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Abstract

The standard model of cosmology, namely the ACDM model, is based on Einstein’s
theory of General Relativity (GR) with a Cold Dark Matter (CDM) content and
a positive cosmological constant A, in addition to ordinary matter and radiation
components. While it provides a paradigm in very good agreement with many
observations, from Big Bang Nucleosynthesis (BBN) to Cosmic Microwave Back-
ground (CMB), several questions remain open and various theoretical extensions
seem necessary in order to address them.

An extensively studied ingredient of the ACDM model is the inflationary sce-
nario, which solves some of the issues associated with the initial conditions that
the original hot Big Bang model cannot address, such as the homogeneity and flat-
ness problems. Furthermore, it fits very well with current data, in particular, the
spectrum of temperature anisotropies in the CMB. As we recall in Chapter [2], in
some scenarii, the end of inflation may lead to the formation of Cosmic Strings
(CS) or Cosmic SuperStrings (CSS), which can have a significant impact on some
observables, even though they have been proven not to be the main source of CMB
anisotropies. We focus on a particular phenomenological consequence of C(S)S,
Gravitational Waves (GWs), which are becoming an important tool to gather new
information on our universe. More specifically, energetic high frequency GW Bursts
(GWB) are thought to be emitted by cusps, which are points on C(S)S temporarily
reaching the speed of light. We investigate the occurrence of such phenomena in a
particular setup where a light string is stretched between two heavy, almost fixed
strings, as could appear in a C(S)S network. First, an analytical study allows us to
draw simplifying hypotheses, such as the periodicity of the non-interacting move-
ment of the string, and yields an effective rule to identify cuspy strings. In addition,
we implement these assumptions in a numerical simulation, which settles the free
parameter of this criterion. Also, the string and the network parameters are found
to influence strongly the average number of cusps and thus the amount of energy re-
leased in the form of GWB. In particular, both the analytical and numerical studies

demonstrate that the smaller the correlation length is (that is, the wavier the string
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is), the more cusps the string holds.

String/M-theory yields a large variety of scenarii and thus a large phenomenolog-
ical diversity, from inflation to Dark Matter (DM) candidates. It generally implies
additional dimensions and additional ingredients, such as scalar fields (often involved
with inflation) or extended objects (such as Cosmic SuperStrings). It can also pro-
vide a description of our universe, on which we focus in Chapter 3], in which all fields
but the graviton live on a (3+1) brane, itself embedded in a larger-dimensional bulk.
We consider a model where the bulk is populated with a gas of punctual, effectively
0-dimensional defects, which interact with our brane universe. Their collisions with
open strings attached to the brane generate a recoil velocity of such DO-branes, later
called D-particles. This additional vector field acts as a new content of the universe,
which from the low energy point of view behaves as a Dark Matter/Dark Energy
(DE) mixture. The modifications of the graviton equations of motion are related to
its squared field strength, which under certain circumstances condensate and plays
the role of an extra scalar field. This model, called the D-material universe, can
not only give a mechanism for the growth of large scale structure but, as we show
here, can also lead to a successful inflationary scenario, the condensate appearing
as the slowly rolling inflaton. Moreover, it provides an effective DM fluid which fits
restricted — by our model’s hypotheses — lensing data, thus diminishing the need
of conventional DM without overclosing the universe. Finally, this supplementary
ingredient alters the graviton propagation as it brings in an effective mass term and
affects the refractive index experienced by radiations. This study, which spans sev-
eral cosmological eras and covers several length scales, leads to constraints on the
free parameters of the model including the number density of D-particles and the
string scale.

Such analyses of models beyond the ACDM model may provide important in-
formation — alternative exploration routes as well as additional possible bounds on

the parameters — that would help us understand the dynamics of our universe.
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Notations and conventions

We summarise here all the choices in notations, signs and other conventions used
throughout this thesis unless stated otherwise.

Latin indices refer to spatial components a, b, 4, j... = 1,2,3 while greek indices
refer to space-time components «, 5, u,v... = 0,1,2,3. If needed, additional di-
mensions (above the usual 3 + 1 spacetime denoted by x,) are referred to as ya
using capital letters A, B,C... = 4,5,6...10. When a specific coordinate basis is
used, the numbers referring to space-time components 0, 1, 2,3 might be replaced
by the explicit coordinate considered, for instance (t,z,y, z) for cartesian coordi-
nates or (t,r,6, ¢) for spherical coordinates — where 6 is the polar angle and ¢ the
azimuthal angle.

The space-time metric signature is chosen to be (—,+,+,+), with all (addi-
tional) space dimensions (also) associated to a + sign; we use Einstein summation
convention.

Three-vectors are written in boldface x while their components are written using

> = z;2°. Four-

regular characters z°. Their norm is denoted as |x| and one has |x
vectors are only written without any explicit index when obviouly contracted with
another neighbouring four-vector. In such case, both are in regular font and the
contraction is made explicit using a dot, for instance &k - x = k2" = g"k,x,. Note
that one could also find k - x = k'x;.

0, = 9/oam denote (usual) derivatives with respect to the coordinates z*, while
covariant derivatives are denoted using D,,. Alternatively, A4, , = 0, A, while A,,, =
D,A,.

An overdot denotes the derivative with respect to (the most obvious) time, usu-
ally specified; for instance, @ = d¢/ar or X,(0,t) = Xu/ar. A dash denotes the
derivative with respect to a (non-time) coordinate or parameter, when there is only
one or no ambiguity; for instance, V'(¢) = 4V/ap or X/ (0,t) = 4Xu/ao.

The Riemann curvature tensor is defined as R¥, = = 0, — 0,I', + '} ' —

vpT ao
e, while the Ricci tensor is Ry, = R°,, 5 = 05T, — 9,1, + T4, 0, — T9,I5,.

(&) is the average (over time, position, population...) of the quantity £. When

x1



NOTATIONS AND CONVENTIONS

a quantity ¢ is complex, £* denotes its complex conjugate and [£|? = ££*.
A subscript 0 (on a quantity which is not a 4-vector) often refers to today’s value
of a parameter, while a sub- or superscript ¢ is usually denoting a critical value.
Unless stated otherwise, (reduced) Planck units are considered, following ¢ =
h = kg = 87 G = 1. The mass scale is thus the (four dimensional) reduced Planck
mass Mp; ~ 2.4 x 10'® GeV.
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Chapter 1

Cosmology

1.1 Introduction

Cosmology is a comparatively new natural philosophy, a new science, compared to
others such as chemistry or astronomy. Its key questions remained metaphysical for
thousands of years before data could be collected that would make them a matter
of physics: a matter of numbers rather than images, a matter of theories rather
than myths, a matter of doubts rather than beliefs. Of course, many questions
remain unanswered, and some will potentially remain outside the reach of physics
and mathematics forever, but our collective intelligence has begun to lift the veil on
a tiny part of what the universe is.

Our story begins when stars are no longer considered as the remains of our
ancestors, when our galaxy is no longer seen as a spray of celestial milk across
the sky, and when explanations are found to interpret the nature of motion in the
cosmos. One could start with the Ptolemaic system or with Newton’s law of gravity
but here we will fast forward to the 20" century. The first tool needed to grasp the
nature of our universe is General Relativity (GR), for three key reasons. First, GR
explains what gravity really is, namely a consequence of the elasticity of spacetime,
and provides a means by which to quantify it. This is fundamental because gravity
is the main force acting at large scales. Secondly, GR suggests that spacetime could
expand or shrink and that it could have a shape and a curvature. It suggests that the
universe could start and begin, be open or closed, and that it could have boundaries
or be embedded into something larger. This was, of course, a difficult idea to accept
for almost everybody at the time it was proposed, Einstein included, but ultimately
the universe was unavoidably shown to be ‘not everlasting” and ‘unsettled’. Finally,
GR imposes a speed limit, the speed of light in vacuum, for everything that exists

but, in particular, for any information travelling through the universe. This is the
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basis of causality but also allows us to see further back in the past when looking
further away from us. Space thus stores the memories of time.

Armed with this underlying theory, data has led to an exponential increase of
our understanding of the universe. The first set of data was composed of direct
observations of the sky using visible light, to which Galileo made a notable contri-
bution. Still, the most important advance may be that by Lemaitre and Hubble
in the late 1920s [1, [2]. Their observations suggested that galaxies further from us
receded faster than those closer to us, which in turn led to the idea of an expanding
(and thus, contrary to the prevailing belief, non-static) universe. This was probably
the first time that the universe, as a whole, was the physical system being experi-
mentally studied. Thermodynamics implies that the universe, cold and diluted as it
is today, used to be warm and dense, so much so that it was nothing more than a
kind of a plasma of highly energetic particles. Then, during the expansion, cooling
and dilution of the universe, its contents became organised, first as atoms, then as
clouds of gas, and today as stars, galaxies, clusters, filaments and voids.

The second essential dataset for our current cosmology is the Cosmic Microwave
Background (CMB) radiation and the myriad information which has been extracted
from it in the last fifty years or so. When the universe was dense and filled with
highly energetic charged particles, photons were intensely interacting, being scat-
tered, absorbed, and reemitted almost continuously in their attempts to travel.
When the universe cooled down and diluted sufficiently for electrons and nuclei
to recombine into neutral atoms, radiation-matter interactions became significantly
less intense, so much so that the universe became transparent, freeing the photons
for an unfettered journey through space. The analysis of these photons shows that
the universe was almost exactly homogeneous and isotropic at that time, with its
temperature varying only by one part in 10°. It also helps one to infer the energy
budget of the universe, i.e. what the content of the universe is. Currently, cosmolo-
gists consider space to be filled with about 68 — 70 % Dark Energy (DE), 25 — 27 %
Dark Matter (DM) and around 5 % ordinary matter, with a pinch of radiation. The
age of the universe (13.7 billion years old) and its overall curvature (the universe is
flat with a 0.4 % error range) can also be deduced from CMB analysis [3].

Today’s most promising directions come from precision measurements, gravita-
tional waves and neutrinos. The first of these requires the statistical analysis of
huge amounts of data (mostly in the infrared, visible and ultraviolet parts of the

electromagnetic spectrum) that is either currently available or soon to be. Years of
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observations give us an incredible amount of information to work with. The second
direction is the detection of vibrations of spacetime itself. These were predicted
by GR and only very recently directly observed [4] (although indirect evidence has
been obtained by studying compact objects inspirals). Their weak interactions with
matter and other kinds of radiation make them both extremely difficult and ex-
tremely interesting to detect, the latter because they would carry information which
would otherwise be unavailable. Similarly, neutrinos are extremely light, weakly
interacting particles of the Standard Model of particle physics and are produced in
many processes such as nuclear reactions occurring in stars. They remain for the
most part unaltered during their journey through space and thus would yield new
information were we able to detect them more efficiently and more accurately.
This detailed information is building up a story of the universe in which we live,
which is commonly (but wrongly) referred to as the Big Bang model, or more appro-
priately as the ACDM model. The former is due to the journalist Fred Hoyle who
chose it for popularisation in radio programmes in the 1950s. It portrays the universe
as hot and dense at the beginning (whatever this means), then rapidly expanding.
This Big Bang picture is misleading as the universe did not make any noise, did not
occur in an explosion and probably did not even start as a singularity, or “primordial
atom” (as Lemaitre, who first mentioned such a theory, named it). Still, it is catchy
and thus the image has endured. The latter description, even though less fancy,
describes more accurately the reality we observe and adds several hypotheses on top
of the Big Bang model. The A refers to the cosmological constant or DE, which
today drives the expansion of the universe, acting as a negative pressure or vacuum
pressure (counting as 68 — 70 % of the energy content of the universe), while CDM
stands for Cold Dark Matter. Everyday matter and, more generally, any (massive)
particle of the Standard Model of particle physics may interact not only gravitation-
ally but also through the weak and the strong nuclear forces and, more importantly
here, via the electromagnetic force; it is thus (directly) visible. On the other hand,
so-called Dark Matter interacts mainly gravitationally rather than strongly or elec-
tromagnetically, rendering it difficult to observe directly. Gravitational and CMB
analyses suggest, however, that DM contributes to somewhat more than a fourth of
the energy content of the universe, making it the second most important ingredient,
and leading to the denomination of what is considered as the standard model of

cosmology, as will be discussed later.
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1.1.1 Cosmological solutions of General Relativity

As mentioned previously, GR is the underlying theory of most cosmological and
astrophysical models. Developed in the late 1900s and the 1910s, mainly by Albert
Einstein, but with early inputs from mathematicians and physicists such as Mar-
cel Grossmann, Tullio Levi-Civita, David Hilbert, Hendrik Lorentz and Willem de
Sitter, its field equation, named after Einstein, was published in November 1915 adl]

1
R, — éRgW =T, (1.1)

where R, = R, is the Ricci tensor, defined from the Riemann tensorﬂ and con-
taining the information about the local curvature of spacetime, R = g R, is the
Ricci scalar, g, is the local metric of spacetime used to compute the Christoffel
symbols I'g , while 7}, is the stress energy (or energy momentum) tensor contain-
ing the information about the energy distribution in spacetime. The constant factor,
87G /4 has been omitted as we here use (reduced) Planck units.

Soon after, the cosmological hypothesis of a homogeneous, isotropic, expand-
ing universe was described by the Friedmann-Lemaitre-Robertson-Walker (FLRW)

metric

ds* = —dt* + a(t)* dX? (1.2)

where a(t) is the scale factor and d%? is the time-independent 3-dimensional uniformly-

curved space interval. It is often expressed using hyperspherical coordinates

d¥? = dr® + Sy.(r)? dQ? (1.3a)
k|~ sin(|k|'2 1) for k>0

where Si(r) =1 r for k=0 (1.3b)
k|~ sinh(|k|"/?7) for k<0

with dQ? = d#? +sin?  d¢? and k is the (dimension [L~2]) Gaussian curvature. The

use of this metric within the Einstein equations yields the Friedmann equations

@2 8rG kA

2 3"’ 273 (1.42)
a 4G A
2__7 3 — 1.4b
. 5 (P +3p)+ 3 (1.4b)

'Remark that the cosmological constant term, %A 9uv, Was only introduced two years later.
2 _ A
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where G, Newton’s constant, has been reintroduced (while ¢ is still taken to be
1), the overdot denotes a derivative with respect to time ¢, p and p respectively
denote the pressure and density of the fluid(s) filling the universe and A is the
cosmological constant. Note that while the second is often called the acceleration
equation, the first will sometimes be referred to as the Friedmann equation. The

continuity equation, given by

p=-32(0+9) (1.5)

and also often used in cosmological computations, can be derived from the Fried-
mann equations. It can also be found using the first law of thermodynamics if
one assumes adiabatic expansion of the universe, which is actually equivalent to
homogeneity in the cosmological principle.

In all these equations, p and p can be split into different components of the
energy content of the universe such as radiation (p, and p,) and dust or cold (non-
relativistic) matter (p, and py). In addition, the cosmological constant term can be
rewritten as a DE density term using py = (87G)~! A. The main difference between
these components lies in their equation of state, that is, the equation relating p and

p, often parametrised by a dimensionless number w as

p=wp (1.6)

where w = 1/3 for radiation, w = 0 for dust and w = —1 for DE (that is, an effec-
tive cosmological constant fluid). Putting this equation of state into the continuity

equation and the Friedmann equation leads to the time evolution of the density and

the scale factor. Excluding the case w = —1, one gets
p=poa*0F (1.7a)
P\
a(t) = aop (t_> (1.7b)
0

where the index 0 refers to the present day value of a quantity and it is usually
chosen that ag = 1. This yields the usual dependence of the density of dust on the
scale factor p,, oc a~3 while due to redshift the radiation density scales as p, oc a™%.
The time dependence of the scale factor thus reads, respectively, a o« t*/* and a o< '/
for a universe dominated by such components. Alternatively, with the case w = —1,

DE exhibits a constant density and yields a oc e?, that is, a de Sitter accelerated
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expansion, where H = ¢/a is the Hubble parameter.
One can also express the density parameters in terms of the critical density.
The latter is defined as the density of a flat k& = 0 universe, all components being

accounted for. The Friedmann equation yields

312
Pe = St@G

(1.8)

while its current numerical value is about 5 atoms per cubic metre. Note that the
word ‘atom’ here refers to the hydrogen atom, that is roughly a proton. Density
parameters are dimensionless quantities defined, for each component or group of
components of the universe, as the ratio of its energy density to the critical density

pe. They allow us to rewrite the Friedmann equation as

Dot — 1= 22 (1.9a)
where Qio; = Q. + Q, + Q4 or
HQ
? = QrO a_4 + QmO CL—S + QkO (I_2 + QAO (19b)
0

where €, = 1 — Qi is the spatial curvature density parameter, from the energy
density due to global space curvature, and again the subscript 0 refers to today’s

universe.

1.1.2 The concordance model of cosmology

The knowledge that our universe is expanding, coupled with an understanding of
how a universe filled with such ingredients would expand depending on the rela-
tive abundance of each component, gives us the ability to rewind the history of the
universe from today’s observations. The models made by Lemaitre and Hubble in
the late 1920s [1, 2] showed, as mentioned earlier, that the universe was not static
as Einstein and some of his contemporaries would have thought and preferred, but,
rather, was expanding. Indeed, Lemaitre and Hubble’s measurements proved, by
observing many extragalactic objects and in particular their redshift, that they fol-
low an empirical law known as Hubble’s law, stating that the receding velocity is
proportional to the distance. The proportionality constant is H, the Hubble param-

eter, whose value today is about Hy ~ 70 kms~! Mpc ™' [5, 6], meaning that a galaxy
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at a distance of 1 Mpc has a radial centrifugal velocity of around 70 km/s. Rather
than us occupying a special point at the centre of an expansion, it is understood
that a uniformly expanding universe would produce such an effect, the observed ve-
locity being due to spacetime between us and the galaxy being constantly stretched.
This leads to the definition of a cosmological redshift z, as the consequence of the
expansion of the universe on photon energy, following 1 + z = 0 /a; that is, z = 0
today (ap = 1) and z grows for smaller a, for older times.

The behaviours described above lead to the following results: an expanding
universe filled with any amount of radiation and dust will eventually be dominated
by matter (since radiation is diluted more efficiently), and an expanding universe
also containing DE will eventually be dominated by this last component, which
gives a constant density regardless of the expansion. This is very important as
the rewinding of time starting from the current state of our universe, filled with
a mixture of all three, will give rise to eras dominated by one fluid dictating the
expansion rate, separated by eras of codominance, during which one component
slowly takes over another. The presence of matter, naively considered as the most
abundant ingredient of today’s universe, as well as radiation, yields to a matter-
radiation equality point somewhere around a redshift z ~ 3300 [5} 6].

Unexpectedly, today’s data points to a universe filled with about 68.3 % of its
energy budget in DE, slightly less than 31.7% in dust and about 0.01% in CMB
photons. This means that the cosmological constant of our universe has recentlsf]
become dominant, ending a matter dominated era (MDE) which lasted most of the
universe’s history and started after a radiation dominated era (RDE), itself lasting
about 6 x 10* years. This knowledge comes from the analysis of the matter present
around us (in stars and galaxies, but actually mainly in the gas in between), giving
us a rough estimate of the matter density, as well as the detection and analysis of the
Cosmic Microwave Background (CMB). Its photons represent a major fraction of
the photons of today’s universe, allowing for an estimation of the radiation energy
density and thus of the baryon to photon ratio, currently estimated to Néo) ~
6 x 10710 N2,

Predominantly, the CMB is the relic radiation emitted by the last scattering
surface which travelled almost without interaction and thus without alteration since

then — apart from the redshift due to cooling. When the universe cooled down

3‘Recently’ might sound slightly misleading since the equivalence between matter and DE oc-
curred about 3.5 to 4.5 billion years ago, but this corresponds to a redshift of only z = 0.4, which
is small on cosmological timescales.
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enough so that electrons and protons were able to bind and recombine as neutral
hydrogen (and helium) atoms, photons were able to travel roughly unscattered in
a now quasi-transparent medium. The CMB thus yields all the information about
the content of the universe at that time. First, the CMB is a uniform blackbody
spectrum (up to an extremely high accuracy), giving the temperature of the universe
today to be Ty = 2.7255 K [3, 6] and confirming the general idea of an expanding
universe which was originally filled mainly with high energy radiation. Since the
temperature of an expanding universe filled with radiationﬁ is inversely proportional
to its scale factor and thus proportional to 1 + z, one can infer that the decoupling
occurred at a redshift z ~ 1100 and a temperature Ty, ~ 3000 K. The ratio
of baryons to photons obtained through CMB observations can also be used to
compute the abundance of primordial elements. Indeed, Big Bang Nucleosynthesis
(BBN) analysis shows that this ratio is the only parameter needed to predict a
4-helium mass fraction of about 0.25, for deuterium and tritium about 10~% and
10~* respectively, and for lithium about 10~°. Current observations yield very good
agreement with these estimations, especially regarding deuterium.

In addition, the CMB exhibits anisotropies whose amplitude is roughly a part
in 10° and whose angular size peaks for angles around # ~ 1° or multipole mo-
ments around ¢ ~ 220 (where ¢ is the multipole moment in the spherical harmonics
decompositionlﬂ of the signal), as can be seen in Fig. 1.1, Two main effects drive
the shape of the CMB power spectrum: Baryon Acoustic Oscillations (BAO) and
diffusion damping. The first is driven by the fact that the pressure of radiation,
which tends to erase overdensities, is in conflict with dust gravitational instability,
which tends to amplify overdensities. This conflict generates oscillations at various
scales, creating several peaks in the power spectrum. The fact that the universe did
not become instantaneously transparent is at the origin of the second effect, which
blurs the small scale anisotropies and results in an exponential damping in the large
multipole moment of the power spectrum.

A detailed analysis of the anisotropies and the power spectrum of the CMB

yields information on many aspects of our universe, in addition to a more accurate

“Indeed, Maxwell’s relations of thermodynamics tell us that (%)T = (%)V (where S is the
entropy, P the pressure, T the temperature and V the volume). For radiation, the equation of
state is given by P = % p, where p is the energy density, which yields p oc a=* but also U = pV and
S = U+TP vV = %% p(T). Using the aforementioned Maxwell’s relation, one gets g—; =1 q(,T), leading
to p oc T* and hence T o< a™ 1.

5The coefficients C; of such decomposition are related to the plotted D, of Fig. by Dy

L(+1)Cy.
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Figure 1.1: CMB temperature power spectrum. The red line shows the best fit

ACDM theoretical spectrum while the blue dots and error bars give the actual

measurements and uncertainties (at 1o). The lower panel shows residual with
respect to the best fit model. From the Planck Collaboration [6, Figure 1].

value of the Hubble constant, Hy ~ 67.74 4 0.46 km s~ Mpc ™" [6]. The first peak’s
angular scale gives the curvature of the universe, which is flat up to 0.4 %, and
thus the total density parameter of the universe is constrained to 1.00 £ 0.02 [7].
The second and third peaks determine, respectively, the baryon density and the
DM density. Indeed, dust is actually divided into two components, one being the
usual Standard Model particles, well known and studied, while the other remains
largely unknown. This indefinite DM component can be inferred as being massive,
probably weakly interacting, stable or quasi-stable over billions of years, electrically
and colour neutral (no electromagnetic or strong interaction) and cold, meaning
non-relativistic — hence not carrying much kinetic or thermal energy compared
to its mass energy. The presence of DM is suggested by many other different and
independent experiments, at all scales and eras (for instance galactic rotation curves
and galactic dynamics, bullet cluster and gravitational lensing, structure formation

or BAO). It also emerges naturally from many ‘beyond the Standard Model’ theories
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of particle physics (such as axions, in supersymmetry or string theories).

Finally, the pattern in the angular scale of the peaks is influenced by the type of
density perturbations. Any perturbation can be decomposed into a sum of adiabatic
modes — where the overdensity is evenly spread between components — and isocur-
vature modes — where a specific component overdensity is overall compensated by
other components under or overdensities. More explicitly, for each component of
the universe, say radiation and matter for simplicity, one can define the number
density Nx in addition to the energy density px, with X € (r,m), and the linear
(first order) perturbations with respect to their averaged value, {Nx = Nx — (Nx)
and dpx = px — (px). An adiabatic one is such that the ratios of each component
remain unchanged, thus leading to a perturbation of the total energy density and

thus of the curvature. This yields

Np, SNm  Ni
5(1\&) =0 e Sy (1.10a)

leading, for the energy density, to

Opm _ 390 (1.10D)

pm 4 pr

the prefactor coming out of the components’ equations of state. In contrast, isocur-
vature modes leave the geometry unchanged, that is, the total energy density un-

changed, and thus implies in our two-component exampleﬂ

ONm 4 pr Na

6N, 3 pm N

dpm +dpr =0 & (1.11)
The first peak has been measured to be around ¢ ~ 220, indicating mostly adiabatic
initial perturbations, and in addition allows us to infer the flatness of the universe.
Indeed, all other things being equal, initial isocurvature modes would yield a peak
at ¢ ~ 330 and subsequent peaks similarly shifted towards smaller angles, with their
amplitude also being modified. This rules out cosmic strings as the main source of
anisotropies — as they would mostly produce isocurvature modes — and supports
inflation — which is a de Sitter expansion period generating almost adiabatic per-
turbations. Furthermore, scale invariant expansion (such as de Sitter) lead to a flat

primordial power spectrum, as has been roughly measured in the CMB. One can

5In a case with n components, one can define n — 1 isocurvature modes with respect to each
but one component, which serves as reference.

10
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define the scalar spectral index ng as in Py(k) o< k™! where Ps(k) is the scalar
power spectrum and k is the wave number (related to the multipole moment /).
It has been constrained to ng ~ 0.968 + 0.006 [6], where a perfectly flat spectrum
would yield ng = 1.

