4 + s212 + s14s23 + s12 (s14 + s23 + s24)

s14

(
s23 − 4m2

)
+

(
2m2 − s24

) (
5m2 − s23 − s24

)
+ s12

(
−2m2 + s14 + s24

)
2m2

(
5m2 − s23 − s24

)
+ s12

(
−7m2 + s23 + s24

)
+ s14

(
−4m2 + s23 + s24

)
+ s212

0

s14

(
4m2 − s23

)
+ s12

(
2m2 − s14 − s24

)
−

(
2m2 − s24

) (
5m2 − s23 − s24

)
(s12 − s24)

(
−5m2 + s12 + s23 + s24

)
s14 (s12 − s24)(

2m2 − s24

) (
5m2 − s23 − s24

)
+ s12

(
s24 − 2m2

)
+ s14

(
−4m2 + s23 + s24

)
2m2

(
5m2 − s23 − s24

)
+ s12

(
−7m2 + s23 + s24

)
+ s14

(
−4m2 + s23 + s24

)
+ s212



.
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We have verified numerically that all of e1...e6 are parallel to the null vector, e0, when

ϵ(1, 3, 4) = 0.

Another choice of qi and ei is the following:

q1 = u1 − u2 + u3 + u5 + 2u6 − u8 + u9 ,

q2 = u1 − u2 + u5 + 2u6 + u7 − 2u8 ,

q3 = 2u1 − 3u2 + 2u3 + 3u5 + 5u6 − 3u8 + 2u9 ,

q4 = u1 − 2u2 + 2u3 + 2u5 + 3u6 − u7 − u8 + 2u9 ,

q5 = −u1 + u2 − u3 − u5 − 2u6 + u8 − u9 ,

q6 = u1 − 2u2 + 2u5 + 3u6 + u7 − 3u8 ,

e1 =



−s23

(
−13m2 + 3s12 − s13 + s14 + 2s23 + 2s24

)
−2m2s14 − 7m2s23 + s13

(
8m2 + s23

)
+ s12

(
8m2 − 2s13 + s23

)
− 15m4 − s212 − s213 + s214 + 2s223 − s14s23 + 2s23s24

−8m2s14 + 5m2s23 − 5m2s24 + s12

(
−18m2 + 2s13 + 2s14 − s23 + s24

)
+ s13

(
−8m2 + s23 + s24

)
+ 40m4 + 2s212 − 2s223 + s14s23 + s14s24 − 2s23s24

−5m2 (2s12 + 2s14 + 3s23 + s24) + 25m4 + s212 − s213 + s214 + 2s223 + s13s23 + s14s23 + s13s24 + s14s24 + 2s23s24 + s12 (2s14 + 3s23 + s24)

−m2 (18s12 + 8s13 + 8s14 + 8s23 + 5s24) + 40m4 + 2s212 + 2s14s23 + s13s24 + s14s24 + s12 (2s13 + 2s14 + 2s23 + s24)

−8m2s14 + 5m2s23 − 5m2s24 + s12

(
−18m2 + 2s13 + 2s14 − s23 + s24

)
+ s13

(
−8m2 + s23 + s24

)
+ 40m4 + 2s212 − 2s223 + s14s23 + s14s24 − 2s23s24

−2m2s14 − 7m2s23 + s13

(
8m2 + s23

)
+ s12

(
8m2 − 2s13 + s23

)
− 15m4 − s212 − s213 + s214 + 2s223 − s14s23 + 2s23s24

0

m2 (−8s12 − 8s13 + 2s14 + 20s23) + 15m4 + s212 + s213 − s214 − 4s223 + 2s12 (s13 − 2s23) − 4s23s24



,

e2 =



s23

(
−5m2 + 2s12 + s14 + 2s24

)
m2 (s12 + s13 + 6s14 − 3s23) − 5m4 − s214 − s12s14 − s13s14 + s14s23 + 2s23s24

m2 (7s12 + 2s13 + 2s14 − s23 + 5s24) − 10m4 − s212 − s13s24 − s14s24 − s12 (s13 + s14 − s23 + s24)

m2 (8s12 + 3s13 + 8s14 + s23 + 5s24) − 15m4 − s212 − s214 − s13s14 − s13s24 − s14s24 − s12 (s13 + 2s14 + s23 + s24)

m2 (7s12 + 2s13 + 2s14 + 4s23 + 5s24) − 10m4 − s212 − s14s23 − s13s24 − s14s24 − 2s23s24 − s12 (s13 + s14 + s23 + s24)

m2 (7s12 + 2s13 + 2s14 − s23 + 5s24) − 10m4 − s212 − s13s24 − s14s24 − s12 (s13 + s14 − s23 + s24)

m2 (s12 + s13 + 6s14 − 3s23) − 5m4 − s214 − s12s14 − s13s14 + s14s23 + 2s23s24

0

−m2 (s12 + s13 + 6s14 + 2s23) + 5m4 + s214 + s13s14 + s12 (s14 + 2s23)



