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Abstract

Cosmic inflation allows for a natural explanation of the homegenous and isotropic
universe while also allowing for the tiny fluctuations that are present in the cosmic
microwave background. It can be conveniently described by a scalar field, called the
inflaton, slow-rolling down its potential. The possible large distance that the infla-
ton has traversed during inflation makes the potential exceptionally sensitive to UV
physics. In particular, integrating out heavy modes can change the shape of the poten-
tial significantly, interfering with inflation. This makes it desirable to study inflation
in the context of a UV complete theory such as string theory. A striking prediction of
String theory is the number of spacetime dimensions which has to be ten. Hence we
have to consider string theory on spacetimes with the structure M4 × Y 6, where Y 6

is a compact six-dimensional manifold. The size and shape of the internal manifold
are determined by the expectation values of scalar fields, called moduli. These moduli
provide some of the heavy modes that can backreact on the inflationary potential and,
hence, have to be stabilized at a high scale.

In this thesis, we consider the embedding of inflation in Type IIB string theory, with
the inflaton given by the position modulus of a D7-brane, an open string. The inflaton
potential is sourced by three-form fluxes in the background of the internal space. We
study its multi-field dynamics, ignoring first the effects of moduli stabilization, and
show that they improve the agreement between observations and predictions. We also
study moduli-stabilization in both the Kähler and the complex structure sector. We
show that, with a flux tuning, it is possible to have an epoch of inflation in Type IIB
string theory with the inflaton an open string modulus.

In addition to embedding inflation in string theory we also consider more generally
the structure of Type II string theories compactified in the presence of Dp-branes. We
study a string theory realization of the Kalopor-Sorbo mechanism, which provides a
field theory argument to constrain the shape of corrections to the scalar potential. For
this mechanism it is essential to have couplings between the scalar fields and Minkowski
four-forms. We show that in Type II string theories the entire axion scalar potential
can be written in terms of these four-forms. We also study α′ corrections to the effective
action of Dp-branes. We provide general formulae for the leading order α′ correction
to the action of Dp-branes with p = 3, 5, 7 and provide a supergravity description of
the α′ corrections to the D7-brane action, allowing us to study its effects on moduli
stabilization.
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Chapter 1

Introducción

El objetivo último de la f́ısica es entender cómo funciona el universo. Este es un objetivo
algo ambicioso, si no completamente inviable. Sin embargo, estamos avanzando en la
dirección correcta. Déjennos ilustrar la evolución de nuestro entendimiento teniendo
en cuenta las rocas en un campo gravitatorio. Hemos sabido por mucho tiempo que las
rocas caen al suelo. Para Aristóteles, la roca cae porque su “causa final” es descansar
en el suelo. Newton diŕıa que cae porque hay una fuerza atractiva entre la roca y
el suelo. Y Einstein diŕıa que tanto la roca como el suelo siguen las geodésicas en
un espaciotiempo curvo. A la vez que conseguimos una comprensión más profunda
de la roca que cae, empezamos a entender que no solo cae la roca. También cae la
luna, la Tierra, el sol, etc. Mientras tratábamos de entender algo que observamos,
hemos aprendido mucho sobre efectos similares en escalas diferentes, además de como
el universo como un todo.

Hace más de cien años, Planck utilizó el análisis dimensional para calcular lo que
podŕıamos llamar una escala fundamental [1], una escala que sigue las constantes fun-
damentales. Combinó la constante gravitatoria GN, la velocidad de la luz c y su propia
constante ~ en un solo número con dimensiones de longitud

lp =
√

~GN/c3 = 1.6 ∗ 10−33 cm . (1.1)

La importancia de este cálculo dif́ıcilmente se puede exagerar. A esta escala, se espera
que todas las teoŕıas probadas experimentalmente produzcan predicciones erróneas o,
simplemente, no puedan hacer predicciones. Ciertamente, para un f́ısico moderno de
alta enerǵıa que entiende la f́ısica a esta escala seŕıa el objetivo definitivo.1

La teoŕıa de cuerdas es la candidata principal para dar una descripción del universo
a escala de Planck. Contiene ambas teoŕıas de la gravedad y del campo gauge de una
manera constante; por lo tanto, es una teoŕıa finita de la gravedad cuántica. La teoŕıa
de las cuerdas postula que los objetos fundamentales del universo no son puntuales
como en la teoŕıa de campos cuánticos (TCC), sino que son objetos unidimensionales
extendidos llamados cuerdas. Observamos los estados puntuales en los colisionadores
sólo porque las cuerdas son extremadamente pequeñas y la enerǵıa de los colisionadores
modernos es demasiado baja. La longitud t́ıpica de estas cuerdas, la longitud de la

1Consultar [2] para leer una interesante discusión sobre todo lo que hemos conseguido desde que
Planck hiciera su cálculo.
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cuerda ls, podŕıa estar justo fuera del alcance experimental o podŕıa ser tan pequeña
como la longitud de Planck. Estudiar la teoŕıa de cuerdas es un ejercicio muy atractivo
y gratificante. Si la teoŕıa de cuerdas describe verdaderamente el universo, entonces
nos enseña cosas nuevas al respecto. Por ejemplo, en las escalas cercanas a la escala
de Planck, el universo es de diez dimensiones, podŕıa haber otros universos o regiones
de nuestro propio universo con leyes f́ısicas diferentes (pero todav́ıa gobernadas por la
teoŕıa de cuerdas) y, quizás lo más sorprendente, la teoŕıa de cuerdas no solo trata de
cuerdas, sino que existen otros objetos de dimensiones superiores que juegan un papel
importante. Podemos estudiar la teoŕıa que describe el universo en la escala de Planck,
pero por desgracia hay una diferencia entre estudiar la teoŕıa y entenderla en su total
detalle.

1.1 Una historia breve del universo

En lugar de mirar las escalas más pequeñas, podemos centrarnos en las más grandes.
El siglo pasado ha abierto nuestra visión del universo. Décadas después de que Planck
hiciera su cálculo, la observación del Hubble [3] convenció a los cient́ıficos de que nuestro
universo es más grande que la Vı́a Láctea. El descubrimiento de la radiación cósmica de
fondo (CMB) de Penzias y Wilson [4] nos mostró por primera vez el resplandor del Big
Bang. En las últimas décadas la cosmoloǵıa ha entrado verdaderamente en la era de
la precisión con el descubrimiento de la expansión acelerada [5, 6] y las observaciones
detalladas de la CMB [7–9]. Esto ha llevado al modelo estándar de cosmoloǵıa, el
modelo de ΛCDM, que describe la dinámica del universo. Esto supone un universo
lleno de una constante cosmológica (cc), radiación, bariones y materia oscura fŕıa, que
se comportan como fluidos perfectos.

En la actualidad, unos 13.700 millones de años después del Big Bang, la densidad
media de enerǵıa en el universo es de aproximadamente (1 meV)4. La comprensión
actual de la f́ısica y la cosmoloǵıa nos permite viajar en el tiempo y seguir la evolución
del universo. A medida que retrocedemos en el tiempo, la densidad de enerǵıa comienza
a aumentar y el tamaño del universo que podemos observar comienza a disminuir. Poco
después del inicio de nuestro viaje, la densidad energética media de la materia domina
sobre la densidad energética de otras fuentes. Si nos movemos más allá de la era de
la formación de galaxias y las primeras estrellas, entramos en las edades oscuras. Si
vamos aún más atrás en el tiempo llegamos a la CMB, como se muestra en la figura 1.1.
Este es el origen del primer flujo luminoso libre y lo más lejos que podemos ver desde la
Tierra. La densidad energética media es de aproximadamente 1 eV. Si vamos más atrás,
entramos en el tiempo en que los electrones y los protones están en equilibrio térmico
con los fotones y, avanzando, podemos ver los primeros protones que se forman a partir
de un universo que llena el plasma de quarks-gluones. Un poco antes de los primeros
protones, nos encontramos con la unificación electrodébil y la bariogénesis. Además de
la unificación electrodébil, la f́ısica ha sido probada con experimentos y, además, hay
una buena razón para creer que se produjo la bariogénesis. Si nos movemos más atrás
en el tiempo tenemos que hacer conjeturas sobre la evolución anterior del universo.
Si dejamos que la teoŕıa de las cuerdas y la inflación cosmológica gúıen nuestro viaje,
observaŕıamos que, un tiempo después de la unificación electrodébil, el tamaño del
universo que podemos observar comienza a aumentar. Esta era de expansión acelerada
del espacio es lo que se llama inflación. Después de la inflación, observamos que se
restaura la supersimetŕıa. Cerca del Big Bang, nos dimos cuenta de que el universo es
de diez dimensiones que realmente podŕıa ver cuerdas moviéndose alrededor.
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Figure 1.1: Una breve descripción de la historia de nuestro universo. El eje horizontal
está marcado con el tiempo y la densidad energética. Estamos en el extremo derecho,
mirando hacia la CMB y el universo primitivo.

Las observaciones del universo primitivo nos revelaŕıan si esta historia conjeturada
es verdadera o no. Podŕıa haber pequeñas diferencias, por ejemplo, que se pudiera
restaurar la supersimetria antes de la inflación, o podŕıa haber grandes diferencias, por
ejemplo, que nunca veŕıamos la inflación. La CMB nos da mucha información sobre
el universo primitivo. Satélites como el satélite de Planck [9] miden los espectros de
potencia angular de las fluctuaciones de temperatura y polarización de la CMB y no
dan información directa sobre el universo primitivo. Sin embargo, estos espectros de
potencia están relacionados con las perturbaciones de densidad en el universo en el
momento de la inflación. Podemos aprender mucho de la dependencia de escala del
espectro de potencia escalar, ns− 1, y la relación de los espectros de potencia tensorial
y escalar, r. La relación tensor-escalar en particular está directamente relacionada con
la escala energética de la inflación. Por desgracia, todav́ıa no se ha medido, pero hay
una serie de telescopios en tierra tratando de hacerlo. Entre otros, están el BICEP2,
BICEP3, el Keck Array [10] y el POLARBEAR [11]. Con suerte, habrá una nueva
generación de satélites construidos espećıficamente para medir la relación tensor-escalar
[12].

1.2 Fenomenoloǵıa de las cuerdas

La teoŕıa de cuerdas supone que los objetos fundamentales más pequeños son cuerdas
unidimensionales. Estas cuerdas pueden estar abiertas o cerradas y. dependiendo de
los modos vibratorios de las cuerdas, pueden manifestarse como diferentes part́ıculas.
La naturaleza en forma de cuerdas de las cuerdas sólo se puede apreciar en la escala de
cuerdas o más allá, Ms, que es inversamente proporcional a la longitud de la cuerda,
ls, y normalmente cerca de la escala de Planck, Mp, pero podŕıa ser mucho menor.
Una de las observaciones más importantes en la historia de la teoŕıa de cuerdas fue que
siempre hay un bosón spin-2 en el sector de cuerdas cerradas sin masa. Combinado con
el hecho de que las cuerdas abiertas interactivas pueden cerrarse para formar cuerdas
cerradas, esto implica que la teoŕıa de cuerdas siempre es una teoŕıa de la gravedad.
Además, los extremos de las cuerdas abiertas se comportan como part́ıculas cargadas y,
por lo tanto, las interacciones del campo gauge naturalmente también se incluyen en la
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teoŕıa de cuerdas. Además de las cuerdas existen otros objetos de mayor dimensión en
la teoŕıa de cuerdas, generalmente llamados branas. Las Dp-branas son el lugar en el
que terminan las cuerdas abiertas. Sin embargo, llevan su propia carga, son dinámicas
y pueden convertirse en anti-Dp-branas. Las Dp-branas y las cuerdas abiertas dan una
hermosa interpretación geométrica hermosa de teoŕıas del campo gauge. Hay una teoŕıa
del campo gauge que vive en el volumen global de cada brana. Las cuerdas abiertas que
terminan en el volumen global de dp-branas se comportan como part́ıculas cargadas
que viven en la dp-brana. En particular, la TCC en una sola dp-brana obedece a una
simetŕıa de campo gauge U(1); en una pila de dos Dp-branas, hay una teoŕıa de gauge
U(2), etc. Si dos Dp-branas se alejan una de la otra, la simetŕıa U(2) se rompe a U(1)2.
Esto se puede ver como un mecanismo de Higgs desde el punto de vista del volumen
global de branas. La distancia entre las Dp-branas desempeña el papel de un bosón de
Higgs.

La inclusión de fermiones en la teoŕıa de cuerdas conduce naturalmente a la super-
simetŕıa (de la hoja del universo). Junto a la cancelación de anomaĺıas, la supersimetŕıa
predice(!) que el número de dimensiones del espaciotiempo es diez. Esto está en ĺınea
con la afirmación de que la teoŕıa de cuerdas no tiene parámetros libres. Otro ejem-
plo de esto es que el acoplamiento de cuerda gs se fija por el valor de expectativa de
vaćıo (vev) de la dilatación. La libertad aparente para elegir la escala de cuerda Ms

está vinculada a la libertad de elegir unidades. La tensión aparente entre la teoŕıa de
cuerdas de diez dimensiones y nuestro universo de cuatro dimensiones puede resolverse
asumiendo que seis de las dimensiones son compactas y demasiado pequeñas para ob-
servarse en experimentos. Esto se llama compactificación. Hay un gran número de
formas de compactificar seis dimensiones, y existe muy poca orientación para selec-
cionar una compactificación espećıfica. Para mantener el control teórico, normalmente
una cantidad determinada de supersimetŕıa tiene que sobrevivir a la compactificación y,
por lo tanto, a menudo tenemos en cuenta las variedades de Calabi-Yau para el espacio
interno. Si combinamos el número de variedades de Calabi-Yau con la libertad de elegir
vevas internas para los campos de diez dimensiones, nos damos cuenta de que el número
de distintas teoŕıas cuatridimensionales que se pueden producir en la teoŕıa de cuerdas
es enorme. El reto de la fenomenoloǵıa de las cuerdas es buscar vacuas (compactifica-
ciones o antecedentes) que conduzcan a la f́ısica cuatridimensional compatible con las
observaciones. En esta tésis nos centramos en la posibilidad de incorporar la inflación
en la teoŕıa de cuerdas. Para ello, buscamos compactificaciones que soporten una gran
excursión de campo para un pequeño número de escalares paramétricos ligeros. Estos
escalares son los que impulsan la inflación y se llaman inflatones. Nos centraremos en
la interacción entre los inflatones y los otros escalares en la teoŕıa; en particular, los que
establecen la forma y el tamaño del espacio interno. Estos escalares se llaman módulos
y es importante que no se desestabilicen durante la inflación. Esto podŕıa conducir,
por ejemplo, a la descompactificación donde una o más de las dimensiones internas se
hace no compacta.

1.3 Plan de la tésis

Consideramos una clase espećıfica de modelos de cuerdas, a saber, Tipo II compatificado
sobre un orientifold con D7-branas y flujos internos. El inflatón es un módulo de cuerda
abierta que se extiende entre las D7-branas. Empezamos dando una introducción a las
compactificaciones y cosmoloǵıa inflacionaria del orientifold tipo II en el caṕıtulo 3.
Esto nos permite introducir todos los ingredientes necesarios. Los cuatro caṕıtulos
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siguientes se basarán en cuatro art́ıculos en los que estuvo involucrado el autor de esta
tésis. El caṕıtulo 4 está dedicado a la monodromı́a y a las cuatro dimensiones de la
teoŕıa de cuerdas. En el caṕıtulo 5, se discute la acción efectiva de los módulos de
posición de las Dp-branas. También discutimos maneras de obtener la misma acción
en teoŕıas supersimétricas N = 1 cuatridimensionales. En el caṕıtulo 6 presentamos
un ejemplo del tipo de compactificaciones que consideramos en esta tésis, a saber, el
modelo de Higgs-otic, y discutimos su dinámica inflacionaria de dos campos. El caṕıtulo
7 se dedica a la estabilización de los módulos de la inflación de Higgs en la estructura
compleja y en el sector de Kähler. El caṕıtulo 8 está reservado para las conclusiones.
Hay tres anexo que acompañan a esta tésis. En el anexo A, damos más detalles sobre
la expansión de la acción efectiva de las Dp-branas. Damos ejemplos de aplanamiento
de potenciales en el anexo B. Finalmente, en el anexo C se discute un posible origen
microscópico de un término µ en el superpotencial.
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Chapter 2

Introduction

The ultimate goal of physics is to understand how the universe works. This is a some-
what ambitious if not completely unfeasible goal. However, we are moving in the right
direction. Let us illustrate the evolution of our understanding by considering rocks in
a gravitational field. We have known for a long time that rocks fall to the ground. For
Aristotle a rock falls because its “final cause” is to rest on the ground. Newton would
say that it falls because there is an attractive force between the rock and the ground.
And Einstein would say that both the rock and the ground are following geodesics in
a curved spacetime. While getting a deeper understanding of the falling rock, we start
to understand that it is not just the rock that is falling. It is also the Moon, the Earth,
the Sun and so forth. Through trying to understand something that we observe we
have learned a lot about similar effects on different scales as well as about the universe
as a whole.

Over a hundred years ago Planck used dimensional analysis to compute what we
might call a fundamental scale [1], a scale that follows from fundamental constants. He
combined the gravitational constant GN, the speed of light c and his own constant ~
into a single number with dimensions of length

lp =
√
~GN/c3 = 1.6 ∗ 10−33 cm . (2.1)

The importance of this computation can hardly be overstated. At this scale all exper-
imentally tested theories are expected to give wrong predictions or simply fail to give
predictions at all. Certainly, for a modern high-energy physicist understanding physics
at this scale would be the ultimate goal.1

String theory is the prime candidate to give a description of the universe at the
Planck scale. It contains both gravity and gauge theories in a consistent way, hence it
is a finite theory of quantum gravity. String theory postulates that the fundamental
objects of the universe are not point-like as in quantum field theory (QFT) but rather
are extended one-dimensional objects called strings. We observe point-like states at
colliders only because strings are extremely small and the energy at modern colliders is
too low. The typical length of these strings, the string length ls, could be just outside
of experimental reach or it could be as small as the Planck length. Studying string
theory is a very engaging and rewarding exercise. If string theory truly describes the

1See [2] for an interesting discussion on how far we have gotten since Planck did his computation.
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universe then it teaches us new things about it. For instance, at scales close to the
Planck scale the universe is ten-dimensional, there could be other universes or regions
of our own universe with different physical laws (but still governed by string theory)
and, maybe most surprising of all, string theory is not a theory of just strings, there
exist other higher-dimensional objects that play an important role. We may study a
theory that potentially describes the universe at the Planck scale but unfortunately
there is a difference between studying a theory and understanding it in full detail.

2.1 A short history of the universe

Instead of looking at the very smallest scales, we can focus on the very biggest ones. The
last century has opened up our view of the universe. It would be decades after Planck
did his computation that scientists were convinced by the observation of Hubble [3]
that our universe is larger than the Milky Way. The discovery of the cosmic microwave
background (CMB) by Penzias and Wilson [4] showed us for the first time the afterglow
of the Big Bang. In the last decades cosmology has truly entered the precision era
with the discovery of accelerated expansion [5, 6] and the detailed observations of the
CMB [7–9]. This has led to the standard model of cosmology, the ΛCDM model, which
describes the dynamics of the universe. It assumes a universe filled with a cosmological
constant (cc), radiation, baryons and cold dark matter, that behave as perfect fluids.

Currently, about 13.7 billion years after the Big Bang, the average energy density
in the universe is about (1 meV)4. Current understanding of physics and cosmology
allows us to journey back in time and follow the evolution of the universe. As we move
back in time the energy density starts to increase and the size of the universe that we
can observe starts to decrease. Shortly after the start of our journey, the average energy
density of matter dominates over the energy density of other sources. If we move past
the era of the formation of galaxies and the first stars we enter the dark ages. If we
go even further back in time we reach the CMB, as depicted in Figure 2.1. This is
the origin of the first free streaming light and the furthest we can look from Earth.
The average energy density is about 1 eV. If we go further back we enter the time
when electrons and protons are in thermal equilibrium with photons and, moving on,
we can see the first protons being formed from a universe filling quark-gluon plasma.
A bit before the first protons, we encounter electroweak unification and baryogenesis.
Physics up to and including electroweak unification has been tested with experiments
and, in addition, there is good reason to believe that baryogenesis occurred. If we move
further back in time we have to make conjectures about the further evolution of the
universe. If we let string theory and cosmological inflation guide our journey we would
observe that, some time after electroweak unification, the size of the universe that we
can observe starts to increase. This epoch of accelerated expansion of space is what
is called inflation. After inflation we would observe that supersymmetry is restored.
Close to the Big Bang we would realise that the universe is ten-dimensional and we
would actually be able to see strings moving around.

Observations of the early universe would reveal to us if this conjectured history
is true or not. There could be small differences, for instance, supersymmetry could
be restored before inflation or there could be large differences, for instance, we would
never see inflation. The CMB gives us a lot of information about the early universe.
Satellites like the Planck satellite [9] measure the angular power spectra of temperature
fluctuations and polarization of the CMB and do not give direct information about the
early universe. However, these power spectra are related to the density perturbations
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Figure 2.1: A short depiction of the history of our universe. The horizontal axis is
labeled with both time and energy density. We are at the far right looking towards the
CMB and the early universe.

in the universe at the time of inflation. We can learn a lot from the scale dependence
of the scalar power spectrum, ns − 1, and the ratio of the tensor and scalar power
spectra, r. The tensor-to-scalar ratio in particular is directly related to the energy
scale of inflation. Unfortunately, it has not been measured yet but there are a number
of ground-based telescopes trying to measure it. These include BICEP2, BICEP3, the
Keck Array [10] and POLARBEAR [11]. Hopefully, there will be a new generation of
satellites specifically build to measure the tensor-to-scalar ratio [12].

2.2 String phenomenology

String theory assumes that one-dimensional strings are the fundamental objects. These
strings can be open or closed and depending on the vibrational modes of the strings
they can manifest as different particles. The string-like nature of strings can only be
appreciated at or beyond the string scale, Ms, which is inversely proportional to the
string length, ls, and typically close to the Planck scale, Mp, but it could be much
lower. One of the most important observations in the history of string theory was that
there is always a spin-2 boson in the massless closed-string sector. Combined with the
fact that interacting open strings can close to form closed strings, this implies that
string theory is always a theory of gravity. In addition to this, the end-points of open
strings behave like charged particles and therefore gauge interactions are also naturally
included in string theory. Besides strings there exist other higher-dimensional objects
in string theory, generally called branes. Dp-branes are the loci were open strings end.
However, they carry their own charge, are dynamical and can annihilate on anti-Dp-
branes. Dp-branes and open strings give a beautiful geometrical interpretation of gauge
theories. There is a gauge theory living on the world-volume of each brane. The open
strings ending on the Dp-brane world-volume behave like charged particles living on the
Dp-brane. In particular, the QFT on a single Dp-brane obeys a U(1) gauge symmetry,
on a stack of two Dp-branes there is a U(2) gauge theory, etc. If two Dp-branes move
away from each other the U(2) symmetry is broken to U(1)2. This can be viewed as
a Higgs mechanism from the brane world-volume point of view. The distance between
the Dp-branes plays the role of a Higgs boson.
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Including fermions in string theory naturally leads to (world-sheet) supersymmetry.
In combination with anomaly cancellation, supersymmetry predicts(!) the number of
spacetime dimensions to be ten. This is in line with the statement that string theory
does not have any free parameters. Another example of this is that the string coupling
gs is fixed by the vacuum expectation value (vev) of the dilaton. The apparent freedom
to choose the string scale Ms is linked to the freedom of choosing units. The apparent
tension between ten-dimensional string theory and our four-dimensional universe can
be resolved by assuming that six of the dimensions are compact and too small to ob-
serve in experiments. This is called compactification. There is a huge number of ways
to compactify six dimensions and there exists very little guidance to select a specific
compactification. To maintain theoretic control usually a certain amount of supersym-
metry has to survive the compactification and therefore we often consider Calabi-Yau
manifolds for the internal space. Combine the number of Calabi-Yau manifolds with
the freedom to choose internal vevs for the ten-dimensional fields and the number of
distinct four-dimensional theories that can be produced in string theory is enormous.
The challenge of string phenomenology is to look for vacua (compactifications or back-
grounds) that lead to four-dimensional physics compatible with observations. In this
thesis we focus on the possibility of embedding inflation in string theory. To this end
we look for compactifications that support a large field excursion for a small number of
parametrically light scalars. These scalars are what drive inflation and they are called
inflatons. We will focus on the interplay between the inflatons and the other scalars in
the theory, in particular those that set the shape and size of the internal space. These
scalars are called moduli and it is important that they are not destabilized during in-
flation. This could lead to, for example, decompactification where by one or more of
the internal dimensions becomes non-compact.

2.3 Plan of the thesis

We consider a specific class of string models, namely Type II compactified on an ori-
entifold with D7-branes and internal fluxes. The inflaton is an open string modulus
stretching between the D7-branes. We start by giving an introduction to Type II ori-
entifold compactifications and inflationary cosmology in Chapter 3. This allows us to
introduce all necessary ingredients. The next four chapters will be based on four papers
in which the author of this thesis was involved. Chapter 4 is dedicated to monodromy
and four-dimensional four-forms in string theory. In Chapter 5 we discuss the effective
action of the position moduli of Dp-branes. We also discuss ways to obtain the same
action in four-dimensional N = 1 supersymmetric theories. In Chapter 6 we intro-
duce an example of the kind of compactifications we consider in this thesis, namely
the Higgs-otic model, and we discuss its two-field inflationary dynamics. Chapter 7 is
dedicated to moduli stabilization of Higgs-otic inflation in both the complex structure
and Kähler sector. Chapter 8 is reserved for conclusions. There are three appendices
accompanying this thesis. In Appendix A we give more details on the expansion of
the effective action of Dp-branes. We give examples of flattening of potentials in Ap-
pendix B. Finally, Appendix C discusses a possible microscopic origin of a µ-term in
the superpotential.
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Chapter 3

Theory ingredients

There exists only one “string theory”, or M-theory, which has several perturbative lim-
its. These are the 11-dimensional M-theory supergravity and the five ten-dimensional
string theories: E8 × E8 heterotic, SO(32) heterotic, Type I, Type IIA and Type IIB.
There are two natural expansion parameters in string theory, the string couplings gs

and the string length ls. The string coupling is given by the vev of a massless scalar
field, the dilaton φ, and the string length is related to α′ and Ms

gs = eφ , l2s = α′ = M−2
s . (3.1)

In an effective description of string theory, corrections with powers of gs are quantum
whereas corrections with powers of α′ are due to the extended nature of the string. The
different string theories have different spectra and contain different non-perturbative
objects. Some are more suited for the description of certain problems than others.
In particular, the heterotic theories contain gauge groups from the start. They were
the most intensely studied at the start of string phenomenology. Model building in
Type II string theories intensified when it was realized that it is possible to construct
gauge theories on the world-volume of branes. In addition, in Type II theories moduli
stabilization is better understood than in the other limits of string theory. In this thesis
we are mostly concerned with orientifold compactifications of Type IIB and Type IIA
theories.

We start this chapter with a discussion of Type II string theories in ten dimensions.
Section 3.2 is reserved for a discussion on orientifold and flux compactifications of these
theories. In Section 3.3 we present the effective action of Dp-branes and introduce open
strings. Kähler moduli stabilization in Type IIB string theory is treated in Section 3.4.
For a general introduction to string theory see [13,14] and for an introduction to string
phenomenology see [15]. In the second part of this chapter we discuss inflationary
cosmology, starting with a motivation and the theory of single-field inflation in Section
3.5 and continuing with the perturbation theory of two-field inflation in Section 3.6. In
the last section of this chapter, Section 3.7, we highlight some issues commonly found
in string inflation.
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3.1 Type II string theories

Type II string theories are theories of closed strings with world-sheet supersymmetry.
There are two different possible boundary conditions for the world-sheet fermions, which
are called the Neveu-Schwarz (NS) and Ramond (R) boundary conditions. In both
theories all combinations of these boundary conditions are present. The distinction
between Type IIA and Type IIB comes from two inequivalent ways to project, in a
modular invariant way, the partition function of the theory. At the massless level this
projection removes certain states leading to different spectra in the two theories. The
NS-NS sector for both theories contains the dilaton φ, a 2-form B2 and the metric.
The RR sector for both theories contains p-forms Cp, with p = 1, 3 for Type IIA and
p = 0, 2, 4 for Type IIB. The NS-R and R-NS sectors contain the space-time fermions.
They are chiral for Type IIB and non-chiral for Type IIA. The low-energy effective
action for both theories is an N = 2 ten-dimensional supergravity.

The bosonic effective action of Type IIB is [14]

SIIB =
1

2κ2
10

∫
d10x
√−g

[
e−2φ

(
R+ 4∂Mφ∂

Mφ− 1

2
|H3|2

)

− 1

2
|G1|2 −

1

2
|G̃3|2 −

1

4
|G5|2

]
− 1

4κ2
10

∫
C4 ∧H3 ∧ F3 , (3.2)

with

G1 = F1 , G̃3 = F3 − C0 ∧H3 , G5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 , (3.3)

Fp+1 = dCp, H3 = dB2, 2κ2
10 = (2π)7α′4 and g is the determinant of the spacetime

metric. The part of the action in the second integral is called the Chern-Simons action.
To this action we should add the self-duality relation G5 = ∗10G5, the fermionic piece
and a local contribution coming from localized sources like branes and orientifold planes.

Similarly, the effective action of Type IIA is given by

SIIA =
1

2κ2
10

∫
d10x
√−g

[
e−2φ

(
R+ 4∂Mφ∂

Mφ− 1

2
|H3|2

)
− 1

2
|G0|2

− 1

2
|G2|2 −

1

2
|G4|2

]
− 1

4κ2
10

∫
B2 ∧G4 ∧G4 −

1

4κ2
10

∫
G0 ∧ F10 , (3.4)

with

G0 = −m , G2 = F2 −G0B2 , G4 = F4 − C1 ∧H3 −
1

2
G0B2 ∧B2 . (3.5)

The parameter m is known as Romans mass and is regarded here as a background field
strength. The Chern-Simons part of the action is given in the second integral. N = 2
supersymmetric theories are problematic from a phenomenological viewpoint, while,
on the other hand, supersymmetry prevents problematic features such as tachyons in
a compactification. We consider compactifications that partly break supersymmetry
in order to allow for interesting phenomenology while avoiding potential problems.
However, before discussing these compactifications we discuss a different formulation
of Type IIA supergravity called the democratic formalism, as this formulation is useful
in Chapter 4.
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The democratic formalism of Type IIA

The Type IIA action contains the RR fields C1 and C3. These objects couple naturally
to Dp-branes with p = 0 and p = 2. However, there are more branes in the spectrum of
the theory. In particular, branes with p = 4, p = 6 and p = 8. These couple naturally
to the duals of the RR fields and the dual of the Romans mass. In ten-dimensions, the
dual of a p-form gauge field is an (8 − p)-form gauge field. The dual fields appear in
the effective actions of the previous section in the field strength through the identity∫
d10x(−g)1/2|Fp|2 =

∫
Fp ∧ ∗Fp, where ∗Fp is the dual field strength. However, the

dual fields do not carry any new degrees of freedom since they are related to the old
degrees of freedom through the duality relations.

The democratic formalism treats all of these fields, including Romans mass and
its dual, on equal footing, see [16–18]. Including more fields naturally increases the
number of degrees of freedom and, hence, by using the democratic formalism we double
the number of degrees of freedom in the RR sector of the theory. Note that we do not
increase the number of fermionic degrees of freedom, so that we potentially break
supersymmetry explicitly. We can take care of this issue by introducing constraint
equations relating the p− and (8− p)-forms. The action that we write down for these
fields is a pseudo-action because the constraint equations do not follow from it. The
bosonic field content of the theory is given by the massive IIA NS-NS and RR sectors
plus C5, C7 and C9. The bosonic part of the pseudo-action is given by

SDem =
1

2κ2
10

∫
d10x
√−g

[
e−2φ

(
R+ 4∂Mφ∂

Mφ− 1

2
|H3|2

)
− 1

4

∑
p

|Gp+1|2
]
, (3.6)

where p is understood to run over all RR fields including the Romans mass. The field
strengths are defined as before

Gp+1 = dCp −H ∧ Cp−2 −G0e
B . (3.7)

The duality relations that have to be added by hand on the level of the equations of
motion are

G6 = − ∗10 G4, G8 = ∗10G2, G10 = − ∗10 G0 . (3.8)

Finally note that the Chern-Simons part of the action has been eliminated by the
introduction of the additional degrees of freedom, meaning that upon expansion of the
field strengths the Chern-Simons part of the standard action appears.

There is another equivalent way to write the RR part of the action which we find
the most useful

LRR = G4 ∧G6 +G2 ∧G8 +G0 ∧G10 . (3.9)

We have to impose the same duality relations on the equations of motion to eliminate
half of the degrees of freedom as before. This pseudo-action is equivalent to the one
given in Equation (3.6) in that it gives the same equations of motion for the RR fields.
Plugging the solutions to the equations of motion back in the pseudo-action to eliminate
some of the fields gives the standard Type IIA action.
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3.2 Orientifold compactifications of Type II theories

Compactifications of Type II string theories on Calabi-Yau three-folds lead to four-
dimensional N = 2 vacua. The field content of these theories depends on the topology
of the Calabi-Yau manifold, Y . In particular, the number of fields depends on the Hodge
numbers, which are topological invariants of the compactification space. The Hodge
number hp,q(Y ) gives the dimension of the space of harmonic (p, q)-forms of the manifold
Y . For Type IIA(B) the four-dimensional spectrum consists of a gravity multiplet,
h1,1(h2,1) vector multiplets and h2,1(h1,1) +1 hypermultiplets. The deformation modes
of the ten-dimensional metric give h1,1 Kähler and 2h2,1 complex structure moduli,
which are scalar fields that parametrize the shape and size of the Calabi-Yau three-
fold.

We consider compactifications that break half of the supersymmetry generators.
Typically, appropriate orientifold quotients of Type II Calabi-Yau compactifications
reduce the four-dimensional supersymmetry to N = 1. An orientifold of a Type II
compactification is defined by taking the Type II theory compactified on a Calabi-
Yau and mod out the orientifold action ΩR, where Ω is world-sheet parity and R is
a Z2 geometric symmetry of the Calabi-Yau three-fold. The fixed points of R define
Op-planes. They are objects with opposite tension and typically opposite charge to
Dp-branes that wrap a (p − 3)-cycle of the internal space and span four-dimensional
Minkowski spacetime. Op-planes source RR charges which have to be cancelled by the
introduction of Dp-branes in order to satisfy tadpole cancellation conditions. In this
section we first discuss Type IIA orientifolds focusing on the ingredients needed for
Chapter 4. We then focus on Type IIB in the remainder of this chapter.