It is important to note that many additional effects have distorted or blurred
the spectrum anisotropies after the CMB photons were emitted. Three are worth
mentioning: the reionisation of the intergalactic medium, the Sunyaev-Zel'dovich
(SZ) effect and the Sachs-Wolfe (SW) effect. As mentioned previously, decoupling
occurred because the universe became neutral via the recombination of electrons and
nuclei, but today’s universe is mainly ionised. This reionisation occurred, according
to CMB analysis, around z ~ 10 [5] at which point intergalactic space started
scattering the CMB photons, as well as altering the polarisation. This effect is not
significant anymore due to the very low baryon density but would have been quite
substantial in the past. The SZ effect is due to inverse Compton scattering, in
which high energy electrons of a hot cloud locally boost the CMB photons. The SW
effect is the redshift or blueshift of the CMB photons due to gravitational potentials
on their path. In fact, this effect would have also occurred on the last scattering
surface due to uneven distribution of energy, and this is called the non-integrated
SW effect. In contrast, the Integrated SW (ISW) effect occurred after z ~ 1100,
on the line of sight, mostly in late eras. When the universe is dominated by DH')
large enough gravitational wells may evolve significantly while photons are travelling
through them, since they are damped by the acceleration of the expansion of the
universe. Thus, photons are more blueshifted (respectively redshifted) when entering
an overdense (underdense) region than they are redshifted (blueshifted) when they
exit the same region, which has been smoothed out.

Careful analysis of CMB data has made it possible to tightly constrain the main
parameters of our model of the universe within the most concordant one, the ACDM
model. These parameters include Hy, and thus the age of the universe, tq ~ 13.799+
0.021 x 10% years [6], the energy budget of the universe, and the type of primordial

anisotropies, which are found to be mainly adiabatic.

"The effect is also happening when the universe is still affected in its evolution by radiation, just
after decoupling, but its effect is smaller and often integrated into the primordial CMB anisotropies,
that is, those imprinted on the CMB photons initially.

11
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1.2 Inflation

So naively, the story is complete: the universe, which started as a hot dense patch
of spacetime, started to rapidly expand and thus cool down and dilute, until its
contents organised themselves into atoms and stars to form what we know today.
But more questions are raised from these answers. The first one that one could ask
is about what was before that. What led to what we see today? How come the
universe is so homogeneous? And flat? Is it naturally evolving towards such state?
These questions all boil down to what is known as the initial conditions problem(s):
if one can use the laws of physics to rewind back through time and explain the state
of the universe at some instant using knowledge about it at some later instant, when

do we stop doing so, why and what was the universe like back then?

1.2.1 Initial conditions

There are several unanswered questions (“problems”) which are connected to the
initial conditions of our cosmological history. Indeed, rewinding the history of the
universe following the known laws of physics in their validity limits, one might run
back up to a very small, very dense, very warm and surprisingly homogeneous,
isotropic universe. For instance looking at the CMB, which yields an almost unal-
tered photonic image of the early universe about 380000 years after the so-called
“Big Bang”, one notes that our universe is homogeneous and isotropic with an accu-
racy of about 1075, Even though we do not know all the details of the laws governing
the evolution of the early universe, it seems — considering General Relativity as a
valid background — that no phenomenon can reduce inhomogeneities in a deceler-
ating expanding universe, meaning that the further back in time one looks at, the
more homogeneous and isotropic it should be.

One can also assume that quantum effects (especially quantum fluctuations) do
not occur at scales below Planck scale, or at least do not have a dramatic role. Above
Planck scales, one can only say that it is likely they do have a large impact on the
physical properties and evolution of the universe. One can thus set the “initial”
time scale at around ti,; ~ tp; ~ 107%3 s. The key question now is: how was the
universe at that time? [8, Chapter 5]

A complete description of the early universe, that is, a complete set of initial
conditions, is given by two pieces of information, the energy density field and the

velocity (or energy flow) field. The issue with the first one comes out when looking

12
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at the size of today’s horizon cty ~ 10*® cm and trying to compare it with the
“initial” horizon. Today’s universe is a patch of homogeneous, isotropic and causally
connected spacetime — it might even be a part of a larger homogeneous, isotropic
patch. It is the result of the expansion of a smaller (homogeneous, isotropic) patch,

smaller by a factor @i/a,, thus at least as large as

Q;
Iy ~ cto— . (1.12)
Qo
When compared with the size of the causal region at the time [. ~ ct;, one obtains

the ratio

b  todi (1.13)

that we would like to evaluate. Considering that primordial radiation dominates the
initial universe, its temperature is given by the Planck temperature Tp; ~ 1032 K.

This leads to
I,  toTh 107 1

Lt Ty 107431032

which one should understand as the fact that the homogeneous, isotropic patch

10% (1.14)

that expanded into our current universe was at least 10*® times larger (in length)

0% causally

than the causally connected patch at the time. This involves about 1
disconnected patches whose energy density was equal, up to 1072 %. This is called
the homogeneity, isotropy problem.

To understand why this problem is also often called the horizon problem, one
needs to assume in addition that the scale factor follows a power law in time, that
is, that a ~ a/i. It yields , _

h a;

T ~ a (1.15)
Since we assumed that the universe has always been expanding with a decelerating
expansion — which ultimately means that gravity has always been attractive — the
ratio of rates of expansion has always been larger than 1, meaning that the scale
of the homogeneous isotropic patch has always been larger than the scale of the
causality patch.

Similarly, assuming that matter is evenly distributed and that its velocity follows
Hubble law (otherwise the matter distribution would quickly be spoiled), one can
evaluate the total energy of matter in a patch of spacetime. It is the sum of the
kinetic energy due to Hubble expansion Fk and the (negative) gravitational potential

energy Fp, and it is conserved. The kinetic energy is related to the square of the

13
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velocity, which itself is related to the expansion rate, leading to

N
Bl = E° <“—> . (1.16)
Evaluating now the proportion of the total energy which lays in the kinetic form,

i . 2
Etot _ Etoot _ Egot @ < 10—56 (1 17)
Ei 2\ OB \ai) ™ ‘

K EIO( (ﬂ) K v

one has

ao

where we used the matter homogeneity and isotropy found previously to set a bound
‘;—0 < 10728, One should understand this as the fact that, in the early universe at
least, the absolute value of the gravitational potential energy of matter is almost
exactly equal to the kinetic energy of matter due to Hubble expansion, up to a pre-
cision of 1075 %. Note as well that deviating from this cancellation would produce
either a rapid collapse of matter or a rapid dilution of matter. This problem is
known as the initial velocities problem or the flatness problem. To understand this,
one can use the Friedmann equation expressed in terms of the total cosmological
parameter: recall cosmological parameters are parameters of the ACDM model de-
fined as the energy density (total or of a certain component of the universe) scaled
by the critical energy density, where the critical energy density is the one such that

the universe is flat; it yields
k

H2a?

where k is a measure of curvature and H = %/a is the Hubble rate. One thus has

Qtot —1

(1.18)

22
Hjag a

Qg — 1= (D — 1) Tig? = (e — 1) 5 S107°° (1.19)

@ .
S N[O

which in turn should be understood as the fact that the initial universe had to be
extremely flat (up to, again, 1075* %) in order to obtain today’s flat universe.
Finally, one can also consider the (less dramatic) problem of the initial per-
turbations. Indeed, even though the universe at the time of the CMB was very
homogeneous and isotropic, one cannot avoid the fact that today’s universe con-
tains large scale structures, that are galaxies, clusters, filaments and large voids.
During the matter dominated era, though, the temperature anisotropies grow and
lead to density anisotropies. The problem is that they are too small, of the order

AT ~ 107°T, to explain the structures observed, which are such that Ap ~ p.
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Said differently, to explain the density anisotropies, one needs larger temperature
anisotropies than those observed or additional ingredients. These structures must
have been sourced by some inhomogeneities and anisotropies which are thus yet to

be explained in details by future models.

1.2.2 Inflationary phase

These two different problems, the horizon and the flatness problems, are thus driven
by the same ratio, that is, the ratio of the initial expansion rate by the present
one. For a universe where gravity is attractive, the expansion rate decreases un-
avoidably leading to this ratio being larger than one. We estimated it at 10%, see
Eqgs. and . A necessary condition to solve these issues is to set up a
period of time where gravity is repulsive: it would allow for an accelerated expan-
sion of spacetime, opening the possibility of a smaller ratio of expansion rates, to
order unity, allowing the universe to grow from a fully causally connected patch. It
would also explain the Big Bang by generating large velocities from small ones. As
already well-understood phenomena — such as nucleosynthesis and CMB — should
be maintained, this period of repulsive gravity and accelerated expansion, called
inflation, has to occur very early in the history of the universe and has to end up
smoothly into a decelerating phase.

Starting with a small patch of causally connected, homogeneous and isotropic
spacetime and inflating it, one can first look at the event horizon. Recall the event
horizon of an observer at time ¢ is the set of points whose light emissions will ever

reach the observer in the future; its physical size is defined as

e dt

do(t) = a(t) / L (1.20a)
¢ a(t)

where t, is either finite or infinite. Proceeding to a change of coordinates t — a(t),

dt — 1a(t) da, one obtains

% doy

da(t) = a(t)/ da (1.20b)
¢ a(t) o

During inflation, this integral always converges — the event horizon always exists —

even if a, = a(ts) — 00, because a grows with a, thus aa oc a'™ with € > 0. This

is very important as it implies that whatever happens outside a patch of spacetime

of radius 2d,(t) — for instance inhomogeneities — will never influence what happens
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in the (concentric) patch of spacetime of radius de(t).
Let us now study the particle horizon, which is the set of points from which an

observer can receive information at a given time ¢ and whose physical size is given

by
t g a(t) a
dy(t) = a(t) /t L / da (1.21a)

- a(t) Qo

where t; is the origin of time, the time of initial state, and a; = a(¢;). In the case of an

i

accelerated expansion where a and a grow (quickly), one can roughly approximate
the integral’s upper bound to infinity (as the additional bit is very small) and obtain
o da alt)

dy(t) ~ a(t)/ — = do(t;) - (1.21b)

o QQ a;

Interestingly, the radius of the homogeneous patch 7, (¢), which at the beginning of
inflation is given by d.(t;) as seen above, grows by a factor /s (the subscript f

referring to the end of inflation) such that

r(t) = & do(t) = dy(t) - (1.22)
Thus again homogeneity and isotropy are preserved on the patch throughout infla-
tion; its size matches the event horizon at the beginning of inflation and the particle
horizon at the end of it.

One could argue that inflation only simplifies the problem (by making the size of
the initial homogeneous patch smaller) but does not fully solve it. First, one should
recall that this homogeneous patch is now causally connected, which could explain
the homogeneity and isotropy. In fact, the hypothesis of homogeneity and isotropy
can be relaxed as inflation smoothes down inhomogeneities. Indeed, the physical
wavelength of a perturbation mode grows with a during inflation while the curvature
scale or Hubble radius, given by H~!, is approximately constant. Therefore, large
perturbation modes are getting larger than the Hubble radius and exit it, thus
making it more and more homogeneous — even though the perturbation amplitude
remains the same. Said differently, the contribution of the inhomogeneities to the
variation of energy density on the Hubble radius dims, their amplitude being roughly
constant. One would simply need to assume that the rate of expansion before
inflation a; is small compared to today’s ag, so that these modes which exited the
Hubble radius at the beginning of inflation would not come back in today. CMB

analyses suggest a bound on the ratio @ /e, < 107°.
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Finally, this last bound has interesting consequencies for the total cosmological
parameter Q. Equation (1.19)) yields

Qe =1+ (2 — 1) (1.23)

S8

meaning that flatness is no longer a problem as inflation also flattens the patch of
spacetime. Indeed, any initial deviation of Qi . from unity is strongly suppressed
today, by a factor (4/a)° < 107" — instead of any deviation being amplified,
meaning that one would need very fine tuned Q! to fit today’s observations. Q — 1
becomes a future attractor instead of being a past attractor. Note though that
quantum effects lead to very small deviations from this simplified behaviour.
Accelerated expansion via repulsive gravity thus solves both our initial value
issues, the horizon problem and the flatness problem. Let us review now quickly the

main ideas to achieve such acceleration.

1.2.3 Negative pressure

According to the second Friedmann equation (the acceleration equation), which

reads’] . G

a T

-—=—— 3 1.24

. 5 (p+3p) (1.24)
one requires p + 3p < 0 in order to observe accelerated expansion @ > 0. De Sitter
spacetime for instance, which is filled with a (DE) fluid following the equation of
state p = —p and thus satisfying p+ 3p = —2p < 0, yields an exponential expansion

but no smooth exit. Indeed, one always has

.G a .

H=--H* & - =H"+H (1.25)

a a

but the Hubble parameter H is constant in de Sitter universe (H ~ 0), leading to
a constant positive acceleration of the expansion. To achieve a smooth exit from
inflation where a becomes progressively negative, one needs a varying decreasing H
(H < 0) and the ratio [71|/u? progressively becoming of order unity. Before this exit,
assuming a is almost exponential, one can safely suppose that H is approximately

constant during inflation and |H| < H?. We shall denote the Hubble parameter
during inflation by Hy ~ H; ~ H;. One can also assume |H| < 2H|H| (meaning

8We here consider DE, absorbed in the total density p and pressure p, rather than a cosmological
constant term; hence formally A = 0.
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that H? is varying more rapidly than |H|) and thus the duration of inflation can be

approximately given by
H;y

~ (1.26)
| Hy|

ty

where the subscript I refers to inflationary era.
To evaluate ¢, let us recall the constraints for a successful inflation are at/aq =
10%® (to obtain a homogeneous, isotropic patch) and @i/a, < 1075 (to avoid large

perturbation modes spoiling the homogeneity), yielding

Hiae  arao

ag 33
—= == > 10 1.27a
ai  Hiai  ao ( )
An almost exponential expansion gives
Gt etits (1.27b)

Qi

75 Hfl. This means

that inflation must last for at least 75 Hubble times, also called e-folds, in order

which, combined with the previous equation, leads to t; 2
to produce a suitable universe. Using the estimation of ¢; given earlier on, one
has |Hil/H2 < 1/75. To express this in the form of an equation of motion, one has

Friedmann equations

k 811G
H2+§=%p (1.28&)
: k

whose ratio (in the flat case k£ = 0) yield

PP g (1.28¢)

p1

This leads to the approximate equation of state

1.2.4 Slow-roll inflation

To realise this equation of state, the simplest model is to consider a scalar field ¢

(named the inflaton) whose energy density and pressure can, in general, be written
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in terms of kinetic and potential terms as

p= %eﬁ + V() (1.29a)
p= %sbz —Vi(p) . (1.29b)

In order to satisfy the equation of state, this inflaton field must satisfy 12 o* < V (),
which in fact is a condition on the potential. Indeed, recall the conservation of
energy, which in relativistic cases reads d&' = —pdV (with E the total energy, p the
pressure and V' the volume), leads to a form of the continuity equation which yields

p=—-3H(p+p) . (1.30a)

This, using Eq. ((1.29)), leads to
G+3Hp+V' =0 (1.30b)

where V' = 4V /4. Note that this is the equation of motion of a damped harmonic
oscillator. Assuming a large damping term, this leads to small velocities and a slow-
rolling regime, as in Ref. [9], characterised by a small kinetic energy compared to
potential energy, as required, and by a negligible acceleration term compared to the

damping term. The equation of motion thus reads
3Hpo+V'~0 (1.30c)

Similarly, Friedmann equation (setting £k = 0 and 871G = 1) gives

H? = % (%gﬂ + V(gp)) ~ %V(gp) . (1.31)

These two last equations, obtained under the approximations that 1/2¢? < V and

Y K 3Hp, can lead us to two conditions on the potential. First, isolating ¢ from

Eq. (1.30c) and using Eq. (1.31) to remove H, one obtains

V2 o2 1 (V?
2o~ — —~ — | — . 1.32
v (SH) AV 3<v) (1.32)
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Enforcing (VV/)Z < 1 thus results in the desired equation of state. Secondly, deriving
the equation of motion with respect to time and using again Eq. (1.31]) leads to
@

L
3Hp ' 3H2

V//
7

~

~ oo (1.33a)

V| ‘3Hf + 3H‘ =
@

3H£+3H‘ -3
@

where V" = d®V/4p2. In the last equality, the first term (of the right hand side)
is small compared to 1 — since the acceleration of the scalar field is negligible
compared to the damping term. Concerning the second term, deriving Eq. ((1.31)
and reorganising it gives

H V' H 1 Ve V' 1p¢?

~ — ~ ~ ) 1.33b
H=2w  F  3HET3HV T 3Hp V (1.33b)

Since 12 ¢? < V and |V'| ~ [3H |, this second term is small as well compared to
unity. Thus, enforcing ]V7”| < 1 implies that our slow-roll assumptions are satisfied:
1hp? <V and p < 3Hp ~V'.

One can thus look for potentials satisfying

1 AW
€= 5]\/[1:2,1 (V) <1 (1.34a)

"

nEMFQ’l

1 1.34b
| < ( )

where € and 7 are called the slow-roll parameters and Mp is the (reduced) Planck
mass. Another constraint comes from N the number of e-foldings which, as men-

tioned previously, satisfies N 2 75 (or rather 60 following different model-dependent
approximations). Using Eq. (1.27b]), one has

NE/Hdt:—L %Kdgo. (1.35)
My J,, V!

Finally, two constraints commonly used on the inflaton potential are given by exper-

imental bounds from CMB experiments in particular. The first one is a requirement

on ng the (scalar) spectral index. This parameter measures the deviation from scale

invariance (ns = 1), which is only achieved in exact de Sitter expansion. Theoretical

computations lead to the relation

ns =1—6e+2n (1.36a)
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while current experimental bounds [10] yield
ns = 0.968 £ 0.006 . (1.36b)

The second one is constraining the ratio of the energy scale to the slope and is given
by the WMAP experiment [5, [L1] as

I~
(—) = 0.0275 Mp . (1.37)
€

Finally, some scenarii predict a non-vanishing tensor to scalar ratio r, which is
defined as the ratio of the tensor power spectrum to the scalar one, and is given in

the slow-roll approximation by

r=—=—8n; = 16¢ (1.38)

Ps
where P; is the tensor power spectrum and n; is the tensor spectral indeXE] After
some controversy [6], the tensor to scalar ratio is constrained to 79002 < O.OQF_GI
disfavouring models of inflation providing large tensor component participation to
the universe energy budget such as quadratic (V ~ ¢?) potential.
A scenario or a potential achieving ¢ < 1, n < 1, N ~ 60, ny ~ 0.968 and
V/e ~ (0.0275 Mp1)4 is thus a valid, successful inflation scenario. Note that a small

e will almost immediately confer a small enough r.

1.2.5 Some successful scenarii

Several generations of models have achieved, partially or fully, the general require-
ments of producing a universe which satisfies the data constraints. These include,
as a first motivation, the resolution of the horizon and flatness problem, that is, the
issue of initial conditions. As we have seen, this can be realised with a single scalar
field in a potential, but alternative models suggested several scalar fields or vector
and higher rank fields. In addition, inflation should end and should produce a hot
universe filled with today’s components, mainly matter particles and dark fluids.
Indeed, the energy in the form of the inflaton should be converted into hot particles

in a successful process called reheating.

9Similarly to the scalar spectral index, one has P;(k) oc k™! or ny — 1 = ddllnnit.

10Since the power spectrum is a function of the wavenumber k&, one has to fix a scale to use data
constraints, which has been chosen in some analysis to be ky = 0.002 Mpc™*.
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At first, the steepening of the potential due to the presence of a minimum V' =0
managed an exit and the oscillations of the inflaton led to its decay into other fields.
Note that its incomplete decay could interestingly lead to the inflaton participating
to the dark sector. Still, assuming the universe had to be in thermal equilibrium
at very high temperature previously to the inflationary era did not fully solved
the initial condition problem. Chaotic inflation, on the contrary, considered a field
which did not lay necessarily in the minimum of its potential and thus a universe
out of thermal equilibrium, but rather a random initial state which should lead to
the same post inflation universe. Very often remained the so-called n—problemﬂ
which was then solved by introducing a second scalar field or a phase transition to
end inflation. A first order phase transition, initially considered [12] for instance
by tunnelling from a false vacuum, generates bubble nucleation of true vacuum
universe, whose coalescence and collision can reheat the universe, but would either
not manage a graceful exit or generate different types of anisotropies. A second
order phase transition with a second scalar field (as in hybrid inflation) avoids the
bubble nucleation and may succeed in conforming with the data. More recently,
supersymmetric or string theory inspired models emerged, suggesting modifications
of General Relativity (GR) in higher energy scales within an effective theory of
gravity [13], and providing many possible scalar fields. On a different note, the shape
of the potential (namely exponential, power-law or any other specific description)
can be used to describe which specific model of inflation is considered.

The interest of an effective theory framework is double. First, one can ignore the
incompleteness of a theory and thus derive valid corrections to the known low energy
theory. This is what is done when quantising GR to obtain quantum corrections,
but also when modifying the Einstein-Hilbert action by hand, adding a priori some
terms. The many possibilities resulting from such modifications may well be invalid
or cause problems at higher energies, this does not affect the pragmatic, effective
reasoning leading to valid corrections at current energies. Indeed, no one really
expects such theories to consistently describe our universe up to the Planck scale, so
the possible phenomenological manifestations of the theory can be used to constrain
it or rule it out. The most well-studied set of such theories, known as f(R) theories

in which the linear Ricci scalar R is replaced in the action by any function f of it,

1The n-problem is due to chaotic inflation requiring large inflaton field values, (way) above the
Planck scale Mp;. This can be seen as a large mass term for the inflaton and implies that the
quantum corrections from renormalisation procedures might disrupt the inflation process itself, by
introducing large yet ignored terms in the potential. The slow-roll is spoiled, generating a large
value for the parameter 7.
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leads to a plethora of models, more or less constrained [14].

The second use lies in top-down approaches, where one knows a more UV com-
plete theory and builds up a low energy version of it to confront it to phenomenology.
The underlying theory, which may or may not be entirely formalised and well de-
scribed, leads to an action, which can then be expanded in the low energy limit
or simplified using additional assumptions. One can thus exploit this new effective
action to study some observables, regardless of the fact that it does not encompass
the whole theory or all the effects included in it. In this respect, a lot of work is done
these days to derive string theory low energy effective actions, in particle physics.
The point is to predict the future detections at the Large Hadron Collider if such
theory is valid, and in particular the properties of superpartners that could soon be
discovered. Similarly, string-inspired models of modified gravity are studied in order
to explain or predict the cosmological phenomenology, from inflation to DM, as we
will see further on.

One of the first attempts to realise all the features of successful inflation was
Starobinsky’s proposal [15], in which both the graceful exit and the initial condition
issue were satisfactorily addressed, as we will explore in some more details further
on. In addition, the realisation of hybrid models in extended theories, such as Grand
Unified Theories (GUTSs), Supersymmetric (SUSY) GUTs and brane inflation, pro-

duce some interesting features and will thus be also addressed here.

Starobinsky inflation

In order to obtain a theoretically motivated source for our scalar field potential, one
may start from a modified Einstein-Hilbert action, treating GR and its extensions
as an effective theory. These so-called f(R)-models, where the Ricci scalar R is

replaced by any function f of R [16], yield

5y = [ d'ev=g M F(R). (139

where g = det(g,,) and f is an arbitrary function of R. One can then perform the

transformation g,, — g, = (1/7'(R) gu, With f'(R) = 4/(R®)/ar. In this frame, the
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Einstein frame ™ the action reads
$f = [t VG (G0 B - 3P 0o - VI0) (40

where the subscript E refers to the Einstein frame and the scalar field™] y and its

\/>Mp1 In(f (1.41)

Viy) = —MPIRfI e )f(R) | (1.42)

One thus retrieves an action for the metric and a coupled scalar field, which can

potential V() are defined as

lead to an inflationary phase.
A specific example of such modified gravity induced inflation is called Starobinsky
inflation and follows from adding in the action a higher order term of the Ricci scalar

R, following quantum corrections considerations, yielding

1 R?
SStaro = /d4l' vV —g §M}g] (R + W) 5 (143)

where M is an additional mass scale. One obtains

\[MPl In (1+ SJRW) (1.44)

Vix )_ZMQMPI (1_6 \/EMPI)2 | (1.45)

One can notice that the effective potential is thus flat for large fields x > Mpy,
with value V' ~ 3/s M2 M3,, allowing for a long enough inflation era. The number of
e-folds is indeed N ~ 3/ e\/g%m ~ 102 for x of the order of a few Mp;. Similarly, one
can compute the slow-roll parameters, obtaining € ~ 3/av? < 1 and n ~ —1/v < 1,
thus yielding ng ~ 1 — 2/§. More accurately, N ~ 60 implies y ~ 3.6 Mp, and leads
to ng ~ 0.967, r ~ 0.0033. Starobinsky inflation thus passes all the theoretical and

experimental tests.

12The phenomenology of the two frames, namely the Jordan and the Einstein frames, are identical
since inflation in one frame is inflation in the other and the power spectra would be equivalent [17]
1§].

13This y is a field as long as f is not a linear function of R.
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Note that several models with theoretical motivations lead to a Starobinsky-like
inflation, the most well known of which being the Higgs inflation. In this case,
the inflaton field is played by the Standard Model Higgs doublet and the action
yields the usual “Mexican hat” Higgs potential as well as Higgs kinetic terms and
a coupling term between the Higgs field and the curvature R in the form h? R. The
main issue is that this coupling has to be unexpectedly large to obtain successful

inflation.

Hybrid and brane inflation

As mentioned, another type of inflation emerges from the use of several features
from different independent models, called hybrid inflation. The first attempt [19)
was to bring another scalar field in order to extend chaotic inflation, which remained
unsatisfactory due to its so-called n-problem, as well as solve the issue of the graceful
exit from first order phase transition. Indeed, one scalar field is slow-rolling, deter-
mining the duration of the inflationary era, to reach the bottom of its potential.
This modifies the landscape for the second scalar field, which in turn rolls (most
naturally rapidly) down its new potential. This triggering mechanism allows one
scalar field to be responsible for the energy scale at which inflation takes place and
thus for the expansion rate, while the other is determining the time scales. Said
differently, the dominant contribution to the potential comes from a field, which is
not slow-rolling but whose dynamics is set up by its interaction with the slow-rolling
field.
Keeping Einstein’s General Relativity as the background, one thus introduces
two scalar fields, here denoted as ¢ and o, and the potential
Vo, ) = 1 (M? — )\02)2 + 1m2 ©* + 1g2 0’0’ (1.46)
4\ 2 2
where one might want to consider o as the (Standard Model) Higgs field. In the
rest of this section, we will thus call o the Higgs while ¢ will be called the inflaton.
Interestingly, the effective mass of the Higgs is given here by (—M? + ¢%¢?) while
the quartic term 1/ Ao keeps the field from rolling to infinite values. The symmetry
is intact if ¢ > @. = M/ as the only minima for the Higgs field is attained for 0 = 0
(effective positive mass squared). Alternatively, if ¢ < . = M/y, the potential

exhibits its well known ‘Mexican hat’ shape, the symmetry is broken and the Higgs

field lies in its symmetry breaking minimum at o = /1/x (M2 — g2¢?) > 0.
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Dynamically, in the symmetric case (¢ > ¢.), because the acceleration of the
Higgs is much greater than the inflaton’s (due to the quartic term), the Higgs will
quickly roll down to its minimum while the inflaton could remain large for a longer
time. Under the assumption that 12 m2p? < ax M* (at least for ¢ < ), the
evolution of the fields in the intact symmetry potential is driven by the vacuum
energy density term !/ax M? rather than by the inflaton field (at least at the end
of this phase, some time before the phase transition). Friedmann equation and the
slow-roll assumptions (especially the form of p) imply that the Hubble parameter is
given by
V M*

~ ~ 1.47
3 Mgl 12\ Mlg.l ( )

H2

and the universe in the symmetric phase exhibits an inflationary era (as in quadratic
chaotic inflation).

