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1 Introduction

The work of Bagger and Lambert [1] (see also [2]) has led to new insights into the low-
energy physics of M2-branes. In [1] an explicit three-dimensional N/ = 8 supersymmetric
gauge theory was constructed, a theory which was later shown to be a Chern-Simons-matter
theory [3]. Following this work, Aharony, Bergman, Jafferis, and Maldacena (ABJM) [4]
have constructed a class of three-dimensional Chern-Simons-quiver theories with generi-
cally N' = 6 supersymmetry (enhanced to N' = 8 for Chern-Simons levels k£ = 1,2), and
argued that these are holographically dual to the M-theory backgrounds AdS, x S”/Zy, or
their reduction to Type ITA string theory. This has renewed interest in the AdS;/CFTj
correspondence, opening the way for the construction of many new examples of this duality,
in which Chern-Simons theories are believed to play a key role [5].

An interesting generalization of the ABJM duality is to consider theories with less
supersymmetry. For example, the case of N/ = 2 (4 real supercharges) is analogous to
minimal A/ = 1 supersymmetry in four dimensions. In the latter case, when the gauge
theories are engineered by placing D3-branes at Calabi-Yau singularities the natural can-
didate holographic duals are given by Type IIB string theory on AdSs x Y, where Y?
is a Sasaki-Einstein five-manifold. It can similarly be argued [6-8] that a large class of
Chern-Simons-matter theories should be dual to N/ = 2 Freund-Rubin vacua of M-theory.
This duality, for toric theories, has been studied in many papers — see, for example, [9].

In this paper we will discuss a three-dimensional Chern-Simons-quiver theory that we
conjecture to be the holographic dual of M-theory on AdSy X V52/Zj, with N units of
quantized G-flux, where V5o (also known as a Stiefel manifold) is a homogeneous Sasaki-
Einstein seven-manifold. This can be thought of as the near-horizon limit of N M2-branes
placed at the Calabi-Yau four-fold singularity

B2 42 +24+22 =0, 2z €C, (1.1)

which is clearly a generalization of the well-known conifold singulariy in six dimensions.
Indeed, Klebanov and Witten mentioned this generalization in their seminal paper [10],
concluding with the sentence: “We hope it will be possible to construct a three-dimensional
field theory corresponding to M2-branes on (1.1).” In the present paper we will realize
this hope. We propose! that the three-dimensional field theory in question is an A = 2
Chern-Simons-quiver theory with gauge group U(N); x U(N)_g, generalizing the ABJM
model. The matter content and superpotential will be presented shortly in section 2; see
figure 1 and equation (2.5).

The supergravity solution possesses an SO(5) x U(1)g isometry, which reduces to
SU(2) x U(1) x U(1)g when we perform a Zj quotient analogous to [4] with & > 1. This
is therefore the first example of a non-toric AdS,;/CFT3 duality. In fact there are very
few examples of this kind, even in the more developed four-dimensional context. The
singularity (1.1) is the n = 2 member of a family of A,,_; four-fold singularities, defined
by the hypersurface equations X, = {2 + 22+ 22 + z§ +22 =0,2 € C}. Thus we are

LA different proposal was given in [11]. However, this was not based on Chern-Simons theory.



naturally led to consider a family of Chern-Simons-quiver theories, labelled by n, whose
Abelian classical moduli spaces are precisely these singularities. Here the n = 1 model
is the ABJM theory of [4]. Naively, this suggests that each of these theories will have a
large N gravity dual given by AdS4 x Y,,, where Y}, is a Sasaki-Einstein manifold defined
by Y, = X,, N SY. However, the results of [12] prove that for n > 2 these Sasaki-Einstein
metrics do not exist. This means that the field theories we construct cannot? flow to dual
conformal fixed points in the IR. We will review the argument for this in the course of the
paper. Nevertheless, we can study these theories in the UV, and in particular we can, and
will, discuss their string theory duals in terms of a slight generalization of the Type IIB
Hanany-Witten brane configurations [14]. This will allow us to derive field theory dualities,
in which the ranks of the gauge groups change, using the Hanany-Witten brane creation
effect. We emphasize again that the AdS; Freund-Rubin solutions exist only in the case
n =1 (the ABJM theory) and n = 2.

One of the motivations for studying these models is that on the gravity side there
exists a smooth? supersymmetric solution which approaches asymptotically the AdS, x
Vs.2/Zy background [15]. For k = 1 this solution is a warped product RY? x T*S% where
T*S* denotes the cotangent bundle of S*, and there is a self-dual G-flux through the S*
zero-section. In fact, the deformed solution corresponds to deforming the hypersurface
singularity by setting the right hand side of equation (1.1) to a non-zero value. This is
a complex Calabi-Yau deformation, precisely analogous to the familiar deformation of the
conifold in six dimensions. Indeed, superficially this solution looks like the M-theory version
of the Type IIB solution of Klebanov-Strassler [16]. In the IR the two solutions are precisely
analogous; however, in the UV they behave rather differently. In particular, the M-theory
solution here is asymptotically AdSy x V5 2/Zy, without the logarithmic corrections which
are a distinctive feature of the solutions of [16-18]. The topology of the solution at infinity
can support only torsion G-flux, but a careful analysis reveals that in fact in the deformed
solution this torsion flux is zero. Thus we are led to conjecture that the theory in the
UV is the superconformal Chern-Simons-quiver theory above, with equal ranks of the two
gauge groups. We will argue that this solution corresponds to an RG flow triggered by
adding a supersymmetric mass term to the Lagrangian. This was already observed in [19],
but we will here describe in more detail the deformation in terms of the superconformal
Chern-Simons theory. In particular, we will see how the deformation of the field theory
modifies the (classical) vacuum moduli space, precisely reproducing the deformation of the
singularity (1.1).

The plan of the paper is as follows. In section 2 we introduce the Chern-Simons-
quiver field theories: we compute their classical vacuum moduli spaces and discuss the
relation to parent four-dimensional theories. In section 3 we discuss M-theory and Type
ITA duals of these Chern-Simons theories. In section 4 we construct Hanany-Witten brane
configurations in Type IIB string theory, and discuss a brane creation effect in these models.
In section 5 we describe the deformed supergravity solution. In section 6 we identify this

%We note that it was suggested previously, incorrectly, that these singularities lead to AdS4 holographic
duals [13].
3The solution is completely smooth only for k = 1. For k > 1 there are orbifold singularities.



Figure 1. The A; quiver.

deformed solution in the UV with a specific supersymmetric mass deformation of the field
theory. Section 7 briefly concludes. We relegate some technical details, as well as a different
Type IIA dual, to a number of appendices.

2 Field theories

We begin by describing a family of d = 3, N’ = 2 Yang-Mills-Chern-Simons quiver theories.
The family is labelled by a positive integer n € N, where the n = 1 theory is that of
ABJM [4].

2.1 A family of d = 3, N/ = 2 Chern-Simons-quiver theories

A d = 3, N = 2 vector multiplet V consists of a gauge field <7, a scalar field o, a
two-component Dirac spinor x, and another scalar field D, all transforming in the adjoint
representation of the gauge group. This is simply the dimensional reduction of the usual
d = 4, N' = 1 vector multiplet. For the theories of interest, we take the gauge group to
be a product U(Np) x U(N3). We will therefore have two vector multiplets Vy, I = 1,2,
with corresponding Yang-Mills gauge couplings g;. To the usual N' = 2 Yang-Mills action,
we may also add a Chern-Simons interaction. This requires specifying the Chern-Simons
levels ky, I = 1,2, for the two gauge group factors. These are quantized: for U(Ny) or
SU(N7) gauge group k; € Z is an integer. In this paper we shall only consider the case
that k1 = —ko = k; for k1 4+ ko # 0 the dual string theory description will be in terms of
massive Type ITA [20], which we do not wish to consider here.

The matter fields of an A = 2 theory are described by chiral multiplets, a multiplet
consisting of a complex scalar ¢, a fermion  and an auxiliary scalar F', which may be in
an arbitrary representation of the gauge group. For the theories of interest, we consider
chiral fields 4;, i = 1,2, transforming in the N ® Ny representation of U(N7) x U(N3), and
bifundamentals B;, i = 1,2, transforming in the conjugate N; ® Ny representation. We
also introduce chiral fields @7, I = 1,2, in the adjoint representation of U(Ny), respectively.
This gauge and matter content is a quiver gauge theory, where the quiver is known as the
A1 quiver. This is shown in figure 1.

The total Lagrangian then consists of the four terms (see e.g. [6, 21])

S = SYM + SCS + Smatter + Spotential ) (21)



where the bosonic parts of the Chern-Simons and matter Lagrangian are

2
k 2
SCS:Zﬁ/TI‘ (JZ%[/\dJZf]—i-gJZ{[/\JZ{[/\JZ{[—l-QDIU[), (22)
I=1
Smatter = Z / d3$@u(§a-@“¢a - (anz(ba + éaD(ﬁ(m (2-3)

respectively, where ¢, = (A4;, B;, ®r). In (2.3), the o and D fields act in the appropriate
representation on the ¢, — see [6, 21]. The Yang-Mills terms will, at low energies, be
irrelevant. Finally, the F-term potential is

3
Spotential = = Z/d x
a

and we take the following superpotential:

2

W\ (2.4)

Da

W ="Tr [8 ((—1)”@?—’—1 + @;H—l) + @Q(AlBl + AQBQ) + CI)l(BlAl + BQAQ)] . (25)

Here n € N is a positive integer, and s is a complex coupling constant. The superpotential
is manifestly invariant under an SU(2), flavour? symmetry under which the adjoints ®;
are singlets and both pairs of bifundamentals A;, B; transform as doublets. There is also
a Zgip symmetry which exchanges ®1 < @9, A; — B;, s < (—1)"s.

The case n = 1 is special, since then the first two terms in (2.5) give a mass to the
adjoint fields ®1, ®5. At low energy, we may therefore integrate out these fields. On setting
s = k/8m, one recovers the ABJM theory with quartic superpotential [4]

e

WABJM = I AlBQAQBl — A1B1A2B2) . (26)

This theory is in fact superconformal with enhanced manifest N’ = 6 supersymmetry. We
shall discuss the IR properties of the n > 1 theories after first discussing their vacuum
moduli spaces.

2.2 Vacuum moduli spaces

We denote the ranks by Ny = N + 1, No = N, and consider the vacuum moduli space of
the theory U(N + 1) x U(N)_g. In general there are six F-term equations derived from
imposing vanishing of (2.4), which is dW = 0:

B;i®; +®1B; =0,

DA; + APy =0,

s(n+1)®5 + (A1B1 + A2 Bs) = 0,
s(=1)"(n + 1)@} + (B1A1 + B2A2) = 0. (2.7)

One must also impose the three-dimensional analogue of the D-term equations [6], and
divide by the gauge symmetry.

4The reason for the subscript 7 will become apparent later. It is not to be confused with an R-symmetry.



It is easier to understand this moduli space in stages, starting with the Abelian theory
with & = 1. In the U(1) x U(1) gauge theory, as usual in quiver theories the diagonal
U(1) decouples (no matter field is charged under it). Precisely as in the ABJM theory at
Chern-Simons level k = 1, the anti-diagonal U(1), which we denote U(1);,, may be gauged
away because of the Chern-Simons interaction. Thus the vacuum moduli space, in the
Abelian case with & = 1, is described purely by the set of F-terms (2.7). The first four
equations are reducible: either ®; = —®,, or else A; = B; = 0 for all ¢,j. In the latter
case the last two equations imply ®; = $5 = 0, so this is not a separate branch. Thus

®; = — P, holds in general, and we obtain the single equation for the moduli space
s(n + 1)‘1’3 + A1By+ A3By =0 . (28)

After the change of coordinates 21 = 2(A; + B1), 20 = $(A1 — B1), 23 = 3(As + Bo),
zy = 3(As — By), 20 = (s(n+ 1))%<I>2, this becomes simply

4
X, = {28—1—22'2 :0} . (2.9)
a=1

For n = 1 this is indeed just C*, as one expects since this is the Abelian ABJM theory
with £ = 1, which corresponds to the theory on an M2-brane in flat spacetime. For
n > 1, (2.9) instead describes an isolated four-fold hypersurface singularity, where the
isolated singularity is at the origin {zg = 23 = --- = z4 = 0}. This is Calabi-Yau, in the
sense that away from the singular point there is a global nowhere-zero holomorphic (4, 0)-
form. We denote the four-fold singularity by X, or X,, when we wish to emphasize the
n-dependence. In particular, X; =2 C*. We shall study these varieties in more detail later.

The effect of changing the Chern-Simons levels to (k, —k) leads to a discrete quotient
of the above vacuum moduli space by Zy C U(1), [4, 6, 22]. Here by definition the charges
of (A1, Ag, By, B2) under U(1), are (1,1,—1,—1), while the adjoints are uncharged. Thus
for general k the Abelian vacuum moduli space is X, /Zy, where Zj, acts freely away from
the isolated singular point. Thus X,,/7Zy is also an isolated four-fold singularity.

Having understood the moduli space for the U(1) xU(1)_j theory, we may now turn to
the general non-Abelian U(N +1); x U(NN)_j, theory. The discussion here is similar to that
for the ABJM theory in [4, 23]. In vacuum, ®,, o1 are (N +1) x (N +1) matrices (with o7
Hermitian), ®9, o9 are N x N matrices, while the A4; and B; are N x (N+1) and (N+1)x N
matrices, respectively. Note that using the gauge symmetry one may always diagonalize
the o7. The latter are fixed by the chiral field VEVs via three-dimensional analogues of
the four-dimensional D-term equations [6], with the o7 playing the role of moment map
levels. If we take all matrices to be diagonal in the obvious N x N sub-blocks, so that the
chiral fields take the form

B = 548yt AB=1,...,N, (2.10)

a

with all other entries zero, then it is simple to see that the scalar potential is zero provided
the ¢, A = 1,..., N, satisfy the Abelian equations (the F-terms ®{' = —®2', (2.8), and



the D-term equations involving the 0}4). It is also straightforward to see from the D-term
potential that for generic oy (meaning pairwise non-equal eigenvalues), all off-diagonal
fluctuations about any vacuum in this space of vacua are massive, with the exception of
fluctuations of @4 in the [ x [ sub-block. The diagonal ansatz for the fields breaks the gauge
symmetry to U(1)" x U(l) x U(1)" x Sy, i.e. we obtain precisely N copies of the Abelian
N =1 theory, where the permutation group Sy permutes the diagonal elements (it is the
Weyl group of the diagonal U(N)). We also obtain a U(l); Chern-Simons theory, as in [23],
but for general n we also obtain a superpotential term ¥"*+!, where W is an adjoint under
U(l) coming from the [ x [ sub-block of ®;. Classically this has a trivial moduli space, since
the F-term gives ¥ = (. Thus classically we obtain the symmetric product of N copies of
the Abelian vacuum moduli space, i.e. Sym™ (X, /Zy).

