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Abstract

We investigate and demonstrate the use of convolutional neural networks (CNNs) for the task of
distinguishing between merging and non-merging galaxies in simulated images, and for the first time at
high redshifts (i.e., z = 2). We extract images of merging and non-merging galaxies from the Illustris-
1 cosmological simulation and apply observational and experimental noise that mimics that from the
Hubble Space Telescope; the data without noise form a “pristine” data set and that with noise form a
“noisy” data set. The test set classification accuracy of the CNN is 79% for pristine and 76% for noisy.
The CNN outperforms a Random Forest classifier, which was shown to be superior to conventional one-
or two-dimensional statistical methods (Concentration, Asymmetry, the Gini, Mg statistics etc.), which
are commonly used when classifying merging galaxies. We also investigate the selection effects of the
classifier with respect to merger state and star formation rate, finding no bias. Finally, we extract Grad-
CAMs (Gradient-weighted Class Activation Mapping) from the results to further assess and interrogate
the fidelity of the classification model.
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become constant or start to decrease during the
period 1 < z < 3 (Ryan et al., 2008; Man et al.,
2016). This disagrees with theoretical models (Hopkins et al.,
2010; Rodriguez-Gomez et al., 2015), which pre-
dict that major merger rates continue to rise dur-
ing this period. Counting merger rates during this

1. Introduction

Galaxy mergers are a primary trigger and probe
of the evolution of cosmic structures. The hierar-
chical merging of galaxies is both a probe of the
cosmos as a whole to test the canonical ACDM

cosmology paradigm (Toomre and Toomre, 1972;

cosmic epoch may aid in or lead to explanations

Kauffmann et al., 1993; Guo and White, 2008; Conseliggy the appearance of galaxies today, and shed light

2014; Rodriguez-Gomez et al., 2017) and a labora-
tory for the evolution of galaxies as astrophysical
objects (Rees and Ostriker, 1977; White and Rees,
1978). A particularly interesting period is "cosmic
high noon," which took place at redshifts z ~ 2—3.
During this period, star formation rates are the
highest, and significant amounts of stellar mass are

on the importance of mergers in galaxy evolution.

Detecting galaxy mergers in observations by
conventional automated methods or by visual in-
spection has proven to be quite expensive and time-
consuming (Patton et al., 2002; Lin et al., 2004;
Bershady et al., 2000; Lintott et al., 2011). One
method of detection is selecting close galaxy pairs

assembled into galaxy-scale bodies (Madau and Dickinsonyigyally in the plane of the sky and in redshift

2014). In the context of galaxy mergers, this pe-
riod is still not fully understood. Several recent
empirical studies have discovered evidence that the
rate of occurrence of major merging events may
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(Barton et al., 2000; Lin et al., 2004). This method
depends on the availability of deep, broadband
multi-wavelength or spectroscopic data. These meth-
ods also suffer from the inability to distinguish
between close pairs of galaxies that will eventu-
ally merge and those that will just pass by each
other, resulting in sample contamination by galaxy
flyby’s (Prodanovié¢ et al., 2013; Lang et al., 2014;
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Kim et al., 2014). Searching for merging pairs of
galaxies can be done by visual inspection by large
numbers of people — e.g., GalaxyZoo; Lintott et al.
(2011). However, this process will become pro-
hibitively time-consuming as data volumes increase
and is subject to the biases of human classifiers.
High-resolution and high signal-to-noise images are
required when merger classification is performed
with parametric measurements of structure. Ex-
amples include the Sérsic index (Sérsic, 1963), the
Gini coefficient, the second-order moment of the

CNNs can be performed using images from simu-
lations, which can often be made to be very large
and diverse.

CNNs have already proved very useful across
a broad range of astronomical tasks — e.g., iden-
tification of strong lensing events (Petrillo et al.,
2019; Jacobs et al., 2019), lensing reconstruction
of the Cosmic Microwave Background (Caldeira et al.,
2019), identification of distant galaxies in a cen-
tral blue nugget phase (Huertas-Company et al.,

2018), learning galaxy morphology (Dominguez Sanchez et al.,

brightest 20% percent of the galaxy’s flux Mg (Lotz et 2019), identification of low-surface brightness tidal

2004), CAS - Concentration, Asymmetry, Clumpi-
ness (Conselice et al., 2003), and identification
of concentrated galaxy nuclei at small separations
identified through median-filtering (Lackner et al.,
2014). The need for high-quality observations means
that space-based observations are the only way to
perform morphological analysis at higher redshifts
(z > 1). Small samples of observed distant galax-
ies introduce uncertainties in the study of galaxy
merger history (this will improve with future mis-
sions like WFIRST!, which will provide large vol-
umes of data).

In recent years, classification tasks and learn-
ing from large data sets are often performed using
neural networks — a type of model for learning algo-
rithms comprised of computational neurons, each
of which has adjustable parameters (a weight and
a bias). These parameters are adapted under the
response to discrepancies between a network pre-
diction and a truth label. The loss encodes the dis-
crepancy, and this discrepancy is used to update
the weights for each neuron using backpropaga-
tion: this procedure calculates the gradient of the
loss function with respect to the neural network’s
weights — a typical method for this is Stochastic
Gradient Descent (Kiefer and Wolfowitz, 1952).