Once the inflaton reaches its critical value ¢., a phase transition occurs since
the Higgs now has a negative mass term and should thus roll from o = 0 to its new
minimum. The equation of motion for the inflaton, given by Eq. , allows to
compute how ¢ varies from ¢, during one e-folding H~! and thus the effective mass
of the Higgs. The latter thus rolls rapidly towards its minimum while the effective
potential for the inflaton is now becoming steep, allowing ¢ to rapidly roll down its
potential in a time small compared to an e-folding, under additional assumptions
such as M > 12m and VA ~ ¢. Inflation thus ends very quickly after the inflaton
field reaches its critical value.

Interestingly, so-called brane inflation is very similar to hybrid inflation but gives
a theoretical motivation for it. Indeed, string theory usually produces plenty of scalar
fields called moduli fields from geometrical considerations on the extra dimensions,
whether compactified or extended. These can play the role of the needed fields for
inflation, which would acquire a theoretical backing as well as providing some knowl-
edge on their evolution. One specific case of interest is realised by a brane-brane
system, that are (usually) 3 + 1 dimension objects evolving in a larger dimension
universe referred to as the bulk. The interactions lead to a potential parametrised
by the distance, in the extra dimension, between the branes, which plays the role of
the slow-rolling inflaton field. Inflation ends with the collision of the branes, whose
energy is then released and reheats the universe.

As we will see in more details in the following chapter, an interesting feature
of these sceanarii lies in the production of extended one-dimensional topological

defects called cosmic strings, whose cosmological consequences have been limited by
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the observation of adiabatic anisotropies but whose astrophysical phenomenology

exhibits several promising features.

1.3 Gravitational waves

Although some additional ingredients are needed to hold together all data on our
universe, General Relativity (GR) remains, so far, the backbone of cosmology. It
has been tested on local (Earth and Solar system) scales and in the weak limit
up to high accuracy, as well as less precisely on the high velocities and stronger
curvature limits, though not together. Still, one of the main predictions of GR
which remained without any direct evidence until very recently is Gravitational
Waves (GW). Fortunately, even before the extraordinary September, 14" 2015 and
December, 26" 2015 direct detections [4], compact binaries inspirals and period
shortening accounted for indirect proof of their existence, in particular since the
discovery and measurements of PSR 1913+16 by Hulse and Taylor!!| from 1974
onwards [20]. In the decades to come, GW observations may provide remarkable

new insights of our universe.

1.3.1 The weak-field approximation

Recall |21, Chapter 10] the Einstein-Hilbert action yields the Einstein equations
G, =87GT,, (1.48)

where the gravitational constant 87G has been reintroduced, and the Einstein tensor

and the stress energy tensor are defined as

1
G =R — 3 guwR (1.49a)
1
T 0S,,

T T—g ogm

with S, the action describing matter.

(1.49b)

Let us consider a perturbed metric g, = 7, + hy, with 7, the flat metric and

4 They received the Nobel Prize in 1993 for their discovery.
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|huw| < 1 the perturbation of this flat metric. To first order in h, one thus has

I %n*”‘ (Ouhaw + Oyhap — ahy) (1.50a)
Ry, ~ 0.1, — 9,T%,

= % (020,h%, 4 0a0,h°, — 000"y, — 0,0,1°,) (1.50b)

R =~ 0,05h*" — 9,0°h”, (1.50c)

since the terms in I'T" would yield subleading terms, of order h%. Recall also that
for consistent expansions to first order in h, one has to raise and lower indices using
the zeroth order metric 7,

Now as in the electromagnetic case, one has some gauge freedom which needs to

be fixed. Considering the coordinate transformation
= =t 4 () (1.51)

where 0,&, = O(h,,) is the only restriction, the perturbation of the metric is trans-
formed following
h/:AV = hMV - augu - 8V€;,L . (152)

To fix this gauge freedom, let us choose the harmonic gauge
9Ty, =0 (1.53a)

leading to
1
o, = §8Vh“u . (1.53b)

It is important to note here that if i, does not satisfy Eq. (1.53b]), one can consider
the coordinate transformation with ¢, such that 9,0%¢, = 0,h*, — %&,h"#, which
leads to a field k), satisfying the gauge constraint. One can safely consider from

now on that the field h,, satisfies Eq. (1.53b). It yields

1

R/U, = —5 (()aﬁahw (154&)
1 (6%

R = ~20.0 K (1.54b)
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and hence to the field equation
(0% 1 (0%
0o hyas = 5 00 W’y = —167G T, . (1.55a)

Equivalently, one can work with a traceless field, constraining h’ 5 = 0. Then,
the harmonic gauge is equivalent to the temporal gauge 9,h*, = 0. It leads to R = 0
and to the field equation

000%hyy, = =167G T, | (1.55Db)

which is a wave equation sourced by 7,,. One important solution is given by the

retarded potential

435
X Tt x—x|) . (1.56)

B (x,t) = 4 .
#(X ) G |X—X|

1.3.2 Polarisation modes

Let us first study the unsourced solutions, solutions of the equation
0,0%hy, =0, (1.57)
interpreted as the plane waves coming in from infinity. They have the general form
B (2%) = €, ™" + € ¢~ ko™ (1.58)

where e, is the symmetric polarisation tensor and &, is the wave vector. They must

satisfy

k' =0 (1.59a)
ket =0 (1.59b)

for hy, to satisfy both the wave equation and the gauge constraint. Even with this
constraint, there is still some gauge freedom. Indeed, let us consider a coordinate

transformation with

Eula®) = i€, e — g e et (1.60a)
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This leads to a change of the perturbation field h,, and the polarisation tensor e,

as in
ay ikqx® *  _—ikqx®
W, (x%) =e,,e +en, e (1.60Db)
e:ﬂl = Cuw + kufl/ + kugu (160C)

with the gauge constraint still satisfied since k*e},, = k*e,, + k*k.&, + kFk,E, = 0
(with the first term being null due to the gauge constraint, the second one due to
the wave equation and the third one due to €], remaining traceles@.

One thus has different polarisation tensors, that is, different fields h,,, repre-
senting the same physical situation whatever the value taken by the field &#. Of the
10 — 4 = 6 degrees of freedom left so far by the symmetry and gauge constraints, 4
are again to be removed due to this remaining gauge freedom. This leads to only 2
physical degrees of freedom.

To illustrate this, let us consider a wave travelling along the z-axis with a wave

vector
k
0
kH = 1.61
X (161
k
which immediately satisfies Eq. (1.59a)). Equation (1.59b]) yields
o + €30 = €10 + €13 = €20 + €23 = €30 + €33 =0 (1.62a)
leading to only six independent degrees of freedom, chosen to be
€00, €10, €20, €11, €12, €22 (1.62b)
while the four redundant components are given by es3 = —e3g = egg, €13 = —€10,

€93 = —eg. In addition, using the coordinate transformation mentioned in Eq. ((1.60a)

gives

660 = €op — 2k fo 661 = €91 — ]{351 662 = €p2 — ]{752 (162C)

/ / 1
€11 = €11 €19 = €12 €99 = €22 (162d)

®Indeed, e, = 0 and e’t, = e#, +2kH,,, leading to k"€, = 0 if one still requires a traceless field
By
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where €, and e, should describe the same physical situation. This means that
only eq1, ez and ez have a physical relevance. In other words, one can fix &, to
cancel out all the e, components, leaving only three non-null components.

Finally, recalling we choose h,, traceless, one has e;; = —eg, yielding two phys-
ically significant components, here e;; and e;5. They are the two polarisation modes

of gravitational waves. One has just

0 O 0 0
0 e € 0
€ = e (1.63)
0 e12 —eqn O
0 O 0 0

To characterise these two modes in more detail, let us perform a rotation about

the propagation direction. This leads to

e, = RR Seqs (1.64a)
1 0 0 0
0 cosf sinf 0
with R/ = ' (1.64b)
0 —sinf cosf 0
0 0 0 1
Considering only the significant components of e, this rotation yields
€, = cos20ey; +sin20e
" e (1.64c)
€]y = c0s 20 e15 — sin 260 ey
e =et2e here e, = ey —ie
or * o v o (1.64d)
¢ =e e where e_ = e + iego

which means that one has two polarisation modes e, and e_, of helicity 2.
The energy carried away by these waves can be computed using Einstein field
equation Eq. ((1.48)), which we expand with respect to h up to order 2, yielding

1 1
h aB p(1) 2
7= o (g R+ B2 (1.650)

where again R = "R, = 0 (to all orders in h) and where R,(f,z denotes the ith
order term in the expansion of R,, with respect to h. The first order equation is

already satisfied by the full metric g,, = 71, + hu (leading to the gravitational
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waves), leaving only

Th:L

(2) 1
e R (1.65Db)

In order to compute Rfy) in its simplest form, the easiest is to average it over a
spacetime volume of typical dimension large compared to the wavelength, or simi-

+2ik,

larly to k!, removing all terms proportional to e . In addition, one can use

the gauge constraints without any loss of generalitym yielding the simple form

1 * _«
(B = 5 kb €556 (1.66)
and leading to
1 . o
(T ) = To—g bk e5pe™ - (1.67)

Performing again the coordinate transformation given in Eq. (1.60al), one obtains
enge’ ™’ = el 5e” 4+ 20k | (1.68)

describing again the same physical system and thus the same stress-energy tensor
(T}:,). This confirms that the energy and momentum of the gravitational waves are
also determined by only two polarisation modes. One thus finally obtains the stress

energy tensor of a gravitational wave with wave vector k*

1

(Ti) = 15— Pk (lesl” + le[) - (1.69)

1.3.3 Generation of gravitational waves

Let us now compute the energy emitted in gravitational waves from a system whose
energy-momentum tensor is known and can be decomposed in one Fourier compo-

nent, in a sum of Fourier components or in a continuum of Fourier components (and

16Indeed, if one performs a coordinate transformation which would give a field configuration not

satisfying the gauge constraint, the additional terms would actually cancel out in ((Rf?,,) Y, leading
to an unaltered (T7,)).
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thus expressed as a Fourier integral)

T (x,t) = T, (x,w) e ™" + c.c. (1.70a)

= Z T (x,w) e + c.c. (1.70Db)

= / dw T, (x,w) e ™" + c.c. (1.70c)
0

where c.c. represents the complex conjugate. In the first case (only one Fourier

mode), the retarded potential takes the form

d’x 3 —iw(t—|x—%|)
hu(x,t) =4G | ——= T, (x,w)e + c.c. (1.71)

Ix —x| "

Let us now consider that the observer sits in the wave-zone, which is defined by

a distance to the source |x| large compared to the typical size of the source R, to the

(reduced) Wavelengt of the gravitational wave % = % and to the mass angular

momentumﬁ wR?. One can thus perform the following approximation

X X

|x — X| ~ |x| — — (1.72)
]
which, up to first order, yields
PR ()
hu (x,t) = 4G ™ Tw(X,w)e =+ c.c. (1.73a)
eiw(|x\—t) . (Q)
:4G|—’ /d3§< T (X,w)e U/ + c.c. (1.73b)
X
= e, (%, w) e 4 cc. (1.73¢)

where we used the fact that |x| > % to recognise the form of a plane wave, with a

wave vector
E=w, kEwﬁ—wﬁ (1.74a)
X

"Here it is rather the (reduced) period, but since ¢ = 1, these are equal.
8This simply relates to the typical angular velocity of the system being smaller than ¢ = 1.
Indeed, we already have |x| > R, so assuming |x| > wR? is equivalent to assuming wR < 1.
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and a polarisation tensor

4 .

e (X, w) = ‘;CT Pz T (X, w) e x (1.74b)
4G

= ETW(k, w) . (1.74c¢)

Note that since the stress-energy tensor 7),, satisfies a conservation equation
9,1 (z*) =0 <& k1% (k%) =0, (1.75)

the polarisation tensor defined above in Eq. satisfies the gauge constraint
Eq. (1.59D).

In order to compute the emitted power in the form of gravitational waves per
unit solid angle around the direction n, we can use the spacetime averaged value of

the energy flux vector in gravitational waves (T%)), thus obtaining

dpP

5 = Il (T (1.76a)

This stress-energy tensor of gravitational waves can be expressed, using Eq. ,
in terms of the wave vector and polarisation tensor of the gravitational waves them-
selves, which in turn we can express in terms of the stress-energy tensor of the
system generating the gravitational waves, following Egs. (1.74). This yields

P 2
j—Q — 1'5"6, n; k'k° e 56’ (1.76b)
T
2
= O e (e w) T (k) (1.76¢)

where the power emitted is expressed directly in terms of the stress-energy tensor
of the source of gravitational waves.

In the more general case, that is, when the emitting system’s stress-energy tensor
is made up of a sum of Fourier components, one has to consider the most stringent,
restrictive definition of the wave zone. This implies for instance that the longest
period has to be considered when assuming |x| > % In addition, the perturbation
field h,, will be a sum of plane waves, each with its own frequency. Consequently,
the power emitted is a double sum over the pulsation w, but due to the average over
large spacetime volumes — large compared to the longest period — only the square

terms remain while the cross terms vanish. One obtains a sum, for each w, of terms
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such as in Eq. (1.76¢)).

Similarly, in the case where the stress-energy tensor of the emitting system is
a Fourier integral, the perturbation field h,, is an integral over w of a continuum
of plane waves while the power emitted in gravitational waves is a double integral
over, say, w and w’. Given that the definition of the wave zone becomes slightly more
difficult, due to w running from 0 to oo, let us compute the total energy emitted by

integrating over time. One has a term in
o0 . .
/ dte e (1.77a)
—00

which is exactly the Dirac delta function; it is thus replaced by
21 0(w — W) . (1.77Db)

Q G/ Oéﬁ( ? ) ( ? ) ( )

Before going further, one might want to rewrite T(jﬁ(k’“)T“ﬁ (k") using only the
spatial components of the stress-energy tensor. One would need relations between
its various components, such as in the momentum space version of Eq. ([1.75)) which
yields

Toi = —k T} (1.79a)
Too = k'K T, (1.79h)

where k = 1/wk is the normalised wave vector. One obtains

Ti5(k, )T (k, w) = Agjim (k) T (k, w)T"™ (k, w) (1.80a)

which can then be used in Eq. (1.76¢) and ([1.78)), and in what follows.

1.3.4 Quadrupole moment

Let us now use another approximation, namely that the angular velocities (so far
only assumed to be physical, that is, wR < 1) are small wR < 1. This is equiva-

lent to assuming that the typical radius of the source R is small compared to the
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wavelength of the gravity waves %
This approximation allows us to simplify the Fourier transform of the stress-
energy tensor 7, (k,w), defined in Eq. (1.74c|), by a k-independent integral, yielding

T (k,w) = / P*x T, (%, w) e % ~ / Px T, (%,w) , (1.81)

since k- x < wR <« 1. The Fourier transform of the conservation law given in

Eq. (L.79b) is
0;0;T" (x,w) = —w?*TY (x,w) . (1.82)

Recall the quadrupole moment is defined by
D;j(w) = /d?’x z'w! T (x, w) (1.83a)

D;;(t) = /d3x o'w! T (x,t) = /0 dw D;j(w) e ™" + c.c. (1.83b)

After multiplying the conservation law by z'z/, integrating over space and using
the approximation given in Eq. ((1.81]), one obtains the following spatial part of the

stress energy tensor

w2

Tij(k, w) o~ —

This is very useful since the quadrupole moment of a system is quite simple to

D;j(w) . (1.84)

evaluate as it depends only on the energy density of the system (not on the flux or
strain) and on the frequency mode w (not on the wave vector).

The power per solid angle emitted for a single frequency is thus given by

dP  Gu°

- i Az‘jlm(f() ij(W)Dlm(W) (1.85a)

which can be integrated over solid angle since the quadrupole moment is direc-
tion independent. Using spatial symmetries, one obtains the power emitted for a

monochromatic source

3D (1.85)

B 2G WS

P =20 (D) -

For a source which is a sum of discrete Fourier components, these are summed over

all the discrete modes to obtain the full power radiated. Similarly, for a source which
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is a Fourier integral, the energy emitted per solid angle is given by

dE G ~ o X
ETo) = b Aijim (k) /0 dw w° Dij(w)Dlm(W) : (1.86a)

which can in turn be integrated over solid angle to yield

_47rG°°
=5/

. 1
E dw w® (Dij(w)D,-j(w) -3 |Dii(w)|2) . (1.86b)
Note that even though we can choose h,, to be traceless, which leads to T},
traceless as well, we cannot say anything about T;; nor D;. One should then be

careful when using the formulae above as they might be sensitive to specific choices.

1.4 Gravitational lensing

One might also want to look at lensing, which provides information about DM,
inhomogeneities of the universe and gravity itself.

Gravity, by deflecting trajectories or by bending spacetime, allows lensing effects
by massive objects. Even Newton’s law of gravity can explain the deviation of a
photon, allowing its mass to be infinitely small but not null. Indeed, the equivalence
principle, which states that the inertial mass and the gravitational mass are the
same, holds in both Newton’s and Einstein’s laws. It implies that the trajectory of
a test particle within the gravitational potential of a massive object does not depend
on this test particle’s mass, with the caveat that this mass should not be zero in
Newton’s formulation. Still, the two theories differ here on the angle of deflection
caused by a static mass, as we will quickly explain below to review the physical

processes at stake.

1.4.1 According to Newton

Recall Newton’s law of gravity

r (1.87)

where F¢ is Newton’s gravitational force, G is (Newton’s) gravitational constant,
being here reintroduced, M and m are the masses of the static (heavy) object and

of the test particle travelling in the former’s gravitational potential, r is the radial
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distance and r the radial centrifugal vector between the centres of mass. Associated

with the Newton’s second law of motion, which states
YFery = ma, (1.88)

one obtains the acceleration of the test particle

M
a= —Gﬁr (1.89)

which, again, does not depend on its own mass and is thus valid in the limit of an
almost massless photon. In spherical coordinates (7,6, gb)lﬂ and assuming — with

no loss of generality — that ¢ = 7/2, the kinematics give
a= (i —rf*) u, + (r + 270) uy (1.90a)

where the dot is a shorthand for derivation with respect to time and (u,, ug, uy)
is the direct orthonormal basis associated with the spherical coordinates (r,0, ®).
These yield

rfh+20=0 o —(r*) =0 (1.90b)

: M
i—rf? = -G = (1.90c)

The first equation implies that 726, the angular momentum, is a constant. Its
value can be determined at the closest approach to the heavy mass, denoted by rg,
recalling that 7 = 0 at this point, meaning that the velocity is simply rf. Assuming
that the velocity at the closest approach is equal to ¢ (and neglecting all relativistic
considerations for now), one has L = 20 = ryc.

For the second equation, performing the change of coordinates u = 1/r gives

0=Lu?andi=—L%u2 312712‘ Hence the second of the above equations, Eq. QD

19Spherical coordinates with 7 the radial distance, § the azimuthal angle and ¢ the polar angle.
20Using ‘;272‘ = 9% — %, U = —T% and 4 = —T% + 2%32, and L = 2716 + 120 = 0, one has

2.2d%uw _ _o2p2 (i b\ 2 (—=F 272  (=¢\HO) _m  #dL _ =
—Lout gz = Te(g? (73)— 7‘(T2+TS (T?)E)_r Ta — T
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yields
d?u GM
i = 1.91
102 +u (ro0)? (1.91a)
1 GM GM
H=—— —— 0+ —— 1.91b
= u(h) (7“0 (T’QC)Q) cosf + (roc)? (1.91Db)

where the cosinus prefactor has been determined using again the closest approach

since at this point u = 1/ry and € = 0. The resulting trajectory, given by

(roc)? 1
GM 1—1—(’”00—6]\;—1)0089 7

r(0) = (1.92)
is, as anticipated, a conic section which in most cases turns out to be a hyperbola.
Note that parabolic and elliptic path can be obtained if the eccentricity, here equal
to g)]‘\:; — 1, becomes respectively equal to or smaller than 1, that is, for very large
mass M.

The deflection angle A# is thus given by the difference of direction of the two
infinite limits of this hyperbolic path, up to m the angle obtained in case of no

deviation. Denoting by #. the angles such that

lim r(f) = £o00 (1.93a)
0—04+
1 GM
= 0, = Farccos > | ==+ (z +—+ > (1.93b)
1— % 2 roc?

This gives the (Newtonian first order approximation of the) total deflection angle

A= (0, —0)—x~ 28

(1.94)

roc?

1.4.2 Following Einstein’s law

In Einstein’s description of gravity in which deflection is due to the deformation
of spacetime around the massive static object, the formalism is quite different and
one should consider the Schwarzschild metric. Note that here, an exactly massless
test particle behaves identically as an approximately massless one, such as the one
used in Newton’s description, and no discontinuity in the deflection angle occurs at

m = 0. Here too we will assume — without loss of generality — that ¢ = 7/2. The
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metric is thus given by

2GM 2GM\ !
ds? = gudztdz” = — <1 _ G_> A de? + (1 — ¢ ) dr? + r% d6? (1.95)

rc2 rc2

yielding the null geodesic equation describing the path of a massless particle

2GMY - 2GM\ "' :
0:—(1— G >02t2+(1— G ) 72+ 7?6 (1.96)

rc2 rc2

where the dot is a shorthand for derivation with respect to the affine parameter of
the trajectory .

The conserved quantities that are energy and angular momentum, respectively
associated with the coordinates t and 6 (and with the respective Killing vectors),

can be expressed as

o (1 - 2GM) 2 (1.97a)

rc?

L=r%. (1.97b)

Rewriting the geodesic equation using these quantities, one obtains

P2 2GMY
e (1 i )r (1.98a)
24 20 M —1/2
= df= { 2]; - (1— G2 )ﬁ} dr . (1.98b)
C rc

In order to obtain the deflection angle by integrating this out, one needs to
evaluate the ratio (£/r)?. First, one can use their definition, yielding
L2 ri 92

— = — 1.99
B -y ap .

Using again the point of closest approach rg, for which 7 = 0, and the geodesic

equation, which in such case states

2GMY - :
0:_(1— G )c2t2+r§92, (1.99b)

To C2
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one gets
L? 7“8
roc?

This can be introduced in Eq. (1.98bf), which can also be rewritten using the
parity of the path with respect to r (the path from r — —oco to r = 1y is the

symmetric as the path from r = ry to r — +00) and a change of variable u = 70/,

1 —1/2
A0+7T:2/ 1—2GM —u? 1—2GMu du . (1.100)
0 roc? roc?

One can first integrate the limit for M — 0, which yields Af = 2 arcsin(1) — 7 =0

yielding

as expected; indeed, this is the deflection angle around a massless point, that is, in
flat spacetime. For a massive central object, one can expand the integrand for small

mass, that is, considering 27%\24 < 1. It yields

71/2
1 .3 2172
A9+7r:2/[ 1L GM 1w +O(G—M)] du  (1.101)
0

VI—uZ  1oc? (1 —u2) réct
2GM
~ 2 (g o ) (1.102)
AGM
Ap~ 2 —. (1.103)
TroC

The General Relativistic (first order approximation of the) deflection angle is thus
twice that from Newtonian’s law.
Note that it is again only depending on the ratio of the Schwarzschild radius of

the massive object Qng by the closest approach distance ry, which is at least equal

to the size of the object. Following Newton’s law, the assumption that this ratio
would be small compared to 1 was de facto holding as otherwise General Relativistic
corrections would be needed. In the GR case, one could argue that this ratio could
approach 1 as the lensing object could a prior: be anything and as ry tend to be
close to the physical size of the object. In practice, this is not an issue since the
lenses are often clusters or galaxies which, even if they could host a black hole or
a very compact region in their centre, are surrounding this central densest region

with dust and gas, which prevent photons from reaching us unaltered.
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1.4.3 Another Dark Matter motivation

This deflection from a straight line was first verified, with some controversy on the
accuracy of the measurement, in 1919 during a Solar eclipse and subsequently in
multiple occasions with greater and greater accuracy. It is a very often used tool
to measure the mass of lensing objects which alter the position, the shape and the
number of images we receive from more distant objects, often galaxies or clusters.
It is also more recently used in microlensing, that is, the use of weaker deformations
of spacetime by lighter objects to detect and study them, which can be exoplanets,
dwarf stars, neutron stars or black holes for instance. Finally, current more extensive
surveys use lensing to measure, for different redshifts, the amount of massive cold
matter in space, providing maps of the universe that surrounds us.

Lensing is also a very useful tool regarding some still ongoing controversies on DM
and modified gravity models. Indeed, the measure of the rotation velocity of stars in
galaxies showed a discrepancy with what one would expect considering the amount
of visible matter (mainly stars but also hot gas) and the gravitational field it exerts.
The suggestion, first made by Fritz Zwicky in 1933 and then a lot more accurately by
Vera Rubin and Kent Ford from the 1960s, that some missing, invisible but massive
matter would generate the observed acceleration lasted, in different forms, over the
years. As in the search for an explanation of the irregular trajectory of Mercury|
alternatives, such as MOdified Newtonian Dynamics (MOND), suggested that the
laws of dynamics and gravity have to be modified, at least on these scales. Studies
on larger scales, such as galaxy clusters, proved the presence of additional matter to
be able to explain at once these different phenomena, while lensing analyses helped
to measure with greater accuracy the gravitational presence.