3.2.1 Type IIA orientifolds

In Type IIA orientifolds the orientifold action is ΩR(−1)FL where FL is the left-moving
spacetime fermion number and R acts antiholomorphycally on the complex coordinates
of the Calabi-Yau such that, J → −J and Ω3 → Ω3 where J is the Kähler form and Ω3

the Calabi-Yau three-form. The closed-string spectrum has to be truncated to states
invariant under the orientifold action. This implies that the N = 2 gravity multiplet
reduces to an N = 1 gravity multiplet, the 2h2,1 + 1 complex structure hypermultiplets
reduce to h2,1 + 1 chiral multiplets and the h1,1 vector multiplets are reduced to h+

1,1

vector- and h−1,1 hypermultiplets. Here h+
1,1(h−1,1) denote the number of even(odd) (1, 1)-

forms under the R action.
Next we need to introduce a basis of harmonic forms on Y . We define a basis of

(1, 1)-forms ωA, with A = 1, · · · , h1,1, that splits into a basis for the odd and even

(1,1)-forms ωa ∈ H1,1
− (Y ) and ωα ∈ H1,1

+ (Y ). Similarly we define a basis of three-forms
{αK , βK} with K = 0, · · · , h2,1. It is possible to choose αK to be even and βK to be
odd. These forms satisfy the following orthogonality relations∫

Y
ωα ∧ ω̃β = δβα ,

∫
Y
ωa ∧ ω̃b = δba ,

∫
Y
αK ∧ βL = δLK . (3.10)

Where ω̃β is the (2, 2)-form dual to ωα. Note that their parity under the orientifold is
reversed, so that ω̃α is odd. It is possible to show that both the Kähler form J and the
2-form B2 are odd under the orientifold and hence they can be expanded as

J = vaωa , B2 = baωa . (3.11)
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Both va and ba are h−1,1 four-dimensional scalars and are grouped in four-dimensional
complex Kähler moduli

T a = va − iba . (3.12)

Similarly, one can expand the RR three-form

C3 = Aα1 ∧ ωα + CKαK , (3.13)

where the CK are four-dimensional scalars and the Aα1 are four-dimensional vector
bosons. The scalars can be grouped with the dilaton and the surviving complex struc-
ture moduli into h2,1 + 1 four-dimensional complex scalars. Compactification of Type
IIA amounts to expanding the fields of the action (3.4) in the above basis and inte-
grating over the internal dimensions. The resulting theory is a four-dimensional N = 1
supergravity. Therefore, there should exist a suitable Kähler potential and a suitable
superpotential which are fixed in terms of geometric data of the compactification space.

The IIA Kähler potential

It is possible to derive the general four-dimensional Kähler potential belonging to Type
IIA orientifolds. It is fully given in terms of the Kähler form J and the three-form Ω3,
which in turn depend on the Kähler and complex structure moduli, respectively. The
Kähler potential, to leading order in α′, is [19, 20]

κ2
4KIIA = − log

[
4

3

∫
Y
J ∧ J ∧ J

]
− 2 log

[
2

∫
Y
Re(CΩ3) ∧ ∗6Re(CΩ3)

]
. (3.14)

C is a normalization factor and κ2
4 is inversely proportional to the four-dimensional

Planck mass

κ2
4 =

8π

M2
p

, (3.15)

which in turn is related to the string scale and the internal volume, V6,

M2
p =

8V6M
8
s

(2π)6g2
s

. (3.16)

Fluxes and the IIA superpotential

Generically, the internal field strengths of the compactification have non-trivial back-
grounds, ∫

γI

Fp = (2π)2α′eI , (3.17)

where γI is some cycle of the compactification space and eI is called a flux parameter.
Dirac quantization implies that fluxes are quantized in units of the string scale. These
fluxes induce a superpotential for the internal moduli, which is given by [19,21]

WRR-flux =

∫
Y
eiJc ∧ FRR , WNS-flux =

∫
Y

Ωc ∧H3 , (3.18)
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with Jc = i
∑h−1,1

a=1 Taωa. These two contributions to the superpotential induced by fluxes
from the RR and NS-NS sectors, respectively. Here FRR is a formal sum over the RR
fluxes and Ωc is a complexification of the Calabi-Yau holomorphic three-form. Note
that this superpotential depends on all the moduli for generic fluxes. We can compute
the resulting scalar potential using Equations (3.14), (3.18) and the well-known formula

V = eK(KAADAWDAW − 3|W |2) , (3.19)

where A runs over all holomorphic coordinates, A over all the antiholomorphic ones and
DA is the Kähler covariant derivative DA = ∂A + KA. Depending on the flux choice,
the scalar potential depends on all complex structure and Kähler moduli in such a way
that it is possible to find a (local) minimum for all moduli. The moduli masses have to
be high enough such that they can be safely integrated out while, on the other hand,
their masses have to be lower than the compactification scale such that this can be
done in an effective four-dimensional theory.

Compactification on an orientifolded torus

We can make the above discussion slightly more concrete by considering Type IIA
compactified on the orientifold T6/[ΩRA(−1)FL ], where RA reverses the direction on
half of the compact dimensions. In this model there are one dilaton, three Kähler
moduli and three complex structure moduli. The Kähler moduli were given before in
Equation (3.12) and the dilaton and complex structure moduli are

S = e−φ + i

∫
Y
C3 ∧ β0 , U i = ui − i

∫
Y
C3 ∧ βi , (3.20)

with ui parametrizing deformations of the torus. The Kähler potential for this type of
compactification, to leading order in α′, is given by

κ2
4KIIA = − log(S + S̄)−

3∑
i=1

log(U i + Ū i)−
3∑

a=1

log(T a + T a) . (3.21)

We can expand the fluxes of the various fields in the appropriate bases. For the NS
sector this gives

H3 =

3∑
i=0

hiβi , (3.22)

and for the RR sector

F0 = −m , F2 =

3∑
i=1

qiωi , F4 =

3∑
i=1

eiω̃i , F6 = e0dV6 , (3.23)

where dV6 is the volume form of the three-fold. The coefficients in this expansion are
integer fluxes. Plugging this expansion in Equation (3.18) and using that in this case

Ωc = iSα0 − i
3∑
i=1

U iαi , (3.24)
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leads to

WRR-flux =e0 + i
3∑
i=1

eiTi − q1T2T3 − q2T1T3 − q3T1T2 + imT1T2T3 , (3.25)

WNS-flux =ih0S − i
3∑
i=1

hiUi . (3.26)

Using these formulae one can derive the scalar potential for the N = 1 four-dimensional
theory [19,22]. The superpotential does not receive perturbative corrections in α′, but
the compactification may contain additional fluxes whose geometric origin is less well
understood. Moreover, there may be non-perturbative corrections to the superpotential
that we do not consider.

3.2.2 Type IIB orientifolds

The general approach to Type IIB orientifolds is analogous to the one for Type IIA
orientifolds. One takes the theory compactified on a Calabi-Yau three-fold Y and mods
out ΩR. We are mainly interested in models with O7-planes and D7-branes, implying
that the geometric symmetry R locally acts on a compact coordinate as z → −z while
leaving the other coordinates invariant. We should also add a factor (−1)FL as before.
The four-dimensional spectrum contains the N = 1 gravity multiplet, h1,1 + h−2,1 + 1

chiral multiplets and h+
2,1 vector multiplets. The expansion of the ten-dimensional fields

can be performed as before and for the O7/D7 case reads

B2 =baωa ,

C2 =caωa ,

C4 =Aκ1 ∧ ακ + Cαω̃
α . (3.27)

Here κ = 1, · · · , h+
2,1, and a and α label the odd and even (1, 1)-forms, respectively. As

in Type IIA, the scalars of this expansion can be grouped with the geometric moduli
to complete the four-dimensional supersymmetry multiplets.

Type IIB Kähler potential

The Kähler potential for Type IIB is given by [14]

k2
4KIIB = −2 log(e−

3
2
φ

∫
J ∧ J ∧ J)− log(S + S̄)− log(−i

∫
Y

Ω3 ∧ Ω3) , (3.28)

where J is the Calabi-Yau Kähler form and Ω3 is the Calabi-Yau three-form. In general,
the Kähler potential is an implicit function of the moduli, however, there exists an
explicit expression for the large volume Kähler potential for the overall modulus T ,
given by

k2
4KIIB = −3 log(T + T̄ )− log(S + S̄)− log(−i

∫
Y

Ω3 ∧ Ω3) , (3.29)

which has a no-scale structure for the Kähler moduli, implying that

KT T̄KTKT̄ = 3 . (3.30)
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Fluxes and the IIB superpotential

In general, in Type IIB compactifications there are fluxes as in Type IIA. These fluxes
source the well-known Gukov-Vafa-Witten superpotential [23]

WGVW =

∫
Y
G3 ∧ Ω3 , (3.31)

where G3 = F3 − iSH3 and S = e−φ + iC0. is the four-dimensional complex dilaton.
This superpotential depends explicitly on S, implicitly on the complex structure moduli
U i and is independent on the Kähler moduli. In general we can split the three-form
flux in an imaginary self-dual part (ISD) and an imaginary anti-self-dual part (IASD),
defined by

∗6G3 = ±iG3 , (3.32)

where a + implies ISD and a − implies IASD flux. We can decompose these parts
further by holomorphicity,

GISD3 =G2,1 +G0,3 , (3.33)

GIASD3 =G3,0 +G1,2 . (3.34)

We have written only the primitive components of the flux that obey G3 ∧ J = 0.
A subtlety that we did not mention in the Type IIA case is that fluxes gravitate and

therefore they backreact on the ten-dimensional spacetime [24]. For Type IIB compact-
ified on a Calabi-Yau three-fold in the presence of three-form fluxes this backreaction
can be treated quite explicitly. In those backgrounds the ten-dimensional metric is
warped

ds2
10 = Z−1/2(y)ηµνdx

µdxν + Z1/2(y)gmndy
mdyn , (3.35)

where gmn is the underlying Calabi-Yau metric. The function Z(y) is called warp
factor. The three-form fluxes also source the RR four-form giving a contribution to the
Bianchi identity of its field strength. The general solution to the Bianchi identity for
the 5-form is

F5 = (1 + ∗10)dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 . (3.36)

Here α is a function of the internal space and serves as a potential for the 5-form flux.
For ISD three-form flux this implies

G3,0 = G1,2 = 0 (3.37)

and the warp factor and the function α are related by

α = Z−1 . (3.38)

Compactification on an orientifolded torus

As in the Type IIA case we can make the above discussion more transparent by consider-
ing the theory compactified on T6/(ΩR(−1)FL). In this case we expand the three-form
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fluxes as

F3 =−mα0 + e0β0 +
3∑
i=1

(eiαi − qiβi) , (3.39)

H3 =h̄0β0 + h0β0 −
3∑
i=1

(aiαi + āiβi) , (3.40)

where the latin symbols denote fluxes and the greek symbols denote a basis of three-
forms. This leads to the following superpotential

WIIB-flux =e0 + i
3∑
i=1

eiUi − q1U2U3 − q2U1U3 − q3U1U2 + imU1U2U3

+ S

[
ih0 −

3∑
i=1

aiUi + iā1U2U3 + iā2U1U3 + iā3U1U2 − h̄0U1U2U3

]
,

(3.41)

and the Kähler potential is given in Equation 3.21.

Supersymmetry conditions

In Type IIB the superpotential is independent of the Kähler moduli and there is a
no-scale structure in the Kähler potential. As a result of this the scalar potential
has no minimum for the Kähler moduli and they are not stabilized by the fluxes we
have introduced here. This problem may be addressed by taking into account non-
perturbative terms in the superpotential and/or α′ corrections in the Kähler potential.
We consider stabilization of the Kähler moduli in Section 3.4, here discuss local minima
of the scalar potential for the dilaton and the complex structure moduli. Because of
the no-scale structure in the Kähler potential, the scalar potential is given by

V = eKKij̄DiWDj̄W̄ , (3.42)

where the index runs only over the dilaton and complex structure. This scalar potential
is positive definite and has Minkowski vacua for DiW = 0. Minkowski vacua are
obtained precisely for ISD three-form flux. In order to show this, we need the following
basis of (2, 1) forms [25]

χa =
∂Ω3

∂Ua
+KUaΩ3 . (3.43)

Using this basis we can express the F-term equations as

DSW = − 1

S + S̄

∫
Y
Ḡ3 ∧ Ω3 , DUaW =

∫
Y
G3 ∧ χa . (3.44)

These equations vanish if the imaginary anti-self dual (IASD) flux is zero. This shows
that Type IIB theory compactified on a Calabi-Yau orientifold with O7/D7 planes and
ISD three-form flux has Minkowski vacua.
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Sector SO(p-1) (p+1)-dim field

NS Vector Gauge boson Aµ
NS Scalar 9-p real scalars ϕm
R spinor fermions λα

Table 3.1: The massless spectrum of a single Dp-brane

3.3 Dp-branes

So far we have analyzed the perturbative action of Type II string theories, which were
explicitly constructed as theories of closed strings. It should be no surprise that these
theories contain non-perturbative objects, since, the low-energy description of string
theory is given in terms of QFT, which in general contains non-perturbative states.
A particularly simple set of non-perturbative objects in Type II string theories are
Dp-branes [26]. At weak string coupling, they can be described as (p+ 1)-dimensional
subspaces of spacetime. The difference in definition between Type IIA and Type IIB
was the particular choice of projection. This turns out to imply that p is an even
number in Type IIA and an odd number in Type IIB. Each theory contains the branes
that couple to the RR-forms present in the spectrum. For instance, Type IIB contains
a D7-brane that couples electrically to C8, IIA does not contain an RR-form of degree
8 and the corresponding BPS Dp-brane is also not present.

Dp-branes are surfaces on which open strings can end. The fact that the vacuum
of the theory does not contain any open strings suggests that a Dp-brane configuration
represents an excited state of the theory. The brane should be regarded as a dynamical
object with the open-string sector describing its dynamics. This setup gives rise to
gauge theories in Type II string theories. The endpoints of open strings are forced to
move on the world-volume of the brane by definition. An observer living on the brane
does not observe the extended nature of the strings and only see charged particles,
since the endpoints are charged objects. From this it follows that the brane world-
volume theory is a gauge theory. The massless spectrum of a single Dp-brane is given
in Table 3.1. The spectrum contains a U(1) vector supermultiplet with respect to
16 supersymmetries in (p + 1) dimensions, which can be viewed as the result of the
dimensional reduction of the ten-dimensional N = 1 vector multiplet. An example is
the D3-brane, whose world-volume theory is N = 4 super Yang-Mills (SYM) theory
containing a U(1) vector multiplet. Since Type II superstring theories contain 32
supersymmetries it is clear from the above discussion that branes preserve half of the
sypersymmetries, hence they are BPS states with charge equal to tension. In the case
of a stack of N Dp-branes the gauge group is enhanced to U(N) and all particles, gauge
bosons, fermions and scalars, transform in the adjoint of the gauge group.

The world-volume theory gives an effective description of the dynamics of the open
strings and hence of the brane. In particular, the (9 − p) massless scalars ϕm are
the Goldstone bosons of the translational symmetries broken by the presence of the
brane. Therefore the vev of these scalars parametrizes the position of the brane in
the transverse space and a non-trivial profile describes the fluctuations of the brane
worldvolume on spacetime. For this reason, these scalars are often called position
moduli. The bosonic action contains two pieces, known as the Dirac-Born-Infeld (DBI)
action and the Chern-Simons action [27].
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The Dirac-Born-Infeld action

From now on we follow the convention that M and N are ten-dimensional indices, µ
and ν are spacetime indices, a and b are internal indices labelling the (p − 3)-cycle
wrapped by the brane, and m and n label the real coordinates transverse to the brane.
The DBI action for a single brane is given by

SDBI = −µp

∫
dp+1ξe−φ

√
−det(P

[
g

1/2
s G−B

]
+ σFMN ) , (3.45)

where the integral runs over the brane world-volume. FMN is the field strength of the
gauge bosons, which is assumed to vanish outside the world-volume of the brane, BMN

is the NS-NS 2-form, GMN is the spacetime metric, φ is the dilaton, σ = 2πα′. We
define the pullback on the brane world-volume as follows,

P [G]ab = Gab +Gam∂bϕm + ∂aϕmGmb + ∂aϕm∂bϕnGmn . (3.46)

The coefficient µp is related to the charge and tension of the brane and is given by

µp =
1

(2π)p(α′)(p+1)/2
=
Mp+1

s

(2π)p
. (3.47)

The DBI action describes the interaction of the world-volume fields with the NS-NS
sector of the Type II theory. Notice that the position moduli enter the action through
the pullback.

The derivation of the above action (and its non-abelian generalization) goes beyond
the scope of this introduction. We do have some intuition on the form of the action. It
is worth mentioning that at first order in α′ we find

SYM =
σ2µp

4gs

∫
dp+1ξ

√−gFMNF
MN , (3.48)

which is the Yang-Mills action for the gauge field. This shows that the DBI action gives
the Nambu-Goto action to lowest order in α′ and the first correction is the standard
world-volume gauge theory.

The Chern-Simons action

The Chern-Simons part of the action describes the topological couplings of the RR-
fields. It is given by

SCS = µp

∫
P

∑
p+1

Cp+1

 ∧ eσF , (3.49)

where p is in for Type IIB and even in Type IIA and we ignore curvature corrections.
We can once again expand this action in α′, setting B2 to zero for clarity,

SCS = µp

(∫
Cp+1 + σ

∫
Cp−1 ∧ F + · · ·

)
. (3.50)

This shows that, indeed, branes carry RR charges and that a Dp-brane is an electrically
charged object for Cp+1. Furthermore, the world-volume gauge fields induce lower-
dimensional D-brane charges, showing that branes can couple to all lower degree RR-
forms.
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We mentioned above that a stack of Dp-branes leads to a gauge group U(N) with all
the fields transforming in the adjoint. In that case, one has to change the derivatives in
the pullback to covariant derivatives of the gauge theory and we have to keep track of
the various non-trivial commutators such as [A,ϕ]. The fields are now N ×N matrices
of the adjoint. In the end the non-abelian extension of the DBI action was found to
be [27,28]

SDBI = −µp

∫
dp+1e−φ

√
−det (P [EMN + EMi(Q−1 − δ)ijEjN ] + σFMN ) det(Qij) ,

(3.51)

where E = g
1/2
s G − B, Qmn = δij + iσ[ϕi, ϕk]Ekj and a symmetrized trace over the

gauge indices is implicit. We discuss this action in more detail in Chapters 5 and 7 and
in Appendix A.

3.4 Kähler moduli stabilization in Type IIB

The only string theory ingredient that we still have to discuss is Kähler moduli stabi-
lization in Type IIB string theory. This is a separate issue compared to the stabilization
of the other moduli because the standard Type IIB superpotential (3.31) does not de-
pend on the Kähler moduli. We are therefore forced to introduce additional ingredients
such as additional (non-geometric) fluxes, α′ corrections or non-perturbative effects. In
order to simplify the discussion we assume that the moduli that appear in the Gukov-
Vafa-Witten superpotential are stabilized at a high scale and that 〈WGVW〉 = W0 is
constant.

Most mechanisms of Kähler moduli stabilization fall in two different classes, those
for which the mass of the Kähler moduli are related to the scale of supersymmetry
breaking like KKLT [29], Kähler uplifting [30] and the Large-Volume-Scenario [31].
And those for which this is not true such as the KL-mechanism [32]. We focus on the
first class and in particular on the KKLT-mechanism because it is one of the simplest
examples and it is the one relevant for the discussion in Chapter 7.

The original paper considers a single Kähler modulus T that parametrizes the vol-
ume of the internal space. The corresponding Kähler potential is then given in Equation
(3.29). This is a big simplification for most compactifications but it can be viewed as
a proof of principle. If we show that we can stabilize one modulus in this way then the
others might be as well. In a realistic model there could be problems that we do not
encounter in this simple toy example. The superpotential is

W = W0 +Ae−αT , (3.52)

where the non-perturbative term is sourced by, for example, a Euclidean D3-brane
instanton or a gaugino condensate on a stack of D7-branes. A is a constant that depends
on the vevs of the dilaton, complex structure moduli and possible position moduli. The
value of α depends on the source of the non-perturbative term, eg. for a pure gauge
gaugino condensate it is α = 2π/N . It is important to note that the computation of
this non-perturbative term relies on the single-instanton approximation implying that
αT > 1. The potential for T can be computed using Equation (3.19). The result has
two extrema, a local maximum at T =∞ and a supersymmetric AdS minimum at the
point determined by DTW = 0. At the AdS minimum we have the following relation
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between the parameters

W0 = −Ae−αTAdS (1 +
2

3
αTAdS) . (3.53)

Throughout this work we assume that the parameters in the superpotential are real [33].
This choice implies that Im(T ) is stabilized at the origin with the same mass as Re(T ).

At this point we are still in an AdS vacuum, whereas for obvious reasons we want
to have a Minkowski or dS vacuum. This requieres us to add a positive contribution to
the scalar potential. This so-called uplift is probably the most discussed part of KKLT.
It can be sourced by anti-D3-branes as in the original setup, but since then many other
sources have been discussed, see [34] and references therein. We are agnostic about the
precise source of the uplift and add a term

Vup = eK∆2 . (3.54)

Adding this term does not change the extremum at T = ∞, but lifts the value of the
potential at the minimum which is now no longer at the point T = TAdS . In addition,
there is now a third extremum which is a local maximum situated between the two other
extrema. In the vacuum one finds the following relations among the parameters [33],

A = − 3W0(αt0 − 1)eαt0

2αt0(αt0 + 2)− 3
, ∆2 =

12α2t20W
2
0 (αt0 − 1)(αt0 + 2)

[3− 2αt0(αt0 + 2)]2
, (3.55)

where t0 is the value of the Kähler modulus in the vacuum. The first equality defines
t0 in terms of the parameters in W . In this vacuum, the auxiliary field of T breaks
supersymmetry, and

FT ≡ eK/2
√
KT T̄DTW =

3
√

3W0

4
√

2αt
5/2
0

+O
[
(αt0)−2

]
. (3.56)

Notice that we have expanded in inverse powers of αt0 which is a good expansion
parameter under the assumptions of KKLT. The gravitino mass is defined as eK/2W
and is given by

m3/2 =
W0

(2t0)3/2
+O

[
(αt0)−1

]
, (3.57)

in the vacuum and the mass of the canonically normalized modulus is

mt = 2αt0m3/2 , (3.58)

this proves our earlier claim that in KKLT the scale of supersymmetry breaking and the
mass of the modulus are related. In KKLT the height of the maximum, or equivalently
the height of the barrier separating the metastable minimum from runaway is given
in Planck unites by Vbarrier ' 3m2

3/2. This is of great importance later on, when
the Lagrangian of the modulus is coupled to inflation. Finally, in KKLT, the scale
of the parameters in W is somewhat constrained by the supergravity approximation.
Consistency requires that t0 > 1 which according to (3.55) implies that W0 � 1 as long
as A ∼ O(1).

23



3.5 Cosmology and inflation

In the remainder of this chapter we review some standard cosmological physics focusing
on inflation [35–37]. This will be useful for our later discussions. In this section we
motivate inflation using one of the problems it addresses, namely the horizon problem.
We then discuss the background and perturbation theory of single-field inflation dis-
cussing the necessary steps to compute the power spectrum. In the next section we
review the same computations for two-field inflation. The ultimate goal is to write the
equations of motion for the scalar perturbations and the power spectra which we use
to discuss a string-inspired model of inflation in Chapter 6. In the last section of this
chapter we touch upon inflation in string theory in general, quickly going over a few of
the principal problems.

We started this thesis with a short history of the universe, traveling back in time
and moving ever closer to the Big Bang. One of the first objects that we encountered
was the cosmic microwave background. We noted that this is the source of the first free
streaming light in the universe. We did not mention that this light has a very uniform
temperature with fluctuations only of about the order of O(10−5). To see why this is a
puzzling property in the context of the hot Big Bang scenario we consider the standard
Friedmann-Robertson-Walker (FRW) metric of a spatially flat universe

ds2 = −dt2 + a2(t)dxidx
i , (3.59)

where a(t) is the scale factor of the universe. The scale factor is related to the Hubble
parameter via H = ∂t log a. We can write this in conformal time given by dτ = a−1(t)dt
as follows

ds2 = a2(τ)ηµνdx
µdxν . (3.60)

In conformal time the distance a photon can travel is equal to the conformal time
elapsed between any two points. Thus the distance that any light can travel is given
by

τ =

∫
dt

a(t)
=

∫
(aH)−1d log a , (3.61)

where (aH)−1 is the comoving Hubble radius. For a universe with an energy momentum
tensor dominated by a perfect fluid, as is the case in the ΛCDM model, the comoving
Hubble radius always expands and the conformal time elapsed between the Big Bang
and the CMB is finite. In fact, it follows that most points in the CMB would have
never been in causal contact. The homogeneity of the CMB appears to be the result
of a fine-tuning of the order of 10−5 in the initial conditions of the universe.

The way out of this is to give the universe more conformal time. Looking at Equa-
tion (3.61) the way to do this is to introduce a period in the past where the comoving
Hubble radius decreases. Because if it decreases rapidly τ gets a relatively large con-
tribution from early times. With a sufficiently rapid decrease there is enough time for
all patches in the sky to have communicated with each other, thus solving the horizon
problem. It is easy to see how this leads to inflation, since it follows from the definition
of the Hubble parameter that

∂t(aH)−1 < 0 ⇒ ∂2
t a > 0 , (3.62)
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which amounts to an accelerating universe. From the Friedmann equation it follows
that the above condition is equivalent to having

ε = − Ḣ

H2
< 1 . (3.63)

ε is one of the slow-roll parameters. We define the end of inflation as the point where
ε = 1. Another important quantity to be defined is the number of e-folds Ne = d log a,
which expresses the growth of the scale factor as a function of time. During inflation
the number of e-folds acts as a time variable as it increases monotically. Typically we
need Ne ≈ 60 to have had successful inflation, though the exact number depends on
the process of reheating [38].

Background evolution

The simplest way to realize a universe which undergoes a period with a shrinking
Hubble radius is to consider Einstein gravity coupled to a real scalar field ϕ, called the
inflaton, in an action of the form

S =

∫
d4x
√−g

[
1

2
R+

1

2
(∂ϕ)2 − V (ϕ)

]
. (3.64)

Inflation puts restrictions on the potential V (ϕ). The inflaton can be decomposed in a
background and a perturbation

ϕ(t, xi) = ϕ0(t) + δϕ(t, xi) , (3.65)

where ϕ0 is the background and δϕ is the perturbation. From the action we can derive
the equations of motion for the background evolution of the scale factor and the inflaton.
Assuming an FRW universe these are given by

ϕ̈0 + 3Hϕ̇0 + Vϕ0 = 0 , H2 =
1

3

(
1

2
ϕ̇2

0 + V (ϕ0)

)
. (3.66)

For slow-roll inflation ϕ̇0 is small compared to V (ϕ0) so we see that H2 ≈ 1
3V (ϕ0).

Hence the potential acts as the Hubble parameter, implying that if it is almost constant
and positive during inflation the universe is quasi-de Sitter. In order to ensure that
inflation lasts a long enough time we need the potential to be constant enough and
hence we need the acceleration of the inflaton to be small. This leads to the second
slow-roll parameter, given by

η = − ϕ̈0

Hϕ̇0
=

ε̇

Hε
, (3.67)

which also has to be small (but could be negative) in order to have successful inflaton.
Related to the above Hubble slow-roll parameters are the potential slow-roll parameters

εv =

(
Vϕ
V

)2

, ηv =
Vϕϕ
V

, (3.68)

which for slow-roll inflation, small ε and small η, are related to the Hubble slow-roll
parameters through ε = εv and η = −2ηv + 4εv.
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Perturbation theory

The background evolution of the universe during inflation is governed by the equations
given above. However, the small fluctuations in the CMB that ultimately lead to
structure in the universe arise from perturbations of this background. This leads us
to consider perturbation theory. In particular we consider perturbations of the metric,
that in general can be written as

ds2 = −(1 + 2Φ)dt2 + 2aBidx
idt+ a2[(1− 2Ψ)δij + Eij ]dx

idxj . (3.69)

Where the metric contains scalar (Φ, Ψ), vector (Bi) and tensor (Eij) perturbations.
They should be supplemented by perturbations in the energy-momentum tensor. These
expressions contain some gauge redundancies which make it possible to eliminate a
number of degrees of freedom and consider only the gauge-invariant combinations [39].
The matter and density perturbations during slow-roll can be related to variations of
the inflaton. We are mostly interested in the following gauge-invariant combination

ζ = Ψ +
H

ϕ̇0
δϕ , (3.70)

called the comoving curvature perturbation [40]. Using some of the gauge freedom to
fix δϕ = 0, the perturbations in gij take the following form

δgij = a2(1− 2ζ)δij + a2hij , (3.71)

where hij is a traceless and transverse tensor. We first discuss the dynamics of the
scalar perturbations ζ before quickly touching on those of the tensor perturbations
hij . A very important result, that we do not prove, is that ζ is time-independent on
superhorizon scales, implying that any quantities that are functions of ζ should be
evaluated at the horizon. Modes leave the horizon when their wavenumber k satisfies
k = aH [41, 42].

We can use either the Arnowitt-Deser-Misner (ADM) formalism [43] or the Einstein
equations to write δg00 and δg0i as a function of ζ and obtain the quadratic action for ζ.
The resulting action is best written in terms of the Mukhanov-Sasaki variable [44,45]

v = a
ϕ̇

H
ζ . (3.72)

This allows us to write the quadratic action for the perturbations as

S =
1

2

∫
dτd3x

[
(∂µv)2 +

H

aϕ̇
∂2
τ

(
aϕ̇

H

)
v2

]
. (3.73)

This is nothing more than the action of a harmonic oscillator with a time-dependent
mass. The equation of motion for the curvature perturbation in Fourier space follows
from this action and is given by

∂2
τv(k) +

(
k2 +

H

aϕ̇
∂2
τ

(
aϕ̇

H

))
v(k) = 0 . (3.74)

This is known as the Mukhanov-Sasaki equation, whose general solution takes the form

v =

∫
d3k

(2π)3/2

[
a−k vke

ik·x + a+
k v
∗
ke
−ik·x

]
. (3.75)

26



Here vk is a complex solution to the Mukhanov-Sasaki equation and the a±k are time-
independent constants. The last step we have to take before we can discuss the power
spectra is the quantization of the field v. This can be done fairly straightforward by
promoting the constants a±k to creation and annihilation operators. The only subtlety
comes from the selection of the vacuum, which is not unique. This is related to the
fact that the background we consider is time-dependent. This issue is resolved by
considering that in the far past all observable modes were deep inside the horizon
for which their frequencies where nearly time-independent. We thus need to impose
Bunch-Davies vacuum conditions

lim
τ→−∞

vk =
1√
2k
e−ikτ , (3.76)

which allow us to solve the Mukhanov-Sasaki equation and give a unique solution
compatible with the Bunch-Davies condition

vk =

√
−πτ

2
H(1)
ν (−kτ) , ν =

3

2
+ ε+

1

2
η , (3.77)

where H
(1)
ν (−kτ) is the Hankel function of the first kind and the index ν is to lowest

order in slow-roll.

Power spectra

The power spectrum of scalar perturbations can be computed from two-point correla-
tion functions of vk

Pζ(k, τ) =
k3

4π2a2ε
|vk|2 =

H2

8π2ε
, (3.78)

which should be evaluated at horizon crossing k = aH. The spectral index ns is defined
as the rate of change of the power spectrum with k as follows

ns = 1 +
d logPζ
d log k

∣∣∣
k=aH

, (3.79)

which is approximately given by

ns = 1− 2ε∗ − η∗ , (3.80)

where the star denotes evaluation at horizon exit. If ns is equal to 1 then the power
spectrum of scalar perturbations would be independent of k, hence it would be scale-
independent.

In order to discuss the power spectrum of tensor perturbations we need to write the
quadratic action of hij . This analysis is very similar to the one for scalar perturbations
and we simply quote the results. We find two copies of the action (3.73) leading to a
power spectrum for tensor perturbations

Pt(k, τ) =
4k3

π2a2
|vk|2 =

2H2

π2
. (3.81)

The last equality shows that measurement of the tensor power spectrum gives direct
information of the scale of inflation. The relevant observable related to tensor pertur-
bations is the tensor-to-scalar ratio which is defined by

r =
Pt
Pζ

= 16ε∗ . (3.82)
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This is one of the most important unmeasured quantities in cosmology. It gives a
direct measure on the energy scale during inflation. We now focus our attention on the
generalization of the discussion in this section to a model with two dynamical fields
during inflation.

3.6 Basics of two-field inflation

In this section we study cosmological perturbations of a system of two scalar fields
coupled to Einstein gravity [46–49]. The action is a simple generalization of the action
studied in the previous section and takes the form

S =

∫ √−gd4x

(
1

2
R− 1

2
Gabg

µν∂µϕ
a∂νϕ

b − V (ϕ)

)
, (3.83)

where Gab denotes the field-space metric and a, b = 1, 2. The scalar fields ϕ1 and ϕ2

span a two-dimensional manifold with all relevant information contained in its metric
Gab. The Christoffel symbols, Riemann tensor and Riemann scalar of the scalar man-
ifold are defined in the usual way. The analysis of perturbations goes along the same
line as in the previous section with a few subtleties. We assume again a background
FRW spacetime, so that we can derive the background equations of motion for the
scalar fields

ϕ̈a0 + Γabcϕ̇
b
0ϕ̇

c
0 + 3Hϕ̇a0 +Gab∂bV = 0 . (3.84)

This expression can be written more economically using the covariant derivative Dϕ̇a =
dϕ̇a0 +Γabcϕ̇

b
0ϕ̇

c
0. The equation of motion for the scale factor is generalized in the obvious

way

H2 =
1

3

(
1

2
ϕ̇2

0 + V

)
, (3.85)

where ϕ̇2
0 = Gabϕ̇

a
0ϕ̇

b
0. Solutions to Equations (3.84) and (3.85) determine the back-

ground evolution of the system. One obvious complication is that the field space is
two-dimensional in this case, so whereas we could think of ε and η as measuring the
velocity and acceleration of the inflaton during inflation, we need to be a bit more
careful here. The equations of motion (3.84) and (3.85) relate ε to the vector tangent
to the trajectory in field space ϕ̇2

0 ≡ Gabϕ̇a0ϕ̇b0. This implies that η, as the derivative of
ε, is related to the tangential acceleration of the background trajectory.