However, as for the ABJM theory, in the quantum theory this moduli space can be
lifted. In particular, the U(l); Chern-Simons theory with an adjoint superpotential W"+!
has been studied in the literature before — for a recent account, together with a D-brane
engineering of this theory, see for example [24] and [25]. As reviewed in the latter reference,
around equation (2.4), the above Chern-Simons theory has no supersymmetric vacuum
unless 0 < [ < nk. This suggests that the above classical space of vacua is lifted unless this
condition on [ is obeyed. As we shall see later in the paper, this condition is also realized
non-trivially in the M-theory dual, and leads to a 1-1 matching between the field theories
U(N + 1)k x U(N)_g, with 0 <1 < nk, and the M-theory backgrounds we shall describe in
section 3 (the theories with [ = 0 and | = nk will turn out to be dual to each other under
a Seiberg-like duality that we derive using the Type IIB brane dual in section 4).

2.3 IR fixed points

As mentioned already, for n = 1 the fields ®;, ®5 are massive and on integrating these out
we recover at low energies the ABJM theory. This has N/ = 6 superconformal invariance
for general k € Z. For n > 1 the IR dynamics is rather different. Anticipating much of
the discussion that will follow later in section 3, we may use the AdS/CFT correspondence
to conjecture that the theory with n = 2 and equal ranks N7 = Ny = N flows to a
strongly coupled N = 2 superconformal fixed point in the IR. The reason for this is that
in this case there exists a candidate gravity dual: an AdSs x Y2/Zj, Freund-Rubin solution
of eleven-dimensional supergravity, where Y5 is a Sasaki-Einstein seven-manifold. More
precisely, the four-fold hypersurface singularity Xo admits a conical Calabi-Yau (Ricci-flat
Kéhler) metric, where the base of the cone is described by a homogeneous Sasaki-Einstein
metric on Yo — we shall discuss this in detail in section 3. Notice that, since W has
R-charge/scaling dimension precisely 2, all of the fields ¢, = (A;, B;, ®;) must have R-
charge/scaling dimension 2/3 at this fixed point, showing that it is strongly coupled. As
we shall also see in section 3, more precisely we conjecture this fixed point with equal ranks
N to be dual to the Freund-Rubin Sasaki-Einstein background with zero internal G-flux: as
for the ABJM theory [23], more generally it is possible to turn on [ units of discrete torsion
G-flux, where in the gravity solution [ is an integer mod nk, which is dual to changing the
ranks to U(N + 1) x U(IV)_g, as discussed at the end of the previous subsection.



On the other hand, it was shown in [12] that for n > 2 the natural candidate Sasaki-
Einstein metrics do not actually exist; that is, the four-fold hypersurface singularities X,,,
for n > 2, do not have Calabi-Yau cone metrics. This indicates that the corresponding
field theories cannot flow to conformal fixed points dual to these geometries. Indeed, the
field theory realization of this was also described in [12]: if the superpotential is (2.5)
at the IR fixed point, then the gauge invariant chiral primary operators Tr ®; have R-
charge/scaling dimension 2/(n + 1); but for n > 2 this violates the unitarity bound, which
requires A > 1/2, with equality only for a free field. It is therefore natural to conjecture
that for n > 2 the higher order terms in ®; in (2.5) are irrelevant in the IR, and thus s = 0
at the IR fixed point. If this is the case, then all the theories with n > 2 flow to the same
fixed point theory, namely the theory with s = 0.

Consider then setting s = 0 in W in (2.5). If we also set & = 0, so that there is no
Chern-Simons interaction, this is precisely the A; quiver gauge theory. For equal ranks
N1 = Ny = N, the latter is well-known to be the low-energy effective theory on N D2-
branes transverse to R x C x C2 /Za; here C? /Zo, where the generator of Zjy acts via
(21,22) — (—21, —22), is precisely the A; singularity. The latter has an isolated singularity
at the origin, where the N D2-branes are placed. This may be resolved by blowing up
to O(—2) — CP! (the Eguchi-Hanson manifold). If we wrap [ space-filling D4-branes
over the CP' zero-section, the ranks are instead N; = N + I, Ny = N. This theory has
enhanced N = 4 supersymmetry. If we now turn on the Chern-Simons coupling k # 0, the
Abelian vacuum moduli space of the resulting theory is easily checked to be C x Con/Zy,
where Con = {zy = uv} C C* denotes the conifold three-fold singularity. Since this (non-
isolated) four-fold singularity certainly admits a Calabi-Yau cone metric, this describes
the candidate AdS dual to the IR fixed points of the theories with n > 2. It would be
interesting to study this further.

2.4 Parent d =4, N =1 theories and Laufer’s resolution

As discussed in [6], the gauge group, matter content and superpotential of a d = 3, N' = 2
Chern-Simons matter theory also specify a d = 4, N' = 1 gauge theory — one takes the
same Yang-Mills action, matter kinetic terms and superpotential interaction, now defined in
d = 4, and simply discards the Chern-Simons level data (since the Chern-Simons interaction
doesn’t exist in four dimensions). This is commonly referred to as the “parent theory”.
The classical vacuum moduli space of this d = 4 parent theory is closely related to that of
the d = 3 Chern-Simons theory [6]. The string theoretic relation between the two theories
was recently elucidated in [8], and we shall make use of this correspondence later in the
paper. The d = 4 parents of the above theories have been discussed extensively in the
literature — in particular, see [26]. We are not interested in the four-dimensional theories
directly; however, it will be useful to analyse their Abelian vacuum moduli spaces, and in
particular the moduli spaces with a non-zero Fayet-Iliopoulos (FI) parameter turned on.
Compared to the d = 3 Chern-Simons matter theory, the only difference in constructing
the Abelian vacuum moduli space of the d = 4 parent is that the U(1), gauge symmetry
now acts faithfully on the vacuum moduli space. The analysis of the F-term equations is
identical to that in section 2.2, and for the Abelian theory with equal ranks Ny = Ny =1



we obtain the hypersurface equation (2.8). However, we must also impose the D-term
A1l + A2 = |B1f? — | Baf* = ¢, (2.11)

and divide by U(1),. Here we have introduced an FI parameter ¢ € R for U(1),.

Let us first set ¢ = 0. In this case, the combination of the D-term (2.11) and iden-
tifying by U(1), may be realized holomorphically by taking the holomorphic quotient by
the complexification C;. The charges of (A1, Ay, Bi, By) are (1,1,—1,—1), and thus the
invariant functions on the quotient are spanned by x = AsBs, y = A1B1, u = A1 B,
v = AsBi. These satisfy the single relation

Ty = uv, (2.12)

which is the conifold singularity. We must also impose the F-term (2.8), which setting
20 = (s(n + 1))%<I>2, as before, reads

r+y+z0=0. (2.13)

Combining (2.13) with (2.12), and again changing variables v = Ay By = iwg — w3, v =
AyBy = iwy + w3, y = A1B1 = iw —w{, 20 = [s(n + 1)]1/"<I>2 = 21/ gives the
three-fold singularity

WP = {w%” +w? + ws 4+ wi = 0} . (2.14)

This is an isolated three-fold singularity, and is again Calabi-Yau in the sense that there
is a holomorphic volume form on the complement of the singular point {wy = w; = we =
wsg = 0}.

Taking the parameter ¢ # 0in (2.11), one obtains a “small” resolution of the singularity
WO, It is small in the sense that the singular point is replaced by a one-dimensional (rather
than two-dimensional) complex submanifold — specifically, a CP'. More precisely, for ¢ > 0
we obtain a resolution WS = W, where “2” means biholomorphic, while for { < 0 we

n
obtain a resolution Wy W,~. In both cases the “exceptional” CP' has size (| in the
induced Kéahler metric. Indeed, any Kahler metric on Wg will have a Kéahler class in
H Q(Wg ,R) =2 R, and we regard ( as specifying this Kéhler class. Both resolutions are also

Calabi-Yau, in the sense that there is a holomorphic volume form, and are thus “crepant”.

More on W,g

The end of this section is more technical, and may be skipped on a first reading.

To see why W takes the form described above, recall that the F-term equation (2.8)
describes the moduli space in terms of coordinates (Ay, As, By, By, ®3) on C°. Imposing
the D-term (2.11) and dividing by U(1), then gives Con¢ x C, where the resolved conifold
Con¢ is obtained from the quotient of the (Aj, As, By, B2) coordinates, while the VEV
of @5 is a coordinate on C. In particular, ¢ > 0 and ¢ < 0 are related by the conifold
flop transition. The exceptional CP! in the resolved conifold is at By = By = 0 for
¢ >0, and Ay = Ay = 0 for { < 0, respectively. The three-fold W is then embedded in



Con¢ x C via (2.8). We may also realize the D-term mod U(1), as a C} quotient. Strictly
speaking, this is a geometric invariant theory quotient, and for ( > 0 we need to remove
the (unstable) points {A; = Az = 0}, while for ¢ < 0 we instead remove {B; = By = 0}.
Without loss of generality we henceforth take ¢ > 0 (as ¢ < 0 is just related by a flop),
and thus remove {A; = Ay = 0} from C*, spanned by (A1, Ay, By, By). Define coordinate
patches U; = {A; # 0} € C* i = 1,2. These will cover the manifold, as A; and Ay
cannot both be zero. On U; the invariant functions under Cj are spanned by z = A3 Bo,
y=A1B1, u = A1By, v=AyB;, £ = Ay/A;, while on U; the invariant functions are the
same x,y, u,v, but instead p = Ay /Ay. We then have the relations

r = u&, v =9y&, on U,
u=xu, Yy = v, on Us. (2.15)

It follows that we may coordinatize Uy by (u,y,§) and Uy by (z,v, ), with transition
functions (z,v, u) = (u&, y&,1/£) on the overlap Uy NUs. This shows explicitly the resolved
conifold as O(—1) @ O(—1) — CP!, where ¢ and p are coordinates on the two patches of
the Riemann sphere CP!, with p = 1/€ on the overlap. The poles of the sphere are thus
pw=0and ¢ =0.

The three-fold W, = W,s( is embedded as a complex hypersurface in the resolved
conifold times C. We thus introduce patches Hy, with coordinates (u,y,&, Z1), and Ho,
with coordinates (x, v, u, Z3), where Z; = Zy = ®5 is the coordinate on C. The embedding
equation (2.8) is then simply

y=—ué— 2 on Hi,
r=—vp— Zy on Hy. (2.16)

We may thus eliminate x and y and coordinatize Hy by (u,{, Z;) and Hs by (v, u, Z3),
with transition functions (v, u, Zo) = (=627 — €2u,1/€,Z1) on the overlap Hy N Hy. This
is precisely the description of the small crepant resolution W, of W0 given by Laufer [27].
One sees explicitly the exceptional CP! with coordinates €, jt, and p = 1/ on the overlap.
One also sees that for n = 1 the normal bundle of CP! inside W,F is O(—1)&0O(—1) — CP!,
while for all n > 2 the normal bundle is instead O(0) ® O(—2) — CP'.

3 M-theory and type IIA duals

In this section we discuss M-theory and Type ITA duals to the Chern-Simons-quiver theories
of section 2.1. We have already shown that the vacuum moduli space of the U(N + ) x
U(N)_j theory is Sym™ X, /Zy, and this suggests a dual M-theory interpretation in terms
of N M2-branes probing the four-fold singularity X,,/Zs. As in [23], we show that the
integer [, which is constrained to lie in the interval 0 <[ < nk in the field theory, may be
identified with turning on [ units of torsion G-flux in the M-theory background. On the
gravity side, [ is defined only modulo nk — we will have to wait until section 4 to see why
the [ = 0 field theory is dual to the | = nk theory.
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As already mentioned, only for n = 1, n = 2 do the four-fold singularities X,, have
Ricci-flat Kahler cone metrics, implying that only in this case do the conformal fixed points
of the Chern-Simons-quiver theories have AdS duals of this type; we conjectured that for
all n > 2 the theories flow to the same fixed point theory in the IR, and that this has a
different AdS dual description where the Sasaki-Einstein seven-space is the singular link
of C x Con/Zy. Although we are interested primarily in the case n = 2, we retain n
throughout this section and study M-theory on AdS, x Y, /Zy, where Y,, is the link of the
singularity X,,. We stress again, however, that the AdS, solutions of this type exist only
forn=1,n=2.

3.1 M-theory duals

The discussion of section 2.2 suggests that the Chern-Simons quivers of section 2.1 should
have M-theory duals in terms of M2-branes placed at the four-fold singularities X, /Zj, (2.9).
Thus it is natural to conjecture that the IR fixed points of the Chern-Simons quivers, for
n =1, n = 2, are SCFTs dual to the gravity backgrounds AdS, x Y,,/Zj, where Y,, is the
base of the cone X,,, equipped with a Sasaki-Einstein metric. The case n = 1 is just the
round metric on Y; = S7, which is the ABJM model. The case n = 2 leads instead to
Yy = V52, where V5 2 has a homogeneous Sasaki-Einstein metric that we discuss below.

Consider the complex cone X,, defined in (2.9). We may define the compact seven-
manifold Y;, via

Y, =X,Nn5sY, (3.1)

where S = {Z?:0|zi|2 = 1} € C®. TFor n = 1 this is simply ¥; = S7, so we focus
on describing Y. In this case X5 is a complex quadric, and the vector action of SO(5)
on the coordinates z; acts transitively on the seven-manifold Y5, and thus Yo = V52 =
SO(5)/SO(3) is a coset space. Xs is also invariant under the rescaling z; — Az;, for A € C*,
and the quotient B® = (X5\ {0})/C* is a compact complex manifold of complex dimension
three. Equivalently, this may be defined as B® = V5 5/U(1)g, where U(1)g acts on the z;
with charge 1, and thus B® & Gr; 2 = SO(5)/SO(3) x SO(2) is also a coset space. The
space Grj o is the Grassmanian of two-planes in R.

There is an explicit homogeneous Sasaki-Einstein metric on Ys = V52, so that the
quadric singularity Xy has a Ricci-flat Kédhler cone metric. The Reeb U(1) action is pre-
cisely the action by U(1)g C C* above; thus Vs 2 is a regular Sasaki-Einstein manifold and
the quotient Grs o is a homogeneous Kahler-Einstein manifold. The Sasaki-Einstein metric
on V59 may be written explicitly in suitable coordinates [28]

9 1 ?
ds*(Vso) = T dy + 5 cos a(dB — cos O1déy — cosOadn)| +ds*(Grsa),  (3.2)
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where

dsQ(Gr572) = % 4da? + sin? a(df — cos61d¢py — cos Hgd(bg)Z
+(1 + cos? @) (d#? + sin? O1d¢? + db3 + sin® fodp3)
+2sin? v cos (B sin 61 sin Oodp1dps — 2 sin? o cos (d61d6sy
+25in? o sin G(sin faddedd; + sin 91d¢1d92)] (3.3)

is the homogeneous Kihler-Einstein metric on B = Grss. The ranges of the coordi-

nates are
0<6;<m, 0<¢;<2r, 0<o<2m, ogagg, 0<B<dr.  (34)
The volume of the Sasaki-Einstein metric on Vs 5 is [28]
27
1 = =24 .

Notice the isometry group of the homogeneous metric on Vs 5 is SO(5) x U(1)g, and thus
in particular this is a non toric manifold.

Thus for n = 1, n = 2 we have supersymmetric Freund-Rubin backgrounds of eleven-
dimensional supergravity of the type AdS, x Y;,, with Y; = S7 and Y, = Vs,2. The metric
and G-field take the form?®

ds? = R? Gds2(Ads4) +d52(Yn)> ,
G = §R3dvol(AdS4) . (3.6)

The AdS, radius R is determined by the quantization of the G-flux

1
N:W/Yn*G, (3.7)

where [, is the eleven-dimensional Planck length, given by

(27l,)5N

6 __
R = 6vol(Y,,)

(3.8)
We also note that vol(Y; = S7) = /3.