The best example in this battle on DM and on the power of lensing is the Bullet
Cluster, a cluster of galaxies formed by the collision of two smaller ones. Indeed, this
kind of objects can be observed in three independent ways: the internal dynamics of
galaxies shows, using the Virial theorem 2 how much mass is gravitationally bound;

X-ray emissions by hot gas informs about the temperature and thus the pressure,

21At the end of the first half of the 19*" century, both Uranus and Mercury had unaccounted
trajectories. In 1846, Urbain Le Verrier calculated the deviations of Uranus’ path and deduced
the position of Neptun, so far unknown, thus allowing its immediate discovery. He also thought
some missing matter, some missing mass was perturbing Mercury and looked for it for decades,
unsuccessfully. Indeed, the explanation was to be given by Albert Einstein who modified Newton’s
law of gravity with relativistic corrections, thus avoiding the need of a hidden mass.

22The Virial theorem states that, for a stable mechanical system made of many identical objects
interacting via conservative forces, the (average of the) kinetic energy is related to the (average of
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which, by balancing gravitational collapse, yields information about the mass there;
gravitational lensing studies on different scales allow to measure again the mass
profile, but assuming no prior knowledge on the dynamics. Interestingly, the Bullet
Cluster, because of its collision history, seems to exhibit a case where DM and
galaxies on one side, and baryonic matter in gas clouds on the other, split, due to the
almost non-self-interacting nature of the former and to the efficient electromagnetic
interactions in the latter. The (strong) lensing found two gravitational wells centred
around the galaxies, even though most of the visible matter lies in the gas, supporting
the presence of DM surrounding the galaxies. In addition, weak lensing analysis on
the substructure of the cluster proved that the DM lies on the outskirts of the cluster,
while the hot gas has been measured, using X-ray observations, to be in its centre.

What is currently known is that, if it exists, this DM has to be non-baryonic (i.e.
unknown), cold (non-relativistic), electrically neutral and colour neutral, heavy and
stable over cosmological timescales. As mentioned already, CMB precise measure-
ments as well as many additional data (from sky surveys and structure formation
analyses) not only confirm the need and the presence of DM, but also converge on
the proportions with respect to baryonic matter. Finally, many models beyond the
Standard Model provide promising candidates for DM particles, though so far with
no robust experimental evidence. Yet, since there is not always an independent way
to measure with similar accuracy the mass of the lens, alternatives to GR are still
reasonable explanations to soften, if not solve, these tensions between observations
and theories. Therefore, a vast amount of work is still being done on lensing in order
to provide more hints on the DM scenario or on alternatives and extensions to GR,

some of which are studied in what follows.

1.5 Extending General Relativity

General Relativity (GR) and the Standard Model provide a very solid background,
extremely well theoretically studied and phenomenologically tested. Still, our ex-

periences tell us that they cannot be unified as they are not complete from a high

the) potential energy. In the case of gravitational binding, one has

(Ex)) = =12 (Ep)) -

This theorem mainly allows, in systems where the potential energy cannot be evaluated accurately,
to use the knowledge of the kinetic energy, from temperature or dynamical considerations, to
determine some of the binding forces parameters, such as the gravitational mass.
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energy point of view. What is currently known about these two theories leads to
incompatibilities and unanswered questions in cosmology. These include the ini-
tial conditions problems (inflationary scenarii can displace or reduce this issue but
this is an extension), the baryon-antibaryon asymmetry, the cosmological constant
problem and the dark sector issues, and the details of the formation of large scale
structures in the universe.

Over the past centuries, there have been many attempts, successful or not, to
broaden the scope of theories, to extend them, to unify them, to gather all nat-
ural phenomena within one unique framework. As a result, many extensions of
GR have been studied in the last hundred years, the first of which being the five-
dimensional attempt to reconcile Maxwell’s electromagnetism with Einstein’s the-
ory. Similarly, the Standard Model arises from multiple unifications but plenty of
extensions have been suggested and studied, such as supersymmetry, which relates
bosonic and fermionic degrees of freedom, or additional dimensions as in string the-
ories. Today two main sets of theories remain as possibilities for a UV completion
of the laws of nature.

Unifications, these simplification processes in which a prior: distinct phenom-
ena are found to be linked, are built up by finding a common cause or by reducing
the number of elementary bricks. FExamples of the first mechanism include New-
ton’s understanding of falling bodies and celestial mechanics using one same law,
or Maxwell’s description of all magnetic and electric phenomena under one set of
rules. This idea used to try to unify the quantum and the relativistic worlds via the
quantisation of gravitational degrees of freedom led td*|loop quantum gravity and
sister theories such as the recent group field theory. However, we will focus here on
the alternative, namely string theories.

Indeed, looking for the second kind of unifications, namely the decrease in the
number of elementary ‘atoms’ (that are, literally, unbreakable, undividable), one
could go back as far as Aristotle’s attempt to use the well known four elements or
to the later preeminence of atomic theory, which led to Mendeleev’s periodic table
populated by about 60 different elements. More recently, the further developments
in the 20" century induced several breaking points of important reduction of the
number of fundamental building blocks: the introduction of the electron, proton and
neutron after the finding of many more chemical elements, then again the uncovering

of the quarks following the discovery of numerous hadrons, finally resulting in the

23Because a naive quantum version of GR suffers non-renormalisability, one needs to develop a
whole new theory in which this issue is addressed or a non-perturbative approach to quantum GR.

44



CHAPTER 1. COSMOLOGY 1.5. Extending General Relativity

whole Standard Model. Today’s elementary particle zoo was completed in the 2012
unearthing of the Higgs boson at the Large Hadron Collider, but many models
predict an increase to come. Interestingly, sometimes the unification process leads to
more fundamental elements to gather several phenomena under the same framework.
Indeed, the identification of symmetries at high energy and the explanation for their
low energy split come with the existence of additional particles, such as gauge bosons
in the electroweak symmetry and symmetry breaking. In the same way, additional
symmetries introduced in recent models might imply a larger number of elementary
particles, as in supersymmetry, where at least twice as many are needed.

Simultaneously, the 1960s have seen the development of string theory — or
should we say theories — in which all particles are the manifestation of a single
one-dimensional object, reducing the number of elementary brick for nature to a
symbolic 1 [22]. Since then, many issues and ideas came to lower and higher ex-
pectancies from this theory, which is now understood as M-theory, a 10 4+ 1 dimen-
sional theory populated by many objects (open and closed strings, branes of various
dimension...) and whose low energy 9 + 1 dimensional versions constitutes the five
known superstring®] theories. Depending on how one would lower the energy and
the dimension by 1, one obtains different theories populated by different entities,
providing a profusion of related models, which are all studied in various ways.

The specific features to justify our choices will not be covered in detail as this
alone would require many chapters. Still, here we will focus on some peculiar man-
ifestation of string theory where our 3 + 1 universe is confined on a brane, which
evolves within a (3+d)+1 dimensional bulk. First, our brane world cosmology leads
to brane inflation and thus to a network of cosmic strings, providing with specific
phenomenology, as in Chapter 2] In the second choice, the bulk is populated with
point-like particles interacting with our brane universe as will be studied afterwards,
in Chapter[3| In any case, Standard Model fields are open strings modes attached to
the brane and thus confined to it, while the graviton is a closed string propagating
in the whole bulk.

Finally, we will remind here that GR can be expressed, as any other theory,
in the language of effective field theories. This implies that the theory is known
to be incorrect at high energies (not UV complete) but follows known laws at low
energies (namely Einstein’s field equations) and some known corrections as energy

increases. As shown in Section Starobinsky inflation is a typical example of

24Indeed, supersymmetry has been a key element in the development and survival of string
theories.
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such framework where low curvature leads to the usual Einstein-Hilbert action and
thus to GR, while larger curvatures produce correction terms which are yielding an
inflationary era. Similarly, string theories often give a UV motivation for additional
correction terms but until now the specifics are not fully known, which motivates

an effective theory approach.
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Chapter 2
Branes and strings

Cosmic strings and superstrings, even though not anymore expected to be a key com-
ponent of our universe’s evolution, could be the next opening towards new physics,
beyond our standard models. They are believed to appear in many theories built
to complement our current understanding of the universe, whether additional sym-
metries or more fundamental descriptions. Their evolution would leave signatures,
enlightening on the specificities of the theories in which they come up. In particular,
because they are highly relativistic, due to their compactness as well as their veloc-
ities, they are thought to emit gravitational waves (GWs), constantly, thus forming
a stochastic background, as well as in bursts, potentially individually detectable.
In this chapter, we first present in Section [2.1} how such objects could be pro-
duced in the framework of brane world cosmologies, where our universe is not filling
the whole available spacetime but is rather a smaller dimensional object, itself evolv-
ing within a larger dimensional bulk. In particular, the inflationary period that could
result from brane collisions would almost generically generate a network of Cosmic
(Super)Strings (C(S)S), with properties depending on the details of the model. We
then discuss in Section[2.2] their properties, their evolution, the phenomenology they
would lead to and the main differences between strings and superstrings. Finally, in
Section we focus on a specific setup in which a light string is stretched between
two heavy, almost fixed ones, and study its periodic evolution. In particular, we
evaluate the rate at which specific events, called cusps, during which a portion of
the string momentarily reaches the speed of light ¢ = 1, occur. They are thought
to be important as they would emit large amounts of energy in the form of high
frequency GWs, which themselves have been, for already more than a decade, one

of the most promising new tools to study our universe.
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2.1 Brane world cosmology

2.1.1 Brane inflation

Following the string theory picture, the paradigmﬂ here admitted, as in Ref. [24],
is that of a stack of 3 + 1 dimension D-branes, one of which could play the role
of our universe, on which evolve the Standard Model fields seen as various modes
of open strings whose extremities lie on the branes. On the contrary, gravity and
additional scalar fields (such as the dilaton) are propagated via closed string modes
in the larger (3+d)+ 1 dimensional bulk, with d = 6. Depending on the specificities
of the model, one can allow this brane either to be a solitonic field theoretic brane
or a quantum state such as a D-brane, and the bulk can carry different manifold or
orientifold structures. Also, Dp-branes with larger dimensions could be present at
first, but the brane dynamics lead to their evaporation. In any case, the D3-branes
sit on top of each other in the lowest energy state but may start more generically in
any configuration.

In addition, let us denote by y4 the interbrane distance in the d bulk directions,
or more basically by y either the norm of such d-vector or the distance in the one
extended dimension of concern here, potentially after a rotation. We also denote by
T35 the brane tension, that is, the brane energy density regarding the 3 brane space
dimensions. Furthermore, unless stated otherwise, we will assume that before the
beginning of inflation, the different geometrical scalar fields are stabilised via some
potential allowing a well of minimum energy, apart from the one driving inflation,
obviously.

In this section, the super- or subscript (4) refers to effective 3 + 1 dimensional
brane realisation of some quantityf] while (B) points to the (3 + d) + 1 dimensional
whole bulk ones. When necessary, parameters of the additional d dimensions are
denoted by (d).

Due to the propagation of gravity within the bulk, the effective experimental
(reduced) Planck scale M}(ﬁ) is related to the bulk fundamental one M}()]?) by the
volume of the d additional (extended) dimensions V(4 ~ R? where R is the size of

such dimensions, following

0)\2 By\d+2
<M121)> - (Mf(’l)) Viay - (2.1)

1See Ref. [23] for a full review of String Cosmology, in particular chapters 4 and 5.
2Later on, because we only refer to the 3 + 1 dimension quantities, such as Mpi, this clarifying
super- or subscript will no longer be necessary and will thus be omitted.
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Similarly, one can tune the (effective 3 + 1 dimension) cosmological constant A4,

which arises from

Ay =2T5+ Ay Vigy + V(y) (2.2)

where A(p) is the bulk cosmological constant and V(y) is a potential due to the
brane-brane interactions. Several requirements are needed on the size of the ad-
ditional dimensions and their stabilisation, in order not to spoil already satisfied
features, such as Big Bang Nucleosynthesis (BBN), or not to overclose the universe,
for instance with the overproduction of some particles after inflation, but these tend
not to be very constraining [24].

From there, the evolution of the scale factor follows the Friedmann equations
and the distance y is now a dynamical field which plays the role of the inflaton .
Its energy density and pressure are, as seen in Eq. (1.29)), described by the sum and
difference of kinetic and potential energy terms, where the potential is here the one
due to brane-brane interactions, namely V' (y) = V(p). To see that it is indeed flat
apart around (MIQE))Zy = ¢ = 0, we need to consider the possible mechanisms of
interactions.

First are the fields localised on the branes: when the branes are colocated, fields
from different branes communicate with each other and participate in the vacuum
energy; alternatively, when the branes are separated, the fields’ interactions are very
suppressed due to their confinement within the extremely thin (in the y direction)
volume of the brane and the contribution thus decays (at least) exponentially. Be-
cause the potential is assumed attractive, we will consider that the contribution to
the vacuum energy is negative; moreover, there must be some fine tuning from the
additional constant terms such as the brane tension in order to realise V' (0) = 0,
which ends up being the usual cosmological constant issue, here left unresolved.
This results in a zero contribution when the branes coincide, due to the cancellation
of the brane tension with the negative energy from the interactions between fields
located on each brane, and a positive remaining contribution from the brane tension
alone when the branes are separated. This yields, denoting the effective thickness of
the branes 7o, a term of the form T3(1 —e™*/*), or T3 (1 — f (¥/4)) since in place of
the term e~/ one could have any function f of ¥/y, which decays faster for y > yo.

Additionally, several processes happening in the bulk can take part in the po-
tential. The exchange of bulk modes, whether massive or massless, induces as well
an interaction which is suppressed at large distances, yielding a term of the form

e~™ y2= (or logy if d = 2) where m is the (possibly null) mass of the field con-
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sidered. Finally, some strings can stretch between the branes, for instance seen as
confined flux tubes, exerting a restoring force of the form ky, but this linear term can
be ignored as k is proportional to the density of strings regarding the 3 dimension
space brane volume, which is exponentially increasing during inflation thus washing
out k.

Hence remains a potential of the form [24]

Vip) =T [cl - f(%) + 0" (24 e~?Mi 4 63)] : (2.3)

where the constants ¢;, c2; and c3 depend on the details of the model, as well as
the explicit form of the function f as long as it decays at least exponentially; the

masses M, are related to the masses of the bulk modes m; via M; = (MP(,]?)Ym-’l,

while M is a typical mass of the theory of the order of T. 3:/ *. Deriving now the slow-
roll parameters again yields constraints on the geometrical parameters of the theory
which remain weak [24], thus allowing generically a successful inflationary period.

Note that the collision of the two branes considered here leads to reheating since
the inflaton field, which is weakly coupled when the branes are separated, becomes
increasingly coupled to the brane fields as these get closer, while it remains almost
uncorrelated to the bulk fields, implying that the oscillations of the inflaton in its
minimum reheat mainly the brane, as it should. In another similar kind of models
where the set up is made of a brane-antibrane pair, developed after the KKLMMT
model [25], it is the annihilation energy which is released and transferred to the SM
particles, allowing for reheating.

Finally, it is interesting to recall that symmetries play an important role in
hybrid or brane inflation scenarii. Indeed, as we mentioned, hybrid inflation is led
by the inflaton field slowly rolling down a symmetry preserving (or normal phase)
valley and ends when it reaches values for which a secondary field, so far lying in a
false vacuum, is now out of equilibrium and rapidly shifts towards a new symmetry-
breaking vacuum expectation value (ordered phase). In the brane case, the presence
of two separate branes breaks the symmetryﬂ of the system which is restored once

the branes are overlapping. Alternatively, the gauge symmetries are present on each

30ne can consider, for instance, either a Z, symmetry on the brane, a translational invariance
or, in the case of a stack of coinciding branes, the permutation between each of them. The first
one means that, for an object approaching, crossing and then leaving the brane, the pre-crossing
stages are symmetric to the post-crossing ones, or alternatively that the brane acts as a mirror;
the existence of the other brane on one side only breaks this symmetry. The second symmetry is
broken in the direction of the branes separation while the third is broken by the one brane aside.
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brane as long as they remain separated, but only one symmetry group remains once
the branes coincide or annihilate, yielding a symmetry-breaking scenario of the form
G x G — G where G is the gauge symmetry group.

As explored in the following section, these symmetries and symmetry breaking

interestingly lead to a rich phenomenology.

2.1.2 Strings formation

Phase transitions followed by Spontaneous Symmetry Breaking (SSB), occurring
during the early stages of the evolution of the universe, can lead to topological
defects [26]. While some, such as domain walls and monopoles, have to be avoided to
fit with the observations, as they would quickly dominate the energy of the universe
and spoil observations, cosmic strings, on the contrary, are not only acceptable but
could even turn out useful to explain some features of the universe. Still, recall it
has been shown that they cannot be the main source of anisotropies in the CMB,
inflation being now thought to be the main source as it produces adiabatic ones.

Cosmic Strings (CS) are false vacuum remnants, that is solitonic extended objects
containing a different phase than the rest of the universe, similarly to flux tubes
in type II superconductors. The energy they carry is thus related to the energy
scale of the symmetric phase, and hence of the symmetry breaking itself. They
are thought to be generic [27] in supersymmetric (SUSY) Grand Unified Theories
(GUT) frameworks where they are formed via the Kibble mechanism [2§]. In this
process, the topology of the vacuum manifold M is determining the presence of
topological defects as well as their type.

Indeed, during a symmetry breaking of a group G to one of its subgroup H, one
should study the k™ homotopy group (M) of the vacuum manifold M = G/H,
which is classifying the topologically distinct mappings between the k-sphere S*
and M. Non-trivial ¥ homotopy groups lead to d-dimensional defects, where
d =4—1—k (in a 4-dimensional spacetime). For instance a vacuum manifold made
of disconnected elements, thus whose 0" order homotopy group m, is not trivial,
will induce 3-dimensional topological defects, namely domain walls; similarly, if M
is not simply connected, that is if it contains loops which cannot be continuously
shrunk to a point, then m; is not trivial and CS (d = 2) form; alternatively, if M
presents surfaces (respectively 3-spheres) which cannot be shrunk to a point, d = 1
monopoles (d = (Y] defects, called textures) form.

4d = 0 defects are punctual not only in all space directions but also in time, i.e. event-like.
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CHAPTER 2. BRANES AND STRINGS 2.1. Brane world cosmology

It is important to remark that while we are here going to study only local CS
from local, gauge symmetries, global CS can form as well. Their energy is contained
in much larger distances (of the order of the horizon) and they experience long-
range interactions. Besides, semi-local string interactions can lead to the formation
of Y-junctions, which are of interest in the following. Finally, note that defects
can be embedded in field theories with a trivial topology, but they are generally
unstable and will thus be ignored too; similarly, we will not discuss further the case
of superconducting strings, in which the electromagnetic gauge invariance is broken.

There exist a large variety of SUSY SSB scenarii depending on the large symme-
try group G of the theory at high energies, which can in principle be anything as long
as the Standard Model (SM) group Ggy = SU(3)¢ x SU(2)p, x U(1)y is satisfactorily
embedded in it — that is provides the representations and the phenomenology of the
SM particles. The inflationary paradigm is also contained in such scenarii since the
several intermediate SSBs provide scalar fields and superpotentials, which achieve all
necessary ingredients: a quasi-exponential expansion of the universe while it is in its
unstable, false vacuum state; a graceful exit into the current, stable or meta-stable
state; and the necessary reheating via the conversion of the false vacuum state’s en-
ergy into thermal energy, to generate the particle content of today’s universe| Two
types of hybrid inflation can be constructed, namely F-term and D-term inflations,
depending on the choice of supersymmetry-breaking terms in the superpotential.
While the former often leads to the so-called n-problem, where the inflaton field (as
well as any scalar field) gets a mass of the order of the Hubble parameter H during
inflation, the latter does not suffer from this issue but often requires the inflaton to
roll on superplanckian distances, implying the need of a supergravity description.
In any case, (F- or D-term) CS are generically formed at the end of inflation via the
Kibble mechanism.

Alternatives are quantum string-inspired versions, namely Cosmic SuperStrings
(CSS), for instance fundamental strings (F-strings) or one-dimensional Dirichlet
branes (D1-branes or D-strings). Recall that in the string inspired, brane world
framework, all SM particles are described as open strings ending on D3—branesﬂ
while the graviton and some scalar fields are closed string modes also evolving in

the d — 3 remaining dimensions (with d = 6 for a 9 + 1 dimensional bulk). As we

5The detailed study of such scenarii allows to either rule out or constrain them, by requiring
successful inflation and production of particles with the observed properties, or by using CMB
measurements such as high multipole anisotropies and non-gaussianities.

6 Actually, the D-branes can have any 3 < p < 9 dimension, the potential extra p = p — 3 one(s)
being wrapped.

o2



CHAPTER 2. BRANES AND STRINGS 2.2, Cosmic strings and superstrings

mentioned already, of the many scalar fields describing the geometrical features of
the stack of branes (such as their distances), one can play the role of the inflaton.
The field slowly rolls due to weak, long distance interactions and the annihilation
or collision of the branes ends inflation.

Looking at the first case in more details, based on the explicit KKLMMT realisa-
tion [25], the production of CSS is due to what happens to the U(1) gauge symmetries
present on each of the Dp-branes before such annihilation. Indeed, the process can
be seen from a group point of view as a symmetry breaking U(1) x U(1) — U(1).
The Kibble mechanism applies to the remaining U(1), which is a linear combination
of the two initial U(1)’s and is coupled to the tachyonic field stretched between the
branes which becomes unstable when the branes annihilate. It implies the formation
of D-strings, or rather of D(p — 2)-branes where p is the dimension of the brane-
antibrane annihilating, with one of these p — 2 = 1 4+ p dimensions being extended,
the additional p ones being wrapped. Additionally appear fundamental F-strings,
which are the confined flux tubes of the U(1) symmetry which is broken, following
again the Kibble mechanism. Other similar brane inflation scenarii can also lead to
the formation of F- and D-strings [29, and references therein].

Finally, recall that stable bound states of F-strings and D-strings can be formed,
leading to the emergence of Y-junctions [30]. As we will see in Section 2.3 these
types of strings are thought to have generically cusps (points reaching temporarily
the speed of light), especially in the case of a string stretched between two junc-
tions [31].

Brane world cosmologies (via the multiple scenarii of symmetry breaking they
offer, in particular at the end of brane inflation) as well as supersymmetric GUT
thus suggest that one-dimensional topological defects could be a generic feature of
our universe. Each specific model would lead, for the strings and their network, to

peculiar properties and parameters’ values, as will be explored in the next section.

2.2 Cosmic strings and cosmic superstrings

Cosmic strings or superstrings have been shown to be at least generic — if not un-
avoidable — features of most cosmological descriptions [27] 29, |32]. As we have seen,
the former are solitonic, classical topological defects formed following the Kibble
mechanism [28] during the (potentially several) Spontaneous Symmetry Breakings

(SSB) which arise during the cooling history of our universe. The latter are ex-
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tended quantum objects appearing in the context of supersymmetric string theories
and brane inflation. Both are of interest for their genericity within some theoretical
background and for the numerous phenomenological consequences on astrophysical
and cosmological scales. In particular, networks of Cosmic (Super)Strings (C(S)S)
participate to the energy budget of the universe, modify locally the spacetime back-
ground and thus produce lensing effects which can affect the CMB anisotropies and
generate bursts of Gravitational Waves (GWs) during some specific phenomena |29,
33-40]. Their study is thus at the meeting point of cosmology and particle physics
and involves such large energy scales, unreachable otherwise, giving a unique window
of observations on the high energy symmetry breakings and the underlying theory
of the universe.

In the following sections, we will discuss the dynamics of the C(S)S and of their

network, as well as the common and different phenomenology emerging from CS and

CSS.

2.2.1 The Nambu-Goto action

C(S)S are studied in the regime where their typical length scale is large compared
to their thickness (but small compared to the Hubble radius) and therefore can be
considered in a good approximation as one-dimensional extended objects. They
thus span, through their evolution, a 1 + 1 dimensional worldsheet which can be
characterised by two parameters o (a = 0,1), with 6 = 7 being time-like and o' =
o being space-like, yielding x# = X*#(0%) = X*(7,0). Note that z* relates to the
spacetime coordinates while X* is a 4-vector function of the worldsheet coordinates
which gives the four-dimensional equation of the worldsheet, but we might sometimes
interchange one another in this chapter.
The strings follow the Nambu-Goto action [41, Chapter 6], [26] given by

S / Vg (2.4)

where p ~ M? is the string tension (or linear mass density) and M is the energy
scale of the symmetry breaking leading to the formation of strings, g™ = det(g?)
with gitd = g, a#2", the induce metric on the worldsheet (again a,b = 0, 1) and
d?c = do!'do® = do dr.

Recalling that in this chapter, a dash denotes the derivative with respect to the

"For clarity, let us accept that ginq = gi“d and gup ind = g;r;)d, hence g;l(li = 1/gind,
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spacelike worldsheet coordinate X L = 9Xu /o while an overdot is with respect to the
timelike one X, = 9Xu/or, the determinant of the induced metric can be rewritten

— g™ = (X (X)) + (X X2 (2.5)

where (X)? = X*#X, and X - X' = X“X;L, these being 4-vectors.

Using g; 3 dg™® = g2, dgi"d, one can vary the action with respect to the spacetime

coordinates z# = X*(c®) to obtain the equation of motion for the string
Xt +Th, gt Xa X5 =0, (2.6)

where I'{_ is the Christoffel symbo]ﬂ (from the full, four-dimensional metric). Note

that here the covariant second derivative of the spacetime coordinates is

Xﬁfa;a = \/_— ( vV — md gfer)d X!fb) : (27)

Similarly, the string energy momentum tensor can be obtained by varying the action

with respect to the metric, yielding

™ (2 gind gab XEXY0(z™ — X¥(0)) d%o (2.8)

S=1Ae
where ¢ is the (four-dimensional) Dirac function.

Choosing flat Minkowski spacetime as well as the conformal gauge
X-X'=0 and (X4 (X)?=0, (2.9)

one can simplify the equation of motion to the two-dimensional wave equation.
Additionally fixing the time gauge ¢ = t, one can express the conformal gauge
constraints and the equation of motion as a set of equations for the 3-vector position

of the string, yielding

X-X'=0 (2.10a)
(X)2 4+ (X')? =1 (2.10b)
X-X"=0 (2.10c)

8The Christoffel symbols are defined following Y. =1/2 6" (gark + Jar ) — Gam,a)-
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whose solutions are the superpositions of left- and right-moving arbitrary waves
1
X(0,t) = 5 (X4(7) + X (7)) . (2.11)

where we defined oy = o £ ¢.