As before we have to expand the scalar and metric degrees of freedom in terms
of the background quantities (ϕa0 and g0

ab) and perturbations, finding the equations of
motion for the gauge-invariant perturbations and solving them [50]. Before writing
the equations of motion of the perturbations we have to define a local frame on the
trajectory in field space given by [46,47,49]

T =
1

ϕ̇0
(ϕ̇1

0, ϕ̇
2
0) ,

N =
1√
Gϕ̇0

(−G22ϕ̇
2
0 −G12ϕ̇

1
0, G11ϕ̇

1
0 +G12ϕ̇

2
0) . (3.86)

These vectors form an orthonormal basis of the tangent space of the scalar manifold.
Hence, they can be used to decompose the physically relevant quantities along the nor-
mal and tangential directions with respect to the background trajectory. In particular,
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the derivatives of the scalar potential can be written in this basis as Vϕ = T a∂aV and
VN = Na∂aV (a labels both components of the basis vectors as well as fields). The
total acceleration of the fields can be derived by taking the covariant derivative of T a,
using the equations of motion and projecting with Na. The result reads

ϕ̈0 = −3Hϕ̇0 − Vϕ . (3.87)

The slow-roll parameter η needs to be generalised to capture the full dynamics in field
space and we need to take the curvature of field space into account. We thus need the
following two slow-roll parameters

ηa = − 1

Hϕ̇0
Dϕ̇a0 , (3.88)

which measure the acceleration of the fields ϕa.
In the local (T,N) basis, the ηa are projected on the following parallel and perpen-

dicular components

η‖ = − ϕ̈0

Hϕ̇0
, η⊥ =

VN

Hϕ̇0
, (3.89)

so that

ηa = η‖T
a + η⊥N

a . (3.90)

η‖ measures the tangential acceleration, responsible for the variation of the modulus
of the background trajectory velocity, whereas η⊥ measures the normal acceleration
causing the background trajectory to curve.

Perturbation theory

As before, the equations of motion for the perturbations are best given in terms of the
gauge-invariant Mukhanov-Sasaki variables [44,45]

Qa = δϕa +
ϕ̇a

H
Ψ , (3.91)

which can also be decomposed using the basis given in Equations (3.86) as follows

vT = aTaQ
a , vN = aNaQ

a , (3.92)

vTα are called curvature modes and vNα are called isocurvature modes.This is the two-field
generalization of (3.72). The action of these variables can be obtained by considering
the general action and expanding to second order in the perturbations. We write them
in Fourier space as

vN,T (x, τ) =

∫
d3k

(2π)3/2
eik·x

∑
α

(
vN,Tα (k, τ)aα(k) + vN,T∗α (k, τ)a†α(−k)

)
, (3.93)

where, after quantization, aα and a†α are the usual creation and annihilation operators.
The Greek index α labels the quantum modes of the perturbations, consistency requires
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that α = 1, 2 in the two-field case. The equations of motion for the Mukhanov-Sasaki
variables in this basis take the form [49]

d2vTα
dτ2

+ 2aHη⊥
dvNα
dτ
− a2H2η2

⊥v
T
α +

d(aHη⊥)

dτ
vNα + ΩTNv

N
α + (ΩTT + k2)vTα = 0,

(3.94)

d2vNα
dτ2

− 2aHη⊥
dvTα
dτ
− a2H2η2

⊥v
N
α −

d(aHη⊥)

dτ
vTα + ΩNTv

T
α + (ΩNN + k2)vNα = 0.

(3.95)

We see that the two-field perturbation system consists of a set of pairwise coupled
harmonic oscillators. The coupling between curvature and isocurvature modes is con-
trolled by η⊥ which is inversely proportional to the curvature radius of the background
trajectory. It follows that the coupling is strong whenever there is a sharp turn in the
background trajectory. The symmetric mass matrix Ω of Equations (3.94) and (3.95)
has the following elements

ΩTT = −a2H2(2 + 2ε− 3η‖ + η‖ξ‖ − 4εη‖ + 2ε2 − η2
⊥) , (3.96)

ΩNN = −a2H2(2− ε) + a2VNN + a2H2εRϕ , (3.97)

ΩTN = a2H2η⊥(3 + ε− 2η‖ − ξ⊥) , (3.98)

where Rϕ is the Ricci scalar of the scalar manifold, and the third slow-roll parameters
are defined by

ξ‖ = −
...
ϕ0

Hϕ̈0
, ξ⊥ = − η̇⊥

Hη⊥
. (3.99)

The initial conditions can be determined by the same logic as in the single-field case.
The system is decoupled (η⊥ = 0) when observationally relevant modes are deep inside
the horizon ( k

aH � 1) and so the initial conditions for the scalar perturbations are fixed
to be Bunch-Davies

vN,Tα = δN,Tα

1√
2k
e−ikτ . (3.100)

Note that in Equation (3.100) it is understood that δT1 = 1, δN2 = 1 and derivatives

define the initial condition for d
dτ v

T,N
α . It is important to note that there are two sets

of equations of motion for the Muhkanov-Sasaki variables (in total 4 equations). There
are corresponding initial conditions, one for each value of α. Both sets of equations
should be taken into account when computing the inflationary observables.

Power spectra

The power spectra are defined in terms of the scalar two-point functions as

Pζ(k, τ) =
k3

4π2a2ε

∑
α=1,2

vTα (k, τ)vT∗α (k, τ) , (3.101)

PS(k, τ) =
k3

4π2a2ε

∑
α=1,2

vNα (k, τ)vN∗α (k, τ) , (3.102)

where Pζ(k, τ) and PS(k, τ) denote the dimensionless power spectra for the curvature
and isocurvature modes, respectively. Given that in multi-field models there can be
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superhorizon evolution of the perturbations, these are to be evaluated at the end of
inflation. This is to be contrasted to single-field models, where the freezing of curva-
ture perturbations on superhorizon scales means the power spectra can be evaluated
at horizon exit. From Equation (3.101) one can compute the spectral index for the
curvature perturbations

ns = 1 +
d ln(Pζ(k, τend))

d ln(k)
, (3.103)

as well as the amplitude at the pivot scale k∗

As = Pζ(k∗, τend), (3.104)

which in the absence of an analytical solution to Equations (3.94) and (3.95) must be
computed numerically. The evolution of tensor modes is unaffected by the number of
dynamical fields driving the background expansion. The amplitude of the tensor power
spectrum is the same as in the single-field case, which implies the following definition
of the tensor-to-scalar ratio

r =
Pt
Pζ

(k∗, τend) =
2H2

πPζ(k∗, τend)
. (3.105)

Besides probing the scalar and tensor power spectra, observations also put bounds on
the total fraction of primordial isocurvature, defined by

βiso =
PS

PS + Pζ
, (3.106)

which is only relevant in multi-field models. From the theoretical point of view the
isocurvature fraction depends on the mass of the isocurvature modes (ΩNN) and on the
strength of their coupling to the adiabatic perturbations. The observational bounds on
βiso can vary by many orders of magnitude, depending on how primordial isocurvature
is transferred to the post-inflationary Universe. In [51] it was found that the less
constraining bound is of the order

βiso ≤ 10−3 (3.107)

at the end of inflation.
In addition to putting constraints on the fraction of primordial isocurvature, obser-

vations also put constraints on the non-linear non-Gaussianity parameters fNL. These
are constraint to be no larger than O(10) by observations. Producing large non-
Gaussianities would, in principle, spoil the validity of an inflationary model. However,
for two-field models the non-linear fNL are of the order of the slow-roll parameters and
hence they are suppressed, see [52], [53]. We do not consider non-Gaussianities beyond
this point.

Decoupling limit and single-field observables

In order to understand how to relate the observables defined above with those of single-
field inflation of the previous section let us take the decoupling limit η⊥ → 0, such that
the equations of motion reduce to

d2vTα
dτ2

+

[
k2 +

1

τ2
(−2− 6ε+ 3η‖)

]
vTα = 0 , (3.108)

d2vNα
dτ2

+

[
k2 +

1

τ2

(
−2 +

M2

H2
+

(
−3 +

2M2

H2

)
ε

)]
vNα = 0 , (3.109)
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where the isocurvature mass is M2 = VNN +H2εR and we have used τ−1 = aH(1− ε)
for the background evolution. Equations (3.108) and (3.109) admit solutions that are
a superpositions of Hankel functions of the first and second kind, which upon imposing
Bunch-Davies boundary conditions reduce to

vT1 =

√−τπ
2

H(1)
νT

(−kτ) ≡ vT , νT =
3

2
+ 2ε− η‖ , (3.110)

vN2 =

√−τπ
2

H(1)
νN

(−kτ) ≡ vN , νN =
3

2

√
1−

(
2M

3H

)2

(1 + 2ε) +
4

3
ε , (3.111)

up to overall unimportant phases, with vT2 = vN1 = 0. The tangential mode is just the
same as for the single-field case. On superhorizon scales, in the decoupling limit, one
can show that the curvature perturbations are frozen as in the pure single-field case,
since QT = vT /a ∝ a0 while the isocurvature perturbations decay as QN = vN/a ∝
aνN−3/2 ∼ a−

2M2

9H2 , to zeroth order in slow roll, leaving only the single-field limit.
In order to make contact with observations one can compute the dimensionless

power spectrum of curvature perturbations in this limit, finding

Pζ =
k3

4π2a2ε
|VT|2 →

(
k

aH

)3−2νT H2

8πε
, (3.112)

on superhorizon scales, which implies the following definitions for the spectral index
and the amplitude

ns − 1 = 3− 2 νT = −4 ε+ 2 η‖ = −2ε− η and As =
H2

8π2ε
. (3.113)

Given that in the η⊥ = 0 limit the curvature perturbations are frozen once they leave
the horizon, these observables can be evaluated at horizon exit, when k = aH.

By performing a similar computation for the isocurvature modes we can show that
the amplitude of the isocurvature power spectrum at horizon crossing is the same as for
the curvature modes. As noted above, due to the fact that νN < 3/2, the isocurvature
perturbations decay on superhorizon scales with a rate controlled by the ratio M2/H2.
This implies that the isocurvature fraction at the end of inflation scales as

βiso ∼
|vN |2
|vT |2 = a−

4M2

9H2 (3.114)

and is therefore suppressed if at some stage during observable inflation M ≥ H. The
tensor-to-scalar ratio is given in the decoupling limit by its single-field expression

r =
At
As

= 16 ε∗ . (3.115)

3.7 String inflation

Now that we have discussed the theoretical ingredients needed for this thesis we end
with a short discussion on string inflation, see eg. [34, 54–57] for more detailed discus-
sions. When we introduced the tensor-to-scalar ratio r we mentioned that a measure-
ment would give direct data about the energy scale of inflation. Besides the energy
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scale, r also contains information about the field excursion of the inflaton through the
so-called Lyth bound [58]

∆φ ≥ 1

4

√
r

0.01
, (3.116)

which can be derived under rather general assumptions. This bound in particular im-
plies that if r ≥ 0.01 then the field excursion of the inflaton was super-Planckian during
inflation. Models with super-Planckian displacement are called large-field models and
are the only class we consider in this thesis. Rather than a problem, the Lyth bound
gives a motivation of embedding inflation into string theory. We discussed inflation
disconnected from other physics, but this is in general not the case. Other physics has
to be integrated out, which, generically, gives extra terms in the effective Lagrangian.
These terms can depend on (large) powers of the inflaton field and, because of the
trans-Planckian field values during inflation, they could dominate the Lagrangian. In
principle, a full understanding of the connection between inflation and other physics
is needed. In particular, knowledge of the embedding of the model in string theory is
needed to show that the inflationary Lagrangian does not get modified significantly.
To ensure that the inflaton potential survives the integrating out of heavy physics, it
is usually constructed in such a way that it has properties, such as symmetries, that
protect it. We consider such a property in Chapter 4, where we discuss monodromic
potentials in string compactifications.

We focus on string inflation models embedded in Type II string theory. They can
be split in two classes depending on the origin of the inflaton: the inflaton can be a
closed-string field or an open-string field. Models where the inflaton is a closed-string
field can be decomposed further into models where the inflaton is a geometric modulus
and into models where the inflaton is a zero mode of one of the ten-dimensional NS
or RR forms. Examples of the first class of closed-string inflation are Kähler moduli
inflation [59,60] and Fibre inflation [61]. On the other hand, examples of models where
the inflaton is one of the axions of the closed-string moduli are Race-track inflation [62],
N-flation [63] and axion-monodromy [64,65]. Examples of models where the inflaton is
an open-string modulus are brane/anti-brane inflation [66,67], Wilson line inflation [68],
inflation using D3/D7-branes [69] and models with only Dp-branes [70–72].

Let us comment on a fairly generic problem in string inflation, and, more generally,
supergravity, called the η-problem. The problem takes a lot of different forms but it
generically leads to a potential with the slow-roll parameter η unfit for inflation. We
illustrate this with the simple example of a complex inflaton in N = 1 supergravity.
We can expand the the eK factor of the F-term potential around a reference point,
which we take to be the origin, to find

V (φ) = V (0)(1 + φφ̄+ · · · ) , (3.117)

where the dots indicate terms coming from expansions of the Kähler and superpotential
not in the exponential of the F-term potential. Unless the terms in the dots cancel the
quadratic term in φ, the inflaton has a large mass and η ≈ 1. Without some fine-
tuning of the parameters in the model this cancellation does not happen and inflation
is ruined. All successful models of string inflation either admit a bit of fine-tuning or
assume that the inflaton does not appear in the Kähler potential such that the above
expansion does not apply. This can be achieved by a complex field that appears as
φ+ φ̄ in the Kähler potential, the complex part of φ is then the inflaton candidate, and
is the situation for the class of models discussed in Chapters 6 and 7.

33



Besides the η-problem there exist a number of other challenges in string inflation.
One of the most basic properties that all successful models should have is the following
hierarchy of masses

H < MKK < Ms < Mp ,

which gives sufficient theoretical control. This hierarchy implies that we can compactify
a ten-dimensional supergravity theory, without having to worry about string states, and
that we do not have to worry about Kaluza-Klein (KK) states during inflation. Even
if this mass hierarchy can be achieved it is, in general, difficult to obtain a model with
one field parametrically lighter than other fields in the spectrum. If this is not then
case then it is necessary to consider models with more than one inflaton such as the
one discussed in Chapter 6.

A related issue is the generic presence of moduli in the spectrum of a string compact-
ification. If the inflaton mass is of the same scale as the masses of (some of) the moduli
then interactions between these fields during inflation could destabilize the model. It is
therefore necessary to stabilize the moduli at a high mass scale and to integrate them
out consistently. It is not sufficient to set the moduli to their vevs even if they have
a high mass since, during inflation, their expectation values depend on the inflaton.
This backreaction generically leads to run-away behaviour for the inflaton at large-field
values. It has to be checked explicitly that a period of inflation is still possible after the
moduli have been integrated out. We discuss moduli stabilization in length in Chapter
7.
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Chapter 4

Monodromy and four-forms

In the present chapter we discuss the role played by Minkowski four-forms, understood
as the field strengths of corresponding three-forms, in four-dimensional models. We dis-
cuss how these four-forms provide a potential for scalar fields that exhibit monodromy
in the so-called Kalopor-Sorbo mechanism. We address how monodromy helps alleviate
some of the problems of embedding large-field inflation in a UV-complete theory. To
connect with string theory we study in a systematic way the appearance of Minkowski
four-forms in four-dimensional Type II, N = 1 vacua. We find that in these vacua
RR and NS closed-string fluxes are in one-to-one correspondence with Minkowski four-
forms. The full dependence of the flux scalar potential on RR and NS axions always
goes through combinations of Minkowski three-forms. As a result the scalar potentials
of string flux vacua have a branched structure. As in the Kalopor-Sorbo field theory
model, gauge invariance of the four-forms combined with the duality symmetries of the
compactification constrain the corrections to the axion potential to come suppressed
by powers of the cut-off scale of the effective theory.

We study first Type IIA but also present analogous results for Type IIB, for both
the open- and closed-string sector. Similar conclusions hold in this setup, but the final
result is less engaging and some of the interesting structure of the Type IIA case is
not apparent. In both cases we find that the full closed-string axion potential can be
written through couplings with Minkowski four-forms. In case of the open-string sector
we find that the world-volume potential of the position modulus of a D7-brane can be
written in terms of four-forms and therefore exhibits the same structure.

The structure of this chapter is as follows. In Section 4.1 we recall important facts
about Minkowski four-forms. In Section 4.2 we introduce the Kalopor-Sorbo mechanism
by discussing the simplest field-theory example. In Section 4.3 we study the structure of
Minkowski four-forms in Type IIA orientifold compactifications with RR and NS fluxes.
We perform the dimensional reduction starting from the ten-dimensional democratic
Type IIA action and focus on the couplings of the Minkowski four-forms. We show
that they behave as auxiliary fields of moduli and that they are invariant under a class
of discrete symmetries involving both RR and NS axion shifts as well as internal flux
transformations. In the toroidal case we consider the action of R ↔ 1/R dualities.
Finally, we discuss the effect of geometric fluxes in the compactification and show that
the same conclusions hold. In Section 4.4 we discuss four-forms in Type IIB orientifolds
and in Section 4.5 we consider some of the results of Sections 4.3 and 4.4 in connection
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to four-dimensional supergravity. In Section 4.6 we show how four-forms may arise
from the open-string sector, by dimensionally reducing the duals of the world-volume
F2 gauge field strengths. Here we focus on the example of Type IIB with D7-branes.

4.1 Minkowski four-forms

Consistency of Poincaré invariance in field theory implies that the possible Lorentz
structure of massless fields is quite limited. The standard model, for example, contains
particles fermions with spin 1/2, a scalar and vector bosons that are one-forms. How-
ever, extensions of the standard model may contain particles with different spins, still
allowed by Poincaré invariance. In this section we will show that there is interesting
physics related to three-form gauge fields.

Generically, the action of a three-form includes the terms

S = −1

2

∫ √−g|F4|2 + Sbound + Smem + Sint , (4.1)

where F4 = dC3 is the four-form field strength of the three-form. Sbound includes
boundary terms that do not modify the equations of motion and will not play a part in
our discussion. Smem describes the coupling of the three-form to possible membranes
in the theory. These membranes are, for instance, Dp-branes or NS-branes in Type
II compactifications. Finally, Sint allows for possible couplings between the three-form
and scalar fields. This is the part of the action that we will be mostly concerned
with throughout this chapter. If there are no membranes nearby and ignoring possible
interaction terms for the moment, the equation of motion of C3, d(

√−gF4) = 0, force
F4 to be constant, at least locally,

Fµνρσ = fεµνρσ . (4.2)

As a result, there is no local dynamics and putting C3 on-shell adds a contribution to
the cosmological constant [73]. As pointed out in [74], in string theory f , the value of
the four-form is quantized in units of the membrane charge, f = qn with n integer.
This is slightly different from the usual Dirac quantization condition that requires that
the integral of the four-form over some appropriate cycle be quantized.

It is possible for f to change when membranes are present [73]. We have to consider
Smem, which describes the coupling of C3 to a membrane

Smem = q

∫
D3

C3 , (4.3)

where D3 is the membrane world-volume. Membrane nucleation is a mechanism to
change the value of f and hence the cosmological constant. In this way the picture
arises that different patches of the universe have different values of the cosmological
constant. In this setup we are surrounded by domain walls seperating us from regions
with other (potentially dangerous) values of the cosmological constant. A difficulty with
the proposal as it is formulated in [74] is that within string theory we will generally
not have Sint = 0 and we cannot separate the issue of the value of the cosmological
constant from that of moduli stabilization. One expects the four-forms to couple to the
moduli, making the situation far more complicated. However, we will not address the
application of three-forms to the issue of the cosmological constant in this thesis.
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4.2 The Kaloper-Sorbo mechanism

We now turn to axion monodromy and the role four-forms play in this discussion.
Kaloper and Sorbo [75,76] showed that four-forms in field theory provide a natural way
to gauge the shift symmetry of an axion and induce a quadratic potential stable under
corrections to the action that arise, for instance, from integrating out heavy modes. An
example of a situation where this is particularly important is in models of large-field
inflation, where the inflaton has trans-Planckian field excursions. The Kaloper-Sorbo
mechanism is an example of a situation where there is a bilinear coupling between a
scalar field and a four-form in the action. Let us consider the simplest example of this
mechanism. The relevant part of the action is

SKS =

∫
M
−1

2
|∂φ|2 − 1

2
|F4|2 + µφF4 , (4.4)

with µ a parameter with dimensions of mass. The identity dC3 = F4 can be imposed
by adding a Lagrange multiplier term to the action. The equation of motion for the
four-form is easy to find

d(∗4F4 − µφ) = 0 . (4.5)

Its solution reads

∗4F4 = f + µφ , (4.6)

where f is an integration constant. Since this is a constraint equation we can directly
plug it back in the action. The axion gains a potential

V (φ) =
1

2
(f + µφ)2 , (4.7)

which is essentially the square of the four-form field strength.1 The minimum of the
potential lies at φmin = −f/µ. As before f is interpreted as the four-form vev. The
axion still has a shift symmetry,

φ→ φ+ 2πn , f → f − 2πµn , (4.8)

where a shift of φ is compensated by a shift of the four-form. Once f is fixed the shift
symmetry is broken spontaneously. This shows that V (φ) is not a scalar potential but
rather a family of scalar potentials or different branches parametrized by the value of
f . Fixing f amounts to choosing a single branch of this family. After gauge fixing we
are left with a single quadratic potential for φ.

What makes this elaborate construction of a simple quadratic potential interesting is
that the symmetries protect the potential from cut-off suppressed corrections. Before
integrating out the four-form, gauge invariance of C3 and the shift symmetry of φ
force the corrections to appear in powers (F 2

4 /M
4)n, with M the ultraviolet cut-off of

the theory, rather than arbitrary powers of φ. Couplings of φ to other fields should
only come in terms of derivatives of φ. Thus, in this simple model, corrections to
the potential should appear as powers of V0/M

4. This is crucial for the stability of
large-field inflation.

1The correct sign of the potential is obtained after taking boundary terms into account, see [77].
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The Kaloper-Sorbo Lagrangian is a field theory avatar of the monodromy inflation
models of [64, 64, 65, 70, 78–95] that are based on string theory. In those models large-
field inflation is attained by coupling an axion-like field to an external source of energy,
like, for example, a brane tension. Upon a period the field gets a shift in energy, so that
the field does not come to the same point but rather performs a large trans-Planckian
excursion. In [78] it has been explicitly shown how a structure analogous to that of
the Kaloper-Sorbo Lagrangian appears in specific string constructions. In the following
sections we will see to what extent couplings between four-forms and scalar fields appear
in flux compactifications of Type II string theories.

4.3 Four-forms in Type IIA orientifolds

We now turn to describe how four-dimensional four-forms appear in Type IIA orien-
tifold compactifications. The compactification of ten-dimensional massive Type IIA
string theory on a Calabi-Yau three-fold in the presence of background fluxes has been
thoroughly studied in, for example, [19, 22, 96–98]. Here we perform the compactifica-
tion while keeping track of all Minkowski four-forms that appear upon dimensionally
reducing the ten-dimensional RR and NS fields. This leads to a new formulation of the
full scalar potential in terms of Minkowski four-forms and the intriguing result that the
full dependence of the flux scalar potential on RR and NS axions comes only through
couplings to the four-forms. We make use of the symmetries of Type II string theory
to show that corrections to this extended result can once again only appear in powers
of the scalar potential itself. Ultimately, this means that we find a generalization of
the simple field-theory example discussed in the previous section.

4.3.1 Four-forms, RR and NS fluxes in IIA orientifolds

We consider Type IIA string theory in the democratic formalism discussed in Section
3.1. The massless bosonic matter content in the NS sector contains as usual the metric,
dilaton and two-form B2. The p-form fields Cp coming from the RR sector have p =
1, 3, 5, 7, 9. The corresponding gauge invariant field strengths are defined as [16,22]

Gp = dCp−1 −H3 ∧ Cp−3 + FeB , (4.9)

where F is a formal sum over all the RR fluxes. Remember that the relevant parts of
the action are given by

S =SRR + SNS + Sloc , (4.10)

(4.11)

with

SRR =
1

4k2
10

∫
R1,3×Y

G4 ∧G6 +G2 ∧G8 +G0 ∧G10 , (4.12)

SNS =− 1

4k2
10

∫
R1,3×Y

e−2φH3 ∧ ∗10H3 (4.13)

Sloc refers to the contribution from localized sources like D6-branes and O6-planes
and G0 = −m. We compactify this theory an orientifolded Calabi-Yau three-fold Y
such that there are O6 planes and the four-dimensional effective theory has N = 1
supersymmetry. The basis of harmonic forms is given in Equations (3.10). We keep
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track of all the four-form field strengths in four dimensions by expanding Fp = dCp−1

in terms of internal fluxes and Minkowski four-forms

F0 = −m , F2 =
∑
i

qiωi , F4 = F 0
4 +

∑
i

eiω̃i

F6 =
∑
i

F i4ωi + e0dvol6 , F8 =
∑
a

F a4 ω̃a , F10 = Fm4 dvol6 . (4.14)

Here a and i run from 1 to h1,1
− . We use them to distinguish the different four-forms.

The parameters e0, ei, qi,m refer to the internal RR fluxes on Y which will induce a

scalar potential for the moduli of the compactification. In addition we get 2h
(1,1)
− + 2

Minkowski four-forms labelled by F 0
4 , F i4, F a4 and Fm4 . There are also four-forms coming

from the dual of the NS two-form B2

H3 =

h−2,1∑
K=0

hKβK , H7 =
∑
K

HK
4 ∧ αK , (4.15)

from which we obtain h+
2,1 + 1 additional Minkowski four-forms HK

4 . The axions arise
from the expansion of B2 and C3

B2 =
∑
a

baωa , C3 =
∑
K

cK3 αK (4.16)

where bi and cI3 are four-dimensional scalars. They correspond to the axionic part of

the complex supergravity fields T a, S and U K̃ , as discussed in Section 3.2.

Scalar potential

We start by analyzing SRR, which we have to supplement with the duality relations
given in Equation (3.8). Plugging Equations (4.14)-(4.16) into the above RR action
and integrating over the internal dimensions we obtain the following effective scalar
potential, from the RR sector, in four dimensions

VRR = −1

2

[
F 0

4

(
e0 + biei +

1

2
kijkb

ibjqk −
m

6
kijkb

ibjbk
)

+

+F i4

(
ei + kijkb

jqk −
1

2
mkijkb

jbk
)

+ F a4 (qa −mba)− kmFm4
]
, (4.17)

where k is the volume of the internal space and kijk are the triple intersection numbers,
which are related by

k =
1

6
kijkv

ivjvk . (4.18)

Here the vi are the real part of the Kähler moduli. Adding VNS,, we see, from the full
scalar potential, that the four-forms couple to the functions

ρ0 = e0 + biei + kijk
1

2
qib

jbk − m

6
kijkb

ibjbk − h0c
0
3 − hici3 ,

ρi = ej + kjklb
kql − m

2
kjklb

kbl ,

ρa = qb −mbb ,
ρm = −m , (4.19)
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which we define for later convenience.
Interestingly, we can write this scalar potential in a convenient form using the

duality relations given in Equation (3.8). They relate the internal fluxes, axions and
four-forms. For instance, expanding G4 and G6 into Minkowski and internal parts and
imposing the duality relations we find an expression for ∗4F 0

4 in terms of the fluxes and
axions. Similarly, for the other Minkowski four-forms

∗4F 0
4 =

1

k
(e0 + eib

i +
1

2
kijkq

ibjbk − m

3!
kijkb

ibjbk − h0c
0
3 − hici3) ,

∗4F i4 =
gij

4k
(ej + kijkb

jqk − m

2
kijkb

jbk) ,

∗4F a4 = 4kgab(qb −mbb) ,
∗4Fm4 = −m , (4.20)

where gij = 1
4k

∫
ωi ∧ ∗ωj is the metric of the Kähler moduli space. This allows us to

write the scalar potential in the form

VRR = −1

2

[
−kF 0

4 ∧ ∗F 0
4 + 2F 0

4 ρ0 − 4kgij ∗ F i4 ∧ F j4 + 2F i4ρi−

− 1

4k
gabF

a
4 ∧ ∗F b4 + 2F a4 ρa + kFm4 ∧ ∗Fm4

]
. (4.21)

Here Equations (4.20) arise as equations of motion for the three-forms.
We can perform the same analysis for the NS part of the action. The kinetic term

for the NS field leads to the following contribution

VNS =
1

2
e−2φcKLH

K
4 H

L
4 , (4.22)

where cKL =
∫
βK ∧ ∗βL is the metric of the complex structure moduli space. Duality

between H3 and H7 leads to a relation between the Minkowski four-form and the NS
internal flux,

∗4HI
4 = hI . (4.23)

Finally, the contribution from localized sources can be written as [22]

Vloc =
∑
a

∫
Σ
Ta
√−g e−φ , (4.24)

where Ta is the tension of the source and Σ its world-volume. Assuming that tadpole
cancellation is satisfied, this contribution can be related to the fluxes and the real part
of the moduli such that [22]

Vloc =
1

2
eKvivjvkkijk(mh0s−mhiui) , (4.25)

where s, ui, vi the real parts of the S,Ui, Ti moduli, respectively. Combining all pieces
and using Equation (4.20) we find the following scalar potential

V =
k

2
|F 0

4 |2 + 2k
∑
ij

gijF
i
4F

j
4 +

1

8k

∑
ab

gabF
a
4 F

b
4 + k|Fm4 |2 +

1

2s2

∑
IJ

cIJH
I
4H

J
4 + Vloc ,

(4.26)
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or equivalently

V =
1

2k
(e0 + eib

i +
1

2
qikijkb

jbk − 1

6
mkijkb

ibjbk)2+

+
gij̄

8k
(ei + qkkiklb

l − 1

2
mkiklb

kbl)(ej + qmkjmnb
n − 1

2
mkjmnb

mbn)+

+ 2kgij(q
i −mbi)(qj −mbj) + km2 +

1

2s2

∑
IJ

cIJh
IhJ + Vloc (4.27)

which is the scalar potential obtained previously in the literature [96]. It can also be
recovered from an N = 1 four-dimensional effective Kähler potential and superpoten-
tial, see [19]. We would like to stress that the full axionic part of the scalar potential
can be written in terms of the above couplings to Minkowski four-forms and it is always
positive definite.

It is worth mentioning a subtlety regarding the process of integrating out the four-
form. Considering (4.21), the equation of motion for the four-form implies

d(∗4F4 − ρ) = 0→ ∗4F4 − ρ = c , (4.28)

where c is a constant and ρ one of the functions depending on the axionic moduli defined
in (4.19). This would imply a shift on the four-form background leading to new terms in
the scalar potential that cannot be recovered from the supergravity description. These
shifts agree with the results of [99–101], for which a four-form acting as an auxiliary field
implies a shift on the scalar potential with respect to the standard supergravity formula.
While valid from a pure effective four-dimensional approach, our four-forms descend
from RR and NS fields which are related, at the classical level, by Hodge duality. In
fact, we have seen that the Hodge dualities relate the four-form backgrounds and the
internal fluxes forcing this extra shift to vanish.

4.3.2 Symmetries

The reason for writing the scalar potential in terms of four-forms is that it allows us to
see the same structure as in the simple Kalopor-Sorbo example, Equation (4.4). It is
also important that the resulting scalar potential has the right symmetries to constrain
corrections to the effective action. The effective scalar potential (4.26) indeed has the
right shift and duality symmetries. In particular, the scalar potential is invariant under
simultaneous shifts of the fluxes and the axions, which correspond to shifts on the
axionic components of the Kähler and complex structure moduli. A shift on the Kähler
axion given by

bi → bi + ni , (4.29)

combined with

m→ m = ρm , (4.30)

qa → qa + nam = ρa(bi = −ni) , (4.31)

ei → ei − kijkqjnk −
m

2
kijkn

jnk = ρi(bi = −ni) , (4.32)

e0 → e0 − eini +
1

2
kijkq

injnk +
m

6
kijkn

injnk = ρ0(bi = −ni) , (4.33)
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leaves the scalar potential invariant and relates equivalent vacua. These transforma-
tions were first introduced in the toroidal orientifold of [97]. They are expected to be
part of the duality symmetries of any Calabi-Yau orientifold. In the mirror Type IIB
picture this corresponds to a shift on the complex structure of the torus. Notice that
the above transformations leave invariant each four-form independently, as expected
from higher-dimensional gauge invariance. Therefore, the derivation of this group of
transformations is more intuitive in this formulation in terms of four-forms than in the
supergravity description. They also correspond to a generalization of the Kaloper-Sorbo
shift symmetry underlying the axion monodromy inflationary models.

Analogously, the scalar potential is also invariant under shifts on the complex struc-
ture moduli of the form

cI3 → cI3 + nI , (4.34)

combined with a shift in the fluxes

e0 → e0 + hInI , (4.35)

corresponding to the mirror of Type IIB SL(2,Z) shifts. Also in this case, the four-
forms remain invariant independently. Note that this is not enough to guarantee that
corrections to the effective action appear in powers of the scalar potential. Rather these
shifts imply that corrections appear in powers of the four-forms. This is clearly not
sufficient since, even though the scalar potential itself may have a lower value than the
cut-off, separate terms may not. We require symmetries that relate the different four-
forms. In a toroidal compactification we can make use of the well-known T-dualities.

T-dualities

Let us consider Type IIA compactified on a orientifolded torus, and focus on the three
Kähler moduli. Consider the effect of performing two or more T-duality transformations
over the system. Given a basis of two-forms ωi such that the Kähler form can be written
as usual

J =
3∑
i=1

viωi , (4.36)

we can perform two T-duality transformations along the two real directions of the
Poincaré-dual two-cycle of some ωi. In particular, if a T-duality transformation is
performed along i = 3 we obtain again a Type IIA theory in which

v3 → 1

v3
(4.37)

and the other two fields vi with i 6= 3 remain invariant. In this case v3 corresponds to the
area of the two-torus along which we perform the two T-duality transformations. Let
us assume for simplicity an isotropic compactification such that the triple intersection
number is kijk = 1 if all the indices are different, and zero otherwise. The volume of
the manifold transforms as

k =
1

6
kijkv

ivjvk = v1v2v3 → v1v2

v3
(4.38)
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The metric is given in general by

gij = −1

4

(
kij
k
− 1

4

kikj
k2

)
, gij = −4k

(
kij − vivj

2k

)
, (4.39)

and transforms under the two T-duality transformations as

g33

8k
↔ 1

4k
,

g11

8k
↔ kg22 ,

g22

8k
↔ kg11 , 2kg33 ↔

k

2
. (4.40)

The RR part of the scalar potential is invariant under this T-duality if the functions
defined in (4.19) are also interchanged

ρ0 ↔ ρi if i = 3 (4.41)

ρi ↔ ρa if i 6= a 6= 3 (4.42)

ρa ↔ ρm if a = 3 (4.43)

Therefore, T-duality exchanges Minkowski four-forms with each other. Recall that
each four-form comes from dimensionally reducing the field strength of the different
higher-dimensional RR fields. One can confirm that the result matches with the known
transformation rules for the RR fields under T-duality,

C3 ↔ C5 if C5 propagates along the T-dual direction (4.44)

C5 ↔ C7 if C7 (but not C5) propagates along the T-dual direction (4.45)

C7 ↔ C9 if C9 (but not C7) propagates along the T-dual direction . (4.46)

Finally, if the internal manifold is T6 we can perform a T-dual transformation along
all the internal dimensions, obtaining

k ↔ 1

k
,

gij

8k
↔ kgij , (4.47)

and the potential is invariant if

ρ0 ↔ ρm , ρi ↔ ρa , (4.48)

consistent with the transformation rules for the RR fields. Note that T-dualities relate
the different four-forms in such a way that only the full scalar potential VRR, involving
all four-forms, is invariant under all dualities and shift symmetries. In particular, this
implies that corrections to the scalar potential should come in powers of the scalar
potential, not in powers of the separate four-forms. This is particularly useful when
discussing large-field inflation, since in that case the energy density is well below the
Planck scale whereas the field excursion is super Planckian.