,

e3 =



2m2s14 + s23

(
−6m2 + s12 + s24

)
− 2m4 + s223

−m2s24 + s23

(
7m2 − s12 − s13 − s24

)
+ s14

(
s24 − 2m2

)
+ 2m4 − s223

2m2 (s13 + s14 − 3 (s23 + s24)) − 4m4 + s223 + s224 + s12s23 + s12s24 + 2s23s24

s13

(
2m2 − s23

)
+ (s23 − s24)

(
7m2 − s12 − s23 − s24

)
+ s14

(
s24 − 2m2

)
2m2s13 + s24

(
−6m2 + s12 + s23

)
− 2m4 + s224

2m2 (s13 + s14 − 3 (s23 + s24)) − 4m4 + s223 + s224 + s12s23 + s12s24 + 2s23s24

−m2s24 + s23

(
7m2 − s12 − s13 − s24

)
+ s14

(
s24 − 2m2

)
+ 2m4 − s223

0

m2s24 + s14

(
4m2 − s24

)
+ s23

(
−13m2 + 2s12 + s13 + 2s24

)
− 4m4 + 2s223



,



H.2. Special Kinematics of 3D Topologically Massive Theories 159

e4 =



s12

(
−9m2 + s13 + s14 + 2s23 + s24

)
+

(
4m2 − s23

) (
5m2 − s14 − s24

)
+ s13

(
s24 − 4m2

)
+ s212

m2 (s12 + s13 + s14 − 3s23 + s24) − 5m4 + s14s23 − s14s24 + s23s24

−m2 (2s12 + 2s13 + 2s14 + s23 − 5s24) + 10m4 − s224 + s12 (s23 − s24) − s23s24

m2 (8s12 + 3s13 + 3s14 + s23 + 10s24) − 15m4 − s212 − s224 − s13s24 − s14s24 − s23s24 − s12 (s13 + s14 + s23 + 2s24)

m2 (7s12 + 2s13 + 2s14 + 4s23 + 9s24) − 10m4 − s212 − s224 − s14s23 − s13s24 − 2s23s24 − s12 (s13 + s14 + s23 + 2s24)

−m2 (2s12 + 2s13 + 2s14 + s23 − 5s24) + 10m4 − s224 + s12 (s23 − s24) − s23s24

m2 (s12 + s13 + s14 − 3s23 + s24) − 5m4 + s14s23 − s14s24 + s23s24

0

−m2 (10s12 + 5s13 + 5s14 + 2s23 + 5s24) + 25m4 + s212 + s13s24 + s14s24 + s12 (s13 + s14 + 2s23 + s24)



,

e5 =



s12

(
−7m2 + s13 + s14 + 2s23 + s24

)
+

(
2m2 − s23

) (
5m2 − s14 − 2s24

)
+ s13

(
s24 − 2m2

)
+ s212

−m2 (s12 + s13 + s14 + 3s23 + 4s24) + 5m4 + s14s23 + s12s24 + (s13 + 2s23) s24

(s23 − s24)
(
s12 − m2

)
−

(
m2 − s12

) (
5m2 − s12 − s13 − s14 − s23 − s24

)
m2 (7s12 + 2s13 + 2s14 + 4s23 + 5s24) − 10m4 − s212 − s14s23 − (s13 + 2s23) s24 − s12 (s13 + s14 + s23 + 2s24)

(s23 − s24)
(
s12 − m2

)
−m2 (s12 + s13 + s14 + 3s23 + 4s24) + 5m4 + s14s23 + s12s24 + (s13 + 2s23) s24

0(
m2 − s12

) (
5m2 − s12 − s13 − s14 − 2s23

)



,

e6 =



−2m2s14 + s23

(
2m2 − s12 − s24

)
+ 2m4

s14

(
2m2 − s23 − s24

)
−

(
m2 − s23

) (
2m2 − s24

)
2m2 (s12 + s23 + 3s24) − 6m4 − s224 − s23s24 − s12 (s23 + s24)

s12

(
2m2 − s24

)
−

(
5m2 − s23 − s24

) (
2m2 − s24

)
+ s14

(
4m2 − s23 − s24

)
2m2 (s12 + s14 + 3s24) − 8m4 − s224 − s12s24

2m2 (s12 + s23 + 3s24) − 6m4 − s224 − s23s24 − s12 (s23 + s24)

s14

(
2m2 − s23 − s24

)
−

(
m2 − s23

) (
2m2 − s24

)
0

−m2s24 + s14

(
−4m2 + s23 + s24

)
+ 4m4 − s12s23



.

We found numerically that for this choice all ei are parallel to e0 when ϵ(2, 3, 4) = 0.

H.2 Special Kinematics of 3D Topologically Massive The-

ories

The on-shell polarisation vectors of topologically massive theories satisfy the equations of mo-

tion given in (2.123), while the external momenta should be on-shell, that is, p2i = −m2
i .

Furthermore, special relations can arise in three spacetime dimensions as we will see in the

following.

3-point Amplitudes From (2.123), we have the following relations for the polarisation vectors
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of the three external states 1, 2 and 3:

ε1µ +
i

m
ϵµνρp

ν
1ε1ρ = 0 ,

ε2µ +
i

m
ϵµνρp

ν
2ε2ρ = 0 ,

ε3µ +
i

m
ϵµνρp

ν
3ε3ρ = 0 .