Recall that in section 2 we introduced an action by the global symmetry group U(1)p.
Writing the complex cone as X, = {2 + A1B1 + A2By = 0}, the U(1), symmetry acts
on (zp, A1, Ag, B1, By) with charges (0,1,1,—1,—1). This also acts on the base Y,, defined
in (3.1), and it is easy to see that this is a free action, i.e. there are no fixed points on Y,. For
both n =1, n = 2, U(1), acts isometrically on the Sasaki-Einstein metrics. In particular,
for n = 2 this embeds into the isometry group as U(1)y = SO(2)diagonat € SO(4) C SO(5).
This is a non-R isometry, and so preserves the Killing spinors on Yo = V52. We may

5The Einstein metrics on AdS4 and Y, obey Ricags, = —3¢gads,, Ricy,, = 6gy,,, respectively.
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thus take a quotient of Vs 2 by Z; C U(1), to obtain a Sasaki-Einstein manifold Vs 2/Zj
with m(Vs2/Zy) = Zi. Since SO(4) = (SU(2); x SU(2),)/Zg, the diagonal SO(2) in
SO(4) is U(1), =2 U(1); € SU(2);. Thus the isometry group of the quotient space Vs 2/Zj,
is SU(2), x U(1), x U(1)g. This is the manifest global symmetry in the Chern-Simons-
quiver theories.

We conjecture that the Chern-Simons-quiver theory U(N); x U(N)_, with matter
content given by the quiver in figure 1 and superpotential interaction (2.5) with n = 2,
flows to a conformal fixed point in the IR, and is dual to the above AdSy x Y5/Zj, M-theory
background. As evidence for this, we have shown that the moduli space of the field theory
agrees with the moduli space of N M2-branes probing the cone geometry, and that the
isometry group of the AdS, solution precisely matches the global symmetries® of the field
theory. Later in sections 3.3 and 3.4 we shall present a matching of various gauge invariant
chiral primary operators to supergravity multiplets and certain supersymmetric wrapped
D-branes, respectively, as further evidence. In section 4 we will also present a Type 1IB
brane construction.

Let us now discuss turning on a torsion C-field, corresponding to the addition of
fractional branes [23]. As shown in appendix A, in general we have H*(Y,,/Zy,7Z) = Ly,
and thus we may turn on a torsion” G-field, i.e. a flat, but topologically non-trivial, G-flux.
Each different choice of such G-flux will lead to a physically distinct M-theory background.
We may equivalently describe this as a (discrete) holonomy for the three-form potential C'
through the Poincaré dual generator %3 of H3(Y,,/Zy,Z) = Zyy,. Thus

1 l
- ~  mod1. .
(27l,)? /230 nk (39)

Since the physical gauge invariant object is a holonomy, the integer [ above is only defined
modulo nk. Equivalently, this labels the G-flux [G] =1 € H*(Y,,/Zy,7) = Zpy. For each
choice of [ with 0 <[ < nk we therefore have a 1-1 matching of the M-theory backgrounds
to the field theories with gauge groups U(N + 1) x U(N)_;. We shall present further
evidence for matching the G-flux to the ranks in this way from the Type ITA dual in
section 3.5.

3.2 Type ITA duals

When k° > N > k the radius of the U(1), circle becomes small and a better description
is obtained by reducing the background along U(1), to a Type ITA configuration. Since
U(1), acts freely on Y, we may define quite generally M,, =Y,,/U(1),, which is a smooth
six-manifold. For n = 1 this gives M; = CP3, while for n > 1 the manifold M,, has the
same cohomology groups as CP?, but a cohomology ring that depends on n, as shown in

As often happens in AdS4/CFTs, for k = 1 the isometry group is enhanced. In particular we have
SO(5) x U(1) g symmetry, rather than the SU(2), x U(1), x U(1)r symmetry valid for £ > 1. This former
symmetry is not manifest in the UV Lagrangian.

Tt is important here that the G-flux is classified topologically by H*(Y,Z), which is true only if the
membrane anomaly is zero [29]. In fact the membrane anomaly always vanishes on any oriented spin
seven-manifold.
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appendix A. For n =2, U(1), is a non-R symmetry, and therefore all supersymmetries are
preserved in the quotient V5 2/U(1), = M. On the other hand, the Type IIA reduction of
N = 2 Freund-Rubin backgrounds along the R-symmetry (Reeb vector) direction breaks
supersymmetry [30]. In particular, we stress that My is different from the Kahler-Einstein
six-manifold Grs o = V5 2/U(1)R introduced in section 3.1. These types of reduction were
discussed in [31], and we now recall their essential features.
To perform the reduction we write the Sasaki-Einstein metric on Y,,/Zj as

w
L2
where v has 27 period. We then obtain the following Type ITA string-frame metric
and fields

ds*(Yy/Zy) = ds*(M,,) + — (dy + kP)?, (3.10)

371
ds? = \/E% <Zd52(AdS4) +d52(Mn)> , (3.11)

3
2o = B e g R¥dvol(AdSy),  Fy = klyg.dP, (3.12)

where w is a nowhere-zero bounded function on M,, (since U(1), acts freely). The RR
two-form flux has quantized periods, namely

1
F=k. 1
27lsgs /22 2 (3.13)

Here ¥.2 C M,, is the generator® of Ho(M,,,7Z) = Z. Of course, these supergravity solutions

exist only for n = 1, n = 2. In the latter case, then more precisely in terms of the
coordinates in (3.2), (3.3) we have that v = ¢9 and

3 1 .
W= [1 +3 cos? a1 + sin? 92)} ) (3.14)

The torsion C-field reduces to a flat NS Ba-field in Type IIA [23] via
C=A3+ By A dl/) . (3.15)

Here Az denotes the RR three-form potential, while ¢ parametrizes the M-theory circle
with period 27lsgs, where recall that [, = lsg; % is the eleven-dimensional Planck length.
Denoting with Qy = [dP/27] the generator of H?(M,,,7Z) = 7, we then have’

l
By = (27755)2%92 . (3.16)

The period of By through %2 is hence

1 l
b= ——— By = — d1. 1
(2mls)? /22 2% fn M (3.17)

8 A detailed discussion of the topology of M,, is contained in appendix A.

9The authors of [32] argue, for the ABJM theory n = 1, that there is a shift in this Be-field period by
1/2 (in units of (27l,)?). Notice that, ordinarily, the Ba-field period through X2 would be a modulus, able
to take any value in S* (after taking account of large gauge transformations). Since this does not affect our
discussion, we shall not study this further here.
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Again, as for the C-field period (3.9) through X3, this is only defined modulo 1. In Type
IIA, this is because large gauge transformations of the Bo-field change the period b by
an integer.

3.3 Chiral primaries and their dual supergravity multiplets

We now turn to a discussion of the chiral primary operators of the N' = 2 gauge theory with
n = 2, and how they are realized in the gravity dual. In the field theory we can construct
chiral primary operators by taking appropriately symmetrized gauge-invariant traces of
products of fields. These operators may be denoted very schematically as Tr [®"*(AB)"2].
They are invariant under U(1),, and their dimension at the n = 2 IR fixed point is A =
2/3-(n1+2n3y). However, because of the presence of monopole operators in three dimensions,
these do not exhaust the list of all chiral primaries [4]. The monopole operator with a
single unit of magnetic flux in the diagonal U(1) transforms in the (Sym*(Ny), Sym*(Ny))
representation of the gauge group, and following [4] we may denote it as e'”. Using this we
can construct generalized gauge-invariant traces as

Tr [®"1 (AB)"2 Ak pmekeilmi—ma)T) e N (3.18)

It is currently not known how to compute the dimensions of monopole operators in strongly
coupled N' = 2 Chern-Simons theories [33]. However, it is plausible that in the present
case, as conjectured for the ABJM theory [4], their scaling dimension is zero. Assuming
this, the dimensions of the operators (3.18) are then

A = ;[nl + 2n9 + (m1 + mg)/{?] . (3.19)

These operators may be matched to a tower of states in the Kaluza-Klein spectrum on

Vs 2 derived in [11]. Consider first setting k& = 1. The spectrum is arranged into supermul-

tiplets, labelled by representations of Osp(4]2) x SO(5) x U(1)gr. When the corresponding

dimensions of dual operators are rational, the multiplets undergo shortening conditions [34].

In particular, we see from table 6 of [11] that a certain vector multiplet (“Vector Multiplet

IT”) becomes a short chiral multiplet, with components denoted as (S/X,Ar, 7). These
have spins (0%, 1/2,07), respectively, and dimensions (A, A +1/2, A + 1), with

A=-m, m=12,.... (3.20)

The lowest component fields then match the operators (3.18) with m = nj +2ngo+mj +mao.

For k > 1 only a subsector of these states survive the Zj; projection.!® This is most
easily seen using the equivalence of chiral primary harmonics on Vs o to holomorphic func-
tions on the Calabi-Yau cone singularity X [12]. These can be expanded in monomials of
the form H?:o z’t, for s; € N. Using the results of [12] (see equation (3.22) of this reference)

0The representations that survive the Zjy projection are the singlets in the decomposition of [m, 0] under
SO(5) — SU(2)r x U(1)s.
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we determine that the R-charges associated to the coordinates'! z; are all equal to 2/3,
which of course agrees with (3.20). When & > 1 it is convenient to change coordinates and
write the singularity as

Zg + A1B1 + A3By = 0, (321)

which diagonalizes the action of Z; C U(1),. Recall that under U(1), these coordinates
have charges (0,1,1,—1,—1), respectively. Thus for k > 1 a general holomorphic function
may be expanded in monomials of the form

zyt APLBP? | pr—p2=0 mod k, p;,eN. (3.22)

These of course match precisley with the operators (3.18), where p; = ng + mik, py =
ng + mok.

For later purposes it will be useful to discuss the structure of the chiral multiplets on the
gravity side in a little more detail. The lowest bosonic components S/¥ arise from a linear
combination of metric modes and C-field modes in AdS,;. The top bosonic components 7
come purely from C-field modes in the internal directions, namely from certain massive
harmonic three-forms on Y = V55 — see table 1 of [11].

In the field theory, a chiral superfield may be written in superspace notation as ¢ =
¢+01+0F. The component fields have R-charges (A, A—1, A—2) and scaling dimensions
(A;A + 1/2,A + 1), respectively. Then the bosonic physical degrees of freedom of a
chiral operator of the form Tr ™ are a scalar ¢™ with dimension mA, and a pseudoscalar
@ 1had™ 2 with dimension mA + 1. In the gravity dual, these are dual to the scalar modes
S/% and the pseudoscalar modes 7, respectively.

3.4 Baryon-like operators and wrapped branes

In this section we briefly discuss M5-branes wrapped on certain supersymmetric submani-
folds in Y,,/Zy, and their Type ITA incarnation as D4-branes wrapped on submanifolds in
M,,. These correspond to certain “baryonic” (i.e. determinant-like) operators in the field
theories.

A full analysis of the spectrum of baryon-type operators is beyond the scope of this
paper. However, we may provide further evidence for the proposed duality by analysing
a certain simple set of operators. Thus, for the adjoint fields ®; we may consider the
gauge-invariants det ®7, I = 1,2. Notice that ®; is an (N + 1) x (N + ) matrix, while ®
is N x N. We may also define the (in general non-gauge-invariant) operators

1

%’Ylw’yl = ﬁeal---aNA?él . Azqé\fNeﬁl...BNpﬂ___,n :
7 = L aravph . ph 3.23
Y = me ion " Piay€B8i-BNrim - ( : )

"For general n, the would-be R-charges are n/(n + 1) for the coordinates z1,. .. z4 and 2/(n + 1) for the
coordinate zo. Therefore for n > 3 the latter violates the unitarity bound A > 1/2; which geometrically is
the Lichnerowicz bound. For n = 3 it saturates this bound, but one can still argue that the corresponding
Sasaki-Einstein metric on Y3 does not exist [12].
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Here <7 lives in AY(IN + 1), the Ith antisymmetric product of the anti-fundamental repre-
sentation of U(N + [), while %; lives in A/(N +1) [35]. These are gauge-invariant only
for I = 0, but even in this case one needs to insert an appropriate monopole operator
(see [33, 36] for a recent discussion of these operators); we will not study this here. For
[ > 0, one can obtain gauge-invariant operators by, for example, taking (N 4 1) copies of
<7; and then contracting with [ epsilon symbols for U(N + [) (with appropriate monopole
operators). This situation is clearly much more complicated than it is for D3-branes in
Type 1IB string theory, and deserves further study. However, as for the ABJM theory,
the operators (3.23) can still be matched to wrapped branes in the gravity dual, as we
shall explain.

In M-theory we may associate these types of operators to Mb5-branes wrapping super-
symmetric submanifolds. More precisely, these are the boundaries of divisors in the Calabi-
Yau cone — see, e.g., the first reference in [9]. Given the discussion of the Abelian moduli
space in section 2.2, we may associate the operators det ®; with the divisor {zy = 0} in the
Calabi-Yau cone, while .27 is associated to {z1 = iza}, 9% to {z3 = iz4}, By to {z1 = —iza},
and Ay to {z3 = —izg}. This follows by noting that, in the Abelian theory, the operators
may be regarded as sections of line bundles over the Abelian vacuum moduli space; the
divisors we have written are then the zeros of these sections.

Let us consider first the adjoints. Setting zo = 0 in X,, gives {27 + 23 + 23 + 27 = 0},
which is a copy of the conifold singularity. Thus the boundary Eﬁ?) of this divisor is a
copy of TH1, for all n. Taking the Z; quotient, one obtains instead ES))/Z/,C = TY )7,
where recall that Zj is embedded in the diagonal SO(2) in SO(4). For the main case of
interest, n = 2, this can be seen explicitly in the polar coordinates of section 3.1: the
five-dimensional submanifold Ego) corresponds to setting a = § = 0, and its volume is
VOl(EgO)) = (37)3/2°. We may also compute this volume using the results of [12, 28]. This
gives the general result

(n+1)373

vol(2(0) = o

(3.24)
This is the volume of the submanifold induced by any Sasakian metric on Y,, with Reeb
vector field weights (4/(n+1),2n/(n+1),2n/(n +1),2n/(n 4+ 1),2n/(n + 1)). The latter
are normalized so that the holomorphic (4,0)-form on the cone has charge 4. Similarly,
one can compute

(n+1)47?

This is then the volume of a Sasaki-Einstein metric on Y,, if it exists, which is true only
for n =1, n = 2. Using the formula for the dimension of the dual operator [37]

_ Nmvol(¥)

6 vol(Y) (3:26)

we obtain in general A[det ®;] = 2N/(n+1). Notice here that, since » is invariant under
U(1)y, after taking the Zj quotient the dependence on k in the numerator and denominator
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in (3.26) cancel. This result then matches with the conformal dimensions of the adjoints
computed from the constraint that the superpotential has scaling dimension 2.