4.3.3 Four-forms and geometric fluxes in toroidal Type IIA orien-
tifolds

It is known that beyond standard RR and NS other, less studied NS fluxes may be
present. These appear as geometric fluxes in toroidal models in the context of Scherk-
Schwarz reductions. Geometric fluxes can be seen as non-trivial components of the
curvature two-form. See [22, 98] and references therein for a more thorough discussion
of geometric fluxes. In this section we will explore whether the addition of these fluxes
changes the above discussion.

43



First, we are interested to see how the presence of geometric fluxes change the
four-forms described in Equations (4.20). For simplicity we assume geometric fluxes on
a factorized six-torus ⊗3

i=1T2
i , with O6-planes wrapping three-cycles. In addition we

assume there is a Z2×Z2 orbifold twist so that only diagonal moduli survive projection.
In this case we are left with three Kähler moduli and four complex structure moduli
(including the complex dilaton). In this setting there are twelve geometric fluxes ωMNK
that are convienently written in a three-vector ai and a 3× 3-matrix bij , see [15,98] for
notation.

Geometric fluxes can be used to convert a p-form into a (p+ 1)-form

(dX)N1...Np+1 = ωK[N1N2
XN3...Np+1]K , (4.49)

denoted by ω ·X. In particular,

ω ·B = biaiβ0 − bibijβj and ω · C3 = −ω̃iaic0 + ω̃ibijc
j . (4.50)

Using these relations it is possible to define a generalized operator d̃ = d+ ω that acts
on forms instead of the standard differential. In this way geometric fluxes change the
field strengths of B2, C3 and C5 as follows [22]:

G4 → F4 + ω · C3 −H ∧ C1 − ω ·B2 ∧ C1 + FeB , (4.51)

G6 → F6 −H ∧ C3 − ω ·B2 ∧ C3 + FeB , (4.52)

H3 → H3 + ω ·B2 . (4.53)

Substituting these field strengths in the Type IIA action and integrating over the in-
ternal dimensions as before we find an extra coupling in the NS sector,

−
∫
Y
e−2φω ·B ∧H7 =

e−2φ4

k

(
biaiH

0
4 − bibijHj

4

)
, (4.54)

and two in the RR sector,

−
∫
Y
G4 ∧G6 = F 0

4

(
bibijc

j − biaic0
)
− F i4(bijc

j − aic0) . (4.55)

In this way the four-forms are modified as follows,

∗4F 0
4 =

1

k
[e0 + biei −

1

6
mkijkb

ibjbk +
1

2
kijkqib

jbk − h0c
0
3 − hici3 + bibijc

j
3 − biaic0

3] ,

∗4F i4 =
gij

4k
[ej + kjklb

kql − m

2
kjklb

kbl + bjkc
k
3 − ajc0

3] ,

∗4H0
4 = h0 + biai ,

∗4H i
4 = hi − bjbji .

One can show that the scalar potential obtained from these four-forms and Equation
(4.26) can also be obtained from the superpotential given in [22,98].

Symmetries

Naturally we need to wonder if a shift in the axions can still be compensated by a shift
in the flux. Since the geometric fluxes mix the NS and RR axions we need to shift them
simultaneously. Shifting

bi → bi + nib , (4.56)

cJ → cJ + nJc , (4.57)
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in combination with

h0 → h0 − ainib , (4.58)

hi → hi + njbbji , (4.59)

ej → ej + ajn
0
c − bjknkc , (4.60)

e0 → e0 + hin
i
c + h0n

0
c + nibbijn

j
c − nibain0

c , (4.61)

and in combination with the shifts of the previous section, leaves all four-forms invari-
ant separately. Since the four-forms themselves are still related through T-dualities
this shows that introducing a more general flux background does not change the overall
structure of the scalar potential found in Equation (4.26), nor does it change its sym-
metries in a significant way. All in all, the general structure for four-forms we described
above remains in the presence of geometric fluxes.

4.4 Four-forms in Type IIB orientifolds

In this section we concentrate on four-forms descending from the closed-string sector of
Type IIB orientifolds with RR and NS fluxes. We will see that similar results as in the
Type IIA case hold. In Type IIB the dilaton and fluxes naturally combine into complex
objects, leading to complex four-forms in the effective theory. Compared to Type IIA,
the structure in Type IIB [20, 102] is slightly simpler because only the NS three-form
H3 and RR three-form F3 play a role in the context of Calabi-Yau orientifolds. It is
convenient to define the complex three-form

G3 = F3 − iSH3 , (4.62)

as in Chapter 3. The relevant piece of the action for our discussion is the kinetic terms
of the RR and NS two-forms, which in complex notation may be written as

SIIB = − 1

2k2
10

∫
R1,3×Y

1

3!

1

S + S∗
G3 ∧ ∗Ḡ3 (4.63)

where ∗Ḡ3 = Ḡ7. As we did in Type IIA, we can now expand G7 in terms of internal
harmonics with coefficients given by Minkowski four-forms and fluxes. We consider
only primitive IASD G3 fluxes. These fluxes induce supersymmetry-breaking F-terms
as discussed in Chapter 3. The contribution from primitive ISD G3 fluxes does not de-
pend on the moduli, but rather appears combined with the contribution from localized
sources in the tadpole cancellation conditions which we do not consider. The relevant
expansion of G7 is given by

G7 = G
0
4 ∧ Ω + G

a
4 ∧ χa , a = 1, .., h2,1 , (4.64)

where Ω is the Calabi-Yau three-form, and χa is the basis of three-forms given in
Equation (3.43). Here G0

4 and Ga4 are complex Minkowski four-forms which may be
written in terms of NS and RR pieces F4, H4 as

G0
4 = F 0

4 − iSH0
4 and Ga4 = F a4 − iSHa

4 . (4.65)

We can substitute the expansion of G7 in the Type IIB action. The term G3 ∧ Ḡ7

induces couplings of the four-forms to the axions and fluxes. This term splits according
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to the expansion given in Equation (4.64). The piece proportional to Ga4 gives the
coupling

1

S + S∗

∑
a

G
a
4

∫
Y
G3 ∧

(
∂Ω

∂Ua
+ KUaΩ

)
=

1

S + S∗

∑
a

G
a
4 Da

∫
Y
G3 ∧ Ω (4.66)

=
1

S + S∗

∑
a

G
a
4 DaWGVW , (4.67)

where WGVW is the Gukov-Vafa-Witten superpotential. We have used Equation (3.43)
and Da are the Kähler covariant derivatives with respect to the complex structure fields
Ua. The remaining piece of G3 ∧ Ḡ7 is proportional to the four-form G0

4,

1

S + S∗
G

0
4

∫
Y
G3 ∧ Ω = −G0

4 (DSWGVW ) . (4.68)

We observe that the four-forms couple to the covariant derivatives of the Gukov-Vafa-
Witten superpotential, implying that upon integrating them out we are left with the
positive definite part of the scalar potential. Hence we can already conclude that we
find the same structure as in Type IIA.

We can complete the description of the four-dimensional action by considering
the ten-dimensional kinetic term of the seven-form. This yields the four-dimensional
quadratic piece

κ

S + S∗
(|G0

4|2 −Ga4G
b
4Gab̄) , (4.69)

where

κ =

∫
Y

Ω ∧ Ω = ie−Kc.s.(Ua) (4.70)

with Kc.s.(Ua) the Kähler potential of the complex structure moduli and Gab̄ is the
metric of the complex structure fields given by

Gab̄ = −
∫
X χa ∧ χb∫
X Ω ∧ Ω

, (4.71)

Collecting all pieces, the ten-dimensional action (4.63) reduces to the following four-
dimensional effective Lagrangian in terms of the Minkowski four-forms,

LIIB =
1

S + S∗

(
κ(|G0

4|2 −Ga4G
b
4Gab̄)−G

0
4(S + S∗)DSWGVW +

∑
a

G
a
4D

aWGVW

)
.

(4.72)

In analogy to the Type IIA case, the full axion scalar potential, excluding the con-
tribution from localized sources, can be written in terms of the Minkowski four-forms
coupling to axions. The potential for the axions can be found by integrating out the
four-forms, which is done by solving the equations of motion. We find the following
solutions

∗4Gb̄4 =− ieKc.s.Gab̄ (DaWGVW + (f4 − iSh4)a) , (4.73)

∗4G0
4 =− ieKc.s.

(
(S + S∗)DSWGVW + (f4 − iSh4)0

)
,
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where fa,04 , ha,04 are RR and NS integration constants. We observe that the complex

four-forms Ga,04 are proportional to the F-terms and thus are associated to the auxiliary
fields of the complex structure and dilaton. However, they also include a shift associated
to the Minkowski four-form backgrounds. In Type IIA we argued that the classical
Hodge dualities forced the shifts to vanish, identifying the constant background terms
of the Minkowski four-forms with the internal fluxes of the magnetic duals. The analogy
here would be to set f4 and h4 equal to zero with the argument that the internal fluxes
parametrizing the G3 background are enough to account for all degrees of freedom.

By inserting Equations (4.73) in the Lagrangian (4.72) we find the following scalar
potential

V = eKS+Kc.s.

(
|(S + S∗)DSW + g0|2 +Kab̄|DaW − ga|2

)
(4.74)

where we have used the tree-level result KS = − log(S + S∗) and grouped the shifts
into g0,a ≡ (f4 − iSh4)0,a. If the shifts vanish, we recover the standard formula for the
N = 1 supergravity scalar potential. Note that, due to the no-scale structure, after
using the equations of motion for the four-forms, we obtain a positive definite scalar
potential.

Symmetries

There is a set of symmetries present in this setup, similar to the Type IIA case. The
transformations studied in Section 4.3.2, relating different vacua of Type IIA compact-
ified in a Calabi-Yau three-fold, are present in Type IIB compactified in the mirror
Calabi-Yau. The transformations studied for Type IIA can be directly translated to
the case at hand. For example, the discrete shift of the Kähler axion of Type IIA
given by Equation (4.29) corresponds to a shift on the complex structure of the mirror
Type IIB. The shift on the Kähler axion left the effective theory invariant if it was
combined with a shift of the internal fluxes. The same is true in the Type IIB case.
While in Type IIA the description in terms of four-forms offered an intuitive picture
about these transformations, since they leave each four-form invariant, the situation
in Type IIB is less transparent. Here we only have the four-forms descending from
G7 so we cannot decompose the scalar potential into smaller invariant pieces. In the
end, in Type IIB, we find the generalization of the shift symmetry of axion monodromy
models and the Kaloper-Sorbo Lagrangian. In other words, in Type IIA and Type
IIB theories there exist symmetries that are the generalization of the Kalopor-Sorbo
mechanism. We remark, once again, that the full appearance of the axionic moduli in
terms of couplings to the Minkowski four-forms is expected to severely constrain the
form of α′ and perturbative corrections of the Lagrangian.

Non-geometric fluxes

Before closing this section, let us make a few remarks about non-geometric fluxes [103,
104] in toroidal Type IIB orientifolds. The existence of non-geometric fluxes is inferred
from consistently applying T-dualities to flux compactifications of Type II theories. It
is known that they induce additional terms in the superpotential. Type IIB orientifolds
allow only for so-called Q-type non-geometric fluxes, in the notation of [104]. These
fluxes have index structure QNPM with antisymmetric upper indices and they are odd
under the O(3) orientifold involution of the compactification. The effect of the Q-fluxes
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on WGVW is captured by the replacement

G3 = (F3 − iSH3) −→ G3 +QJ , (4.75)

where the four-form J is given by

J = i
3∑
i=1

Tiω̃i , (4.76)

with Ti the three Kähler moduli and

(QJ )MNP =
1

2
QAB[M (J )NP ]AB . (4.77)

Going back to the four-forms in Type IIB, Equation (4.67) is then modified as follows,

1

S + S∗

∑
a

G
a
4 D

a

∫
Y

(G3 +QJ ) ∧ Ω . (4.78)

This is nothing but the Kähler derivative of the WGVW after the inclusion of non-
geometric fluxes. It seems that also in the presence of this class of non-geometric fluxes
the structure of the Minkowski four-forms acting as auxiliary fields in the effective
action persists.

4.5 Four-forms in supergravity

In this section we take a little detour from the general discussion of this chapter to
focus on interesting connections between the results obtained above and supersymmet-
ric theories with four-form auxiliary fields. Massless four-forms may be embedded into
N = 1 supersymmetric multiplets, in which they naturally appear as auxiliary fields of
non-minimal versions of the N = 1 chiral multiplet [77, 99–101, 105–112]. Essentially,
in this formalism, one or both of the real auxiliary fields in a supermultiplet is replaced
by corresponding four-forms. Similarly, one can formulate non-minimal N = 1 super-
gravity multiplets with one or two real scalar auxiliary fields replaced by four-forms.

The connection to the discussion in the previous section of this chapter and the
possibility of having four-form auxiliary fields in supermultiplets becomes obvious once
we consider the supersymmetric action in more detail. In [100] the globally supersym-
metric action of a non-minimal chiral multiplet S including one four-form auxiliary
field is discussed. The corresponding superfield may be defined as

S = −1

4
D

2
V , (4.79)

where V is a real multiplet with the same content as a standard vector multiplet,
but with the vector field replaced by εµνρσC

νρσ. S can be expanded in terms of the
Grassmann variables as follows,

S = M + iθσµθ∂µM +
1

4
θθθθ�M +

√
2θλ+

i√
2
θθθσµ∂µλ+ θθ(D + iF ) , (4.80)

with F = εµνρσF
µνρσ and D an auxiliary real scalar. On-shell, this multiplet contains

one complex scalar M and one Weyl fermion λ. Such a non-minimal chiral superfield
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S can have couplings such as,

SW =

∫
d2θd2θSaS

a
+

∫
d2θW (S) +

∫
d2θW ∗(S) (4.81)

=|∂M |2 +DaDa + F aF a +Wa(D
a + iF a) +W ∗a (Da − iF a) , (4.82)

where Wa = ∂SaW . Using the equations of motion for the gauge field C3 associated
with the four-form, one finds F a = Im(Wa) + fa, with fa a constant. As a result, the
scalar potential has the form [99–101]

VS = |Wa + ifa|2 . (4.83)

This agrees with the result obtained for standard chiral multiplets with the replacement
Wa → Wa + ifa. This resembles the structure we found below Equation (4.74) for
the Type IIB scalar potential. However, the above supermultiplet is not enough to
describe the general structure we found. In particular, the shift obtained from the
supermultiplet is real whereas the shift we found in the Type IIB compactification is
complex, suggesting replacing both auxiliary fields with four-forms. In addition, our
result is based on a supergravity potential.

Type IIA RR superpotential

In Type IIA we have found in total 2h11
− four-forms, denoted above as F i4 and F a4 ,

which act as auxiliary fields for the h11
− Kähler moduli of the compactification. Similar

to Type IIB, this means that the supersymmetry multiplets associated to the Kähler
moduli should contain two four-forms, each acting as an auxiliary field. On the other
hand, there are h3

+ four-forms HI
4 associated to the h3

+ complex structure fields. In
this case the associated supersymmetry multiplets only include one four-form auxiliary
field, like the multiplets discussed in [100]. In addition, there are two four-forms F 0

4

and Fm4 which could be associated to the N = 1 supergravity complex scalar auxiliary
field. The relation imposed by the equations of motion between the four-forms and
the moduli of the compactification is interesting. Considering Equations (4.20), the
Minkowski four-forms satisfy

Re[W ] = kF 0
4 + vaF

a
4 , Im[W ] =

1

2
kiF

i
4 + kFm4 , (4.84)

where W is the N = 1 Type IIA RR superpotential given by

W = e0 + ieaT
a − 1

2
kabcq

aT bT c +
1

6
imkabcT

aT bT c . (4.85)

It would be interesting to understand if this structure is a consequence of the possible
identification of four-form fields as auxiliary fields of the moduli/gravity multiplets.
More generally, it would seem that non-minimal N = 1 supergravity formulations,
with auxiliary field scalars replaced by Minkowsk four-forms, as in [99, 100, 105–109],
could be the appropriate formulation to describe the multi-branched nature of string
flux vacua.

4.6 Minkowski four-forms and open-string moduli

So far in this chapter we have focussed on the closed-string sector of Type II theories.
We have seen that the full RR and NS axion dependence of the flux scalar potential can
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be written in terms of these four-forms. With the introduction of branes we also intro-
duce open strings in the spectrum. It is a natural question to ask if the monodromic
structure of the closed-string sector arises in the open-string sector. In this section we
address this issue for the D7-brane moduli sector of a Type IIB orientifold compactifi-
cation. We show that the scalar potential of the position modulus of the brane can be
written in terms of a Kaloper-Sorbo coupling of the scalar to a Minkowski four-form
field arising from the magnetic open-string field strength. This way we can use the
standard Kaloper-Sorbo symmetry properties to argue, from an effective perspective,
that higher-order corrections are under control and do not spoil the effective theory.

In the open-string sector of Type II string theory, Minkowski four-forms may arise
from the dual magnetic potentials of the world-volume gauge fields of Dp-branes. The
spectrum of the brane world-volume theory was discussed in Section 3.3. In particular,
for a D7-brane the magnetic dual of the one-form gauge potential is a five-form , denoted
by A5, whose field strength can be expanded in terms of internal harmonics as

F6 = iF4 ∧ ω̄2 − iF̄4 ∧ ω2 . (4.86)

ω2 is a (2,0)-form associated to the complex position modulus Φ of the D7-brane. Φ can
be expanded in terms of internal harmonics as Φ = φω2 where φ is the four-dimensional
complex position modulus. Notice that, unlike the four-forms coming from the closed-
string sector, F4 is a complex Minkowski four-form.

Next let us consider fluxes which induce a non-trivial potential for φ. We are going
to focus on a single brane compactified on a six-dimensional torus but the analysis
could be generalised to multiple branes on more general spaces. In this section we only
consider ISD G3 bulk fluxes. These fluxes induce a B-field on the brane world-volume
given by [70,113–117]

B2 =
gsσ

2i
(G∗Φ− SΦ̄)ω2 + cc. , (4.87)

where we have denoted the non-supersymmetric ISD (0,3)-flux as G ≡ G1̄2̄3̄ and the
supersymmetric (2,1)-flux as S ≡ ε3jkG3j̄k̄ (see appendix A for details on the notation).

The relevant part of the DBI action, to leading order in α′, is given by [70,113,117]

SDBI = µ7σ

∫
R1,3×S4

1

2
(B2 + σF2) ∧ ∗8(B2 + σF2) . (4.88)

Plugging the decomposition (4.86) into the above Lagrangian and performing the di-
mensional reduction we obtain∫

S4

F6 ∧ ∗8F6 = 2|F4|2
∫
S4

ω2 ∧ ∗4ω̄2 , (4.89)∫
S4

B2 ∧ F6 =
1

2
gsσ

(
F4(G∗φ− Sφ∗) + F̄4(Gφ∗ − S∗φ)

) ∫
S4

ω2 ∧ ω̄2 , (4.90)

leading to the following four-dimensional effective Lagrangian

L4 = µ7σρ

(
|F4|2 −

1

2
gsσ

(
F4(G∗φ− Sφ∗) + F̄4(Gφ∗ − S∗φ)

))
+ . . . (4.91)

Here ρ =
∫
S4
ω2∧∗4ω̄2 and we have used the identity ∗4ω2 = −ω2. The scalar potential

can be obtained after integrating out the four-form. We find

V4 = µ7σρ

∣∣∣∣f − 1

2
gsσ(G∗φ− Sφ∗)

∣∣∣∣2 , (4.92)
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where f is an integration constant which can be identified with the magnetic flux F2.
The above expression reflects the branched structure of the scalar potential as the
D7-brane moves along a cycle in the internal space. The potential is invariant under
shifts on the position modulus if they are combined with the corresponding shift on F2

flux. This shift symmetry underlies the typical multi-branch structure of a Kaloper-
Sorbo Lagrangian. The idea again is that the underlying shift symmetry and the
gauge invariance of the four-form protects the potential from dangerous higher order
corrections. Once a specific branch is chosen, which means that the flux background
is fixed, the position modulus with its monotonic potential may play the role of an
inflaton field with trans-Planckian excursion. Let us note that we recover only half of
the complete scalar potential because we have omitted the Chern-Simons part of the
action, which, because of supersymmetry will give the same contribution as in Equation
(4.92).

One can think of exploring a similar structure within Type IIA orientifolds con-
taining D6-branes. Here, the magnetic gauge field is a four-form A4, which has to
be expanded in a basis of 1-forms on the D6-brane three-cycles in order to yield a
Minkowski three-form field. See [118] for a discussion on this subject.
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Chapter 5

The Dirac-Born-Infeld action and
supergravity

In this chapter we discuss the effective action of Dp-branes in Type IIB toroidal orien-
tifolds, with p = 3, 5, 7. We focus on the α′ corrections to the scalar action coming from
the DBI action. These scalars parametrize the position of the Dp-brane in the internal
space. We demonstrate that, under certain conditions, the first-order correction to
the action takes a general form, independent of the dimensionality of the brane. The
α′ corrections always carry powers of derivatives of the position modulus and we find
that, in general, the scalar potential does not receive any corrections. Schematically we
find that the Lagrangian of the complex Dp-brane position moduli φi has the on-shell
structure

L = − [1 + aV (φi)] ∂µφi∂
µφ̄i − V (φi) +O(∂4

µ) , (5.1)

where V is the leading-order scalar potential and a is a positive constant proportional
to the inverse fourth power of the string scale, Ms. The DBI action captures all higher-
dimensional corrections involving arbitrary powers of single derivatives and the scalars
themselves, but not terms with more than one derivative acting on a single scalar.
Hence the structure we find is exact in powers of the scalar field and, in particular, in
powers of the potential. Let us note that more general fluxes may break this simple
structure. The violation of this structure will be important in the discussion of Chapter
7.

We discuss how to capture the first-order α′ corrections in globallyN = 1 supersym-
metric models via corrections to the Kähler potential. We find higher-order operators
that correct the Kähler potential in such a way that we find an action that matches the
DBI action. If we consider a single complex modulus, then the operator which turns
out to be most relevant in this discussion has the form∫

dθ2dθ̄2|Φ|2∂µΦ∂µΦ̄ , (5.2)

where Φ = φ+ iθσµθ̄∂µφ+ θ2F + 1
2θ

2θ̄2�φ denotes a chiral multiplet with its fermionic
component set to zero. An important property of this operator is that no terms propor-
tional to |V |2 arise and hence that the scalar potential does not receive any corrections.
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Describing the DBI action in terms of supersymmetric higher-derivative operators
allows for an embedding into an N = 1 supergravity formulation. This is the main mo-
tivation for this excercise. While the procedure of coupling Kähler potentials to gravity
is straightforward, see [119], the computations can become quite tedious. Including α′

corrections at the supergravity level allows us to study their effect on moduli stabiliza-
tion. In this chapter we focus our discussion of the theory on the different terms in the
Lagrangian that we obtain in this way.

The structure of this chapter is as follows. In the next section we study the structure
of the effective action for Dp-brane moduli in Type IIB toroidal compactifications. We
analyze in detail the cases of D3-, D5-, and D7-branes and display the bosonic action up
to fourth order in derivatives. In Section 5.2 we discuss higher-derivative operators in
globally supersymmetric theories and describe how the result obtained in the previous
section can be written in terms of these operators. In Section 5.3 we discuss the
supergravity embedding of a specific operator, discussing which terms are important
for applications to inflation. In the related appendix B, we discuss the effect of the
non-canonical kinetic term in models of Dp-brane inflation like the one of [70]. For
any potential that we consider the effect of the α′ corrections is always to flatten the
potential and lower the tensor-to-scalar ratio. This is expected since, for positive a, the
correction acts as a friction term dissipating energy from the system. We follow the
conventions of [119].

5.1 α′ corrections to the Dp-brane moduli action

In this section we discuss the effective action of position moduli for Type IIB Dp-branes
up to second order in α′. These corrections are important when studying the dynamics
of a Dp-brane system. In particular, the cosmological evolution of a model of inflation
could receive corrections to its predictions and its stability along the inflaton trajec-
tory could be affected. The corrections to the four-dimensional effective theory for the
bosonic open-string fields of Dp-branes can be derived from the DBI and CS actions
describing the world-volume deformations of the brane. In the case of compactifications
for which the internal profile of the scalar fields is constant and the compactification
to four dimensions is trivial, we can compute the effective action without much diffi-
culty. We will consider this kind of compactifications in order to keep the computations
manageable.

We demonstrate under which circumstances the schematic structure Equation (5.1)
arises for the open-string fields of a system of Dp-branes in Type IIB orientifold com-
pactifications. The general form of the DBI action for Dp-branes was given earlier in
Equation (3.51). We repeat it here for convenience [27,28]

S = −µp

∫
dp+1ξe−φ

√
−det(P [EMN + EMi(Q−1 − δ)ijEjN ] + σFMN ) det(Qmn) ,

(5.3)

where, as usual,

σ = 2πα′ , EMN = g1/2
s GMN −BMN , Qmn = δmn + iσ[ϕm, ϕp]Epn , (5.4)

and the ϕm are the real position moduli. They can be grouped in complex moduli φi
where the index i runs over the complex dimensions normal to the brane.

Assuming a toroidal compactification and the vanishing of tensors with mixed in-
ternal/external indices, we can expand the determinant and the square root of the DBI
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action to get an effective four-dimensional action. This computation is done in appendix
A. We omit all terms involving gauge bosons and Wilson lines. For our purposes the
interesting part of the expansion of the DBI action is

L = −µpVp−3

Z
f(φ)

1 + Zσ2
∑
i

∂µφi∂
µφ̄i −

1

2
Z2σ4

∑
i 6=j

(∂µφi∂µφ̄j)(∂
νφj∂ν φ̄i)

+
∑
i,j

(∂µφi∂
µφj)(∂ν φ̄i∂

ν φ̄j)

+ . . .

 , (5.5)

with

f(φ) =

√
det(g

1/2
s gab + σFab −Bab) det(gmn + iσ[ϕm, ϕp](g

1/2
s gpn −Bpn)) . (5.6)

Here µp and Vp−3 denote the tension of the brane and the volume wrapped by the
brane, respectively, and Z is the warp factor. Note that no term of the form (∂µφ∂

µφ̄)2

is present in the effective action after the square root expansion when we consider a
single complex scalar, for example, for a D7-brane.

After we redefine the scalar fields to absorb the global factors in Equation (5.5),
subtract the orientifold tension cf. [70, 78], and identify V (φ) = a−1(f(φ)− 1) we find
that in all cases the bosonic action has the structure of Equation (5.1). The constant a
includes the remaining global factors and is proportional to (µpVp−3)−1. Let us stress
that the Lagrangian (5.5) includes all α′ corrections arising from higher-order terms
containing only powers φn and no derivatives. It is an expansion in ∂φ up to second
order and it does not include second- or higher-order derivatives of φ. As a result, the
effective action can only be trusted as long as the speed and acceleration of the brane
remain small compared to a. This is precisely the case for slow-roll inflation.

The four-dimensional scalar potential comes from the function f(φ), given in Equa-
tion (5.6), which is a function on the internal space. In general, it is an infinite series
in powers of α′. However, as shown in appendix A, for certain fluxes the determinants
yield a perfect square, simplifying the computation. The fluxes that preserve a certain
amount of supersymmetry at the string scale are precisely the ones that give this sim-
ple structure. For these fluxes taking the square root of the determinant is trivial and
the scalar potential is given by the leading-order scalar potential V0. In other words,
all higher-order terms in α′ vanish and the potential is simply V = V0. However, the
stringy nature of the action does leave a trace in the effective theory because the ki-
netic terms for the scalar fields are non-canonical. The prefactor of the kinetic term is
indeed given by (1 + aV0), with a showing the stringy nature of the correction. Let us
stress that the structure given in Equation (5.1) is quite general and valid beyond the
supersymmetric configurations. The advantage of these configurations is that one can
replace V by the well-known leading-order result V0. In general, the scalar potential
receives corrections, but, these corrections also appear in the kinetic term, implying
that the structure given in Equation (5.1) is preserved. In the case of D5- and D7-
branes, this structure relies on the assumption that we can factor the determinant in
an internal and external piece. This is characteristic of toroidal compactifications. We
have not considered how this generalizes to other compactifications.

In addition to the DBI part of the action coming, there is a contribution from
the CS action. In settings where the fluxes preserve supersymmetry in the vacuum,
the scalar potential from the CS action is equal to the potential from the DBI action,
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leading to a factor of two in front of the scalar potential, but not in the correction to
the kinetic term which comes exclusively from the DBI action. The structure of the
scalar potential depends, through the specific form of f(φ), on the Dp-brane under
consideration and on the flux background. Before moving on to the next section we
summarize the dependence on the brane dimensionality by considering D7-, D3-, and
D5-branes separately.

D7-branes

This case is of the most interest for this thesis, and in a way it is also the simplest
because there is only one complex scalar field φ. As always, this scalar transforms in the
adjoint representation of the gauge group of the system of D7-branes. One can obtain
more phenomenologically relevant quantum numbers, for example the Standard Model
gauge group and bifundamentals, if the branes are located at orbifold singularities,
cf. [70]. In the presence of three-form closed-string fluxes G3, the position of the branes
can be stabilized due to the flux-induced B-field on the brane which yields a non-
vanishing F-term scalar potential for φ. This potential comes from the first determinant
in Equation (5.6) which reads

det
(
gab + Z−1/2g−1/2

s Fab
)

= det(gab)

[
1 + Z−1g−1

s F2 + Z−2g−2
s

1

4
(F ∧ F)2

]
, (5.7)

where Fab = σFab − Bab. Whenever F is a selfdual or anti-selfdual two-form, F =
± ∗4 F , we have

(F ∧ F)2 = (F ∧ ∗4F)2 =
(
F2dVS4

)2
= (F2)4 , (5.8)

where dVS4 is the volume form of the cycle wrapped by the brane, and hence

f(φ)2 = g2
sZ

2

(
1 +

1

2
Z−1g−1

s FabFab
)2

, (5.9)

a perfect square. This is the case for a configuration with only imaginary self-dual
closed-string fluxes including (0, 3)-form and (2, 1)-form fluxes denoted by G and S,
respectively, see [113–117, 120, 121] and appendix A. For these fluxes the B-field is a
(2, 0) + (0, 2)-form. Far from being isolated or useless cases, the G and S fluxes are the
fluxes which solve the ten-dimensional supergravity equations of motion in a Calabi-
Yau compactification at the classical level [24], as reviewed in Chapter 3. The F-term
scalar potential in terms of these fluxes, after absorbing constant factors, reads [70]

V (φ) =
gs

2Z2
|G∗φ− Sφ̄|2 . (5.10)

In addition to the position modulus, the world-volume theory contains two complex
Wilson lines such that all of the scalar components of the N = 4 theory are present.
The second determinant in Equation (5.6) leads to a D-term given by

det(Qij) = 1 + gsσ
2Z[φ, φ̄]2 . (5.11)

For simplicity we consider D-flat configurations and neglect this contribution to the
scalar potential. The generalization to non-vanishing D-terms is trivial and does not
change any of our conclusions. The leading order effective Lagrangian is of the form
given in Equation (5.1) with V given by Equation (5.10) and a = (V4µ7gs)

−1.
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D3-branes

In the case of spacetime filling D3-branes only the second determinant in Equation (5.6)
is present since all world-volume indices are spacetime indices. Notice that in this case
the factorization between internal and external determinants always exists, regardless
of the specific compactification. At leading order the square of Equation (5.6) is given
by

det(δmn + iσg1/2
s Z1/2[ϕm, ϕn]) = 1− 2σ2gsZ

∑
i<j

[φi, φj ]
2 − σ2gsZ

∑
i,j

[φi, φ̄j ]
2 + . . .

= 1 +
∑
i

|Fi|2 +
∑
i

D2
i + . . . , (5.12)

where the dots include higher-order terms in α′. It is remarkable that in the absence
of D-terms the above determinant can again be written as a perfect square,

f(φ)2 = det(δmn + iσg1/2
s Z1/2[ϕm, ϕn]) =

1− σ2gsZ
∑
i<j

[φi, φj ]
2

2

, (5.13)

implying (5.1) with a = µ−1
3 Z and V =

∑
i<j gs[φi, φj ]

2. This structure is partially
broken if we introduce warping and fluxes. The situation is slightly more subtle since,
as described in [113–117, 120, 121], the local equations of motion force the internal
warping and five-form background to be non-vanishing. One can then locally expand
the warp factor around the position of the brane as [114,115]

Z−1/2 = Z
−1/2
0 +

1

2
σ2Kmnϕ

mϕn + . . . , (5.14)

where Kmn is the second derivative of the warp factor with respect to the real scalar
fields. This induces an additional contribution to the scalar potential which does not
appear multiplying the kinetic term. Therefore, in the presence of non-constant warping
the correction to the kinetic term is given by only a part of the scalar potential.

D5-branes

The result for D5-branes is a combination of the two cases considered above. Both
determinants in Equation (5.6) contribute to the F-term scalar potential. Once again,
the computation is simple in a purely supersymmetric configuration with no D-terms
or fluxes. In that case,

f(φ)2 = det(δmn + iσg1/2
s Z1/2[ϕm, ϕn]) =

(
1− 4σ2gsZ[φ1, φ2]2

)2
, (5.15)

where φ1 and φ2 are the two complex fields parameterizing the position of the D5-
brane in the transverse space, which we have assumed to be a T 4 for simplicity. We
thus once more obtain a Lagrangian of the form given in Equation (5.1) with a =

µ−1
5 V −1

2 g
−1/2
s Z1/2 and V = (µ5V2σ

2)−1Z−1/2g
1/2
s [φ1, φ2]2.

5.2 Supersymmetric higher-derivative operators

In this section we discuss how to write a supersymmetric version of the four-dimensional
effective action of a D7-brane compactified on a toroidal orientifold. The lesson of the
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previous section is that the DBI action yields a very particular effective action for the
D7-brane position moduli, given in Equation (5.1). This action may be viewed as a
first-order Lagrangian L0 with a correction L1 that is suppressed by a cut-off scale Λ

L = L0 +
1

Λ4
L1 . (5.16)

We aim to find an N = 1 supersymmetric theory that produces this action, which is
equivalent to finding an appropriate Kähler potential and superpotential. In general,
the four-dimensional effective Kähler potential may depend on the superfields and their
derivatives, i.e.,∫

dθ2dθ̄2K(Φi, Φ̄i;DαΦi, D̄α̇Φ̄i; ∂µΦi, ∂µΦ̄i, . . . ) +

(∫
dθ2W (Φi) + h.c.