(H.1)

By contracting the first line with ε2 and ε3 and using the second and third term respec-

tively, we get the following relations:

ee12 = −
2

m2
ep21ep12 , ee13 = −

2

m2
ep12ep32 . (H.2)

Similarly, contracting the second line with ε3 and using the last line we get:

ee23 = −
2

m2
ep21ep23 . (H.3)

This shows that

eeijm
2 = 2epijepji . (H.4)

We use these relations to derive (2.145).

4-point Amplitudes At 4-points, the analytic manipulations become more involve and we

proceed to use a numerical approach to find the on-shell relations between polarisation

vectors and momenta. We have checked that the following relations

ee12ee34
ee14ee23

=
1

(s+ t)4

(
− 8m2s(s− 3t)(s+ t) + s2(s+ t)2 + 32m3(−s+ t)

√
−stu

+8ms(s+ t)
√
−stu+ 16m4(s2 − 6st+ t2)

)
,

ee13ee24
ee14ee23

=
1

(s+ t)4

(
8m2t(3s− t)(s+ t) + t2(s+ t)2 + 16m4(s2 − 6st+ t2)

− 8m
√
−stu(4m2(s− t) + t(s+ t))

)
,

(H.5)

are satisfied when using random on-shell kinematics as described in Appendix H.4. These
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relations can also be checked in the Breit coordiante system (2.148), where the Mandel-

stam variables are related by (2.149). Once these two relations are imposed, we can show

analytically that the 4-point TMG amplitude is the double copy of the 4-point TMYM

one.

5-point Amplitudes At 5-points, we will use a special property of 3D, namely, the fact that

any anti-symmetric tensor with 4 indices is identically zero. It is specially useful to look

at the case

ϵ[µνρ(pi)σ] = 0 . (H.6)

By contracting this relation with pµ1p
ν
2p

ρ
3p

σ
4 and choosing different i’s, we obtain four

relations between the sij Mandelstam variables and ϵ(i, j, k) = ϵµνσp
µ
i p

ν
jp

σ
k . From them,

we can write s12, s13, s14, s23 in terms of ϵ(i, j, k) and s24. For example:

s13=
ϵ(1, 2, 3)ϵ(1, 3, 4)

(
s24−2m2

)
+m2ϵ(1, 2, 3)2−m2

(
ϵ(1, 2, 4)2−2ϵ(2, 3, 4)ϵ(1, 2, 4)−ϵ(1, 3, 4)2+ϵ(2, 3, 4)2

)
ϵ(1, 2, 4)ϵ(2, 3, 4)

.

(H.7)

To find the remaining s24 in terms of ϵ(i, j, k) we can consider products of two ϵ(i, j, k)

and expand the double ϵ in terms of the metric, that is,

ϵ(1, 2, 3)ϵ(1, 2, 3) = ϵµνρϵαβγ(p
µ
1p

ν
2p

ρ
3)(p

α
1p

β
2p

γ
3),

=
1

4

(
−16m6 + 8m4(s12 + s13 + s23)−m2(s12 + s13 + s23)

2 + s12s13s23
)
.

(H.8)

By using the previously derived relations for s12, s13, s14, and s23; we can derive an

expression for s24 purely in terms of ϵ(i, j, k).

H.3 4-point TMG Amplitude

In this appendix we show the explicit expression for the 4-point TMG amplitude in a general

coordinate system and in the Breit coordinate system. In terms of the Mandelstam variables,
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the four-point amplitude of TMG reads

M4 =(
− ee213ee

2
24

(
m2 − s

)(
80
(
3m2 − s

) (
s− 4m2

)2
m8 + 4

(
4m2 − s

) (
1384m6 − 897sm4 + 179s2m2 − 8s3

)
tm4

+
(
22128m6 − 5568sm4 + 729s2m2 − 119s3

)
t3m2 − 4

(
7552m8 − 3258sm6 + 568s2m4 − 85s3m2 + 8s4

)
t2m2

− 6
(
4m2 + s

)
t6 +

(
2m2 − s

) (
76m2 + 3s

)
t5 −

(
5360m6 − 916sm4 + 154s2m2 + s3

)
t4

)
s2

+ ee12ee34
(
m2 − t

)
t

(
ee14ee23

(
− 1477632m16 + 256(5182s+ 6493t)m14 − 64

(
5444s2 + 15491ts+ 10889t2

)
m12

+ 16
(
984s3 + 3973ts2 + 12776t2s+ 7851t3

)
m10 + 4

(
5760s4 + 10402ts3 + 13539t2s2 + 1045t3s− 1568t4

)
m8

− 4
(
1600s5 + 5084ts4 + 5866t2s3 + 3305t3s2 + 971t4s+ 151t5

)
m6

+
(
512s6 + 1976ts5 + 4732t2s4 + 2798t3s3 + 152t4s2 − 11t5s+ 24t6

)
m4+

t
(
128s6 + 360ts5 + 232t2s4 − 249t3s3 + 26t4s2 + 22t5s+ 4t6

)
m2 + st3

(
−2s4 − 5ts3 + 10t2s2 + 2t3s+ t4

))