However, the above discussion overlooks an important subtlety: we have two operators
det @1, det @9, but only one divisor. Moreover, in the case of unequal ranks, U(N + 1), x
U(N)_g, one expects det ®; to have dimension A o N + [, while det ®3 should have
dimension A « N. In the case of D3-branes wrapping supersymmetric three-submanifolds
in Sasaki-Finstein five-manifolds, there can also be multiple baryonic operators mapping
to the same divisor: they are distinguished [38] physically in the gravity dual by having
different flat worldvolume connections on the wrapped D3-branes. Here we have a wrapped
M5-brane, and thus one expects the self-dual two-form on its worldvolume to play a similar
role. Notice also that in general in the conformal dimension formula (3.26) one expects the
on-shell M5-brane worldvolume action to appear in the numerator. In general this action
depends on both the self-dual two-form and the pull-back of the C-field, reducing simply
to the volume of ¥ when both are zero. Of course, [ # 0 corresponds in the gravity dual
to having a non-zero flat C-field. Similarly, in the Type IIA dual picture that we discuss
below these are wrapped D4-branes, whose conformal dimensions should be related to the
on-shell Dirac-Born-Infeld action, including the Bs-field (3.16). We shall not investigate
this further here, but instead leave it for future work.

The remaining four dibaryon operators in (3.23) correspond to the same type of sub-
manifold; hence, without loss of generality, we shall study the &/ operator. The locus
{z1 = iz} in the Calabi-Yau cone X,, cuts out a singular subvariety for general n:
clearly, z; may take any value in C, but the remaining defining equation of X,, implies
that z + z§ + 22 = 0, which is a copy of the A, 1 singularity. Thus the divisor of in-
terest is C x (C?/Z,), and the intersection with Y,, is then a copy of the singular space
ES) = S%/7,. On the other hand, the Z; quotient acts freely on 21(11). The volume may

again be computed from the character formula [12], giving

(n+1)373

VOI(ES)) = 8 2 )
n

(3.27)
and hence conformal dimension A[<7] = nN/(n + 1). Again, notice this precisely matches
the scaling dimensions of the fields A; obtained by imposing that the superpotential has
scaling dimension 2.

It is instructive to also consider the reduction to Type ITA. The wrapped M5-branes
above then become D4-branes wrapped on four-dimensional subspaces E,(f) /U(1)y. Since
the quotient by U(1), does not break supersymmetry of the background, we expect that
the four-dimensional submanifolds here will also be supersymmetric; however we have not
checked the kappa-symmetry of the wrapped D4-branes explicitly.

The reduction of 2510) is diffeomorphic to S? x S2. More interesting is the reduction
of the (singular) ES}) subspaces, corresponding to the dibaryonic operators (3.23) with
[ uncontracted indices. The latter dependence on [ may be understood by analysing a
certain tadpole in Type ITA, as for the ABJM theory. To discuss the reduction to Type
IIA, it is more convenient to use the coordinates A;, B;. The divisor corresponding to the
o/ operator is then simply {z; = iz2} = {A1 = 0}. The group U(1), acts with charge
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—1 on the coordinate By, and charges (1,—1) on (Asg, Bs). The A,,_1 singularity in these
coordinates is z( + A2 By = 0. Denoting by u1, us standard coordinates on C? under which
Z,, acts as (62”/ ",e_%i/ "), then the invariant functions under Z,, are Ay = uf, By = u}
and zg = i/ "ujug, from which one sees explicitly that AsBs = —z{. Thus U(1), acts
with weights (1/n,—1/n) on the coordinates (uj,u2). This implies that the quotient is
topologically ES)/U(l)b = (8%/Z,)/U(1), = WCP[QTL,LH' The latter is the subspace on
which the D4-brane is wrapped. It has an isolated Z, orbifold singularity at the image
of Ay = By = 0, which lifts to the A,,_; singularity. A simple topological description of
WCIP)%”J,I] is to take O(n) — CP!, and then collapse the boundary, which is S°/Z,, to a
point. The latter is then the isolated singularity. Conversely, the image of By = 0 is a
smooth two-sphere which lifts to the S3/Z,, link of the A,_; singularity. Thus in general
the integral of Fy/(27lsgs) over this S? in WCIP’[QmLI] is equal to nk.

Now, from appendix A we have that Hy(M,,7Z) = Z. Call the generator X*. It is also
shown in this appendix that the integral of the square of Qo = 1 € H?(M,,7Z) = 7Z over
»* is equal to n. Now, in general also [Fy/27l,gs] = ks, and since the first Chern class of
O(n) — CP! is n, it follows that the integral of the pull-back of Qy A Qs over W(C]P’meu is
equal to n?/n = n. This implies that the copy of W(CIP’%MM] on which the BPS D4-brane is
wrapped is a (singular) representative of the four-cycle ¥4 in the smooth six-manifold M,,.

Consider now the Wess-Zumino couplings on the D4-brane wrapped on W(CIP’[Qle].

Due to the presence of the Bay-field (3.16), we obtain'? the term

1 Js
— A- BoNFy =1- A . 3.28
o /R g B t=lgm /R (3.28)

time time

Here we have performed the calculation

l
/4 %QQ NkQo =1 . (329)
by

The Wess-Zumino coupling thus induces a tadpole for the worldvolume gauge field A. To
cancel this tadpole requires that [ fundamental strings end on the D4-brane. In the field
theory this corresponds to the fact that the dibaryon operators (3.23) have precisely [
uncontracted indices [23].

The alert reader will notice an important subtlety in this argument: in the gravity
solution [ is defined only modulo nk, while in the field theory 0 < [ < nk. In particular,
when one states that the tadpole requires [ fundamental strings to end on the D4-brane,
this is only true modulo nk. Thus, it must be that nk fundamental strings are physically
equivalent to none. In fact this is easy to see in the M-theory lift. The strings lift to nk
M2-branes ending on the Mb5-brane. More precisely, the end of the M2-branes wrap the
M-theory circle that is a smooth S! in ES), together with the time direction in AdSy.
If we remove the singular locus from ES), which is a copy of S', we obtain a smooth

12This assumes that the worldvolume gauge field flux on X* is zero. In fact for odd n, the smooth locus of
the wrapped submanifold ©* = W(C]P’[Qn’l’l] is not spin, and thus one must turn on a 1/2-integral worldvolume
gauge field flux to cancel the resulting Freed-Witten anomaly. This is related to the 1/2-integral shift of Ba
(in the case n = 1) in footnote 9, which cancels this. In our case of interest, n = 2, there is no such shift.
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Figure 2. The Type ITA reduction of M-theory on X/Zj on U(1), is C'(M,,). This geometry may
also be viewed as a fibration of W¢$ over the R3 direction, where the size |¢| of the exceptional
CP' depends on the position in Rs. In particular, the conical singularity of C(M,,) is the conical
singularity of W above the origin in R3. The above schematic picture would be precisely the toric
diagram in the case n =1 (for n > 1 the geometry is not toric).

manifold with fundmental group Z,; — removing the singular locus is sensible, since the
supergravity approximation will break down near to this locus. This result implies that nk
M2-branes ending on the M5-brane can “slip off”, since nk copies of the circle that they
wrap are contractible on the Mb5-brane worldvolume. This matches nicely with the fact
that this is equivalent, via (3.28), to a large gauge transformation of the Bo-field.

3.5 Type ITA derivation of the Chern-Simons theories

There is a different way of thinking about the Type IIA backgrounds discussed in sec-
tion 3.2, which we explain in this section. This demonstrates rather directly the relation-
ship with the “parent” four-dimensional field theories, and elucidates the stringy origin
of the Chern-Simons-quiver theories. We will also need the present discussion to derive a
Type IIB Hanany-Witten-like brane configuration in the next section.

We begin by considering the geometry RY2 x X,,/Z;, in M-theory, where X, is the cone
singularity (2.9), together with N spacefilling M2-branes. The U(1), circle acts freely away
from the cone point, and thus we can reduce to a Type ITA geometry R%2 x C'(M,,), with k
units of RR two-form flux through the generator of Ho(M,,,7Z) = Z. In this picture we have
N spacefilling D2-branes. However, we may instead take the Kdhler quotient of X, /7y
by U(1)y, at level ¢ € R, to obtain precisely the three-fold W introduced in section 2.4.
For ¢ = 0, recall this is the affine three-fold given by (2.14), while for ¢ # 0 one instead
obtains Laufer’s small resolution of this singularity, which has a blown-up CP! of size IC].
The latter is the Abelian vacuum moduli space of the four-dimensional parent theory, as
discussed in section 2.4. This picture describes the seven-dimensional space C'(M,,) as a
fibration of W over the real line R that parametrizes the moment map level (, as shown
in figure 2.
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Indeed, we can instead consider starting with Type IIA on RY2 x R3 x W, where
we have labelled R = R3 for later convenience, with N spacefilling D2-branes. Here W,
should of course be equipped with some kind of Calabi-Yau metric, although we note that
from [12] it does not admit a conical Calabi-Yau metric for n > 1 (n = 1 is the conifold).
We might imagine W) as modelling a local singularity in a compact Calabi-Yau manifold,
in which case the Calabi-Yau metric here would in any case be incomplete. If we now
T-dualize along the (compactified) R3 direction, then we precisely obtain the Type IIB
string theory set-up yielding the four-dimensional parent theory. We may also replace the
singular three-fold by its crepant resolution Wg , thinking of ( as parametrizing the period
of the Kéhler form through the exceptional CP'. We may then turn on k units of RR two-
form flux through this CP!, although in order to preserve supersymmetry it is necessary to
also fibre the size of the CP! over the R3 direction — this may be seen by appealing to the
reduction of the M-theory solution above. Thus we identify Rg = {¢ € R}. If u; denotes
the moment map for U(1), so that py, : X,,/Zr — Rgs, then notice that the inverse image
of € Ry is ,ub_l(C ) = Wy , so that in particular the cone geometry appears at the origin
in R3. By construction, the RR two-form flux may then be identified with the first Chern
class ¢; € H2(W,Z) of the U(1), M-theory circle bundle. One can then compute that

1
R =Fk. 3.30
27'('[598 /Cpl 2 ( )

As explained in [8], the above picture leads to a physical relation between the parent

theory and the Chern-Simons theory. If we have N spacefilling D2-branes together with
| fractional D4-branes wrapping the (collapsed) CP! in W0, the resulting gauge theory is
precisely the A; quiver theory with superpotential (2.5), with gauge group U(N +1) x U(N)
— this is discussed, for example, in [26]. The key result in [8] is that the addition of the k
units of RR two-form flux through the CP! then induces a Chern-Simons interaction with
levels (k, —k) for the two nodes, respectively, via the Wess-Zumino terms on the fractional
branes. This leads to a Type ITA string theory derivation of our Chern-Simons-quiver
theories, starting with the geometric engineering of the parent theory. Also notice that the
[ fractional D4-branes, wrapped on the collapsed CP!, will lift to { fractional M5-branes —
since the Mb5-brane is a magnetic source for the G-field, it is thus natural to identify the [
units of torsion G-flux with the [ fractional M5-branes. Indeed, more precisely, a copy of
the exceptional CP! at ¢ > 0 in figure 2 is the generator of Hy(M,,7) = Z, and this lifts
to the generator X3 of H3(Y,/Z,7) = Zpnp, as shown in appendix A. Thus [ fractional
D4-branes wrapped on the CP! lift to ! fractional M5-branes wrapped on X2, The latter
is then Poincaré dual to [ units of torsion G-flux.

4 Type IIB brane configurations

In this section we derive a Hanany-Witten-like brane configuration in Type IIB string
theory. This takes the usual form of D3-branes (wrapped on a circle) suspended between
5-branes, except that for n > 1 the 5-branes are embedded non-trivially in spacetime;
specifically, they are wrapped on holomorphic curves. This will allow us to understand
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further aspects of the proposed duality, and also derive a field theory duality via a brane
creation effect. The reader whose main interest is the deformed n = 2 supergravity solution

may wish to skip ahead to section 5.

4.1 T-duality to Type IIB: £k =0

We begin with the Type IIA background of R x Rj x Wy , with zero RR flux, discussed
at the end of the previous section. Here we have included a Kéhler class ¢ € R, which is a
free parameter, so that for ¢ #£ 0 W is a smooth non-compact Kahler manifold.

For ¢ = 0, we are considering the singular three-fold W?. We rewrite the defining
equation (2.14) as

WY = {wd" + w? —uwv =0} c C*, (4.1)

where as before u = iwg — w3, v = iwy + w3. We may then consider performing a T-
duality along U(1) = U(1)g that acts with charge 1 on u and charge —1 on v. We may
also consider the Kihler quotient by U(1)g, with moment map ug = |u? — |v|?, which
maps g : WY — R = Ry, where we have introduced the subscript 7 to distinguish this
copy of R from R3 above. It follows that {C? = (u,v)}//U(1)s = C, for any value of
e, and hence similarly W?//U(1)s = C2. Indeed, the defining equation of W9 is then
wd" + w? = w, where w = wv is the coordinate on C = C2/Cj. We may thus eliminate
the coordinate w to see that W?//U(1)g = C2, spanned by the coordinates wg, w1, for any
value of the moment map. It follows that W.?/U(1)g is a C? fibration over Ry, and thus
W2/U(1)g = Ry x C2 = R5.

There are, however, fixed points of U(1)¢. If we peform a T-duality along U(1)g, the
above shows that the T-dual spacetime is R x R3 x Sé x Ry x C2, where Sé is the U(1)g
circle after performing the T-duality. However, there are codimension four fixed point sets
of U(1)g, where the action on the normal fibre is the standard Hopf action on R*. These
become NS5-branes in the T-dual Type IIB picture. The fixed locus here is u = v = 0,
which is the origin in the moment map direction R;. In the C? direction they cut out the
locus wg® = —w? in C?, which is w; = +iw{. These are two copies of C embedded as affine
algebraic curves in C?, which intersect over the origin {wg = w; = 0}. Note that when
n = 1, which is the ABJM case, we see w; = tiwgy are two linearly embedded copies of
C. This is indeed the standard Hanany-Witten brane configuration for the conifold [39].
For n > 1, we obtain a non-linear version of this, where the NS5-branes are embedded
as the curves wy = Fiwf) in C2 We label the latter directions 4589, and refer to Csg,.
The NS5-branes also sit at a point in the Sé circle, where their distance of separation is
the period of the Bo-field through the collapsed CP! in W9. The final Type IIB picture is
described in figure 3.

Note we can immediately read off the matter content of the field theory from this
picture: the brane set-up is identical, apart from the embedding of the NS5-branes in
4589, to the A; singularity. Thus we may read off two gauge groups, corresponding to
the N D3-branes breaking on the two NSh-branes on the Sé circle. At each NS5-brane
we obtain a pair of bifundamentals, A;, B;, and an adjoint ®;, ®5 for each D3-brane
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NS5: w,= iw; in Cissg NS5: w,= -iw; in C, .,

Figure 3. The Type IIB brane dual of the Type ITA background Ré"é xRz x W0 with N spacefilling
D2-branes. The Type IIB spacetime is flat: Ré’é x R3 x S§ x Ry x C3549. There are N D3-branes
filling the Ré’é directions and wrapping the S¢ circle; they are at the origin in Rz, R7 and C35gq.
There are two NS5-branes that are spacefilling in Ré’é and separated by a distance in the S} circle
that is given by the period of By through the collapsed CP' in the T-dual three-fold geometry
WY they both sit at the origin in R, fill the R3 direction, and wrap the holomorphic curves
wy = +iw, respectively, in C355o with complex coordinates wg,w;. These curves intersect at the
origin wg = wy = 0. n = 1 is the standard Hanany-Witten brane configuration for the conifold
singularity, where the NS5-branes are linearly embedded.

segment. The A; theory also has the N/ = 4 cubic superpotential for these fields. For the
A1 theory, both branes are parallel, say at the origin in the 89 plane. For the conifold
theory n = 1, one brane is in the 45 plane, while the other is in the orthogonal 89 plane.
This corresponds to giving a mass to the adjoints, -®% 4 ®32, as shown in [39]. Integrating
these out, one obtains the quartic superpotential of Klebanov-Witten. In the general n
case, the non-trivial embedding of the NS5-branes in Ci589 is reflected in the higher order
(—1)"<I>§”rl + CIDSH superpotential term.

