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1 Introduction

The work of Bagger and Lambert [1] (see also [2]) has led to new insights into the low-

energy physics of M2-branes. In [1] an explicit three-dimensional N = 8 supersymmetric

gauge theory was constructed, a theory which was later shown to be a Chern-Simons-matter

theory [3]. Following this work, Aharony, Bergman, Jafferis, and Maldacena (ABJM) [4]

have constructed a class of three-dimensional Chern-Simons-quiver theories with generi-

cally N = 6 supersymmetry (enhanced to N = 8 for Chern-Simons levels k = 1, 2), and

argued that these are holographically dual to the M-theory backgrounds AdS4 ×S7/Zk, or

their reduction to Type IIA string theory. This has renewed interest in the AdS4/CFT3

correspondence, opening the way for the construction of many new examples of this duality,

in which Chern-Simons theories are believed to play a key role [5].

An interesting generalization of the ABJM duality is to consider theories with less

supersymmetry. For example, the case of N = 2 (4 real supercharges) is analogous to

minimal N = 1 supersymmetry in four dimensions. In the latter case, when the gauge

theories are engineered by placing D3-branes at Calabi-Yau singularities the natural can-

didate holographic duals are given by Type IIB string theory on AdS5 × Y 5, where Y 5

is a Sasaki-Einstein five-manifold. It can similarly be argued [6–8] that a large class of

Chern-Simons-matter theories should be dual to N = 2 Freund-Rubin vacua of M-theory.

This duality, for toric theories, has been studied in many papers — see, for example, [9].

In this paper we will discuss a three-dimensional Chern-Simons-quiver theory that we

conjecture to be the holographic dual of M-theory on AdS4 × V5,2/Zk, with N units of

quantized G-flux, where V5,2 (also known as a Stiefel manifold) is a homogeneous Sasaki-

Einstein seven-manifold. This can be thought of as the near-horizon limit of N M2-branes

placed at the Calabi-Yau four-fold singularity

z2
0 + z2

1 + z2
2 + z2

3 + z2
4 = 0 , zi ∈ C , (1.1)

which is clearly a generalization of the well-known conifold singulariy in six dimensions.

Indeed, Klebanov and Witten mentioned this generalization in their seminal paper [10],

concluding with the sentence: “We hope it will be possible to construct a three-dimensional

field theory corresponding to M2-branes on (1.1).” In the present paper we will realize

this hope. We propose1 that the three-dimensional field theory in question is an N = 2

Chern-Simons-quiver theory with gauge group U(N)k × U(N)−k, generalizing the ABJM

model. The matter content and superpotential will be presented shortly in section 2; see

figure 1 and equation (2.5).

The supergravity solution possesses an SO(5) × U(1)R isometry, which reduces to

SU(2) × U(1) × U(1)R when we perform a Zk quotient analogous to [4] with k > 1. This

is therefore the first example of a non-toric AdS4/CFT3 duality. In fact there are very

few examples of this kind, even in the more developed four-dimensional context. The

singularity (1.1) is the n = 2 member of a family of An−1 four-fold singularities, defined

by the hypersurface equations Xn = {zn
0 + z2

1 + z2
2 + z2

3 + z2
4 = 0 , zi ∈ C}. Thus we are

1A different proposal was given in [11]. However, this was not based on Chern-Simons theory.
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naturally led to consider a family of Chern-Simons-quiver theories, labelled by n, whose

Abelian classical moduli spaces are precisely these singularities. Here the n = 1 model

is the ABJM theory of [4]. Naively, this suggests that each of these theories will have a

large N gravity dual given by AdS4 × Yn, where Yn is a Sasaki-Einstein manifold defined

by Yn = Xn ∩ S9. However, the results of [12] prove that for n > 2 these Sasaki-Einstein

metrics do not exist. This means that the field theories we construct cannot2 flow to dual

conformal fixed points in the IR. We will review the argument for this in the course of the

paper. Nevertheless, we can study these theories in the UV, and in particular we can, and

will, discuss their string theory duals in terms of a slight generalization of the Type IIB

Hanany-Witten brane configurations [14]. This will allow us to derive field theory dualities,

in which the ranks of the gauge groups change, using the Hanany-Witten brane creation

effect. We emphasize again that the AdS4 Freund-Rubin solutions exist only in the case

n = 1 (the ABJM theory) and n = 2.

One of the motivations for studying these models is that on the gravity side there

exists a smooth3 supersymmetric solution which approaches asymptotically the AdS4 ×
V5,2/Zk background [15]. For k = 1 this solution is a warped product R

1,2 × T ∗S4, where

T ∗S4 denotes the cotangent bundle of S4, and there is a self-dual G-flux through the S4

zero-section. In fact, the deformed solution corresponds to deforming the hypersurface

singularity by setting the right hand side of equation (1.1) to a non-zero value. This is

a complex Calabi-Yau deformation, precisely analogous to the familiar deformation of the

conifold in six dimensions. Indeed, superficially this solution looks like the M-theory version

of the Type IIB solution of Klebanov-Strassler [16]. In the IR the two solutions are precisely

analogous; however, in the UV they behave rather differently. In particular, the M-theory

solution here is asymptotically AdS4 × V5,2/Zk, without the logarithmic corrections which

are a distinctive feature of the solutions of [16–18]. The topology of the solution at infinity

can support only torsion G-flux, but a careful analysis reveals that in fact in the deformed

solution this torsion flux is zero. Thus we are led to conjecture that the theory in the

UV is the superconformal Chern-Simons-quiver theory above, with equal ranks of the two

gauge groups. We will argue that this solution corresponds to an RG flow triggered by

adding a supersymmetric mass term to the Lagrangian. This was already observed in [19],

but we will here describe in more detail the deformation in terms of the superconformal

Chern-Simons theory. In particular, we will see how the deformation of the field theory

modifies the (classical) vacuum moduli space, precisely reproducing the deformation of the

singularity (1.1).

The plan of the paper is as follows. In section 2 we introduce the Chern-Simons-

quiver field theories: we compute their classical vacuum moduli spaces and discuss the

relation to parent four-dimensional theories. In section 3 we discuss M-theory and Type

IIA duals of these Chern-Simons theories. In section 4 we construct Hanany-Witten brane

configurations in Type IIB string theory, and discuss a brane creation effect in these models.

In section 5 we describe the deformed supergravity solution. In section 6 we identify this

2We note that it was suggested previously, incorrectly, that these singularities lead to AdS4 holographic

duals [13].
3The solution is completely smooth only for k = 1. For k > 1 there are orbifold singularities.
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Figure 1. The A1 quiver.

deformed solution in the UV with a specific supersymmetric mass deformation of the field

theory. Section 7 briefly concludes. We relegate some technical details, as well as a different

Type IIA dual, to a number of appendices.

2 Field theories

We begin by describing a family of d = 3, N = 2 Yang-Mills-Chern-Simons quiver theories.

The family is labelled by a positive integer n ∈ N, where the n = 1 theory is that of

ABJM [4].

2.1 A family of d = 3, N = 2 Chern-Simons-quiver theories

A d = 3, N = 2 vector multiplet V consists of a gauge field Aµ, a scalar field σ, a

two-component Dirac spinor χ, and another scalar field D, all transforming in the adjoint

representation of the gauge group. This is simply the dimensional reduction of the usual

d = 4, N = 1 vector multiplet. For the theories of interest, we take the gauge group to

be a product U(N1) × U(N2). We will therefore have two vector multiplets VI , I = 1, 2,

with corresponding Yang-Mills gauge couplings gI . To the usual N = 2 Yang-Mills action,

we may also add a Chern-Simons interaction. This requires specifying the Chern-Simons

levels kI , I = 1, 2, for the two gauge group factors. These are quantized: for U(NI) or

SU(NI) gauge group kI ∈ Z is an integer. In this paper we shall only consider the case

that k1 = −k2 ≡ k; for k1 + k2 6= 0 the dual string theory description will be in terms of

massive Type IIA [20], which we do not wish to consider here.

The matter fields of an N = 2 theory are described by chiral multiplets, a multiplet

consisting of a complex scalar φ, a fermion ψ and an auxiliary scalar F , which may be in

an arbitrary representation of the gauge group. For the theories of interest, we consider

chiral fields Ai, i = 1, 2, transforming in the N̄1⊗N2 representation of U(N1)×U(N2), and

bifundamentals Bi, i = 1, 2, transforming in the conjugate N1 ⊗ N̄2 representation. We

also introduce chiral fields ΦI , I = 1, 2, in the adjoint representation of U(NI), respectively.

This gauge and matter content is a quiver gauge theory, where the quiver is known as the

A1 quiver. This is shown in figure 1.

The total Lagrangian then consists of the four terms (see e.g. [6, 21])

S = SYM + SCS + Smatter + Spotential , (2.1)

– 4 –
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where the bosonic parts of the Chern-Simons and matter Lagrangian are

SCS =

2
∑

I=1

kI

4π

∫

Tr

(

AI ∧ dAI +
2

3
AI ∧ AI ∧ AI + 2DIσI

)

, (2.2)

Smatter =
∑

a

∫

d3xDµφ̄aD
µφa − φ̄aσ

2φa + φ̄aDφa , (2.3)

respectively, where φa = (Ai, Bi,ΦI). In (2.3), the σ and D fields act in the appropriate

representation on the φa — see [6, 21]. The Yang-Mills terms will, at low energies, be

irrelevant. Finally, the F-term potential is

Spotential = −
∑

a

∫

d3x

∣

∣

∣

∣

∂W

∂φa

∣

∣

∣

∣

2

, (2.4)

and we take the following superpotential:

W = Tr
[

s
(

(−1)nΦn+1
1 + Φn+1

2

)

+ Φ2(A1B1 +A2B2) + Φ1(B1A1 +B2A2)
]

. (2.5)

Here n ∈ N is a positive integer, and s is a complex coupling constant. The superpotential

is manifestly invariant under an SU(2)r flavour4 symmetry under which the adjoints ΦI

are singlets and both pairs of bifundamentals Ai, Bi transform as doublets. There is also

a Z
flip
2 symmetry which exchanges Φ1 ↔ Φ2, Ai ↔ Bi, s↔ (−1)ns.

The case n = 1 is special, since then the first two terms in (2.5) give a mass to the

adjoint fields Φ1, Φ2. At low energy, we may therefore integrate out these fields. On setting

s = k/8π, one recovers the ABJM theory with quartic superpotential [4]

WABJM =
4π

k
(A1B2A2B1 −A1B1A2B2) . (2.6)

This theory is in fact superconformal with enhanced manifest N = 6 supersymmetry. We

shall discuss the IR properties of the n > 1 theories after first discussing their vacuum

moduli spaces.

2.2 Vacuum moduli spaces

We denote the ranks by N1 = N + l, N2 = N , and consider the vacuum moduli space of

the theory U(N + l)k × U(N)−k. In general there are six F-term equations derived from

imposing vanishing of (2.4), which is dW = 0:

BiΦ2 + Φ1Bi = 0 ,

Φ2Ai +AiΦ1 = 0 ,

s(n+ 1)Φn
2 + (A1B1 +A2B2) = 0 ,

s(−1)n(n+ 1)Φn
1 + (B1A1 +B2A2) = 0 . (2.7)

One must also impose the three-dimensional analogue of the D-term equations [6], and

divide by the gauge symmetry.

4The reason for the subscript r will become apparent later. It is not to be confused with an R-symmetry.

– 5 –
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It is easier to understand this moduli space in stages, starting with the Abelian theory

with k = 1. In the U(1) × U(1) gauge theory, as usual in quiver theories the diagonal

U(1) decouples (no matter field is charged under it). Precisely as in the ABJM theory at

Chern-Simons level k = 1, the anti-diagonal U(1), which we denote U(1)b, may be gauged

away because of the Chern-Simons interaction. Thus the vacuum moduli space, in the

Abelian case with k = 1, is described purely by the set of F-terms (2.7). The first four

equations are reducible: either Φ1 = −Φ2, or else Ai = Bj = 0 for all i, j. In the latter

case the last two equations imply Φ1 = Φ2 = 0, so this is not a separate branch. Thus

Φ1 = −Φ2 holds in general, and we obtain the single equation for the moduli space

s(n+ 1)Φn
2 +A1B1 +A2B2 = 0 . (2.8)

After the change of coordinates z1 = 1
2(A1 + B1), z2 = i

2(A1 − B1), z3 = 1
2 (A2 + B2),

z4 = i
2 (A2 −B2), z0 = (s(n+ 1))

1
n Φ2, this becomes simply

Xn ≡
{

zn
0 +

4
∑

a=1

z2
a = 0

}

. (2.9)

For n = 1 this is indeed just C
4, as one expects since this is the Abelian ABJM theory

with k = 1, which corresponds to the theory on an M2-brane in flat spacetime. For

n > 1, (2.9) instead describes an isolated four-fold hypersurface singularity, where the

isolated singularity is at the origin {z0 = z1 = · · · = z4 = 0}. This is Calabi-Yau, in the

sense that away from the singular point there is a global nowhere-zero holomorphic (4, 0)-

form. We denote the four-fold singularity by X, or Xn when we wish to emphasize the

n-dependence. In particular, X1
∼= C

4. We shall study these varieties in more detail later.

The effect of changing the Chern-Simons levels to (k,−k) leads to a discrete quotient

of the above vacuum moduli space by Zk ⊂ U(1)b [4, 6, 22]. Here by definition the charges

of (A1, A2, B1, B2) under U(1)b are (1, 1,−1,−1), while the adjoints are uncharged. Thus

for general k the Abelian vacuum moduli space is Xn/Zk, where Zk acts freely away from

the isolated singular point. Thus Xn/Zk is also an isolated four-fold singularity.

Having understood the moduli space for the U(1)k×U(1)−k theory, we may now turn to

the general non-Abelian U(N + l)k ×U(N)−k theory. The discussion here is similar to that

for the ABJM theory in [4, 23]. In vacuum, Φ1, σ1 are (N + l)× (N + l) matrices (with σI

Hermitian), Φ2, σ2 are N×N matrices, while the Ai and Bi are N×(N+ l) and (N+ l)×N
matrices, respectively. Note that using the gauge symmetry one may always diagonalize

the σI . The latter are fixed by the chiral field VEVs via three-dimensional analogues of

the four-dimensional D-term equations [6], with the σI playing the role of moment map

levels. If we take all matrices to be diagonal in the obvious N ×N sub-blocks, so that the

chiral fields take the form

φAB
a = δABφA

a , A,B = 1, . . . , N , (2.10)

with all other entries zero, then it is simple to see that the scalar potential is zero provided

the φA
a , A = 1, . . . , N , satisfy the Abelian equations (the F-terms ΦA

1 = −ΦA
2 , (2.8), and

– 6 –
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the D-term equations involving the σA
I ). It is also straightforward to see from the D-term

potential that for generic σI (meaning pairwise non-equal eigenvalues), all off-diagonal

fluctuations about any vacuum in this space of vacua are massive, with the exception of

fluctuations of Φ1 in the l× l sub-block. The diagonal ansatz for the fields breaks the gauge

symmetry to U(1)N ×U(l)×U(1)N × SN , i.e. we obtain precisely N copies of the Abelian

N = 1 theory, where the permutation group SN permutes the diagonal elements (it is the

Weyl group of the diagonal U(N)). We also obtain a U(l)k Chern-Simons theory, as in [23],

but for general n we also obtain a superpotential term Ψn+1, where Ψ is an adjoint under

U(l) coming from the l× l sub-block of Φ1. Classically this has a trivial moduli space, since

the F-term gives Ψ = 0. Thus classically we obtain the symmetric product of N copies of

the Abelian vacuum moduli space, i.e. SymN (Xn/Zk).

However, as for the ABJM theory, in the quantum theory this moduli space can be

lifted. In particular, the U(l)k Chern-Simons theory with an adjoint superpotential Ψn+1

has been studied in the literature before — for a recent account, together with a D-brane

engineering of this theory, see for example [24] and [25]. As reviewed in the latter reference,

around equation (2.4), the above Chern-Simons theory has no supersymmetric vacuum

unless 0 ≤ l ≤ nk. This suggests that the above classical space of vacua is lifted unless this

condition on l is obeyed. As we shall see later in the paper, this condition is also realized

non-trivially in the M-theory dual, and leads to a 1-1 matching between the field theories

U(N + l)k ×U(N)−k, with 0 ≤ l < nk, and the M-theory backgrounds we shall describe in

section 3 (the theories with l = 0 and l = nk will turn out to be dual to each other under

a Seiberg-like duality that we derive using the Type IIB brane dual in section 4).