+ ee12ee34

(
− 768(486s− 481t)m14 + 64

(
3360s2 − 49ts− 6493t2

)
m12

+ 16
(
−600s3 − 613ts2 + 10912t2s+ 10889t3

)
m10 − 4

(
3072s4 + 7778ts3 + 8855t2s2 + 15613t3s

+ 7851t4

)
m8 + 4

(
1088s5 + 1948ts4 + 2314t2s3 + 491t3s2 + 1282t4s+ 392t5

)
m6

+
(
−512s6 − 952ts5 − 492t2s4 + 2178t3s3 + 1192t4s2 + 434t5s+ 151t6

)
m4
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− t
(
128s6 + 488ts5 + 696t2s4 + 343t3s3 + 27t4s2 + 29t5s+ 6t6

)
m2

− t3(2s+ t)
(
−s4 − 4ts3 + t2s2 + t3s+ t4

)))

+ ee13ee24

(
ee14ee23

(
s−m2

)(
− 8

(
s− 4m2

)2 (
s− 3m2

) (
3s− 22m2

)
m6

− 4
(
s− 4m2

) (
−3064m6 + 2221sm4 − 517s2m2 + 36s3

)
tm4 + 2

(
29184m8 − 17444sm6 + 3976s2m4 − 437s3m2

+ 21s4

)
t2m2 + 6

(
4m2 + s

)
t6 +

(
−248m4 + 118sm2 − 3s2

)
t5 +

(
5392m6 − 1028sm4 + 204s2m2 − 5s3

)
t4

+
(
−30256m8 + 10336sm6 − 1541s2m4 + 163s3m2 − 2s4

)
t3

)
s2 + ee12ee34

(
768

(
5s2 + 486ts− 481t2

)
m16

− 64
(
92s3 + 4229ts2 + 8651t2s− 10822t3

)
m14 + 16

(
123s4 + 1027ts3 + 29747t2s2 + 14110t3s− 26039t4

)
m12

+ 4
(
66s5 + 7447ts4 − 11718t2s3 − 62062t3s2 − 15385t4s+ 25368t5

)
m10

− 4
(
52s6 + 2394ts5 + 4948t2s4 + 2145t3s3 − 16136t4s2 − 4706t5s+ 1901t6

)
m8

+
(
24s7 + 716ts6 + 6422t2s5 + 13743t3s4 + 9891t4s3 − 7861t5s2 − 2569t6s− 484t7

)
m6

+ t
(
16s7 − 972ts6 − 2312t2s5 − 2829t3s4 − 25t4s3 − 317t5s2 − 73t6s+ 36t7

)
m4

+ t2
(
86s7 + 263ts6 + 259t2s5 − 50t3s4 − 100t4s3 + 23t5s2 + 13t6s+ 4t7

)
m2

+ st3
(
2s6 + 9ts5 + 15t2s4 + 20t3s3 + 6t4s2 + 3t5s+ t6

))))
×

−i

128m2(m2 − s)s2(m2 − t)t(−4m2 + s+ t)2(−3m2 + s+ t)
.

(H.9)

In order to see the double copy relation explicitly, we write this amplitude in the Breit coordinate

system which was defined in (2.148). The amplitude largely simplifies and is now given by

M4 =
−m

2λ2p2 (λ2 +m2)2 (m2 + 4p2) (3m4 + 4m2 (λ2 + p2) + 4λ2p2)
×(

30Eλm10
(
λ2p− 4p3

)
+ 3im11

(
λ4 + 16p4 − 96λ2p2

)
+ 8Eλ5p5

(
λ4 − 32p4 − 4λ2p2

)
+ Em8

(
−880λp5 + 366λ3p3 + 88λ5p

)
+ 8Eλ3m2p3

(
−8λ6 + 320p6 + 8λ2p4 + λ4p2

)
+ 2im9

(
5λ6 + 152p6 − 502λ2p4 − 367λ4p2

)
+ 2iλ4mp4

(
18λ6 + 640p6 + 416λ2p4 − 17λ4p2

)
+ 2Eλm6p

(
41λ6 − 960p6 + 856λ2p4 + 148λ4p2

)
+ im7

(
11λ8 + 512p8 − 3396λ2p6 − 667λ4p4 − 652λ6p2

)
+ 2Eλm4p

(
12λ8 − 640p8 + 1776λ2p6 + 552λ4p4 − 131λ6p2

)
− iλ2m3p2

(
56λ8 + 2560p8 − 768λ2p6 − 1352λ4p4 − 77λ6p2

)
+ 2im5

(
2λ10 + 128p10 − 2464λ2p8 − 413λ4p6 + 217λ6p4 − 131λ8p2

))
.