4.2 Adding RR-flux/D5-branes: k # 0

The next step is to turn back on the RR two-form flux, so that k£ # 0: this is then the
Type ITA dual of M-theory on X,,/Z; with N spacefilling M2-branes. As we discussed in
section 3.5, supersymmetry also requires that one fibre the parameter ¢ over the R3 direc-
tion. Thus, before discussing this, we first consider the effect of turning on the parameter
¢ in the T-dual IIB brane set-up above.

Without loss of generality, we take ¢ > 0 so that WS = W, is biholomorphic to
Laufer’s resolved manifold, with an exceptional CP' replacing the singular point of W0,
The U(1)g action on W) extends to an action on W, . To see this, recall from the last
part of section 2.4 that (Ay, A, By, Bo, z) are coordinates on C°, and that z = A Bs,
y = A1B1, u = A1 By, v = AyBj are invariants under U(1),, with £ = Ag/A; an invariant
on Uy and p = Aj/As an invariant on Us. The embedding equation (2.8) then becomes
z+y+zy =0. When ¢ = 0 we have the conifold 2y = uv, and eliminating x this becomes
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y? +yzy +uv = 0, which is the equation w? + w(Q]" = v of the three-fold W on identifying
iw; =y + %z()‘, wy = 2772, as before. Thus U(1)¢ rotates u with charge 1 and v with
charge —1, and we may lift this to an action on C® with coordinates (A1, As, By, Ba, z9) by
assigning charges (1,0, —1,0,0). It follows that the charges of (z,y,u,v,&, pu) under U(1)g
are (0,0,1,—1,—1,1). The fixed locus is thus u = v =¢ =0 and v = v = p = 0 — recall
that £ = 1/p on the overlap. Thus on the exceptional CP! we fix the north pole £ = 0, and
also the south pole = 0. We thus see that after resolving W0 to W, the fixed point set
under U(1)g is two disjoint copies of C, over the two poles of the CP!. Indeed, recall that
x = —vp — Z% on the patch Hy (where Zy = zp), and thus the fixed locus at v = p =0 is
described by the equation x = —z;. Changing variables as above, this becomes precisely
wy = —iw(. Conversely, the fixed locus u = £ = 0 is the equation y = —z{, which under
the above change of variable becomes precisely w; = iwy.

One can also interpret this in the moment map picture. The moment map is pg =
|A1|> — |B1|>. Turning on ¢, we also have (2.11). The exceptional CP! is, for ¢ > 0, at
By = By = 0. Then the moment map restricted to CP' becomes simply g |cp1= |A1]%.
But also |A;]2 = ¢ — |A3|? on this locus, and thus we see that on CP! the moment map
ranges from pug =0 at Ay =0 to ug = ¢ at As = 0. These are precisely the two poles of the
CP!, which is where the fixed locus is. We thus see that the CP' is mapped to an interval
in the image of the moment map pg, which recall is the R7 direction, with the endpoints
of the interval being where the NS5-branes are after performing the T-duality along U(1)g.
Notice that in the holomorphic picture A; = 0 is the south pole p = 0 while A, = 0 is
the north pole £ = 0. For negative parameter ( < 0, the roles of A; and B; swap. In this
case we will have coordinates 5 = By/Bj and i1 = By /B on the exceptional CP', which is
now located at A; = Ay = 0. The moment map is pg \@1: —|B1|?. This ranges from 0 at
By =0to —( at By = 0, with the two endpoints being the NS5-brane loci. Notice that the
brane at —( is By = 0, which is {N = 0, which is the same NS5-brane that moves for ¢ > 0,
namely that with wy = iwyg.

To conclude, we see that the T-dual of resolving W to WS is simply to separate the
two NSH-branes in the Ry direction by a distance ¢ — they are wrapped on the same curves
as before in the C2.q, direction. In terms of figure 3, the NS5-brane on the left hand side
moves a distance ( in the (transverse, as drawn) R; direction. Notice that once we resolve
WP there is no canonical place to put the D3-branes — we have to pick a point on W§. It
is natural (in the sense that it preserves a U(1) C SU(2), symmetry) to put them either at
the north pole or south pole of the CP!, in which case the D3-branes intersect either one
NS5-brane or the other.

We may now consider what happens when we turn on the RR two-form flux. Recall
this fibres the parameter ¢ over the R3 direction in Type ITA. It is simple to see what this
does in the IIB brane picture. Consider a fixed point in R3, which means fixing a particular
value for (. Then the 5-branes are separated by some distance ¢ in the R; direction. More
precisely, the above analysis shows that for ¢ > 0 the 5-brane at the south pole is always at
the origin in R7, while the brane at the north pole is at ¢ in R7. As we move towards the
origin in Rj3, the 5-branes get closer together in the R; direction, until finally at the origin
they meet. We may then pass through the origin to ( < 0, where the behaviour is the
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Figure 4. On the left hand side: the positions of the two NS5-branes with resolution parameter ¢
in the Type ITA dual. The NS5-brane at position ( is that wrapped on w; = iw{, while the brane
at the origin is that wrapped on w; = —iwg. On the right hand side: the positions of the 5-branes
after turning on the RR flux in the Type ITA dual, which fibres the resolution parameter over the
R3 direction. One of the branes rotates so that they now intersect at the origin of the R3 —R; plane.

same (with A; replaced by B;). This shows that after turning on the RR two-form flux, the
5-branes rotate from being at fixed parallel distance in the Ry direction (and filling the R
direction), to being two lines in the R3 — R7 plane that cross at the origin — see figure 4.
This means that, after turning on the RR two-form flux, the 5-branes meet precisely at the
origin in ]Rg45789. although they are still non-trivially holomorphically embedded in CZ589
as wy = Fiwyg.

Notice that for n = 1 the above indeed reproduces the Type IIB brane picture in
ABJM [4] — up to two important details. First, in the case n = 1 we have derived the
Type IIB brane dual by starting with C*/Z, reducing to Type IIA along U(1), and then
T-dualizing to Type IIB along U(1)g. In [4], the authors instead began with the Type I1IB
brane picture, and argued that T-dualizing to Type IIA and uplifting to M-theory gave a
non-trivial hyperkéhler eight-manifold as the uplift, which is characterized by two harmonic
functions, defined on two copies of R3. The difference between these two pictures is that the
former is simply the near-brane limit of the latter. Indeed, ABJM showed explicitly that
the near-horizon limit of the hyperkihler manifold indeed gives C*/Z;, which amounts to
dropping the non-zero constant term in the harmonic functions. This is the dual geometry
in the region near to where the 5-branes intersect at the origin in ]Rg45789 (which are the
two copies of R? mentioned above).

Second, and more importantly, in the ABJM brane picture the rotated 5-brane in
figure 4 is in fact a bound state of an NS5-brane with k D5-branes — the latter is effectively
the T-dual of the k units (3.30) of RR two-form flux through the (fibred) exceptional CP" in
the Type ITA geometry. To see the presence of the k D5-branes in the (1, k)5-brane bound
state directly is not straightforward in the discussion we have given above. However, the
k units of D5-brane charge can be seen indirectly by considering a certain tadpole. Thus,
we begin in Type ITA on C(M;g), which recall may also be thought of as W fibred over

,25,



R, R,

A A
k fundamental strings
/ (1,k)5-brane ~\ (1,k) string
NS5-brane
S~ D1-brane \ ’\
0 0
> >
/ " / "

Figure 5. On the left hand side: the naive T-dual configuration to a D2-brane wrapped on the
CP! at a fixed non-zero point in Ry is a D1-brane stretching between the two NS5-branes, with k
fundamental strings also ending on the D1-brane and one of the NS5-branes to cancel the tadpole.
On the right hand side: the correct T-dual configuration, in which the D1-brane and & fundamental
strings form a (1, k) string bound state, which then must necessarily end on a (1, k)5-brane. (Notice
that the D1-brane must also wind around the S{ circle as one moves from one 5-brane to the other
along its worldvolume.)

Rs. Pick a non-zero point in Rs, and consider the exceptional CP! of size |¢| in W
over this point. If we wrap a D2-brane over this CP!, we get a point particle in ]R(l)’lé.
However, because of the k units of RR two-form flux (3.30) through this CP!, in fact this
configuration does not exist in isolation: one must have k& fundamental strings ending on

the wrapped D2-brane. To see this, note the Wess-Zumino coupling on the D2-brane:

1 / s
L A m=k A (4.2)
(2m)213 JRye  JoP? 2712 JRyime

To cancel this tadpole, we precisely require k£ fundamental strings to end at a point
on the CP.

Consider the T-dual to this in Type IIB. As already discussed, the exceptional CP!
maps to an interval in the R; direction, between the two 5-branes: this lies at the chosen
point in R3, and is at the origin in (Ci589. A D2-brane wrapped on the CP! thus T-dualizes
to a D1-brane stretched between the two 5-branes in the R; direction. The k£ fundamental
strings ending on the D2-brane T-dualize to k fundamental strings ending on the D1-brane.
In particular, the fundamental strings may end at one of the poles of the CP'. In the IIB
picture, we therefore have a D1-brane and also k& fundamental strings terminating on one
of the 5-branes (while for the other 5-brane there is only a Dl-brane ending on it). In
general, a (p,q) string, where p denotes the number of D1-branes and ¢ the number of
fundamental strings in a bound state string, can only end on a (p,q)5-brane. Thus the
only way to make sense of the above tadpole is that the 5-brane is in fact a (1, k)5-brane,
and the D1-brane and k fundamental strings form a (1,%) bound state ending on this.
Of course, this precisely reproduces the correct brane configuration of ABJM in the case
of n = 1.
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(1,k)5: w,= iw) in C._,, NS5: w,= -iw} in Cl.,,

Figure 6. The final Type IIB dual of M-theory on X,, /Z;. The spacetime is Ré’é xRz x S¢ x Ry x
C35g9- There are N D3-branes filling the Ré’é directions and wrapping the S} circle; they are at
the origin in R3, R7 and C3549. There are also two spacefilling 5-branes in Ré’é at points on the S§
circle. The first is an NS5-brane, sitting at the origin in R; and filling R3, which wraps the curve
wy = —iwd in Cisg9. The second is a (1, k)5-brane, wrapping an angled line through the origin in
the R3 — Ry plane, and wrapping the curve wy = iw§ in Cygg.

To conclude, we have shown that M-theory on X,,/Zj has a Type IIB dual of Hanany-
Witten type: it is identical to the brane set-up for n = 1 described by ABJM [4], except
that the 5-branes are wrapped on the holomorphic curves wy = Fiwy inside (Cf‘mgg — see
figure 6.

4.3 Brane creation effect

Having described the Type IIB brane dual, an important dynamical question is what
happens when we move the two 5-branes past each other on the Sé circle. This was first
studied by Hanany-Witten [14], and the analysis in section 5 of that paper may be applied
directly to the case n =1 (the ABJM case). We thus begin by describing the n = 1 case,
and then explain how to apply this result for n > 1 by deforming the curves in CZ589 SO
that the brane intersections in R$s79 are normal crossings.

We thus start with n = 1. We suppress the spacetime R(l]’fz from the discussion, since
all branes are spacefilling in these directions. Thus the relevant geometry is Sé X Rg45789.
We have an NS5-brane at a point 0 # ¢t € S and at the origin in 789, and a (1,k)5-
brane at the origin 0 € S¢ and at the origin in 345. Notice that we have, for convenience
of notation, rotated the axes relative to figure 6: the argument we are about to give
is entirely topological, and so is unaffected. We denote these submanifolds as Wg and
W1 x), respectively. These two copies of R3 that are wrapped by the 5-branes thus intersect
normally at the origin in ]Rg45789. However, importantly, the branes do not actually intersect
in spacetime unless t = 0.

The (1, k)5-brane sources k units of RR three-form flux F3 through a sphere S linking
its worldvolume. Thus, let S? be a normal sphere around a point on the (1,%)-brane in
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Sg x RS 575, so that

1

m o F3 — k . (43)

Following [14], we then define the linking number

1
t (27Tl5)298 WNS,t ( )

This is independent of ¢ as t is varied, provided we do not cross the origin ¢t = 0. The
reason for this is that Fj is closed on the complement of the (1, %)5-brane worldvolume,
and the independence of (4.4) on ¢ then follows from Stokes” Theorem. More precisely, dF}
is a four-form which is supported only on the (1, k)5-brane worldvolume at ¢ = 0 and the
origin in 345: it is k times a delta-function representative of the Poincaré dual of Wy ).

Consider now moving the NS5-brane from ¢4 > 0, on the right of the (1, k)5-brane, to
t_ < 0 on the left. Let I = [t_,t,] be the interval in the S¢ circle covered in this motion.
Then we have linking numbers (4.4) Ly and L_ on the right and left. We may compute
the change in linking number using Stokes” Theorem:

1
L —L_:i/ dF; =k . 4.5
- (27Tl5)293 Wns X1 ( )

On the worldvolume of the NS5-brane there is a U(1) gauge field Ang, with field
strength Fyg, and it is only the combination A = Cy — 272 Fys that is gauge invariant.
Moreover,

F5 lwys=dA, (4.6)

meaning that F3 must be exact on the NS5-brane worldvolume Wys ¢. In the non-compact
setting of interest, of course all closed forms are exact on Wyg ¢ = R3, so (4.6) is always
satisfied. However, what we learn from (4.5) is that the period of F3 through Ws
changes by k units as we move the NS5-brane from the right ¢ > 0 to the left ¢ < 0 of
the (1, k)5-brane. The explanation for this is that k spacefilling D3-branes are created at
the intersection point ¢ = 0 when the branes are moved past each other. Indeed, such a
D3-brane ending on the NS5-brane is a delta-function source for Fyg:

1

2mgs

dFys = +0(p) (4.7)

where p € Wyg = R3. That is, the D3-brane ending on the NS5-brane is a magnetic
monopole for this U(1) gauge field. The sign in (4.7) depends on whether the D3-brane
ends from the right or from the left on the Sé circle, which it wraps (a monopole or anti-
monopole). Integrating k times (4.7) over Wyg precisely accounts for the change in linking
number (4.5). This is the Hanany-Witten effect.