2.3 IR fixed points

As mentioned already, for n = 1 the fields Φ1, Φ2 are massive and on integrating these out

we recover at low energies the ABJM theory. This has N = 6 superconformal invariance

for general k ∈ Z. For n > 1 the IR dynamics is rather different. Anticipating much of

the discussion that will follow later in section 3, we may use the AdS/CFT correspondence

to conjecture that the theory with n = 2 and equal ranks N1 = N2 = N flows to a

strongly coupled N = 2 superconformal fixed point in the IR. The reason for this is that

in this case there exists a candidate gravity dual: an AdS4 ×Y2/Zk Freund-Rubin solution

of eleven-dimensional supergravity, where Y2 is a Sasaki-Einstein seven-manifold. More

precisely, the four-fold hypersurface singularity X2 admits a conical Calabi-Yau (Ricci-flat

Kähler) metric, where the base of the cone is described by a homogeneous Sasaki-Einstein

metric on Y2 — we shall discuss this in detail in section 3. Notice that, since W has

R-charge/scaling dimension precisely 2, all of the fields φa = (Ai, Bi,ΦI) must have R-

charge/scaling dimension 2/3 at this fixed point, showing that it is strongly coupled. As

we shall also see in section 3, more precisely we conjecture this fixed point with equal ranks

N to be dual to the Freund-Rubin Sasaki-Einstein background with zero internal G-flux: as

for the ABJM theory [23], more generally it is possible to turn on l units of discrete torsion

G-flux, where in the gravity solution l is an integer mod nk, which is dual to changing the

ranks to U(N + l)k × U(N)−k, as discussed at the end of the previous subsection.

– 7 –
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On the other hand, it was shown in [12] that for n > 2 the natural candidate Sasaki-

Einstein metrics do not actually exist; that is, the four-fold hypersurface singularities Xn,

for n > 2, do not have Calabi-Yau cone metrics. This indicates that the corresponding

field theories cannot flow to conformal fixed points dual to these geometries. Indeed, the

field theory realization of this was also described in [12]: if the superpotential is (2.5)

at the IR fixed point, then the gauge invariant chiral primary operators Tr ΦI have R-

charge/scaling dimension 2/(n+ 1); but for n > 2 this violates the unitarity bound, which

requires ∆ ≥ 1/2, with equality only for a free field. It is therefore natural to conjecture

that for n > 2 the higher order terms in ΦI in (2.5) are irrelevant in the IR, and thus s = 0

at the IR fixed point. If this is the case, then all the theories with n > 2 flow to the same

fixed point theory, namely the theory with s = 0.

Consider then setting s = 0 in W in (2.5). If we also set k = 0, so that there is no

Chern-Simons interaction, this is precisely the A1 quiver gauge theory. For equal ranks

N1 = N2 = N , the latter is well-known to be the low-energy effective theory on N D2-

branes transverse to R × C × C
2/Z2; here C

2/Z2, where the generator of Z2 acts via

(z1, z2) 7→ (−z1,−z2), is precisely the A1 singularity. The latter has an isolated singularity

at the origin, where the N D2-branes are placed. This may be resolved by blowing up

to O(−2) → CP
1 (the Eguchi-Hanson manifold). If we wrap l space-filling D4-branes

over the CP
1 zero-section, the ranks are instead N1 = N + l, N2 = N . This theory has

enhanced N = 4 supersymmetry. If we now turn on the Chern-Simons coupling k 6= 0, the

Abelian vacuum moduli space of the resulting theory is easily checked to be C × Con/Zk,

where Con = {xy = uv} ⊂ C
4 denotes the conifold three-fold singularity. Since this (non-

isolated) four-fold singularity certainly admits a Calabi-Yau cone metric, this describes

the candidate AdS dual to the IR fixed points of the theories with n > 2. It would be

interesting to study this further.

2.4 Parent d = 4, N = 1 theories and Laufer’s resolution

As discussed in [6], the gauge group, matter content and superpotential of a d = 3, N = 2

Chern-Simons matter theory also specify a d = 4, N = 1 gauge theory — one takes the

same Yang-Mills action, matter kinetic terms and superpotential interaction, now defined in

d = 4, and simply discards the Chern-Simons level data (since the Chern-Simons interaction

doesn’t exist in four dimensions). This is commonly referred to as the “parent theory”.

The classical vacuum moduli space of this d = 4 parent theory is closely related to that of

the d = 3 Chern-Simons theory [6]. The string theoretic relation between the two theories

was recently elucidated in [8], and we shall make use of this correspondence later in the

paper. The d = 4 parents of the above theories have been discussed extensively in the

literature — in particular, see [26]. We are not interested in the four-dimensional theories

directly; however, it will be useful to analyse their Abelian vacuum moduli spaces, and in

particular the moduli spaces with a non-zero Fayet-Iliopoulos (FI) parameter turned on.

Compared to the d = 3 Chern-Simons matter theory, the only difference in constructing

the Abelian vacuum moduli space of the d = 4 parent is that the U(1)b gauge symmetry

now acts faithfully on the vacuum moduli space. The analysis of the F-term equations is

identical to that in section 2.2, and for the Abelian theory with equal ranks N1 = N2 = 1

– 8 –
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we obtain the hypersurface equation (2.8). However, we must also impose the D-term

|A1|2 + |A2|2 − |B1|2 − |B2|2 = ζ , (2.11)

and divide by U(1)b. Here we have introduced an FI parameter ζ ∈ R for U(1)b.

Let us first set ζ = 0. In this case, the combination of the D-term (2.11) and iden-

tifying by U(1)b may be realized holomorphically by taking the holomorphic quotient by

the complexification C
∗
b . The charges of (A1, A2, B1, B2) are (1, 1,−1,−1), and thus the

invariant functions on the quotient are spanned by x = A2B2, y = A1B1, u = A1B2,

v = A2B1. These satisfy the single relation

xy = uv , (2.12)

which is the conifold singularity. We must also impose the F-term (2.8), which setting

z0 = (s(n+ 1))
1
n Φ2, as before, reads

x+ y + zn
0 = 0 . (2.13)

Combining (2.13) with (2.12), and again changing variables u = A1B2 = iw2 − w3, v =

A2B1 = iw2 + w3, y = A1B1 = iw1 − wn
0 , z0 = [s(n + 1)]1/nΦ2 = 21/nw0 gives the

three-fold singularity

W 0
n ≡

{

w2n
0 + w2

1 + w2
2 + w2

3 = 0
}

. (2.14)

This is an isolated three-fold singularity, and is again Calabi-Yau in the sense that there

is a holomorphic volume form on the complement of the singular point {w0 = w1 = w2 =

w3 = 0}.
Taking the parameter ζ 6= 0 in (2.11), one obtains a “small” resolution of the singularity

W 0
n . It is small in the sense that the singular point is replaced by a one-dimensional (rather

than two-dimensional) complex submanifold – specifically, a CP
1. More precisely, for ζ > 0

we obtain a resolution W ζ
n
∼= W+

n , where “∼=” means biholomorphic, while for ζ < 0 we

obtain a resolution W ζ
n
∼= W−

n . In both cases the “exceptional” CP
1 has size |ζ| in the

induced Kähler metric. Indeed, any Kähler metric on W ζ
n will have a Kähler class in

H2(W ζ
n ,R) ∼= R, and we regard ζ as specifying this Kähler class. Both resolutions are also

Calabi-Yau, in the sense that there is a holomorphic volume form, and are thus “crepant”.

More on W ζ
n

The end of this section is more technical, and may be skipped on a first reading.

To see why W ζ
n takes the form described above, recall that the F-term equation (2.8)

describes the moduli space in terms of coordinates (A1, A2, B1, B2,Φ2) on C
5. Imposing

the D-term (2.11) and dividing by U(1)b then gives Conζ × C, where the resolved conifold

Conζ is obtained from the quotient of the (A1, A2, B1, B2) coordinates, while the VEV

of Φ2 is a coordinate on C. In particular, ζ > 0 and ζ < 0 are related by the conifold

flop transition. The exceptional CP
1 in the resolved conifold is at B1 = B2 = 0 for

ζ > 0, and A1 = A2 = 0 for ζ < 0, respectively. The three-fold W ζ
n is then embedded in
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Conζ × C via (2.8). We may also realize the D-term mod U(1)b as a C
∗
b quotient. Strictly

speaking, this is a geometric invariant theory quotient, and for ζ > 0 we need to remove

the (unstable) points {A1 = A2 = 0}, while for ζ < 0 we instead remove {B1 = B2 = 0}.
Without loss of generality we henceforth take ζ > 0 (as ζ < 0 is just related by a flop),

and thus remove {A1 = A2 = 0} from C
4, spanned by (A1, A2, B1, B2). Define coordinate

patches Ui = {Ai 6= 0} ⊂ C
4, i = 1, 2. These will cover the manifold, as A1 and A2

cannot both be zero. On U1 the invariant functions under C
∗
b are spanned by x = A2B2,

y = A1B1, u = A1B2, v = A2B1, ξ = A2/A1, while on U2 the invariant functions are the

same x, y, u, v, but instead µ = A1/A2. We then have the relations

x = uξ , v = yξ , on U1 ,

u = xµ , y = vµ , on U2 . (2.15)

It follows that we may coordinatize U1 by (u, y, ξ) and U2 by (x, v, µ), with transition

functions (x, v, µ) = (uξ, yξ, 1/ξ) on the overlap U1∩U2. This shows explicitly the resolved

conifold as O(−1) ⊕O(−1) → CP
1, where ξ and µ are coordinates on the two patches of

the Riemann sphere CP
1, with µ = 1/ξ on the overlap. The poles of the sphere are thus

µ = 0 and ξ = 0.

The three-fold W+
n

∼= Wζ>0 is embedded as a complex hypersurface in the resolved

conifold times C. We thus introduce patches H1, with coordinates (u, y, ξ, Z1), and H2,

with coordinates (x, v, µ, Z2), where Z1 = Z2 = Φ2 is the coordinate on C. The embedding

equation (2.8) is then simply

y = −uξ − Zn
1 on H1 ,

x = −vµ− Zn
2 on H2 . (2.16)

We may thus eliminate x and y and coordinatize H1 by (u, ξ, Z1) and H2 by (v, µ, Z2),

with transition functions (v, µ, Z2) = (−ξZn
1 − ξ2u, 1/ξ, Z1) on the overlap H1 ∩H2. This

is precisely the description of the small crepant resolution W+
n of W 0

n given by Laufer [27].

One sees explicitly the exceptional CP
1 with coordinates ξ, µ, and µ = 1/ξ on the overlap.

One also sees that for n = 1 the normal bundle of CP
1 inside W+

n is O(−1)⊕O(−1) → CP
1,

while for all n ≥ 2 the normal bundle is instead O(0) ⊕O(−2) → CP
1.

3 M-theory and type IIA duals

In this section we discuss M-theory and Type IIA duals to the Chern-Simons-quiver theories

of section 2.1. We have already shown that the vacuum moduli space of the U(N + l)k ×
U(N)−k theory is SymNXn/Zk, and this suggests a dual M-theory interpretation in terms

of N M2-branes probing the four-fold singularity Xn/Zk. As in [23], we show that the

integer l, which is constrained to lie in the interval 0 ≤ l ≤ nk in the field theory, may be

identified with turning on l units of torsion G-flux in the M-theory background. On the

gravity side, l is defined only modulo nk — we will have to wait until section 4 to see why

the l = 0 field theory is dual to the l = nk theory.
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As already mentioned, only for n = 1, n = 2 do the four-fold singularities Xn have

Ricci-flat Kähler cone metrics, implying that only in this case do the conformal fixed points

of the Chern-Simons-quiver theories have AdS duals of this type; we conjectured that for

all n > 2 the theories flow to the same fixed point theory in the IR, and that this has a

different AdS dual description where the Sasaki-Einstein seven-space is the singular link

of C × Con/Zk. Although we are interested primarily in the case n = 2, we retain n

throughout this section and study M-theory on AdS4 × Yn/Zk, where Yn is the link of the

singularity Xn. We stress again, however, that the AdS4 solutions of this type exist only

for n = 1, n = 2.

3.1 M-theory duals

The discussion of section 2.2 suggests that the Chern-Simons quivers of section 2.1 should

have M-theory duals in terms of M2-branes placed at the four-fold singularitiesXn/Zk (2.9).

Thus it is natural to conjecture that the IR fixed points of the Chern-Simons quivers, for

n = 1, n = 2, are SCFTs dual to the gravity backgrounds AdS4 × Yn/Zk, where Yn is the

base of the cone Xn, equipped with a Sasaki-Einstein metric. The case n = 1 is just the

round metric on Y1 = S7, which is the ABJM model. The case n = 2 leads instead to

Y2 = V5,2, where V5,2 has a homogeneous Sasaki-Einstein metric that we discuss below.

Consider the complex cone Xn defined in (2.9). We may define the compact seven-

manifold Yn via

Yn ≡ Xn ∩ S9 , (3.1)

where S9 = {∑4
i=0 |zi|2 = 1} ⊂ C

5. For n = 1 this is simply Y1 = S7, so we focus

on describing Y2. In this case X2 is a complex quadric, and the vector action of SO(5)

on the coordinates zi acts transitively on the seven-manifold Y2, and thus Y2 = V5,2 =

SO(5)/SO(3) is a coset space. X2 is also invariant under the rescaling zi 7→ λzi, for λ ∈ C
∗,

and the quotient B6 ≡ (X2 \{0})/C∗ is a compact complex manifold of complex dimension

three. Equivalently, this may be defined as B6 = V5,2/U(1)R, where U(1)R acts on the zi
with charge 1, and thus B6 ∼= Gr5,2 = SO(5)/SO(3) × SO(2) is also a coset space. The

space Gr5,2 is the Grassmanian of two-planes in R
5.

There is an explicit homogeneous Sasaki-Einstein metric on Y2 = V5,2, so that the

quadric singularity X2 has a Ricci-flat Kähler cone metric. The Reeb U(1) action is pre-

cisely the action by U(1)R ⊂ C
∗ above; thus V5,2 is a regular Sasaki-Einstein manifold and

the quotient Gr5,2 is a homogeneous Kähler-Einstein manifold. The Sasaki-Einstein metric

on V5,2 may be written explicitly in suitable coordinates [28]

ds2(V5,2) =
9

16

[

dψ +
1

2
cosα(dβ − cos θ1dφ1 − cos θ2dφ2)

]2

+ ds2(Gr5,2) , (3.2)
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where

ds2(Gr5,2) =
3

32

[

4dα2 + sin2 α(dβ − cos θ1dφ1 − cos θ2dφ2)
2

+(1 + cos2 α)(dθ2
1 + sin2 θ1dφ

2
1 + dθ2

2 + sin2 θ2dφ
2
2)

+2 sin2 α cos β sin θ1 sin θ2dφ1dφ2 − 2 sin2 α cos βdθ1dθ2

+2 sin2 α sinβ(sin θ2dφ2dθ1 + sin θ1dφ1dθ2)
]

(3.3)

is the homogeneous Kähler-Einstein metric on B6 = Gr5,2. The ranges of the coordi-

nates are

0 ≤ θi ≤ π , 0 ≤ φi < 2π , 0 ≤ ψ < 2π , 0 ≤ α ≤ π

2
, 0 ≤ β < 4π . (3.4)

The volume of the Sasaki-Einstein metric on V5,2 is [28]

vol(V5,2) =
27

128
π4 . (3.5)

Notice the isometry group of the homogeneous metric on V5,2 is SO(5) × U(1)R, and thus

in particular this is a non toric manifold.

Thus for n = 1, n = 2 we have supersymmetric Freund-Rubin backgrounds of eleven-

dimensional supergravity of the type AdS4 × Yn, with Y1 = S7 and Y2 = V5,2. The metric

and G-field take the form5

ds2 = R2

(

1

4
ds2(AdS4) + ds2(Yn)

)

,

G =
3

8
R3dvol(AdS4) . (3.6)

The AdS4 radius R is determined by the quantization of the G-flux

N =
1

(2πlp)6

∫

Yn

∗G , (3.7)

where lp is the eleven-dimensional Planck length, given by

R6 =
(2πlp)

6N

6vol(Yn)
. (3.8)

We also note that vol(Y1 = S7) = π4/3.

Recall that in section 2 we introduced an action by the global symmetry group U(1)b.