)
, (5.17)

where Dα denotes the usual supersymmetric covariant derivative and Φ denotes a chiral
multiplet with its fermionic component set to zero. The standard Kähler and super-
potential produce L0, but to produce L1 we need to consider higher-order corrections
to the theory. Higher-order corrections to the superpotential are generally model-
dependent and involve, for example, higher powers of the superfields. We are looking
for a correction to the kinetic term of the scalar field and therefore it makes sense to
find a correction to the Kähler potential that has four chiral superfields. The number
of covariant derivatives is fixed by the maximum number of ordinary derivatives in the
Lagrangian. The anticommutator of two covariant derivatives is proportional to an
ordinary derivative, and the D-term of the canonical Kähler potential already contains
two ordinary derivatives. Thus the relevant correction describing the DBI action should
contain four covariant derivatives. In this section we consider the structure of globally
supersymmetric operators while in Section 5.3 we discuss the coupling to supergravity.
Higher-dimensional operators involving chiral superfields have been studied in the past
in supersymmetry and supergravity [122–135].

Derivatives of F

In global N = 1 supersymmetric theories it is well-known that V = |F |2, this observa-
tion is helpful since it allows us to rule out a number of operators. Any operator that
contains a term proportional to |F |4 is ruled out since it is expected to give a correction
to the effective Lagrangian as V 2 which we do not find from the DBI action.

We will observe that all operators that have no |F |4 have terms proportional to
derivatives of F . Such terms seem to imply that the auxiliary field propagates. This
would be unacceptable since we know from the DBI action that no such extra bosonic
fields should be present, and it breaks SUSY explicitly. However, as emphasized in [126],
derivative terms of auxiliary field are artefacts of the effective field theory description.
Theories with higher-derivative corrections like (5.27) must be UV completed above
the cut-off scale Λ. The momenta of auxiliary fields with kinetic terms from higher-
derivative operators are larger than Λ and are hence irrelevant in the EFT. This argu-
ment is supported by the fact that UV-complete theories, such as string theory, should
be free of ghosts and propagating auxiliary fields. To see that we do not have too many
degrees of freedom more explicitly, note that the lowest-dimensional action contains
the standard bosonic pieces

L ⊃ −|F |2 −
(
F
∂W

∂φ
+ h.c.

)
, (5.18)
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to which we have to add a kinetic term coming from the correction

L ⊃ 1

Λ2
|∂F |2 . (5.19)

To obtain the canonically normalized kinetic term for F we need to redefine F̃ = F/Λ.
We thus get

L ⊃ −m2
F̃
|F̃ |2 −mF̃

(
F̃
∂W

∂φ
+ h.c.

)
, (5.20)

with mF̃ = Λ. Thus, actually the scalar field F̃ has a mass of the same order as the
cut-off scale and should decouple below the scale Λ. One has to be careful though,
since integrating out F̃ is not equivalent to setting mF̃ → ∞, due to the presence of

the dimensionful coupling of F̃ to φ in the above expression. It does imply that in an
effective action we can neglect all terms proportional to ∂µF̃ .

Dimension 8 operators

A list of supersymmetric operators with the desired amount of fields and derivatives
was proposed in [125]. The relevant operators can be written in terms of component
bosonic fields as follows, cf. (8)-(13) in [125],

O1 = |Φ|2D2ΦD̄2Φ̄ = 16|φ|2�φ�φ̄+ 20|F |2φ̄�φ+ 20|F |2φ�φ̄+ 16|F |4

− 8|φ|2∂µF∂µF̄ + 8φ̄F∂µφ∂
µF̄ − 8φ̄F̄ ∂µφ∂

µF

− 8|F |2∂µφ∂µφ̄+ 4|φ|2F�F̄ + 4|φ|2F̄�F
+ 8φF̄∂µφ̄∂

µF − 8φF∂µφ̄∂
µF̄ , (5.21)

O2 = Φ̄D̄2Φ̄(DΦ)2 = 16∂µφ∂
µφφ̄�φ̄− 16|F |2φ̄�φ+ 16|F |2∂µφ̄∂µφ̄

− 16|F |4 + 16φ̄F̄ ∂µφ∂
µF − 16φ̄F∂µφ∂

µF̄ , (5.22)

O3 = |Φ|2DD̄Φ̄D̄DΦ = − 8|φ|2∂µφ∂µ�φ̄− 8|φ|2∂µF∂µF̄ − 8|F |2∂µφ∂µφ̄
8(∂µφ∂

µφ̄)2 + 8φ∂µφ̄(∂ν φ̄∂
µ∂νφ− 8∂νφ∂

µ∂ν φ̄)

− 8φ̄F∂µφ∂
µF̄ − 8φF̄∂µφ̄∂

µF , (5.23)

O4 = Φ2DD̄Φ̄DD̄Φ̄ = − 4|∂µφ∂µφ|2 − 4φ�φ∂µφ̄∂
µφ̄− 4φ2∂µ∂ν φ̄∂

µ∂ν φ̄

− 16φ∂µφ∂ν φ̄∂
µ∂ν φ̄− 4φ2∂µ�φ̄∂

µφ̄

− 32φF∂µφ̄∂
µF̄ , (5.24)

where � = ∂µ∂
µ. These are dimension-eight operators which, when they appear in

a four-dimensional action, are divided by the mass scale Λ4. In addition to these
operators, there are the complex conjugates O2 and O4. Notice that we did not include
(14) and (15) of [125] because, after partial integration, they are proportional to O4

and O4, respectively. Operators O3, O4, and O4 contain the |F |4-free operators. In
particular, any |F |4-free linear combination of O1, O2, and its complex conjugate can
be expressed in terms of these operators. While comparing supersymmetric operators
to the DBI action one has to keep in mind that the latter does not capture higher-
derivative contributions involving multiple derivatives of the scalar fields, for example
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terms containing �φ and ∂µ∂νφ. Ignoring these, we obtain

O3

Λ4
=

8

Λ4

[
(∂µφ∂

µφ̄)2 − |φ|2∂µF∂µF̄ − |F |2∂µφ∂µφ̄− φ̄F∂µφ∂µF̄ − φF̄∂µφ̄∂µF
]
,

(5.25)

O4

Λ4
= − 4

Λ4

[
|∂µφ∂µφ|2 − 8φF∂µφ̄∂

µF̄
]
. (5.26)

Partial integration of the quartic kinetic terms introduces an ambiguity here, since
terms with second derivatives can be written as first derivatives and vice versa. This
ambiguity is manifest in a free coefficient of the four-derivative terms in the two expres-
sions above. This makes the quartic kinetic terms not meaningful in the comparison
with the DBI action. Thus, the strongest constraint on possible operators is indeed the
absence of |F |4. Taking this freedom into account, all operators without |F |4 can be
written as

c1O3 + c2

(
O4 +O4

)
. (5.27)

Therefore, this includes all operators that, after partial integration, yield the correction
of the form (5.1) up to terms containing derivatives of F . This leads to the conclusion
that, ignoring the quartic kinetic terms, the operators O4 and O4 above may be ignored
and the operator O3 is left with the only desired piece

O3 = − 8

Λ2
|F̃ |2∂µφ∂µφ̄+O

(
(∂µφ)4

)
. (5.28)

A possible point of confusion is that one might argue that F̃ decouples completely in
the effective action and the relevant part of the operator O3 does not survive. However,
it is easy to convince oneself that this is not the case due to the second term in (5.20).
Indeed, as shown in Figure 5.1, one can draw a tree-level Feynman diagram with a vertex
stemming from (5.28) and two F̃ propagators. The latter end in vertices provided by
the second piece in (5.20). In the effective action limit with (∂µF̃ )� m2

F̃
the propagator

of F̃ is approximately −1/m2
F̃

so that, in the end, we are left with

O3 = − 8

Λ4

∣∣∣∣∂W∂φ
∣∣∣∣2 ∂µφ∂µφ̄+O

(
(∂µφ)4

)
. (5.29)

In conclusion, we find that the following supersymmetric action

L =

∫
dθ2dθ̄2|Φ|2

(
1 +

c1

Λ4
DD̄Φ̄D̄DΦ

)
+

(∫
dθ2W (Φ) + h.c.

)
, (5.30)

gives the correct effective action

L = −
(

1 +
8c1

Λ4

∣∣∣∣∂W∂φ
∣∣∣∣2
)
∂µφ∂

µφ̄−
∣∣∣∣∂W∂φ

∣∣∣∣2 +O
(
�φ, ∂µ∂νφ, (∂µφ)4

)
. (5.31)

Using the identity DαD̄α̇Φ̄ = {Dα, D̄α̇}Φ̄ = −2iσµαα̇∂µΦ̄ we can write the supersym-
metric action in the more transparent fashion

L =

∫
dθ2dθ̄2|Φ|2

(
1 +

8c1

Λ4
∂µΦ∂µΦ̄

)
+

(∫
dθ2W (Φ) + h.c.

)
, (5.32)
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Figure 5.1: Feynman diagram that leads to the presence of (5.29) in the effective action.
The interaction is similar to the interaction of Fermi’s weak interaction theory. In both
cases, the fact that the coupling constant is inversely proportional to the cut-off scale
signals the breakdown of the effective theory.

which is the main result of this section. This is the action given in Equation (5.1) if
identify a = c1/Λ

4 which leads to

c1

Λ4
=

1

V4µ7gs
=

16π3αG
gsM4

s

, (5.33)

where αG is the gauge coupling of the theory living on the D7-brane and we have used

αG =
8π4gs

V4M4
s

. (5.34)

This makes the stringy nature of the higher-derivative correction more manifest. The
operators found in this section are interesting since they give us information on how to
embed the non-canonical kinetic terms of the DBI action into a supersymmetric action.
Our result can be easily generalized to the case of multiple scalar fields which may
appear in Dp-brane configurations in different compactifications. In the next section
we discuss the coupling of the action to supergravity.

5.3 Supergravity higher-derivative operators

In this section we discuss the generalization of the previous section to local supersym-
metry. This can be done along the lines of [126] and [119], coupling the Kähler potential
and superpotential to the N = 1 gravity multiplet. It is known that the interaction
between the dynamical closed-string modes and the open-string inflationary sector is
not captured by the DBI and CS actions. As a result the DBI action does not describe
gravity, i.e. it is only relevant for Mp →∞. The non-minimal coupling in the effective
action produces a flattening of the potential in canonical frame. We have already man-
aged to give a supersymmetric description of this flattening. With the result of this
section, we can now capture this effect in supergravity. A motivation to find an N = 1
supergravity description of the effective theory is to be able to model the consequences
of the α′ corrections to the study of closed-string moduli stabilization. In Chapter 7
we will study the effects of moduli stabilization in an inflation model with a D7-brane.
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For concreteness, we focus on a single chiral superfield corresponding to the position
modulus of a D7-brane in a toroidal setting, as in the model discussed in Chapter 6.
The Kähler potential given in Equation (3.21) is modified with the addition of the open-
string modulus. For an isotropic compactification with two of the complex structure
moduli stabilized, the Kähler potential, at leading order in α′, reads [70,136–139]

K = − log

[
(S + S̄)(U + Ū)− 1

2
(Φ + Φ̄)2

]
− 3 log[T + T̄ ] , (5.35)

Assuming that the potential is minimized when DSW = DUW = 0, the dominant
source of supersymmetry breaking is the auxiliary field of T , which leads to a soft mass
for the D7-brane matter field Φ. The superpotential in this case is given by

W = W0 + µΦ2 . (5.36)

Both contributionsW0 and µ in the superpotential are required to match the DBI result,
(5.10). The precise matching between the fluxes and the supergravity parameters at
leading order in α′ was worked out in [70].

Notice the shift-symmetric structure of the Kähler potential for the position mod-
ulus contained in Φ, which leads to an approximate continuous shift symmetry in the
scalar potential broken by fluxes. This flat direction in the Kähler potential is not only
present in toroidal compactifications, but also in generic Calabi-Yau compactifications
in the large complex structure limit, and it is expected to be preserved by all perturba-
tive corrections to K, so in particular by our higher-derivative correction. This leads
us to write the correction of the last section as

∆K =
1

(S + S̄)(U + Ū)

8c1

Λ4

[
(Φ + Φ̄)2∂µΦ∂µΦ̄

]
. (5.37)

After integrating out the auxiliary field and ignoring the quartic kinetic terms the result
is equivalent to (5.31). The scaling with the axio-dilaton and the complex structure
moduli is required by modular invariance of the Kähler potential.

Coupling to supergravity

The coupling of a Kähler potential and superpotential to gravity is well understood.
Specifically, the curved-space supergravity Lagrangian involving a Kähler potential and
a superpotential reads

L =

∫
d2Θ E

[
3

8
(D̄ − 8R)eK(Φ,Φ̄) +W (Φ)

]
+ h.c. . (5.38)

Here E is the chiral density, (D̄−8R) is the chiral projector that ensures that the integral
over superspace gives a supersymmetric Lagrangian and R is the supergravity superfield
containing the supergravity multiplet (R, bµ,M). This way of coupling (arbitrary)
Kähler and superpotentials to gravity was extensively applied in a systematic study of
higher-derivative operators in supergravity in [140].

Note that, unlike the globally supersymmetric case with only a single mass scale Λ,
once we couple to gravity we are bound to deal with two cut-off scales: Λ and Mp. In
the following, it is crucial to keep track of both of them as they determine the relevant
terms in L. We find it useful to reinstate the factors of Mp in the results of [140] to
discuss the relevance of each term in the effective theory. The mass dimension of M
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and bµ is three and that of the curvature, Dµ, and F is two. In accordance with the
notation of [140], we write the correction to the Kähler potential as

∆K =
T
Λ4
∂µΦ∂µΦ̄ , (5.39)

where

T =
|Φ + Φ̄|2

6(S + S̄)(U + Ū)
. (5.40)

The component expansion of the Lagrangian in the Jordan frame1 can now be written
as,

δL̂/
√
|g| = −1

2
ΩR− δV + L(4-der) + L(2-der) , (5.41)

where

Ω =
4T
Λ4
|∂Φ|2 , (5.42)

δV = − 4T
3Λ4M4

p

|F |2|M |2 , (5.43)

Λ4L(2-der) = TΦ̄

[
1

M2
p

MF (∂µΦ̄)2 +
1

M2
p

M̄F̄ |∂µΦ|2 − 6F̄ ∂µF∂
µΦ̄− 1

M2
p

4i|F |2bµ∂µΦ̄

]
(5.44)

− 3TΦΦ̄|F |2|∂µΦ|2 − T
(

1

3M4
p

|∂µΦ|2|M |2 +
4

3M4
p

|F |2baba + 3|∂µF |2
)

+ T
(

1

M2
p

FM�Φ̄ +
1

M2
p

M∂µF∂
µΦ̄− 1

M2
p

F∂µM∂µΦ̄

)
+

4

3
T ibµ

(
1

M4
p

FM∂µΦ̄ +
3

M2
p

F̄ ∂µF

)
+ h.c. ,

and

Λ4L(4-der) = −3TΦ̄

[
|∂µΦ|2

(
�Φ̄ +

2

3M2
p

ibµ∂µΦ̄

)
+

2

M2
p

∂µΦ̄ ∂νΦDµDνΦ̄

]
(5.45)

− 3TΦΦ̄|∂µΦ|2(∂µΦ̄)2 + 3T ∂µΦ∂νΦ̄

[
Rµν +

2

9M4
p

bµbν +
2

3M3
p

iDνbµ
]

− 3T ∂µΦDµ
(

1

Mp
�Φ̄ +

2

3M3
p

ibν∂νΦ̄

)
+ h.c. .

Two facts stand out in this contribution to the action. First, there is a correction to
the scalar potential proportional to |M |2|F |2. This is noteworthy because one of the
guiding principles in the determination of the Kähler potential in the previous section
was the absence of corrections to V . There is no contradiction with our previous result,
though, since δV → 0 in the limit where Mp → ∞, where the result matches the flat
space result from the DBI action. Second, there are non-minimal couplings between
the scalar Φ and the Ricci tensor and scalar. While the coupling to the Ricci scalar can
be dealt with via a simple Weyl rescaling, that is not the case for the coupling to Rµν .

1The standard derivation of the two-derivative supergravity Lagrangian leads to a gravitational
coupling of the form eK/3R, cf. [119]. This is the frame we choose for the moment.
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Dominant terms and final effective Lagrangian

Let us count dimensions to determine which of these terms dominate in the action. In
the component expansion in (5.42)–(5.45) we find operators up to dimension twelve,
with the following suppressions: 1/Λ4, 1/(Λ4M2

p), and 1/(Λ4M4
p). Since in the standard

N = 1 supergravity action we have terms of the order 1/Mn
p , with n = 0, 2, 4, we focus

on the terms up to mass dimension eight. This truncation is justified since, at higher-
order, additional terms in L can be sourced by higher-order corrections to K which we
do not consider. Moreover, as in the flat-space case, let us consider ∂µF = 0, since the
dynamics of F are an artefact of the effective field theory description. Then only three
terms survive in the higher-derivative correction of the Lagrangian,

Λ4δL̂/
√
|g| = −1

3
R(Φ + Φ̄)2|∂µΦ|2 − |F |2|∂µΦ|2 +

1

2
(Φ + Φ̄)2∂µΦ∂νΦ̄Rµν . (5.46)

Notice that we have absorbed overall coefficients of O(1) and a possible constant a into
the definition of Λ. As a result, the inclusion of the correction ∆K yields the same
result as in global supersymmetry, plus nontrivial curvature couplings. And even these
two additional terms can be made irrelevant by considering a model where the real part
of Φ is stabilized at zero, since both are proportional to T and thus to Re(Φ). This
is exactly the case in the Higgs-otic model discussed in Chapter 6. We will see that,
after Kähler moduli stabilization is taken into account, only the lightest field Im(Φ)
is excited during inflation, while Re(Φ) remains stabilized at the origin so that the
coupling to Rµν would not be relevant.

We can now recast the action into the form most similar to the one in the rigid
limit via a conformal transformation to Einstein frame

L/
√
|g| = L0 −

1

Λ4
eK |F |2|∂µΦ|2 , (5.47)

where

L(0)/
√
|g| =− 1

2
M2

pR−KΦΦ̄ ∂µΦ∂µΦ̄− V0 , (5.48)

is the usual supergravity Lagrangian, with V0 being the F-term potential. Note again
that (5.47) is much simpler than our starting point, and is essentially the global result
of (5.31). If, as mentioned above, we choose a superpotential that leads to a quadratic
scalar potential as in the DBI and CS actions, we can find the on-shell kinetic terms
using (5.35),

Lkin = −
(
KΦΦ̄ +

1

Λ4
eK |F |2

)
|∂µΦ|2 (5.49)

= −
(

1

2
+ 3a

sµ2ϕ2

8t30

)
(∂µϕ)2, (5.50)

where ϕ =
√

2/s Im(Φ), s = 〈(S + S̄)(U + Ū)〉, and t0 = 〈T 〉. A crucial assumption in
the above derivation is the absence of IASD fluxes, which, if present, induce additional
terms in the DBI and CS actions. As we will see later, the inclusion and stabilization
of moduli fields, in particular Kähler moduli, calls for the inclusion of non-perturbative
effects which act as IASD flux in the bulk. Consequently, the supergravity embedding of
this more complex system requires a deviation from the ideas presented in this section,
making the identification of the interesting operators a significantly more difficult task.
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To summarize, we have shown in this chapter that the DBI and CS actions with
ISD flux can be effectively described by the Kähler potential in (5.35). Coupling to
gravity does not, in the end, make the Lagrangian more complicated as long as the
cut-off scale is much larger than the dynamical scale of inflation, and Re(Φ) = 0 during
inflation. However, we have not taken the effect of Kähler moduli stabilization into
account. We will see later that this has a significant impact on our results.
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Chapter 6

Higgs-otic inflation and two-field
dynamics

In the last two chapters of this thesis we focus the discussion towards a single model
of string inflation. In this chapter we introduce Higgs-otic inflation and we discuss its
inflationary predictions. The Higgs-otic model seeks to unify inflation with the Higgs
mechanism in an economic way. In [84] it was proposed that the neutral Higgs system
of the MSSM with supersymmetry broken at a large scale of order ∼ 1013 GeV could
drive cosmic inflation. Unlike the Higgs inflation proposal [141], this model considers a
minimal coupling of the Higgs fields to gravity. This proposal is quite economical since
it addresses several issues simultaneously. It provides stability for the Higgs scalar
potential at the right scale, is consistent with the observed value of the Higgs mass
and a neutral Higgs component acts as a complex inflaton field. The inflaton has a
trans-Planckian field range and leads to a flattened version of chaotic inflation with a
quadratic potential.

Neglecting the effects of moduli stabilization, the Higgs-otic model is a two-field
inflaton system. In [70] a study of the cosmological observables focused only on the
curvature perturbations and ignoring possible two-field effects like the generation of
isocurvature perturbations. This is an important issue since two-field effects can, in
principle, substantially modify the cosmological observables. Furthermore, the Planck
satellite has provided strong bounds on isocurvature perturbations [9]. In this chapter,
we perform a systematic analysis of the observables in the Higgs-otic two-field inflation
system. We find that, as expected, curvature and isocurvature perturbations form
a coupled system and there is super-horizon evolution of the curvature perturbations.
This leads, in general, to a relative increase of curvature perturbations and consequently
to a reduction of the tensor-to-scalar ratio, r, compared to the computation in [70].
The allowed range of ns is decreased and is centered around the region allowed by
Planck data with a tensor-to-scalar ratio in the range r = 0.08 − 0.12. Moreover, the
isocurvature component is always suppressed at the end of inflation, consistent with
Planck upper bounds.

The structure of this chapter is as follows. We introduce the Higgs-otic model in the
next section, in which the relevant definitions and the inflaton potential are described.
Section 6.2 presents the predictions of Higgs-otic inflation for three representative points
in the parameter space of the induced soft terms. The latter are determined by a real
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positive parameter 0 ≤ A ≤ 1, with A = (m2
H − m2

h)/(m2
H + m2

h), H,h being the
neutral Higgs scalars driving inflation [70]. The first case (A = 0.83) corresponds to
the canonical Higgs-otic model in which the lightest scalar field at the minimum of
the potential (at scale MSS) can be identified with the SM Higgs field. The second
case (A = 0.7) analyses how those results are changed if there is new physics slightly
modifying the Higgs-otic setting. For completeness, we present a third case with A =
0.2 in which the inflaton cannot be identified with the MSSM Higgs fields but could be
relevant in extensions of the MSSM.

6.1 Higgs-otic inflation

In this section we discuss a model of inflation that is embedded in string theory, called
Higgs-otic inflation in the original work [70]. Higgs-otic inflation refers to theories in
which the inflaton is a complex scalar giving rise to gauge symmetry breaking through
the Higgs mechanism in the vacuum, while, for large field values, it drives slow-roll
inflation. The most obvious and natural candidate for this scalar is the Standard Model
Higgs field itself, as described in [70]. Nevertheless the same idea may be applied
to other beyond the Standard Model fields. This makes this class of models viable
even if the inflaton is not the Higgs boson, as may be required by observational or
theoretical constraints. In this thesis, Higgs-otic inflation serves as the prime example
of an inflationary theory embedded in string theory.

One of the original benchmark models of [70] is a Type IIB compactification with
O3/O7-planes and RR and NS three-form fluxes. This model features a compact ori-
entifold with a local geometry of the form (X × T2)/Z4, where X is some complex
two-fold which is wrapped by a stack of D7-branes at the singularity. The orientifold
yields a four-dimensional N = 1 supersymmetric gauge theory, as discussed in Section
3.3. The zero modes of the eight-dimensional Φ and Aµ give rise to the MSSM field
content.

Some of the D7-branes may leave the singularity and travel through the bulk around
the two-torus T2 while still satisfying tadpole cancellation conditions. When this hap-
pens the field Φ develops a vev and the U(N) gauge symmetry is broken. The back-
ground closed-string fluxes give rise to a monodromy potential for the position moduli
of the D7-branes, see Section 4.6, which has a D-flat direction. The three-form fluxes
are in general the primitive ISD and IASD components of G3. For ISD fluxes we dis-
tinguish between the (0, 3)-form flux G = G1̄2̄3̄ and the (2, 1)-form flux S = ε3̄j̄k̄G3̄jk.
G breaks supersymmetry in the vacuum and S gives rise to µ-terms in the N = 1
superpotential, as discussed in Section 3.2.

Observations fix the mass of the inflaton to be of the order of 1013 GeV, and hence
they fix the mass of the inflaton candidate Φ. In this realization of Higgs-otic inflation
the supersymmetry-breaking scale MSS is also of the order of 1013 GeV, consistent
with the scenario of intermediate supersymmetry breaking discussed in [142–148] and
consistent with a Higgs mass of 126 GeV [80]. The structure of mass scales in the
original Higgs-otic setting is summarized in Figure (6.1).

The dynamics of the fields living on the D7-branes are described by the DBI and the
CS actions, as discussed in Section 3.3. For G and S fluxes this leads to the following
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Figure 6.1: Energy scales in the original Higgs-otic inflation scenario [70]. Below 1013

GeV the light degrees of freedom in the Higgs sector are given by the SU(2) doublet
HL. Above this scale SU(2) is broken and they lie within the neutral components of h
and H.

effective action for the complex four-dimensional position modulus φ

Lkin = −∂µφ∂µφ̄
{

1 +
1

4Z2V4µ7

[
(|G|2 + |S|2)|φ|2 − ḠS̄φ2 + c.c.

]}
(6.1a)

V =
gs

2Z2
|G∗φ− Sφ̄|2 , (6.1b)

as described in appendix A. For configurations with only ISD fluxes the contribution
in front of the kinetic term is exactly proportional to the F-term scalar potential and
is given by

f(φ) = 1 +
1

2V4µ7gs
VF , with VF (φ) =

gs

2Z
|G∗φ− Sφ̄|2 . (6.2)

We assume Z = 1 in the rest of this chapter. This action can be obtained from an
N = 1 description which we discussed in Chapter 5.

The above action concerns the U(N) adjoint in the world-volume of D7-branes.
However, it still applies after an orbifold projection that converts the adjoint scalars
into a set of bifundamentals, some of which can be identified with the Higgs field. In
the setup of [84], there is a stack of six D7-branes giving an initial U(6) gauge group,
after the orbifold projection a U(3) × U(2) × U(1) gauge group is projected out. One
linear combination of the U(1)’s can be identified with hypercharge, whereas the other
two are anomalous and become massive. In this setup, the adjoint Φ contains doublets
surviving projection, i.e.

Φ =

 03

02 Hu

Hd 0

 , (6.3)

where Hu and Hd can be identified with the MSSM Higgs fields. Plugging this decom-
position in Equation (6.1b) and taking the trace over gauge indices we obtain the scalar
potential

VF =
Z−2gs

2

[
(|G| − |S|)2|h|2 + (|G|+ |S|)2|H|2

]
, (6.4)

where we define

h =
eiγ/2Hu − e−iγ/2H∗d√

2
, H =

eiγ/2Hu + e−iγ/2H∗d√
2

, (6.5)

with γ = π − Arg(GS). The model is essentially two copies of chaotic inflation with a
quadratic potential and non-canonical kinetic terms.
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To discuss different limits of this model it is useful to define the real variable A
which controls the relative size of supersymmetric (S) versus non-supersymmetric (G)
fluxes, i.e.,

A =
2|SG|

|G|2 + |S|2 . (6.6)

Note that 0 ≤ A ≤ 1. This parameter may also be written in terms of the masses of
the above defined neutral scalars,

mH

mh
=

√
1 +A

1−A . (6.7)

There are two interesting limits in which the two-field scalar potential, (6.4), becomes
effectively a single-field potential. The first is when |G| = |S|, which corresponds to
A = 1. In this limit the field h becomes massless. For a Higgs doublet to remain as a SM
Higgs much below the inflaton mass scale, we would need to be close to that parameter
point. In this limit, the Higgs field H is the one producing inflation. The second
interesting limit is when supersymmetry is preserved in the vacuum, corresponding to
G = 0 and, hence, A = 0.

If we insist on identifying one of the doublets with the SM Higgs it must remain
massless below the supersymmetry-breaking scale' 1013 GeV. This requires fine-tuning
of the fluxes G and S. However, one has to take into account the running of masses in
between the UV scale (the compactification/string scale Ms) and the supersymmetry-
breaking scale MSS ' 1013 GeV. Taking into account this effect, it was found in [70]
that A ' 0.83 for one of the doublets to the Standard Model Higgs. This value of A
follows from the assumption that the light scalar surviving down to the EW scale is
to be identified with the SM Higgs, and that no extra degrees of freedom enter the
particle spectrum beyond those of the MSSM. It is, however, conceivable that extra
light particles are present in an extension of the MSSM, modifying the running of
the Higgs’ masses between the compactification/string scale and the supersymmetry-
breaking scale MSS. If this is the case then other values of A can be compatible with
the identification of the Higgs sector and the inflaton sector. Keeping this possibility in
mind we analyze Higgs-otic inflation in three representative points in parameter space,
A = 0.83, A = 0.7 and A = 0.2 in this chapter.

Another important ingredient of Higgs-otic inflation is the D-term potential with
contributions from both the U(1) charges and the SU(2) charges of Hu and Hd. It
was shown in [70] that out of the initial four real neutral scalars one becomes massive
due to the D-term potential, while another one, corresponding to a Goldstone boson,
is eaten up by Z0, thereby completing a massive N = 1 vector multiplet. Therefore,
only two real scalars remain massless before introducing fluxes, corresponding to |h|
and |H| in the basis of (6.5). For inflation we thus have to consider the two real degrees
of freedom h ≡ |h| and H ≡ |H|, or equivalently defining the D-term flat direction as

σ = |Hu| = |Hd| , Hu = eiθH∗d , (6.8)

we can rewrite the potential as

V (σ, θ) = M2
SS

(
1−A cos θ̃

)
σ2 , (6.9)

where we define

M2
SS ≡ V4µ7gs|Ĝ|2 , with |Ĝ|2 ≡ 1

Z2V4µ7
(|G|2 + |S|2) , (6.10)
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where Ĝ gives the magnitude of the flux present and θ̃ = θ −Arg(GS).
In angular variables the relevant piece of the action may be written as

L4d = f(σ, θ)

(
2(∂µσ)2 +

σ2

2
(∂µθ)

2

)
−M2

SS(1−A cos θ̃)σ2 , (6.11)

with f(σ, θ) = 1 + 1
2(V4µ7gs)

−1V (σ, θ). The above Lagrangian with the potential given
in Equation (6.9) describes the inflationary dynamics studied in this chapter. One
should not forget that the kinetic terms are not canonical and, in general, for multiple
fields there does not exist a transformation that makes the metric flat everywhere on the
moduli space. Therefore, to perform a complete analysis we use the general two-field
Lagrangian with the field-space metric

Gab =

(
4f(σ, θ) 0

0 σ2f(σ, θ)

)
, (6.12)

and use the generalized expressions of the cosmological observables for non-canonical
kinetic terms and multiple fields introduced in Chapter 3.

6.2 Multi-field dynamics of Higgs-otic inflation

We have reviewed the relevant formalism for the computation of inflationary observables
in two-field models in Chapter 3 and we have introduced the Higgs-otic model in the
previous section. This model yields two-field inflation before moduli stabilization is
taken into account. We keep the total amount of flux fixed at Ĝ = 1 but, as mentioned in
the previous section, analyze the model for three different values of A. For a string scale
of the order of 1017 GeV this leads to a supersymmetry-breaking scale of MSS ' 1013

GeV. However, we will also show the results for a large range of Ĝ values at the end of
this chapter.

6.2.1 Higgs-otic regime: A = 0.83, Ĝ = 1

In this section, we present the results for the inflationary observables corresponding
to the canonical flux choice A = 0.83 and Ĝ = 1. For this point in parameter space,
at the supersymmetry-breaking scale MSS ' 1013 GeV, there exist a heavy Higgs that
can be integrated out and a light (approximately massless) Higgs, to be identified
with the Standard Model Higgs field. As mentioned in Section 6.1, at the ultraviolet
(string) scale the two fields have comparable masses (in fact for A = 0.83 one has
mH/mh = 3.28), implying that inflationary dynamics driven by such a Higgs sector
necessarily is multi-field in nature and that the observables are better estimated via
the methods reviewed in Section 3.6.

We present in Figure 6.2 several trajectories in the (σ, θ) plane as well as the evo-
lution of the η⊥ parameter, defined in Equation (3.89), for those same trajectories.
Recalling that η⊥ is proportional to the inverse curvature radius of the background
trajectory [49], we observe that the marked turns in the trajectories generate clear
peaks in η⊥. These peaks are sharper and higher for trajectories where the turning
takes place close to the end of inflation. These trajectories have large initial values for
θ, denoted by θ0. The multi-field effects, arising through the η⊥ controlled coupling
between curvature and isocurvature modes, are more severe the earlier the turn takes
place. So, even though the coupling is stronger for trajectory C than for trajectory
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Trajectory A B C D E F G H

Pζ/P0

∣∣
k60

1.01 1.01 1.02 1.03 1.07 1.22 1.76 1.716

log10 βiso(k60) -3 -3 -5 -8 -13 -16 -18 -20

Pζ/P0

∣∣
k50

1.01 1.01 1.02 1.04 1.09 1.30 2.00 1.33

log10 βiso(k50) -3 -3 -5 -8 -13 -16 -18 -19

Table 6.1: Ratio between the amplitude of the curvature perturbations at the end of
inflation and the single-field estimate of Equation (3.113) for the trajectories of Figure
6.2. A = 0.83 and Ĝ = 1.

H, its effects are more pronounced in the latter since the isocurvature and curvature
modes are coupled at earlier times, when there is more isocurvature power.

The effects of the multi-field dynamics on the amplitude of the scalar curvature
perturbations are illustrated in Figure 6.3 where we observe that the power transfer
from isocurvature to curvature is maximized the earlier the turn takes place. The
impact of multi-field effects on the scalar amplitude for trajectories A-E is minimal, with
the single-field estimate of Equation (3.113) providing a good approximation to the full
result. For trajectories F-H the superhorizon evolution of the curvature perturbations
driven by isocurvature power transfer implies that Equation (3.113) underestimates
the amplitude by as much as 80%. These results are summarized in Table 6.1, where
we also present the estimates for the primordial isocurvature fraction, βiso, at the
end of inflation given in terms of the wave numbers at 50 and 60 e-folds, k50 and
k60. We observe that βiso varies by many orders of magnitude, being larger for late
turning trajectories (large θ0) where power transfer between isocurvature and curvature
perturbations is less efficient and the attenuation of isocurvature power is mostly driven
by its decay on superhorizon scales.