Note that the equations for the string can be easily interpreted as follows: the
velocity and thus the movement is always perpendicular to the string itself, the
(3-)velocity reaches 1 at singular points X’ = 0 and in its own frame, the string
acceleration is inversely proportional to the radius of curvature, meaning that a
curved region of the string will tend to straighten itself. Transposed to the left- and
g
with respect to the only variable, namely the lightlike o1, as in X/, = dX+/40..
Therefore, the 3-vectors X/, lie on a unit (Kibble-Turok) sphere [42].

As we noticed already, some peculiar events might happen on the string, one

right-movers, they imply ’X’Jr = 1, where here the dash is the derivative

of them being cusps which are points reaching momentarily the speed of light in
vacuum. Indeed, X = 1 implies as we said X’ = 0, that is a null radius of curvature
and thus an infinite straightening acceleration, immediately reducing the velocity
below 1. In more details, one can look for the conditions for such event to occur in
terms of the left- and right-movers on the string, using

X(o,t) = (X (o4) =X (02)) . (2.12)

N —

Now for a loop, the periodicity of the coordinates as well as the condition |X’i ‘2 =1

imply that X/ and —X’ both describe closed loops on the unit sphereﬂ So when

these two curves meet in X’JF(JSFC)) =-X"_ (a@), the velocity reaches ¢ = 1, following
. 1
’X(U(C),t(c))‘ - ‘5 (X409 - X’_(ac))>’ - \X'i(ag))( —1 (2.13a)
9 4 = (L0 L 0y Lo _ o
for (o(),t())=(§(‘7+ +oo ),§(a+ —J_) , (2.13b)

where the superscript (c) refers to the cusp.
Discontinuities might also be obtained following string interactions. Indeed, even

though not allowed in the zero-thickness description, field theoretic analyses, lattice

9As we will see further on in Section additional periodicity or quasi-periodicity require-
ments also lead to such properties in the case of strings stretched between fixed junctions. For
infinite strings, X/, do not draw closed loops but do lie on the unit sphere.
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A

A

Figure 2.1: Three possible outcomes when strings intersect: (a) reconnect by
exchanging legs, (b) passively pass through each other or ( ) entangle.
From [41, Figure 6.4].

simulations and string studies showed that under certain conditions, C(S)S of the
same type have a non-null probability of exchanging legs when they intersect each
other [26, |30, and references therein]. Indeed, the strings can either passively cross
each other, get entangled as in some cases discussed further, or reconnect, as shown
in Fig.[2.1] In the last case, the result of two strings meeting is thus two new strings
with a kink, that is a discontinuity in X and X’ where the strings intersected. It is
also possible to describe such event using the left and right movers description, in
which a kink is a discontinuity in X/, and thus leads to a gap on the curve drawn
on the unit sphere. It is not actually a closed curve anymore and cusps, somewhat
generic without any discontinuities [43], may become a lot easier to avoid. Note that
string and superstring self-interactions lead to the production of loops, playing an
important role in the evolution of the network, as well as the entanglement of two
superstrings which can lead to junctions.

After giving the mathematical description of C(S)S, under the assumption that
they can be treated as infinitely thin, one-dimensional objects, we will now focus on

their gravitational phenomenology.
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2.2.2 Phenomenology

C(S)S, because they carry an important energy density, can be substantial sources of
different kinds of radiation. Most of them, such as Ultra High Energy Cosmic Rays
(UHECR) and Gamma Ray Bursts (GRB), are model dependent because of the
different gauge or global symmetries strings are related to, each symmetry implying
different particle physics mechanisms and thus leading to different patterns in emis-
sions. In addition, the inflationary and symmetry-breaking scenario influences the
initial conditions of the network as well as its parameters, which themselves impact
its evolution. This variability adds up to the complexity of the possible observations
from C(S)S. However, this connection implies that any observation is shedding light
on the favourable models, offering a potentially vast window on the underlying laws
of nature, whether stringy or not. More importantly for us here and more gener-
ically is the gravitational emission. Indeed, because strings are relativistic, they
emit GWs, whether in the form of loops or wavy long strings, in particular in high
frequency bursts during three potential events: cusps, kinks, and reconnections or
junctions.

First, let us recall that a straight C(S)S produces no gravitational force on its
surrounding [41, Chapter 7|, implying the local geometry is Minkowski, but still
significantly impacts the global geometry which is conical. Indeed, there is a deficit
angle in the azimuthal angle whose variations are limited from 0 to 27 (1 — 4Gp),
leading to specific lensing effects (with two similar images of a source) and discon-
tinuous Doppler shifts (driven by the sudden deviation of the course of the source
with respect to the observer as the string pass between them).

In addition, a network of strings can source the density anisotropies of the uni-
verse and hence the temperature anisotropies in the CMB, but as mentioned already,
this would mainly lead to isocurvature modes, with a different structure in the power
spectrum than the one observed, which favours adiabatic ones. C(S)S thus cannot
be the main source of initial density anisotropies and of seeds of structure formation
in the universe, while inflation has been shown to be very satisfactorily fitting the
data. Still, a string network could lead to interesting polarisation patterns as well
as high ¢ (that is small angular scales) contributions.

Finally, let us have a closer look at the GWs emissions from strings by first
assuming that the gravitational field due to strings in motion is weak enough so that

we can safely use the linearised Einstein’s equations, apart in some small patches of
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spacetime. Recall then that the GW equation is given by
000%hyy, = =167G T, | (2.14a)

whose retarded potential solution is

d3x

while the energy momentum tensor of strings yields

T (2) = p / (X“XV - X’“X”) 5(x — X (%)) do (2.15a)

= —M/X’ﬁ‘xﬁ’) 5(x — X(o)) do | (2.15Db)

where the first line has been obtained using the conformal and time gauge conditions
mentioned earlier in Eq. and below, and the second one using the left- and right-
movers decomposition. Note that the brackets indicate a symmetrisation in the
indices, that is Xﬁf”XT) =1k (XfX'_” + X',”Xjf). Also, the minus sign appearing
in front of the last line is consistent with positive energy density and depends on
the sign convention (that is, defining the null worldsheet coordinates as o =t + o
would have resulted in the opposite sign but the same physics).

Alternatively, using Fourier transform and Fourier decomposition [36], one can

express the energy momentum tensor in momentum space as
2 _ ,
T () = f" / (X“X” - X’“X’”) e~k X 25 (2.16a)

2 i
_ _fﬂ /XSSMXT) e~ Bk (X4t X0) g2 (2.16Db)

where L = £/, is the average or invariant length of the (loop or piece of infinite)
string, with E is its energy in its centre of mass frame and p the tension, while
we denote by kf = (wy,kq) = w,(1,n) the wave 4-vector of the plane wave in
Fourier decomposition, defining the direction 4-vector n* = (1,n) and the frequency

W, = qw = ¢* /L. Interestingly, one can separate the variables in the last formula
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after a change of variables (o,t) — (04,0_), yielding

TH (k) = T (wq, won) = %1&‘1{) (2.16¢)
with I} = /Xf(ai) e 2k Xelos) 4, (2.16d)

where we reintroduced the dependence on o for clarity.

Because cusps will be our main concern in terms of C(S)S phenomenology, let
us apply this result to this specific case. First, one can show that the direction of
highest energy emission is given by

"= (1,n9) = X"(¢\) = — X" (") . (2.17)

In addition, after shifting the worldsheet coordinates origin to the cusp 0':(|:C ) 50 as

well as the spacetime ones to the cusp too X#(0,0) = X% (0) = 0, one can expand

the left- and right-movers and their first derivative around the cusp following

1 1

Xi(ow) =1 ost+ 5 X0l + ¢ X3 4+ O@od) (2.18a)
1

Xf(og) =1+ XL 0w+ 5 X2 4 0(63) (2.18D)

with higher order terms which will be ignored from now on and where the successive
derivatives in the expansion [* = +X, X" and Xf)“ are given at the cusp.
The conformal gauge conditions, also called Virasoro conditions, yield X? = 0.
Differentiating this equation leads to X - X! =0 and to X/, - Xf’) = — X%, Used

to compute the exponential contraction, these give

I Xo(og) = _é X2 ob (2.18¢)
Finally, it can be shown that the leading term in I%, coming from the integration
of [M e=3k X+ is non-physical and can be gauged away [36], so should be removed.
In addition, the interesting part of the spectrum, for which the signal will not be
drowned in the stochastic background emitted by each and every part of the string
network [44], is the high frequency end, mainly produced by cusp’| and highly

relativistic regions of the string which are concentrated in a small patch around the

ONote that kinks and other specific points such as junctions, which mainly appear on CSS,
can also emit high frequency GW Bursts (GWBs), but we will not consider these in details here,
assuming that the cusps studied are far away from other emitting parts of the string.
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cusp. It is thus possible to ignore most of the string in the integral and focus on
a small interval around 0, as we will do numerically. On the contrary, one could
integrate on the whole string or even on R. These computations will anyway lead
to the same behaviour in the high frequency limit, which is of interest to us here.

Considering the latter, one can analytically compute the high frequency be-
haviour of the energy momentum tensor carried by GWs emitted by cusps on a
C(S)S and obtain [36]

473 72 m e X”(# XT/)
R e e 219
P La XX

TH (wy, qu(c)) =

where I is Euler’s function and ¢ is the arrival time of the (centre of the) burst,
reintroduced by shifting the coordinate system back to the initial choice where the
cusp does not lie at the origin. Most importantly, this means that the energy
momentum tensor depends on the second derivative of the string position 4-vector
at the cusp (again, the dependence on agf ) has been hidden), on the tension and on
the length, that is, on the energy of the string (as one could expect). In addition, it
is proportional, for high frequencies, to the frequency to the power — 4/3E

Slower points on the string are also producing GWs but they lead to a spectrum
which is suppressed in its high frequency part, compared to the cusp case. Indeed,
in the exponential part of the integrals , the linear term in the o4 expansion
is cancelled due to the choice of the emission direction k* = 4w, X" (0':(?). This
can be achieved simultaneously in both integrals only if Xf(agf)) =-X /,“(U@), that
is, at a cusp. In the case where the left- and right-movers derivatives X' are not
opposite to each other, one can only choose a direction of emission such that the
linear term is cancelled out in the exponential of at most one of the integrals, thus
leading, in the final expression for T, to a power of the frequency w, larger (in
absolute value) than —4/3. This means that the high frequency end of the spectrum
is dominated by cuspﬂ which produce Gravitational Wave Bursts (GWBs).

Still, one can wonder how the points around the cusp are participating in this
burst. Indeed, physically, the region immediately surrounding the “one” point reach-
ing the velocity of light is also highly relativistic, the left- and right-movers deriva-

tives are there very close to satisfying X f(cr(f)) =-X T(J@ ) and the energy released

HGimilar analytical computations on kinks lead to a power spectrum high end proportional to
the frequency to the power —5/3 [36].

12\We will here ignore other peculiar points which can also lead to GWBs, namely kinks and
junctions.
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in high frequency GW might as well be considered as a part of the burst. Let us
thus define pseudocusps as points travelling at a velocity very close to 1 but not
exactly, which will be present at least in the vicinity of cusps but a priori could also
appear irrespectively of those. Indeed, one can imagine a situation where the curves
described by X/ and —X’_ on the unit sphere would not cross each other but rather
come very close before moving apart: if they get close enough, the velocity could
reach almost 1 at its local maximum and this region of the string could emit a burst,
a priori weaker than an actual cusp’s burst but maybe strong enough to significantly
participate in the global high frequency emissions of the strings network. We will
come back to this issue in the following of this chapter, in Section [2.3]

2.2.3 Differences between strings and superstrings

Now that we have looked at the common properties of C(S)S, and in particular at
their common phenomenology, we will here review the main contrasting features
which distinguish these objects and the consequences these have on their evolution.

Cosmic Strings (CS) are solitonic, classical objects. Their tension is set by M the
energy scale of the phase transition which lead to their formation, u ~ M?. They
can, when of the same type, exchange legs and form kinks when intersecting each
other, and field theoretic computations have shown that p<> the probability they
do so is close to unity, thus yielding an approximately null probability of passively
going through each other [26, [30].

In opposition, Cosmic SuperStrings (CSS) are extended, string theoretic, fully
quantum objects. Their reconnection probability depends on their type as well as on
the details of the model, such as the extra-dimensions compactification and moduli
stabilisation schemes or the superpotentials. Still, string perturbation computations
have shown that, in first approximation, these probabilities depend only upon two
parameters, namely the string tension or string coupling gy, and the scale of the po-
tential confining the strings within the extra-dimensions. For instance, fundamental
strings generically reconnect with a probability pft ~ g2 € [1073, 1], while D-strings
reconnection probability, even though more complicated, have been evaluated to be
within pPP € [1071, 1] [26].

In addition, CSS present several distinct typeg™| which can form bound states
via entanglement, as in the case (c) of Fig. Indeed, when two superstrings of

13In some more complicated models, there can also be several types of CS which would present
topological restrictions forbidding simple reconnections and allowing the formation of junctions.
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different type meet, they cannot exchange legs but form a junction, which might
then extend into a third type string. This leads to a composite (p, ¢)-string, made
of the entanglement of p F-strings and ¢ D-strings, joining two Y-junctions where
three strings meet: the two initial strings and the new composite one. For example, a
(1,1)-string could be formed at a Y-junction between an F-string and D-string. More
generally, a (p, ¢)-string meeting a (p', ¢)-string would form either a (|p—p'|, |¢—¢'|)-
string or a (p + p', g + ¢')-string; for instance, in the specific case where say ¢ = ¢/
and p’ = p — 1, an F-string can be formed.

Similarly, the tension of CSS depends on the different parameters of the specific
string model considered, but in first approximation it is mainly given by the Regge
slope «, which is often taken to be o/ = M2, and by the string tension g,. For
instance, in 10 flat dimensions, an F-string has roughly a tension pup ~ 1/2ra’ >~ Mg for,
a D-string presents pp =~ 1/2ma’g. while a (p, q)-string shows fi(pq) ~ HF\/]W
in first approximation [26].

These string features are important as they directly impact the way the network
would evolve. A string network is allowed cosmologically (in opposition to monopoles
and domain walls) thanks to reaching a scaling regime, in which it is scale invariant
and can be described roughly by one parameter which grows with the horizon. This
description has been extended to a three scale model [45] in which three different
scales, all eventually scaling (that is growing with the horizon) are needed to describe
the network: the interstring distance &, related to the energy density of the string
network; the persistence length ¢, indicating the scale of direction correlation along
the string; and the small scale structure length (, giving the typical size of small
loops produced by self-intersection and sometimes referred to as the wiggliness. The
network is thus made of (eventually after a transient period) ‘infinite’ strings, of
length larger than the horizon, and sub-horizon loops. While the energy in the first
ones grows with time as their linear energy density p is constant, the loops decay
due to GWs and particle emissions and thus take away energy from the network,
allowing for the system to scale. Numerical simulationﬁ [46] in FLRW background
have found the two first parameters to be of the same order while ( ~ 1072¢, in
the scaling regime in radiation and matter dominated eras, as also explored in [47]
where gravitational backreaction have been considered.

The case of superstrings is somewhat similar but still more complex as the junc-

4Note that, unless stated otherwise, numerical simulations and even most analytical consider-
ations neglect gravitational backreaction, which is assumed to have a limited impact on the main
features of the networks and strings dynamics.
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tions and the bound states influence these results. Indeed, it has first been shown by
numerical simulations [48] that the CSS interstring distance scales as £ o< /p$SS ¢t
and that the CSS energy density may be higher than the CS one but at most by one
order of magnitude. In addition, the presence of long range interactions imposes the
bound states to be short lived, leading to two almost independent networks, in which
the small scale structure is enhanced by the temporary bound states. Alternatively,
in the absence of these long range interactions, that is, in an only locally interacting
network, the bound states play a more important role in the evolution [49]. Indeed,
bound states generate another loss mechanism which is actually responsible for the
scaling, as has been displayed in simulations [50]. Still, this numerical work shows
that whatever the initial conditions and whether with or without bound states,
the CSS network fully scales, that is, all its components (F-strings, D-strings and
possible bound states) scale.

It is also worth noting that the reconnection probability influences greatly the
amount of junctions and of kinks in the network. Indeed, once the scaling regime is
reached, the distance between infinite strings goes like p_.., meaning that the crossing
of two strings goes like p.2 and thus the number of successful reconnections is about
Prel. Hence more kinks but almost no junctions appear in CS networks, and few to
very few kinks or reconnections but possibly many junctions form in CSS networks.
In addition, as we mentioned earlier on in Section [2.2.1] the number of kinks might
influence the number of cusps on a string since the former are discontinuities in the
curves described by £X/  on the unit sphere and the latter are crossing of these
curves. Globally, this has an implication in the amount of GWs emitted since cusps,
kinks, reconnections and junctions are important emitters of GW. Still, it has been
proven that the most important of those are cusps, mainly because of the frequency
dependence of the energy emitted [36], as shown for cusps in Eq. , cusps
which are present on both CS and CSS. Note on that point that while it is widely
acknowledged that CS generically present cusps, the question is still somehow open
for CSS as details of the extra-dimensions influence may not have been perfectly
understood [31} [51].

Additional thermodynamical considerations [26] have shown that this descrip-
tion, with infinite strings and loops, is valid for large enough energy densities in the
CS network p > py. The critical point, called the Hagedorn energy density py (re-
lated to the Hagedorn temperature), defines a phase transition where infinite strings

appear. Indeed, for very low energy densities p < pp (and large enough reconnec-
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tion probabilities), long strings are very quickly chopped off in small sub-horizon
loops of typical size /p and no infinite string remains at equilibrium. Increasing
p implies an increasing number of loops until the average distance between two of
them is about their average length, that is, for p ~ py ~ 2. Then, infinite strings
become favourable at equilibrium, the energy density above py being allocated to
them. Any increase in p leads to no more small loops but to a very slow increase in
the number of long strings, which gather most of the energy density of the network.

The case of CSS is very similar as several tensions imply several Hagedorn energy
densities, that is, several transitions. This can easily be understood as the light, low
tension strings would be the first ones to be able, with the energy available, to form
stable infinite strings and thus to perform a phase transition, while heavier, larger
tension strings would remain in the gas of loops phase. Increasing the energy density
further would allow forming these heavier infinite strings at a second critical point,
thus allowing for all kind of strings and junctions.

After studying the formation processes of C(S)S in their different theoretical
framework and before closing with their distinctive features, we looked at the (com-
mon) equations describing their evolution and phenomenology. In particular, we fo-
cused on the GW emissions from cusps, these points temporarily reaching the speed
of light, highlighting the interest for these events regarding the high frequency end
of the GW spectrum.

2.3 Cusps and pseudocusps on strings between

Y-junctions

In this section [52][7] we study the occurrence of cuspy events on a light string
stretched between two Y-junctions with fixed heavy strings, during its periodic non-
interacting evolution. We consider the specific configuration of two equal tension,
heavy strings linked by a light string, which can easily be achieved for instance in the
gs < 1 limit, where 1) ~ /,LF\/rl/gz o~ ¥ fgo ~ up > pp. As explained in the
following, mainly in Section and Appendix [A] the conclusions drawn in such
case can be generalised to realistic strings configurations under certain circumstances
which we also discuss in such sections.

We first present an analytic study where, after looking at the periodicity require-

ments and symmetries on the string, in order to allow for a Fourier decomposition,

15The material of this section has been published in a very similar form in [52].
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we give a solid criterion to discriminate between cuspy and noncuspy string config-
urations. Our study then draws a link between waves and cuspy phenomena on the
string, where by cuspy phenomena we mean both cusps and pseudocusps. Recall
that the former are points on the string reaching temporarily the speed of light
¢ = 1. The latter are highly relativistic configurations close to cusps but reaching
a velocity between 1072 and 107% below ¢. We then describe our numerical sim-
ulation, built to draw a specific string and to subsequently compute the number
of cusps and pseudocusps within a period of non-interacting evolution, in order to
test our analysis. This numerical investigation allows us to look at the correlations
between the string network’s parameters and the occurrence of cuspy phenomena
and we show that the presence of large-amplitude waves on the light string leads
to cuspy events. We then relate the occurrence of cuspy events to features like the

number of vibration modes on the string or the string’s root-mean-square velocity.

2.3.1 General set up

Recall that stable bound states of F-strings and D1-branes (or D-strings) can be
formed, leading to the emergence of Y-junctions [30]. These junctions can also
appear in the context of semi-local string interactions. These types of strings are
thought to have generically cusps, especially in the case of a string stretched between
two junctions [31], but more details are needed, as can be understood from the open
debate on this question [51]. Here, we start with a simplified and idealised version
of such a configuration in order to look at the parameters influencing the occurrence
and number of cusps.

The Y-junction configuration we will study is thus again made of two heavy
strings connected via a light string. Hence, without loss of generality, we consider
the heavy strings to be of equal tension[’| So in what follows, we have two tensions:
the tension of the heavy strings p; and that of the light string p,.

We here consider the two heavy strings in the xz-plane, oriented along the z-axis
and then tilted by an angle £V with respect to the z-direction (see Fig. and
spaced out by a distance A. The heavy strings are considered heavy enough to be
at rest at least for a time longer than the time scale of the light string’s movement.
This implies either that the heavy string’s tension is very large (at least two orders

of magnitude) compared to the light string’s one, or at least that the time scale of

16The formation of a junction depends on various parameters, such as the collision velocity and
the tensions. However, once the junction is formed, the tensions will not influence the dynamics [53].
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Figure 2.2: A light string stretched between two junctions with heavy strings.

the light string’s movement is short compared to the ratio of the light string’s length
to the heavy string’s velocity (with respect to the light string). In addition, since
the heavy strings can be considered as straight in the vicinity of the junction and
since the boundary conditions are what matter here, the heavy strings will be taken
infinitely straight. Note that even though the case studied here is not generic, the
conclusions are applicable to generalisations of this specific configuration as shown
in Appendix [A]

The boundary Conditionﬂ for a light string ending on two junctions with the

aforementioned heavy strings are given, for any ¢, by

X, (t,0) =X/ (t,0) =0 (2.20a)
X, (t,om) =X (t,om) =0, (2.20b)

where again f'(o,t) = 0,f(0,t) and f(o,t) = 8,f(0,t) while the subscript L (re-
spectively ||) indicates the projection along the directions orthogonal (parallel) to
the (local) end string. The spacelike worldsheet coordinate o lies within [0, 0,,],
with o, the parameter length of the string, that is the maximal value for o since

the minimal value is 0. Hence, projected on the space cartesian directions (z,y, z),

17Tt is important to note that while a non-null light string’s tension g, # 0 would physically
lead to its length getting smaller, that is, to its centre of mass moving towards positive z (as in
Fig. , our study here focuses on the movement of the light string in the limit p, — 0. Still, one
can extend our results to the case puy # 0, pe < pp, where py, is the heavy strings’ tension.
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the conditions ([2.20)), at any time ¢, read

X, (t,0) =0 (2.21a)
X, (t,0)cos ¥ — X, (t,0)sin ¥ = 0 (2.21b)
X! (t,0)sin ¥ + X! (t,0)cos ¥ =0, (2.21¢)
and
X, (t,om) =0 (2.21d)
X, (t,om)cos W + X, (t,om)sin ¥ =0 (2.21e)
— X! (t,om)sin W + X, (t,0,)cos¥ =0 . (2.21f)

Following the usual approach [36], one imposes the conformal gauge conditions
(X)?2+ (X")? = 0 and X - X’ = 0 and the temporal gauge ¢° = 7 = t, obtains
the equation of motion X" — X = 0 which is solved using the decomposition into
the left- and right-movers, Xy (o ), as in X(0,t) = 3 (X4 (04) + X_(0_)), thus

leading to the system of boundary conditions

X, () =X, (—t) (2.22a)
(X (1) = XL, ()] tan ¥ = X, () — X7, (1) (2.22b)
(X (1) 4 XL ()] = X (1) + XL, (1) | (2.220

and
X, (om+t)=X", (om —t) (2.22d)
(X, (om+t) = X, (om —t)] tan ¥ = —X"_ (00 + 1) + X', (0m —t)  (2.22¢)
(X, (o +8) + X', (00 — )] tarlltll =X\, (om+t)+ X, (om—1) . (2.22f)

Note again that in Eqs. (2.22)), ¢ is a free variable, so it can be shifted (following
t =t + o,,) or symmetrised (as in t — —t).
Periodicity requirements

Applying the transformation t — ¢ — o, to Eq. (2.22a) and combining it with

Eq. (2.22d)) imply
Xy, (mom+t) =X\, (om+1), (2.23)

namely that X', (o) (and hence X" (o)) is 20,,-periodic.
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Denoting T = tan ¥, the sum and the difference of Egs. (2.22b]) and ([2.22¢), and
of Egs. (2.22€) and ([2.22f)), respectively yield

X, () (T - %) - X', (—t) (T + !
X' (t) (T + %) — X', (~t) (T -

X4, (om +1) (T+%) — X' _(om — 1) (T—?

—2X/, (1) (2.24a)

= 2X" (0 — 1) (2.24c)

)
) = —2X'_(—t) , (2.24D)
)

X' (om +1) (T - %) _ X! (o —1) (T + %) — OX! (0w 1) . (2.24d)

Redefining t — t — o, in Eq. (2.24d) and t — t+ 0, in Eq. (2.24c), and respectively
summing them with Egs. (2.24a)) and (2.24b)), lead to

2(T* 1) X\, (1) = (T*+1) [X_, 20m — t) + X, (—1)] (2.25a)
2(T° = 1) X, (—t) = (T?+1) [X}. 200 + 1) + X/, (¢)] (2.25b)

Finally, one can use Eq. (2.25h]) along with a version of Eq. ([2.25b|) where one applied
the shift ¢t — ¢t — 20,,, to express the right-hand-side of Eq. (2.25a)), leaving only

terms of X! .. We can rearrange it and perform once more the shift ¢ — ¢ + 20, to

get the difference equation

X', (4o +t) =RX,, (20, +t) — X\, (1) , (2.26)
where 9
tan® ¥ — 1
=4 ——— ) —2=2cos(4¥ 2.2
R (tam2 U+ 1) cos(4) , (227)

In order to show that the solutions of this equation are periodic (or quasi-periodic),
one can define Vn
X (t) = X'\, (2nom, +t) , (2.28)

and shift Eq. by t — t + 2no,,, VYn, so that it reads Vn
Xnso(t) = RXna(t) — Xa(t) (2:29)
with the case n = 0 being exactly Eq. (2.26)). The general solution is (V¢,n)
X,(t) = 2E(t) cos (4nV) + 2F () sin (4n¥) (2.30)

69



CHAPTER 2. BRANES AND STRINGS 2.3. Cusps and pseudocusps...

where the constants (with respect to n) E(t) and F'(t) are determined by the ‘initial
conditions’ (with respect to n), yieldin@

B(f) = 5 Xolt) = 5 X% (1)
Ft) = m (%Xl(t) ~ cos (40) E(t))
_ mp«ﬂ (20 +1) — cos (40) X', (1))

Note that all this can be obtained for X’ as well.