Writing the complex cone as Xn = {zn
0 +A1B1 +A2B2 = 0}, the U(1)b symmetry acts

on (z0, A1, A2, B1, B2) with charges (0, 1, 1,−1,−1). This also acts on the base Yn defined

in (3.1), and it is easy to see that this is a free action, i.e. there are no fixed points on Yn. For

both n = 1, n = 2, U(1)b acts isometrically on the Sasaki-Einstein metrics. In particular,

for n = 2 this embeds into the isometry group as U(1)b ∼= SO(2)diagonal ⊂ SO(4) ⊂ SO(5).

This is a non-R isometry, and so preserves the Killing spinors on Y2 = V5,2. We may

5The Einstein metrics on AdS4 and Yn obey RicAdS4
= −3gAdS4

, RicYn
= 6gYn

, respectively.
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thus take a quotient of V5,2 by Zk ⊂ U(1)b to obtain a Sasaki-Einstein manifold V5,2/Zk

with π1(V5,2/Zk) ∼= Zk. Since SO(4) ∼= (SU(2)l × SU(2)r)/Z2, the diagonal SO(2) in

SO(4) is U(1)b ∼= U(1)l ⊂ SU(2)l. Thus the isometry group of the quotient space V5,2/Zk

is SU(2)r × U(1)b × U(1)R. This is the manifest global symmetry in the Chern-Simons-

quiver theories.

We conjecture that the Chern-Simons-quiver theory U(N)k × U(N)−k, with matter

content given by the quiver in figure 1 and superpotential interaction (2.5) with n = 2,

flows to a conformal fixed point in the IR, and is dual to the above AdS4×Y2/Zk M-theory

background. As evidence for this, we have shown that the moduli space of the field theory

agrees with the moduli space of N M2-branes probing the cone geometry, and that the

isometry group of the AdS4 solution precisely matches the global symmetries6 of the field

theory. Later in sections 3.3 and 3.4 we shall present a matching of various gauge invariant

chiral primary operators to supergravity multiplets and certain supersymmetric wrapped

D-branes, respectively, as further evidence. In section 4 we will also present a Type IIB

brane construction.

Let us now discuss turning on a torsion C-field, corresponding to the addition of

fractional branes [23]. As shown in appendix A, in general we have H4(Yn/Zk,Z) ∼= Znk,

and thus we may turn on a torsion7 G-field, i.e. a flat, but topologically non-trivial, G-flux.

Each different choice of such G-flux will lead to a physically distinct M-theory background.

We may equivalently describe this as a (discrete) holonomy for the three-form potential C

through the Poincaré dual generator Σ3 of H3(Yn/Zk,Z) ∼= Znk. Thus

1

(2πlp)3

∫

Σ3

C =
l

nk
mod 1 . (3.9)

Since the physical gauge invariant object is a holonomy, the integer l above is only defined

modulo nk. Equivalently, this labels the G-flux [G] = l ∈ H4(Yn/Zk,Z) ∼= Znk. For each

choice of l with 0 ≤ l < nk we therefore have a 1-1 matching of the M-theory backgrounds

to the field theories with gauge groups U(N + l)k × U(N)−k. We shall present further

evidence for matching the G-flux to the ranks in this way from the Type IIA dual in

section 3.5.

3.2 Type IIA duals

When k5 ≫ N ≫ k the radius of the U(1)b circle becomes small and a better description

is obtained by reducing the background along U(1)b to a Type IIA configuration. Since

U(1)b acts freely on Yn, we may define quite generally Mn = Yn/U(1)b, which is a smooth

six-manifold. For n = 1 this gives M1 = CP
3, while for n > 1 the manifold Mn has the

same cohomology groups as CP
3, but a cohomology ring that depends on n, as shown in

6As often happens in AdS4/CFT3, for k = 1 the isometry group is enhanced. In particular we have

SO(5) × U(1)R symmetry, rather than the SU(2)r × U(1)b × U(1)R symmetry valid for k > 1. This former

symmetry is not manifest in the UV Lagrangian.
7It is important here that the G-flux is classified topologically by H4(Y, Z), which is true only if the

membrane anomaly is zero [29]. In fact the membrane anomaly always vanishes on any oriented spin

seven-manifold.
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appendix A. For n = 2, U(1)b is a non-R symmetry, and therefore all supersymmetries are

preserved in the quotient V5,2/U(1)b = M2. On the other hand, the Type IIA reduction of

N = 2 Freund-Rubin backgrounds along the R-symmetry (Reeb vector) direction breaks

supersymmetry [30]. In particular, we stress that M2 is different from the Kähler-Einstein

six-manifold Gr5,2 = V5,2/U(1)R introduced in section 3.1. These types of reduction were

discussed in [31], and we now recall their essential features.

To perform the reduction we write the Sasaki-Einstein metric on Yn/Zk as

ds2(Yn/Zk) = ds2(Mn) +
w

k2
(dγ + kP )2 , (3.10)

where γ has 2π period. We then obtain the following Type IIA string-frame metric

and fields

ds2st =
√
w
R3

k

(

1

4
ds2(AdS4) + ds2(Mn)

)

, (3.11)

e2Φ =
R3

k3
w3/2 , F4 =

3

8
R3dvol(AdS4) , F2 = klsgsdP , (3.12)

where w is a nowhere-zero bounded function on Mn (since U(1)b acts freely). The RR

two-form flux has quantized periods, namely

1

2πlsgs

∫

Σ2

F2 = k . (3.13)

Here Σ2 ⊂Mn is the generator8 of H2(Mn,Z) ∼= Z. Of course, these supergravity solutions

exist only for n = 1, n = 2. In the latter case, then more precisely in terms of the

coordinates in (3.2), (3.3) we have that γ = φ2 and

w =
3

32

[

1 +
1

2
cos2 α(1 + sin2 θ2)

]

. (3.14)

The torsion C-field reduces to a flat NS B2-field in Type IIA [23] via

C = A3 +B2 ∧ dψ . (3.15)

Here A3 denotes the RR three-form potential, while ψ parametrizes the M-theory circle

with period 2πlsgs, where recall that lp = lsg
1/3
s is the eleven-dimensional Planck length.

Denoting with Ω2 = [dP/2π] the generator of H2(Mn,Z) ∼= Z, we then have9

B2 = (2πls)
2 l

kn
Ω2 . (3.16)

The period of B2 through Σ2 is hence

b ≡ 1

(2πls)2

∫

Σ2

B2 =
l

kn
mod 1 . (3.17)

8A detailed discussion of the topology of Mn is contained in appendix A.
9The authors of [32] argue, for the ABJM theory n = 1, that there is a shift in this B2-field period by

1/2 (in units of (2πls)
2). Notice that, ordinarily, the B2-field period through Σ2 would be a modulus, able

to take any value in S1 (after taking account of large gauge transformations). Since this does not affect our

discussion, we shall not study this further here.
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Again, as for the C-field period (3.9) through Σ3, this is only defined modulo 1. In Type

IIA, this is because large gauge transformations of the B2-field change the period b by

an integer.

3.3 Chiral primaries and their dual supergravity multiplets

We now turn to a discussion of the chiral primary operators of the N = 2 gauge theory with

n = 2, and how they are realized in the gravity dual. In the field theory we can construct

chiral primary operators by taking appropriately symmetrized gauge-invariant traces of

products of fields. These operators may be denoted very schematically as Tr [Φn1(AB)n2 ].

They are invariant under U(1)b, and their dimension at the n = 2 IR fixed point is ∆ =

2/3·(n1+2n2). However, because of the presence of monopole operators in three dimensions,

these do not exhaust the list of all chiral primaries [4]. The monopole operator with a

single unit of magnetic flux in the diagonal U(1) transforms in the (Symk(N1),Symk(N̄2))

representation of the gauge group, and following [4] we may denote it as eiτ . Using this we

can construct generalized gauge-invariant traces as

Tr [Φn1(AB)n2Am1kBm2kei(m1−m2)τ ] , ni,mi ∈ N . (3.18)

It is currently not known how to compute the dimensions of monopole operators in strongly

coupled N = 2 Chern-Simons theories [33]. However, it is plausible that in the present

case, as conjectured for the ABJM theory [4], their scaling dimension is zero. Assuming

this, the dimensions of the operators (3.18) are then

∆ =
2

3
[n1 + 2n2 + (m1 +m2)k] . (3.19)

These operators may be matched to a tower of states in the Kaluza-Klein spectrum on

V5,2 derived in [11]. Consider first setting k = 1. The spectrum is arranged into supermul-

tiplets, labelled by representations of Osp(4|2)× SO(5)×U(1)R. When the corresponding

dimensions of dual operators are rational, the multiplets undergo shortening conditions [34].

In particular, we see from table 6 of [11] that a certain vector multiplet (“Vector Multiplet

II”) becomes a short chiral multiplet, with components denoted as (S/Σ, λL, π). These

have spins (0+, 1/2, 0−), respectively, and dimensions (∆,∆ + 1/2,∆ + 1), with

∆ =
2

3
m, m = 1, 2, . . . . (3.20)

The lowest component fields then match the operators (3.18) with m = n1+2n2+m1+m2.

For k > 1 only a subsector of these states survive the Zk projection.10 This is most

easily seen using the equivalence of chiral primary harmonics on V5,2 to holomorphic func-

tions on the Calabi-Yau cone singularity X2 [12]. These can be expanded in monomials of

the form
∏4

i=0 z
si

i , for si ∈ N. Using the results of [12] (see equation (3.22) of this reference)

10The representations that survive the Zk projection are the singlets in the decomposition of [m, 0] under

SO(5) → SU(2)r × U(1)b.

– 15 –



J
H
E
P
1
2
(
2
0
0
9
)
0
1
7

we determine that the R-charges associated to the coordinates11 zi are all equal to 2/3,

which of course agrees with (3.20). When k > 1 it is convenient to change coordinates and

write the singularity as

z2
0 +A1B1 +A2B2 = 0 , (3.21)

which diagonalizes the action of Zk ⊂ U(1)b. Recall that under U(1)b these coordinates

have charges (0, 1, 1,−1,−1), respectively. Thus for k > 1 a general holomorphic function

may be expanded in monomials of the form

zn1
0 Ap1Bp2 , p1 − p2 = 0 mod k , pi ∈ N . (3.22)

These of course match precisley with the operators (3.18), where p1 = n2 + m1k, p2 =

n2 +m2k.

For later purposes it will be useful to discuss the structure of the chiral multiplets on the

gravity side in a little more detail. The lowest bosonic components S/Σ arise from a linear

combination of metric modes and C-field modes in AdS4. The top bosonic components π

come purely from C-field modes in the internal directions, namely from certain massive

harmonic three-forms on Y = V5,2 — see table 1 of [11].

In the field theory, a chiral superfield may be written in superspace notation as Φ =

φ+θψ+θ2F . The component fields have R-charges (∆,∆−1,∆−2) and scaling dimensions

(∆,∆ + 1/2,∆ + 1), respectively. Then the bosonic physical degrees of freedom of a

chiral operator of the form Tr Φm are a scalar φm with dimension m∆, and a pseudoscalar

ψαψαφ
m−2 with dimension m∆+1. In the gravity dual, these are dual to the scalar modes

S/Σ and the pseudoscalar modes π, respectively.

3.4 Baryon-like operators and wrapped branes

In this section we briefly discuss M5-branes wrapped on certain supersymmetric submani-

folds in Yn/Zk, and their Type IIA incarnation as D4-branes wrapped on submanifolds in

Mn. These correspond to certain “baryonic” (i.e. determinant-like) operators in the field

theories.

A full analysis of the spectrum of baryon-type operators is beyond the scope of this

paper. However, we may provide further evidence for the proposed duality by analysing

a certain simple set of operators. Thus, for the adjoint fields ΦI we may consider the

gauge-invariants detΦI , I = 1, 2. Notice that Φ1 is an (N + l) × (N + l) matrix, while Φ2

is N ×N . We may also define the (in general non-gauge-invariant) operators

A
γ1···γl

i ≡ 1

N !
ǫα1···αN

Aα1
i β1

· · ·AαN

i βN
ǫβ1···βNγ1···γl ,

Bi γ1···γl
≡ 1

N !
ǫα1···αNBβ1

i α1
· · ·BβN

i αN
ǫβ1···βNγ1···γl

. (3.23)

11For general n, the would-be R-charges are n/(n + 1) for the coordinates z1, . . . z4 and 2/(n + 1) for the

coordinate z0. Therefore for n > 3 the latter violates the unitarity bound ∆ ≥ 1/2, which geometrically is

the Lichnerowicz bound. For n = 3 it saturates this bound, but one can still argue that the corresponding

Sasaki-Einstein metric on Y3 does not exist [12].
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Here Ai lives in Λl(N + l), the lth antisymmetric product of the anti-fundamental repre-

sentation of U(N + l), while Bi lives in Λl(N + l) [35]. These are gauge-invariant only

for l = 0, but even in this case one needs to insert an appropriate monopole operator

(see [33, 36] for a recent discussion of these operators); we will not study this here. For

l > 0, one can obtain gauge-invariant operators by, for example, taking (N + l) copies of

Ai and then contracting with l epsilon symbols for U(N + l) (with appropriate monopole

operators). This situation is clearly much more complicated than it is for D3-branes in

Type IIB string theory, and deserves further study. However, as for the ABJM theory,

the operators (3.23) can still be matched to wrapped branes in the gravity dual, as we

shall explain.

In M-theory we may associate these types of operators to M5-branes wrapping super-

symmetric submanifolds. More precisely, these are the boundaries of divisors in the Calabi-

Yau cone — see, e.g., the first reference in [9]. Given the discussion of the Abelian moduli

space in section 2.2, we may associate the operators detΦI with the divisor {z0 = 0} in the

Calabi-Yau cone, while A1 is associated to {z1 = iz2}, A2 to {z3 = iz4}, B1 to {z1 = −iz2},
and B2 to {z3 = −iz4}. This follows by noting that, in the Abelian theory, the operators

may be regarded as sections of line bundles over the Abelian vacuum moduli space; the

divisors we have written are then the zeros of these sections.

Let us consider first the adjoints. Setting z0 = 0 in Xn gives {z2
1 + z2

2 + z2
3 + z2

4 = 0},
which is a copy of the conifold singularity. Thus the boundary Σ

(0)
n of this divisor is a

copy of T 1,1, for all n. Taking the Zk quotient, one obtains instead Σ
(0)
n /Zk = T 1,1/Zk,

where recall that Zk is embedded in the diagonal SO(2) in SO(4). For the main case of

interest, n = 2, this can be seen explicitly in the polar coordinates of section 3.1: the

five-dimensional submanifold Σ
(0)
2 corresponds to setting α = β = 0, and its volume is

vol(Σ
(0)
2 ) = (3π)3/25. We may also compute this volume using the results of [12, 28]. This

gives the general result

vol(Σ(0)
n ) =

(n + 1)3π3

4n3
. (3.24)

This is the volume of the submanifold induced by any Sasakian metric on Yn with Reeb

vector field weights (4/(n + 1), 2n/(n + 1), 2n/(n + 1), 2n/(n + 1), 2n/(n + 1)). The latter

are normalized so that the holomorphic (4, 0)-form on the cone has charge 4. Similarly,

one can compute

vol(Yn) =
(n+ 1)4π4

48n3
. (3.25)

This is then the volume of a Sasaki-Einstein metric on Yn if it exists, which is true only

for n = 1, n = 2. Using the formula for the dimension of the dual operator [37]

∆ =
N

6

πvol(Σ)

vol(Y )
, (3.26)

we obtain in general ∆[detΦI ] = 2N/(n+1). Notice here that, since Σ
(0)
n is invariant under

U(1)b, after taking the Zk quotient the dependence on k in the numerator and denominator
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in (3.26) cancel. This result then matches with the conformal dimensions of the adjoints

computed from the constraint that the superpotential has scaling dimension 2.

However, the above discussion overlooks an important subtlety: we have two operators

det Φ1, det Φ2, but only one divisor. Moreover, in the case of unequal ranks, U(N + l)k ×
U(N)−k, one expects det Φ1 to have dimension ∆ ∝ N + l, while det Φ2 should have

dimension ∆ ∝ N . In the case of D3-branes wrapping supersymmetric three-submanifolds

in Sasaki-Einstein five-manifolds, there can also be multiple baryonic operators mapping

to the same divisor: they are distinguished [38] physically in the gravity dual by having

different flat worldvolume connections on the wrapped D3-branes. Here we have a wrapped

M5-brane, and thus one expects the self-dual two-form on its worldvolume to play a similar

role. Notice also that in general in the conformal dimension formula (3.26) one expects the

on-shell M5-brane worldvolume action to appear in the numerator. In general this action

depends on both the self-dual two-form and the pull-back of the C-field, reducing simply

to the volume of Σ when both are zero. Of course, l 6= 0 corresponds in the gravity dual

to having a non-zero flat C-field. Similarly, in the Type IIA dual picture that we discuss

below these are wrapped D4-branes, whose conformal dimensions should be related to the

on-shell Dirac-Born-Infeld action, including the B2-field (3.16). We shall not investigate

this further here, but instead leave it for future work.