Convolutional Neural Network (CNNs) are a
primary representative of deep learning algorithms.
They can be optimized for computer vision tasks,
which makes them a good tool to use with astro-
nomical images. An important advantage of CNNs
is in their capacity to discern patterns in large and
complex data sets. These algorithms also do not
require parametrically defined prior information
about physical parameters (i.e., features) of the
objects that are subject to measurement or clas-
sification. However, CNNs learn from a training
set that has labels for “ground truth”, and prior
information enters in this form. In cases where
real observations do not offer large enough labeled
image data sets (or when it is difficult to label
observed images with enough certainty), training

Lhttps://whirst.gsfc.nasa.gov/index.html

features in galaxies (Walmsley et al., 2019), clas-
sification of the large-scale structure of the uni-
verse (Aragon-Calvo, 2019), learning parameters
that describe the first galaxies from 21-cm tomog-

raphy of the cosmic dawn and reionization (Gillet et al.,

2019) etc.

CNNs have been used in a few cases in the
context of galaxy mergers — classifying at low-
redshift (Ackermann et al., 2018; Pearson et al.,

2019a,b), prediction of merger stage (Bottrell et al.,
2019). CNN performance depends on the type
of training images, and training on galaxies ex-
tracted from large-scale simulations can be success-
fully used for detecting merging galaxies in real sur-
vey data (Ackermann et al., 2018; Pearson et al.,
2019b). These strategies have not yet been applied
to high-redshift galaxies.

The remainder of the paper is organized as fol-
lows. In §2, we present the simulated data sets
with which we train and test our algorithm, and
in §3 we describe the implementation of CNNs for
classification. We then describe the results of clas-
sification of mergers by CNNs, including a com-
parison with the results from random forest imple-
mentations from other works in §4. We discuss
our results in §5. Finally, we summarize, conclude,
and present an outlook for future work in §6.

2. Data

It is extremely difficult to obtain real-sky obser-
vational data of labeled mergers at high redshifts
and in quantities that are typically sufficient for
training supervised machine learning algorithms.
Therefore, simulated data is critical for this task.
We use simulated data from the Illustris-1 cosmo-
logical simulations (Vogelsberger et al., 2014b,a)
as the baseline data set to which we add observa-
tional effects like point spread function (PSF) and
random sky shot noise to produce the images we
use.

2.1. Data: “Pristine” and “Noisy” Simulations

It tends to be very slow to find and label enough
real observational images to build a sufficiently



large training sample for even the shallowest of
effective deep neural networks. In these situations,
simulated images that mimic real observations can
provide additional useful training samples. Simu-
lations also offer the opportunity to craft training
sets from three-dimensional “ground truth,” which
may circumvent some biases that would be caused
by using a training set defined purely from curated
two-dimensional observations. The predictive per-
formance on real-sky observations of a CNN clas-
sifier trained on simulated data (and later used
on real observations) will strongly depend on how
successfully the simulated images mimic real ob-
servations.

We follow (Snyder et al., 2019), who use im-
ages of galaxy mergers from the Illustris-1 cos-
mological simulation, using snapshots made in 12
time-steps over 0.5 < z < 5. We use the subset of
z = 2 galaxy images. Objects in extracted images
are classified as mergers if the merging event oc-
curs during the 500 Myr window around the time
the snapshot from the Illustris simulation was taken.
Merging events of a given stellar mass ratio are de-

reveal stellar mass and mergers. These two filters
are also relevant to data from the CANDELS sur-
vey (Koekemoer et al., 2011; Grogin et al., 2011),
which has uniform, deep coverage in all fields for
both filters. This forms the baseline data set with-
out observational effects of photon noise or the
telescope point spread function. In Snyder et al.
(2019), the authors modify the images to reflect
the observational qualities of the Hubble Space
Telescope (HST) and James Webb Space Telescope
(JWST). First, the baseline images were convolved
with a model point-spread function (PSF) appro-
priate for each filter (our "pristine" data set). Then,
random sky shot noise (approximated by a normal
distribution) was added to each pixel, such that
the final noisy images achieve a 5o limiting surface
brightness of 25 magnitudes per square arc-second
(our "noisy" data set) — labeled “SB25” (while their
PSF-only dataset is labeled “SB00”).

2.2. Data preparation

We prepare the simulated data to be used for
training, validation, and testing in the CNN opti-

fined from the merger trees computed by Rodriguez-Gompgz efodl and analysis. The snapshot z = 2 which

(2015): the time window for designation as a merger
was chosen to be long enough to capture signatures
during a wide range of merger stages (Lotz et al.,
2008) — enabling identification of subtler and slower
mergers, but short enough to omit galaxies whose
morphology is unaffected by merging. In the cur-
rent work, we consider mergers with a stellar mass
ratio of 0.1 or greater.

Merging objects are considered to be the posi-
tive class (“P”) and non-merging objects the nega-
tive class (“N”). No matter which time window is
chosen, any classification algorithm is likely to give
some false positives (non-mergers which look like
mergers) and false negatives (mergers that look
like non-mergers), for the time windows and merger
event durations that don’t match. For example,
a pair of galaxies could approach very slowly so
that the merger event happens outside the chosen
time window, or the merger event could happen
so quickly that a merger shows no physical effects
only a short time later. An example is shown
in Snyder et al. (2019). Clumpy star formation
is also likely to present false-positives. Mock im-
ages in various broadband wavelength filters were
generated by Torrey et al. (2015). In this work,
we use two HST wavelength filters — ACS F814W
(red) and WFC3 F160W (near-infrared) that show
features in a wide range of redshifts (z ~ 1 — 3).
For objects at z = 2, these filters probe near-UV
(=~ 0.27 microns), which reveals bluer features in
galaxies, like star formation, clumps, and asymme-
tries. The visible blue/green light (=~ 0.5 microns)
in the rest frame shows redder features that tend to