If one can find m € Z so that X,,(t) = Xo(t), V¢, then X,,(¢) is m-periodic (with
respect to the integer index). In such case, one has X' _ (2mo,, +t) = X' _ (1), Vt,
implying that X', (¢) is 2mo,,-periodic (with respect to the argument). So we want
to determine under which conditions the function X, (¢) is index-periodic, that is,
find m € Z such that X,,(t) = Xo(t), Vt. From Eq. (2.30), it is clear that this occurs
for

km

AmV = 2k = — 2.31
m & m=on, (2.31)

where k € Z. In such case, the function X, is index-periodic: Vt, Xo(t) =
Xm(t) = Xirjou(t); that is, the function X' (t) is (kno,,/W¥)-periodic: it satis-
fies, Vt, X', (t) = X!, (t + kwo,,/¥). Such solution m exists provided the angle W
can be written as

U= gQ , (2.32)

with Q@ € Q[] Thus, for a dense subset of angles in the range ¥ € [~7/2,7/2],

X', (04) and X/, (04) are L-periodic, where we denote by £ = 2mo,,, = 2= the

periodicity, and hence they can be decomposed in a Fourier series to simplify the

analysis.@
Concern over what happens for angles not satisfying Eq. (2.32]) can be alleviated

/

by noting that although the functions X’ (), X', (¢4) are not periodic, they are

arbitrarily close to periodic, and this is sufficient for our requirements here, that is

®In the case where sindn¥ = 0, one has X, (t) = 2E(t) cos (4n¥), ¥n, and E(t) = Xo(t)
21X/, (t). X1(t) =2E(t) cos (4¥) is well defined and F(t) does not appear.

19As an example, let us assume that in our setup, ¥ = Z (i.e. @ = %). Then, according to
Eq. (2:30), X, (t) = 2E(t) cos (2n7/3) + 2F(t) sin (2n7/3), leading to X3(t) = 2E(t) cos (2m) +
2F (t)sin (2m) = 2E(t) = Xo(t), Vt. X,, is 3-periodic; X/, , is 60,-periodic.

20Tt is important to remark that, as one would naturally expect, the periodicity of E(t) and F(t)
is a consequence and not a hypothesis here. Indeed, assuming 4m%¥ = 2kn from Eq. , one has
Xman(t) = X (t+2n0y,) = 2E(t+2noy,) cos(4mW) 4+ 2F (L + 2noy, ) sin(dm¥) = 2E(t+ 2noy,) =
Xo(t+ 2nopm) = X, (t), Vt, n, where we used Eqs. and ([2.28)), and the definition of E(t).
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for our qualitative study. It might also be worth noting that the period can be large,
which might cause problems for our approximation, namely that the end strings are
static over one period — indeed, if the period is very long, the heavy strings cannot
be considered static over such a large time scale anymore.

Finally, recall this specific setup is considered for its simplicity. The conclusions
on the overall periodicity or quasi-periodicity, drawn from the above analysis, are
thought to be generic though, since the configuration choices made here leave the
string’s dynamical properties unchanged. In addition, we studied in the Appendix[A]
how these results on periodicity are modified in a more realistic and more complex

strings configuration, confirming our present results.

Symmetries

To proceed, let us focus on the symmetries between the two movers on the string.

Using Egs. (2.22), we obtain
1

X' (—t) = T o’ 0 (1 —tan®¥) X', (t) — 2tan ¥ X', (1)) (2.33a)
X' (—t)= H;ﬁ (1 —tan® W) X' (t) + 2tan ¥ X', (1)) (2.33b)
X, (=) =X, () . (2.33¢)

Since X' (6 —t) = X'(0,t) — X(0,t) we remark that X' (—t) = —X'_(¢), and then

writing the above set of equations in vector notation, we get
X (t)=TX (1) , (2.34)

where the matrix T is defined by

—Ltany o ey —cos(2W) 0 sin(2V)
T = 0 —1 0 = 0 —1 0 . (2.35)
Ztenfe 0 e d sin (20) 0 cos (20)

This matrix is diagonalised by a change of basis, such that the z-axis is parallel to

the o = 0 end string. In this basis, we get

-1 0 0
X ()= 0 -1 0 |X.(t). (2.36)
0 0 1
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Thus, X’ (t) is simply given by a m-rotation of X', (t) with respect to the axis
parallel to the end string.

Note in particular that the square velocity of the string is

[1-X (04) X (0-)] (2.37)

1= (X 00) = (X)) (2.38)

v.v(t,o) =

N — DN~

where Xl‘ and X’j are the components of X’ , parallel and perpendicular to the

(0 = 0) end string, respectively.

2.3.2 The probability of cusps and pseudocusps

Let us recall that cusps appear when the two curves X/, and —X’_ cross each other
on the unit sphere — remembering that | X/ | =1 = |X’| as a consequence of the
Virasoro condition. This is equivalent to defining cusps as points reaching, for some
instant ¢, the speed of light ¢ = 1. Indeed, X(o,t) = 1o (X (o) — X' (0_)) =
X' (04) = =X’ (0-) in the case of cusps.

There is a similar event we will address, and we will refer to as a pseudocusp,
which occurs when the two curves X/, and —X'_ are very close (and we will see how
close, for instance around Eq. in this section’s last subsection) to each other,
without however intersecting, as in Fig. Pseudocusps have to be considered
firstly because when trying to determine statistically the frequency of cusps, one
might not be able to assess very accurately whether two approaching curves actu-
ally cross each other or if they are simply nearby; similarly pseudocusps can also
arise if one tries to estimate the occurrence of cusps numerically because discretisa-
tion would generically generate grid approximations. In addition, being interested
in Gravity Waves (GWs) emitted by the string’s ongoing events such as cusps, it is
important to also compute the gravitational signals emitted from any highly rela-
tivistic region of the string.

In order to investigate the occurrence of cusps and pseudocusps on the string
over a periodic non-dynamical evolution and the influence of several parameters on
such occurrence, we will study the average positions and standard deviation of X',
and —X’ on the unit sphere. We will then relate this probability to the string
and network’s parameters in order to determine the characteristics that can lead to

cuspy events. Note that in the following, a “cusp” refers to either an actual cusp or
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Figure 2.3: Cylindrical coordinates about the z-axis and the angles ¢;(z) for the

description of X’ on the unit sphere. A = %ffé% X' ., as in Eq. (2.51D).

a pseudocusp.

Analytical considerations

Here we define the z-axis as the axis of rotation that relates X/, and —X’ , namely we
align the z-axis with the Xl‘. Then the vectors X’ can be written in cylindrical-like

coordinates about this z-axis as in Fig. [2.3] and parametrised by z, yielding

(M cos ¢y (2),V1 — 22 sin¢y (2), z)

(M cos ¢y (2), —V1 — 22 sin gy (2), z> (2:39)

X (2) =

for z € [Zmin, Zmax] C [—1,1]. The coordinates zp;, and zp.x are defined such that
the curve X/ does not enter in the part of the sphere (respectively) below and
above such altitudes. Note that Vz € [zin, Zmax], there are at least two points on
the curve X' , as explicitely written in the above equation, but potentially more
if the curve is not as simple. In wavier cases, as in Fig. [2.5b, one would need to
define ¢;(2), i € {3,4}, V2 € [Zmin2; Zmax2], and possibly more of such functions,

so that the whole curve is parametrised by z and described by anglular functions
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Figure 2.4: Various X!, curves parametrised by z. In the simplest case (left), X',
is described Vz € [2min, Zmax] Dy a pair of angular functions ¢;(z), i € {1,2}, (as in
Fig. ; each curve (solid and large-dashed) relates to one of these functions. If
the curve is wavier, one needs more functions to fully describe X' , for instance
(right) ¢:(2), i € {3,4}, V2 € [Zmin.2; Zmax2); €ach curve (solid, large-dashed, small-
dashed and dotted) again relates to one of them.

¢i(2), defined on some intervals inclued in [—1,1]. Such 2y, ; and 2ya.x; similarly
bound the extension of this part of the curve. In the following of this subsection,
we consider for simplicity the double-valued curve (where only ¢;(z) and ¢o(2) are
needed) as in Figs. and , without any loss of generality.

Cusps will appear whenever ¢, (z) + ¢ (2) = 7, as represented in Fig. 2.5 which
shows a side view of the unit sphere and a top view of its upper-half. That is why

this is the condition we want to investigate. One has

/ 1 C/Q /
<X+x>0' = Z o/ d0+ X—Q—r(o-"r)

= ! /zmaxdz V1 — 22 (cos ¢y + cos ¢2) (2.40a)

2 (Zmax - Zmin) z

/ — 1 C/Q /
<X+y>0' - Z /2 d(7+ X+y(0+)

1 Zmax
= / dz V1 — 22 (sin ¢y — sin ¢o) (2.40b)

2 (Zmax - Zmin)

min
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(a) Side view of the unit sphere (b) Top view of the upper half-sphere

Figure 2.5: Various views of the X/ and X’ curves on the unit sphere, and the
angular description ¢;(z) in the case of a cusp. The condition ¢ (z) + ¢2 (2) =7
is satisfied at the cusp, while ¢ (2) + ¢2 (2) > 7 between two cusps.

where we used a change of coordinate, parametrising the curve with z as in Eq. ,
and where we have dropped the explicit dependence of ¢; on z for notational sim-
plicity. Recall £ is the periodicity of the X’ loop, which needs not to be the string’s
invariant length L = £/, and can be different for each component.

Similarly, we can write

1 l:/2
(KXo =g [ 7 XX L)

! /zmaxdz (1= 2%) (cos® ¢ + cos® ¢) (2.41a)

2 (Zmax - Zmin) z

min

1 L]2
<X—,i-yX—/|—y>0' = 2/5/2 doy X—/|—y(0-+)X—/|—y(o-+>
1

= /zmaxdz (1 —2%) (sin® @1 + sin® ¢n) . (2.41D)

2 (zmax - Zmin)

min

The sum of Egs. (2.41al) and (2.41b)) leads to

1 Zmax
(X! X o + (X, X))o = —/ dz (1-2%) =(1-2%)., (242)

Zmax — “min J 2z,
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thus providing a direct relationship between (X' X" ), and (X, X', ),. Adding

Eq. (2.42) to the difference of Eqs. (2.41a) and (2.41b), we get

(XL X\ )o = ot / o dz (1 — 22) [2 cos? (—¢1J2r¢2) cos? (—¢1;¢2)

Zmax — Amin Zmin

— cos® (d’l;@) — cos? (@) + 1] . (2.43)

Let us consider the simplifying assumption ¢, (2) &~ ¢9 (z). Note that this approxi-
mation can be easily satisfied when looking at the string with a probabilistic point
of view. Indeed, one can continuously deform the curve X’ to get a symmetric
curve with respect to the (xz)-plane. If this transformation conserves the statistical
description of the curve, it does not change significantly the probability of the curve
to intersect its image under the m-rotation with respect to the z-axis. What should
be conserved in the transformation is only the proportion of the curve reaching a
certain distance to its mean position. It is possible to continuously deform our
curve maintaining such properties, especially if we are looking at a large population
of strings in which tiny variations on each string are smoothed over the number of
them.

Hence, Eq. (2.40a) becomes

1 Zmax
(XL )e = ﬁ/ dz V1 — 22 cos <@) , (2.44)
whilst Eq. (2.43) reads
1 Zmax
(XL, X e~ ﬁ/ dz (1 — 2?) cos® (@) : (2.45)

Let us note that if the string is Straightﬂ the curve described by X!, is reduced
to a point at the x = 1 pole ; the further the string deviates from a straight line,
the further the X/ curve will deviates from this pole. Only wavy strings could thus

generate a curve that spans further than the x > 0 half-sphere, that is further than

211t is interesting to note that our argument here holds for strings stretched between two fixed
points. In particular, a not so wavy string in such a configuration would present on the unit sphere
two curves for X’ , each one centred on a different point lying on the z-axis (in our choice of frame),
such that (X/,), = —(X’), # 0, meaning they can avoid each other. On the contrary, a loop
must have these two curves centred on the centre of the unit sphere, with (X/,), = 0, implying
that they cannot easily avoid each other as long as they remain continuous, that is as long as they
are no kinks on the string. Said differently, each curve cannot lie entirely on a half sphere in the
loop case [41, Chapter 6], while it can in the case studied here.
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the (¢1, ¢o) € [0, 7/2[> half-sphere. Thus, the right-hand-side of Eq. is positive
and it becomes smaller and smaller for wavier strings without changing sign. The
condition we are interested in here is (¢ + ¢2) > 7, since this would indicate that
the curve described by X', on the unit sphere spans over more than a whole half-
sphere, implying a crossing with X’ by symmetry. Namely we would like to find
the parameters for which there is a high probability that exists a z € [zmin, Zmax]
such that ¢; (2) + ¢ (2) > 7, or equivalently such that

cos <¢1 (2) JQF ¢ (Z)> <0. (2.46)

Noting that |zmin| < 1 and zpa < 1, we have 0 < 1 — 22 < 1 for all 2 € [2min, Zmax]

and hence we can rewrite the above condition as

V1 — 22 cos (¢1 (2) —5 ¢ (Z)) <0. (2.47)
The average of this quantity is given by Eq. (2.44) and the fluctuations about this
average are given by Eq. (2.45)). In particular, the standard deviation is
2 ~ / / . Io\2

Fmemoeann) > oo = (XL (245)
Thus, we have the average (which is positive) and the standard deviation of a quan-
tity, for which we want to calculate the probability to be somewhere negative. This
is likely to happen if the standard deviation is larger than a significant fraction of the
average. This means that the probability of the quantity of interest being negative

is significant when

2
2 > /1 _ .2
(6] U( ) COS((¢1+¢2)/2)> ~ < 1 Z< COS ( (¢1 + ¢2)/2 >> s (249)

T

with a being between 1 and 5. It corresponds to a few times the standard deviation
being larger than (or comparable to) the average. To illustrate the idea, let our
quantity X' follow a gaussian distribution; then, for instance o = 2 would mean
that a string should present a significant number of cusps if Eq. was satisfied
for about 2.5% of the points on the string — 20 corresponding to a 95% confidence
level.

Thus, using Eqgs. and we find that there is a significant probability
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of having cusps provided

l+a (A 1+«
(X Xi)o 2 (' |) = A2 (2.50)

« Om «

where we have used that X/, is periodic in £ = 2mo,, (from Eq. (2.31) and below),
defined

A= (A 0,0) =X(om,t) — X(0,1) (2.51a)
1 L]2 1 L/2

A, = —/ doy X', (0y) and A_= —/ do_ X" (0-), (2.51b)
L) _r LJ_r

and used the relations A, = —A_ and &/, = (A+-2-)/h = A,. This is a key
result as it gives a simple way to discriminate between cuspy and non-cuspy strings,
simple in the quantities to compute and in the physical meaning behind inequality
(12.50)).

The prefactor 1+ /o lies somewhere between 1 and 2, the latter being too
conservative (it corresponds to o = 1, meaning there should be cusps only if more
than 15% of the curve satisfy Eq. ) and the former not constraining enough
(where av > 1, that is a very small fraction of the curve satisfying Eq. is
sufficient to generate cusps along the string).

Remember that we have defined the z-axis so that the heavy string at the 0 =0
junction is aligned along this z-axis. Equation implies a minimum distance
reached by the xz-component of X’ (and —X' ) from its average circle, defined as
the circle in the (yz)-plane whose center is at a distance A, from the centre of
the sphere, on the z-axis. This equation can be also understood as implying a
boundary on how irregular the derivatives of the two movers have to be to generate
a substantial amount of cusps.

In order to make a link with the string network’s and the individual string’s
parameters, let us first recall that A is the distance between the two ends of the
string, stretched between the two junctions. Rescaling A by the parameter length
of the string o,,, this gives the distance in the unit sphere between the two average
circles for X/, and —X'. At a fixed length, if A increases, the two circles are
shifted away and the probability of having cusps decreases; at fixed A, if the length
increases, the cumulated length of the curve’s parts reaching the minimum distance
increases too so the number of cusps becomes larger. Hence, the number of cusps

is lower for straighter strings. Moreover, if the string has large-amplitude waves,
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the curves X/ and —X' deviate from their average position and the number of
cusps increases. Therefore, strings with large waves are expected to have more cusp
events. At a fixed length, if the curves have less large waves, they will exhibit a
larger amplitude and thus there will be more cusps. So, a long string with large-
amplitude waves should exhibit more cusps than a short straight string or a small-
scale structured string.

We want to stress again this is a qualitative analysis of a non-dynamical non-
interacting string with Y-junctions, whose aim is to estimate the number of cusp
events. Still, it is important to identify the relevant parameters in such setups and
to understand their influence. This will be done in more details in the following
analysis presented mainly in Section [2.3.3] and linked to some of the usual network

and string parameters [45] in its last subsection.

Pseudocusps and velocity

Let us recall that a pseudocusp is defined as a point at which the left- and right-
movers’ derivatives 3-vectors X/ and X' are very close to each other, enough for

the point to be highly relativistic, but not exactly equal to each other. We define

odlos: = gelos: 4 ¢elos: ¢4 he the null coordinates for which these two vectors are the

closest in this neighbourhood, and denote by 6. the angle between the two vectors

at 05, We also denote

1M = XH(oos 1%) = 1 (XK (051°) — X¥ (o)) (2.52)
and 0" =14 (X{(09%) + X" (0%)) | (2.53)

the half-sum and the half-difference between the left- and right-movers’ 4-velocities,
respectively. Note that, despite what it looks like, we here call I* the half-sum since
the vectors we are interested in are X’** and — X

The 4-vector [* is the 4-velocity at the point of interest and it is a null vector
in the cusp case. In the case of pseudocusps, the time-component [° is also equal to

1, but the norm of the 3-velocity of the string at that point (6<%, 09°") equals

1+ cos(6,)

| =
| .

~1—0); (2.54)

79



CHAPTER 2. BRANES AND STRINGS 2.3. Cusps and pseudocusps...

however, §* is space-like, with 6° = 0 in the time gauge, and

1 — cos(f.)

5 =

rOcfo . (2.55)
The angle 6. can be thought of as measuring the softness of a relativistic part of the
string. The larger it is, the smaller the velocity and the softer the pseudocusp; for
0. = 0, the event is an actual cusp and the velocity reaches ¢ = 1.

We would also like to roughly evaluate the number of pseudocusps statistically.
The problem has to be looked at using the unit sphere description along with the
mean and standard deviation of the curves drawn by X/, (and —X' ). Let us first
recall that a pseudocusp is related to the X/, curve approaching its symmetric coun-
terpart without crossing it, while a cusp is linked to the curve crossing its counter-
part. One can then define for each z the angle 0(z) = 7 — (¢1(2) + ¢2(2)) (or the
appropriate ¢;(z)), such that § = 0 for cusps and # < 0 between cusps. Every pair
of cusps and every pseudocusp is thus related to a local minimum of the angle 6:
if this minimum is positive, as in Fig. the string presents there a pseudocusp,
and if it is negative, as in Figs. 2.6b] and [2.6d, there is a pair of cusps. In addition,
let us define a narrow pair of cusps as a pair for which the minimal angle reached
between the cusps is small (in the negative values), in opposition to a large pair of
cusps, for which the minimum reached is large (and negative). In the first case, the
curves cross each other and remain close before crossing back, as shown on Fig. [2.6b],
while on the second one, after the crossing, the curves spread far from each other
before coming back to their natural half-sphere, as in Fig. [2.6c]

In terms of the relative occurrence of cusps and pseudocusps, a narrow pair
of cusps should be almost as frequent as a pseudocusp, since the probability of
a small, positive minimum is almost the same as that of a small, negative one.
Thus, a string with cusps should also present pseudocusps. In addition, because
minima are more likely to be closer to the mean value of the distance, narrow
pairs should be more frequent than large ones. So one can naively think that there
should be a bit more than twice as many cusps as there are pseudocusps (roughly,
in addition to a few large pairs, as many narrow pairs as there are pseudocusps).
Still, this highly depends on the ratio of the standard deviation by the mean of X, :
a large ratio leads potentially to many more large pairs of cusps than narrow ones
or pseudocusps. Even more importantly, these proportions are strongly influenced

by the definition of pseudocusps, namely by the velocity threshold for a piece of
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e WX L
_1 X-'l- 1 X+
(a) Pseudocusp. 6 = 0. (b) Narrow pair of cusps. 6 < 0.
Zy

(c) Large pair of cusps. 6 < 0.

Figure 2.6: Different cases of cuspy events and the associated local minimum of the
angle = 7 — (¢1 + ¢2) between the curves X/, and X' : (a) a pseudocusp, where
6 ’s local minimum is positive and small; (b) a narrow pair of cusps, where 6 ’s local
minimum is negative and small; (c) a large pair of cusps, where 6 ’s local minimum
is negative and large (in absolute value).
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string to be a pseudocusp: a low threshold gives many more pseudocusps for the
same number of cusps. Since our definition here is somehow arbitrary and would
need additional work to fix a sensible threshold with respect to the emission of

gravitational waves, no strong conclusion can be drawn from such considerations.

2.3.3 Numerical simulation

Method

We develop a simulation of the previously described configuration in order to check
the considerations made and to evaluate the occurrence of cusps and pseudocusps.
Our code depends on both the string network’s and the individual string’s param-
eters — namely ¢ and € — and is based on the following assumptions. Firstly, the
string’s ends are fixed on the heavy strings, being themselves insensitive to the mo-
tion of the light string and to any transfer of momentum, and chosen to be parallel
for simplicity. In addition, the quasi-periodic cases are neglected and the position
and velocity of the string at ¢ = 0 are defined by a Fourier series (i.e. by the ampli-
tude of each mode). These amplitudes are all drawn in [—hy,, ] where h,, is a
prefixed highest value, and the modes are the n first harmonics of the string (up to

n nodes). One has thus

& 27k 2k
X(J,O):iA—i— Zci(hm)cos< i 0) —i—si(hm)sin( T 0> e,
k=1

Om Om Om
e 2rk o . [(27mko ]
+ ,}1 A (hm) cos( - )—l—s%(hm) sm( - ) e,
= 2k
+ E ci(hm) cos( T 0) e, (2.56)
Om
L k=1

where A = (A, 0, 0), 7; are random integers uniformly drawn in [1, n] and all ¢ (h,,)

and st (h,,) yield random real numbers uniformly drawn in [—h,,, h,]. n and hy,

22 A uniform distribution in the interval [—h,,, h,,] has been initially encoded. Note though that
there is a bias: indeed, too large amplitudes can sometimes lead to velocities temporarily above
¢ =1 (depending on the amplitudes drawn). Still, the evolution equation implies that, if at t =0
the velocity is well-behaved and below ¢ = 1, it will remain so during the whole period. The
wrongly-behaved strings are dismissed, therefore distorting a posteriori the uniform draw within
the amplitude interval. It is also important to remark that this choice may affect the probability of
cusps and pseudocusps, as it may favour high frequencies in comparison to, for instance, Gaussian
distributions; still, this is not a problem as our goal here is to look at the influence of some
parameters on the number of cuspy events and not to deliver an exact prediction of this number.
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Figure 2.7: € and (, two of the network’s length scales.

are input parameters of the simulation; they set up the oscillatory behaviour of the
string, fixing a limit to the highest frequency and to the amplitude reached in its
Fourier decomposition.

The parameter length o, and the interstring distance A are also inputs in the
simulation. Indeed, to geometrically set up the system, one needs the end-to-end
distance; additionally, the parameter length of the string is related to the funda-
mental frequency and to how wavy or wiggly the string can be. Clearly, A bounds
Om, since the string cannot be shorter than the distance between its end points; one
can also see that for o, = A (and o, > A), the curves X/, and —X’_ get confined
away from each other in the pole regions and ultimately shrink to a point in the
case g, = A. Since we will be mainly interested in their ratio, we chose to fix A
by assigning to the end points invariable coordinate triplets while promoting o, as
one of the main parameters of the code.

The network’s parameters are often chosen to be &, € and (, representing the
average interstring distance in the network, the coherence length scale (or large-scale
structure) and the wiggliness (or small-scale structure) ; see for instance, Ref. [45].
Equivalently, ¢ is related to small wiggles and to edgy bends on the string, while &
characterises large-amplitude waves. We denote by ripple both of these variations
along the string, wiggles and wiggliness being related to the small-scale structure
and thus to ¢, while (large-amplitude) waves and waviness refer to the large-scale
structure, that is, to £&. Fig. gives a schematic representation of these ¢ and &
length scales.

In our simulation, A can be identified as the distance &] between two heavy

Z3We here consider for simplicity an overall interstring distance & — and generally only one set
of parameters. As discussed in this section’s last subsection, one can also consider that the light
string and the heavy string networks have different characteristics, leading to the definition of &jighy
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strings, even though what matters here is the ratio 2/s,,. Note that this ratio could
also be related to the large- and small-scale structure since a longer string has to
exhibit more ripples, whatever the size of these ripples is. Here, there is no small-
scale structure strictly speaking since the number of modes is quite low. So the
wiggliness ( is not defined and its influence is therefore not addressed. In addition,
there is no clear input for the large-scale structure and its characteristic length &
is to be linked with several other parameters such as the number and amplitude of
the vibration modes at t = 0 or during a period. A crude estimation could be a
fourth of a wavelength of the highest frequency mode present on the string, that is
£ ~ on/2n, where 7 is the highest frequency mode on the string (and not the input
n, which is only a bound on the highest possible mode). One could also consider
the amplitude of the waves, for instance estimating the standard deviation of the
y- and z-components of the position of the string at ¢ = 0. The geometric mean
of these two figures would represent even more accurately the characteristic size of
a wave on the string, taking into account the two directions of extension of such
large-amplitude waves.