In the same way as the multi-field effects can lead to an underestimation of the
scalar amplitude, they can also impact other inflationary observables, in particular,
the tightly constrained spectral index and the tensor-to-scalar ratio. The single- and
multi-field estimates for these quantities are plotted as functions of the initial condition
θ0 in Figure 6.4. Starting with the tensor-to-scalar ratio, we observe that the effect of
the multi-field dynamics is to flatten the peak and therefore to bring the results more in
line with the PLANCK 2016 constraint of r < 0.071. This effect is partially due to the
tensor modes being unaffected by these effects and in part due to the fact that the single-
field estimate for the amplitude of the scalar perturbations is a bad approximation for
trajectories that turn early. Therefore by underestimating the amplitude of the scalar
fluctuations, the single-field formula overestimates the tensor-to-scalar ratio by

r = 16 ε∗
P0

Pζ
(k∗, τend) . (6.13)

For the spectral index, we observe again that the multi-field estimate is considerably
sharper than what one would expect by applying single-field techniques. We observe
that the peak at low θ0 is absent and that the trough is shallower. We recall that the
single-field estimate for ns, Equation (3.113), is obtained by taking the decoupling limit
η⊥ → 0. This condition is clearly violated by the early-turning trajectories, for which
η⊥ peaks as the scalar modes leave the horizon. We therefore conclude that the peak in
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Figure 6.2: Left: The last 68 e-folds for some representative inflationary trajectories.
Red dots mark 10 e-folds intervals on each trajectory. Right: Evolution of η⊥ for the
different trajectories. A = 0.83 and Ĝ = 1.

the low θ0 region is spurious.1 To understand the change in ns for larger θ0 trajectories
it is useful to rewrite Equation (3.94) as

d2vTα
dτ2

+ (ΩTT − a2H2η2
⊥ + k2)vTα︸ ︷︷ ︸

elastic force

= −2aHη⊥
dvNα
dτ
− d(aHη⊥)

dτ
vNα − ΩTNv

N
α︸ ︷︷ ︸

external force

.

We see that the equation of motion for the curvature perturbation is equivalent to a
frictionless harmonic oscillator with a “time” dependent proper frequency subject to
an external force whose magnitude is set by the isocurvature perturbation. The effects
of a turn in the background trajectory, which gives rise to the external force, is more
pronounced on k-modes for which the ratio between the external force and the elastic
force is larger. This ratio is well approximated by the simpler relation between

R(k) ' vNα (k)

vTα (k)
. (6.14)

Since the amplitude of different k-modes around the pivot scale is affected differently by
a turn in the background trajectory, there is superhorizon evolution of the spectral index
for the curvature perturbations. From the solutions in the decoupling limit (η⊥ = 0)
one finds that on superhorizon scales and before the turn

vTα ∝ k−νT = kn
0
s/2−2 and vNα ∝ k−νN , (6.15)

where n0
s denotes the curvature spectral index before the turn in the trajectory and is

assumed to be n0
s < 1. As for the isocurvature perturbations, one may expand

νN ∼
3

2
− 1

3
(1 + 2ε)

(
M

H

)2

+ ε <
3

2
, (6.16)

1Comparing the results for the single-field estimates of Figure 6.4 and those of [70] we see that they
differ in the low θ0 range, where [70] has no peak. This difference can be traced back to how one

generalizes η = V ′′

V
for multi-field cases. If one takes η to be the smallest eigenvalue of

GijVij

V
then

indeed there is no peak. However we use here a different, and more accurate, prescription which can
be indeed derived from the decoupling limit, as we argued in Section 3.6.
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Figure 6.3: Evolution of the curvature (blue) and isocurvature (red) two point func-
tions for k60 for the trajectories of Figure 6.2. Curvature and isocurvature power are
normalized to the single-field estimate P0 = H2

8π2ε
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∗.
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Figure 6.4: Spectral index (left) and tensor-to-scalar ratio (right) for Ĝ = 1 and A =
0.83 superimposed with the PLANCK 2015 constraints ns = 0.96688 ± 0.0061 and
r < 0.114 (grey band). The slightly transparent curve corresponds to the single-field
estimate while the one surrounded by the data points corresponds to the multi-field
results. Circles: Ne = 60, squares: Ne = 50.
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Figure 6.5: Time evolution of the curvature perturbations and of the spectral index on
scales k∗ = k60 for the case A = 0.83, Ĝ = 1 and θ0 = 0.9.

which leads to

R(k) ∝ k1/2−n0
s/2 = kα, α > 0 . (6.17)

To understand how this changes the spectral index, consider a pair of k-modes around
the pivot scale k∗: k− < k∗ < k+. It follows that since

R(k−)

R(k+)
∝
(
k−
k+

)α
< 1 ,

the k+ mode power is more enhanced than the k− mode power, resulting in a spectral
index closer to unity

nends > n0
s . (6.18)

This behaviour can be clearly observed in Figure 6.5, where the k− power is less en-
hanced than the k+, resulting in a more even distribution of power and in an increase
in the spectral index. Note that, before the turn (Ne < 50), the single-field estimate is
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Trajectory A B C D E F G H

Pζ/P0

∣∣
k60

1.01 1.01 1.02 1.04 1.09 1.20 1.40 1.22

log10 βiso(k60) -4 -4 -5 -9 -10 -9 -12 -13

Pζ/P0

∣∣
k50

1.01 1.01 1.02 1.05 1.11 1.26 1.43 1.16

log10 βiso(k50) -3 -3 -5 -9 -9 -11 -12 -13

Table 6.2: Order of magnitude of the isocurvature fraction at the end of inflation for
the trajectories of Figure 6.6. A = 0.7 and Ĝ = 1.

actually a good approximation to the full result and that it only fails due to the sharp
turn in the background trajectory that causes conversion of isocurvature into curvature
power.

6.2.2 Modified Higg-otic regime: A = 0.7, Ĝ = 1

The motivation to consider A = 0.83 was based on the assumption that there is no
new physics between the EW scale and inflation. However, as discussed in Section 6.1,
this is not necessarily the case. In this section, we analyze the case A = 0.7, which
corresponds to a mass ratio mH/mh = 2.38 at the string scale. In Figure 6.6 we present
sample background trajectories and the corresponding evolution of the η⊥ parameter.
Comparing with the results of the previous section we see that the trajectories are
straighter and that the η⊥ peaks are less pronounced and located at later times. This
implies that the differences between the exact results and the single-field estimates for
the observables should be less pronounced than for the A = 0.83 point. That is indeed
the case, as can be seen from comparing Figures 6.4 and 6.7. Though less pronounced,
the disparity between single-field estimates and the full results is still important as
the effect of the multi-field dynamics is to bring the observables more in line with
the current constraints on ns and r: the variation in the spectral index is damped
and the tensor-to-scalar ratio is significantly reduced. In fact ns is comfortably inside
the 2σ band and the r is reduced to the point that it complies with the observational
upper bound for all initial θ0. This highlights the importance of properly estimating the
observables at a time of ever increasing measurement precision. In Table 6.2 we present
the isocurvature fraction at the end of inflation as well as the comparison between the
single-field estimate for the curvature amplitude and the numerical result for the various
trajectories.

6.2.3 Almost single-field regime: A = 0.2, Ĝ = 1

The Higgs-otic model also features regimes in which the connection between inflation
and MSSM Higgs physics is absent or hard to realize. In these cases, where the fluxes
are such that A is substantially different from the canonical value of 0.83, inflation can
still be driven by the D7-brane position modulus if the inflaton is associated to other
degrees of freedom. Indeed, for small A the values of the Higgs masses mh,mH are too
close to each other for the running from the string scale down to the supersymmetry-
breaking scale to be sufficiently strong to yield an (approximately) massless SM doublet
at MSS, but one could still identify the complex inflaton with other degrees of freedom
in some extension of the MSSM. Note, in particular, that if supersymmetric particles
are found at LHC, the canonical Higgs-otic scenario with A = 0.83 would be ruled out,

76



H

G

F

E

D

C

B

A

1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Σ

Θ

G F
E
D

C

0 10 20 30 40 50 60 70

0.0

0.5

1.0

1.5

Ne

Η
¦

Figure 6.6: Left: The last 68 e-folds for some representative inflationary trajectories.
Red dots mark 10 e-folds intervals on each trajectory. Right: Evolution of η⊥ for the
different trajectories. A = 0.7 and Ĝ = 1.
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Figure 6.7: Spectral index (left) and tensor-to-scalar ratio (right) for Ĝ = 1 and A = 0.7
superimposed with the PLANCK 2015 constraints ns = 0.96688±0.0061 and r < 0.114
(grey band). The slightly transparent curve corresponds to the single-field estimate
while the one surrounded by the data points corresponds to the multi-field results.
Circles: Ne = 60, squares: Ne = 50.

since it assumes a large supersymmetry-breaking scale MSS ' 1013 GeV. In this case,
the inflaton could be identified with extra scalars which could have supersymmetric
masses at the inflation scale ' 1013 GeV.

While the search for specific MSSM extensions with this structure is quite interest-
ing, the inflationary dynamics may be studied in a model-independent manner assuming
that such new non-Higgs degrees of freedom correspond again to the position moduli
of D7-branes. We study here for comparison the case with A = 0.2 (corresponding to
mH/mh = 1.22). In Figure 6.8 we present the background evolution for sample trajec-
tories in such a regime. In this case we see that the trajectories are essentially straight
along the σ direction with only slight turning in the last 10 e-folds of expansion. This
is in accordance with the fact that θ becomes massless in the limit of vanishing A.
The straight trajectories imply that η⊥, being inversely proportional to the curvature
radius, vanishes everywhere except at the very end of inflation (where the mild turning
takes place) as can be seen in Figure 6.8.

We expect the single-field estimates of Equations (3.113) and (3.115) for the infla-
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Figure 6.8: Left: The last 68 e-folds for some representative inflationary trajectories.
Red dots mark 10 e-folds intervals on each trajectory. Right: Evolution of η⊥ for the
different trajectories. A = 0.2 and Ĝ = 1.
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Figure 6.9: Spectral index (left) and tensor-to-scalar ratio (right) for Ĝ = 1 and A = 0.2
superimposed with the PLANCK 2015 constraints ns = 0.96688±0.0061 and r < 0.114
(grey band). The slightly transparent curve corresponds to the single-field estimate
while the one surrounded by the data points corresponds to the multi-field results.
Circles: Ne = 60, squares: Ne = 50.

tionary observables to provide a good approximation to the full result. In fact, if one
employs the multi-field formalism in the computation of the observables and compares
it with the single-field estimates, one finds that there is agreement at the level of a few
percent. This is displayed in Figure 6.9 where the naive single-field bands track the
exact results to the point of being almost indistinguishable.

Since isocurvature is practically decoupled from curvature throughout the observ-
able inflationary range, the isocurvature fraction at the end of inflation as estimated by
βiso is larger that in the previous cases, as can be seen in Table 6.3. This is due to the
fact that, unable to transfer power to the curvature mode, all the isocurvature modes
can do in their superhorizon evolution is to decay slowly. Note that even though this
almost single-field regime gives rise to the largest isocurvature fraction, it is still below
the highest upper bound on βiso derived from the latest PLANCK 2016 data [51].
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Trajectory A B C D E F G H

Pζ/P0

∣∣
k60

1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.01

log10 βiso(k60) -4 -4 -5 -4 -5 -6 -6 -6

Pζ/P0

∣∣
k50

1.01 1.01 1.02 1.02 1.03 1.03 1.02 1.02

log10 βiso(k50) -4 -4 -4 -4 -5 -5 -6 -6

Table 6.3: Ratio between the amplitude of the curvature perturbations at the end of
inflation and the single-field estimate of Equation (3.113) and amplitude of isocurvature
perturbations for the trajectories of Figure 6.8. A = 0.2 and Ĝ = 1.

6.2.4 Varying Ĝ

Finally let us discuss the effects of varying Ĝ over the results. As we commented in
Section 6.1, Ĝ parametrises the total amount of flux quanta in Planck units, which
determines in turn the ratio between the supersymmetry-breaking scale and the string
scale. In particular,

Ĝ = (V4µ7)−1/2G3 '
n

Mp
∼ 5

MSS

M2
s

(6.19)

with n being the flux quanta. We take the string scale of order Ms ∼ 1016 − 1017

GeV, as suggested by gauge unification. An isotropic compactification with n ∼ O(1)
then implies MSS ∼ 1013 GeV. But it should be noticed that the parameter n in
general receives contributions from a large number of 3-cycles so that large cancellations
can take place that lead to n � 1, lowering the scale of supersymmetry breaking.
However, n � 1 is problematic if one wants to satisfy the experimental bounds on
density scalar perturbations. A lower supersymmetry-breaking scale may lead to a too
low amplitude of the scalar power spectra in this inflationary model. The best fit indeed
corresponds to MSS ∼ 1013, which is the typical scale for flux-induced supersymmetry
breaking obtained by assuming the flux quanta to be of order one. On the other
hand, n� 1 (and thereby a higher supersymmetry-breaking scale) makes the potential
energy trans-Planckian at the beginning of inflation, which is inconsistent with the
effective field theory approach. Throughout this chapter we have shown the results
for the representative value Ĝ = 1 in Planck units. Here we also show the results for
other possible values of Ĝ for completeness. In Figure 6.10 we plot our results in the
ns − r plane superimposed over the experimental Planck exclusion limits. The data
correspond to A = 0.83 and arbitrary Ĝ. Notice that Ĝ not only enters in the absolute
value of the potential, but also in the field redefinition to get canonical kinetic terms.
The bigger Ĝ is, the stronger is the flattening of the potential and the results are closer
to those of linear inflation. This is the reason why our results actually interpolate
between quadratic (small Ĝ, negligible flattening) and linear (big Ĝ, strong flattening).
However, as we already said, those closer to linear inflation are in better agreement with
both density scalar perturbations and tensor-to-scalar ratio constraints from Planck.
In Figure 6.10 the color pattern from red to blue refers to the density of points, being
the red regions the most populated. This could have been anticipated from Figure
6.4, where most of the initial conditions gave rise to values of r and ns closer to the
single-field prediction. The spreading of the results to smaller values of the spectral
index is due to the freedom on the choice of the initial conditions, but as we said the
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Figure 6.10: Tensor to scalar ratio and spectral index for Higgs-otic inflation with
A = 0.83 and arbitrary Ĝ. The data is superimposed over the recent Planck exclusion
limits [51]. The color pattern (from red to blue) corresponds to (higher or lower) density
of initial condition points . There is a lower cutoff on the density required to be plotted
(or equivalently in the level of fine-tuning allowed) missing around 10 % of the points.

blue region corresponds to very fine-tuned values of θ0 and the majority of the points
is localised at ns ' 0.965 and r ' 0.08− 0.12.
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Chapter 7

Moduli stabilization in Higgs-otic
inflation

In this chapter we extend the study of large-field D7-brane inflation models, with
particular emphasis on Higgs-otic inflation. We have studied this model from a local
perspective based on the DBI and CS actions. We have seen that ISD three-form fluxes
in the background yield a monodromy and a mass term for the position modulus, which
give a quadratic inflaton potential. However, this potential is flattened at large-field
values due to non-trivial kinetic terms arising from the DBI action, leading to a linear
potential in the large-field regime. A realistic global model requires more ingredients, in
particular, it requires a global compactification of the D7-brane system with stabilized
moduli. The aim of the present chapter is to discuss the effects of moduli stabilization
on the inflationary dynamics of Higgs-otic inflation.

Moduli stabilization in Type IIB is best understood in terms of its low-energyN = 1
supergravity theory, cf. [24,29]. Thus, we need an N = 1 description of the microscopic
setup leading to Higgs-otic inflation, including sources which stabilize all moduli. We
discussed corrections to the supergravity theory in Chapter 5 aimed a capturing the
effect of the non-trivial kinetic term of the D7-brane from the DBI action. We showed
that, with only ISD three-form fluxes, the leading-order α′ correction to the action can
be captured by higher-derivative corrections to the Kähler potential. This correction
was obtained before taking moduli stabilization into account. We will see that stabi-
lizing the Kähler moduli requires us to turn on additional (IASD) fluxes, making the
identification of the correct higher-derivative operator more difficult. IASD three-form
fluxes are necessary to describe non-perturbative contributions in the superpotential,
which in turn are needed to stabilize Kähler moduli. However, even after the inclusion
of these fluxes the correct kinetic term can be found by expressing the DBI action in
terms of the correct supergravity variables. This can be done by a matching between
the scalar potential obtained from the expanded DBI action, including ISD and IASD
fluxes, and the supergravity Lagrangian after stabilizing the Kähler modulus.

In order to study moduli stabilization and its backreaction on the inflaton, we con-
sider a simplified KKLT-like setup in which the dilaton and complex structure moduli
are stabilized supersymmetrically by fluxes and already integrated out. A single over-
all Kähler modulus is then stabilized by non-perturbative effects and an appropriate
de Sitter uplift is added [29]. It turns out that there are important backreaction ef-
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fects which substantially modify the structure of the inflaton scalar potential derived
in Chapter 6. Similar to our analysis here, the backreaction of stabilized moduli was
studied in [149] for supersymmetric stabilization, and in [33,150] for the KKLT mecha-
nism and other models in which the Kähler moduli break supersymmetry. Eventually,
the modulus backreaction leads to an additional flattening of the effective potential and
a limit to the field excursion of the inflaton. At the same time, the background fluxes
must be chosen such that the mass of the inflaton is much smaller than that of the
modulus. If this can be achieved, 60 or more e-folds of slow-roll inflation are possible.
The tensor-to-scalar ratio for Higgs-otic inflation then lies in the range r ' 0.04− 0.08.

In addition to the backreaction induced by the Kähler moduli, there is a back-
reaction coming from stabilizing the complex structure moduli and dilaton. Such a
backreaction is known to modify the kinetic term of the inflaton, modefying the canon-
ical field range [151]. It was shown in [152] that this problem is particularly severe in
models where the inflaton is a closed-string axion. We will show that this backreaction
is less severe when the inflaton is an open-string scalar. The backreaction does occur,
but due to the extra freedom introduced by the open-string sector, the reduction of the
canonical field range can by controlled.

The structure of this chapter is as follows. In Section 7.1 we discuss the supergravity
embedding of the Higgs-otic model discussed in Section 6.1. In Section 7.2 we combine
the open-string sector of the Higgs-otic model with a single Kähler modulus in a KKLT-
like setting. We study the associated backreaction on the inflaton potential following the
analysis in [33], and show that, for an appropriate choice of flux parameters, consistent
slow-roll inflation is achieved with a stable Kähler modulus. Moreover, we translate
the non-trivial kinetic terms to the supergravity language and give numerical examples
with the predicted CMB observables of the canonical inflaton variable. In Section 7.3
we investigate the additional backreaction induced by the complex structure moduli
and the dilaton. Using flux stabilization as in [24], we show that the inflaton field
range is almost unaffected when an appropriate mass hierarchy between the inflaton
and moduli is achieved via a flux choice. We discuss the flux choices needed for Kähler
and complex structure moduli stabilization and how they are related. Appendix C
accompanies this chapter, in it we illustrate that moduli-stabilizing fluxes may also
yield µ-terms for open-string moduli in a simple toroidal orientifold setting.

7.1 Supergravity embedding of Higgs-otic inflation

Before moving to moduli stabilization of Higgs-otic inflation we have to discuss its
supergravity embedding. The Kähler potential and superpotential were already given
in Equations (5.35) and (5.36), when the model is compactified on a isotropic torus.
We repeat them here for completeness

K = − log

[
(S + S̄)(U + Ū)− 1

2
(Φ + Φ̄)2

]
− 3 log

[
T + T̄

]
, (7.1a)

W = µΦ2 +W0 +Ae−αT , (7.1b)

where we have added a non-perturbative piece to the superpotential to allow for Kähler
moduli stabilization, see Section 3.4. S and U denote the axio-dilaton and a complex
structure modulus, respectively. Furthermore, we assume that A is a constant that
does not depend on the inflaton. In a realistic compactification it is possible for A to
depend on the inflaton. However, the computation of the functional dependence goes
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beyond the scope of this work. The effect on the inflationary dynamics was recently
discussed in [153].

We postpone further discussion of α′ corrections to the effective action until Sec-
tion 7.2.3. This Kähler potential and superpotential arise, for example, when the cycle
wrapped by the brane is a torus, two of the three complex structure moduli are as-
sumed to be stabilized by fluxes, and the three Kähler moduli of the tori are identified.
Furthermore, we assume S and U to be stabilized supersymmetrically at a high scale.
Therefore, we can write the product of the vacuum expectation values of the complex
structure modulus and the dilaton as s and we work with the effective Kähler potential

K = − log

[
s− 1

2
(Φ + Φ̄)2

]
− 3 log

[
T + T̄

]
. (7.2)

We come back to the stabilization of the complex structure modulus in Section 7.3.
Before we turn to the more complicated non-Abelian setup, let us consider the simple
case of a single brane. In this case the position modulus does not split into the bifunda-
mental Higgses and there is a single complex scalar field, φ, parameterizing the motion
of the brane away from the orientifold singularity. Using the Kähler potential and su-
perpotential given above we can use the standard supergravity formula to compute the
scalar potential

V (t, ϕ) =
1

8st3

[
4

3
αtAe−2αt

(
3A+ αtA+ 3W0e

αt
)

+ 2
(
−αtAe−αt + sµ

)
sµϕ2

]
, (7.3)

where ϕ = IM(φ) is the canonically normalized inflaton field and t denotes the real
part of T . We assume that both µ and W0 are real valued. It was shown in e.g. [33]
that for complex parameters it is always possible to use field redefinitions and Kähler
transformations to go to a frame where the results are qualitatively the same as in the
case considered here.

Next, we consider the case when the position modulus splits in a set of bifunda-
mentals. The off-diagonal fluctuations of the transverse field φ correspond then to the
MSSM Higgs doublets Hu and Hd and can yield inflation, as in Equation (6.3). The
Kähler potential and superpotential now depend in the following way on the fields [70]

K = − log

[
s− 1

2
(Hu + H̄d)(H̄u +Hd)

]
− 3 log

[
T + T̄

]
, (7.4a)

W = µHuHd +W0 +Ae−αT . (7.4b)

We do not want to discuss the backreaction of T just yet but rather focus on the
connection between this formalism and the one obtained from the DBI action, so we
neglect the T -dependent piece in W and we assume that DTW 6= 0 which leads to
a perfect no-scale cancellation of the term proportional to −3|W |2. This yields the
following positive definite scalar potential,

V =
1

8st30

[
(W 2

0 + 2sµW0 + 2s2µ2)(|Hu|2 + |Hd|2)

+W0(W0 + 2sµ)(HuHd + H̄uH̄d) + . . .
]
, (7.5)

where T is supposed to be stabilized at t0 with a large mass. The ellipsis denotes higher-
order terms which are positive definite and unimportant. We neglect the backreaction
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of the supersymmetric stabilization of S and U . We can use the diagonal basis of
Equation (6.5) to write the scalar potential as

V =
1

4st30

[
s2µ2|h|2 + (W0 + sµ)2|H|2 + . . .

]
, (7.6)

again neglecting unimportant higher-order interaction terms. Comparing this to Equa-
tion (6.4) motivates us to identify the fluxes and the supergravity parameters in the
following way

G =
ZW0√
4gsst30

, S = −Z(W0 + 2sµ)√
4gsst30

, (7.7)

In terms of the D-flat directions σ and θ the scalar potential can be written as

V =
1

4st30

[
s2µ2 + (W0 + sµ)2 +W0(W0 + 2sµ) cos θ

]
σ2

=
s2µ2 + (W0 + sµ)2

4st30
(1 +A cos θ)σ2 , (7.8)

where A was defined in Equation (6.6) in terms of the fluxes but is given here equiva-
lently as A = W0(W0 + 2sµ)/(s2µ2 + (W0 + sµ)2).

7.2 Kähler moduli stabilization and backreaction

In this section we extend the supergravity setup of Higgs-otic inflation by an explicit
treatment of the backreaction of the Kähler modulus on inflationary physics. We first
focus on the backreaction of a single volume mode T , stabilized via the setup of KKLT
for a single brane as in the previous section. This shows many of the important fea-
tures present in the slightly more involved Higgs-otic model. Next, we compute the
backreaction of the stabilized Kähler modulus on the inflationary scalar potential of
Higgs-otic inflation, following the analysis in [33]. We combine these results with those
of Section 5.1 to account for the non-trivial kinetic term obtained from the DBI action.

Since our goal is to stabilize all relevant closed-string moduli in Higgs-otic inflation,
we must consider extensions of the original setup of Section 6.1, in which only ISD fluxes
were included. From the perspective of the supergravity theory we have to consider
non-perturbative terms to the superpotential. In Type IIB, in the absence of non-
geometric fluxes, these non-perturbative terms are required to stabilize Kähler moduli
as discussed in Chapter 3. From the perspective of the world-volume DBI and CS
actions, we have to take modifications into account to account for the non-perturbative
superpotential. The superpotential term is sourced by a gaugino condensate which
backreacts through the ten-dimensional supergravity equations on the local closed-
string background, inducing IASD flux on the bulk [154]. Upon adding this flux in the
computation of the effective theory arising from the DBI and CS actions, we find that
both the kinetic term and the scalar potential are indeed modified.1 The result is

Lkin = −∂µφ∂µφ̄
{

1 +
1

4ZV4µ7

[
(|G|2 + |S|2 + |D|2)|φ|2 − Ḡ(S̄ −D)φ2 + c.c.

]}
(7.9a)

V =
gs

4Z

(
2|G∗φ− Sφ̄|2 + ḠDφ2 +GD̄φ̄2

)
. (7.9b)

1It is possible to consider even more general flux, see [155] for the effects in a similar model.
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As in Section 6.1 the potential is quadratic in φ and there is a non-trivial piece in
the kinetic term which leads to a flattening of the effective inflaton potential. This
piece is indeed proportional to the scalar potential contribution from the DBI action.
When the IASD flux is equal to zero, which is when D vanishes, the scalar potential
from the DBI action is equal to the CS contribution, so the correction to the kinetic
term can be written as proportional to the full scalar potential itself. However, in the
presence of the IASD flux, D, the contributions to the action from the DBI action and
CS action are different. Since the correction to the kinetic term is only sensitive to the
DBI action, the structure we studied in Chapter 5 is broken. This forces us to obtain
the N = 1 D7-brane action not from a corrected Kähler potential but rather from a
matching between the above scalar potential and the scalar potential obtained from the
corresponding low-energy N = 1 theory after Kähler moduli stabilization. We discuss
this in Section 7.2.3.

7.2.1 Backreaction and effective potential

Using the Kähler potential and superpotential given in Equations (7.1) and (7.2) we
computed the scalar potential

V (t, ϕ) =
1

8st3

[
∆2 +

4

3
αtAe−2αt

(
3A+ αtA+ 3W0e

αt
)

+ 2
(
−αtAe−αt + sµ

)
sµϕ2

]
,

(7.10)

where we have added an uplift, ∆. Assuming real superpotential parameters, both the
axion of T and Re(φ) are stabilized at the origin with a large mass, so we can safely
neglect them in the following, see [33] for details. In fact, we have already set Re(φ) = 0
in the above scalar potential. During inflation the Kähler modulus, T , and the position
modulus, φ, are coupled in the Lagrangian. More specifically, for real superpotential
parameters only the volume, Re(T ), and the inflaton, Im(φ), interact. The interaction
terms between t and ϕ imply that, even if t is much heavier than ϕ, during inflation the
minimum of the modulus potential is inflaton dependent. We assume that t traces its
minimum adiabatically. This assumption is justified as long as a large mass hierarchy
is present. Integrating out t at its ϕ-dependent value then leads to additional terms in
the effective potential for ϕ. This is what we refer to as a backreaction of the modulus
field.

We use Equations (3.55) to eliminate A and ∆ and expand the potential in terms of
t = t0 + δt(ϕ), where t0 denotes the modulus vev after inflation. We are thus treating
inflation as a perturbation of moduli stabilization which is allowed as long as there is
a reasonable mass hierarchy between the inflaton and the volume. Unfortunately, we
cannot minimize V and solve for δt(ϕ) analytically to all orders. Instead we expand the
potential to second order in the volume perturbation δt(ϕ) and minimize afterwards.
This allows us to solve for δt(ϕ) and we find

δt(ϕ)

t0
=

sµϕ2

2αt0W0
+O(H2/m2

t ) , (7.11)

where mt was defined in Equation (3.58). As stressed in [33] the mass of the volume
must be bigger than H throughout the inflationary period to guarantee stability of the
Kähler modulus. Therefore, it is instructive, and indeed allowed, to expand all relevant
quantities in powers of µ/W0, as we have done above. For consistency of the expansion
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around t0 we must demand that (7.11) is small compared to one. This leads to an
important constraint on the parameters of the superpotential,

W0

µ
>

sϕ2

2αt0
. (7.12)

Solving the equations of motion explicitly shows that the modulus is lifted over the
KKLT barrier at the point δt(ϕ) = t0 and the theory decompactifies. Hence, the
theory is only well-behaved as long as δt(ϕ)� t0.

Now, while in the effective regime determined by the condition given in Equation
(7.12), we can integrate out the modulus by inserting (7.11) into V (t, ϕ). This yields
the effective potential for the inflaton which reads, to leading order in αt0 and H/mt,

Veff(ϕ) =
1

4t30

(
sµ2ϕ2 +

3

2
µW0ϕ

2 − 3

8
sµ2ϕ4

)
+ . . . . (7.13)

The first term is the supersymmetric mass term for ϕ which was present before moduli
stabilization, and which is the term driving inflation in the model of Section 6.1. The
third comes from the negative definite part of the scalar potential, −3|W |2, which is
surprising since this term is normally cancelled by the no-scale structure of the Kähler
modulus in the Kähler potential. The backreaction in combination with the interaction
term between t and ϕ interfere with the no-scale cancellation during inflation in the
effective theory. Hence, it is dangerous to neglect moduli stabilization in string theory
models of large-field inflation. In fact, the theory would be lost if this was the end of
the story, since for field values ϕ > 1 the theory would destabilize. What potentially
saves the theory is the second term in (7.13). In the regime required by (7.12), i.e.
W0 � µ, it is bigger than the first term and, for ϕ below a certain value, bigger than
the third, so it can drive inflation. Notice that the allowed field range is effectively
determined by the ratio W0/µ. Since W0 is required to be bigger than µ we can neglect
the supersymmetric mass term and write the relevant potential as follows,

Veff(ϕ) =
3

8t30
µW0ϕ

2

(
1− sµ

4W0
ϕ2

)
+ . . . . (7.14)

In a sense, this is a quadratic potential with a correction term scaling as H/m3/2 or
H/mt, as naively expected. The effective potential Veff has a maximum at ϕ2

c = 2W0/sµ
and, because we must require that ϕ? < ϕc for inflation to be successful, this leads to
a parameter constraint

W0

µ
>
sϕ2

?

2
, (7.15)

which is slightly more restrictive than the one in (7.12). This constraint forces a flux
tuning to which we will come back at the end of Section 7.3.

Finally, it is not obvious that the second and third terms in (7.13) only arise after
minimizing with respect to T . They should vanish in case the non-perturbative term
in (7.1b) is absent. That this indeed happens can be seen very clearly in case we use
the equations of motion for T to eliminate the parameter W0 instead of A in (3.55).
We then obtain

Veff(ϕ) =
1

4t30

(
sµ2ϕ2 − αt0Ae−αt0µϕ2 + . . .

)
+ . . . . (7.16)

Clearly, the new dominant mass term vanishes if A = 0, in which case V (t) has no
minimum.
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Figure 7.1: Effective inflaton potential obtained analytically via the second-order ex-
pansion in δt(ϕ) (orange line) and numerically to all orders (green dashed line), in
comparison with the naive quadratic potential (blue line). The flattening effect of in-
tegrating out T is evident. The orange curve is obtained from the result (7.14) with all
higher-order terms in (αt0)−1 taken into account.

A parameter example

Let us consider a specific set of flux parameters to illustrate our findings so far. We
need to choose our parameters in such a way that they satisfy both (7.15) and yield the
correct normalization of the scalar perturbations on the would-be inflationary trajec-
tory. In Figure 7.1 we have displayed the effective inflaton potential for the following
parameter choice,

W0 = 0.005 , µ = W0/400 , s = 1 , t0 = 10 , α = 2π/5 , (7.17)

in comparison with a purely quadratic potential as obtained in Chapter 6 (blue line).
The leading-order effective potential (orange line) has a local maximum at the critical
value, ϕc ≈ 23. It is no surprise that the position of the maximum is very close to
the point where T is destabilized and δt(ϕ) ≈ t0. At this point the effective theory we
obtained from integrating out T breaks down. Beyond ϕc the modulus can no longer
be integrated out and we obtain a theory which decompactifies. This is clear after
considering the green dashed line in Figure 7.1 which is the effective inflaton potential
after integrating out T numerically to all orders. Notice the good agreement with
the analytic result obtained from the second-order expansion of the potential. The
point where the curve drops is the point where the minimum in the modulus direction
disappears and the theory decompactifies. However, to the left of the maximum value,
60 e-folds of inflation may take place. We return to the details of the inflationary
phase in Section 7.2.3. Last but not least, let us consider the full scalar potential in
the t-ϕ plane. This is shown in Figure 7.2 for the same parameter values as above. It
clearly shows the flat valley along the minimum of T in which slow-roll inflation can
take place. However, it also highlights the amount of fine-tuning of initial conditions
that is necessary to allow for inflation without destabilization of T . Of course, the
necessary amount of fine-tuning can be reduced by increasing the tuning between W0

and µ, which pushes ϕc to larger values.
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Figure 7.2: Scalar potential in the t − ϕ plane. Evidently, the initial conditions must
be very fine-tuned to allow for 60 e-folds of slow-roll inflation without destabilizing t.

7.2.2 Kähler moduli stabilization in Higgs-otic inflation

We can now treat moduli stabilization along the same lines as above in Higgs-otic
inflation defined by the Kähler and superpotential given in (6.4). We consider the
full theory with Hu, Hd, and T being dynamical. In the vacuum, after inflation, T is
stabilized by the KKLT mechanism at t0. During inflation, as in the single-field example
above, T couples to both Higgs fields and we must expand T = t0 + δt(Hu, Hd) and
minimize with respect to δt to integrate out the modulus consistently. This, again,
leads to new terms for both Higgs fields at the level of the scalar potential. After a bit
of work we find for the effective potential in terms of Hu and Hd

V =
1

8st30

[
(W 2

0 + 2sµW0 + 2s2µ2)(|Hu|2 + |Hd|2) +W0(W0 − sµ)(HuHd + H̄uH̄d)

− µ(W0 + sµ)(|Hu|4 + |Hd|4)− 3

2
sµW0(H2

uH
2
d + H̄2

uH̄
2
d)

− 1

2
sµ(5W0 + 2sµ)(|Hu|2HuHd + |Hu|2H̄uH̄d + |Hd|2HuHd + |Hd|2H̄uH̄d)

− 5sµ(W0 + sµ)|HuHd|2
]

+ . . . , (7.18)

once more to leading order in αt0 and H/mt. This is the two field analog of (7.13).
Notice that most of the quartic terms are now negative and thus are potentially relevant.
We can compare the first line to the result before moduli stabilization given in (7.5)
to see what happened. Due to the re-appearance of a part of −3|W |2 in the effective
theory, there is an additional mixed mass term −3sµW0(HuHd +H̄uH̄d) while the other
mass terms remain unchanged. The negative quartic terms can similarly traced back
to the re-appearance of −3|W |2.