we use, contains images of 2233 different galax-
ies. Galaxy images were made using four “camera”
perspectives, which were used as independent ob-
jects in order to augment the number of galaxy
images. Finally, the image sample we used with
our CNN includes 8930 images, each in two HST
filters — ACS F814W and WFC3 F160W (2 images
were discarded because they lacked all needed fil-
ters). The sample is unbalanced with a ratio of
1624 : 7306 mergers to non-mergers. We apply
additional data augmentation (horizontal and ver-
tical flips, rotations by 90 deg. and 180 deg.) to the
mergers in the data set to produce a more balanced
sample consisting of 8120 mergers and 7306 non-
merger. There are images from the z = 2 snap-
shot that were not used in Random Forest classi-
fication by Snyder et al. (2019), due to the very
low signal-to-noise ratio in each pixel or patho-
logical Petrosian radius measurements (these im-
ages have merger probability Prr = None in Ta-
ble 2 of Snyder et al. (2019)). We nevertheless in-
clude these low-quality systems, because they will
be present in real observational data, especially
in case of high redshifts. We resized all pictures
to 75 x 75 pixels and use two HST filters (in both
pristine and noisy case), making our input to CNN
have dimension of 2x75x 75 (we use "channel first"
image data format). Before training our CNN, we
divide our images into training, validation and test-
ing sample (70% : 10% : 20%).

All of the images used in this paper are avail-
able online. Original baseline images can be found



on the Illustris web page?. All resized images that
we used (both pristine and noisy) are available as a

0.06 with very high precision of 0.97 (Ackermann et al.,

2018). The Xception architecture has 36 convolu-

MAST High Level Science Product — DOI:10.17909/t9-tional layers placed into 14 modules. It is based

vqk6-pc803.

3. Method: a neural network model for merger

classification

An algorithm that distinguishes between classes
of objects uses features that are indicative to those
objects to determine key differences. These fea-
tures can be and are often clearly defined in terms
of physical properties of objects. As such, features
can be used in algorithms that relate strongly to

on “depthwise separable convolutions”, which are
performed independently for each channel of the
image, followed by a 1 x 1 pointwise convolution
across all channels (Chollet, 2016).

We employ a relatively simple sequential model
to classify the merger image data. The DeepMerge
CNN architecture consists of only three convolu-
tional layers. The architecture of the DeepMerge
CNN is presented in Table 1 and visualized in Fig-
ure 1, where convolutional layers are yellow, pool-
ing layers are red, and fully connected layers are

physical intuition, like the matched filter (Simonyan an&i@fgs%%rr;%ﬁ, first convolutional layer has eight fil-

2014; He et al., 2015). Pre-designated features can
also be used in machine learning algorithms, like

ters, 5 X 5 in size, the second convolutional layer
has 16 filters, 3 x 3 in size, and the third convo-

support vector machines or random forests (Cortes andIV&%iE done with 32 filters, 3 x 3 in size. Each

1995; Ho, 1995). Deep learning algorithms, on
the other hand, are optimized during the training
phase to identify these features that are primar-
ily responsible for distinguishing between object

classes (LeCun et al., 1998; LeCun and Bengio, 1998).

Convolutional neural networks (CNN) are a class
of deep learning algorithms specializing in work-
ing with images. They are usually comprised of
three types of layers. The convolutional layer re-
places the simple fully-connected layer. Instead of
having a one-dimensional layer of neurons, each
having one weight and one bias, convolutional lay-
ers have multiple weights and biases, where each
weight represents a pixel of a convolutional filter.
This filter is convolved with the input image to
produce a two-dimensional representation of the
image known as an activation map, which stores
the information about the response of the kernel
at each spatial position of the image. The re-
sults of the convolutional layer are then passed
through a non-linear function, which helps CNN
learn and represent almost any complex function
which connects input and output values. Pooling
layers perform downsampling along the spatial di-
mensions of the activation maps. This decreases
the required amount of computation and weights,
while also helping to reduce over-fitting. CNNs
also have fully-connected layers, where all neurons
in one such layer are connected to all neurons in
the preceding and succeeding layers. The last fully-
connected layer performs the classification.

Different CNN architectures can be constructed
by sequentially adding these layers. Complex ar-
chitectures like Xception (Chollet, 2016) can clas-
sify merging galaxies on low redshifts 0.02 < z <

2http:/ /www.illustris-project.org/data/
3https://doi.org/10.17909/t9-vqk6-pc80

convolution is followed by batch normalization and
then pooling, which down-samples by a factor of
two. In all convolutional layers we use a common
activation function used today - Rectified Linear
Unit (ReLU). The last convolutional layer is then
flattened to one dimension. It is followed by three
fully-connected layers with 64, 32, and one neuron,
respectively. We use the Softmax activation func-
tion in the first and second fully-connected layer,
because the CNN performed slightly better com-
pared to the use of the ReLU function in these
layers. The final fully-connected layer employs
the Sigmoid activation function because this layer
has only one neuron and produces an output be-
tween 0 and 1. The DeepMerge output is taken
as a probability of an object being a merger, and
we set the threshold to be 0.5. Since our prob-
lem is a binary classification problem, we choose
binary cross-entropy as our loss function. Opti-
mization is performed by using the Adam opti-
mizer (Kingma and Ba, 2014).