Among the other ways to evaluate how wavy the string is, is to use the stan-
dard deviation of the x-component of the left- and right-movers’ velocities, namely
(X', X' ,) — (X2, (and the same with X’ ) since it quantifies how far and how
often the string goes away from a straight(er) position. Indeed, the straight line is
represented by a constant X/, and —X', while a large standard deviation from this
pointlike curve means strong variations in the movers’ amplitudes and smaller radii
of curvature along the string.

Our simulation thus starts from these assumptions and parameters and a sig-
nificant number of different string configurations is simulated. Each string’s (non-
interacting) evolution is then computed over a period. The string is then decom-
posed in a large number of points and the period is decomposed in time lapses.
One can compute the norm of the velocity vector X(a, 0), using the tangent vector
X'(0,0) and the Virasoro condition Eq. (which is thus automatically sat-
isfied). In order to completely fix the initial conditions, that is to fix the initial
velocity vector, we rotate itE] within the plane orthogonal to the tangent vector
X', thus satisfying by construction the Virasoro condition Eq. . To assure
continuity and periodicity, this rotation angle « (o) is given by a Fourier decomposi-

tion: similarly to the initial position, a number of amplitudes are uniformly drawn

and &heavy. In such a scenario, A would be related to &heavy only.
24Before rotation, the velocity vector is such that the boundary conditions are satisfied.

84



CHAPTER 2. BRANES AND STRINGS 2.3. Cusps and pseudocusps...

in an interval [a,,, a,,] and one gets (o) = > 12, 58(ay,) sin (%) One has now
obtained X'(o,0) and X(U, 0), Yo, and the equation of motion Eq. 1’ leads
to the decomposition X/, (0) = X/(,0) + X(0,0), Yo € [0,20,,]. This yields the
complete (non-interacting) evolution of the string over a period of time. Note that
it is checked that the various constraints, such as the Virasoro conditions, are well
satisfied within the whole (¢, 0) € [0, 0,,)* plane.

The number of cusps is found by analysing the curves on the unit sphere and
looking for actual crossings; the velocity is then computed and checked to reach
¢ = 1 within the numerical uncertainties — which are generallyf”] below 107¢. The
pseudocusps are all the other highly relativistic areas; here, we consider as “highly
relativistic” any velocity above 0.999 c. Note that pseudocusps velocities are in a
vast majorityEGI in the range [1 — 1073, 1 — 107%], helping to split between cusps
(1 —v < 107%) and pseudocusps (107% < 1 — v < 1073). Finally, it is checked that
pseudocusps correspond to configurations with a very small gap between the two
curves on the unit sphere; the angle 6, between the two vectors X/, and —X' is
computed and its minimum found (within the grid approximation).

Even though our analysis is performed within a specific setup, our qualitative
results remain valid in the more realistic string configurations. The slow motion of
the heavy strings can be ignored as compared to that of the light strings, whilst
the periodicity can be safely considered as generic. The absence of a dynamical
analysis and interaction between strings, chosen for the simplicity of the computa-
tions, should not modify the way the network parameters influence the occurrence of
cusps and pseudocusps. In conclusion, our setup could represent a network of heavy
and light strings interacting at a time scale which is not too small compared to the
period of the light string’s movement. Hence, the correlation between the network
parameters and the occurrence of cuspy events should be valid independently of
whether our simplifying assumptions are relaxed or not. Appendix [B| presents some

example snapshots of a simulated string.

Description of pseudocusps

In the following, we call computed velocity the one from the simulation’s direct

evaluations, namely the highest velocity locally reached as it has been computed,

25 About 10% of the cusps yield velocities outside a 10~%-wide band around 1, and 3% outside a
10~%-wide band.

26More than 80% of the pseudocusps’ velocities lies below 1—107° and about 90% below 1—1075.
Figures are presented here for the computed velocity.
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0.999 0.9995

theoretical velocity

computed velocity

Figure 2.8: Pseudocusps: theoretically estimated velocity versus computed velocity.
Note that 80% of the pseudocusps present a difference between the two velocities
below 104, meaning that it is represented here by a point in the red shaded area.

and theoretical velocity the value obtained using our model of pseudocusps, namely
the one we got using the approximation (1 — 62/s + 0¢/334) from Eq. (2.54) '] One can
note that the latter cannot be above 1. We obtain a very good agreement between
these two estimations of the strings’ velocity at the pseudocusps.

Figure shows, for almost 4300 pseudocusp@ the computed velocity versus
the theoretically estimated one. The red line draws the equality case and one can
immediately note that vy, < v, (except in very few cases almost not visible on this
plot). This is probably due to the methods used: in the first case, the velocity has
to be above 0.999 whereas in the second one it is always below 1. In addition, the
computed velocity is subject to quite a lot of grid and computational uncertainties
and can thus reach 1 (or even a higher value) fairly easilyﬂ Finally, more than 80%
present a difference between the two velocities which is below 1074,

Note though that all these discrepancies are actually gathering on the same cases.
Indeed, among the 6% pseudocusps with theoretical velocity below 0.999 ¢, 80% give
a computed velocity above 1—1075. Also, almost 60% of the pseudocusps presenting

velocities’ discrepancies larger than 10~* have either an abnormally small theoretical

2"The approximation used here takes into account one more term, even if it is very often in-
significant compared to the numerical uncertainties.

28 About 8% of the almost 4700 pseudocusps studied here are not represented on this plot.

29We found almost 10% of the pseudocusps’ computed velocity above 1 + 107, Recall that our
uncertainties are generally of the order of 1076,
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Figure 2.9: Number of cusps (red) and cuspy phenomena (blue) vs. ratio R(4.1) =
(X4aXia) /12422 . The black dashed line standing at R =1 is splitting the plane in
two parts: non-cuspy strings for low ratios and cuspy strings for high ratios.

velocity or an abnormally large computed velocity.

Occurrence of cusps and pseudocusps

In order to check if the criterion set up in Eq. is actually discriminating
between configurations with cuspy phenomena and those without any cusp or pseu-
docusp, we simulated and studied a significant number of strings (237) within a
variety of parameters. From the X', and —X’ curves, we have calculated both the
number of cusps and pseudocusps and the mean and standard deviation of X/, in
the z-direction. A very good agreement has been found between the presence of
cuspy phenomena and the completion of our criterion.
On Fig. we plot the number of cuspy phenomena versus the ratio
(X4 X) (X4 X0)

Rla=41)= Sretial | {Tiedia) (2.57)
%1 Aa‘ a=4.1 1.24 Ai

where the constrain parameter o can take any arbitrary value. Here it has been a

posteriori fixed to 4.1 f%. Recall that once « is fitted, we are expecting to have only
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strings with no cusps or pseudocusps for a ratio R(a) < 1, and strings with cuspy
phenomena for R(a) > 1. Phrased differently, we should have neither non-cuspy
strings with R(«) > 1, nor cuspy ones with R(a) < 1.

Note though that our statistical approach — both from the definition of the ratio
R(«) and from the number of strings considered — will probably lead to strings in
the tail of the distribution. Indeed, even with the most reliable choice of «, we are
expecting to find a small range of value around 1 for which there are both strings
with and without cuspy phenomena. If such an interval around 1 is not too large, this
is not in contradiction with our previous analysis and does not affect the coherence
of the results presented here.

Each simulated string is represented by two vertically aligned™] dots: we use the
red one to read on the vertical axis the number of cusps, and the blue one for the
number of cuspy phenomena (both cusps and pseudocusps). The shaded coloured
vertical lines are guides to read and have no physical meaning; it also helps to track
points whose vertical coordinate is off the plotted range. The choice of the value
of a and of where we divide the plane in two has to be discussed in view of the
results. Before getting into the details, one can notice that the chosen value indeed
fits with our set of points: on the left of the black dashed line standing at R = 1
are mainly non-cuspy strings, while on the right one we can almost only find cuspy
strings. In addition, as we foreseen the range in which one can find both behaviours
is restricted — roughly between 0.9 and 1.05. This means that strings satisfying the
inequality

Rla=41)21 & (X, X\)>124A% (2.58)

would generally present cusps, and vice-versa.

To be more accurate, let us zoom on what is happening around 0.9-1.1 and let
us discuss the ways to draw the limiting ratio. One may note that different rules can
be set up to cut the plane in two parts (one without and another one with cusps).
Firstly, one can decide to look at the highest ratio associated with a string presenting
no cuspy events in order to fix the separating ratio (let’s call it the Highest with No
Cuspy Fvents ratio, below the HNCE). One can also consider the string with the
lowest ratio and at least one cusp or pseudocusp (giving the Lowest With Cuspy
Fvents ratio, or LWCE). Remark that since the HNCE is higher than the LWCE,
there is a ratio interval in which we found both strings with and without cusps —

again, as was expected. Alternatively, one can choose to look at cusps only and

30Since the two dots stand for the same string, the ratio on the horizontal axis is the same.
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Figure 2.10: Zoom around the low numbers of cuspy events. The vertical lines mark
where the different splitting rules divide the plane.

follow the same method, giving two other boundary ratios (namely the HNC and
the LWC, “C” standing for Cusp(s)). Note that these two new values are higher
than their cuspy phenomena counterparts as pseudocusps are more likely to happen
than cusps for borderline configurations. One thus gets four different ratio values
which can equally be considered as valid turning points. One also has two intervals
within which cuspy phenomena and cusps appear.

Depending on which rule one decides to apply, one gets a different line splitting
the plane, giving a different value for a. Again, this does not affect our conclusions
since we obtained quite close values, between 0.9 to 1.05.@ In each of the two in-
between intervals, we obtained strings with a small number of cuspy phenomena:
less than 4 cusps or less than 5 pseudocusps. Also, for larger ratios, we only get very
few strings presenting so few cuspy phenomena and these have all reasonably small
ratios. These results confirm the expected behaviour, apart from the exceptional
strings lying in the tail of the distribution and thus not giving the typical response,
which are within an anticipated range.

Figure focuses on the bottom left corner of Fig. and has been divided
into two plots: on the left and in red, Fig. shows the number of cusps only
versus the ratio R(4.1) and on the right and in blue, Fig. does the same for all

cuspy events. On each of them, two of the four aforementioned ratios are represented

31'We decided to neglect the two strings (over 237) presenting exceptional behaviours: one with
no cusp and a quite high ratio — compared to the second-highest ratio for a string with no cusp —
and one with a very large number of pseudocusps but a low ratio and no cusp. They are thought
to be statistically irrelevant.

32 Again, the shaded coloured lines connecting points are guides for reading and help to track
points off the plot.
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by solid coloured lines: two red lines for the LWC and the HNC on Fig. and
two blue ones for the LWCE and the HNCE on Fig. [2.10b] Note that on Fig.
is also displayed a blue dashed line marking the HNCE ratio (i.e., the highest of the
two ratios for all cuspy phenomena); it is lying roughly in the middle of the interval
considering cusps only (on the graph, the two solid red lines).

We would like to determine a value for the ratio which splits the plane into two
regions (without and with cuspy phenomena), knowing that in a small neighbour-
hood around this value one should expect to find irregularities, which we hope to

be sufficiently rare and small. One can see that the HNCE ratio satisfies our needs:

e on the left (i.e. for smaller ratios than the value of the HNCE) one can find
only strings with no or one cusp, and strings with at most five cuspy phenom-

ena — most of them presenting no cusp and no pseudocusp);

e on the right (i.e. for higher ratios) lies only strings with at least two cusps and
pseudocusps, most of them presenting more than three cusps and five cuspy

phenomena.

In addition, recall that our analytic work to find the ratio R(«) is identifying
cusps and pseudocusps (see Section , so the most meaningful turning point
values we found are the ones related to all cuspy phenomena (HNCE and LWCE).
Hence the choice we made at the beginning to set a = 4.1. It is important to notice
that while the number of pseudocusps depends on their a priori, arbitrary definition,
in particular on the threshold velocity (1 —1073), the value for a does not, as can be
seen from the values of the LWC and the HNC, which are within 5% of the HNCE.
Also, while Eq. gives a solid criterion, there is room around R(«) = 1 for
slightly skewed strings lying in the tail of the distribution (strings with a few cuspy
events but for which R(a) < 1 or without any cuspy event although R(a) 2 1),
but again this is due to the statistical treatment here and does not affect our main
result.

While the value of o depends on the sample used to fix it, what is crucial here is
that there is a value such that this ratio allows to discriminate between cuspy and
non-cuspy strings, and that this value somehow lies within 2.5 and 5 (corresponding
here roughly to choosing the threshold to be the HNC or the LWCE), whatever the
sample. More strings, implying more strings in the tail of the distribution, would
yield smaller LWC(E) and higher HNC(E). Still, one would fix a turning point
around the same values, for instance using a combination of these limits. Again,

the statistical point of view assumed here means that the tail of the distribution
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populates a zone around this turning point, without limiting its interest. Its precise
value is somehow arbitrary; whether it corresponds to the HNCE is not crucial, and
has to be decided a posteriori anyway.

We have thus set up here a quick and efficient method to discriminate between

cuspy strings and non-cuspy ones.

Number of cusps and pseudocusps

One can now try to find which parameters influence the number of cusps and pseu-
docusps on a string. As we have seen already, there is a strong dependence on the
interstring distance A = ¢ and the parameter length of the string ,,, — or rather on
Ao, — as well as some important correlation with the mean squared z-component
of the string’s movers’ derivatives (X’ X’ ) and (X' X' ).

A few remarks first. Recall we study how the quantity of cusps or pseudocusps
is influenced by the parameters of the strings network. Therefore, we do not try
to compute the number of cuspy events in a real, physically accurate system. The
abundances obtained below should then be interpreted with respect to one another,
and not as absolute figures. In addition, our simulation choices, in particular the
spectrum of vibration modes at ¢ = 0, seem to favour strings with a large number
of cusps. Indeed, a uniform distribution yield higher amplitudes for high frequency
modes than, say, a Gaussian distribution, thus favouring high velocity points. This
might explain, at least partly, the difference between the usual, analytic (loop) mod-
elling, with one to two cusps [43], and our simulation, with up to hundreds of cuspy
events. Another explanation might also be the understandable need, in analyti-
cal derivations, for simpler strings, as well as the different physical configurations
(namely loops). In fact, one could argue that this bias, yielding a whole gradation
from none to many cusps, allows for a more accurate investigation of the influence
of the strings network parameters.

In order to understand these relations in more detail, we first analyse the influ-
ence of the Fourier modes initially implemented in the string and found that only
the z-modes™| influence the number of cusps, both via the number of modes n and
their amplitudes A,(f), k € [1,n]. Indeed, the z-component of the string’s initial
position vector X, (o,t = 0) has been decomposed in n Fourier modes, with A,(f) the
amplitudes. On Fig. 2.11] we plot the root mean square of the amplitudes, that is

33The y- and z-modes are not found to be correlated to the number of cusps. The number and
amplitudes of these modes are only indirectly linked to those of the x-modes via |X’Jr ’2 =1.
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Figure 2.11: Root mean square amplitude of the z-modes versus number of
x-modes. From red to purple, strings with 0 to between 120 and 1000 cuspy events.

\/ % Zzzl(A,(f))Q, versus the number of modes; a colour gradient is representing the
strings grouped according to the number of cuspy events (from 0 in red to above 120
in purple). It is first obvious that more modes imply a lower RMS amplitude. This
is due to the physical constraint to have no supraluminal points on the string@
In addition, one can note that a low number of z-modes imply a low number of
cusps, especially for low RMS amplitudes. Also, many modes generate strings with
statistically many more cusps. For a fixed number of modes, higher amplitudes are
associated with strings with more cusps, whereas at a fixed RMS amplitude, more
modes imply more cusps. This is to be expected for several reasons. First of all,
a higher RMS amplitude as well as more modes imply more energy in the string’s
vibrations. More energy means a higher average energy and favours highly relativis-
tic points. On a more specific point of view, these high amplitudes and numerous
modes imply large deviations from a straighter line, both for the physical string and
for the curves X/, and —X’_. This implies a wavier string, hence more crossing on

the unit sphere.

34This constraint is enforced during the evolution of the string but has to be carefully checked
at t =0.
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Figure 2.12: Number of z-modes versus root mean square velocity of the string.
From red to purple, strings with 0 to between 120 and 1000 cuspy events.

One can then study the correlation with the RMS velocity of the string, which
is related to what we just mentioned; we plot it on Fig. the number of z-modes
versus the (time-averaged) root mean square velocity (along the string) | Again,
a colour gradient is representing the strings grouped according to the number of
cuspy events (from 0 in red to above 120 in purple). One can first notice that the
RMS velocity reaches a maximum around 0.7-0.71. This is due to the Virasoro and
gauge conditions used on the finite string; indeed, it implies for the RMS velocity:
V2 <1l & v < 7 ~ 0.707 (the equality being realised for loops).

In addition to the previously studied correlation between the number of cuspy
events and the number of z-modes, there is a strong dependence on the RMS velocity
of the string, as expected. One can split the set of strings into four groups according
to their RMS velocity: below 0.58, between 0.58 and 0.67, between 0.67 and 0.69
and above 0.69. While the first subset of string shows no cusps or pseudocusps, the

last one contains almost all the strings with more than 120 cuspy events and almost

35We here call ‘RMS velocity’ the time average of the root mean square velocity computed along
the string, that is, on ¢. Indeed, while one could have computed the full RMS velocity, as in
(X2t~ [[dodt X2 (0,t), it made more sense to compute the time average of a quantity related
to the energy of the string, that is, the time average of the RMS velocity (along the string), as in
(Ex): where E2(t) ~ (X?),(t). Both are bounded by /1/.
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Figure 2.13: Bar chart of the percentage of the strings within a CP subset whose
RMS velocity lies in each interval. Same colour representation as previously.

no string without any.

To be more explicit, for each subset of strings grouped according to the number
of cuspy events, Fig. [2.13]| shows the percentage of strings in each interval of RMS
velocity. One can indeed notice that in the highest interval (that is for RMS velocity
above 0.69) one only finds a few of the strings without cusps or pseudocusps (about
8%) but most of the strings with more than 50 cuspy events (80 to 90% of them). We
also computed the average number of cuspy events in each of the four RMS velocity

subsets and obtained the results given in Table There is again an interesting

Average number of

MS veloci i
RMS velocity range cuspy events per string

[0.50, 0.58] 0. 0.
[0.58, 0.67] 43 +15
[0.67, 0.69] 21 +3.9
[0.69, 0.71] 130 +16

Table 2.1: Average number of cuspy events per string,
within each range of RMS velocity.

correlation between the RMS velocity of the string, which is closely related to the

energy of the string, and the number of cusps and pseudocusps.
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Figure 2.14: Radius of curvature and its standard deviation. Same colour repre-
sentation. On each subgraph, the solid line marks the mean within the subset and
the shaded area represents 5 times the standard error.

Finally, and in order to return to a previously mentioned concern, one might want
to look at the correlation with the radius of curvature along the String.@ Indeed,
it can in turn be linked to the large-amplitude waves’ characteristic length since it
represents the average size of waves on the string; note though that it is several
times larger than the characteristic length since it also takes into account the flat
parts of the string between such waves.

With this in mind, we plot the standard deviation versus the (mean) radius of

36We are here dealing with the radius of curvature averaged along the string. For clarity, in the
following we call (mean) radius of curvature the time average of the already space-averaged radius
of curvature for each string separately; the standard deviation of the radius of curvature is then the
deviation during a period of time from this average. We thus end up with two figures per string.
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curvature for each string. We split up the set of strings according to the number
of cuspy events and also draw the superposition of all the subgraphs. Figure [2.14]
shows, from top to bottom and from left to right, the ten subgraphs along with the
overall graph in the bottom left corner. For each separate subset has been computed
the mean and the standard errorﬁ] of the radius of curvature, showing how it evolves
with the number of cuspy events. They have been added via a solid line on the mean
and a coloured shaded area around it encompassing 5 times the standard error.
First of all, one can notice that the standard deviation grows almost linearly
with the mean radius of curvature, albeit with some dispersion at large values.
More interestingly, the radius of curvature is smaller for strings with many cusps:
this shows again the foreseen correlation according to which a wavier string presents
more cusps and pseudocusps. This can be seen from the overall graph, on which for
instance points with a radius of curvature larger than 200 have generally less than 5
cuspy events, most of them having none. It can also be deduced from the subgraphs
in Fig. More precisely, the mean of each subset is decreasing with the number of
cuspy events: from 210 for non-cuspy strings to 75 for very cuspy ones. The standard
error is also decreasing, apart from the less populated subsets (for instance, subsets
of strings with 1 to 5 cusps and pseudocusps have larger standard errors than the

one for non-cuspy strings since the latter includes many more strings).

Correlation with the parameters of the network

As mentioned previously, we are mainly interested in two networks’ parameters:
the interstring distance ¢ and the coherence length . We have defined A to be
the distance between the junctions, hence it could be considered as the interstring
distance (since it is the distance between two heavy strings) but physically, its
ratio with the parameter length is more relevant. In our simulation, the end-to-end
distance is fixed and the parameter length of the string plays a scaling role. Indeed,
it turns the ratio 2/s, into our length parameter since it gives the sum of the
average vectors (X' ), and (X’ ), — which is along the z-axis — in the unit sphere
description. We can thus associate the interstring distance with this simulation’s

parameters ratio
A
E~— . (2.59)

Om

3THere, the mean and the standard error are computed among the strings of the same subset

on the (mean) radius of curvature, giving us two figures for each subset. Note that we define the

standard error as \/Lﬁ where o is the standard deviation in the subset and Ny is the number of

strings in this subset.
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In the case of a double network consisting of both heavy and light strings, each one is
associated with a set of parameters: &ight, g]ight and Eneavy fheavy. In agreement with
the configuration we are studying, our analysis does not take into account the light
string network’s interstring distance jgne but only the heavy one’s via &peayy ~ 2/om.

The definition of the coherence length is more subtle for several reasons. First of
all, our simulation does not input directly a typical length apart from the minimal
wavelength of the vibrations on the string. Instead, random numbers are drawn
to define the string’s structure, implying that we need to compute the length scale
afterwards. In addition, in our numerical approach, one may use different ways to
define the characteristic size for waves and wiggles on the string and even different
definitions of large-amplitude waves.

Still, let us explore some of the possibilities, starting with the usual definition [45,

54] computing the correlation between two points along the string via

E= /OQUmda (X! (o)X (c+0))s, (2.60)

where (...)s is the average over § € [0,20,,]. However because this computation
implies knowing the whole string’s motion and its decomposition in left- and right-
movers, it cannot be related straightforwardly to the string’s parameters. It is thus
of no use to us here and we need to define our persistence length differently.

In the search for different formulations, one could think of the radius of curvature.
This number defines for each string a condensed typical size of all the ripples on the
string during the whole period. Unfortunately, it takes into account the flat parts of
the string whose radius of curvature is obviously very large. This makes the strings’
radius of curvature difficult to use in order to define a specific length scale but still
allows us to notice some correlation: the number of cusps and pseudocusps grows
with smaller radii of curvature. This means that the information about the large-
amplitude waves is, at least partially, encoded in the radius of curvature even if we
cannot simply access it.

Let us use what seems to be the simplest and most reliable way to define a scale
for the large-amplitude waves on the string: the vibrations’ frequency. Indeed, the
modes set up on the string at ¢ = 0 are stable and keep the same amplitude during
the evolution. Even if they can be hidden at a specific time by other frequencies
and not visible when looking at the string itself (or at its radius of curvature), they

are characteristic of the way the string vibrates. Moreover, this parameter can be
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easily controlled by the inputs of the simulation and also evaluated once the string is
drawn. The only remaining issue has to do with the number of the largest frequencies
to be accounted for. Obviously, we could not only use the lowest frequency, that
is, the largest wavelength, because it would not take into account the waves on the
string — especially in our case where the largest wavelength is fixed and equal to
twice the length of the string. We could use the highest frequency only and define
the large-amplitude waves characteristic length directly according to the associated
wavelength. This is not ideal though because there could be configurations where the
highest frequency mode’s amplitude is very small compared to that of the second
highest frequency. This would indeed distort the data by increasing the highest
frequency (compared to the physically relevant one), thus decreasing the interesting
length scale. In general, this definition would also be too sensitive to the high
frequency part of the Fourier decomposition and not enough to the whole spectrum.

One way to deal with this issue is to compute a length scale based on all the
wavelengths A\ = om/k, taking each one into account according to their rank & and
to the associated amplitude Ak.@ Different possibilities have been considered but
what seemed to be the most accurate and the simplest one is to use the average
wavelength A. One has to note first that in order to keep the velocity below ¢ = 1 at
all time, one needs to choose amplitudes such that Ay ~ Ay (under the simplifying
assumption that all modes carry roughly the same amount of energy). Keeping this
in mind, looking at Y~ \/A? + A? is equivalent to considering > .

Hence, we define the coherence length in terms of the mean wavelength \ =
20, Hy /1, giving B

where 7 is the highest frequency mode on the string (and again not the parameter n

of the simulation) and H,, = Y_,_, 1/ is the harmonic series. Recall H, ~ In(n)+~
with v ~ 0.577 and that the difference H,, —In(n) — v is larger than 10% of H,, only
for n < 3, meaning that the approximation is sufficient for our estimation as soon as
n > 3. Finally, note that since the number of modes is quite low in our simulation
(at most 16 modes are taken into account), this cannot overlap with a definition of
the wiggliness (.

We have here estimated the two parameters of our strings’ network in terms

38Even if the amplitudes are drawn in a symmetric interval around 0, one of them being actually
null is statistically insignificant. This implies that the &' wavelength is of the form 2om /k, recalling
that the fundamental excitation has no nodes and thus has a wavelength equal to twice the string’s
length.
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of two parameters of the simulation?] As foreseen, the parameter length of the
string o, plays an important role, both for defining the interstring distance and the
coherence length. The number of modes seems like the most obvious and accurate

way to define a large waves length scale.

2.3.4 Conclusions and outlook

Gravitational waves (GWs), especially since they have been directly observed for the
first time [4], are at the centre of attention. They are the next tool for cosmology and
high energy astrophysics and should soon give us a stream of new data to analyse.
Similarly, cosmic strings are thought to be unavoidable in most of the cosmic scenarii
and should provide insight into the symmetry breaking they are remnants of or the
theory to which they belong.