The above expression becomes much simpler when written in the diagonal mass
basis, given in Equation (6.5). After integrating out T the basis is the same but the
mass eigenvalues are different. We find, instead of (7.6),

V =
1

8st30

[
sµ(3W0 + 2sµ)h2 + (2W 2

0 + sµW0 + 2s2µ2)H2

− 3

4
s2µ2h4 − 1

4
sµ(20W0 + 11sµ)H4 +

1

2
sµ(2W0 − sµ)h2H2

]
+ . . . . (7.19)
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What we have obtained in (7.19) is, in a way, two copies of (7.13) for which each mass
eigenstate has soft mass terms and a dominant quartic term suppressed by one power
of µ/W0. This is exactly the same as in the single-field model, and a very intuitive
result. It implies that, also in the two-field case, we must require W0 � µ to guarantee
moduli stabilization. Remember that the mass of the modulus is still mt ∼ W0. In
the limit W0 � µ, implying G ≈ S to high accuracy, H is stabilized at the origin with
a mass mH ∼ W0, at roughly the same scale as the modulus. The inflaton is h and
the term proportional to µW0 drives inflation, just as in Section 7.2.1, the single-field
example. Moreover, this implies that the scale of inflation is suppressed compared to
the mass scale of both T and H by one power of µ/W0, making this a consistent limit.
The precise constraint on the superpotential parameters is

W0

µ
>
sh2

?

2
, (7.20)

in one-to-one correspondence with the constraint (7.15) in the single-field model. If
the bound is satisfied, we obtain single-field inflation to very high accuracy. If not,
multi-field inflation is nearly impossible with T dynamical and potentially running
away to infinity. Note that again a slightly weaker bound arises from requiring that
δt(Hu, Hd) < t0, which would be the two-field analog of (7.12). Setting H = 0 indeed
yields the same effective scalar potential for h as in the single-field example,

Veff(h) =
1

4t30

(
sµ2h2 +

3

2
µW0h

2 − 3

8
sµ2h4

)
+ . . . . (7.21)

We defined the ratio of fluxes A in Equation (6.6) and, equivalently, in terms of
the superpotential parameters after Equation (7.8). In Chapter 6 we considered this
to be an essentially free parameter but we can now see that there are constraints on
its value imposed by the consistency of the theory after moduli stabilization is taken
into account. In particular, due to the backreaction of T the value of A has slightly
changed,

A =
W0(W0 − sµ)

W 2
0 + 2sµW0 + 2s2µ2

. (7.22)

This implies that A = 0 is no longer a consistent option. Both W0 = 0 and W0 = sµ
violate (7.20) when h > 1 in large-field inflation. On the other hand, while (7.20)
implies that A is very close to one, it is never exactly one. With moduli stabilization
taken into account, we must always be in a regime where h drives inflation. If h were
to become massless and H were the inflaton, the inflaton and T would have the same
mass and T would be immediately destabilized during inflation, as soon as H & 1.
Instead, we may choose µ very small while

√
µW0 is the physical mass of the inflaton

which is constrained by COBE normalization of the primordial scalar perturbations.
This means that, with this mechanism of moduli stabilization the parameter regime
leading to interesting multi-field dynamics, as considered in Chapter 6, is excluded.
In light of this, the analysis of the previous chapter does not directly apply to the
setup we consider here: Higgs-otic inflation with moduli stabilization using the KKLT
mechanism. However, it is not completely ruled out that adding more ingredients or
using other stabilization mechanisms creates a mass hierarchy between the heavy Higgs
and the Kähler modulus thus opening the region of parameter space that allows for
two-field inflation.

89



-30 -20 -10 0 10 20 30

-1.0

-0.5

0.0

0.5

1.0

h

H

-30 -20 -10 0 10 20 30

-1.0

-0.5

0.0

0.5

1.0

h

H

Figure 7.3: Contour plot of the original scalar potential V (h,H) from Section 6.1 (left
panel) compared to effective scalar potential after moduli stabilization (right panel) for
the parameter choice (7.23). Warmer color means a larger value of V . The darkest blue
is the local minimum at h = H = V = 0. As expected, the direction H is much steeper
than the direction h, which is the inflaton direction. In the right panel local maxima
are visible at H = 0 and |hc| ≈ 23, the point at which the effective theory breaks down
and the modulus is destabilized. We have plotted the effective potential (7.19) to all
orders in αt0 and H, and up to fourth order in h. In the case presented here, 60 e-folds
of slow-roll inflation are possible along the trajectory H = 0. The single-field inflaton
potential in that slice is identical to the orange line of Figure 7.1.

A parameter example

Finally, let us consider a parameter example to illustrate our findings. The h − H
plane of the potential is displayed in Figure 7.3 for the same parameter values as in the
single-field example,

W0 = 0.005 , µ = W0/400 , s = 1 , t0 = 10 , α = 2π/5 . (7.23)

As expected, the field H has a much steeper potential than h so that H = 0 can be
a viable inflationary trajectory in this example. In fact the effective theory defined by
(7.4) only describes the potential correctly for H < 1 because of a branch cut in the
Kähler potential, in this case at H = 1. To show this behavior, the potential in Figure
7.3 is evaluated to all orders in H. In any case, single-field inflation on the trajectory
H = 0 is a very good approximation. Again, there is a critical field value of the inflaton
at which (7.20) is violated and T is destabilized. It is again hc ≈ 23 for the chosen
parameter values. After integrating out H at the origin, h is thus identical to ϕ in our
single-field model.

7.2.3 DBI-induced flattening and CMB observables

So far we have neglected the non-trivial kinetic term of φ discussed at length in Chapter
5. As discussed in that chapter we can, in principle, include this correction by adding
higher-derivative operators to the supergravity ansatz (7.1) or (7.4). Unfortunately,
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using the operator (5.39) in the single-field case, which corresponds to

∆K = a|Hu + H̄d|2
(
∂µHu∂

µH̄u + ∂µHd∂
µH̄d

)
, (7.24)

in the two-field case, does not capture the full result. By stabilizing the Kähler modulus
non-perturbatively we break the no-scale symmetry of the effective theory and new
couplings involving T and the open-string modulus φ appear. We have seen that these
couplings modify the effective scalar potential of the inflaton after properly integrating
out T . We could then expect that the kinetic term of the inflaton is also modified at
higher orders in α′. However, the higher-derivative operator which captures the correct
kinetic term in the N = 1 supergravity picture should also include the multiplet T, not
only Φ or Hu and Hd.

However, we do not have to consider modifications to the Kähler potential but
rather only to the Lagrangian. In particular we can compare the flux Lagrangian (7.9)
to the supergravity Lagrangian (7.13) and read off the correct kinetic term. Comparing
the potential in both Lagrangians leads to the identification

G =
ZW0√
4gsst30

, S = −Z(W0 + 2sµ)√
4gsst30

, D = − 6Zsµ√
4gsst30

. (7.25)

Note that the solutions for G and S are the same as the ones obtained before adding
the IASD flux and moduli stabilization in Section 6.1. Inserting the solutions (7.25) in
(7.9) yields the following leading-order kinetic term for the inflaton field,

Lkin = −
(

1

2
+ 3a

µW0ϕ
2

16t30

)
(∂µϕ)2 , (7.26)

where ϕ is either the imaginary part of φ in the single-field model, or is the same as h
in the two-field model and a is given in Equation (5.33).2 Notice the difference between
(7.26) and the result prior to moduli stabilization obtained from the corrected Kähler
potential, given by (5.50). The dominant non-trivial piece in the kinetic term is now
proportional to µW0 instead of µ2. Thus, it is enhanced by a factor of W0/µ � 1.
This is quite intuitive, as the same happened in the scalar potential in our analysis
in Section 7.2.1. After taking moduli stabilization into account, the dominant term
in the potential is proportional to µW0 instead of µ2. In the kinetic term this can be
understood in the following way: the gaugino condensate responsible for stabilizing T
sources the additional IASD flux D. As we have seen in Equation (7.9a), the kinetic
term of the D7-brane modulus gains additional D-dependent terms. Since the gaugino
condensate term is proportional to W0 according to the first equality in Equation (3.55),
the new kinetic term must be proportional to W0 as well. Thus, if we discarded the
condensate term and switched off D, we would recover the result given in Equation
(5.50) and a destabilized Kähler modulus. In total, the leading-order effective action
relevant for inflation is given by

Leff = −
(

1

2
+ 3a

µW0ϕ
2

16t30

)
(∂µϕ)2 − 3µW0ϕ

2

8t30
+

3sµ2ϕ4

32t30
, (7.27)

ignoring the subleading µ-mass term of ϕ. Let us now evaluate this result for a few
reasonable parameter choices to extract the observables predicted by the combined
model.

2Note that in the two-field case H = 0 always, so that both the potential and the kinetic term of
the heavy mass eigenstate are irrelevant during inflation.

91



Parameter examples and CMB observables

In order to find realistic parameter values, consider the coefficient a in terms of the
parameters of the string theory setup in Planck units, (5.33). Let us treat gs = 0.1 as
a constant and allow ourselves to vary the string scale Ms within certain bounds. The
most important lower bound is that we must require

M4
s � 3H2

? , (7.28)

so that string excitations are negligible during inflation. We must also keep in mind that
the compactification scale MKK has to fit between the string scale and the inflationary
energy scale so that excitations of Kaluza-Klein modes are negligible. In the quadratic
approximation we have [51]

Vinf,? = 3H2
? = 2 · 10−11 · 152 = 4.5 · 10−9 (7.29)

in Planck units, so that

Ms � V
1/4

inf,? = 8.2 · 10−3Mp = 1.64 · 1016 GeV . (7.30)

To be safe we may choose Ms to be larger than V
1/4

inf,? by a factor of 10. We thus consider
the parameter example

Ms = 0.082 , αG =
1

24
, W0 = 0.008 , µ =

W0

400
, s = 1 , t0 = 15 , α =

2

5
π ,

(7.31)

where the value of t0 is determined by the relation M2
s = M2

p/(8g
1/2
s t

3/2
0 ), cf. Equation

(3.16). Note that we have assumed that αG is independent of t0, i.e., that the gauge
theory does not live on the same stack of branes that supports the non-perturbative
term in W . We can then perform the canonical normalization of the Lagrangian (7.27)
numerically and plot the resulting potential. The result is given in Figure 7.4. The
plot contains the quadratic potential before moduli stabilization (blue line), the effective
scalar potential in terms of the variable ϕ after properly integrating out T (orange line),
and a numerical plot of the scalar potential in terms of the canonical variable (green
dotted line). Apparently, the flattening induced by the non-trivial kinetic term is a
very small effect. The CMB observables on the green dotted line are

ns ≈ 0.964 , r ≈ 0.087 , (7.32)

for 60 e-folds of slow-roll inflation at ϕ? ≈ 14.6. To illustrate the effect the non-trivial
kinetic term may have, we can choose a more extreme parameter example. In order
to increase a we may increase αG, s, and µ compared to W0, as well as decrease Ms.

Taking the factor between Ms and V
1/4

inf,? to be 3 instead of 10, we consider the modified
parameter set

Ms = 0.025 , αG =
1

10
, W0 = 0.08 , µ =

W0

300
, s = 2 , t0 = 75 , α =

2

5
π .

(7.33)

The relevant potentials can be found in Figure 7.5. As expected, the additional flat-
tening is now much stronger. For the green dotted trajectory one obtains

ns ≈ 0.961 , r ≈ 0.041 , (7.34)
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Figure 7.4: Effective potential for the pa-
rameter choice (7.31). Naive quadratic
potential (blue line) in comparison with
effective inflaton potential for ϕ (orange
line) and numerical effective potential for
the canonical variable in (7.27). The
string scale is chosen too large for the
DBI-induced flattening to have an effect.
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Figure 7.5: Effective potential for the pa-
rameter choice (7.33). Naive quadratic
potential (blue line) in comparison with
effective inflaton potential for ϕ (orange
line) and numerical effective potential for
the canonical variable in (7.27). In this
case the additional flattening from the ki-
netic term is clearly visible.

for 60 e-folds of slow-roll inflation at ϕ? ≈ 12.6. While this last example illustrates how
strongly the kinetic term can effect the CMB observables, it is questionable whether an

appropriate hierarchy Ms > MKK > V
1/4

inf,? can be maintained with a value of Ms this
low and at what point the effective theory loses its validity.

7.3 Complex structure moduli stabilization and backre-
action

So far we have neglected the stabilization of the complex structure moduli and the
dilaton. We have assumed that they are stabilized by fluxes at a high scale in a
GKP-like setup [24]. We assumed that states that are stabilized supersymmetrically
well above the Hubble scale decouple from the dynamics of inflation [149]. However, in
certain examples of Type II compactifications the backreaction of the complex structure
moduli influences the canonical field range of the inflaton [151,152,156,157]. This can
happen whenever the field space metric of the inflaton, in our case

ϕ =

∫
dφ
√
KΦΦ̄ , (7.35)

with ϕ denoting the canonical distance in field space, K given in Equation (7.1a) and
φ = Im(Φ), depends on the heavy moduli which are displaced during inflation. In our
case this applies to S and U , but not to T , since T does not appear in the field space
metric. It is easy to see that KΦΦ̄ is a function of S and U , KΦΦ̄ ∼ (Re(S)Re(U))−1 to
leading order. Whenever we are in a situation where the moduli S and U are stabilized
such that their expectation values depend on φ, the canonical distance in field space is
modified. The dependence of the moduli on φ is expected to occur in most scenarios of
moduli stabilization. For the Kähler modulus we computed this dependence explicitly
in Equation (7.11).
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In [151] it was argued that in many Type II compactifications involving closed-string
moduli only, one indeed has schematically

U = u0 + δu(φ) , S = s0 + δs(φ) , (7.36)

where the inflaton candidate φ is a light linear combination of the closed-string fields. In
the setup of [151], the backreaction on the kinetic term becomes important beyond some
critical inflaton field value where δu(φ)� u0. Because of the functional dependence of
the kinetic term on the moduli, beyond the φc the canonical field distance only increases
logarithmically. Depending on the numerical value of φc, defined by δu(φc) = u0, this
can make large-field inflation impossible, since generally for φ > φc the theory becomes
unphysical. However, even if the critical field value, and thus the point where the
logarithmic dependence dominates, can be tuned large by a flux choice, in the setups
of [151] large-field inflation is under pressure: By tuning φc large, u0 and s0 are tuned
large as well. Due to the inverse dependence in the Kähler metric, this leads to a
suppression of the canonical field distance as well. If both φc and s0, u0 parametrically
depend on the fluxes in the same way, both effects cancel each other and, for the setups
discussed in [151], the canonical field range cannot be larger than the Planck scale.

In this section we demonstrate that these problems are less severe in Higgs-otic
inflation. We stabilize S and U via G3 fluxes as in Chapter 3 and compute the minimum
values (7.36) explicitly. We show that the fluxes allow for enough freedom to tune φc

large while, at the same time, leaving u0 and s0 approximately unchanged, so the
backreaction effects can be delayed in field space. This flexibility, coming from the
introduction of open-string fields, was also discussed in [152]. Here we aim to make the
qualitative arguments given in [152] more explicit and analyze in detail the resulting
backreacted field space metric in Higgs-otic inflation. First, we present an analytic
study of a useful simplified model which is, however, phenomenologically incomplete
due to the presence of a flat direction. Afterwards, we turn to a numerical study of a
more complete model with full moduli stabilization.

7.3.1 A model with a flat direction

The model we consider is based on a simple toy model taken from [89]. We propose
the following Kähler potential and flux superpotential for a toroidal compactification
with a single mobile D7-brane,

K = −2 log(U + Ū)− log

[
(U + Ū)(S + S̄)− 1

2
(Φ + Φ̄)2

]
− 3 log(T + T̄ ) , (7.37)

W = µΦ2 +

∫
G3 ∧ Ω = µΦ2 + e0 + imU3 + ih0S + h̄0SU

3 , (7.38)

with integer flux quanta e0, h0, h̄0, andm. Notice the additional logarithm in the Kähler
potential compared to (7.1a). While this does not change the analysis of Section 7.2,
it accounts for the fact that the compact orientifold in this case is isotropic: we have
taken the two-fold X to be a four-torus and have identified the three complex structure
moduli of the two-tori. For the moment, we assume that the D7-brane position moduli
are stabilized by the presence of (2,1)-fluxes as explained in Section 6.1, inducing a
superpotential term parameterized by µ. Here we treat µ as an independent parameter
and discuss its microscopic origin in terms of NS fluxes in Appendix C. Furthermore,
we consider only the imaginary self-dual piece of G3, so that DSW = DUW = 0 in
the vacuum. On the other hand, the flux potential is non-vanishing in the vacuum, so
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that supersymmetry is broken and DTW 6= 0. After no-scale cancellation we are thus
interested in vacua of the scalar potential

V = eKKab̄DaWDbW , (7.39)

where a and b label the fields Φ, S, and U . We assume that all Kähler moduli are
stabilized by a KKLT or LVS mechanism as in Section 7.2. In the remainder of this
section we neglect the explicit stabilization and backreaction of the Kähler modulus,
which has been analyzed in detail above. It only affects the scalar potential and is
irrelevant for the backreaction in the kinetic terms. This is because, on the one hand,
(7.35) does not explicitly depend on T . On the other hand, the backreaction of T does
not affect the backreaction of the complex structure, since the latter only depends on
the superpotential and not on the effective scalar potential.

The fluxes in (7.38) are only sufficient to stabilize three out of the four real scalar
directions. Decomposing the moduli in real and imaginary parts S = s1 + is2 and
U = u1 + iu2, we find the following solutions to the F-term constraints in the vacuum
at Im(Φ) ≡ φ = 0,

u2,0 = 0 , s1,0 =
(e0h̄0 + h0m)u3

1

h2
0 + h̄2

0u
6
1

, s2,0 =
e0h0 − h̄0mu

6
1

h2
0 + h̄2

0u
6
1

, (7.40)

and u1 is a free parameter. During inflation, there is again an interaction between
the inflaton φ and the complex structure moduli. This leads to a modification of the
solutions (7.40) during inflation,

s1 = s1,0 − µφ2 h̄0u
3
1

2h2
0 + 2h̄2

0u
6
1

, s2 = s2,0 − µφ2 h0

2h2
0 + 2h̄2

0u
6
1

, (7.41)

whereas u1 remains unfixed. These expressions are quite analogous to the displacement
of the Kähler modulus in (7.11). The inflationary correction is proportional to the
Hubble scale, which is determined by µ, divided by the mass of the modulus in question.
In particular,

s1 = s1,0 −
h̄0mφ

8s1,0m2
s

φ2 , (7.42)

where m2
s = (h2

0 + h̄2
0u

6
1)/(8u3

1s1,0). Thus, by introducing a hierarchy between the
mass of the inflaton and the masses of the moduli, we can suppress the displacement
compared to the vev of the field. In other words, we can increase the critical value φc.
This can be achieved by tuning µ to small values compared to h0 and h̄0. At the same
time, this tuning of fluxes does not necessarily affect the vacuum expectation values in
Equation (7.40) in the same way. µ does not enter in (7.40), so we can achieve such a
mass hierarchy without changing s1,0. This is different than in the setups considered
in [151], where φc and s1,0 had the same parametric dependence on the fluxes.

Let us now consider the backreaction on the canonical metric in field space during
inflation. The metric for the inflaton in field space is given by

KΦΦ̄ =
1

4u1s1
, (7.43)

which indeed decreases for large values of φ due to the backreaction coming from
(7.42). This implies that, for large-field values, the canonical field distance only grows
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logarithmically with the inflaton field, after performing the integral in (7.35). However,
the point at which the backreaction dominates is flux-dependent, and the canonical
field distance travelled before that point,

ϕc ≈
φc

4u1s1,0
=

s1,0ms√
h̄0mφ

, (7.44)

can be tuned larger than Mp by generating a mass hierarchy between s1 and φ, as we
explained above.

In summary, this model produces the following result. While the integration of
the field space metric does lead to a logarithmic dependence of ϕ on φ for large-field
values, the point where the logarithm is relevant can be moved far out in field space
by a tuning of fluxes. Of course, the fact that u1 is not stabilized in this setup is a big
caveat: we have no means of evaluating the displacement and backreaction of u1 on the
possible field space. The above arguments only apply to s1. Furthermore we have not
considered the microscopic origin of µ, which could also affect the closed-string fields.
This is why, in the following, we use additional fluxes to stabilize u1 and analyze all
backreactions on the kinetic term simultaneously. A numerical analysis reveals results
that are qualitatively the same as in this simple model, suggesting that the intuition
of this example still holds in a more complicated setup.

7.3.2 Stabilizing complex structure in Higgs-otic inflation

To obtain an inflationary theory in which all complex structure moduli are stabilized,
we must allow for a general G3 flux. We also need to identify the microscopic origin of
the µ-term yielding a mass for the D7-brane position moduli. In Appendix C we argue
through the Type IIA dual theory that the D7-brane position modulus is stabilized by
an NS flux. This is shown by considering Type IIA involving a wrapped D6-brane with
a geometric flux that sources the term W ⊃ a1SU . This geometric flux also induces
a supersymmetric mass for the open-string modulus of the D6-brane. The geometric
flux in IIA corresponds to an NS flux on the Type IIB side, and the complexified D6
open-string modulus is mapped to the D7 position modulus in the transverse torus.
For more details we refer to Appendix C.

Following the model of the previous section we consider the following effective theory

K = −2 log
[
(U + Ū)

]
− log

[
(U + Ū)(S + S̄)− 1

2
(Φ + Φ̄)2

]
− 3 log(T + T̄ ) , (7.45)

W = µΦ2 + e0 + ie1U + imU3 + ih0S + µSU + h̄0SU
3 , (7.46)

where we have also allowed for a linear term in U in the superpotential in addition to the
bilinear term SU . This assures that the above superpotential can be written in terms
of complexified fluxes pairing (e0, h0), (e1, µ) and (m, h̄0). For the sake of simplicity,
we have assumed that the terms Φ2 and SU have exactly the same coefficient sourced
by the same NS flux, µ. However, in more elaborate examples with different complex
structure moduli for the three two-tori, U1 6= U2 6= U3, this is not necessarily true. We
will come back to this issue in Section 7.3.3.

The extra terms in W allow us to lift the flat direction but, unfortunately, they
also lead to much more complicated equations following from the F-term constraints
DSW = DUW = 0. The solutions can only be studied numerically. We have to
ensure that the F-term solution we pick gives a physical vacuum. Luckily the F-term
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Figure 7.6: Canonically normalized mass eigenvalues of the Lagrangian for the flux
choice in (7.47) as well as t0 = 30. The plot is double-logarithmic. The masses are
given in units of Mp. Evidently, one mass eigenstate—the would-be inflaton—scales
with µ while the others do not. Making µ small compared to the other flux parameters
introduces a hierarchy between the inflaton and moduli mass scales.

constraints admit a unique Minkowski solution with positive definite Hessian in the
vacuum at φ = 0, and at the same time positive vacuum expectation values of the
dilaton s1 and the complex structure modulus u1. However, this vacuum is not a
deformation of the vacuum of the model of the previous section. The Hessian is in
general a function of the fluxes and in particular of µ. We have to show that its
eigenvalues exhibit a hierarchy of masses as a function of µ. In particular, when µ is
much smaller than the other flux parameters, the inflaton, is significantly lighter than
all other states. In addition, the masses of all four real scalars contained in S and U
are mostly independent of µ. To illustrate this, we can plot the five mass eigenvalues
of interest numerically as a function of µ.

We fix all flux parameters except µ to a set of O(1 − 10) numbers, and vary µ
between 10−4 and 1. We choose

e0 = −20 , e1 = 20 , m = 20 , h0 = 5 , h̄0 = −10 , (7.47)

as a parameter example. Note that this is equivalent to fixing µ to an O(1) number and
varying the remaining parameters to be much larger. What counts is the relative size
of µ compared to the rest of the flux quanta. The result is displayed in Figure 7.6. The
lightest eigenstate has a mass which scales as µ, while the other four eigenstates are
much heavier and do not depend on µ as long as there is a moderate hierarchy between
µ and the remaining flux quanta. This means that, within the flux setup (7.46) we can
tune the masses of the moduli and the inflaton independently.

However, this is not sufficient to show that the dangerous backreaction is under
control. We also need to check the behaviour of the vacuum expectation values of the
moduli as a function of µ. We display the four vacuum expectation values in Figure
7.7, for the same set of flux quanta and the same parameter range of µ. It is clear that
the vevs are almost independent of µ. These results are thus completely analogous to
those of the simple model we discussed analytically, we can tune the fluxes to obtain a
mass hierarchy between the inflaton and the closed-string fields while barely modifying
the vacuum expectation values of the latter.
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Figure 7.7: Vacuum expectation values of the moduli and axions as a function of µ with
the parameters in (7.47), as well as t0 = 30 and φ = 0. The plot is double-logarithmic.
The value of the axion of U is negative in this example, and therefore is invisible in
the logarithmic plot. For small values of µ the expectation values are independent of
µ, contrary to the findings in [151].

5 10 15 20 25
ϕ

1.2

1.4

1.6

1.8

2.0
field value

u1(ϕ)

s1(ϕ)

Figure 7.8: Values of the two moduli as a
function of φ for µ = 10−1, t0 = 30, and
the flux choice (7.47).
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Figure 7.9: Values of the two moduli as
a function of φ for µ = 10−3, t0 = 30,
and the flux choice (7.47). With a smaller
value of µ the two fields are almost con-
stant.

7.3.3 Backreaction in the Kähler metric, flux tuning, and large-field
excursions

Let us now proceed and study what happens during inflation, that is when φ 6= 0.
In Figures 7.8 and 7.9 we have displayed the expectation values of s1 and u1, the
only two fields entering the Kähler metric of the inflaton, as a function of φ for two
different values of µ. Decreasing µ (and thus increasing the mass hierarchy) weakens
the dependence of s1 and u1 on φ. After what we learned from the model in Section
7.3.1, this is no surprise. It is the same effect as in that model and also in our study of
the backreaction of T , increasing the mass hierarchy reduces the field displacements of
the rest of the moduli during inflation. As in the simple model of the previous section,
let us consider what happens to the effective field range

ϕ =

∫
dφ
√
KΦΦ̄ =

∫
dφ

√
1

4s1(φ)u1(φ)
. (7.48)

The important plot is given in Figure 7.10, for four different values of µ. The result
is quite interesting. For large values of µ, as on the red and green curves, we clearly
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Figure 7.10: Canonically normalized field value as a function of the original variable ϕ,
for four different values of µ. The logarithmic regime for large values of ϕ is evident in
the red and green curves. This is the regime found in [151]. But evidently, for a large
hierarchy between µ and the remaining flux quanta, the beginning of the logarithmic
regime is pushed to very large-field values so that the backreaction is negligible.

see the reduced value of ϕ for large φ. This is similar to the examples of [151], the
φ-dependence of the canonical field distance is logarithmic for large-field values. There-
fore the backreaction from the closed-string moduli on the field metric of the inflaton
makes it difficult to obtain parametrically large displacements. However, we can push
out the critical field value where the logarithmic behavior becomes relevant by decreas-
ing µ relative to the other flux parameters. This is possible because, unlike in [151],
the closed-string expectation values s1,0 and u1,0 do not scale with the fluxes in the
same way as the critical value φc. Therefore, as long as a tuning of the different flux
parameters is possible, the dangerous effect observed in [151] can be made irrelevant
during inflation.

Notice that the flux tuning needed to allow for 60 e-folds of inflation, that is to
have ϕ = ϕ? ≈ 15 in the nearly-linear regime is O(100 − 1000). This is of the same
order as the tuning in the Kähler sector in Section 7.2. In fact, the tuning is not just
of the same order of magnitude, it is the same tuning. Choosing all flux quanta large
compared to µ leads to a large value of W0 = 〈

∫
G3 ∧Ω〉 compared to µ. In KKLT and

related mechanisms, this tuning between µ and W0 is exactly what is needed to make
T heavy compared to the inflaton. Therefore, in both cases we must ask how µ can
be a number as small as 10−4 or 10−5. This seems impossible since all flux quanta are
quantized and e0, ei, m, h0, and h̄0 are indeed integers. If µ is also a flux quantum,
a value of 10−4 is not allowed. However, the µ-term for the open-string modulus in
the superpotential can receive contributions from different sources and fluxes in the
compactification. By requiring some fine-tuning between the different contributions
one can obtain smaller values of µ. This is analogous to the rationale behind the
KKLT mechanism and the fine-tuning arguments to obtain a small value of W0, cf. the
discussions in [74, 158] and also [159]. For instance, in the case of a tilted D7-brane in
a toroidal compactification, the position modulus feels the presence of NS flux in the
two two-tori that are only partially wrapped by the brane. Another possibility is to
consider compactifications beyond toroidal models, with a large number of three-cycles
leading to many contributions to the µ-term. From the perspective of the brane world-
volume action, the brane is only sensitive to the local background and the flux densities
around the brane. These are a combination of many different internal fluxes as well as
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distant sources back-reacting on the local background. Therefore, a priori there is no
restriction to a small value of µ. However, increasing the number of three-cycles implies
a larger number of complex structure moduli. Even if this does not change the results
in Section 7.2, it might make the analysis in this section intractable. Nevertheless, the
leading source of mass terms for the complex structure moduli can, as in our example
above, come from a set of fluxes which do not affect the D7 position moduli and thus
do not contribute to the µ-term. Then the expectation values of the complex structure
moduli are still approximately independent of the value of µ. In that case, we expect the
conclusions of this section to be qualitatively unchanged in more complicated models.

Another possibility would be not to decrease µ, but to increase the value of the other
fluxes. Not the absolute values but the ratios to µ are what matters in suppressing
the backreaction. However, large fluxes are problematic for several reasons. They can
easily lead to moduli masses heavier than the KK scale and, furthermore, yield a big
RR tadpole which has to be cancelled by a large number of sources with negative D3-
brane charge. The backreaction of these fluxes and additional sources in the global
compactification might force us to work beyond the validity of our effective theory.

A complete model

In principle we should repeat the analysis of the cosmological observables in Higgs-otic
inflation after including the correction to the kinetic term coming from backreaction of S
and U . However, as long as the aforementioned flux tuning is possible, this backreaction
in the kinetic term is negligible compared to the DBI correction studied in Section 7.2.3,
so the numerical results found there do not substantially change. It is interesting to
note that the DBI action leads to an alternative to suppress the backreaction in the
Kähler metric. The α′ corrections from the DBI action lead to a non-trivial kinetic term
of the form (7.27), which essentially adds an extra term proportional to the DBI scalar
potential in the inflaton Kähler metric. The resulting effective field range depends on
the balance between the DBI correction and the backreacted saxion expectation values.
At the very least, the DBI correction will always help to delay the suppression of the
canonical distance and disconnect it from the Planck scale. A full analysis combining
the two previous section would be needed.

The question is then if the models we have presented in this section and Section 7.2
are compatible. The answer seems to be non-trivial, since our example in this section
implies, mostly independent of the value of µ, a large expectation value of the flux
superpotential, of the order of

|W0| =
∣∣∣∣〈∫ G3 ∧ Ω〉

∣∣∣∣ ≈ 60 , (7.49)

in Planck units. The KKLT mechanism used in Section 7.2, on the other hand, requires
W0 to be small compared to M3

p . There are two ways out of this predicament. First,
in a more complicated compactification with more flux parameters, W0 may be small
even though all flux parameters are integer. This is very similar to the way µ can be
made small, as discussed above. Thus, there may be a scenario in which both W0 � 1
and µ� 1 while the mass hierarchy between inflaton and complex structure moduli is
unchanged. In this case T can be stabilized by the KKLT mechanism as in Section 7.2,
and the inflaton potential V ∼ µW0ϕ

2 may have the correct normalization.
The second possibility is to look for a viable mechanism for Kähler moduli stabi-

lization, even if W0 is O(1− 10). Both the Large Volume Scenario [31,160] and Kähler
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Uplifting [30, 161] do not require a tuning of W0. In fact, for both mechanisms the in-
teraction with open-string large-field inflation has been studied in [33]. The results are
very similar to the KKLT scenario. Inflation is mostly driven by an inflaton mass term
proportional to µW0ϕ

2, and W0 � µ is required to guarantee stability of all Kähler
moduli in the inflationary phase. Also in this case there is a certain range of parameter
examples that lead to 60 e-folds of slow-roll inflation in accordance with CMB obser-
vations. Thus, the two tunings in Section 7.2 and 7.3 are indeed compatible, and all
moduli can be stabilized during Higgs-otic inflation.

Running of the Higgs masses

The results obtained in Sections 7.2 and 7.3 not only apply to Higgs-otic inflation, but
to any inflationary model in which the inflaton is identified with a D7-brane position
modulus in a similar background. In fact, in order to keep the discussion as generic
as possible, we have only imposed constraints from cosmological data and not from
particle physics. Let us discuss now if the results obtained in the previous sections are
still compatible with particle physics phenomenology, if we identify the inflaton with
the SM Higgs boson as in [70].

In order to keep one mass eigenstate—the SM Higgs boson—light at low energies,
there must be an almost massless field at the supersymmetry breaking scale MSS, below
which the supersymmetric spectrum decouples. This happens when the running of the
soft mass parameters from the compactification scale MKK down to MSS gives rise to a
zero eigenvalue in the Higgs mass matrix, i.e., det(M2

H) = m2
Hu
m2
Hd
−m4

3 ≈ 0 at MSS.

For a given value of MSS this imposes a constraint on the mass ratio A = m2
3/m

2
Hu

at Mc. It was shown in [162] that, if such a fine-tuned Higgs survives, one necessarily
gets mh = 126± 3 GeV for MSS = 109− 1013 GeV and standard unification conditions
mHu = mHd

at Mc. The question is whether this constraint on the mass ratio A is
compatible with the mass hierarchy required to get moduli stability during inflation.

The two parameter examples of Higgs-otic inflation considered in Section 7.2 cor-
respond to A = 0.993 with MSS ≈ 9 · 1013 GeV and A = 0.990 with MSS ≈ 5 · 1013

GeV, respectively. As already mentioned in Section 7.2, the mass hierarchy required
to get moduli stability and suppress the backreaction of T implies a value of A very
close to one. This, in turn corresponds to an almost massless state already at Mc.
Unfortunately, the above values of A are too large and very little running is required
to make the Higgs determinant vanish. Therefore, the massless eigenstate will appear
close to Mc ≈ 1016 GeV, implying that the Higgs boson at MSS is already tachyonic
and triggers electroweak symmetry breaking at a too high-energy scale.