Over-fitting of the network model is mitigated
by the use of regularization through dropout of
50% during training, applied after all convolutional
layers (this is higher than typical dropout rate, but
lower rates resulted in quite early over-fitting). We
also use L2 regularization (also called Ridge Re-
gression) applied on the weights via a kernel reg-
ularizer with penalty term A = 0.0001 in the first
two dense layers. In case of Ridge Regression, the
regularization term is the sum of squares of all the
feature weights (multiplied by the penalty term).
In this case, weights are forced to be small but
not zero, which makes 1.2 a good choice to tackle

4The code wused in this paper is available at:
https://github.com/deepskies/deepmerge-public

5Figure was created using PlotNeuralNet code (Igbal,
2018).
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Figure 1: Architecture of the DeepMerge CNN presented in graphical form. Convolutional layers (three) are presented in
yellow, pooling layers (three) in red, and dense layers (four - one after flattening and three additional that we add) in violet.
Dropout layers are not shown.

Table 1: Architecture of the DeepMerge CNN.

] Layers \ Properties Stride Padding Output Shape Parameters
Input 2 % 75 x 75% - - (2, 75, 75) 0
Convolution (2D) Filters: 8 1x1 Same (8, 75, 75) 408

Kernel: 5 x5 - - - -
Activation: ReLU - - - -
Batch Normalization | - - - (8, 75, 75) 300
MaxPooling Kernel: 2 x 2 2 %2 Valid (8, 37, 37) 0
Dropout Rate: 0.5 - - (8, 37, 37) 0
Convolution (2D) Filters: 16 1x1 Same (16, 37, 37) 1168
Kernel: 3 x 3 - - - -
Activation: ReLU - - - -
Batch Normalization | - - - (16, 37, 37) 148
MaxPooling Kernel: 2 x 2 2x2 Valid (16, 18, 18) 0
Dropout Rate: 0.5 - - (16, 18, 18) 0
Convolution (2D) Filters: 32 1x1 Same (32, 18, 18) 4640
Kernel: 3 x 3 - - - -
Activation: ReL.U - - - -
Batch Normalization | - - - (32, 18, 18) 72
MaxPooling Kernel: 2 x 2 2 %2 Valid (32,9,9) 0
Dropout Rate: 0.5 - - (32,9,9) 0
Flatten - - - (2592) -
Fully connected Reg: L2 (0.0001) - - (64) 165952
Activation: Softmax - - - -
Fully connected Reg: L2 (0.0001) - - (32) 2080
Activation: Softmax - - - -
Fully connected Activation: Sigmoid - - (1) 33
“We use "channel first" image data format.
over-fitting issues. two HST filters, ACS F814W and WFC3 F160W.

We trained the DeepMerge CNN on both pris-  We initially set our training to last for 500 epoch,
tine and noisy images. In both cases, we only use but we also include early stopping. Early stop-



ping is performed by monitoring the loss function,
and training is stopped if validation loss does not
drop at all for 50 epochs. We use the same archi-
tecture and the same set of hyperparameters, on
both types of images. Learned weights in case of
pristine and noisy images are of course different.
The fact that there is a difference, allows us to
make an interesting stark comparison between the
two data sets. The network performs better on
pristine images in comparison to more realistic im-
ages, and early stopping enables us to tackle over-
fitting. We saved the model with the best weights
derived during training (weights which maximize
validation accuracy).

Training and testing our model was done on
HP Compaq Elite 8300 CMT, which has Intel Core
i5-3470 with 4 cores (3.2GHz), and 16GB of RAM.
Training the model for 500 epochs on this machine
takes around 18 hours.

4. Results

We present details of the training process and
results of the trained models. We trained the Deep-
Merge CNN with early stopping, such that the
number of epochs reached 271 and 461 for pristine
and noisy images, respectively. The best model —
deemed by the highest classification accuracy on
the validation sample — was achieved after 227
and 407 epochs in the case of pristine and noisy
data, respectively. Overall, the accuracy of classi-
fication (on the test set) of the DeepMerge CNN
for pristine and noisy images is 76 — 79%, with
pristine images having somewhat higher accuracy.
The test accuracy with pristine images may be at-
tributed to the fact that there is no noise to ob-
scure important discriminating features.

We present the performance results through a
set of conventional metrics — the histories of loss
and accuracy during training and validation, the
confusion matrix, distributions of CNN probabil-
ities for mergers, non-mergers, and past mergers,
the receiver-operator characteristics (ROC) curve,
and the area under the curve (AUC). Mergers and
non-mergers correctly classified are true positives
(TP) and true negatives (TN), respectively. Incor-
rectly classified mergers and non-mergers are false
negatives (FN) and false positives (FP), respec-
tively. The confusion matrix summarizes classifica-
tion success through counts or fractions of TP, TN,
FP, and FN. The ROC curve graphically shows
the trade-off between Sensitivity (TP/(TP+FN))
and Specificity (TN/(TN+FP)) — i.e. trade-off
between true-positive rate and false-positive rate.
The AUC summarizes the ROC curve: for exam-
ple, where the AUC is close to unity, classification

is successful, while an AUC of 0.5 indicates the
model performs as well as a random guess.

The top row of Figure 2 shows the accuracy
and loss history during training and validation for
pristine (left) and noisy images (right). The train-
ing for the model of noisy images require almost
twice as many epochs to achieve the best valida-
tion accuracy. We present the normalized confu-
sion matrices for our test sample of pristine (left)
and noisy (right) images in the middle row of Fig-
ure 2. Each field in the confusion matrix shows
the percentage of merger images classified as TP
and FN, as well as non-merger images classified as
TN and FP.