The remaining four dibaryon operators in (3.23) correspond to the same type of sub-

manifold; hence, without loss of generality, we shall study the A1 operator. The locus

{z1 = iz2} in the Calabi-Yau cone Xn cuts out a singular subvariety for general n:

clearly, z1 may take any value in C, but the remaining defining equation of Xn implies

that zn
0 + z2

3 + z2
4 = 0, which is a copy of the An−1 singularity. Thus the divisor of in-

terest is C × (C2/Zn), and the intersection with Yn is then a copy of the singular space

Σ
(1)
n = S5/Zn. On the other hand, the Zk quotient acts freely on Σ

(1)
n . The volume may

again be computed from the character formula [12], giving

vol(Σ(1)
n ) =

(n+ 1)3π3

8n2
, (3.27)

and hence conformal dimension ∆[Ai] = nN/(n+ 1). Again, notice this precisely matches

the scaling dimensions of the fields Ai obtained by imposing that the superpotential has

scaling dimension 2.

It is instructive to also consider the reduction to Type IIA. The wrapped M5-branes

above then become D4-branes wrapped on four-dimensional subspaces Σ
(i)
n /U(1)b. Since

the quotient by U(1)b does not break supersymmetry of the background, we expect that

the four-dimensional submanifolds here will also be supersymmetric; however we have not

checked the kappa-symmetry of the wrapped D4-branes explicitly.

The reduction of Σ
(0)
n is diffeomorphic to S2 × S2. More interesting is the reduction

of the (singular) Σ
(1)
n subspaces, corresponding to the dibaryonic operators (3.23) with

l uncontracted indices. The latter dependence on l may be understood by analysing a

certain tadpole in Type IIA, as for the ABJM theory. To discuss the reduction to Type

IIA, it is more convenient to use the coordinates Ai, Bi. The divisor corresponding to the

A1 operator is then simply {z1 = iz2} = {A1 = 0}. The group U(1)b acts with charge

– 18 –



J
H
E
P
1
2
(
2
0
0
9
)
0
1
7

−1 on the coordinate B1, and charges (1,−1) on (A2, B2). The An−1 singularity in these

coordinates is zn
0 +A2B2 = 0. Denoting by u1, u2 standard coordinates on C

2 under which

Zn acts as (e2πi/n, e−2πi/n), then the invariant functions under Zn are A2 = un
1 , B2 = un

2

and z0 = eiπ/nu1u2, from which one sees explicitly that A2B2 = −zn
0 . Thus U(1)b acts

with weights (1/n,−1/n) on the coordinates (u1, u2). This implies that the quotient is

topologically Σ
(1)
n /U(1)b = (S5/Zn)/U(1)b ∼= WCP

2
[n,1,1]. The latter is the subspace on

which the D4-brane is wrapped. It has an isolated Zn orbifold singularity at the image

of A2 = B2 = 0, which lifts to the An−1 singularity. A simple topological description of

WCP
2
[n,1,1] is to take O(n) → CP

1, and then collapse the boundary, which is S3/Zn, to a

point. The latter is then the isolated singularity. Conversely, the image of B1 = 0 is a

smooth two-sphere which lifts to the S3/Zn link of the An−1 singularity. Thus in general

the integral of F2/(2πlsgs) over this S2 in WCP
2
[n,1,1] is equal to nk.

Now, from appendix A we have that H4(Mn,Z) ∼= Z. Call the generator Σ4. It is also

shown in this appendix that the integral of the square of Ω2 = 1 ∈ H2(Mn,Z) ∼= Z over

Σ4 is equal to n. Now, in general also [F2/2πlsgs] = kΩ2, and since the first Chern class of

O(n) → CP
1 is n, it follows that the integral of the pull-back of Ω2 ∧Ω2 over WCP

2
[n,1,1] is

equal to n2/n = n. This implies that the copy of WCP
2
[n,1,1] on which the BPS D4-brane is

wrapped is a (singular) representative of the four-cycle Σ4 in the smooth six-manifold Mn.

Consider now the Wess-Zumino couplings on the D4-brane wrapped on WCP
2
[n,1,1].

Due to the presence of the B2-field (3.16), we obtain12 the term

1

(2π)4l5s

∫

Rtime

A ·
∫

Σ4

B2 ∧ F2 = l · gs

2πl2s

∫

Rtime

A . (3.28)

Here we have performed the calculation

∫

Σ4

l

nk
Ω2 ∧ kΩ2 = l . (3.29)

The Wess-Zumino coupling thus induces a tadpole for the worldvolume gauge field A. To

cancel this tadpole requires that l fundamental strings end on the D4-brane. In the field

theory this corresponds to the fact that the dibaryon operators (3.23) have precisely l

uncontracted indices [23].

The alert reader will notice an important subtlety in this argument: in the gravity

solution l is defined only modulo nk, while in the field theory 0 ≤ l ≤ nk. In particular,

when one states that the tadpole requires l fundamental strings to end on the D4-brane,

this is only true modulo nk. Thus, it must be that nk fundamental strings are physically

equivalent to none. In fact this is easy to see in the M-theory lift. The strings lift to nk

M2-branes ending on the M5-brane. More precisely, the end of the M2-branes wrap the

M-theory circle that is a smooth S1 in Σ
(1)
n , together with the time direction in AdS4.

If we remove the singular locus from Σ
(1)
n , which is a copy of S1, we obtain a smooth

12This assumes that the worldvolume gauge field flux on Σ4 is zero. In fact for odd n, the smooth locus of

the wrapped submanifold Σ4 = WCP
2
[n,1,1] is not spin, and thus one must turn on a 1/2-integral worldvolume

gauge field flux to cancel the resulting Freed-Witten anomaly. This is related to the 1/2-integral shift of B2

(in the case n = 1) in footnote 9, which cancels this. In our case of interest, n = 2, there is no such shift.
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Figure 2. The Type IIA reduction of M-theory on X/Zk on U(1)b is C(Mn). This geometry may

also be viewed as a fibration of W ζ
n over the R3 direction, where the size |ζ| of the exceptional

CP
1 depends on the position in R3. In particular, the conical singularity of C(Mn) is the conical

singularity of W 0
n above the origin in R3. The above schematic picture would be precisely the toric

diagram in the case n = 1 (for n > 1 the geometry is not toric).

manifold with fundmental group Znk — removing the singular locus is sensible, since the

supergravity approximation will break down near to this locus. This result implies that nk

M2-branes ending on the M5-brane can “slip off”, since nk copies of the circle that they

wrap are contractible on the M5-brane worldvolume. This matches nicely with the fact

that this is equivalent, via (3.28), to a large gauge transformation of the B2-field.

3.5 Type IIA derivation of the Chern-Simons theories

There is a different way of thinking about the Type IIA backgrounds discussed in sec-

tion 3.2, which we explain in this section. This demonstrates rather directly the relation-

ship with the “parent” four-dimensional field theories, and elucidates the stringy origin

of the Chern-Simons-quiver theories. We will also need the present discussion to derive a

Type IIB Hanany-Witten-like brane configuration in the next section.

We begin by considering the geometry R
1,2×Xn/Zk in M-theory, where Xn is the cone

singularity (2.9), together with N spacefilling M2-branes. The U(1)b circle acts freely away

from the cone point, and thus we can reduce to a Type IIA geometry R
1,2×C(Mn), with k

units of RR two-form flux through the generator of H2(Mn,Z) ∼= Z. In this picture we have

N spacefilling D2-branes. However, we may instead take the Kähler quotient of Xn/Zk

by U(1)b, at level ζ ∈ R, to obtain precisely the three-fold W ζ
n introduced in section 2.4.

For ζ = 0, recall this is the affine three-fold given by (2.14), while for ζ 6= 0 one instead

obtains Laufer’s small resolution of this singularity, which has a blown-up CP
1 of size |ζ|.

The latter is the Abelian vacuum moduli space of the four-dimensional parent theory, as

discussed in section 2.4. This picture describes the seven-dimensional space C(Mn) as a

fibration of W ζ
n over the real line R that parametrizes the moment map level ζ, as shown

in figure 2.
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Indeed, we can instead consider starting with Type IIA on R
1,2 × R3 × W 0

n , where

we have labelled R = R3 for later convenience, with N spacefilling D2-branes. Here W 0
n

should of course be equipped with some kind of Calabi-Yau metric, although we note that

from [12] it does not admit a conical Calabi-Yau metric for n > 1 (n = 1 is the conifold).

We might imagine W 0
n as modelling a local singularity in a compact Calabi-Yau manifold,

in which case the Calabi-Yau metric here would in any case be incomplete. If we now

T-dualize along the (compactified) R3 direction, then we precisely obtain the Type IIB

string theory set-up yielding the four-dimensional parent theory. We may also replace the

singular three-fold by its crepant resolution W ζ
n , thinking of ζ as parametrizing the period

of the Kähler form through the exceptional CP
1. We may then turn on k units of RR two-

form flux through this CP
1, although in order to preserve supersymmetry it is necessary to

also fibre the size of the CP
1 over the R3 direction — this may be seen by appealing to the

reduction of the M-theory solution above. Thus we identify R3
∼= {ζ ∈ R}. If µb denotes

the moment map for U(1)b, so that µb : Xn/Zk → R3, then notice that the inverse image

of ζ ∈ R3 is µ−1
b (ζ) = W ζ

n , so that in particular the cone geometry appears at the origin

in R3. By construction, the RR two-form flux may then be identified with the first Chern

class c1 ∈ H2(W ζ
n ,Z) of the U(1)b M-theory circle bundle. One can then compute that

1

2πlsgs

∫

CP 1

F2 = k . (3.30)

As explained in [8], the above picture leads to a physical relation between the parent

theory and the Chern-Simons theory. If we have N spacefilling D2-branes together with

l fractional D4-branes wrapping the (collapsed) CP
1 in W 0

n , the resulting gauge theory is

precisely the A1 quiver theory with superpotential (2.5), with gauge group U(N+l)×U(N)

— this is discussed, for example, in [26]. The key result in [8] is that the addition of the k

units of RR two-form flux through the CP
1 then induces a Chern-Simons interaction with

levels (k,−k) for the two nodes, respectively, via the Wess-Zumino terms on the fractional

branes. This leads to a Type IIA string theory derivation of our Chern-Simons-quiver

theories, starting with the geometric engineering of the parent theory. Also notice that the

l fractional D4-branes, wrapped on the collapsed CP
1, will lift to l fractional M5-branes —

since the M5-brane is a magnetic source for the G-field, it is thus natural to identify the l

units of torsion G-flux with the l fractional M5-branes. Indeed, more precisely, a copy of

the exceptional CP
1 at ζ > 0 in figure 2 is the generator of H2(Mn,Z) ∼= Z, and this lifts

to the generator Σ3 of H3(Yn/Zk,Z) ∼= Znk, as shown in appendix A. Thus l fractional

D4-branes wrapped on the CP
1 lift to l fractional M5-branes wrapped on Σ3. The latter

is then Poincaré dual to l units of torsion G-flux.

4 Type IIB brane configurations

In this section we derive a Hanany-Witten-like brane configuration in Type IIB string

theory. This takes the usual form of D3-branes (wrapped on a circle) suspended between

5-branes, except that for n > 1 the 5-branes are embedded non-trivially in spacetime;

specifically, they are wrapped on holomorphic curves. This will allow us to understand
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further aspects of the proposed duality, and also derive a field theory duality via a brane

creation effect. The reader whose main interest is the deformed n = 2 supergravity solution

may wish to skip ahead to section 5.

4.1 T-duality to Type IIB: k = 0

We begin with the Type IIA background of R
1,2 × R3 ×W ζ

n , with zero RR flux, discussed

at the end of the previous section. Here we have included a Kähler class ζ ∈ R, which is a

free parameter, so that for ζ 6= 0 W ζ
n is a smooth non-compact Kähler manifold.

For ζ = 0, we are considering the singular three-fold W 0
n . We rewrite the defining

equation (2.14) as

W 0
n = {w2n

0 + w2
1 − uv = 0} ⊂ C

4 , (4.1)

where as before u = iw2 − w3, v = iw2 + w3. We may then consider performing a T-

duality along U(1) ≡ U(1)6 that acts with charge 1 on u and charge −1 on v. We may

also consider the Kähler quotient by U(1)6, with moment map µ6 = |u|2 − |v|2, which

maps µ6 : W 0
n → R ≡ R7, where we have introduced the subscript 7 to distinguish this

copy of R from R3 above. It follows that {C2 = 〈u, v〉}//U(1)6 ∼= C, for any value of

µ6, and hence similarly W 0
n//U(1)6 ∼= C

2. Indeed, the defining equation of W 0
n is then

w2n
0 + w2

1 = w, where w = uv is the coordinate on C = C
2/C∗

6. We may thus eliminate

the coordinate w to see that W 0
n//U(1)6 ∼= C

2, spanned by the coordinates w0, w1, for any

value of the moment map. It follows that W 0
n/U(1)6 is a C

2 fibration over R7, and thus

W 0
n/U(1)6 ∼= R7 × C

2 ∼= R
5.

There are, however, fixed points of U(1)6. If we peform a T-duality along U(1)6, the

above shows that the T-dual spacetime is R
1,2 ×R3 × S1

6 ×R7 ×C
2, where S1

6 is the U(1)6
circle after performing the T-duality. However, there are codimension four fixed point sets

of U(1)6, where the action on the normal fibre is the standard Hopf action on R
4. These

become NS5-branes in the T-dual Type IIB picture. The fixed locus here is u = v = 0,

which is the origin in the moment map direction R7. In the C2 direction they cut out the

locus w2n
0 = −w2

1 in C
2, which is w1 = ±iwn

0 . These are two copies of C embedded as affine

algebraic curves in C
2, which intersect over the origin {w0 = w1 = 0}. Note that when

n = 1, which is the ABJM case, we see w1 = ±iw0 are two linearly embedded copies of

C. This is indeed the standard Hanany-Witten brane configuration for the conifold [39].

For n > 1, we obtain a non-linear version of this, where the NS5-branes are embedded

as the curves w1 = ±iwn
0 in C

2. We label the latter directions 4589, and refer to C
2
4589.

The NS5-branes also sit at a point in the S1
6 circle, where their distance of separation is

the period of the B2-field through the collapsed CP
1 in W 0

n . The final Type IIB picture is

described in figure 3.

Note we can immediately read off the matter content of the field theory from this

picture: the brane set-up is identical, apart from the embedding of the NS5-branes in

4589, to the A1 singularity. Thus we may read off two gauge groups, corresponding to

the N D3-branes breaking on the two NS5-branes on the S1
6 circle. At each NS5-brane

we obtain a pair of bifundamentals, Ai, Bi, and an adjoint Φ1, Φ2 for each D3-brane
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Figure 3. The Type IIB brane dual of the Type IIA background R
1,2
012

×R3×W 0

n with N spacefilling

D2-branes. The Type IIB spacetime is flat: R
1,2
012

× R3 × S1

6
× R7 × C2

4589
. There are N D3-branes

filling the R
1,2
012

directions and wrapping the S1
6 circle; they are at the origin in R3, R7 and C2

4589.

There are two NS5-branes that are spacefilling in R
1,2
012

and separated by a distance in the S1

6
circle

that is given by the period of B2 through the collapsed CP
1 in the T-dual three-fold geometry

W 0

n ; they both sit at the origin in R7, fill the R3 direction, and wrap the holomorphic curves

w1 = ±iwn
0
, respectively, in C2

4589
with complex coordinates w0, w1. These curves intersect at the

origin w0 = w1 = 0. n = 1 is the standard Hanany-Witten brane configuration for the conifold

singularity, where the NS5-branes are linearly embedded.

segment. The A1 theory also has the N = 4 cubic superpotential for these fields. For the

A1 theory, both branes are parallel, say at the origin in the 89 plane. For the conifold

theory n = 1, one brane is in the 45 plane, while the other is in the orthogonal 89 plane.