(H.10)
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In this coordinate system, the shifted kinematic factors of TMYM, (2.134), read

n̂s =
−iλ

mp (p2 − E2) (−E2 +m2 + p2)
×(

− 5λm5p− λm3p
(
λ2 + 31p2

)
− 2iλ2p2

√
m2 + p2

(
λ2 + 4p2

)
+ im4

√
m2 + p2

(
λ2 + 2p2

)
m
(
−16λp5 − 9λ3p3 + 4λ5p

)
++im2

√
m2 + p2

(
λ4 + 8p4 + 2λ2p2

)
E

(
2im4

(
λ2 + 5p2

)
+ λmp

√
m2 + p2

(
3λ2 − 16p2

)
+ 5λm3p

√
m2 + p2 − 2iλ2p2

(
λ2 + 4p2

)
+ 2im2

(
λ4 + 4p4 − 7λ2p2

)))
,

n̂t =−
2λ
√
m2 + p2

mp (p2 − E2) (−E2 +m2 + p2)
×(

− 5iEλm3p+ iEλm
(
16p3 − 3λ2p

)
+m4

(
λ2 + 2p2

)
+m2

(
λ4 + 8p4 + 2λ2p2

)
− 2λ2p2

(
λ2 + 4p2

))
,

n̂u =− n̂s − n̂t .

(H.11)

As mentioned before, by plugging in these kinematic factors in (2.147) and using (2.149), we

get the amplitude of TMG (H.10).

H.4 Numerical Method for Random Kinematics

In this section we explain how we generate the numerical 3D on-shell kinematics and give some

specific values that we used to check the double copy of TMYM at 5-point. We perform all

computations over finite fields. This way we avoid numerical errors and make the calculations

more efficient. We consider the field of integers modulo p, a prime number which is equal to

p = 2147483497 in this work. Computations over finite fields are common and have been used to

reconstruct polynomials in kinematics variables in loop QCD calculations [112, 163, 164, 165].

We refer the reader to [111, 112] for a detailed explanation.

We generate random kinematics such that the two following conditions are satisfied:
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• The momenta are on-shell and conserved.

• The polarisation vectors satisfy the constraint (2.123).

The components of each external momenta are related by the on-shell condition,

pµ = (p0, p1, p2) , −p20 + p21 + p22 = −m2 , (H.12)

and the second condition is satisfied for the polarisation vector built out of these components

as,

ϵµ =

(
− (m− p0 − p1 + ip2)(m+ p0 + p1 + ip2)

2m(p0 + p1)
,
(p0 + p1)

2 + (m+ ip2)
2

2m(p0 + p1)
,−i+ p2

m

)
. (H.13)

We have included ten of the random kinematics that we used to calculate the 5-point TMG in

Table H.1 and the unshifted numerators of TMYM in Table 2. The unshifted numerators of

TMYM double copy to the 5-point TMG amplitude using (2.12).

m s12 s13 s14 s23 MTMG
5

1 384817470 1158823430 345329619 1397768610 264965055 1010590219κ3

2 1250040736 652270246 1821369346 1622372086 739244825 1355550730κ3

3 800857604 2035880423 1968515133 1224440350 664321872 526697979κ3

4 1150467713 2060321774 82539557 702220445 431821399 467871508κ3

5 158667339 2051154971 369848949 890093650 756917203 475230586κ3

6 1916307032 541901353 2099692150 150737937 425995603 1278139921κ3

7 1662283157 938971574 50758705 928659888 1820858158 108642017κ3

8 1078072319 1151859367 1186765675 110159710 209051438 1638775080κ3

9 231108131 1439516500 572657143 405624245 68286568 266492730κ3

10 1849710816 247156271 155877255 2085263836 62583717 966750502κ3

Table H.1: Examples of the kinematic values used to calculate the unshifted numerators of
TMYM and the 5-point TMG. The values are in the field of integers modulo p = 2147483497.
The remaining Mandelstam variable, s24, can be obtained by requiring that (2.64) is zero in
3D.
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1 2 3 4 5 6 7 8 9 10

n1 1679102633 348983868 399241281 842732794 300495714 332245457 2078791969 405757021 704097804 1147807466

n2 317552067 1079962755 683351824 2113803420 650623635 1651377807 443295016 1307896649 546715501 33350122

n3 1771495024 671539061 121827398 1212918710 877929848 1648524257 1751453994 715853795 437788195 1673049330

n4 1358547387 1615179844 1720845160 1032631735 698981299 676408057 1421711641 586269609 1143032868 1144909226

n5 211933474 81190884 921568849 1552408865 1716179733 1587978966 1832576367 503370947 1216904523 1157374746

n6 1117522969 1640095150 1919642084 998205023 1533934317 1763892991 1547349116 1008373879 1419527987 1656418171

n7 1479358736 259089853 155577739 1231349959 1543395860 88931139 114315550 998844655 1430903268 310456086

n8 1654319285 823920651 859957704 2079622430 322878784 1433806805 651369019 638654072 1572317114 1484455868

n9 925637889 1084982689 1510593127 1223632823 991858505 1585631481 1130701506 1854538988 845822321 107084633

n10 241485408 181500425 2095141802 1445698561 946176777 1036495597 924128220 665606563 1436242466 167117366

n11 1913208290 547913677 1461674584 601184017 391951191 112316195 407293624 777544715 908354210 719884700

n12 1372613275 659324877 523294703 785456003 1120871918 2024095541 618177398 2047361914 1454336818 1233365105

n13 1789815668 1037075753 209962576 493974229 1279666813 1941726328 1377397281 1546104552 2031446261 1379695040

n14 1244173774 1475461191 1520770510 1520373298 1781914190 211939090 1680738019 1229996023 591423398 2134631466

n15 1806462521 318300183 733389430 1399767053 630210267 1986264353 1729317645 1452460649 488881236 1508026444

Table H.2: Numerical values for the unshifted kinematic factors of the 5-point TMYM.