Let us remark that we have assumed no additional physics until MSS, and only
the MSSM spectrum beyond it. Additional states at high energies could modify the
renormalization group equations for the soft mass parameters, leading to less stringent
constraints on the value of A. Furthermore, the above tension arises from the fact
that the mass scale for the heavy Higgs H coincides with the mass scale of the Kähler
modulus, parameterized by W0. If one finds a scenario where both scales are decoupled,
one could decrease the mass of H while maintaining µ/W0 � 1 and moduli stability.
That, in turn, would lead to a lower value of A.
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Chapter 8

Conclusions

In this thesis we have studied different aspects of inflation with open strings within
the framework of Type II string theory. In particular, we focused on Type IIB string
theory with D7-branes compactified on an orientifold in the presence of background
three-form fluxes. The benchmark model we considered was Higgs-otic inflation, but
most of our results hold more generally. Specifically, Chapters 4 and 5 are independent
of inflation and deal with general Type II flux compactifications.

In Chapter 4 we have studied the role of Minkowski four-forms in flux compactifi-
cations of Type II string theory. We showed that the flux scalar potential of the RR
and NS closed-string axions can always be written in terms of these four-forms. Gauge
invariance of the four-forms in combination with internal symmetries of the compact-
ification, forces the axion scalar potential to be expressible in an expansion in powers
of the four-forms. We showed in Section 4.6, that similar results hold for open-string
fields in a Type IIB compactification with D7-branes. We studied the effective action of
the position modulus of Dp-branes in toroidal orientifold compactifications of Type IIB
string theory in Chapter 5. We found that, for primitive ISD fluxes, the effective ac-
tion takes a particular form in which the kinetic term becomes non-canonical. We also
obtained a correction to the Kähler potential of N = 1 supersymmetric theories, both
global and local, that captures the leading-order α′ correction including the corrected
kinetic terms.

Chapters 6 and 7 focus on the embedding of inflation in Type IIB string theory
where the position modulus of a D7-brane is the inflaton candidate. As remarked above,
the benchmark model we considered was Higgs-otic inflation. However, we allowed
more general flux choices than considered in the simplest incarnation of this model. In
Chapter 6 we also studied the multi-field dynamics of this class of models. We found
that the effects of the two-field dynamics depend on the fluxes and that the tensor-to-
scalar ratio is reduced significantly compared to the single-field approximation, yielding
r = 0.08 − 0.12. In Chapter 7 we studied moduli stabilization in this class of models.
We found that, provided a certain tuning of the fluxes, large-field inflation and moduli
stabilization can be combined further reducing the tensor-to-scalar ratio to a lowest
value of r ≈ 0.04. We discussed both the effects of the backreaction coming from
integrating out the Kähler moduli and the complex structure moduli on the inflationary
sector of the theory. For both classes of moduli, we found that the flux responsible for
the mass of the inflaton µ must be tuned much smaller than the Gukov-Vafa-Witten
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superpotential W0.
Embedding large-field inflation in string theory in a consistent manner is very chal-

lenging. In this thesis, we have taken a few steps in the direction of a realistic embedding
However, there is still a number of steps to be taken. As an example of these steps,
it will be interesting to find more general sources for the µ-term in flux compactifi-
cations and study its dependence on several different fluxes. This will be necessary
to study whether the flux hierarchy that is needed to have a parametrically light in-
flaton is allowed in a more realistic compactification. A bigger challenge will be to
take into consideration the backreaction of the flux background on the global geometry
in combination with tadpole cancellation conditions and explicit sources for the non-
perturbative effects and uplift. However, we think that the work we have done in this
thesis is a necessary step in the construction of a fully consistent global model.
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Chapter 9

Conclusiones

En esta tésis hemos estudiado diferentes aspectos de inflación con cuerdas abiertas
dentro del marco de la teoŕıa de cuerdas de Tipo II. En particular, nos hemos centrado
en la teoŕıa de cuerdas de tipo IIB con D7-branas compactificadas en un orientifold en
la presencia flujos de fondo. El modelo de referencia que consideramos es la inflación de
Higgs-otic, pero la mayoŕıa de nuestros resultados son más generales. Espećıficamente,
los caṕıtulos 4 y 5 son independientes de la inflación y se ocupan de compactificaciones
generales de flujo de tipo II.

En el caṕıtulo 4 hemos estudiado el papel de las 4-formas de Minkowski en las
compactificaciones de flujo de la teoŕıa de cuerdas de tipo II. Hemos demostrado que el
potencial escalar de flujo de los axiones de cuerdas cerradas RR y NS siempre se puede
escribir en términos de estas 4-formas. La invariancia del campo gauge de las 4-formas
en combinación con las simetŕıas internas de la compactificación, obliga al potencial
escalar del axión a ser expresable en una desarrollo en las potencias de las 4-formas. En
sección 4.6, hemos demostrado que resultados similares se obtienen para los campos de
cuerda abierta en una compactificación tipo IIB con D7-branas. En el caṕıtulo 5, hemos
estudiado la acción efectiva del módulo de posición de Dp-branas en compactificaciones
toroidales de orientifolds de la teoŕıa de cuerdas de tipo IIB. Encontramos que, para
los flujos de ISD primitivos, la acción efectiva toma una forma concreta y obtuvimos
una corrección al potencial Kähler de las teoŕıas supersimétricas N = 1, tanto globales
como locales, que captura la corrección α′ de orden dominante.

En los caṕıtulos 6 y 7 se estudia la inclusión de la inflación en la teoŕıa de cuerdas
de tipo IIB donde el módulo de posición de una D7-brana es el inflatón. Como se ha
señalado anteriormente, el modelo de referencia que consideramos es la inflación de
Higgs. Sin embargo, permitimos opciones de flujo más generales que las permitidas en
la encarnación más simple de este modelo. En el caṕıtulo 6 estudiamos la dinámica
multi-campo de esta clase de modelos. Descubrimos que los efectos de la dinámica
de dos campos dependen de los flujos y que la relación tensor-escalar se reduce sig-
nificativamente en comparación con la aproximación de un solo campo, obteniendose
r = 0, 08− 0, 12. En el caṕıtulo 7 estudiamos la estabilización de módulos en esta clase
de modelos. Se encuentra que, para un cierto ajuste fino de los flujos, se podŕıa com-
binar la inflación de grandes campos y la estabilización de los módulos. En particular,
discutimos tanto los efectos de la retroacción que provienen de la integración de los
módulos de Kähler como los módulos de estructura compleja en el sector inflacionario
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de la teoŕıa. Para las dos clases de módulos, encontramos que el flujo responsable de
la masa del inflatón µ debe ser sintonizado para que sea mucho más pequeño que el
superpotencial W0 de Gukov-Vafa-Witten.

La inclusión de la inflación de gran campo en la teoŕıa de cuerdas de una manera
consistente es un desaf́ıo. En esta tésis, hemos dado algunos pasos en la dirección de
una inserción realista. Sin embargo, todav́ıa hay una serie de pasos que hay que seguir.
Como ejemplo de estos pasos, será interesante encontrar fuentes más generales para el
término µ en las compactificaciones de flujo y estudiar su dependencia de varios flujos
diferentes. Esto será necesario para estudiar si la jerarqúıa de flujos que se necesita
para tener un inflaton parametricamente ligero es posible en una compactificación más
realista. Un desaf́ıo aun mayor será tomar en consideración la retroacción del fondo
del flujo en la geometŕıa global, en combinación con las condiciones de cancelación de
“Tadpole” y fuentes expĺıcitas para los efectos no perturbativos y el “up-lift”. Pen-
samos, sin embargo, que el trabajo llevado acabo en este tésis es un paso necesavio
para la obtención de un modelo global consistente.
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Appendix A

The expansion of the DBI action

In this appendix we give more details on the computation of the effective action of
Chapter 5 and the action of the D7-brane position modulus of Chapter 7. We first
focus only on the DBI action for general branes before specializing to the DBI and
CS action for a D7-brane with imaginary self-dual (ISD) and imaginary anti-self dual
(IASD) fluxes. The DBI action in Einstein frame is given by [27,28]

SDBI = −µp
∫
dp+1e−φ

√
−det (P [EMN + EMi(Q−1 − δ)ijEjN ] + σFMN ) det(Qij) ,

(A.1)

with the tensors

EMN =g1/2
s GMN −GMN , Qij = δij + iσ[ϕi, ϕk]Ekj . (A.2)

The integral runs over the world-volume of the brane, M and N are indices of the
Dp-brane world-volume, P denotes the pullback onto the world-volume, µp denotes the
brane tension and is given by µp = (2π)−p(α′)−(p+1)/2, σ = 2πα′, the ten-dimensional
spacetime metric is denoted by GMN , the NS two-form by BMN and the field strength
of the gauge fields living on the brane by FMN . The two-forms can be grouped in the
gauge-invariant combination F2 = BMN − σFMN .

The four-dimensional action for the scalars, which are the position moduli of the
brane, can be obtained by performing the pullback of the metric, expanding the deter-
minant, and integrating over the compact four-cycle wrapped by the brane. In order
to do this we assume that the local world-volume fields only feel the local closed-string
background around the brane, so we can expand the metric, axio-dilaton and three-
form flux in terms of the fluctuations of the transverse real fields ym = σϕm, where ym

are normal coordinates, as follows

ds2 = Z−1/2ηµνdx̂µdx̂ν + Z1/2ds2
CY ,

τ = τ0 +
1

2
σ2τijϕ

iϕj + . . . , (A.3)

G3 =
1

3!
Glmn(xp)dxl ∧ dxm ∧ dxn , Glmn(xp) = Glmn + . . . ,

to yield the desired action. Here Z denotes the warp factor that is allowed to vary on
the internal space, τ = C0 + ie−φ is the complex axio-dilaton, the brane world-volume
is parameterized by {xµ, xa} and G3 = F3− τH3 in terms of the usual RR and NS flux.
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We perform the pullback and split the world-volume determinant in the absence of
mixed Minkowski-internal tensors, i.e., gµa = Bµa = 0, and consider a constant internal
profile for the position moduli, ∂aφ = 0. This leads to

det(P [EMN + σFMN ])

= det(g1/2
s Z−1/2ηµν + g1/2

s Z1/2σ2∂µϕm∂νϕn) det(g1/2
s gab + σFab −Bab) . (A.4)

This factorization of Minkowski and internal indices is exact in toroidal compactifi-
cations. However, in a Calabi-Yau compactification the internal profile of the scalar
fields is in general not constant. This implies that one has to solve an eigenstate equa-
tion for the internal space, which is usually non-trivial. Besides, the zero eigenmodes
might correspond to mixings between the original position moduli and Wilson lines,
making the computation technically much more involved. Therefore we restrict to the
simplest cases in which the above factorization can be performed. For a D3-brane all
world-volume indices are in Minkowski spacetime so there are no subtleties regarding
the compactification.

Moreover, taking into account the contribution from the transverse coordinates,
the quantity inside the square root in the DBI action is composed of three factorized
determinants,

det(g1/2
s Z−1/2ηµν + g1/2

s Z1/2σ2∂µϕm∂νϕm) , (A.5a)

det(g1/2
s gab + σFab −Bab) , (A.5b)

det(gmn + iσ[ϕm, ϕp](g
1/2
s gpn −Bpn)) . (A.5c)

For a Dp-brane these three matrices have dimension 4, (p − 3) and (9 − p), respec-
tively. After rearranging the real fields ϕm in a complex basis denoted by φi, the first
determinant becomes

− det(g1/2
s Z−1/2ηµν + g1/2

s Z1/2σ2∂µϕm∂νϕm)

=
g2

s

Z2

(
1 + 2Zσ2∂µφi∂µφ̄i + Z2σ4

[
2(∂µφi∂µφ̄i)

2

− (∂µφi∂µφ̄j)(∂
νφj∂ν φ̄i)− (∂µφi∂µφj)(∂

ν φ̄i∂ν φ̄j)
])

. (A.6)

We can now Taylor-expand the square root in powers of spacetime derivatives of the
φi. This expansion is in accordance with the slow-roll approximation during inflation.
This gives

L = −µpVp−3

Z
f(φ)

1 + Zσ2
∑
i

∂µφi∂
µφ̄i −

1

2
Z2σ4

∑
i 6=j

(∂µφi∂µφ̄j)(∂
νφj∂ν φ̄i)

+
∑
i,j

(∂µφi∂
µφj)(∂ν φ̄i∂

ν φ̄j)

+ . . .

 , (A.7)

where

f(φ) =

√
det(g

1/2
s gab + σFab −Bab) det(gmn + iσ[ϕm, ϕp](g

1/2
s gpn −Bpn)) . (A.8)

Here µp is the brane tension, Z is the warp factor and Vp−3 denotes the volume of the
internal cycle wrapped by the brane. This is the action used in Chapter 5.
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We now specialize to a D7-brane with ISD and IASD fluxes. We define the single
complex scalar field Φ in accordance with the notation in Chapter 6 and we turn on
(0, 3)-form ISD flux G = G1̄2̄3̄, (2, 1)-form ISD flux S = ε3̄j̄k̄G3̄jk and (1, 2)-form IASD

flux D = ε3jkG3j̄k̄. The effective action can then be written as follows1

LDBI = −µ7V4e
φf(φ)(1 + σ2Z∂µφ∂

µφ̄+ ...) , (A.9)

with the internal function f given by the first determinant in Equation A.8, ignoring
the gauge field strength,

f(φ)2 = 1 +
1

2Z
e−φBabB

ab − 1

4Z2
e−2φBabB

bcBcdB
da +

1

8Z2
e−2φ(BabB

ab)2 . (A.10)

It contains the scalar potential contribution to all orders in α′φ, just like in [70]. Turning
on G, S and D fluxes does not introduce off-diagonal components in B, so we find that
f(φ) completes to a perfect square, yielding

f(B) = 1 +
1

4Z
e−φBabB

ab (A.11)

after taking the square root. The ten-dimensional Type IIB supergravity equations of
motion relate the dilaton and the three-form fluxes of the global compactification. In
particular, in the presence of both ISD and IASD fluxes, one obtains [113]

Im(τ33̄) = − gs

4Z
(SD + S̄D̄) , (A.12)

where we have again performed a local expansion of the dilaton field around the brane
following (A.3),

e−φ = g−1
s

(
1 + σ2Im(τ33̄)|φ|2 +

1

2
σ2Im(τ33)φ2 +

1

2
σ2Im(τ3̄3̄)φ̄2 + . . .

)
. (A.13)

Notice that τ33 and τ3̄3̄ are not related to the fluxes, so they can consistently be set to
zero. In a similar way we can use the equations of motion for the NS- and RR-forms,

dB2 = − Im(G3)

Im(τ)
, (A.14)

dC6 = H3 ∧ C4 − ∗10 Re(G3) ,

dC8 = H3 ∧ C6 − ∗10 Re(τ) ,

to write the NS- and RR-forms in terms of the position modulus and the fluxes. The
non-vanishing components are

B12 =
gsσ

2i

[
Ḡφ− (S − D̄)φ̄

]
, (A.15)

(C)12 = − gsσ

2iZ

[
Ḡφ− (S + D̄)φ̄

]
, (A.16)

(C)11̄22̄ =
g2

sσ
2

4Z

(
|G|2 + |S|2 − |D|2]

)
|φ|2 − g2

sσ
2

4Z

(
GSφ̄2 + ḠS̄φ2

)
. (A.17)

1The difference in the power of the string coupling and warp factor with respect to the earlier more
general formula is in the definition of f(Φ). In the end this does not matter.
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Plugging this into the action gives

LDBI = −V4µ7gs(1 + σ2Z∂µφ∂
µφ̄)

[
1 +

gsσ
2

4Z

(
|G|2 + |S|2 + |D|2)|φ|2

− Ḡ(S̄ −D)φ2 −G(S − D̄)φ̄2
)]
. (A.18)

Note that the negative constant contribution is cancelled by the orientifold contribution.
Next there is a contribution to the scalar potential coming from the CS action. For
completeness, for a D7-brane it is given by

SCS = µ7STr

(∫
d8xP [−C6 ∧ F2 + C8]

)
, (A.19)

From which we find, after a similar computation as for the DBI action,

LCS =
V4µ7g

2
sσ

2

4Z

(
−|Ḡφ− Sφ̄|2 + |D|2|φ|2

)
. (A.20)

Let us redefine φ→ (V4µ7gsZσ
2)−1/2φ to obtain a canonical kinetic term at leading

order in α′. After combining the CS and DBI contributions we find the following kinetic
terms and potential for φ,

Lkin = −∂µφ∂µφ̄
{

1 +
1

4Z2V4µ7

[
(|G|2 + |S|2 + |D|2)|φ|2 − Ḡ(S̄ −D)φ2 + c.c.

]}
(A.21a)

V =
gs

4Z2

(
2|G∗φ− Sφ̄|2 + ḠDφ2 +GD̄φ̄2

)
, (A.21b)

which is the action given in Equation (7.9). Finally, note that we have ignored det(Qmn)
here since we consider a model with a D-flat direction.
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Appendix B

Flattening of potentials

In this appendix we analyze the effect of canonically normalizing an effective Lagrangian
similar to the one obtained in Section 5.1 from the DBI action. This is inspired by
the desire to understand the effect of such a type of non-canonical kinetic term on
inflationary dynamics. Similar Lagrangians were discussed in [163]. Here, we give
general analytic formulae for the slow-roll parameters modified by the non-canonical
kinetic terms in Equation (5.1) with monomial inflaton potentials. In all cases the non-
canonical kinetic term leads to a flattening of the potential at large field values. This
causes a substantial reduction of the tensor-to-scalar ratio r, bringing chaotic inflation
models to better agreement with the recent Planck and BICEP data. The strength of
the flattening is given by the parameter a, which in the main text is given by Equation
(5.33). The relation between a and the string scale implies that for a strong flattening
the string scale has to be low. The limit for a→∞ that we consider in this appendix
can therefore not be consistently reached from the type of models that we consider in
the main text.

We assume a single complex field and, in addition, make the simplifying assumption
that only one of the components of φ is the inflaton field, which has a potential suitable
for slow-roll, while the other component does not play a role. Moreover, we work in
the slow-roll regime and thus neglect the fourth-order derivative terms of φ that are
generally present. What we study is therefore a version of the Lagrangian (5.1) with a
single real scalar field ϕ,

L = −1

2
f(ϕ)∂µϕ∂

µϕ− V (ϕ) , (B.1)

where

f(ϕ) = 1 + aV (ϕ) . (B.2)

The effect of taking both degrees of freedom of the complex field φ into account was
studied in Chapter 6 for a quadratic scalar potential.

As emphasized above, the DBI action yields a non-canonical kinetic term for the
inflaton. In general, for Lagrangians with more than one scalar field it is not possible to
do a global transformation to canonical frame. However, in single-field inflation models
one can always recast the Lagrangian into canonical form, via the transformation

dϕ

dψ
=

1

f1/2(ϕ)
=

1√
1 + aV (ϕ)

, (B.3)
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which yields the following canonical variable

ψ = g(ϕ) =

∫
dϕf1/2(ϕ) . (B.4)

The Lagrangian, when written in terms of the canonically normalized field ψ, reads

L = −1

2
∂µψ∂

µψ − V (g−1(ψ)) , (B.5)

so that V implicitly depends on a. Interestingly, this process leads to a flatter potential.
Specifically,

∂V

∂ψ
=

1

f1/2

∂V

∂ϕ
. (B.6)

Since f > 1 if a > 0 the potential in canonical variables has a smaller first derivative,
i.e., a flattened slope, than the original one. A similar flattening from non-canonical
kinetic terms has been discussed in the past in the context of string cosmology, for
example in [163].

Provided f > 0, i.e., the scalar field is not a ghost, the study of the vacua can be
performed by analyzing V (ϕ) and neglecting the non-canonical nature of the field. The
dynamics of the theory, however, crucially depend on the redefinition of the kinetic term.
To quantify this effect we compute the CMB observables in terms of the canonically
normalised field, first as general as possible and later applied to monomial potentials.
We define the potential slow-roll parameters as usual,

ε =
1

2

(
Vψ
V

)2

, η =
Vψψ
V

, (B.7)

where subscripts denote derivatives. These can be rewritten in terms of ϕ as follows,

ε =
1

2f

(
Vϕ
V

)2

, η =
1

f

Vϕϕ
V
− aV

f
ε . (B.8)

Evidently, the effect of the non-canonical kinetic terms is to reduce the slow-roll pa-
rameters. The scalar spectral index of the curvature perturbations is

ns = 1− 6ε+ 2η ,

= 1− 3

f

(
Vϕ
V

)2

+
2

f

Vϕϕ
V
− aV

f2

(
Vϕ
V

)2

,

=
1

f
(1− 6ε|a=0 + 2η|a=0) +

aV

f
(1− 2ε) , (B.9)

where in the last line only the second piece depends on a. The tensor-to-scalar ratio
becomes

r = 16 ε =
8

f

(
Vϕ
V

)2

. (B.10)

Both ns and r are to be evaluated at horizon exit, with field values denoted by ψ∗ and
ϕ∗. For Ne e-folds of exponential expansion one has

Ne =

∫ ψ∗

ψend

1√
2ε
dψ =

∫ ϕ∗

ϕend

f
V

Vϕ
dϕ , (B.11)
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Figure B.1: ψ(ϕ) for monomial potentials of various powers n.

which defines ϕ∗ and ψ∗. The difference between ϕ∗ and ψ∗ and ϕend and ψend, re-
spectively, is model-dependent. Therefore, in the following, we study simple examples
and quantify the effect of the non-canonical normalization numerically. As discussed
in Section 5.1, world-volume and background fluxes generate monomial potentials for
Dp-brane position moduli. We therefore consider potentials of the type

Vn(ϕ) = v0ϕ
n , (B.12)

with n ∈ R+. In this case we can specify g(ϕ) in (B.4),

ψ =
ϕ
[
2
√

1 + av0ϕn + n 2F1(1
2 ,

1
n ; 1 + 1

n ;−av0ϕ
n)
]

2 + n
, (B.13)

where 2F1(a, b; c; d) is the ordinary hypergeometric function. Note that ψ is real only
when −av0ϕ

n < 1 which is equivalent to the no-ghost regime. We illustrate the func-
tional dependence of (B.13) in Figure B.1 for representative values of n. The crucial
feature of this plot is that all curves lie above the ψ = ϕ reference line, implying that one
may schematically write ψ = ϕm(ϕ) for some m(ϕ) > 1, or equivalently ϕ = ψ1/m(ψ).
Since m(ψ) > 1 the change to a canonically normalized inflaton results in a monomial
potential with suppressed power. The schematic form is V ∼ ψn/m(ψ), demonstrating
that the effect of the non-canonical coupling in (B.2) is to cause a flattening of the
monomial potential. Given the monotonicity of the scalar potentials we thus expect ns

to increase while r decreases.
While a proper field redefinition exists for all n there are only a few values for which

we can use functional identities to rewrite (B.13) in a more familiar form,

n = 0 : ψ =
√

1 + av0ϕ+ C , (B.14)

n = 1 : ψ =
2

3av0

[
(1 + av0ϕ)3/2 − 1

]
+ C , (B.15)

n = 2 : ψ =
1

2
ϕ

[√
1 + av0ϕ2 +

1√
av0ϕ

arsinh(
√
av0ϕ)

]
+ C , (B.16)

with C = 0 fixed by the requirement V (0) = 0, i.e., demanding the cosmological
constant to vanish in the vacuum. Notice that, as expected, in the first case of a trivial
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Figure B.2: CMB observables as predicted by the canonically normalized theory, with
initial values n = 2, n = 1, n = 2

3 , and n = 2
3 . Darker color means lower values of

av0. For small av0 the effect of the additional kinetic term is negligible, while for large
av0 the potential V (ψ) approaches a monomial with power 1 for n = 2, 2

3 for n = 1,
1
2 for n = 2

3 , and so on. The two distinct lines correspond to Ne = 50 and Ne = 60,
respectively.

potential the field redefinition is simply a rescaling of ϕ. But because V is constant
this is also the most uninteresting case. On the other hand, the Lagrangian for n = 2
is an example of single-field Higgs-otic inflation for which there is no analytical form
for the inverse ϕ(ψ). The inverse exists only for n = 1. This means that, to study the
implications in the most interesting cases, we must resort to either approximations or
numerics. In the remainder of this appendix we use a combination of both.

We present the results of a numerical analysis of the CMB observables in Figure
B.2, using n = 2, 1, 2

3 ,
2
5 as examples. We vary the value of av0 to study the strength

of the flattening effect. Remember that increasing av0 means power suppression in the
monomial potential of the canonically normalized inflaton. To better understand the
numerical results let us first consider the limit of small av0, so that aV � 1 and f ' 1
in (B.2). A first-order Taylor expansion in av0 leads to simplified expressions for the
slow-roll parameters,

ε =
1

2
(1− av0ϕ

n)
n2

ϕ2
, (B.17)

η = (1− av0ϕ
n)

(
n(n− 1)

ϕ2
− n2

2
av0ϕ

n−2

)
. (B.18)

For ϕend, defined by ε(ϕend) = 1, we find

ϕend =
n√
2

(
1− av0

2

(
n√
2

)n)
. (B.19)

Furthermore, the observable modes of the fluctuations leave the horizon at

ϕ∗ =
√
x− av0

n+ 2

(
x

n+1
2 + (n+ 1)

(
n√
2

)n√
x

)
, (B.20)
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where we have introduced x = 2nNe + 1
2n

2. Using this value in the expanded slow-roll
parameters leads to

ε∗ =
n2

2x
+ av0n

2

(
n+ 1

n+ 2

(
n√
2

)n+2

x−2 − n

2n+ 4
x

1
2
n−1

)
, (B.21)

η∗ =
n2 − n
x

+ av0n

(
2n2 + 2

n+ 2

(
n√
2

)n+2

x−2 − 3n2

2n+ 4
x

1
2
n−1

)
, (B.22)

at horizon exit. The structure is remarkably similar in both cases, which can be traced
back to the term proportional to aV/ε in the integral that determines Ne. We expect the

term proportional to x
1
2
n−1 to dominate in the brackets because x ∼ O(100). Hence,

both functions decrease as av0 increases. In the limit of small av0 this explains why the
observables move towards the bottom-right in the ns-r plane as the non-trivial kinetic
term is amplified.

The limit of large av0 is even more illuminating, cf. the related analyses in [133,163].
Assuming f ' aV leads to

ϕ =

(
n+ 2

2
√
av0

) 2
n+2

ψ
2

n+2 , (B.23)

as the inverse of (B.13). The corresponding scalar potential becomes

V (ψ) = v0

(
n+ 2

2
√
av0

) 2n
n+2

ψ
2n
n+2 . (B.24)

Thus, we obtain an analytic result for the canonically normalized theory for any value
of n. In particular, starting with a power of n in ϕ we obtain a power of 2n

n+2 < n in the
canonical field ψ. This explains another feature in Figure B.2: in the regime of large
a, starting with n = 2 yields a monomial potential of power 1, n = 1 yields power 2

3 ,

n = 2
3 leads to V ∼ ψ 1

2 , and so on. This is why the curves in the figure connect.
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Appendix C

Fluxes and µ-terms

In order to motivate our choice for the superpotential given in Equation (7.1b), it is
important to understand the microscopic origin of the µ-term. We give an example of
the origin of the µ-term and we do not consider the most general case. In order to do
this we provide here a toroidal type IIB orientifold example which we dualize to the
corresponding type IIA model. This is the easiest path to show how certain closed-
string fluxes not only contribute to the moduli superpotential but also generate µ-terms
for charged matter fields. To be concrete, we consider a toroidal setting T 2 × T 2 × T 2

with the standard O(3) orientifold projection with NS fluxes,

H3 = −
3∑
i=1

aiai , (C.1)

which are expanded in the standard basis of three-forms on the torus, following the
notation around Equation (3.40). The corresponding term in the Gukov-Vafa-Witten
superpotential is

W = −
∑
i

aiSUi , (C.2)

where S is the complex dilaton and Ui are the complex structure moduli of the three
tori. Consider now a D7-brane wrapping the first two tori and transverse to the third.
We want to show that the same NS fluxes induce a µ-term for the adjoint position
modulus Φ3 which parametrizes the position of this D7-brane in the transverse torus.

The mirror of this model is a type IIA toroidal orientifold with an O(6) projection
and a D6-brane wrapping, for example, the cycle

Π3 = (0, 1)1 × (0,−1)2 × (1, 0)3 , (C.3)

where (n,m) means that the D6-brane wraps n times around the x direction and m
times around y. In the IIA mirror the NS fluxes of the IIB setup map into geometric
fluxes, which we consider to be for simplicity ω3

45 = a3, in the notation of [15]. Let us
consider now the Chern-Simons coupling on the world-volume of the D6-brane,∫

Π3×M4

C3 ∧ F ∧ F . (C.4)
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In the presence of geometric fluxes ωiab or, equivalently, on a twisted torus one replaces

Fab → Fab + ωiabAi = Fab + (ω.A)ab , (C.5)

so that, after putting the legs of C3 in the Minkowski direction and integrating by
parts, we get

F 0
4

∫
Π3

(ω.A) ∧A , (C.6)

where F 0
4 is a type IIA Minkowski four-form. We thus see that there is a coupling of

this four-form to a Wilson line bilinear controlled by the background ω. In particular,
for the three-cycle above we find the action

a3F
0
4 Tr(A3)2 = a3F

0
4 Tr(θ3)2 , (C.7)

where θ3 is a Wilson line scalar on the D6-brane. As discussed in Chapter 4, in type
IIA F 0

4 couples to the real part of the superpotential, i.e.,

L ⊂ F 0
4 Re(W ) , (C.8)

so we can identify a contribution to the superpotential

Re(Wa3) = a3Tr(θ3)2 . (C.9)

Holomorphicity allows us to complete the form of the induced superpotential. Along the
third torus the D6-brane open-string modulus is a combination of the Wilson line θ3 and
position modulus φ3, which parameterizes the motion in the direction perpendicular to
the D6-brane in that complex plane,

Φ3 = θ3 + T3φ3 . (C.10)

Hence, the piece of the superpotential proportional to a3 is

Wa3 = a3Φ2
3 , (C.11)

which is a µ-term. Let us check for completeness that the cross term in Φ2
3 involving the

coupling θ3Re(T3)φ3 also appears in the action. In addition to the above CS coupling,
there is a coupling on the twisted torus of the form∫

Π3×M4

C3 ∧ F ∧ [ω.B]P , (C.12)

where the subscript P indicates the pullback and B is the NS two-form. After partial
integration we find a coupling for the above choice of D6-brane,

F 0
4

∫
Π3

A ∧ [ω.B]φ3 = F 0
4 a3Tr(θ3b3φ3) , (C.13)

where T3 = b3 + iJ3 and φ3 is the position modulus transverse to the D6-brane in the
third complex plane. We observe that the required term is indeed present.

Going back to IIB, dualizing along the three horizontal directions of the torus, we
end up with a D7-brane which is localized on the third torus and wraps the other two.
The field Φ3 is now mapped to a complex scalar which parameterizes the position on
the third torus. We conclude that in IIB the standard NS flux a3 gives rise not only to
a moduli superpotential piece W ∼ a3SU3 but also to a contribution to the µ-term for
the adjoint Φ3.
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[84] L. E. Ibáñez and I. Valenzuela “The inflaton as an MSSM Higgs and open string
modulus monodromy inflation,” Phys. Lett. B736 (2014) 226–230 [1404.5235].

[85] A. Hebecker, S. C. Kraus, and L. T. Witkowski “D7-Brane Chaotic Inflation,”
Phys. Lett. B737 (2014) 16–22 [1404.3711].

[86] M. Arends, A. Hebecker, K. Heimpel, S. C. Kraus, D. Lust, C. Mayrhofer,
C. Schick, and T. Weigand “D7-Brane Moduli Space in Axion Monodromy and
Fluxbrane Inflation,” Fortsch. Phys. 62 (2014) 647–702 [1405.0283].

[87] L. McAllister, E. Silverstein, A. Westphal, and T. Wrase “The Powers of Mon-
odromy,” JHEP 09 (2014) 123 [1405.3652].

[88] S. Franco, D. Galloni, A. Retolaza, and A. Uranga “On axion monodromy infla-
tion in warped throats,” JHEP 02 (2015) 086 [1405.7044].

[89] R. Blumenhagen, D. Herschmann, and E. Plauschinn “The Challenge of Realizing
F-term Axion Monodromy Inflation in String Theory,” JHEP 01 (2015) 007
[1409.7075].

[90] H. Hayashi, R. Matsuda, and T. Watari “Issues in Complex Structure Moduli
Inflation,” [1410.7522].

[91] A. Hebecker, P. Mangat, F. Rompineve, and L. T. Witkowski “Tuning and Back-
reaction in F-term Axion Monodromy Inflation,” Nucl. Phys. B894 (2015) 456–
495 [1411.2032].

[92] I. Garca-Etxebarria, T. W. Grimm, and I. Valenzuela “Special Points of Inflation
in Flux Compactifications,” Nucl. Phys. B899 (2015) 414–443 [1412.5537].

[93] A. Retolaza, A. M. Uranga, and A. Westphal “Bifid Throats for Axion Mon-
odromy Inflation,” JHEP 07 (2015) 099 [1504.02103].

[94] D. Escobar, A. Landete, F. Marchesano, and D. Regalado “Large field inflation
from D-branes,” Phys. Rev. D93 (2016) no. 8, 081301 [1505.07871].
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moduli fixing,” JHEP 05 (2006) 070 [hep-th/0602089].

[105] S. J. Gates, Jr. “Super p-form gauge superfields,” Nucl. Phys. B184 (1981) 381–
390.

[106] S. J. Gates, Jr. and W. Siegel “Variant superfield representations,” Nucl. Phys.
B187 (1981) 389–396.

[107] B. A. Ovrut and D. Waldram “Membranes and three-form supergravity,” Nucl.
Phys. B506 (1997) 236–266 [hep-th/9704045].

[108] P. Binetruy, G. Girardi, and R. Grimm “Supergravity couplings: A Geometric
formulation,” Phys. Rept. 343 (2001) 255–462 [hep-th/0005225].

[109] G. Girardi, R. Grimm, B. Labonne, and J. Orloff “Correspondence between 3-
form and non-minimal multiplet in supersymmetry,” Eur. Phys. J. C55 (2008)
95–99 [0712.1923].

[110] B. B. Deo and S. J. Gates “Comments on nonminimal N = 1 scalar multiplets,”
Nucl. Phys. B254 (1985) 187–200.

[111] I. A. Bandos and C. Meliveo “Three form potential in (special) minimal super-
gravity superspace and supermembrane supercurrent,” J. Phys. Conf. Ser. 343
(2012) 012012 [1107.3232].

[112] H. Nishino and S. Rajpoot “Alternative auxiliary fields for chiral multiplets,”
Phys. Rev. D80 (2009) 127701.
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