This corresponds to giving a mass to the adjoints, -Φ2
1 + Φ2

2, as shown in [39]. Integrating

these out, one obtains the quartic superpotential of Klebanov-Witten. In the general n

case, the non-trivial embedding of the NS5-branes in C
2
4589 is reflected in the higher order

(−1)nΦn+1
1 + Φn+1

2 superpotential term.

4.2 Adding RR-flux/D5-branes: k 6= 0

The next step is to turn back on the RR two-form flux, so that k 6= 0: this is then the

Type IIA dual of M-theory on Xn/Zk with N spacefilling M2-branes. As we discussed in

section 3.5, supersymmetry also requires that one fibre the parameter ζ over the R3 direc-

tion. Thus, before discussing this, we first consider the effect of turning on the parameter

ζ in the T-dual IIB brane set-up above.

Without loss of generality, we take ζ > 0 so that W ζ
n

∼= W+
n is biholomorphic to

Laufer’s resolved manifold, with an exceptional CP
1 replacing the singular point of W 0

n .

The U(1)6 action on W 0
n extends to an action on W+

n . To see this, recall from the last

part of section 2.4 that (A1, A2, B1, B2, z0) are coordinates on C
5, and that x = A2B2,

y = A1B1, u = A1B2, v = A2B1 are invariants under U(1)b, with ξ = A2/A1 an invariant

on U1 and µ = A1/A2 an invariant on U2. The embedding equation (2.8) then becomes

x+ y+ zn
0 = 0. When ζ = 0 we have the conifold xy = uv, and eliminating x this becomes
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y2 +yzn
0 +uv = 0, which is the equation w2

1 +w2n
0 = uv of the three-fold W 0

n on identifying

iw1 = y + 1
2z

n
0 , w0 = 2−1/nz0, as before. Thus U(1)6 rotates u with charge 1 and v with

charge −1, and we may lift this to an action on C
5 with coordinates (A1, A2, B1, B2, z0) by

assigning charges (1, 0,−1, 0, 0). It follows that the charges of (x, y, u, v, ξ, µ) under U(1)6
are (0, 0, 1,−1,−1, 1). The fixed locus is thus u = v = ξ = 0 and u = v = µ = 0 — recall

that ξ = 1/µ on the overlap. Thus on the exceptional CP
1 we fix the north pole ξ = 0, and

also the south pole µ = 0. We thus see that after resolving W 0
n to W+

n the fixed point set

under U(1)6 is two disjoint copies of C, over the two poles of the CP
1. Indeed, recall that

x = −vµ− Zn
2 on the patch H2 (where Z2 = z0), and thus the fixed locus at v = µ = 0 is

described by the equation x = −zn
0 . Changing variables as above, this becomes precisely

w1 = −iwn
0 . Conversely, the fixed locus u = ξ = 0 is the equation y = −zn

0 , which under

the above change of variable becomes precisely w1 = iwn
0 .

One can also interpret this in the moment map picture. The moment map is µ6 =

|A1|2 − |B1|2. Turning on ζ, we also have (2.11). The exceptional CP
1 is, for ζ > 0, at

B1 = B2 = 0. Then the moment map restricted to CP
1 becomes simply µ6 |

CP
1= |A1|2.

But also |A1|2 = ζ − |A2|2 on this locus, and thus we see that on CP
1 the moment map

ranges from µ6 = 0 at A1 = 0 to µ6 = ζ at A2 = 0. These are precisely the two poles of the

CP
1, which is where the fixed locus is. We thus see that the CP

1 is mapped to an interval

in the image of the moment map µ6, which recall is the R7 direction, with the endpoints

of the interval being where the NS5-branes are after performing the T-duality along U(1)6.

Notice that in the holomorphic picture A1 = 0 is the south pole µ = 0 while A2 = 0 is

the north pole ξ = 0. For negative parameter ζ < 0, the roles of Ai and Bi swap. In this

case we will have coordinates ξ̃ = B2/B1 and µ̃ = B1/B2 on the exceptional CP
1, which is

now located at A1 = A2 = 0. The moment map is µ6 |
fCP

1= −|B1|2. This ranges from 0 at

B1 = 0 to −ζ at B2 = 0, with the two endpoints being the NS5-brane loci. Notice that the

brane at −ζ is B2 = 0, which is ξ̃ = 0, which is the same NS5-brane that moves for ζ > 0,

namely that with w1 = iwn
0 .

To conclude, we see that the T-dual of resolving W 0
n to W ζ

n is simply to separate the

two NS5-branes in the R7 direction by a distance ζ — they are wrapped on the same curves

as before in the C
2
4589 direction. In terms of figure 3, the NS5-brane on the left hand side

moves a distance ζ in the (transverse, as drawn) R7 direction. Notice that once we resolve

W 0
n there is no canonical place to put the D3-branes — we have to pick a point on W ζ

n . It

is natural (in the sense that it preserves a U(1) ⊂ SU(2)r symmetry) to put them either at

the north pole or south pole of the CP
1, in which case the D3-branes intersect either one

NS5-brane or the other.

We may now consider what happens when we turn on the RR two-form flux. Recall

this fibres the parameter ζ over the R3 direction in Type IIA. It is simple to see what this

does in the IIB brane picture. Consider a fixed point in R3, which means fixing a particular

value for ζ. Then the 5-branes are separated by some distance ζ in the R7 direction. More

precisely, the above analysis shows that for ζ > 0 the 5-brane at the south pole is always at

the origin in R7, while the brane at the north pole is at ζ in R7. As we move towards the

origin in R3, the 5-branes get closer together in the R7 direction, until finally at the origin

they meet. We may then pass through the origin to ζ < 0, where the behaviour is the
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Figure 4. On the left hand side: the positions of the two NS5-branes with resolution parameter ζ

in the Type IIA dual. The NS5-brane at position ζ is that wrapped on w1 = iwn
0 , while the brane

at the origin is that wrapped on w1 = −iwn
0
. On the right hand side: the positions of the 5-branes

after turning on the RR flux in the Type IIA dual, which fibres the resolution parameter over the

R3 direction. One of the branes rotates so that they now intersect at the origin of the R3−R7 plane.

same (with Ai replaced by Bi). This shows that after turning on the RR two-form flux, the

5-branes rotate from being at fixed parallel distance in the R7 direction (and filling the R3

direction), to being two lines in the R3 − R7 plane that cross at the origin — see figure 4.

This means that, after turning on the RR two-form flux, the 5-branes meet precisely at the

origin in R
6
345789. although they are still non-trivially holomorphically embedded in C

2
4589

as w1 = ±iwn
0 .

Notice that for n = 1 the above indeed reproduces the Type IIB brane picture in

ABJM [4] — up to two important details. First, in the case n = 1 we have derived the

Type IIB brane dual by starting with C
4/Zk, reducing to Type IIA along U(1)b and then

T-dualizing to Type IIB along U(1)6. In [4], the authors instead began with the Type IIB

brane picture, and argued that T-dualizing to Type IIA and uplifting to M-theory gave a

non-trivial hyperkähler eight-manifold as the uplift, which is characterized by two harmonic

functions, defined on two copies of R
3. The difference between these two pictures is that the

former is simply the near-brane limit of the latter. Indeed, ABJM showed explicitly that

the near-horizon limit of the hyperkähler manifold indeed gives C
4/Zk, which amounts to

dropping the non-zero constant term in the harmonic functions. This is the dual geometry

in the region near to where the 5-branes intersect at the origin in R
6
345789 (which are the

two copies of R
3 mentioned above).

Second, and more importantly, in the ABJM brane picture the rotated 5-brane in

figure 4 is in fact a bound state of an NS5-brane with k D5-branes — the latter is effectively

the T-dual of the k units (3.30) of RR two-form flux through the (fibred) exceptional CP
1 in

the Type IIA geometry. To see the presence of the k D5-branes in the (1, k)5-brane bound

state directly is not straightforward in the discussion we have given above. However, the

k units of D5-brane charge can be seen indirectly by considering a certain tadpole. Thus,

we begin in Type IIA on C(M6), which recall may also be thought of as W ζ
n fibred over
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Figure 5. On the left hand side: the naive T-dual configuration to a D2-brane wrapped on the

CP
1 at a fixed non-zero point in R3 is a D1-brane stretching between the two NS5-branes, with k

fundamental strings also ending on the D1-brane and one of the NS5-branes to cancel the tadpole.

On the right hand side: the correct T-dual configuration, in which the D1-brane and k fundamental

strings form a (1, k) string bound state, which then must necessarily end on a (1, k)5-brane. (Notice

that the D1-brane must also wind around the S1

6
circle as one moves from one 5-brane to the other

along its worldvolume.)

R3. Pick a non-zero point in R3, and consider the exceptional CP
1 of size |ζ| in W ζ

n

over this point. If we wrap a D2-brane over this CP
1, we get a point particle in R

1,2
012.

However, because of the k units of RR two-form flux (3.30) through this CP
1, in fact this

configuration does not exist in isolation: one must have k fundamental strings ending on

the wrapped D2-brane. To see this, note the Wess-Zumino coupling on the D2-brane:

1

(2π)2l3s

∫

Rtime

A

∫

CP
1
F2 = k · gs

2πl2s

∫

Rtime

A . (4.2)

To cancel this tadpole, we precisely require k fundamental strings to end at a point

on the CP
1.

Consider the T-dual to this in Type IIB. As already discussed, the exceptional CP
1

maps to an interval in the R7 direction, between the two 5-branes: this lies at the chosen

point in R3, and is at the origin in C
2
4589. A D2-brane wrapped on the CP

1 thus T-dualizes

to a D1-brane stretched between the two 5-branes in the R7 direction. The k fundamental

strings ending on the D2-brane T-dualize to k fundamental strings ending on the D1-brane.

In particular, the fundamental strings may end at one of the poles of the CP
1. In the IIB

picture, we therefore have a D1-brane and also k fundamental strings terminating on one

of the 5-branes (while for the other 5-brane there is only a D1-brane ending on it). In

general, a (p, q) string, where p denotes the number of D1-branes and q the number of

fundamental strings in a bound state string, can only end on a (p, q)5-brane. Thus the

only way to make sense of the above tadpole is that the 5-brane is in fact a (1, k)5-brane,

and the D1-brane and k fundamental strings form a (1, k) bound state ending on this.

Of course, this precisely reproduces the correct brane configuration of ABJM in the case

of n = 1.
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Figure 6. The final Type IIB dual of M-theory on Xn/Zk. The spacetime is R
1,2
012

×R3×S1
6 ×R7×

C2

4589
. There are N D3-branes filling the R

1,2
012

directions and wrapping the S1

6
circle; they are at

the origin in R3, R7 and C2

4589
. There are also two spacefilling 5-branes in R

1,2
012

at points on the S1

6

circle. The first is an NS5-brane, sitting at the origin in R7 and filling R3, which wraps the curve

w1 = −iwn
0

in C2

4589
. The second is a (1, k)5-brane, wrapping an angled line through the origin in

the R3 − R7 plane, and wrapping the curve w1 = iwn
0 in C2

4589.

To conclude, we have shown that M-theory on Xn/Zk has a Type IIB dual of Hanany-

Witten type: it is identical to the brane set-up for n = 1 described by ABJM [4], except

that the 5-branes are wrapped on the holomorphic curves w1 = ±iwn
0 inside C

4
4589 — see

figure 6.

4.3 Brane creation effect

Having described the Type IIB brane dual, an important dynamical question is what

happens when we move the two 5-branes past each other on the S1
6 circle. This was first

studied by Hanany-Witten [14], and the analysis in section 5 of that paper may be applied

directly to the case n = 1 (the ABJM case). We thus begin by describing the n = 1 case,

and then explain how to apply this result for n > 1 by deforming the curves in C
2
4589 so

that the brane intersections in R
6
345789 are normal crossings.

We thus start with n = 1. We suppress the spacetime R
1,2
012 from the discussion, since

all branes are spacefilling in these directions. Thus the relevant geometry is S1
6 × R

6
345789.

We have an NS5-brane at a point 0 6= t ∈ S1
6 and at the origin in 789, and a (1, k)5-

brane at the origin 0 ∈ S1
6 and at the origin in 345. Notice that we have, for convenience

of notation, rotated the axes relative to figure 6: the argument we are about to give

is entirely topological, and so is unaffected. We denote these submanifolds as WNS,t and

W(1,k), respectively. These two copies of R
3 that are wrapped by the 5-branes thus intersect

normally at the origin in R
6
345789. However, importantly, the branes do not actually intersect

in spacetime unless t = 0.

The (1, k)5-brane sources k units of RR three-form flux F3 through a sphere S3 linking

its worldvolume. Thus, let S3 be a normal sphere around a point on the (1, k)-brane in
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S1
6 × R

6
34578, so that

1

(2πls)2gs

∫

S3

F3 = k . (4.3)

Following [14], we then define the linking number

Lt =
1

(2πls)2gs

∫

WNS,t

F3 . (4.4)

This is independent of t as t is varied, provided we do not cross the origin t = 0. The

reason for this is that F3 is closed on the complement of the (1, k)5-brane worldvolume,

and the independence of (4.4) on t then follows from Stokes’ Theorem. More precisely, dF3

is a four-form which is supported only on the (1, k)5-brane worldvolume at t = 0 and the

origin in 345: it is k times a delta-function representative of the Poincaré dual of W(1,k).

Consider now moving the NS5-brane from t+ > 0, on the right of the (1, k)5-brane, to

t− < 0 on the left. Let I = [t−, t+] be the interval in the S1
6 circle covered in this motion.

Then we have linking numbers (4.4) L+ and L− on the right and left. We may compute

the change in linking number using Stokes’ Theorem:

L+ − L− =
1

(2πls)2gs

∫

WNS×I
dF3 = k . (4.5)

On the worldvolume of the NS5-brane there is a U(1) gauge field ANS, with field

strength FNS, and it is only the combination Λ = C2 − 2πl2sFNS that is gauge invariant.

Moreover,

F3 |WNS
= dΛ , (4.6)

meaning that F3 must be exact on the NS5-brane worldvolume WNS,t. In the non-compact

setting of interest, of course all closed forms are exact on WNS,t
∼= R

3, so (4.6) is always

satisfied. However, what we learn from (4.5) is that the period of F3 through WNS,t

changes by k units as we move the NS5-brane from the right t > 0 to the left t < 0 of

the (1, k)5-brane. The explanation for this is that k spacefilling D3-branes are created at

the intersection point t = 0 when the branes are moved past each other. Indeed, such a

D3-brane ending on the NS5-brane is a delta-function source for FNS:

1

2πgs
dFNS = ±δ(p) (4.7)

where p ∈ WNS
∼= R

3. That is, the D3-brane ending on the NS5-brane is a magnetic

monopole for this U(1) gauge field. The sign in (4.7) depends on whether the D3-brane

ends from the right or from the left on the S1
6 circle, which it wraps (a monopole or anti-

monopole). Integrating k times (4.7) over WNS precisely accounts for the change in linking

number (4.5). This is the Hanany-Witten effect.

Having carefully reviewed this effect, we may now apply it to the case with n > 1.

However, note that for n > 1 the branes are not linearly embedded in C
2
4589: they cross at
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a single point at the origin, but they are wrapped on non-trivial curves. We may remedy

this by deforming the curves that the 5-branes are wrapped on. Thus, we change

w1 = −iwn
0 −→ w1 = −i

n
∏

i=1

(w0 − αa) + α0 (4.8)

w1 = iwn
0 −→ w1 = i

n
∏

i=1

(w0 − βa) + β0 . (4.9)

Here αa, βa, a = 0, . . . , n, are arbitrary parameters. The point of these deformations is

that (a) they preserve the boundary conditions at infinity, since we have added only lower

order terms to the polynomials, and (b) the resulting curves now intersect normally in

C
2
4589. Indeed, these two curves in C

2
4589 intersect where the w1 coordinate in (4.8) equals

the w1 coordinate in (4.9). This results in the nth order polynomial

i
n

∏

i=1

(w0 − αa) + i
n

∏

i=1

(w0 − βa) − α0 + β0 = 0 . (4.10)

For generic values of the parameters αa, βb, this will have precisely n solutions for w0, say

w
(i)
0 , i = 1, . . . , n. Thus the resulting curves generically intersect at n points (w

(i)
0 , w

(i)
1 ),

where of course w
(i)
1 is given by (4.8) (or (4.9)) evaluated at w

(i)
0 . Moreover, the intersects

of the curves near to these n points look precisely like the linear n = 1 case.