Figure 3 (left panel) presents ROC curves for
classification performed on the test set — the pris-
tine data is in blue (AUC=0.86) and the noisy
data is in red (AUC=0.82). Error bands on the
figure represent 95% confidence intervals (95% CI)
in the true positive, generated by bootstrapping
1000 samples with replacement.

Next, in Figure 4, we show examples of images
from the test set in the top and middle panels for
the pristine and noisy images, respectively. In each
panel of images, the rows — from top to bottom
— show TP, FP, TN, and FN examples, respec-
tively. Overlaid are the output values of network
for each image. In the bottom panel of the same
figure, we plot the same pristine images, but with
a logarithmic color-map normalization to better
show the structure of these objects. Since the top
and bottom panels show the same images, these
output values can show how training and testing
with pristine and noisy images changes the output
result for the same chosen examples.

The performance of a classifier can also be de-
scribed by the Precision (“purity” or “positive pre-
dictive value”; TP/(TP+FP)), Recall (“complete-
ness” or “true positive rate”; TP/(TP+FN)) and
F1 Score = 2 %m. This metric can some-
times be even more indicative of a classifier per-
formance in comparison to accuracy (for example
in cases where one class is much more populated).
The DeepMerge CNN trained on pristine images
has precision of 0.81, and recall of 0.80. When
training with noisy images DeepMerge CNN has
precision of 0.77, and recall of 0.78.

In the case of balanced samples, a useful scor-
ing method is the Brier score (BS). It represents
the mean squared error (MSE) between predicted
probabilities (between 0 and 1) and the expected
values (0 or 1), and hence can be thought of as a
measure of the "calibration" of a set of probabilis-
tic predictions. For instance, if a binary classifier is
well calibrated, out of all samples classified as pos-
itive class with output probability of 0.9, approxi-
mately 90% should actually belong to the positive
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Figure 2: Top row: Accuracy and loss functions and their evolution with training epoch: training on pristine images (left
panel) and noisy images (right panel). On both panels loss function calculated for running the architecture on training
sample of images is presented with red, while loss function after using the validation sample of images is presented in light
red. Furthermore, training accuracy is plotted using blue line, while validation accuracy is plotted using a light blue line.
Middle row: Normalized confusion matrices of DeepMerge CNN, after classifying pristine (left) and noisy (right) test set
of images.

Bottom row: Histograms showing the output of DeepMerge CNN used on the test sample of images, with left panel
showing results in case of pristine images, while right panel shows results in case of noisy images. Non-mergers are
presented in red, future mergers in blue and past mergers in light-blue.
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Figure 3: ROC curves of the DeepMerge classifier, after training with pristine images (blue), and noisy images (red). The
results show the classification performance of the model with the best weights, applied to the test sample of images. On
the left panel we plot 95%CI bands in the vertical direction (for true positives) generated by bootstrapping (pristine images
- light blue band, noisy images - light red band). The right panel shows the same pristine (blue) and noisy (red) ROC
curves, compared to test set ROC curves derived when different random seeds were used to separate images into train, test
and validation samples. In case of pristine images these ROC curves are plotted with light-blue lines and in case of noisy

images with light-red lines.

class. Finally, Brier score summarizes the mag-
nitude of the forecasting error and takes a value
between 0 and 1 (with better models having BS
close to 0). The Brier score for our DeepMerge
classifier is 0.15 for pristine images, and 0.17 for
noisy images.

Snyder et al. (2019) train a RF classifier on
the same sample of galaxies from Illustris simu-
lation (but they use galaxies with 0.5 < z < 4).
They show performance of the RF classifier for
every redshift they used. In the case of redshift
z = 2 (which we used in this paper), and using
a balanced samples of mergers and non-mergers
their precision and recall are both ~ 0.7 (their Fig-
ure 15). The authors show that the RF classifier
has superior performance compared to one or two-
dimensional statistics that are commonly used to
classify mergers. Based on the CNN performance,
we show that DeepMerge CNN outperforms the RF
classifier.

5. Discussion

We present a discussion, in which we compare
the DeepMerge network model to other models in
the literature, perform a variety of experiments to
explore its sensitivity to training data, and probe
interpretability of its predictions.

5.1. Comparison to other CNN architectures

A similar galaxy merger classification was per-
formed with CNNs in Pearson et al. (2019b). In
one scenario, the authors train their network with
real SDSS observational image data (Darg et al.,
2010a,b), in the redshift range 0.005 < z < 0.1, to
achieve very high classification accuracy of 91.5%.
In another scenario, the training set comprises EA-
GLE simulation (McAlpine et al., 2016), where sim-
ulated images are processed to mimic SDSS obser-
vations in the same redshift range. It achieved
65.2%, 64.4%, and 67.4% accuracy in the cases
where galaxies are deemed mergers when they are
within 100 Myr, 200 Myr, and 300 Myr of the merger
event, respectively. The last two cases can be
compared to our study, because we use the same
images as in Snyder et al. (2019), where mergers
were selected to be within 250 Myr from the merger
event. With these two larger time windows around
the merger event, Pearson et al. (2019b) have pre-
cision 0.67 — 0.68 and recall 0.56 — 0.65, which are
lower than the results of the DeepMerge CNN. Ta-
ble 2 (two left columns) provides a summary of the
performance of the DeepMerge CNN trained and
tested on pristine and noisy images. Errors in the
table are generated by 1000 bootstrap re-samples
(with replacement), and they represent 95%CI.