Having carefully reviewed this effect, we may now apply it to the case with n > 1.
However, note that for n > 1 the branes are not linearly embedded in CZ589: they cross at
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a single point at the origin, but they are wrapped on non-trivial curves. We may remedy
this by deforming the curves that the 5-branes are wrapped on. Thus, we change

n

wy = —lwy — wy = —iH(wo —aq) + ap (4.8)
i=1
n
wy = iwg — wi = 1] J(wo — Ba) + Bo - (4.9)
i=1
Here ag, B4, a = 0,...,n, are arbitrary parameters. The point of these deformations is

that (a) they preserve the boundary conditions at infinity, since we have added only lower
order terms to the polynomials, and (b) the resulting curves now intersect normally in
(3559 Indeed, these two curves in C35q9 intersect where the wy coordinate in (4.8) equals
the w; coordinate in (4.9). This results in the nth order polynomial

n n

iH(wo — ) + iH(wo —Ba) —ao+Po=0. (4.10)

=1 i=1

For generic values of the parameters ay, 3y, this will have precisely n solutions for wy, say

(4) (4) (i))

wy’, @ = 1,...,n. Thus the resulting curves generically intersect at n points (w,’,w;
where of course wgi) is given by (4.8) (or (4.9)) evaluated at w(()i). Moreover, the intersects
of the curves near to these n points look precisely like the linear n = 1 case.

We are now in good shape: after this generic deformation that preserves the boundary
conditions of the branes at infinity, the two branes intersect ordinarily at n points in
RS, 5759 (they always cross at the origin of the Ry — R7 plane). The above discussion of
the Hanany-Witten effect shows that the creation of the k D3-branes as an NS5-brane
crosses a (1,k)5-brane occurs entirely locally at the points where the branes intersect in
spacetime. Thus if we move our deformed NS5-brane past the deformed (1, k)5-brane, we
obtain precisely n copies of the n = 1 result, i.e. in total nk D3-branes are created as
they are moved past each other. More precisely, k£ D3-branes are created at each of the n
points (wéi),wgi)) (at the origin in the Ry — R7 plane, and stretched along the S} circle).
Notice that this result is independent of the choice of deformation parameters oy, (4, as
it is topological. Thus after moving the branes past each other we may deform back to

aq = B, = 0, where the nk created D3-branes are all at the origin in Rg45789.

4.4 The field theory duality

The brane creation effect described in the last section leads to an interesting field theory
duality, discussed for the ABJM theory in [23, 32]. Here we briefly describe the situation
for general n. We begin with the Type IIB brane set-up corresponding to the gauge group
U(N + 1)k x U(NN)_g. This is shown on the left hand side of figure 7.

Consider, without loss of generality, moving the NS5-brane around the circle. Rotating
it anti-clockwise by one revolution, as shown on the right hand side of figure 7, the gauge
groups become U(N); x U(N + nk —1)_j. In particular, we note that the U(N + nk); x
U(N)_j theory can be deformed to the U(N); x U(N)_j theory in this way, which is the
required field theory duality to match the dual supergravity analysis mentioned at the very
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(N+1) D3 N D3

(1,k)5 NS5

N D3 (N+nk-l) D3

Figure 7. On the left hand side: the initial brane configuration, with (N + 1) D3-branes suspended
between the 5-branes on one side of the S§ circle, and N D3-branes on the other. On the right
hand side: moving the NS5-brane anti-clockwise around the circle pulls the [ fractional branes with
it. After passing the (1, k)5-brane these swap orientation, becoming [ anti-branes, and in addition
nk D3-branes are created.

end of section 2.2. Moving the NS5-brane multiple times around the circle, or in the other
direction, apparently leads to further equivalences, as observed for the n = 1 ABJM theory
in [23]. This certainly deserves further careful study of the brane system to understand
properly, although we shall make some comments on this in section 6.2.

5 The deformed supergravity solution

In this section we describe a supergravity solution [15] which is a deformation of the AdSy x
Vs.2/Zy, M-theory background discussed in section 3.1, in the sense that it approaches the
latter asymptotically at infinity. Throughout this section we set n = 2. We also begin with
k =1, and restore general k later.

5.1 The Stenzel metric on T7*5*

We begin by describing a deformation of the Calabi-Yau cone metric on the quadric cone
X5. The latter has an isolated singularity at zy = --- = z4 = 0 that may be deformed'? to
a smooth non-compact Calabi-Yau variety X, diffeomorphic to T*S* (the cotangent bundle
of §%), via

4
X = {sz :72} , (5.1)
i=0

where v € C is a constant. For v # 0 this describes a smooth complex structure on 7*S%.
The deformation breaks the C* = R, x U(1) g symmetry of the cone to Zy C U(1)g. Using

3In the same sense as the more familiar deformed conifold in six dimensions.
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the broken U(1)g action we take v € R, in what follows. The S* = SO(5)/SO(4) zero-
section is then realized as the real locus of X in C®. The cotangent bundle structure may
be seen explicitly by writing

z; = cosh (1 /pjpj) T + sinh («/pjpj) Di - (5.2)

Pjpj
Then Z?:o z? = 42, Z?:o x;p; = 0, so that the S* is {p; = 0}.

There is an explicit complete Ricci-flat Kéhler metric on X which is asymptotic to the
cone metric at large radius, called the Stenzel metric. This is cohomogeneity one under the
action of SO(5), with principal orbits diffeomorphic to V52 = SO(5)/SO(3), and degenerate
special orbit S* = SO(5)/SO(4). The Kihler structure induces the standard symplectic
structure on 7*S%, and thus the S* is Lagrangian; in fact it is special Lagrangian, and
is thus a minimal volume representative of the generator of Hy(X,Z) = Z. Note that
given any Ricci-flat metric ds?, the rescaled metric v2ds? is also Ricci-flat, for any positive
constant v € R, and this is essentially the constant v above, which is proportional to the
radius of the S*.

In terms of invariant one-forms on the coset space V52 = SO(5)/SO(3), the metric on

X may be written as
3 3
ds? = Adr? + A+ d? Z o? + b Z 52, (5.3)
i=1 i=1

where

1 1
a’ = 3(2 + cosh 2r) /4 cosh 7, v = 3(2 + cosh 2r)/* sinh r tanh 7,

@ = (24 cosh 2r)™3/* cosh® r . (5.4)

More details may be found in appendix B. In these coordinates, the S* is located at
r = 0. Note here we have picked a particular representative metric in the conformal class
of metrics on X, i.e. a particular value of . It will be straightforward to reintroduce this
scale later. The calibrated S in the above solution has fixed size, with induced round

metric
3
dsge =310+ o)) . (5.5)
i=1
After a change of variable
16 1 3
2 2
p- o~ KWGJ’ (5.6)

the asymptotic form of the metric is

2 2 2 3 ’ 2 2 9 2 21/3 1 ’ 2 2
=1 i=1

,31,



The leading term is the metric on the cone over the manifold Y5 = V5 ».
For later use we record here the results of certain integrals. Noticing that the S* is

parametrized by v, 0;, and recalling that Vs o is an 53 bundle over S*, we have

(/ G1 NGy Aas =22 . (5.8)
Sgbre
This is the volume of a unit S®, as necessarily follows since the collapse of this S? at the
S zero-section is regular. Writing the volume form of Vs 5 as
34
dVOlV&2 = 270'1/\0'2/\0'3/\5'1/\5'2/\5'3/\1/, (59)

and using the total volume of V55 (3.5), we deduce also that
8 2
/ V/\O'l/\0'1/\0'3=i, (5.10)
G 3

which is in fact the volume of a unit radius round S%.

5.2 The deformed M2-brane solution

The AdSy x V5 o supergravity solution admits a smooth supersymmetric deformation, based
on the above Stenzel metric. This solution was presented in [15]. We have found and
corrected a few minor mistakes in the formulas in [15], which are important for the physical
interpretation. The d = 11 solution is'4

ds? = H_Q/gds[%&l,g + H1/372d5%( ,

G =drAdH +ma, (5.11)

where m is a constant, ds%( denotes the Stenzel metric, and « is a harmonic self-dual four-
form on X' [15]. In terms of the orthonormal frame (B.4) defined in appendix B this reads

3 g2 , oix3) , 1 1 0ijk | 0ijk
o = e +e )—1——76- (e” —|—e”> . 5.12
cosh?r ( 2 cosh? r igk ( )

More precisely, this is an L?-normalizable primitive harmonic (2,2)-form on X'. Note that
o generates Hy (X, R) = R. By the general results of [40], this is the only L?-normalizable
harmonic form on X in fact. The equation of motion for the G-field

d*G:%G/\G, (5.13)

implies the following equation for the warp factor

12m?2

cosh®r

AxH = — (5.14)

We have introduced an explicit deformation parameter v which is set to unity in [15]. This measures
the radius of the S* at the origin.
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Here Ay denotes the scalar Laplacian on the Stenzel manifold with metric ds%(. This can
be integrated explicitly in terms of the variable y* = 2 + cosh 2r, giving

—24m? dy
V2 o) (- 1)%2]

where an integration constant has been fixed by requiring regularity near to » = 0. In

H(y) = (5.15)

terms of the variable p introduced in (5.6), the asymptotic expansion reads

H(p) = for p— oo . (5.16)

350
Notice that this has a different behaviour from the Klebanov-Strassler solution, where
one has logarithmic corrections. As explained in [15], this difference comes from the fact
that the self-dual harmonic form is normalizable here, while it is not normalizable in six
dimensions. At large p the solution becomes of the form (3.6), where here the AdS, radius

. . . . 10
is expressed in terms of the integration constant m? as RS = 23—7m2.

5.3 The G-flux

We now wish to discuss the quantization of the flux, thus relating the constant m? to the
quantized fluxes. Because the background is asymptotically AdSy x V59, it is natural to
quantize the flux of *G through the V55 at infinity, as in (3.7), and interpret this as the
number of M2-branes in the UV. More generally, we may define a “running” number of
M2-branes N(r) as

N(r) = ﬁ/y ves (5.17)

where the integral is evaluated on a seven-dimensional surface of constant r, which is a

copy of V5 2. To compute this, we may use the four-form equation of motion (5.13) to write

1 1
/ *G = = GNG == m?|al?dvoly (5.18)
YQ’V‘ 2 XT' 2 XT'

where the integral is evaluated on the Calabi-Yau X cut off at a distance r. The result is

1 m?2! A
N(T’) = WF?VOI(VE),g)tanh T. (519)
P

We see that this running number of M2-branes becomes a constant at infinity, where

1 211
N = N(00) = ———=—=m?vol(V5) . 5.20
This determines m? in terms of the physical paramater N. Eliminating m? we see that the
(UV) AdS4 radius takes exactly the form (3.8).
We are not quite done, however. There is a non-trivial cycle in the geometry, namely
the four-sphere at the zero-section of X = T*S%. Thus we have to impose the quantization
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of the four-form flux through this cycle. Noting that the restriction of the (2,2) four-form

a to a four-sphere at any distance r from the origin is

alga = ——Vv Noy Noa N o3, 5.21
st V3 coshr PeTenee (5:21)
we compute
1 1 m 8r? -
— G = —— = ME¢eN, 5.22
Gty Jsi @ = a7 VB 3 (522

where recall that the volume of the unit S* at the origin is 872/3. The reason for denoting
the integer!® flux as M will become clear momentarily. We hence obtain another expression

2

for m?, namely m? = 277T2l2]\2f 2. The running number of M2-branes then takes the simple

form
M?
N(r) = Ttanh4r . (5.23)

There is a simple way to check the numerical factor here. If we integrate (5.13) over the
whole of X', the left hand side gives (27Tlp)6N . On the other hand, the right hand side
is a topological quantity. To see this, note that the integral of G over S* is by definition
(27l,)3 M. But we may also regard G as defining an element of HZ(X,R). The map R =
Hi (X, R) — H*(X,R) =R is just multiplication by 2, the latter being the Euler number
of §%. Then we may interpret 3 [,, G A G as the cup product H*(X,R) x H (X, R) —
HE(X,R) = R via 1[G U [Glept = (QWZP)G%M- % This is a simple topological check
on (5.23).

Since we have N = M2/4, and N must be an integer, we have to set M = 2M. We
thus obtain the relation

N = M?, (5.24)

where 2M is the number of units of G-flux through the S* (5.22). Notice that the higher
derivative X3 term in M-theory would lead to a O(1/N) correction to this formula. In fact
an explicit solution, generalizing that above and including the Xg correction, was given
in [41].16 Of course, the supergravity solution is only valid at large N (and hence large M)
in any case, and this term is a subleading correction.

As a consequence of the relation M = 2M we also see that there is no torsion G-flux
turned on in H*(Vs2,7Z) = Zy. To see this we recall that there is a relation between the
cohomology of the deformed space X and the cohomology of its boundary 0X = V5 2. The
only non-trivial cohomology of X is H*(X,Z) = H,(X,7Z) = 7, the latter being generated
by the S* zero-section. There is a map Z = H*(X,Z) — H*(V52,7Z) = Zy induced by
restriction to V5 o = X which is simply reduction modulo 2. The calculation (5.22) means

151t is again important here that the membrane anomaly on X vanishes. This follows from the fact that
wa(X) |ga is twice the fourth Stiefel-Whitney class of the bundle 7'S*, and hence zero mod 2 (the latter
Stiefel-Whitney class also happens to be zero).

16 Although some errors in [15] have propagated to this reference.
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that as a cohomology class [G] = 2Me, where e denotes the generator of H*(X,Z). This
then maps [G] — 0 € H*(Vs2,7Z) = H3(Vs2,7) = Zo.

We may also define a “running C-field period”. Recall that V52 may be thought of as
an S% bundle over S*. Then the generator of Hs(V59,7) = H*(Vs 2, 7) = Zs may be taken
to be a copy of the S fibre at a fixed point on the base S*. We can identify the torsion
three-cycle at a distance r as the three-sphere at a distance r from the origin of the fibre
R*, at a fixed point on S*. We have

sinh® r

1 dr No1 NGy A og, (525)

V3 cosh? r

olgs =

and thus

1 m M 1 1
@) = G, /sgc = G,y /Rgo‘ =% Joor (s 3) +7] - 0

Notice that cs(oo) = M. Indeed, this is again purely a topological integral, namely

(1/(27l,)?) ng G = M, and shows that the holonomy of the C-field on Vs34 at infin-
bre

ity is indeed trivial, ¢f (3.9).

5.4 The Z; quotient

If we wish to consider deformations of the V;2/Zj supergravity background with k£ >
1, the deformed solution X /Zj is then singular, having two isolated C*/Z;, singularities
at the north py and south pg poles of the S* zero-section. Since we cannot trust the
supergravity solution near to these points, we should remove them from the spacetime
in any supergravity analaysis. It then makes sense to analyse flux quantization on the
smooth manifold (X¥\{pn,ps})/Zy. This has a boundary with three connected components:
Vs2/Zy, at infinity, and two copies of S7 /7y, near to r = 0.

Since Hy(X,7Z) = 7, generated by the S* zero-section, it follows from a simple Mayer-
Vietoris sequence that also Hy(X \ {pn,ps},Z) = Z. On removing the two points, the
image of the S* zero-section in X \ {py,ps} is I x S3, where I is an interval. Thus the
image of this S* naturally gives a relative class in Hy(X \ {pn,ps},S” 11 S7,Z), although
again it is simple to show that this is isomorphic to H4(X \ {pn,ps},Z) and thus the
relative class is represented by a closed 4-cycle also.