We are now in good shape: after this generic deformation that preserves the boundary

conditions of the branes at infinity, the two branes intersect ordinarily at n points in

R
6
345789 (they always cross at the origin of the R3 − R7 plane). The above discussion of

the Hanany-Witten effect shows that the creation of the k D3-branes as an NS5-brane

crosses a (1, k)5-brane occurs entirely locally at the points where the branes intersect in

spacetime. Thus if we move our deformed NS5-brane past the deformed (1, k)5-brane, we

obtain precisely n copies of the n = 1 result, i.e. in total nk D3-branes are created as

they are moved past each other. More precisely, k D3-branes are created at each of the n

points (w
(i)
0 , w

(i)
1 ) (at the origin in the R3 − R7 plane, and stretched along the S1

6 circle).

Notice that this result is independent of the choice of deformation parameters αa, βa, as

it is topological. Thus after moving the branes past each other we may deform back to

αa = βa = 0, where the nk created D3-branes are all at the origin in R
6
345789.

4.4 The field theory duality

The brane creation effect described in the last section leads to an interesting field theory

duality, discussed for the ABJM theory in [23, 32]. Here we briefly describe the situation

for general n. We begin with the Type IIB brane set-up corresponding to the gauge group

U(N + l)k × U(N)−k. This is shown on the left hand side of figure 7.

Consider, without loss of generality, moving the NS5-brane around the circle. Rotating

it anti-clockwise by one revolution, as shown on the right hand side of figure 7, the gauge

groups become U(N)k × U(N + nk − l)−k. In particular, we note that the U(N + nk)k ×
U(N)−k theory can be deformed to the U(N)k × U(N)−k theory in this way, which is the

required field theory duality to match the dual supergravity analysis mentioned at the very

– 29 –



J
H
E
P
1
2
(
2
0
0
9
)
0
1
7

Figure 7. On the left hand side: the initial brane configuration, with (N + l) D3-branes suspended

between the 5-branes on one side of the S1

6
circle, and N D3-branes on the other. On the right

hand side: moving the NS5-brane anti-clockwise around the circle pulls the l fractional branes with

it. After passing the (1, k)5-brane these swap orientation, becoming l anti-branes, and in addition

nk D3-branes are created.

end of section 2.2. Moving the NS5-brane multiple times around the circle, or in the other

direction, apparently leads to further equivalences, as observed for the n = 1 ABJM theory

in [23]. This certainly deserves further careful study of the brane system to understand

properly, although we shall make some comments on this in section 6.2.

5 The deformed supergravity solution

In this section we describe a supergravity solution [15] which is a deformation of the AdS4×
V5,2/Zk M-theory background discussed in section 3.1, in the sense that it approaches the

latter asymptotically at infinity. Throughout this section we set n = 2. We also begin with

k = 1, and restore general k later.

5.1 The Stenzel metric on T ∗S4

We begin by describing a deformation of the Calabi-Yau cone metric on the quadric cone

X2. The latter has an isolated singularity at z0 = · · · = z4 = 0 that may be deformed13 to

a smooth non-compact Calabi-Yau variety X , diffeomorphic to T ∗S4 (the cotangent bundle

of S4), via

X ≡
{

4
∑

i=0

z2
i = γ2

}

, (5.1)

where γ ∈ C is a constant. For γ 6= 0 this describes a smooth complex structure on T ∗S4.

The deformation breaks the C
∗ ∼= R+×U(1)R symmetry of the cone to Z2 ⊂ U(1)R. Using

13In the same sense as the more familiar deformed conifold in six dimensions.
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the broken U(1)R action we take γ ∈ R+ in what follows. The S4 = SO(5)/SO(4) zero-

section is then realized as the real locus of X in C
5. The cotangent bundle structure may

be seen explicitly by writing

zi = cosh
(√
pjpj

)

xi +
i

√
pjpj

sinh
(√
pjpj

)

pi . (5.2)

Then
∑4

i=0 x
2
i = γ2,

∑4
i=0 xipi = 0, so that the S4 is {pi = 0}.

There is an explicit complete Ricci-flat Kähler metric on X which is asymptotic to the

cone metric at large radius, called the Stenzel metric. This is cohomogeneity one under the

action of SO(5), with principal orbits diffeomorphic to V5,2 = SO(5)/SO(3), and degenerate

special orbit S4 = SO(5)/SO(4). The Kähler structure induces the standard symplectic

structure on T ∗S4, and thus the S4 is Lagrangian; in fact it is special Lagrangian, and

is thus a minimal volume representative of the generator of H4(X ,Z) ∼= Z. Note that

given any Ricci-flat metric ds2, the rescaled metric γ2ds2 is also Ricci-flat, for any positive

constant γ ∈ R+, and this is essentially the constant γ above, which is proportional to the

radius of the S4.

In terms of invariant one-forms on the coset space V5,2 = SO(5)/SO(3), the metric on

X may be written as

ds2X = c2dr2 + c2ν2 + a2
3

∑

i=1

σ2
i + b2

3
∑

i=1

σ̃2
i , (5.3)

where

a2 =
1

3
(2 + cosh 2r)1/4 cosh r , b2 =

1

3
(2 + cosh 2r)1/4 sinh r tanh r ,

c2 = (2 + cosh 2r)−3/4 cosh3 r . (5.4)

More details may be found in appendix B. In these coordinates, the S4 is located at

r = 0. Note here we have picked a particular representative metric in the conformal class

of metrics on X , i.e. a particular value of γ. It will be straightforward to reintroduce this

scale later. The calibrated S4 in the above solution has fixed size, with induced round

metric

ds2S4 = 3−3/4(ν2 +

3
∑

i=1

σ2
i ) . (5.5)

After a change of variable

ρ2 ∼ 16

9

1

29/4
e

3
2
r , (5.6)

the asymptotic form of the metric is

ds2 ≈ dρ2 + ρ2

[

3

8

3
∑

i=1

(

σ2
i + σ̃2

i

)

+
9

16
ν2 +

21/3

33

1

ρ8/3

3
∑

i=1

(

σ2
i − σ̃2

i

)

+ . . .

]

. (5.7)
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The leading term is the metric on the cone over the manifold Y2 = V5,2.

For later use we record here the results of certain integrals. Noticing that the S4 is

parametrized by ν, σi, and recalling that V5,2 is an S3 bundle over S4, we have

∫

S3
fibre

σ̃1 ∧ σ̃2 ∧ σ̃3 = 2π2 . (5.8)

This is the volume of a unit S3, as necessarily follows since the collapse of this S3 at the

S4 zero-section is regular. Writing the volume form of V5,2 as

dvolV5,2 =
34

211
σ1 ∧ σ2 ∧ σ3 ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 ∧ ν , (5.9)

and using the total volume of V5,2 (3.5), we deduce also that

∫

S4

ν ∧ σ1 ∧ σ1 ∧ σ3 =
8π2

3
, (5.10)

which is in fact the volume of a unit radius round S4.

5.2 The deformed M2-brane solution

The AdS4×V5,2 supergravity solution admits a smooth supersymmetric deformation, based

on the above Stenzel metric. This solution was presented in [15]. We have found and

corrected a few minor mistakes in the formulas in [15], which are important for the physical

interpretation. The d = 11 solution is14

ds2 = H−2/3ds2
R1,2 +H1/3γ2ds2X ,

G = d3x ∧ dH−1 +mα , (5.11)

where m is a constant, ds2X denotes the Stenzel metric, and α is a harmonic self-dual four-

form on X [15]. In terms of the orthonormal frame (B.4) defined in appendix B this reads

α =
3

cosh4 r

(

e0̃123 + e01̃2̃3̃
)

+
1

2

1

cosh4 r
ǫijk

(

e0ijk̃ + e0̃ij̃k̃
)

. (5.12)

More precisely, this is an L2-normalizable primitive harmonic (2, 2)-form on X . Note that

α generates H4
cpt(X ,R) ∼= R. By the general results of [40], this is the only L2-normalizable

harmonic form on X in fact. The equation of motion for the G-field

d ∗G =
1

2
G ∧G , (5.13)

implies the following equation for the warp factor

∆XH = − 12m2

cosh8 r
. (5.14)

14We have introduced an explicit deformation parameter γ which is set to unity in [15]. This measures

the radius of the S4 at the origin.
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Here ∆X denotes the scalar Laplacian on the Stenzel manifold with metric ds2X . This can

be integrated explicitly in terms of the variable y4 = 2 + cosh 2r, giving

H(y) =
−24m2

√
2

∫

dy

(y4 − 1)5/2
, (5.15)

where an integration constant has been fixed by requiring regularity near to r = 0. In

terms of the variable ρ introduced in (5.6), the asymptotic expansion reads

H(ρ) =
210

35

m2

ρ6
+ . . . for ρ→ ∞ . (5.16)

Notice that this has a different behaviour from the Klebanov-Strassler solution, where

one has logarithmic corrections. As explained in [15], this difference comes from the fact

that the self-dual harmonic form is normalizable here, while it is not normalizable in six

dimensions. At large ρ the solution becomes of the form (3.6), where here the AdS4 radius

is expressed in terms of the integration constant m2 as R6 = 210

37 m
2.

5.3 The G-flux

We now wish to discuss the quantization of the flux, thus relating the constant m2 to the

quantized fluxes. Because the background is asymptotically AdS4 × V5,2, it is natural to

quantize the flux of ∗G through the V5,2 at infinity, as in (3.7), and interpret this as the

number of M2-branes in the UV. More generally, we may define a “running” number of

M2-branes N(r) as

N(r) =
1

(2πlp)6

∫

Yr

∗G , (5.17)

where the integral is evaluated on a seven-dimensional surface of constant r, which is a

copy of V5,2. To compute this, we may use the four-form equation of motion (5.13) to write

∫

Y r
2

∗G =
1

2

∫

X r

G ∧G =
1

2

∫

X r

m2|α|2dvolX , (5.18)

where the integral is evaluated on the Calabi-Yau X cut off at a distance r. The result is

N(r) =
1

(2πlp)6
m2

9

211

34
vol(V5,2) tanh4 r . (5.19)

We see that this running number of M2-branes becomes a constant at infinity, where

N ≡ N(∞) =
1

(2πlp)6
211

36
m2vol(V5,2) . (5.20)

This determines m2 in terms of the physical paramater N . Eliminating m2 we see that the

(UV) AdS4 radius takes exactly the form (3.8).

We are not quite done, however. There is a non-trivial cycle in the geometry, namely

the four-sphere at the zero-section of X = T ∗S4. Thus we have to impose the quantization
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of the four-form flux through this cycle. Noting that the restriction of the (2, 2) four-form

α to a four-sphere at any distance r from the origin is

α|S4
r

=
1√

3 cosh r
ν ∧ σ1 ∧ σ2 ∧ σ3 , (5.21)

we compute

1

(2πlp)3

∫

S4

G =
1

(2πlp)3
m√
3

8π2

3
= M̃ ∈ N , (5.22)

where recall that the volume of the unit S4 at the origin is 8π2/3. The reason for denoting

the integer15 flux as M̃ will become clear momentarily. We hence obtain another expression

for m2, namely m2 = 27π2l6pM̃
2. The running number of M2-branes then takes the simple

form

N(r) =
M̃2

4
tanh4 r . (5.23)

There is a simple way to check the numerical factor here. If we integrate (5.13) over the

whole of X , the left hand side gives (2πlp)
6N . On the other hand, the right hand side

is a topological quantity. To see this, note that the integral of G over S4 is by definition

(2πlp)
3M̃ . But we may also regard G as defining an element of H4

cpt(X ,R). The map R ∼=
H4

cpt(X ,R) → H4(X ,R) ∼= R is just multiplication by 2, the latter being the Euler number

of S4. Then we may interpret 1
2

∫

X G ∧ G as the cup product H4(X ,R) ×H4
cpt(X ,R) →

H8
cpt(X ,R) = R via 1

2 [G] ∪ [G]cpt = (2πlp)
6 1

2M̃ · M̃
2 . This is a simple topological check

on (5.23).

Since we have N = M̃2/4, and N must be an integer, we have to set M̃ = 2M . We

thus obtain the relation

N = M2 , (5.24)

where 2M is the number of units of G-flux through the S4 (5.22). Notice that the higher

derivative X8 term in M-theory would lead to a O(1/N) correction to this formula. In fact

an explicit solution, generalizing that above and including the X8 correction, was given

in [41].16 Of course, the supergravity solution is only valid at large N (and hence large M)

in any case, and this term is a subleading correction.

As a consequence of the relation M̃ = 2M we also see that there is no torsion G-flux

turned on in H4(V5,2,Z) ∼= Z2. To see this we recall that there is a relation between the

cohomology of the deformed space X and the cohomology of its boundary ∂X = V5,2. The

only non-trivial cohomology of X is H4(X ,Z) ∼= H4(X ,Z) ∼= Z, the latter being generated

by the S4 zero-section. There is a map Z ∼= H4(X ,Z) → H4(V5,2,Z) ∼= Z2 induced by

restriction to V5,2 = ∂X which is simply reduction modulo 2. The calculation (5.22) means

15It is again important here that the membrane anomaly on X vanishes. This follows from the fact that

w4(X ) |S4 is twice the fourth Stiefel-Whitney class of the bundle TS4, and hence zero mod 2 (the latter

Stiefel-Whitney class also happens to be zero).
16Although some errors in [15] have propagated to this reference.
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that as a cohomology class [G] = 2Me, where e denotes the generator of H4(X ,Z). This

then maps [G] → 0 ∈ H4(V5,2,Z) ∼= H3(V5,2,Z) ∼= Z2.

We may also define a “running C-field period”. Recall that V5,2 may be thought of as

an S3 bundle over S4. Then the generator of H3(V5,2,Z) ∼= H4(V5,2,Z) ∼= Z2 may be taken

to be a copy of the S3 fibre at a fixed point on the base S4. We can identify the torsion

three-cycle at a distance r as the three-sphere at a distance r from the origin of the fibre

R
4, at a fixed point on S4. We have

α|R4 =
sinh3 r√
3 cosh4 r

dr ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 , (5.25)

and thus

c3(r) ≡ 1

(2πlp)3

∫

S3
r

C =
m

(2πlp)3

∫

R4
r

α =
M

2

[

1

cosh r

(

1

cosh2 r
− 3

)

+ 2

]

. (5.26)

Notice that c3(∞) = M . Indeed, this is again purely a topological integral, namely

(1/(2πlp)
3)

∫

R4
fibre

G = M , and shows that the holonomy of the C-field on V5,2 at infin-

ity is indeed trivial, cf (3.9).

5.4 The Zk quotient

If we wish to consider deformations of the V5,2/Zk supergravity background with k >

1, the deformed solution X/Zk is then singular, having two isolated C
4/Zk singularities

at the north pN and south pS poles of the S4 zero-section. Since we cannot trust the

supergravity solution near to these points, we should remove them from the spacetime

in any supergravity analaysis. It then makes sense to analyse flux quantization on the

smooth manifold (X\{pN , pS})/Zk. This has a boundary with three connected components:

V5,2/Zk at infinity, and two copies of S7/Zk near to r = 0.

Since H4(X ,Z) ∼= Z, generated by the S4 zero-section, it follows from a simple Mayer-

Vietoris sequence that also H4(X \ {pN , pS},Z) ∼= Z. On removing the two points, the

image of the S4 zero-section in X \ {pN , pS} is I × S3, where I is an interval. Thus the

image of this S4 naturally gives a relative class in H4(X \ {pN , pS}, S7 ∐ S7,Z), although

again it is simple to show that this is isomorphic to H4(X \ {pN , pS},Z) and thus the

relative class is represented by a closed 4-cycle also.

Consider a Zk-invariant closed four-form G on X that has non-zero integral over the S4.

Then one obtains a four-form on (X \ {pN , pS})/Zk with non-zero integral over I ×S3/Zk,

where Zk acts along the Hopf fibre of the S3. We now normalize the flux G/(2πlp)
3 to have

period M̃ ∈ Z through this (relative) 4-cycle. It follows that lifting to the covering space X ,

we obtain a period kM̃ through S4. Then the integral of (2πlp)
−6 1

2G∧G over the covering

spacetime X may be carried out as in the smooth case, to give 1
2 · (kM̃ ) · 1

2 (kM̃) = k2M2.