Table 2: Performance metrics of the DeepMerge CNN. The table shows Area Under the Curve (AUC), Accuracy, Precision
(purity, positive predictive value), Recall (completeness, true positive rate or sensitivity), F1 score and Brier score for our
test set of images. Errors in the table represent 95%CI generated by bootstrapping. First two columns show results when
CNN is both trained and tested with pristine and with noisy images, respectively. Second two columns show results when
trained on pristine / tested on noisy images, and trained on noisy / tested on pristine images, respectively.

Train
Test Pristine Noisy Pristine Noisy
Metric Pristine Noisy Noisy Pristine
AUC 0.86£0.01 0.82+0.01 0.53£0.02 0.79+£0.02
Accuracy 0.79+0.01  0.76 £0.01 0.47£0.02  0.56 £0.02
Precision 0.81 £0.02  0.77£0.02 0.74£0.01  0.55%+0.02
Recall 0.80£0.02 0.78£0.02 | 0.03+0.009 0.98 +0.007
F1 score 0.81£0.02 0.77+0.02 | 0.06£0.02 0.71+£0.01
Brier score 0.15£0.007 0.17£0.007 | 0424+0.01 0.30+0.01

5.2. Sensitivity to data arrangement

We performed a test to study the stability of
the network training under changes in image data
order. We consider this to be an important stan-
dard diagnostic for any network training to guard
against biases in network predictions. This was
done by fixing the random seed before shuffling
images prior to their division into training, test-
ing, and validation samples. We ran 10 different
random seed experiments for both pristine and
noisy sample. On the right panel of Figure 3, we
show the ROC curves for all the experiments with
the random seeds, performed on the test sample,
including the best-performing network (pristine —
blue line and noisy — red line), for pristine (light-
blue lines) and noisy images (light-red lines). In
general, ROC curves vary up to 20% in the TP
rate below FP rates of 20%. In Table 3 we give
the intervals in which test set AUC, accuracy, pre-
cision, recall, F1 score and Brier score are located,
for both pristine and noisy case, when different ran-
dom seeds are used for shuffling images. The AUC
is in the range 0.83 — 0.87 and 0.81 — 0.83 in case
of pristine and noisy images, respectively. The ac-
curacy, F'1 score, and Bier score exhibit behavior
similar to the AUC, and precision and recall have
slightly larger intervals. In case of precision this
is caused by few runs with lower TN rates (below
0.7), which makes FP rate larger and in turn lowers
precision. Recall interval is, on the other hand, af-
fected by few runs which have slightly lower /higher
TP rate than the others.

5.8. Sensitivity Tests: noise

Next, we test network efficacy and sensitivity
when presented with image types that it was not
trained on — i.e., we classify pristine images us-
ing CNN trained on noisy images and vice versa.
In this type of situation, performance should be
worse compared to CNN both trained and tested
on the same type of images, but some classification

might still be possible. The network trained on
pristine images is incapable of classifying noisy im-
ages and assigns most of the images to non-merger
class (AUC=0.53). When trained on pristine im-
ages, the network can likely learn subtler character-
istics more easily, which increases accuracy when
classifying the pristine test set, but also makes it
unusable for noisy test set in which detailed struc-
tures are more likely to be obscured.

The network trained on noisy images can clas-
sify pristine images somewhat better — for the ran-
dom seed and parameter choices presented in de-
tail in this paper, the CNN has AUC=0.79. In this
case many more images are assigned to the merger
class, and the accuracy of classification is only 56%.
In this type of tests (with other random seeds) we
generally noticed somewhat better performance in
CNNs trained on noisy images. The reason for
this could be that the noise added to the pictures
is helping DeepMerge CNN see the big picture and
classify mergers without focusing on smaller-scale
details that are more visible in pristine images (fila-
ments, substructures, very faint halos etc.), which
introduce more diversity of structure — making
classification more difficult. For this reason the
CNN trained on noisy images can probably gener-
alize better and classify some pristine images.

The performance of the DeepMerge classifier
in both cases where training and testing was done
on different types of images is also given in Ta-
ble 2 (columns three and four). Although these
CNNs never performed as good as the architecture
trained and tested on the same type of images,
one particular version of CNN trained on noisy
images, classified pristine images with fairly high
test accuracy of 74% (TP=0.87, TN=0.60) and
had AUC=0.83.

5.4. Merger sub-groups

We tested how the performance of the Deep-
Merge CNN classification changes within two merger



Table 3: The intervals in which the test set classification scores (Area Under the Curve — AUC, Accuracy, Precision,
Recall, F1 score and Brier score) are located when different random seeds are used to shuffle pristine and noisy images
before they are placed into training, testing and validation samples.

Train

Test Pristine Noisy
Metric Pristine Noisy
AUC 0.83 —0.87 0.81 —0.83
Accuracy 0.76 —0.79 0.73 —0.76
Precision 0.72—-0.81 0.73—-0.80
Recall 0.76 — 0.88 0.70 — 0.78
F1 score 0.78—-0.81 0.74—0.77
Brier score 0.15—-0.18 0.17—-0.18

subgroups. In this paper we follow Snyder et al.  respectively. On all histograms we plot all past

(2019), who define mergers as all objects which are
withing 250 Myr from the merger event. We split
our sample of mergers into past mergers (mergers
completed within the past 250 Myr of the present
snapshot) and future mergers (mergers that will
take place within the 250 Myr after the present
snapshot), In Figure 2 (bottom row), we present
distributions of the classification results for these
different merger subgroups when tested on pris-
tine images (left) and noisy images (right). Non-
mergers are presented in red, future mergers in
blue, and past mergers in light-blue. In both merger
subgroups (past and future) and for both pristine
and noisy images, most results are close to 1. The
CNN is only slightly less certain when classifying
noisy non-mergers, with more values further away
from zero, but even in this case most non-mergers
are still classified correctly.