H.5 BCJ Relation in Terms of Partial Amplitudes

The BCJ relation in terms of colour ordered partial amplitudes takes the following form:

U.



A5[12345]

A5[12435]

A5[13245]

A5[13425]

A5[14235]

A5[14325]


= 0 , (H.14)

where U = {u1, ..., u6} in this basis is given as:

u1 =
(
m2 − s12

) (
ϵ(1, 2, 4)

(
−5m2 + s12 + s14 + s24

)
+m2ϵ(1, 2, 3)− s13ϵ(1, 3, 4) + s24ϵ(1, 3, 4)

− s14ϵ(2, 3, 4) + s23ϵ(2, 3, 4)
)
,
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u2 = 7m2s24ϵ(1, 2, 3) +m2s14ϵ(1, 2, 4) +m2s24ϵ(1, 2, 4) + 3m2s14ϵ(1, 3, 4) + 2m2s24ϵ(1, 3, 4)

−m2s24ϵ(2, 3, 4) + s23
(
m2(ϵ(1, 2, 3) + 3ϵ(1, 3, 4)− ϵ(2, 3, 4))− s14ϵ(1, 3, 4)− s24(ϵ(1, 2, 3) + ϵ(1, 3, 4))

)
+ s12

(
3m2ϵ(1, 2, 3) + 4m2ϵ(1, 2, 4) + 4m2ϵ(1, 3, 4)− 9m2ϵ(2, 3, 4)− s23ϵ(1, 3, 4)− s14(ϵ(1, 2, 4) + ϵ(1, 3, 4)

− ϵ(2, 3, 4))− s24(2ϵ(1, 2, 3) + ϵ(1, 2, 4) + ϵ(1, 3, 4)− ϵ(2, 3, 4)) + s23ϵ(2, 3, 4)
)
− 7m4ϵ(1, 2, 3)

− 3m4ϵ(1, 2, 4)− 5m4ϵ(1, 3, 4) + 7m4ϵ(2, 3, 4)− s224ϵ(1, 2, 3)− s14s24ϵ(1, 3, 4)− s212(ϵ(1, 2, 4) + ϵ(1, 3, 4)

− 2ϵ(2, 3, 4))− s14s24ϵ(2, 3, 4) ,

u3 = 7m2s24ϵ(1, 2, 3) +m2s14ϵ(1, 2, 4)− 3m2s13ϵ(1, 3, 4)− 4m2s24ϵ(1, 3, 4)−m2s13ϵ(2, 3, 4)−m2s14ϵ(2, 3, 4)

−m2s24ϵ(2, 3, 4) + s12

(
2m2ϵ(1, 2, 3) + 5m2ϵ(1, 2, 4)− 3m2ϵ(1, 3, 4)− 5m2ϵ(2, 3, 4)− s24(2ϵ(1, 2, 3)

+ ϵ(1, 2, 4)) + s13ϵ(1, 3, 4) + s14(ϵ(2, 3, 4)− ϵ(1, 2, 4))
)
+ s23

(
m2(2ϵ(1, 2, 3)− 3ϵ(1, 3, 4)− ϵ(2, 3, 4))

+ s24(ϵ(1, 3, 4)− ϵ(1, 2, 3)) + s13(ϵ(1, 3, 4) + ϵ(2, 3, 4))
)
− 8m4ϵ(1, 2, 3)− 2m4ϵ(1, 2, 4) + 11m4ϵ(1, 3, 4)

+ 7m4ϵ(2, 3, 4)− s224ϵ(1, 2, 3) + s13s24ϵ(1, 3, 4) + s212(ϵ(2, 3, 4)− ϵ(1, 2, 4)) ,

u4 = (ϵ(1, 2, 4) + ϵ(1, 3, 4)− ϵ(2, 3, 4))
(
−
(
m2 − s12

)) (
4m2 − s12 − s14 − s24

)
,

u5 = m2s14(ϵ(1, 2, 4) + 2ϵ(1, 3, 4)) + s12

(
m2(ϵ(1, 2, 3) + 5ϵ(1, 2, 4) + 5ϵ(1, 3, 4)− 4ϵ(2, 3, 4))

− s24(ϵ(1, 2, 3) + ϵ(1, 2, 4) + ϵ(1, 3, 4))− s14(ϵ(1, 2, 4) + ϵ(1, 3, 4)− ϵ(2, 3, 4))
)