Consider a Zj-invariant closed four-form G on X' that has non-zero integral over the S*.
Then one obtains a four-form on (X \ {pn,ps})/Zx with non-zero integral over I x S3/Zy,
where Zy, acts along the Hopf fibre of the S3. We now normalize the flux G/(27l,)3 to have
period M € Z through this (relative) 4-cycle. It follows that lifting to the covering space X,
we obtain a period kM through S*. Then the integral of (27rlp)*6%G A G over the covering
spacetime X may be carried out as in the smooth case, to give & - (kM) - (kM) = k2M>.
Thus on the quotient X' /Zj, we obtain

1 1 1
N:—/ *0:7/ “GANG = kM? . 5.27
(27Tlp)6 V&Q/Zk (27Tlp)6 X/Zk 2 ( )
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Similarly, we have

1 1
. G+ [ oc=m 5.28
(2mlp)? /Rgbre/zk (27ly)3 Jus ’ (5:28)

where we have noted that the generator ¥* of H3(Vs2/Zy,Z) = Zoy is given by a copy
of the boundary of the R*/Z;, fibre of T%S%*/7Z;, over the north pole py € S*. Comparing
to (3.9), we see that [ = 0 mod 2k at infinity, and hence there are no fractional M5-branes.
Clearly, this is in stark contrast to the Klebanov-Strassler solution.

6 The deformation in the field theory

The deformed supergravity background that we have discussed is of a type which has no
known counterpart in the context of the AdS;/CFTy correspondence. This was already
noticed in [15, 19, 42]. The UV region is asymptotic to a Freund-Rubin background AdS, x
Y7, and thus according to the AdS/CFT dictionary it should be dual to the conformal
Chern-Simons-quiver theory extensively discussed in the paper. On the other hand, in
the IR region the solution is smooth and displays a finite-sized minimal submanifold at the
bottom of the throat. Therefore, according to the general rules of gauge/gravity duality, the
dual field theory should have a mass gap and is presumably confining [43]. Understanding
the precise mechanism in the field theory is clearly an interesting challenge. In this final
section we take a few steps in this direction, leaving a more detailed investigation for
future work.

6.1 The field theory in the UV

As we have already explained, at infinity the deformed solution approaches the AdS, x
Vs.2/Zy background. Since H*(Vs 9/Z, Z) = Zay, at infinity we can only have a flat torsion
G-flux of [G] = [ mod 2k. A careful examination of flux quantization in the deformed
solution leads to 2M units of G-flux through the minimal four-cycle S*/Z; at the zero-
section r = 0. However, this G-field descreases as we move towards the UV, eventually
disappearing at infinity » = co. The topological class of this G-flux at infinity is [G] = 0,
while the flux of *G through Vs is N = kM?. This leads us to conjecture that the field
theory in the UV is the superconformal Chern-Simons-quiver theory with gauge group

U(EM?), x U(kM?)_}, . (6.1)

Note that the ranks of the gauge groups could receive subleading corrections that may be
important for a consistent interpretation.

On general grounds, the field theoretic interpretation of the deformation is either a
perturbation by a relevant operator in the Lagrangian, or involves spontaneous symmetry
breaking. These two possibilities are distinguished by the asymptotic behaviour of per-
turbations in AdS4. In order to use the AdS/CFT dictionary we need to write the AdSy
metric in Fefferman-Graham coordinates

1
ds?(AdSy)rc = = (d2? + da,dat) | (6.2)
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by changing coordinates p? = 1/z. Here recall that p is related asymptotically to r via the
change of variable (5.6). In particular, for scalar modes we then have

o~ P25 + PR, (6.3)

with ¢g corresponding to perturbing by an operator of dimension A, and ¢ corresponding
to the VEV of such an operator. Aided by the map between chiral multiplets in the SCFT
and modes in the Kaluza-Klein spectrum on Vj o, discussed earlier, we will see that the
former possibility is realized.

To see this, we examine the leading behaviour of the G-field at infinity, and the cor-
responding pseudoscalar mode in AdS;. We may discuss this in the context of general
Sasaki-Einstein solutions and then specialize to the case of interest. Consider a self-dual
harmonic G-flux in the Calabi-Yau cone background R»? x C(Y'), of the form

G=a=d(p™p), (6.4)

where p is the radial variable on the cone. This implies Ay3 = 123, where Ay is the
Laplace operator on Y acting on three-forms. For the associated AdS4 x Y solution, we
may then consider a fluctuation of the type 6C = 7- 5. It was shown in [44] that this leads

to a pseudoscalar field 7 in AdS, with mass!'”

m? = (6.5)

Substituting this into the formula for the dimension of the dual operator, A(A — 3) = m?2,

we obtain Ay = (3£ |3 — v|). Which branch to pick depends a priori on the specific
operator we consider. Going back to our particular G = « given by (5.12), we see that

R 1 N
B o< (361 Ada Ads+ S €ijkOi Noj NGy |, (6.6)

and v = 4/3. Then Ay =3 -5 = %, while A_ = & = % Now, going through all the
pseudoscalar modes undergoing shortening conditions in the tables in [11], we find a mode
with A = % while the other possibility is not realized. In particular, this mode arises as the
pseudoscalar component of the chiral operators with dimensions A = %m + 1, with m = 2,

2/3

that we discussed in section 3.3. From the asymptotic scaling o ~ 2%/°, we conclude that

this operator is in fact added to the Lagrangian (see also [19]).

Since this is the pseudoscalar component of a chiral superfield, we see that it is a
Fermionic mass term 1“v,. This breaks parity invariance, which is reflected in the gravity
solution in the presence of the internal flux, the latter being odd under parity. In general,
such mass terms may be added to the Lagrangian, in a supersymmetric way, by a quadratic

"The reader should not confuse the mass m? here with the paramter m in the deformed solution.
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superpotential deformation!'®

1 9%6W
SW = puTr[¢?] =  dL=-— 2%%%%@ (6.7)
1Y%

A priori, we have three such possible mass terms, compatible with the SU(2), global
symmetry of the deformed background, namely

SW = “7* (Tr[®F] + Tr[®@3]) + % (Tr[®@]] — Tr[@3)) + psTr[A1 By + A2Bo] . (6.8)

where in the above we mean superfields.

We may deduce which terms are present by analysing more carefully the symmetries of
the deformed solution. Recall from section 2.1 that in the undeformed field theory we have
a Zgip symmetry that exchanges ®; <« &5, A; < B;. The generator acts on the z; coordi-
nates, introduced just below equation (2.8), as (zo, 21, 22, 23, 24) — (—20, 21, —22, 23, —24).
Hence Zgip C O(5) acts on the deformed quadric (5.1). The internal G-flux then breaks
this Zgip symmetry. To see this, notice that for k = 1 the zero-section of X = T*S% is S,
embedded in R® by the real parts of the z; coordinates in (5.1). The volume form on S4
may be written

vol(S%) = e,jklmzldzj ANdz, Adzp Adzy, |{Z (6.9)

4! z}=2?, z€R} -

This hence changes sign under the generator of Zgip. Now since Zgip is an isometry, it
necessarily maps L? harmonic forms to L? harmonic forms, and as mentioned earlier the
results of [40] imply that Giy o< o (5.11), where « is given by (5.12), is the only such form.
Thus the generator of Zgip maps « — +a. But since « restricts to the volume form on
S% at r = 0, we see that the generator of Zgip maps « — —«, and thus Giy — —Ging.
Hence the related superpotential deformation in (6.8) should also be odd. This requires
that pu4 = ps = 0, leaving precisely the following supersymmetric mass-term

W — W+ g (Tr[®2] — Tx[®3]) . (6.10)

We may then regard the full superpotential as depending on the two parameters s and pu.
Notice that by setting s = 0, the mass term p is precisely that leading to the ABJM theory
in the IR, after integrating out the adjoints.

The deformed F-term equations following from the superpotential deforma-
tion (6.10) read

Bi®y; + ®1B; =0, (6.11)
PoA;+ Ai® =0, (6.12)
3507 + (B1 A1 + ByAs) + pdy = 0, (6.13)
3503 + (A1B1 + A3 By) — Py = 0 . (6.14)

8This deformation then introduces various additional terms in the Lagrangian. For example, we have a
quadratic term uQTr[qﬁTqﬁ] in the bosonic F-term potential, with dimension A = 4/3, as well as linear terms
in u. Presumably these operators may be detected by analysing appropriate linearized perturbations of the
background. However, their structure should be constrained by supersymmetry. See [45] for discussion of
a related issue in the context of mass deformations of the ABJM theory.
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The simple linear change of variable

" 13

P =T — — Py =V 6.15
1 1™ 657 2 2+ 63 (6.15)
then leads to
2
38\11% + (BlAl + BQAQ) = % s (618)
S
2
S

In particular, we see that the Abelian moduli space is exactly the deformed singularity (5.1).
The deformation parameter is proportional to the mass, v? = u?/12s.

6.2 Comments on the field theory in the IR

The supergravity solution implies that the A/ = 2 superconformal Chern-Simons-matter
theory deformed by the mass term will flow in the IR to a confining theory. We leave a
field-theoretic understanding of this for future work, restricting ourselves here to making
only some preliminary comments in this direction.

Firstly, it is instructive to contrast the pattern of U(1)r symmetry breaking of our
solution with that of the Klebanov-Strassler theory. In the latter case the U(1)z symmetry
is broken to Zsjs in the UV by the chiral anomaly, and this is then spontaneously broken
to Zgy, yielding M vacua. On the gravity side, the breaking of U(1)g to Zaps is reflected
by the non-invariance of the fluxes already in the UV [18, 46]. The M vacua are then
reflected by the presence of supersymmetric probe branes, representing BPS domain walls
interpolating between the vacua. In three dimensions there is no chiral anomaly, and thus
U(1)r cannot be broken in this way. Indeed, in the supergravity solution we discussed
the parameter M is not a UV parameter that one can dial at infinity, and in fact the flux
vanishes asymptotically. We also expect that no wrapped branes will give rise to BPS
domain walls, although we have not checked this.

In analogy with the Klebanov-Strassler cascade, one possible way to interpret the RG
flow described by the supergravity solution is to imagine that once the conformal theory
is deformed by the mass term in the UV, it starts “cascading”, going through a sequence
of Seiberg-like dualities where the ranks of the gauge groups decrease, until in the deep
IR perhaps one gauge group disappears, and the low energy-theory confines. This idea
has recently been suggested in [32, 47] in the context of ABJM-like theories, although the
models studied in these references are different from our models. This interpretation is
motivated by the brane creation mechanism that we discussed in section 4.4, and by the
fact that in the solution there is a varying Bs-field (in the Type ITA reduction). More
precisely, the Bo-field suggests that as we proceed to the IR, the NS5-branes rotate around
the circle. Taking this point of view, and applying the duality rule of section 4.4, we end up
in the IR with a gauge group U(—kM ) x U(kM)_ after M steps, which clearly doesn’t
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make sense since one gauge group has negative rank. (We could of course stop applying
the duality at the previous step.) Notice, however, that what is the precise gauge group
in the IR depends on the starting point in the UV, which in turn depends on subleading
corrections to kM?. In any case, it is not clear whether applying this rule is correct, once we
turn on the mass deformation. In fact, more conservatively, given the mass term one should
integrate out the heavy degrees of freedom, and obtain an effective low-energy theory in
the IR. In principle this theory should then exhibit confinement (without supersymmetry
breaking). Integrating out the Fermions would a priori lead to a possible shift of the
Chern-Simons levels. However, because the Fermions are in the adjoint representation in
fact the levels are not shifted. Indeed, we have already noted that the mass term is exactly
the same mass term which produces the ABJM theory at low energy, starting from the
Chern-Simons theory in figure 1 with s = 0. Integrating out the bosonic components of the
chiral fields in the mass-deformed n = 2 theory, the effective superpotential for the low-
energy fields A;, B; results in a non-local expression, involving square roots of polynomials
in these fields. Hopefully, further work along these lines will lead to a precise identification
of the IR field theory.

7 Conclusions

In this paper we have constructed a new example of AdS;/CFTj3 duality by proposing
a simple N/ = 2 Chern-Simons-matter quiver field theory as the holographic dual to the
AdSy x Vs /7y, Freund-Rubin background in M-theory. This duality presents several novel
aspects. For example, the geometry, and hence the field theory, has an SU(2) x U(1)xU(1)r
global symmetry (enhanced to SO(5) x U(1)g for k = 1), and hence these models are non-
toric. Examples of AdS/CFT dual pairs of non-toric type, where both sides are known
explicitly, are quite rare. This model may be thought of as describing the low-energy
theory of multiple M2-branes at a quadric hypersurface singularity. In fact, this is the n = 2
member of a family of hypersurface singularities (A4,,—1 four-fold singularities), labelled by
a positive integer n, for which we have also presented the corresponding field theories.
However, we have explained that only for n = 2 and n = 1 do these singularities give rise
to Freund-Rubin AdS, duals, the n = 1 model being the ABJM theory. We note that [12]
discussed the larger class of ADE four-fold singularities, and it was shown in this reference
that in this class the only cases that can admit Ricci-flat Kihler cone metrics are Ay = C?,
Ai and Dy4. It would be interesting to construct Chern-Simons-matter theories dual to
other hypersurface singularities, and to see whether the D, theory admits a Freund-Rubin
holographic dual, analogous to that discussed in this paper.

In this paper we have considered the case where the Chern-Simons levels are equal
k1 = —ko = k. Relaxing this condition, thus allowing for arbitrary levels, corresponds to
deforming the Type ITA solutions that we discussed in section 3.2 by turning on a Romans
mass [20]. Such solutions will be similar to those discussed in [51, 52] and it would be
interesting to find these solutions explicitly.

Another interesting aspect of the model we discussed is that there exists a deformed
supergravity solution, that we have argued corresponds to a particular supersymmetric
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mass deformation of the conformal theory. This deformation is similar to those studied
in [45, 48, 49] and other references. We have seen that this mass term is dual to a harmonic
(2,2), primitive (hence self-dual) G-flux on the Calabi-Yau geometry. Quite recently the
authors of reference [50] have shown how self-dual background fluxes induce mass terms
in the M2-brane worldvolume action, and it would be interesting to see whether this con-
struction generalizes to N' = 2 backgrounds of the type we have studied. In the present
context the effect of this mass term is rather different from that in the ABJM model studied
in [45, 48, 49]: it deforms the classical moduli space in a way that precisely matches the
geometry in the supergravity dual. In particular, the solution develops a finite-sized S* in
the IR, implying that the theory becomes confining. Motivated by brane constructions, we
have briefly discussed how this deformation might be interpreted as a “cascade”, analogous
to the Klebanov-Strassler cascade. However, further work is needed in order to obtain a
more conclusive interpretation of the RG flow, and in particular a clearer understanding
of the field theory in the deep IR. We expect a similar story to repeat for other deformed
solutions with self-dual G-flux, based on different special holonomy manifolds [15, 42].

Finally, in appendix C we describe a Type ITA reduction of the supergravity solutions
that is different to that considered in the main text, i.e. we reduce on a different choice
of M-theory circle. On general grounds, one expects this to lead to a field theory that is
mirror to that considered in section 2 (see, for example, [53]). It would be interesting to
study this reduction further.
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A Some cohomology computations

In the main text we have made use of a number of different cohomology groups of the
various manifolds we have defined, and also the relations between the groups. In this
appendix we present the relevant computations.

We begin by defining a manifold that does not appear in the main text: we define
X, by

n

4
Xo=1[[(z0—a))+> s=0pcC. (A.1)
y=1 i=1

Here the a,, v = 1,...,n, are real, pairwise non-equal constants, which we order as a; <
ay < --+ < ap. The manifold X5 = X in the main text, which is the deformation of the
quadric singularity. The &}, are smooth non-compact complex manifolds with boundaries
0X, =Y, where Y,, is defined by (2.9), (3.1). Indeed, the X,, are deformations of the X,
singularities (2.9).