For galaxies in our sample for which we have

and future mergers and non-mergers from the test
sample with blue lines, while TPs in case of merg-
ers and TNs in case of non-mergers we plot in red.
Both mergers and non-mergers in our sample have
very similar stellar mass distributions, with most
objects having log,, M. /Mg between 9.75 — 10.5.
Figure 5 shows that most of incorrectly classified
mergers and non-mergers are lower stellar mass ob-
jects.

5.5. Interpretability of CNN Predictions

Finally, we seek to interpret the neural net-
works and identify the features deemed by the neu-
ral network to be important in distinguishing merg-
ers from non-mergers. One technique is the “saliency
map”, first developed by Simonyan et al. (2013),
which can be produced by computing the gradient
of the CNN output values with respect to the in-
put image. This gradient can be used to describe

concentration and My available (see Table 2 from Snydgget @le CNN output changes with respect to a

(2019)), we tested whether the output probabili-
ties were influenced by these parameters, but we
found no connection. This appears to differ from
the results of Snyder et al. (2019), who find that
morphological parameters indicating the presence
of a bulge have high importance for past mergers
in the RF classifications. More precise conclusions
in case of our CNN classification might be possible
if these parameters were available for all galaxies
in our sample.

We also examine the impact of classification on
selecting for different physical aspects of merger
populations — in particular, stellar mass. We find
that there is no significant bias in stellar mass dur-
ing classification of mergers. This is illustrated in
Figure 5, which shows 2D histograms of the distri-
bution of the output probabilities against the stel-
lar mass M,, given as log,, M, /Mg, where Mg, is
the solar mass. Panels on the left show results for
our pristine test set, and panels on the right for the
noisy test set. Past merger, future merger and non-
merger histograms are plotted from top to bottom,
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small changes in any of the pixels of the input im-
age. For example, in Peek and Burkhart (2019),
saliency maps are used to show that ridge-like fea-
tures are key for their CNN models to distinguish
between different levels of magnetization in turbu-
lence simulations.

A more recent technique, Gradient-weighted

Class Activation Mapping (Grad-CAM; Selvaraju et al.,

2016) produces a localization map in which the
most important regions for classification are high-
lighted. Grad-CAM calculates class-specific gradi-
ents gj; of the output score y° (score for class ¢)
with resi)ect to the activation maps (i.e. feature
maps) of the last convolutional layer Afj (dimen-
sion of the feature map is i X j = Z pixels, and
k lists all feature maps of the last convolutional
layer). These gradients are global-average-pooled
to calculate the importance weights o

c 1
h=72. 2
i

y°
-
OAY;

(1)



Figure 4: Examples of TP, FP, TN and FN. Top panel
shows examples drawn from pristine test images. Middle
panel shows the same images but from our noisy test sample.
Same pristine images, but drawn with logarithmic colormap
normalization, are presented on the bottom panel. Top and
middle panel also include the output value of our CNN,
which is used to classify objects (non-mergers have output
bellow 0.5, while mergers are above this value).
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Grad-CAM maps are then produced from weighted
combination of feature maps, followed by a ReL.U
function (which extracts all output positive regions
for the class we are interested in):

L&raa—cam = ReLU (Z oziAk> : 2)
K

We produce a coarse localization map in which
the most important regions for classification are
highlighted. With this technique, we use the spa-
tial information contained in the feature maps of
the final convolutional layer, which would get com-
pletely lost in the later dense layers.

In Figure 6, we present examples of localiza-
tion maps in the case of pristine images and noisy
images. The first and second row show examples
of TPs and FPs (all classified with very high prob-
ability), and the third and fourth rows show TN
and FN examples (all classified with very low prob-
ability). By plotting Grad-CAMs for the same im-
ages with and without noise we can see how the
region which CNN finds important changes when
noise is added. For all examples we plot the galaxy
images (with logarithmic colormap normalization,
for more details to be apparent) on the left, Grad-
CAM from the pristine case in the middle and
Grad-CAM from the noisy case on the right.

In the case of pristine images, these localiza-
tion maps show that fainter substructures indeed
play an important role when an image is classi-
fied as a merger. In the case of mergers, the CNN
seems to look at larger, more complex regions at
the periphery of galaxies. On the other hand, im-
portant regions in case of non-mergers are some-
what smaller and compact. As expected, in the the
case of noisy images, the CNN does not see fainter
structures as well, so objects classified as merg-
ers have a more compact regions which are impor-
tant, but these regions can still have asymmetric
shapes. Non-mergers (TNs and FNs) have, on the
other hand, very compact important regions. In
both pristine and noisy cases, all images with out-
put values around 0.5, no matter which class they
were classified as, have the size and shape of the
most important regions somewhere in between the
high-probability classifications, we have presented
in Figure 6.