+ s24

(
m2(2ϵ(1, 2, 3) + 2ϵ(1, 2, 4) + 3ϵ(1, 3, 4) + ϵ(2, 3, 4))− s14(ϵ(1, 3, 4) + ϵ(2, 3, 4))

)
+m4(−(2ϵ(1, 2, 3)

+ 5ϵ(1, 2, 4) + 6ϵ(1, 3, 4)− 2ϵ(2, 3, 4)))− s212(ϵ(1, 2, 4) + ϵ(1, 3, 4)− ϵ(2, 3, 4)) ,

u6 = m2
(
− 4m2ϵ(1, 2, 3)− 3m2ϵ(1, 2, 4) + 6m2ϵ(1, 3, 4) + 6m2ϵ(2, 3, 4)− 2s13ϵ(1, 3, 4) + s24(2ϵ(1, 2, 3)
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+ ϵ(1, 2, 4) + ϵ(1, 3, 4)) + s14(ϵ(1, 2, 4)− ϵ(2, 3, 4))− s13ϵ(2, 3, 4)
)
+ s12

(
m2ϵ(1, 2, 3) + 5m2ϵ(1, 2, 4)

− 2m2ϵ(1, 3, 4)− 5m2ϵ(2, 3, 4) + s13ϵ(1, 3, 4)− s24(ϵ(1, 2, 3) + ϵ(1, 2, 4) + ϵ(1, 3, 4))

+ s14(ϵ(2, 3, 4)− ϵ(1, 2, 4))
)
+ s23

(
m2(ϵ(1, 2, 3)− 2ϵ(1, 3, 4)− ϵ(2, 3, 4)) + s13(ϵ(1, 3, 4) + ϵ(2, 3, 4))

)
+ s212(ϵ(2, 3, 4)− ϵ(1, 2, 4)) .



Appendix I

Derivation of Eikonal Resummation

Here we will show that (3.16) and (3.17) are valid in topological massive gravity by following the

same steps as in [136]. Assuming that only ladder diagrams contribute, the n−1 loop integrands

are obtained by multiplying n factors of two graviton-scalar-scalar vertices, contracted with a

graviton propagator, together with scalar propagators, see figure I.1.

Figure I.1: Example of a box diagram that appears within the ladder diagrams contributing in
the eikonal limit. Here, the gravitons correspond to the rungs of the ladder.

Two scalar-scalar-graviton vertices contracted with a graviton propagator of momentum qµ =

(qu, qv, qy) in the eikonal limit give

−s
2

4

F (q)

q4(q2 +m2)
, (I.1)
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where m is graviton mass and

F (q) = κ2
(
−i(quqv)2 + 2quqvqym− 2(qy)2(qy − im)m

)
. (I.2)

Assuming that the momentum in the scalar propagators can be approximated as (p+k)2 → 2p·k,

where p is p1 or p2 and k is any loop momentum, the sum of n − 1 loop diagrams gives the

following:

iMn−1 =

∫ n∏
i=1

(
d3qi
(2π)3

−s2F (qi)
4q4i (q

2
i +m2)

)
(2π)3δ3

(
p3 + p1 +

n∑
i=i

qi

)

× −i
2p1 · q1 − iϵ

−i
2p1 · (q1 + q2)− iϵ

· · · −i
2p1 · (q1 + q2 + · · ·+ qn−1)− iϵ

×
∑
σ∈Sn

−i
−2p2 · qσ(1) − iϵ

−i
−2p2 · (qσ(1) + qσ(2))− iϵ

· · · −i
−2p2 · (qσ(1) + qσ(2) + · · ·+ qσ(n−1))− iϵ

.

(I.3)

Using light-cone coordinates and taking the eikonal approximation we can write p1 · q = −pvqu

and p2 · q = −puqv; hence

iMn−1 =
1

(4pvpu)n−1

∫ n∏
i=1

(
dqvi dq

u
i dq

y
i

(2π)3
−s2F (qi)

4q4i (q
2
i +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)

× δ

(
n∑
i=i

qui

)
−i

−qu1 − iϵ
−i

−(qu1 + qu2 )− iϵ
· · · −i
−(qu1 + qu2 + · · ·+ qun−1)− iϵ

× δ

(
n∑
i=i

qvi

)∑
σ∈Sn

−i
qvσ(1) − iϵ

−i
(qvσ(1) + qvσ(2))− iϵ

· · · −i
(qvσ(1) + qvσ(2) + · · ·+ qvσ(n−1))− iϵ

.