— 41 —



The cohomology of X, was discussed in [13], and we briefly review their analysis. For
v=1,...,n—1 we may define a four-sphere S;l by requiring that zq is real with a, < zp <
a~41, and that the z;, for i = 1,...,4, are all real or all imaginary, depending on the value
of v mod 2. These n — 1 four-spheres then generate Hy(X,,7Z) = Z"~' = HY(X,,Y,,7Z),
where the last step is Poincaré-Lefschetz duality. This is the only non-trivial homology
group of X, (of course Hy(X,,,Z) = Z). Each four-sphere has self-intersection number 2,
since its normal bundle may easily be seen to be T%S* which has Euler number 2, and
by construction the intersection number of S,% with Sf/ 41 is 1, with all other intersection
numbers vanishing. Poincaré-Lefschetz duality implies that H*(X,,,Y,,Z) and H*(X,,,Z)
are dual lattices, where recall that f : H*(X,,Y,,Z) — H*(X,,7Z) forgets that a class
is relative (has compact support). Thus the above discussion shows that H*(X,,,Y,,Z) =
Hy(X,,7), equipped with the intersection form, is the root lattice of A,,_1, while H*(X,,,Z)
is the dual weight lattice.

Notice that in the simple case with n = 2, where Xy = X = T*S*, the generator of
H*(X,,Y5,7) = 7 may be taken to be a compactly supported four-form that has integral
one over the fibre (the Thom class of the bundle T*S%).

We may now compute the cohomology of Y, = 04X, using the long exact sequence
for the pair (X,,Y,). Since the cohomology groups of both X,, and (X,,,Y;,) vanish in all
degrees other than the top, middle and bottom, it follows that most of the cohomology of
Y,, is also trivial. In fact the only non-trivial cohomology group is H 4(Yn, Z), which arises

from the sequence
- — HY(X,,Y,,Z) LR HY(X,,Z) — HYY,,Z) — H"(X,,Y,,Z) =0 . (A.2)

This implies that H*(Y,,,Z) = H*(X,,Z)/f(H*(X,, Yy, Z)) = Z,, where the last isomor-
phism follows from the above description of the cohomology groups in terms of the root
and weight lattices of A, _;. Of course, by Poincaré duality we also have H3(Y,,,Z) = Z,,.

In the special case that n = 2, of main interest in the text, the long exact homology
sequence implies that we may take the boundary S3 of any fibre S% = 9R* of T*S5* as the
generator of H3(Ys,Z) & Zy. Equivalently, viewing Y5 as an S3 bundle over S*, a copy of
the fibre at any point on the base generates this third homology group.

Next we introduce the free circle action on Y;, by U(1), = SO(2)diag C SO(4), where
SO(4) acts on the coordinates z;, i = 1,...,4, in the vector representation. The quotient
M, = Y,/U(1), is then a smooth compact six-manifold. The cohomology of this space
may be deduced from the Gysin sequence for the circle fibration of Y,, over M,:

Ucy

- — H'"*M,,Z) = H'(M,,Z) — H'(Y,,Z) —
H™YM,,Z) — --- . (A.3)
It is straightforward to derive this sequence from the long exact sequence for the total
space L of the complex line bundle over M,, associated to the U(1), circle bundle: note

that £ has boundary Y,,, and base M,,. One needs to combine this sequence with the Thom
isomorphism — this is precisely where the cup product with ¢; = ¢1(£) comes from above,
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since for a complex line bundle ¢; is equal to the Euler class of the underlying rank 2 real
vector bundle. The last map in the Gysin sequence (A.3) is just pull-back from M,, to Y,,.

Using the sequence (A.3), together with the known cohomology of Y,, computed above,
we may compute the cohomology (and properties of the cohomology ring) of M,,. Since
HY(Y,,Z) =2 H*(Y,,Z) = 0, it follows immediately from i = 2 in (A.3) that ¢; = Qy is
the generator of H?(M,,Z) = Z. Here the notation 0y was introduced in the main text
just before equation (3.16). Similarly, H3(Y,,,Z) = 0 implies that H3(M,,,Z) = 0. Then
i = 4 above implies Z,, & H4(Y,,Z) = H*(M,,Z)/[H*(M,,Z) U ¢1]. Now, H*(M,,7) =
Hy(M,,,7Z), so the free part of H*(M,,Z) is Z = H?(M,,Z) by the Universal Coefficient
Theorem. Moreover, the torsion in H*(M,,Z) is the torsion in H3(M,,7Z), but this is
Poincaré dual to H3(M,,,Z) = 0. Thus H*(M,,,Z) = Z, and the Gysin sequence thus tells
us that the square of the generator of H?(M,,7Z) is n times the generator of H*(M,,,Z).
We may equivalently state this as

/2492U92:TL, (A4)

where ¥* denotes the generator of Hy(M,,Z), again as in the main text. The result (A.4)
follows from Poincaré duality, and the last map in the Gysin sequence that says cupping
H*(M,,7) with ¢; = Qy (which is Poincaré dual to ¥*) maps the generator of H*(M,,,Z)
to the generator of HY(M,,Z) = 7. Notice that M, then has the same cohomology
groups as CP? (where M; = (C]P’3), but that the cohomology ring depends on n via the
above calculation.

We may now compute the cohomology of the quotient Y;,/Z. This is also a smooth
seven-manifold, where we take Zjp C U(1l),. This immediately gives m(Y,/Z;) =
H\(Y,/Zy,Z) = Zi. The Gysin sequence (A.3), with Y,,/Z; in place of Y, now
has ¢4 = k). Precisely as we argued above, this implies the important result that
HYY, /7y, 7) = HY(M,,Z)/[H*(M,Z) U k] = Z,j,. Of course, by Poincaré duality
also Hs(Yy,/Zy,Z) = Zpi. Indeed, the Poincaré dual sequence implies that the generator
2 of Ho(M,,7Z) = 7 lifts to the generator X3 of H3(Y,/Zy,7) = Zpni, where X3 is the
total space of the circle bundle over a representative of 2. This was used at the end of
section 3.5.

Finally, recall that in the special case of n = 2 the generator of Hs(Y2,Z) = Zy can
be taken to be a copy of the fibre S3 in the fibration S® < Y, — S*. The fibres over the
poles pn, ps of the S* are mapped into themselves under Zj, with the Hopf action of Z;
on 53 giving the quotient S/Z;. It then follows from the last paragraph that this Lens
space S3/7;, = Y3 generates H3(Ya/Zy, 7) = Zoy.

B The Stenzel metric

In this appendix we review the construction of the Stenzel metric on X = T*S%. The
deformed quadric X is defined as

4
7 =9, (B.1)
=0
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and the Stenzel metric on this may be written by introducing left-invariant one-forms L op
on SO(5), A,B = 1,...,5, satisfying dLap = Lac AN Lecp. We split A = (1,2,1), with
i =1,2,3, where the L;; are left-invariant one-forms for SO(3), and define

o; = Ly, 0; = Lo, v=_L. (B.2)

These are one-forms on the coset space V52 = SO(5)/SO(3). The metric on (B.1) is
then [15]

ds? = 2dr? 4 *v? + d®o? + b%67 . (B.3)
It is useful to introduce the orthonormal frame
e = cdr, el = cv, el = ao;, el = bo; . (B.4)
A holomorphic frame is provided by
0 = —e0 il , d=¢ +ie . (B.5)

In this frame, we take the Kéhler form J and holomorphic (4,0)-form € to be the stan-
dard forms

J:%EO‘/\?}, Q=N ANENE . (B.6)
Thus these automatically satisfy the SU(4)-structure algebraic relations J A @ = 0,
%JA‘ = %Q AQ = —e00112233 A Ricci-flat Kihler metric requires dJ = 0 = dQ. It

is straightforward to check that dJ = 0 is equivalent to the ordinary differential equa-
tion (ODE)

(ab) = ¢*, (B.7)

where a prime denotes differentiation with respect to r, while imposing d€2 = 0 is equivalent
to the four ODEs

AP

Vo
o h e TRl
2%+%+%—22—%:0,
2%+%+C—— %_%:o, (B.8)

Although this naively looks overdetermined, it is simple to check by taking linear combi-
nations that these five ODEs are equivalent to the three ODEs

a’ b2 + 2 — a?

a 2ab ’

Voo oa?+c—b?

b 2ab ’

d 3(a®+bv*—c?)

D (B.9)
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This is the same system of equations that were presented in [15], although in the latter
reference they were derived by first finding the second order Einstein equations, and then
constructing a superpotential. Here we have derived them directly from the Ricci-flat
Kéhler conditions. A solution to these equations, which is a smooth complete metric on
X = T*S* was found by Stenzel [54]. This is the solution written in (5.4).

C A different reduction to Type ITA

In sections 3.2 and 3.5 we considered reducing M-theory on RY2x X, /7, with N spacefilling
M2-branes, or its near-horizon limit AdSs x Y,,/Zy, along U(1), to Type ITA string theory.
Recall here that X,, admits a Ricci-flat Kéhler cone metric only for n = 1 and n = 2. In
the case n = 2, one problem with this Type IIA reduction is that as soon as one deforms
the AdS, x Y2 /7, solution to the RL2 x Xa /7y, solution, the reduction along U(1), is no
longer well-behaved. Specifically, the U(1), action fixes the north and south poles of the
S* zero-section of X = X, = T*S%; since these are codimension eight, there is no simple
interpretation of the resulting singularity in the dilaton in Type IIA string theory. Thus
the Type IIA supergravity solution cannot be trusted in the IR region near to the S* at
r = 0. However, there is a different reduction to Type ITA that is well-behaved. We briefly
describe this here, leaving a more thorough investigation for future work.

Recall that in section 4.2 we introduced a different U(1) = U(1)g action on X,.
If we regard X,, as being defined by the hypersurface equation (2.8), the coordinates
(A1,Ay,B1,Bo,z9 = [s(n + 1)]1/”<I>2) have charges (1,0,—1,0,0) under U(1)g. In fact,
we may deform X, to X, given by (A.1l), so that U(1)g also acts on the smooth manifold
X,. Of course, to obtain a solution to eleven-dimensional supergravity, we should equip X,
with a Calabi-Yau metric. For n = 1, n = 2, we may use complete asymptotically conical
Calabi-Yau metrics (the flat metric on X7 = C*; the Stenzel metric on Xy = T*S*). These
are the metrics relevant for application to the AdS/CFT correspondence. Such metrics do
not exist for n > 2, in which case the reader can imagine that (A.1) is a local model in
a compact Calabi-Yau manifold. Yau’s theorem will then give a Ricci-flat Kahler metric
on this space which is incomplete at the boundary. In any case, the precise details of the
metric will not be important in what follows.

Consider reduction of M-theory on RY2 x X,,, with N spacefilling M2-branes, along
U(1)g. The fixed point set is codimension four, namely {4; = B; = 0}, which cuts out
the locus

[1Go—a))+A42B2=0. (C.1)
y=1

This is the deformation of the A, 1 singularity: it has n — 1 two-spheres S,%, defined
similarly to the four-spheres Sfi in appendix A, that intersect according to the root lattice
of A,_1 = SU(n). This becomes a D6-brane locus when we reduce to Type IIA. Indeed,
the Type IIA spacetime is flat, since &, /U(1)s = R7. To see this, note that X,,/Cj is
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described by

Z+ H(Zo — av) + A3By =0 . (02)
y=1

where z = Ay B;y. This is simply C3. The quotient space is thus diffeomorphic to R =2
R7 x C3, where R7 is spanned by |A1|? — | B1|?, which one can think of as the moment map
for U(1)g, and C3 is spanned by (Asz, Ba, o). The fixed point locus is thus at the origin of
Rz, and cuts out the hypersurface (C.1) in the C? part.

The reduction of R%? x X,, along U(1)g is thus the flat spacetime RY = R12 x Ry x C3,
with N spacefilling D2-branes and a single spacefilling D6-brane sitting at the origin of
R7 and wrapping the divisor (C.1) in C3. Notice that this description gives the correct
amount of supersymmetry, since a D-brane wrapped on a divisor in a three-fold preserves
four supercharges, or N’ = 2 supersymmetry in d = 3.

There are n — 1 four-cycles in &,,, and the quantized G-flux through the generators Sflf
defined in appendix A gives

1
— G=M,€cZ. (C.3)
(2mlp)? 54 !
In the Type IIA reduction considered in this section, this is dual to adding M, units of
worldvolume gauge field flux on the D6-brane through the two-sphere S,% in the deformed
A,,_1 singularity (C.1). A general discussion of this may be found in [55]. Thus

1
27'('[598 S?{

F=M,, (C.4)

where F' is the U(1) gauge field on the D6-brane.

In the limit where a, — 0, which is the hypersurface singularity X,,, the D6-brane is
wrapped on R x A, 1 (we emphasize that the spacetime is flat Minkowski spacetime).
In particular, for n = 2 we have an A; singularity, although for n > 2 the above analysis
shows that the A; quiver in section 2 is not related to this A4; singularity in the Type ITA
reduction on U(1)g. Indeed, since we are reducing on a different circle, one expects the
effective gauge theory derived from the brane configuration described above to be mirror
to the gauge theory in section 2, which we derived from the Type ITA reduction on U(1),
in section 3.5.

We may also consider taking the Zj quotient along U(1),. The charges of the co-
ordinates (Aj, Ag, By, B2, zp) under U(1), are (1,1,—1,—1,0), and thus in the Type ITA
internal space R; x C3, spanned by the moment map |A1|> —|B1|? and (As, Ba, 2), respec-
tively, U(1), acts with charges (1,—1,0) on C3. Thus the Z; quotient along U(1); leads to
a Zj singularity in spacetime, or more precisely an Aj_q singularity. This would usually
lead to an SU(k) gauge symmetry in the transverse six-dimensional space. Contrast this
with the A, _1 singularity on which the D6-brane is wrapped.

Finally, notice that we may perform a T-duality along the U(1) which acts with charges
(1,—1) on the coordinates (As, Bs). This gives a Type IIB brane set-up where the spacetime
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is RU2x Ry x S' xR?, with N spacefilling D3-branes wrapping the S circle (that arises from
the T-duality). Here R® arises as R® = R x C?, where R is spanned by the moment map
| A3|?—|Bs|?, and C? is spanned by (g, A2 Bs). Since the fixed point locus is { A2 = By = 0},
which is a copy of R12 x R; x C in the ITA spacetime (with C spanned by the coordinate zq),
on T-dualizing this becomes a linearly embedded spacefilling NS5-brane. More precisely,
the NS5-brane wraps the Ry direction, sits at a point in S', and wraps the copy of C C R?
spanned by the coordinate zg. When we divide by Zj C U(1), the fixed locus is precisely
the Aj_; singularity, and we thus obtain k linearly embedded spacefilling NS5-branes in
the Type IIB dual. The spacefilling D6-brane wrapped on the deformation of the A, 1
singularity becomes a spacefilling D5-brane wrapped on a non-linearly embedded copy of
R? in R5. This is because the four-manifold (C.1) fibres over R?® with n fixed points. The
two copies of R? wrapped by the D5-brane and the k& NS5-branes thus intersect at n points
in RO =Ry x R x C2.
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