Thus on the quotient X/Zk we obtain

N =
1

(2πlp)6

∫

V5,2/Zk

∗G =
1

(2πlp)6

∫

X/Zk

1

2
G ∧G = kM2 . (5.27)
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Similarly, we have

1

(2πlp)3

∫

R4
fibre/Zk

G =
1

(2πlp)3

∫

Σ3

C = M , (5.28)

where we have noted that the generator Σ3 of H3(V5,2/Zk,Z) ∼= Z2k is given by a copy

of the boundary of the R
4/Zk fibre of T ∗S4/Zk over the north pole pN ∈ S4. Comparing

to (3.9), we see that l ∼= 0 mod 2k at infinity, and hence there are no fractional M5-branes.

Clearly, this is in stark contrast to the Klebanov-Strassler solution.

6 The deformation in the field theory

The deformed supergravity background that we have discussed is of a type which has no

known counterpart in the context of the AdS5/CFT4 correspondence. This was already

noticed in [15, 19, 42]. The UV region is asymptotic to a Freund-Rubin background AdS4×
Y 7, and thus according to the AdS/CFT dictionary it should be dual to the conformal

Chern-Simons-quiver theory extensively discussed in the paper. On the other hand, in

the IR region the solution is smooth and displays a finite-sized minimal submanifold at the

bottom of the throat. Therefore, according to the general rules of gauge/gravity duality, the

dual field theory should have a mass gap and is presumably confining [43]. Understanding

the precise mechanism in the field theory is clearly an interesting challenge. In this final

section we take a few steps in this direction, leaving a more detailed investigation for

future work.

6.1 The field theory in the UV

As we have already explained, at infinity the deformed solution approaches the AdS4 ×
V5,2/Zk background. Since H4(V5,2/Zk,Z) ∼= Z2k, at infinity we can only have a flat torsion

G-flux of [G] = l mod 2k. A careful examination of flux quantization in the deformed

solution leads to 2M units of G-flux through the minimal four-cycle S4/Zk at the zero-

section r = 0. However, this G-field descreases as we move towards the UV, eventually

disappearing at infinity r = ∞. The topological class of this G-flux at infinity is [G] = 0,

while the flux of ∗G through V5,2 is N = kM2. This leads us to conjecture that the field

theory in the UV is the superconformal Chern-Simons-quiver theory with gauge group

U(kM2)k × U(kM2)−k . (6.1)

Note that the ranks of the gauge groups could receive subleading corrections that may be

important for a consistent interpretation.

On general grounds, the field theoretic interpretation of the deformation is either a

perturbation by a relevant operator in the Lagrangian, or involves spontaneous symmetry

breaking. These two possibilities are distinguished by the asymptotic behaviour of per-

turbations in AdS4. In order to use the AdS/CFT dictionary we need to write the AdS4

metric in Fefferman-Graham coordinates

ds2(AdS4)FG =
1

z2

(

dz2 + dxµdxµ
)

, (6.2)
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by changing coordinates ρ2 = 1/z. Here recall that ρ is related asymptotically to r via the

change of variable (5.6). In particular, for scalar modes we then have

ϕ ∼ ϕ̂z∆ + ϕ0z
3−∆ , (6.3)

with ϕ0 corresponding to perturbing by an operator of dimension ∆, and ϕ̂ corresponding

to the VEV of such an operator. Aided by the map between chiral multiplets in the SCFT

and modes in the Kaluza-Klein spectrum on V5,2, discussed earlier, we will see that the

former possibility is realized.

To see this, we examine the leading behaviour of the G-field at infinity, and the cor-

responding pseudoscalar mode in AdS4. We may discuss this in the context of general

Sasaki-Einstein solutions and then specialize to the case of interest. Consider a self-dual

harmonic G-flux in the Calabi-Yau cone background R
1,2 ×C(Y ), of the form

G = α = d(ρ−νβ) , (6.4)

where ρ is the radial variable on the cone. This implies ∆Y β = ν2β , where ∆Y is the

Laplace operator on Y acting on three-forms. For the associated AdS4 × Y solution, we

may then consider a fluctuation of the type δC = π ·β. It was shown in [44] that this leads

to a pseudoscalar field π in AdS4 with mass17

m2 =
ν(ν − 6)

4
. (6.5)

Substituting this into the formula for the dimension of the dual operator, ∆(∆− 3) = m2,

we obtain ∆± = 1
2(3 ± |3 − ν|). Which branch to pick depends a priori on the specific

operator we consider. Going back to our particular G = α given by (5.12), we see that

β ∝
(

3σ̃1 ∧ σ̃2 ∧ σ̃3 +
1

2
ǫijkσi ∧ σj ∧ σ̃k

)

, (6.6)

and ν = 4/3. Then ∆+ = 3 − ν
2 = 7

3 , while ∆− = ν
2 = 2

3 . Now, going through all the

pseudoscalar modes undergoing shortening conditions in the tables in [11], we find a mode

with ∆ = 7
3 while the other possibility is not realized. In particular, this mode arises as the

pseudoscalar component of the chiral operators with dimensions ∆ = 2
3m+ 1, with m = 2,

that we discussed in section 3.3. From the asymptotic scaling α ∼ z2/3, we conclude that

this operator is in fact added to the Lagrangian (see also [19]).

Since this is the pseudoscalar component of a chiral superfield, we see that it is a

Fermionic mass term ψαψα. This breaks parity invariance, which is reflected in the gravity

solution in the presence of the internal flux, the latter being odd under parity. In general,

such mass terms may be added to the Lagrangian, in a supersymmetric way, by a quadratic

17The reader should not confuse the mass m2 here with the paramter m in the deformed solution.
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superpotential deformation18

δW = µTr[φ2] ⇒ δL = −1

2

∂2δW

∂φi∂φj
ψα

i ψj α + . . . . (6.7)

A priori, we have three such possible mass terms, compatible with the SU(2)r global

symmetry of the deformed background, namely

δW =
µ+

2

(

Tr[Φ2
1] + Tr[Φ2

2]
)

+
µ−
2

(

Tr[Φ2
1] − Tr[Φ2

2]
)

+ µ3Tr[A1B1 +A2B2] . (6.8)

where in the above we mean superfields.

We may deduce which terms are present by analysing more carefully the symmetries of

the deformed solution. Recall from section 2.1 that in the undeformed field theory we have

a Z
flip
2 symmetry that exchanges Φ1 ↔ Φ2, Ai ↔ Bi. The generator acts on the zi coordi-

nates, introduced just below equation (2.8), as (z0, z1, z2, z3, z4) → (−z0, z1,−z2, z3,−z4).
Hence Z

flip
2 ⊂ O(5) acts on the deformed quadric (5.1). The internal G-flux then breaks

this Z
flip
2 symmetry. To see this, notice that for k = 1 the zero-section of X = T ∗S4 is S4,

embedded in R
5 by the real parts of the zi coordinates in (5.1). The volume form on S4

may be written

vol(S4) =
1

4!
ǫijklmzidzj ∧ dzk ∧ dzl ∧ dzm |{P4

i=0 z2
i =γ2 , zi∈R} . (6.9)

This hence changes sign under the generator of Z
flip
2 . Now since Z

flip
2 is an isometry, it

necessarily maps L2 harmonic forms to L2 harmonic forms, and as mentioned earlier the

results of [40] imply that Gint ∝ α (5.11), where α is given by (5.12), is the only such form.

Thus the generator of Z
flip
2 maps α 7→ ±α. But since α restricts to the volume form on

S4 at r = 0, we see that the generator of Z
flip
2 maps α 7→ −α, and thus Gint 7→ −Gint.

Hence the related superpotential deformation in (6.8) should also be odd. This requires

that µ+ = µ3 = 0, leaving precisely the following supersymmetric mass-term

W →W +
µ

2

(

Tr[Φ2
1] − Tr[Φ2

2]
)

. (6.10)

We may then regard the full superpotential as depending on the two parameters s and µ.

Notice that by setting s = 0, the mass term µ is precisely that leading to the ABJM theory

in the IR, after integrating out the adjoints.

The deformed F-term equations following from the superpotential deforma-

tion (6.10) read

BiΦ2 + Φ1Bi = 0 , (6.11)

Φ2Ai +AiΦ1 = 0 , (6.12)

3sΦ2
1 + (B1A1 +B2A2) + µΦ1 = 0 , (6.13)

3sΦ2
2 + (A1B1 +A2B2) − µΦ2 = 0 . (6.14)

18This deformation then introduces various additional terms in the Lagrangian. For example, we have a

quadratic term µ2Tr[φ†φ] in the bosonic F-term potential, with dimension ∆ = 4/3, as well as linear terms

in µ. Presumably these operators may be detected by analysing appropriate linearized perturbations of the

background. However, their structure should be constrained by supersymmetry. See [45] for discussion of

a related issue in the context of mass deformations of the ABJM theory.
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The simple linear change of variable

Φ1 = Ψ1 −
µ

6s
, Φ2 = Ψ2 +

µ

6s
(6.15)

then leads to

BiΨ2 + Ψ1Bi = 0 , (6.16)

Ψ2Ai +AiΨ1 = 0 , (6.17)

3sΨ2
1 + (B1A1 +B2A2) =

µ2

12s
, (6.18)

3sΨ2
2 + (A1B1 +A2B2) =

µ2

12s
. (6.19)

In particular, we see that the Abelian moduli space is exactly the deformed singularity (5.1).

The deformation parameter is proportional to the mass, γ2 = µ2/12s.

6.2 Comments on the field theory in the IR

The supergravity solution implies that the N = 2 superconformal Chern-Simons-matter

theory deformed by the mass term will flow in the IR to a confining theory. We leave a

field-theoretic understanding of this for future work, restricting ourselves here to making

only some preliminary comments in this direction.

Firstly, it is instructive to contrast the pattern of U(1)R symmetry breaking of our

solution with that of the Klebanov-Strassler theory. In the latter case the U(1)R symmetry

is broken to Z2M in the UV by the chiral anomaly, and this is then spontaneously broken

to Z2, yielding M vacua. On the gravity side, the breaking of U(1)R to Z2M is reflected

by the non-invariance of the fluxes already in the UV [18, 46]. The M vacua are then

reflected by the presence of supersymmetric probe branes, representing BPS domain walls

interpolating between the vacua. In three dimensions there is no chiral anomaly, and thus

U(1)R cannot be broken in this way. Indeed, in the supergravity solution we discussed

the parameter M is not a UV parameter that one can dial at infinity, and in fact the flux

vanishes asymptotically. We also expect that no wrapped branes will give rise to BPS

domain walls, although we have not checked this.

In analogy with the Klebanov-Strassler cascade, one possible way to interpret the RG

flow described by the supergravity solution is to imagine that once the conformal theory

is deformed by the mass term in the UV, it starts “cascading”, going through a sequence

of Seiberg-like dualities where the ranks of the gauge groups decrease, until in the deep

IR perhaps one gauge group disappears, and the low energy-theory confines. This idea

has recently been suggested in [32, 47] in the context of ABJM-like theories, although the

models studied in these references are different from our models. This interpretation is

motivated by the brane creation mechanism that we discussed in section 4.4, and by the

fact that in the solution there is a varying B2-field (in the Type IIA reduction). More

precisely, the B2-field suggests that as we proceed to the IR, the NS5-branes rotate around

the circle. Taking this point of view, and applying the duality rule of section 4.4, we end up

in the IR with a gauge group U(−kM)k × U(kM)−k after M steps, which clearly doesn’t
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make sense since one gauge group has negative rank. (We could of course stop applying

the duality at the previous step.) Notice, however, that what is the precise gauge group

in the IR depends on the starting point in the UV, which in turn depends on subleading

corrections to kM2. In any case, it is not clear whether applying this rule is correct, once we

turn on the mass deformation. In fact, more conservatively, given the mass term one should

integrate out the heavy degrees of freedom, and obtain an effective low-energy theory in

the IR. In principle this theory should then exhibit confinement (without supersymmetry

breaking). Integrating out the Fermions would a priori lead to a possible shift of the

Chern-Simons levels. However, because the Fermions are in the adjoint representation in

fact the levels are not shifted. Indeed, we have already noted that the mass term is exactly

the same mass term which produces the ABJM theory at low energy, starting from the

Chern-Simons theory in figure 1 with s = 0. Integrating out the bosonic components of the

chiral fields in the mass-deformed n = 2 theory, the effective superpotential for the low-

energy fields Ai, Bi results in a non-local expression, involving square roots of polynomials

in these fields. Hopefully, further work along these lines will lead to a precise identification

of the IR field theory.

7 Conclusions

In this paper we have constructed a new example of AdS4/CFT3 duality by proposing

a simple N = 2 Chern-Simons-matter quiver field theory as the holographic dual to the

AdS4×V5,2/Zk Freund-Rubin background in M-theory. This duality presents several novel

aspects. For example, the geometry, and hence the field theory, has an SU(2)×U(1)×U(1)R
global symmetry (enhanced to SO(5)×U(1)R for k = 1), and hence these models are non-

toric. Examples of AdS/CFT dual pairs of non-toric type, where both sides are known

explicitly, are quite rare. This model may be thought of as describing the low-energy

theory of multiple M2-branes at a quadric hypersurface singularity. In fact, this is the n = 2

member of a family of hypersurface singularities (An−1 four-fold singularities), labelled by

a positive integer n, for which we have also presented the corresponding field theories.

However, we have explained that only for n = 2 and n = 1 do these singularities give rise

to Freund-Rubin AdS4 duals, the n = 1 model being the ABJM theory. We note that [12]

discussed the larger class of ADE four-fold singularities, and it was shown in this reference

that in this class the only cases that can admit Ricci-flat Kähler cone metrics are A0 = C
4,

A1 and D4. It would be interesting to construct Chern-Simons-matter theories dual to

other hypersurface singularities, and to see whether the D4 theory admits a Freund-Rubin

holographic dual, analogous to that discussed in this paper.

In this paper we have considered the case where the Chern-Simons levels are equal

k1 = −k2 = k. Relaxing this condition, thus allowing for arbitrary levels, corresponds to

deforming the Type IIA solutions that we discussed in section 3.2 by turning on a Romans

mass [20]. Such solutions will be similar to those discussed in [51, 52] and it would be

interesting to find these solutions explicitly.

Another interesting aspect of the model we discussed is that there exists a deformed

supergravity solution, that we have argued corresponds to a particular supersymmetric
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mass deformation of the conformal theory. This deformation is similar to those studied

in [45, 48, 49] and other references. We have seen that this mass term is dual to a harmonic

(2, 2), primitive (hence self-dual) G-flux on the Calabi-Yau geometry. Quite recently the

authors of reference [50] have shown how self-dual background fluxes induce mass terms

in the M2-brane worldvolume action, and it would be interesting to see whether this con-

struction generalizes to N = 2 backgrounds of the type we have studied. In the present

context the effect of this mass term is rather different from that in the ABJM model studied

in [45, 48, 49]: it deforms the classical moduli space in a way that precisely matches the

geometry in the supergravity dual. In particular, the solution develops a finite-sized S4 in

the IR, implying that the theory becomes confining. Motivated by brane constructions, we

have briefly discussed how this deformation might be interpreted as a “cascade”, analogous

to the Klebanov-Strassler cascade. However, further work is needed in order to obtain a

more conclusive interpretation of the RG flow, and in particular a clearer understanding

of the field theory in the deep IR. We expect a similar story to repeat for other deformed

solutions with self-dual G-flux, based on different special holonomy manifolds [15, 42].

Finally, in appendix C we describe a Type IIA reduction of the supergravity solutions

that is different to that considered in the main text, i.e. we reduce on a different choice

of M-theory circle. On general grounds, one expects this to lead to a field theory that is

mirror to that considered in section 2 (see, for example, [53]). It would be interesting to

study this reduction further.
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A Some cohomology computations

In the main text we have made use of a number of different cohomology groups of the

various manifolds we have defined, and also the relations between the groups. In this

appendix we present the relevant computations.