(I.4)

We now make use of the following identity,

lim
ϵ→0

δ(x1 + x2 + · · ·+ xn)
∑
œ∈Sn

1

xσ(1) ± iϵ
1

xσ(1) + xσ(2) ± iϵ
· · · 1

xσ(1) + xσ(2) + · · ·xσ(n−1) ± iϵ

= (∓2πi)n−1δ(x1)δ(x2) · · · δ(xn) ,

(I.5)
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on the last line of (I.4) to get

iMn−1 =

(
2πi

4pvpu

)n−1 ∫ n∏
i=1

(
dqvi dq

u
i dq

y
i

(2π)3
−s2F (qi)

4q4i (q
2
i +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)

× δ

(
n∑
i=i

qui

)
1

qu1 + iϵ

1

(qu1 + qu2 ) + iϵ
· · · 1

(qu1 + qu2 + · · ·+ qun−1) + iϵ

×
n∏

i=1

δ (qvi ) . (I.6)

Performing all qvi integrals sets all qvi to zero, so q2i = −2qvi qui + (qyi )
2 → (qyi )

2, and we get

iMn−1 =

(
2πi

4pvpu

)n−1 ∫ n∏
i=1

(
dqui dq

y
i

(2π)3
−s2F ({qui , 0, q

y
i })

4(qyi )
4((qyi )

2 +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)

× δ

(
n∑
i=i

qui

)
1

qu1 + iϵ

1

(qu1 + qu2 ) + iϵ
· · · 1

(qu1 + qu2 + · · ·+ qun−1) + iϵ
. (I.7)

We can symmetrize the second line by summing over all permutations of labels and dividing

by n! to get

iMn−1 =
1

n!

(
2πi

4pvpu

)n−1 ∫ n∏
i=1

(
dqui dq

y
i

(2π)3
−s2F ({qui , 0, q

y
i })

4(qyi )
4((qyi )

2 +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)

× δ

(
n∑
i=i

qui

)∑
σ∈Sn

1

qu1 + iϵ

1

(qu1 + qu2 ) + iϵ
· · · 1

(qu1 + qu2 + · · ·+ qun−1) + iϵ
. (I.8)

Then applying the identity (I.5) on the last line we get

iMn−1 =
1

n!

(
2πi

4pvpu

)n−1 ∫ n∏
i=1

(
dqui dq

y
i

(2π)3
−s2F ({qui , 0, q

y
i })

4(qyi )
4((qyi )

2 +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)

× (−2πi)n−1

n∏
i=1

δ (qui ) . (I.9)

Now performing qui integrals gives

iMn−1 =
1

n!

(
(2π)2

4pvpu

)n−1 ∫ n∏
i=1

(
dqyi
(2π)3

−s2F ({0, 0, qyi })
4(qyi )

4((qyi )
2 +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)
. (I.10)
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From (I.2) we get F ({0, 0, qyi }) = −2κ2(qy)2(qy − im)m, and we can write

δ

(
q +

n∑
i=i

qyi

)
=

∫ ∞

−∞

db

2π
e−ib(q+

∑n
i=i q

y
i ) (I.11)

so finally we get

iMn−1 =
1

n!

(
1

2s

)n−1 ∫ ∞

−∞
dbe−ibq

(∫ ∞

−∞

dqy

2π

κ2s2m

2(qy)2(qy + im)
e−ibqy

)n

, (I.12)

where we used the fact that s = 2pvpu in the eikonal limit. The term in the second integral can

be written as

κ2s2m

2(qy)2(qy + im)
= iMtree(s, t = −(qy)2), (I.13)

where Mtree is the eikonal limit of tree level 2-2 scalar scattering amplitude. Then summing all

loop diagrams gives the full eikonal amplitude:

iMeik = 2s

∫ ∞

−∞
dbe−ibq

∞∑
n=1

1

n!

(
i

2s

∫ ∞

−∞

dqy

2π
Mtree(s, t = −(qy)2)e−ibqy

)n

= 2s

∫ ∞

−∞
dbe−ibq

(
eiδ − 1

)
,

(I.14)

where

δ =
1

2s

∫ ∞

−∞

dqy

2π
Mtree(s, t = −(qy)2)e−ibqy . (I.15)

is commonly referred to as the phase shift. Therefore, we have proved that the TMG amplitudes

exponentiate in the eikonal limit, which to the best of our knowledge has not been proven before.

The calculation of the eikonal amplitude in TME is almost identical to that of TMG but now

two scalar-scalar-photon vertices contracted with photon propagator gives

sF (q)

q2(q2 +m2)
, (I.16)

where

F (q) = 2g2Q2(−iquqv + qy(iqy +m)) (I.17)
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instead of (I.1) and (I.2). Now, repeating the same steps as before we get

iAn−1 =
1

n!

(
(2π)2

4pvpu

)n−1 ∫ n∏
i=1

(
dqyi
(2π)3

sF ({0, 0, qyi })
(qyi )

2((qyi )
2 +m2)

)
(2π)3δ

(
q +

n∑
i=i

qyi

)
. (I.18)

Using F ({0, 0, qyi }) = i2g2Q2qy(qy − im) and the expression for the tree-level scattering ampli-

tude in the eikonal limit,

2isg2Q2

qy(qy + im)
= iAtree(s, t = −(qy)2) , (I.19)

we get the same expression as in TMG case

iAeik = 2s

∫ ∞

−∞
dbe−ibq

(
eiδ − 1

)
, (I.20)

where the phase shift reads

δ =
1

2s

∫ ∞

−∞

dqy

2π
Atree(s, t = −(qy)2)e−ibqy . (I.21)
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