When using Grad-CAM to visualize the impor-
tant regions of the image, the convolutional layer
used should be close to the layer whose outputs
we want to visualize. To show how Grad-CAM
localization maps degrade with distance from the
convolutional layer to the output layer in Figure 7
we also show Grad-CAM maps for the classifica-
tion of one example pristine image (plotted on top
of the first column of images). In the first column,
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Figure 5: Histograms of the distribution of output probabilities and galaxy stellar masses log,y M« /Mg, for past mergers,
future mergers and non-mergers (from top to bottom, respectively). Histograms of the entire classes are plotted in blue,
while TPs (for past and future mergers) and TNs (for non-mergers) are plotted in red. Pristine and noisy case are plotted
in left and right column, respectively.
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True Pristine Noisy

Figure 6: Gradient-weighted Class Activation Maps (Grad-CAMs) highlight the most important regions that the DeepMerge
CNN uses to classify images. We choose images that were classified with high certainty in both pristine and noisy cases to
show the difference between the important regions and the influence of the added noise. Rows from top to bottom show
examples of images classified as TP, FP, TN and FN, respectively. For each group we give three different examples. We
plot the galaxy image on the left (with logarithmic colormap normalization, to make faint details more visible), Grad-CAM
from the pristine image case in the middle, and Grad-CAM from the noisy image case on the right.

Image

Activation Maps

Grad-CAMs Conv |

Conv 2

Conv 3

Figure 7: Grad-CAM localization maps (first column on the left) and activation maps for four randomly chosen filters (all
other columns on the right), for an example pristine image (plotted on top of the first column on the left). Rows from top
to bottom of first column on the left show Grad-CAM maps produced by using first, second and third convolutional layer.
Activation maps from the first, second and third convolutional layer are also plotted (on the right) in the first, second and
third row, respectively.
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we plot Grad-CAM results using the first, second
and third convolutional layer (from top to bottom).
As you can see, the quality of the localization in-
creases from top to bottom, as the convolutional
layer used becomes closer to the output layer. It
is also interesting to compare the localization map
produced by Grad-CAM with the activation maps
of that convolutional layer, because the informa-
tion contained in these maps combined with the
gradients of the outputs is what produces Grad-
CAM maps. On the right side of the Figure 7 we
plot activation maps for randomly chosen filters
from the first, second, and third convolutional lay-
ers (from top to bottom), which have 8, 16 and 32
filters in total, respectively.

5.6. Domain transfer and working with real astro-
nomical images

In this paper we show that deep learning can be
a very useful method for classification of simulated
high-redshift merging galaxies. With the future
launch of large telescopes like WFIRST, large high-
redshift observational data sets will become avail-
able. This will open the door for the application
of deep learning models for unlabeled observed im-
ages. The simulated data for training neural net-
works must closely mimic the observational data.
However, simulated images may only asymptoti-
cally approach absolute realism. Discrepancies be-
tween simulated and observational data are likely
to persist due to a number of factors: approxi-
mations used in physical modeling due to incom-
plete knowledge of the physical system; approxi-
mations used to reduce the computational demand;
uncertainties introduced by imperfect modeling of
the telescope and the night sky and Earth’s at-
mosphere in case of Earth based telescopes. This
weakness of simple deep learning algorithms was in
part demonstrated in §5.3, where we show that the
performance of the DeepMerge model drops when
the network that is trained on pristine images as-
sesses noisy images (and vice versa).

There are a variety of approaches for address-
ing discrepancies when working with data from dif-
ferent domains (for example simulated and real
data). Domain adaptation methods build map-
pings between the source and the target domains
so that the classifier learned for the source domain

DeepMerge classification and allow a domain shift
between pristine and noisy data sets. The same
methods will also be applied to shifting from our
simulated to real images. This will allow us to
build a well-performing classifier based on simu-
lated images that will also have the capability of
classifying real images with high certainty.

6. Conclusion and Outlook

The study of distant galaxy mergers during the
period of cosmic high noon presents an opportu-
nity to study the time where most stellar mass
was assembled, critical for understanding galaxy
evolution.

In this work, we demonstrate the use of a sim-
ple neural network to identify high-redshift (z =
2) merging events with state-of-the art accuracy.
We distinguish between mergers and non-mergers
by training a deep neural network (DeepMerge)
that has three convolutional layers and three fully-
connected layers. We develop networks both for
pristine images and those with observational noise
that mimics HST. We also show that DeepMerge
CNN outperforms the random forest classifier from
Snyder et al. (2019) on the same simulated data
from the Illustris-1 simulation (Vogelsberger et al.,
2014b,a). Previous studies of galaxy mergers using
CNNs used images of galaxies at much lower red-

shifts of 2 < 0.1 (Ackermann et al., 2018; Pearson et al.,

2019b), and they showed that CNNs can be a very
good tool for merging galaxies classification.

We performed a number of experiments to ex-
plore the sensitivity of the neural network to data
set order and image quality. We also analyzed
the selection function for mergers in the context
of stellar mass and merger class. Finally, we ex-
plore Grad-CAM method to interpret the neural
network sensitivities and determine which features
it deemed useful for distinguishing merging events.

Future work includes applying this network tech-
nique to additional redshift ranges and to real-sky
data, and to pursue a hybridization with morpho-
logical feature-based modeling. With larger data
sets, it will also be important to test more complex
network architectures. This work may also lend
itself to discriminating between merging systems
and projected systems and the much-anticipated

can also be applied to the target domain (Zhuang et al-deblending problem for large, deep cosmic surveys.

2019; Zhang et al., 2020). Other approaches, like
Domain Adversarial Networks (Ganin et al., 2015),
include finding a domain-invariant latent feature
space. This type of classifier would only use fea-
tures present in both domains, which would al-
low for classification of real unlabeled observations
without a loss in accuracy. In our follow-up work,
we will use domain transfer methods to improve

14

Moreover, there is a positive outlook for predict-
ing physical parameters of merging galaxies and
in doing so, learning more about galaxy mergers.
Finally, this works takes another significant step
toward the classification of the full range of astro-
nomical objects.
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