We begin by defining a manifold that does not appear in the main text: we define

Xn by

Xn =







n
∏

γ=1

(z0 − aγ) +

4
∑

i=1

z2
i = 0







⊂ C
5 . (A.1)

Here the aγ , γ = 1, . . . , n, are real, pairwise non-equal constants, which we order as a1 <

a2 < · · · < an. The manifold X2 = X in the main text, which is the deformation of the

quadric singularity. The Xn are smooth non-compact complex manifolds with boundaries

∂Xn = Yn, where Yn is defined by (2.9), (3.1). Indeed, the Xn are deformations of the Xn

singularities (2.9).
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The cohomology of Xn was discussed in [13], and we briefly review their analysis. For

γ = 1, . . . , n− 1 we may define a four-sphere S4
γ by requiring that z0 is real with aγ < z0 <

aγ+1, and that the zi, for i = 1, . . . , 4, are all real or all imaginary, depending on the value

of γ mod 2. These n − 1 four-spheres then generate H4(Xn,Z) ∼= Z
n−1 ∼= H4(Xn, Yn,Z),

where the last step is Poincaré-Lefschetz duality. This is the only non-trivial homology

group of Xn (of course H0(Xn,Z) ∼= Z). Each four-sphere has self-intersection number 2,

since its normal bundle may easily be seen to be T ∗S4 which has Euler number 2, and

by construction the intersection number of S4
γ with S4

γ+1 is 1, with all other intersection

numbers vanishing. Poincaré-Lefschetz duality implies that H4(Xn, Yn,Z) and H4(Xn,Z)

are dual lattices, where recall that f : H4(Xn, Yn,Z) → H4(Xn,Z) forgets that a class

is relative (has compact support). Thus the above discussion shows that H4(Xn, Yn,Z) ∼=
H4(Xn,Z), equipped with the intersection form, is the root lattice of An−1, whileH4(Xn,Z)

is the dual weight lattice.

Notice that in the simple case with n = 2, where X2 = X ∼= T ∗S4, the generator of

H4(X2, Y2,Z) ∼= Z may be taken to be a compactly supported four-form that has integral

one over the fibre (the Thom class of the bundle T ∗S4).

We may now compute the cohomology of Yn = ∂Xn using the long exact sequence

for the pair (Xn, Yn). Since the cohomology groups of both Xn and (Xn, Yn) vanish in all

degrees other than the top, middle and bottom, it follows that most of the cohomology of

Yn is also trivial. In fact the only non-trivial cohomology group is H4(Yn,Z), which arises

from the sequence

· · · −→ H4(Xn, Yn,Z)
f−→ H4(Xn,Z) −→ H4(Yn,Z) −→ H5(Xn, Yn,Z) ∼= 0 . (A.2)

This implies that H4(Yn,Z) ∼= H4(Xn,Z)/f(H4(Xn, Yn,Z)) ∼= Zn, where the last isomor-

phism follows from the above description of the cohomology groups in terms of the root

and weight lattices of An−1. Of course, by Poincaré duality we also have H3(Yn,Z) ∼= Zn.

In the special case that n = 2, of main interest in the text, the long exact homology

sequence implies that we may take the boundary S3 of any fibre S3 = ∂R
4 of T ∗S4 as the

generator of H3(Y2,Z) ∼= Z2. Equivalently, viewing Y2 as an S3 bundle over S4, a copy of

the fibre at any point on the base generates this third homology group.

Next we introduce the free circle action on Yn by U(1)b ∼= SO(2)diag ⊂ SO(4), where

SO(4) acts on the coordinates zi, i = 1, . . . , 4, in the vector representation. The quotient

Mn = Yn/U(1)b is then a smooth compact six-manifold. The cohomology of this space

may be deduced from the Gysin sequence for the circle fibration of Yn over Mn:

· · · −→ H i−2(Mn,Z)
∪c1−→ H i(Mn,Z) −→ H i(Yn,Z) −→

H i−1(Mn,Z) −→ · · · . (A.3)

It is straightforward to derive this sequence from the long exact sequence for the total

space L of the complex line bundle over Mn associated to the U(1)b circle bundle: note

that L has boundary Yn, and base Mn. One needs to combine this sequence with the Thom

isomorphism — this is precisely where the cup product with c1 = c1(L) comes from above,
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since for a complex line bundle c1 is equal to the Euler class of the underlying rank 2 real

vector bundle. The last map in the Gysin sequence (A.3) is just pull-back from Mn to Yn.

Using the sequence (A.3), together with the known cohomology of Yn computed above,

we may compute the cohomology (and properties of the cohomology ring) of Mn. Since

H1(Yn,Z) ∼= H2(Yn,Z) ∼= 0, it follows immediately from i = 2 in (A.3) that c1 ≡ Ω2 is

the generator of H2(Mn,Z) ∼= Z. Here the notation Ω2 was introduced in the main text

just before equation (3.16). Similarly, H3(Yn,Z) ∼= 0 implies that H3(Mn,Z) ∼= 0. Then

i = 4 above implies Zn
∼= H4(Yn,Z) ∼= H4(Mn,Z)/[H2(Mn,Z) ∪ c1]. Now, H4(Mn,Z) ∼=

H2(Mn,Z), so the free part of H4(Mn,Z) is Z ∼= H2(Mn,Z) by the Universal Coefficient

Theorem. Moreover, the torsion in H4(Mn,Z) is the torsion in H3(Mn,Z), but this is

Poincaré dual to H3(Mn,Z) ∼= 0. Thus H4(Mn,Z) ∼= Z, and the Gysin sequence thus tells

us that the square of the generator of H2(Mn,Z) is n times the generator of H4(Mn,Z).

We may equivalently state this as
∫

Σ4

Ω2 ∪ Ω2 = n , (A.4)

where Σ4 denotes the generator of H4(Mn,Z), again as in the main text. The result (A.4)

follows from Poincaré duality, and the last map in the Gysin sequence that says cupping

H4(Mn,Z) with c1 = Ω2 (which is Poincaré dual to Σ4) maps the generator of H4(Mn,Z)

to the generator of H6(Mn,Z) ∼= Z. Notice that Mn then has the same cohomology

groups as CP
3 (where M1

∼= CP
3), but that the cohomology ring depends on n via the

above calculation.

We may now compute the cohomology of the quotient Yn/Zk. This is also a smooth

seven-manifold, where we take Zk ⊂ U(1)b. This immediately gives π1(Yn/Zk) ∼=
H1(Yn/Zk,Z) ∼= Zk. The Gysin sequence (A.3), with Yn/Zk in place of Yn, now

has c1 = kΩ2. Precisely as we argued above, this implies the important result that

H4(Yn/Zk,Z) ∼= H4(Mn,Z)/[H2(Mn,Z) ∪ kΩ2] ∼= Znk. Of course, by Poincaré duality

also H3(Yn/Zk,Z) ∼= Znk. Indeed, the Poincaré dual sequence implies that the generator

Σ2 of H2(Mn,Z) ∼= Z lifts to the generator Σ3 of H3(Yn/Zk,Z) ∼= Znk, where Σ3 is the

total space of the circle bundle over a representative of Σ2. This was used at the end of

section 3.5.

Finally, recall that in the special case of n = 2 the generator of H3(Y2,Z) ∼= Z2 can

be taken to be a copy of the fibre S3 in the fibration S3 →֒ Y2 → S4. The fibres over the

poles pN , pS of the S4 are mapped into themselves under Zk, with the Hopf action of Zk

on S3 giving the quotient S3/Zk. It then follows from the last paragraph that this Lens

space S3/Zk
∼= Σ3 generates H3(Y2/Zk,Z) ∼= Z2k.

B The Stenzel metric

In this appendix we review the construction of the Stenzel metric on X ∼= T ∗S4. The

deformed quadric X is defined as

4
∑

i=0

z2
i = γ2 , (B.1)
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and the Stenzel metric on this may be written by introducing left-invariant one-forms LAB

on SO(5), A,B = 1, . . . , 5, satisfying dLAB = LAC ∧ LCB . We split A = (1, 2, i), with

i = 1, 2, 3, where the Lij are left-invariant one-forms for SO(3), and define

σi = L1i, σ̃i = L2i, ν = L12 . (B.2)

These are one-forms on the coset space V5,2 = SO(5)/SO(3). The metric on (B.1) is

then [15]

ds2 = c2dr2 + c2ν2 + a2σ2
i + b2σ̃2

i . (B.3)

It is useful to introduce the orthonormal frame

e0 = cdr , e0̃ = cν , ei = aσi , eĩ = bσ̃i . (B.4)

A holomorphic frame is provided by

ǫ0 = −e0 + ie0̃ , ǫi = ei + ieĩ . (B.5)

In this frame, we take the Kähler form J and holomorphic (4, 0)-form Ω to be the stan-

dard forms

J =
i

2
ǫα ∧ ǭᾱ, Ω = ǫ0 ∧ ǫ1 ∧ ǫ2 ∧ ǫ3 . (B.6)

Thus these automatically satisfy the SU(4)-structure algebraic relations J ∧ Ω = 0,
1
4!J

4 = 1
16Ω ∧ Ω̄ = −e00̃11̃22̃33̃. A Ricci-flat Kähler metric requires dJ = 0 = dΩ. It

is straightforward to check that dJ = 0 is equivalent to the ordinary differential equa-

tion (ODE)

(ab)′ = c2 , (B.7)

where a prime denotes differentiation with respect to r, while imposing dΩ = 0 is equivalent

to the four ODEs

3
a′

a
+
c′

c
− 3

b

a
= 0 ,

3
b′

b
+
c′

c
− 3

a

b
= 0 ,

2
a′

a
+
b′

b
+
c′

c
− 2

b

a
− a

b
= 0 ,

2
b′

b
+
a′

a
+
c′

c
− 2

a

b
− b

a
= 0 . (B.8)

Although this naively looks overdetermined, it is simple to check by taking linear combi-

nations that these five ODEs are equivalent to the three ODEs

a′

a
=
b2 + c2 − a2

2ab
,

b′

b
=
a2 + c2 − b2

2ab
,

c′

c
=

3(a2 + b2 − c2)

2ab
. (B.9)
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This is the same system of equations that were presented in [15], although in the latter

reference they were derived by first finding the second order Einstein equations, and then

constructing a superpotential. Here we have derived them directly from the Ricci-flat

Kähler conditions. A solution to these equations, which is a smooth complete metric on

X = T ∗S4, was found by Stenzel [54]. This is the solution written in (5.4).

C A different reduction to Type IIA

In sections 3.2 and 3.5 we considered reducing M-theory on R
1,2×Xn/Zk withN spacefilling

M2-branes, or its near-horizon limit AdS4 ×Yn/Zk, along U(1)b to Type IIA string theory.

Recall here that Xn admits a Ricci-flat Kähler cone metric only for n = 1 and n = 2. In

the case n = 2, one problem with this Type IIA reduction is that as soon as one deforms

the AdS4 × Y2/Zk solution to the R
1,2 × X2/Zk solution, the reduction along U(1)b is no

longer well-behaved. Specifically, the U(1)b action fixes the north and south poles of the

S4 zero-section of X ≡ X2
∼= T ∗S4; since these are codimension eight, there is no simple

interpretation of the resulting singularity in the dilaton in Type IIA string theory. Thus

the Type IIA supergravity solution cannot be trusted in the IR region near to the S4 at

r = 0. However, there is a different reduction to Type IIA that is well-behaved. We briefly

describe this here, leaving a more thorough investigation for future work.

Recall that in section 4.2 we introduced a different U(1) ≡ U(1)6 action on Xn.

If we regard Xn as being defined by the hypersurface equation (2.8), the coordinates

(A1, A2, B1, B2, z0 = [s(n + 1)]1/nΦ2) have charges (1, 0,−1, 0, 0) under U(1)6. In fact,

we may deform Xn to Xn given by (A.1), so that U(1)6 also acts on the smooth manifold

Xn. Of course, to obtain a solution to eleven-dimensional supergravity, we should equip Xn

with a Calabi-Yau metric. For n = 1, n = 2, we may use complete asymptotically conical

Calabi-Yau metrics (the flat metric on X1
∼= C

4; the Stenzel metric on X2
∼= T ∗S4). These

are the metrics relevant for application to the AdS/CFT correspondence. Such metrics do

not exist for n > 2, in which case the reader can imagine that (A.1) is a local model in

a compact Calabi-Yau manifold. Yau’s theorem will then give a Ricci-flat Kähler metric

on this space which is incomplete at the boundary. In any case, the precise details of the

metric will not be important in what follows.

Consider reduction of M-theory on R
1,2 × Xn, with N spacefilling M2-branes, along

U(1)6. The fixed point set is codimension four, namely {A1 = B1 = 0}, which cuts out

the locus

n
∏

γ=1

(z0 − aγ) +A2B2 = 0 . (C.1)

This is the deformation of the An−1 singularity: it has n − 1 two-spheres S2
γ , defined

similarly to the four-spheres S4
γ in appendix A, that intersect according to the root lattice

of An−1 = SU(n). This becomes a D6-brane locus when we reduce to Type IIA. Indeed,

the Type IIA spacetime is flat, since Xn/U(1)6 ∼= R
7. To see this, note that Xn/C

∗
6 is
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described by

z +
n

∏

γ=1

(z0 − aγ) +A2B2 = 0 . (C.2)

where z = A1B1. This is simply C
3. The quotient space is thus diffeomorphic to R

7 ∼=
R7 ×C

3, where R7 is spanned by |A1|2 −|B1|2, which one can think of as the moment map

for U(1)6, and C
3 is spanned by (A2, B2, z0). The fixed point locus is thus at the origin of

R7, and cuts out the hypersurface (C.1) in the C
3 part.

The reduction of R
1,2×Xn along U(1)6 is thus the flat spacetime R

1,9 = R
1,2×R7×C

3,

with N spacefilling D2-branes and a single spacefilling D6-brane sitting at the origin of

R7 and wrapping the divisor (C.1) in C
3. Notice that this description gives the correct

amount of supersymmetry, since a D-brane wrapped on a divisor in a three-fold preserves

four supercharges, or N = 2 supersymmetry in d = 3.

There are n− 1 four-cycles in Xn, and the quantized G-flux through the generators S4
γ

defined in appendix A gives

1

(2πlp)3

∫

S4
γ

G = Mγ ∈ Z . (C.3)

In the Type IIA reduction considered in this section, this is dual to adding Mγ units of

worldvolume gauge field flux on the D6-brane through the two-sphere S2
γ in the deformed

An−1 singularity (C.1). A general discussion of this may be found in [55]. Thus

1

2πlsgs

∫

S2
γ

F = Mγ , (C.4)

where F is the U(1) gauge field on the D6-brane.

In the limit where aγ → 0, which is the hypersurface singularity Xn, the D6-brane is

wrapped on R
1,2 ×An−1 (we emphasize that the spacetime is flat Minkowski spacetime).

In particular, for n = 2 we have an A1 singularity, although for n > 2 the above analysis

shows that the A1 quiver in section 2 is not related to this A1 singularity in the Type IIA

reduction on U(1)6. Indeed, since we are reducing on a different circle, one expects the

effective gauge theory derived from the brane configuration described above to be mirror

to the gauge theory in section 2, which we derived from the Type IIA reduction on U(1)b
in section 3.5.

We may also consider taking the Zk quotient along U(1)b. The charges of the co-

ordinates (A1, A2, B1, B2, z0) under U(1)b are (1, 1,−1,−1, 0), and thus in the Type IIA

internal space R7×C
3, spanned by the moment map |A1|2 −|B1|2 and (A2, B2, z0), respec-

tively, U(1)b acts with charges (1,−1, 0) on C
3. Thus the Zk quotient along U(1)b leads to

a Zk singularity in spacetime, or more precisely an Ak−1 singularity. This would usually

lead to an SU(k) gauge symmetry in the transverse six-dimensional space. Contrast this

with the An−1 singularity on which the D6-brane is wrapped.

Finally, notice that we may perform a T-duality along the U(1) which acts with charges

(1,−1) on the coordinates (A2, B2). This gives a Type IIB brane set-up where the spacetime
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is R
1,2×R7×S1×R

5, with N spacefilling D3-branes wrapping the S1 circle (that arises from

the T-duality). Here R
5 arises as R

5 = R × C
2, where R is spanned by the moment map

|A2|2−|B2|2, and C
2 is spanned by (z0, A2B2). Since the fixed point locus is {A2 = B2 = 0},

which is a copy of R
1,2×R7×C in the IIA spacetime (with C spanned by the coordinate z0),

on T-dualizing this becomes a linearly embedded spacefilling NS5-brane. More precisely,

the NS5-brane wraps the R7 direction, sits at a point in S1, and wraps the copy of C ⊂ R
5

spanned by the coordinate z0. When we divide by Zk ⊂ U(1)b, the fixed locus is precisely

the Ak−1 singularity, and we thus obtain k linearly embedded spacefilling NS5-branes in

the Type IIB dual. The spacefilling D6-brane wrapped on the deformation of the An−1

singularity becomes a spacefilling D5-brane wrapped on a non-linearly embedded copy of

R
3 in R

5. This is because the four-manifold (C.1) fibres over R
3 with n fixed points. The

two copies of R
3 wrapped by the D5-brane and the k NS5-branes thus intersect at n points

in R
6 = R7 × R × C

2.
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