In this chapter, after introducing how such strings would appear in Section
and their general properties in Section [2.2] we focused on a particular configuration
made of a light string stretched between two junctions with heavy strings in Sec-
tion 2.3} It is important to note that even if we considered simplifying assumptions,
the overall behaviour and the results should remain in more realistic configurations
as long as the end points of the light string can be seen as fixed during a period
of oscillation. We then looked at highly relativistic points since they are sources
of high frequency bursts of GWs. Such cuspy events appear on a string when the
left- and right-movers’ derivatives are temporarily equal (or approximately equal),
making them reasonably easy to identify. We split them into two classes: the ac-
tual cusps, resulting from crossings of the two movers’ derivatives curves and hence
reaching momentarily the speed of light ¢ = 1, and the so-called pseudocusps, re-
sulting from a close approach between the two curves and hence reaching highly
relativistic velocities, typically below ¢ = 1 by 1072 to 1076,

Since cuspy events emit large amounts of energy in the form of GW Bursts
(GWB), to estimate the signal that could be detected in the neighbourhood of the
Earth by ground- and space-based detectors, one needs to know how frequently
they occur. We have here aimed to quantify this and analyse it in terms of the
parameters characterising the string configuration as well as the string network,
through its parameters ¢ and ¢ (but not ().

Our analytical approach allowed us to identify the symmetries of the problem.

39We used three parameters — A, o,, and 7 — but in fact A is not a variable, leaving two
actual parameters.
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Indeed, because of the boundary conditions, the string moves (almost) always peri-
odically. In addition, on the unit sphere, the left- and right-movers’ derivatives are
related by a w-rotation with respect to the axis parallel to the heavy strings. This
simplifies the problem enough to evaluate the frequency of cusps and pseudocusps
on the string with respect to a few parameters.

We found that cusps should be frequent for strings satisfying (see Eq. )

2
(XX ) >1+&<H>
‘<t +x/0 ~ )

« Om

where X is the left-mover on the string and X', its first derivative (with respect
to its only variable o), |A| the end-to-end vector’s norm and z its direction (the
subscript = thus referring to the projection on the z-axis), o, the parameter length
of the string and o a parameter we subsequently estimated around a = 4.1 1-L. Tt is
important to notice that such cuspy strings should present many important waves.

We then used a simulation to get a statistically important number of strings
within a range of parameters, in order to check this behaviour. The set of 237
strings we obtained presents 8719 cusps and 4659 pseudocusps, i.e. slightly more
than half the number of cusps. We analysed the occurrence of cuspy events with
respect to several other features, confirming our analytical work and the general
behaviour of such strings.

In particular, we first checked that our characterisation of pseudocusps from the
minimal angle between the two curves on the unit sphere is relevant. For instance,
the velocity we obtained from this description is very close to the one obtained
directly from the simulation (within grid and computational inaccuracies). In ad-
dition, the presence of cusps and pseudocusps increases according to the inequality
Eq. , giving us an accurate tool to discriminate between cuspy and non-cuspy
strings. More importantly, it also depends on the number and amplitude of the
vibration modes in the z-direction; this confirms more directly the fact that the
wavier a string is, the more cuspy events it presents.

We also analysed the influence of the RMS velocity on the string: as one could
expect, the more energy there is in the string, the more cusps appear. This is
consistent with the fact that more vibrating modes imply more cusps, since both
indicate more energy. Finally, we found the radius of curvature along the string
is also correlated to the number of cusps and pseudocusps, favouring again the

mentioned behaviour (a smaller radius of curvature is equivalent to more waves,
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which are in turn linked to more cusps).

Expressing the usual network parameters in terms of our simulation’s param-
eters, we refined the link between the numerical description and the way Cosmic
(Super)Strings (C(S)S) networks are traditionally pictured. This should allow fu-
ture work, whether on GWs or on the interacting evolution of the network, to assess,
use and further continue this work.

Indeed, the next step from this work is to look at the importance of pseudocusps
in terms of GWB. Indeed, as we saw, the points around a cusp also reach highly rel-
ativistic velocities and the approximations made in order to obtain the —4/3 slope in
the high frequency end of the GW power spectrum might still hold for neighbouring
points. Said differently, the whole region, around the cusp, which reaches velocities
within, say, 0 < 1 — v < 107°, might as well significantly contribute to the GWB.
An important study would thus be to look at the way the slope evolves with the
velocity, in order to define more pragmatically what a cusp and a pseudocusp arePE]

In addition, one could use this method to conduct a similar analysis on other
string configurations, namely loops or infinite strings — even though infinite strings
have no boundary conditions, making them harder to study in the unit sphere de-
scription. The interactions of cusps with different strings features, Y-junctions and
kinks for instance, could potentially modify their rate of appearance, directly or via
the dynamics of the string network.

Finally, as mentioned initially, the goal is to embed this work in a general accurate
prediction of the signal one could receive and detect in the Earth neighbourhood.
Considering, for instance, a specific brane inflation scenario, leading to a peculiar
CSS network, defined by an interstring distance ¢ and a large amplitude wave scale
¢, one could infer the average probability to have cusps and pseudocusps at a fixed
time. Adding the network cosmological evolution and dynamics, one could compute
the high frequency GWs emissions from such a network and thus the overall signal
received on Earth, to be compared to observations. This would be a very interesting
way to explore and constrain the underlying theory of the universe, whether string

theoretic or not.

40We performed and will soon publish such analysis with M. Sakellariadou and M. Stott. It
turns out our a priori definition of pseudocusps holds very well when considering the slope of the
GWB power spectrum.
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Chapter 3

Modified gravity

String theory was first developed in the late 1940s and the 1950s, to explain the
behaviour of hadrons and therefore the strong force, before Quantum ChromoDy-
namics (QCD) emerged. Even though unsuccessful in this context, it appeared as
a theory of bosons in the 1970s, until supersymmetry was included to allow for the
description of fermions as well. The resulting theories were then understood, in the
middle of the 1990s, as duals to one another and as limits of a more fundamental
10 + 1 dimensional theory called M-theory. Despite the fact that it is still not fully
formalised due to its complexity, such theory is thought and hoped, at least to shed
light on the underlying laws of nature, but also to rise as a theory encompassing
every mechanism of the universe. An absolute necessity is to generate a rich phe-
nomenology from these models to demonstrate their ability to explain the known
and to predict the unknown.

In this chapter, we start in Section [3.1 by looking at the interest of string-inspired
models for gravity and cosmology. This is followed in Section [3.2] by an introduction
on the specific model we will focus on in the following, namely the D-material
universe. In particular, we present the contents of the universe and the resulting
low energy action along with the formalism. The equations of motion for each field,
the scalar dilaton field, the vector recoil velocity field and the graviton field, are
obtained, yielding the basis of the further investigations: in Section [3.3] we assume
spherical symmetry in the late Dark Energy (DE) dominated era to formulate a
lensing analysis; an inflation mechanism is provided in Section in which the
field strength condensate into a slowly varying scalar field, playing the role of the
inflaton; finally, we examine in Section the consequences of our extra fields on
the emergence of a graviton mass and on the refractive index to be considered for
radiation propagation.

These tests of the theory, taking place at several length scales and during various
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cosmological eras, provide multiple ways of constraining the parameters of the model,

such as the string scale M;.

3.1 String-inspired models of modified gravity

About a century ago, in November 1915, Einstein published his equations describing
the entangled dynamics of the gravitational field and the curvature of spacetime on
one side with the energy and matter content on the other, leading to the extremely
successful General Relativity (GR) theory of gravitation. A rich history of experi-
ments and measurements have been used to verify this paradigm, on Earth, in the
Solar System and beyond, up to cosmological scales. In the recent decades, analyses
based on a Friedmann-Lemaitre-Robertson-Walker (FLRW) universe, which follows
Einstein equations in their homogeneous and isotropic form, and on the observations
of light from sources at cosmological distances from us, have given us important in-
formation on our universe, on its content, on its history. Precision measurements
of the Cosmic Microwave Background (CMB) and of its anisotropies [6], of Baryon
Acoustic Oscillations (BAO) and of high-redshift extragalactic type IA supernovae
revealed, under such hypothesis, the energy budget of our current universe, its evo-
lution, its properties such as its topology, down to epochs as early as inflation, which
occurred sometime between 1072¢ and 1073 s after the Big Bang [10].

Nevertheless, there are still many important issues that remain open or not un-
derstood at all, such as the nature of Dark Matter (DM) and Dark Energy (DE),
as well as their relative abundance, respectively 26% and 69% of the current energy
budget of the universe. Furthermore, the problem of the cosmological constant’s
magnitude, the origin and mechanisms of inflation, or the intrinsic nature of space-
time are some of the most challenging issues of cosmology and physics in general, so
far unresolved by the standard ACDM model. The dark sector has been attributed
to (yet undiscovered) particles that may exist in extensions of the standard model,
such as axions, supersymmetry, string theory, higher-dimensional field theories, etc.
Even though there are stringent constraints on the DM relic abundance from direct
and indirect (including collider physics) searches, there is still no concrete experi-
mental evidence of the existence of such particles.

In the late 18" century, Newton’s theory of gravity was extremely well verified by
both experiments on Earth and measurements of the trajectories of celestial objects,

but Uranus’ and Mercury’s orbits presented some discrepancies with the predictions.
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While the former case was resolved by Urbain Le Verrier in 1846 by introducing
new content to the universe, namely Neptun, a modification of the theory was to be
needed to understand the latter one, that is general relativistic corrections.
Similarly, the lack of direct experimental evidence prompted conjectures that a
DM component in the universe does not exist but, instead, the assumption that the
Newtonian gravitational equations describe the universe at galactic scales should be
relaxed: one may have a MOdified Newtonian Dynamics (MOND) at such scales [55].
MOND theories have been embedded in relativistic modified gravitational field the-
ories, where in addition to the graviton field, one has extra scalar and (constrained)
vector modes, the so-called Tensor- Vector-Scalar (TeVeS) theories of gravity [56].
The phenomenology of these alternative theories of gravity is, at present, contro-
versial, in the sense that at least the simplest models of TeVeS theory proposed
initially need significant amounts of DM to be compatible with some of the lens-
ing data, which is in contradiction with their original motivation as alternatives to
DM. Still, the situation of course is far from being conclusive. The cosmology of
TeVeS has also been developed and some interesting links of the vector fields of such
theories with large scale growth of the universe have been proposed, even though
of course their phenomenology is not yet as well studied as the standard ACDM
model. It should be noted, however, that there is no microscopic origin of the cur-
rently available modified gravity (TeVeS/MOND) models, based on some underlying
fundamental physics, and this is in our opinion a major drawback of all such models.
Alternatively, endeavours to quantise gravity, perturbatively and non-perturba-
tively, have somehow flourished into two competing ways leading to loop quantum
gravity on the one hand and string theories on the other. The latter are, so far, one of
the few candidates to be the ultimate, universal, complete theory of nature [22, 23].
Due to the complexity and to the lack of a complete, formal description of string
theory, an effective theory framework can be used [13] to study the low energy
corrections to General Relativity, which, even though unreliable at high energy
scale and thus UV incomplete, provide interesting results. These string-inspired
models of modified gravity are studied in order to explain or predict the cosmological
phenomenology. Indeed, as we know, the ACDM model completed by inflation, even
though so far extremely well verified by data [57], is not the final picture. It has
actually been fitted to explain the collected data with no given explanation, no
fundamental mechanism. On the contrary, string theories, because they bring in

supersymmetry and superpartners (candidates for DM), additional content in the
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universe such as scalar fields (candidates for the inflaton or DE) or extra dimensions
(possibly explaining the observed weakness of gravity with respect to the other
forces), are inspiring, from a more fundamental level. They propose microphysical
mechanisms from which the phenomenology we observe could emerge and their low
energy realisation at least partly merges with the ACDM model.

We will here focus on a specific string-inspired theory, a spacetime foam model,

in order to derive its phenomenology.

3.2 The D-material universe

Modified gravity models involving fundamental vector fields, but quite different
from TeVeS models, may appear as the low-energy limit of certain brane theories
of the type proposed in Refs. [5860]. According to such spacetime foam models,
a 3 + 1 dimensional (Dirichlet) brane universe propagates in a higher-dimensional
bulk punctured by populations of D0-brane (D-particle) defects, which, depending
on the type of string theory considered, can be either point-like or compactified
higher-dimensional 3-branes wrapped around three cycles, thus appearing from the
point of view of an observer on the brane world as effectively “point-like” defects.
The relative motion of the D-particles with respect to the D3-brane leads, from the
brane point of view, to the former flashing “on and off” while they cross the latter,
yielding a spacetime foam structure, hereby the D-foam. The D-particles are only
weakly interacting among themselves, basically through gravitational interactions
since they are massive with masses M/gs (with M; the string scale and g5 < 1 the
weak string coupling), and thus behave more or less as a Dark Matter (DM) cosmic
fluid (sometimes termed D-matter).

They may also interact via topologically nontrivial string interactions with the
remaining content of the universe, namely two stacks of eight D8-branes, at rest in
their lowest energy (vacuum) configuration, open stringsﬂ describing almost all fields
of the universe and whose ends lie on the D-branes, and gravitons propagating as
closed strings states in the bulk. These interactions with strings imply the splitting

of the initial string, the formation of transient string states (stretched between the

In type IIA theory, where our D-particles are DO-branes, conservation laws forbid interactions
with electrically charged matter. In the more phenomenologically acceptable type IIB theory, where
DO-branes are not allowed and D-particles are D3-branes wrapped on three cycles, electrically
charged matter can interact nontrivially with D-particles but these are strongly suppressed with
respect to neutral ones and can thus be ignored. In any case, the model exhibits a natural bi-metric
structure.
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Figure 3.1: Representation of a D-particle spacetime foam model, in which our
universe D3-brane interacts with effectively punctual D-particles, by way of open
strings. In this particular model [58, |61], here given as an illustrative example, lies
a stack of D8-branes in an orientifold structure.

D-brane stack

D-particle and the D3-brane) and therefore the deformation of the local spacetime
proportional to the momentum transfer during the non-elastic collision. Formally,
this means representing the resulting recoil fluctuations as mean-field vector excita-
tions of a stringy o-model that describes the propagation of strings in cosmological
FLRW spacetime backgrounds, punctured by populations of fluctuating D-particles
(see the vertex operators Egs. and (C.12)). Figure [3.1] gives a schematic rep-
resentation of such a brane cosmology.

The recoil velocity of the D-particles during their interactions with the stringy
matter, which leads to a vector field, is thus the main ingredient responsible for the
appealing features of the D-material universe. Interestingly, the non-linear Born-
Infeld type dynamics of the D-matter recoil velocity vector field allows [61} 62] for
the formation of scalar condensates of the corresponding field strength (£, F*))
which is viewed as a homogeneous scalar field with a mild time-dependence, virtually
constant within a given cosmological era. Its value though differs in general from
era to era, hence at an inflationary era, due to the dense D-particle populations
as assumed in Section [3.4] the value of the condensate is much larger than the
one at late-time eras, like for redshifts z < 10, where the lenses of our analysis

and the astrophysical sources of the recently, for the first time directly, observed
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Gravitational Waves (GW) [4] are located.

Interestingly, the direction given by this recoil velocity of the D-particles locally
breaks Lorentz invariance, which is restored on average over small patches of the
brane, that is, over large populations of D-particles, because of the zero vacuum ex-
pectation value of such velocity field. The non-zero variances would, on the contrary,
lead to the interesting effects of the gauge field arising from such velocity field.

In Ref. [61] was put forward a proposal for the role such populations of D-
particles might play in our universe, viewed as a D-brane world, in regards to large
scale structure, that is, that the amount of required conventional DM is reduced. It
was argued that the fluctuations of the recoil velocity of (populations of) D-particle
defects, arising from their interaction with stringy matter, can provide the seeds for
the formation of galaxies, provided their densities are larger than a critical value.
It should be stressed that, since these models are based on string theory, their low
energy effective actions may contain phenomenologically realistic extensions of the
Standard Model, which include conventional DM candidates, such as neutralinos,
axions, etc. The point of view in Ref. [61] as in here, is that the D-particle recoil
velocity fluid may provide an additional component that play the role of a mixture
(as evidenced from the respective equation of state) of DM and DE components,
which was shown to be responsible for large-scale structure growth, in a remote
analogy with the role of the vector fields of TeVeS models?] We here carry on this
approach by using such an additional component to study not only how the D-
particles recoil velocity field plays the role of DM in the late galaxy era, but also
how it can influence at a deeper level the propagation of radiation, as well as a
period of inflation in the absence of an inflaton field with a fine-tuned potential.

As we shall discuss in this chapter, we impose constraints on the density of the
D-particles on our brane world and fine tune the cosmological constant so that the
cosmic concordance model (2, 24, ) (in a standard notation), which best fits
the observations [6], is satisfied within experimental errors for the galactic era. The
spatial flatness €, = 0 is guaranteed in our brane world model by construction
(which is also consistent with our inflationary scenario), viewing our universe as a
spatially flat brane. In general of course, the evolution of the D-particle universe
could be very different from the standard ACDM model.

In the remaining of this ChapterEI closely following results published in [63]

2However, we should stress that our D-brane/D-particle cosmologies are unrelated to, and in
fact are very different from, TeVeS models in both their dynamics and spectra.
3This chapter, as we recall later on, follows closely the results and structure of Refs. [63] and [64].
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and |64], we first review, in Sections[3.2.1/and [3.2.2] the relevant formalism and give

the corresponding effective actions that describe the dynamics of the D-material
universe. Then, in Section we elaborate further on the results of the previous
study on the galactic growth era and analyse the circumstances under which the
D-particle recoil velocity fluid may “mimic” DM in galaxies, via their recoil fluctu-
ations. A lensing phenomenology is presented for some samples of galaxies, which
previously were known to provide tension for modified gravity (TeVeS) models. Then
we discuss in Section [3.4] a cosmic evolution of the D-material universe by analysing
the conditions under which the late eras of this universe associated with large-scale
structure are connected to early epochs, where inflation takes place. We investigate
on whether, and under which conditions, inflation can be induced by dense popula-
tions of D-particles in the early universe, with the role of the inflaton field played
by the condensate of the D-particle recoil velocity fields under their interaction with
relativistic stringy matter. Finally, motivated by the recent breakthrough of the
direct detection of GW [4], we study their propagation in such a background in
Section [3.5] The modifications of the graviton equations are studied, leading to an
effective mass for the graviton. In addition, it is known [65] that the medium of
D-particles may induce a competing effect, namely a superluminal refractive index,
as a result of the gravitational energy of D-particles acting as a DM component.
We examine the relative importance of each effect and hence constrain the graviton
mass using observations. Additionally, Appendices [C|] and [D] review some technical

aspects and other material of our approach.

3.2.1 Low-energy effective action

As discussed in Refs. [59} 61], the following four-dimensional (low-energy) effective
action expresses, in the string frame (with respect to the dilaton ¢), the interaction
of stringy matter on the brane world of three large dimensions with a medium of

recoiling D-particles in the early universeE|

Seff 4p = /d4sc {—\/—_gi G G — Iy e ?+/—det(g+2ra/F) (1 — aR(g))

9s0
—2¢ _ 020
A+ V—9—
K§ K

0

e

Y R(g)+ O ((09))| + S, (3.1)

4Recall that throughout this work, the following conventions are adopted: the metric signature
is (—, 4, +,+), the Riemann curvature tensor is defined as R s =013, + Féw I'¢s— (v < 0)
and the Ricci tensor as R, = R

2N
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where the second term on the right-hand-side is the standard Dirac-Born-Infeld
(DBI) action describing the dynamics of open vector fields on a D-brane world; S,
denotes the matter action, describing the dynamics of matter and radiation particles
on the brane world; G, is a flux gauge field induced by the bulk geometry, one of
the many that in general exist in brane models, which is assumed condensed (.. .))
and whose importance will become clear later on, when discussing the cosmological
constant in Eq. as well as in the inflation analysis of Section ; T3 is
the brane tension, a priori unconstrained; g = det(g,,) is the determinant of the
gravitational field g,,; and gy is the string coupling for constant dilaton ¢y.

For our purposes, the dilaton field ¢ is assumed constant, ¢ = ¢q, implying that
the kinetic term, here O ((8¢)2), can be overlooked. While dilaton stabilisation
can be difficult to deal with, it is not the focus of our work here, which has to do
with the vector field effects. Still, the equations of motion (in particular Eq. )
will provide consistency checks on this matter. In the presence of a dilaton, the
full string coupling is defined as g, = g €?; for the rest of this work we assume
the phenomenological value g2 /(47) = 1/20 that is g ~ 0.8, for which string
perturbation theory is valid.

The vector field A, (of mass dimension one, in our conventions) will denote the
recoil velocity field excitation during the string-matter/D-particle interactions and
has a field strength (of mass dimension two) given by

F.=0,A,—-0,A, . (3.2)
We consider the recoil gauge field mainly confined on the brane world and hence its
dynamics are described by the Born-Infeld square root Lagrangian on the D3-brane
world, which includes a resummation over all powers of o’. Because of the physical
interpretation of the vector field as a velocity field, there is an additional constraint
which A, satisfies; as reviewed in Appendix , see Eq. (and discussed in

Ref. [61]), it basically arises from the standard relativity relation of a four velocity

u*u, = —1 where the contraction is with the metric g,
v 1
AH AV g = —J s (33)

where the right-hand-side arises from dimensional considerations. From now on, this
constraint will be implemented in the action via a Lagrange multiplier A, in order to

be satisfied not only by the background configurations but also by the perturbations.
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The background configurations will be discussed in the following section, mainly

Egs. (3.27) and (3.32)); for more details, we refer the reader to Appendix
The quantity 3 is the four-dimensional bulk-induced gravitational constant de-

fined as
1 _Ve
"13 9520

where V(g) is the compactification volume in units of the Regge slope o’ of the string

M? (3.4)

theory describing the excitations on the brane world and

7T2

a=a'((2) :O/E : (3.5)
in the (open string/brane) model adopted here. The cosmological constant term
A is induced in general by bulk physics [59] and it is a free parameter in the phe-
nomenological approach we follow here. Note that in certain models, it may even

be of anti-de Sitter type A < 0.

Considerations on the vacuum energy

Before proceeding, we should remark for completeness that a basic assumption [61]
underlying is that any mass contribution of the D-particle defects to the vacuum
energy density is considered subleading, compared to the recoil and other terms
present in (3.1). This is because, as discussed in Ref. [58], there are mized sign
contributions to the brane vacuum energy induced by the open strings stretched
between the D-particle and the D3-brane and due to their interaction. The bulk D-
particle populations at various distances, near (less than the string scale) or further
(a few string lengths) away from the D3-brane world, yield, according to string
perturbation theory and for adiabatic motion of the D-particles (given by Gaussian
distribution in the velocities), an induced potential on the brane which is negative
and inversely proportional to 7® in the former case, and positive and proportional
to r in the latter one. Therefore, the overall potential can be tuned, by choosing
the (non-homogeneous) repartition of D-particles near and far from the brane, to
be of the sign and amplitude needed such that it “screens” the D-particle mass
contributions. Thus, while the total brane world’s vacuum energy is constrained by
the astrophysical data, the density of defects on the brane is not.

For future use, we also mention at this stage that the D-particle mass energy

density in the Einstein frame is independent of the dilaton ¢. To see this, let us
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start from the corresponding expression in the string frame

string o fuse_d) ND
D—mass dens. —
g0 V)

(3.6)

where M /v, is the number three-density of D-particles on the brane world and V)
is the proper three-volume. Above, we took into account that, since refers to
a contribution on the brane world effective action, where open strings end, there
is a e~? factor in front of the corresponding spacetime integral, which makes the
effective mass of the D-particle M,/gs = e~ M,/ g, given that the string coupling
is g = gs0 €®. Upon passing into the Einstein frame (designated by a superscript ‘E’
in the appropriate quantities), that is, upon rescaling the spacetime metric by (in
four dimensions)

% Guw (3.7)

the proper volume scales as V3, = e 3V, and hence the energy density (3-6)
contribution to the four-dimensional action ({3.1]) becomes

i —— M, Np —
/d4$ -9 p%frr%ass dens. — d427 _gE gs0 VE = d4I _gE pg—mass dens. (38)
S0 7(3)

E __ -
g,uy_e

that is independent of the dilaton ¢. This will be used below, when we consider
constraints on the vacuum energy imposed by using the dilaton equations of motion.
Such terms escape these constraints. Note that in the Einstein frame, the mass of the
D-brane is fixed to Mg/gs. Moreover, it is in this frame that the standard FLRW
form of the universe metric is assumed, implying the scaling p§ =~ oc a™3,
where a is the scale factor, on account of the assumption of “weak- or no-force

condition” among D-particles [58].E| Thus, in general, taking into account their

SNumerically, if the contribution (3.8)) was unscreened from bulk D-particle effects, it could
play the role of a DM energy density component. In such a case, and under the assumption that
today there are N](DO) D-particles, in natural units, in the brane world, we would have in terms of

2 —
the critical dcnsity today QD _matter = ;Vgé gsojwf\zm N](DO)’ where Hy is tOday’S value of the Hubble
parameter. If this were the dominant DM component, then, to avoid overclosure of the universe,
we should demand that Qp_pagter S Qg?), where QSS) ~ 0.3 is the current value of the matter
density parameter, as measured by astrophysical data [6]. Thus we obtain the following upper

bound for today’s density of the D-particle populations on the brane world

_ Mp, H?
N < 0.9 20 3.9
N VAN (39)

where Mp = M;/gs. Given that Hy/Mp; ~ 10759 and My > 10 TeV, phenomenologically, we

~

observed that this bound is very stringent. However, as mentioned earlier, the presence of bulk
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3 one may absorb such subleading D-particle mass terms contributions

scaling as a~
into the ‘matter’ action S,,. Throughout this work we assume that the vacuum
energy is dominated until the current era by the D-particle recoil velocity effects
— which were shown to scale like a2 after exit from inflation, as can be seen in
Eq. , or in Eq. and the nearby discussion, as well as in Ref. [61].E|
During inflation, as was discussed in [59] and as we shall review in Section the
assumed high density of D-particles implies a constant density of D-particles on the
brane, which contribute crucially to a Starobinsky-like inflation driven by strong

condensate fields of the recoil velocities field strength (F),, F'*")).

3.2.2 Weak-field approximation and background

We next remark that the four-dimensional DBI action (on the D3-brane world) in
(3.1) can be expanded in derivatives, as appropriate for a low-energy weak-field
approximationﬂ compared to the string scale Mg = 1/va, as follows

dety (g + 27/ F,,) = detyg [1 + (27d/)*1; — 2na/)' ] (3.10)
where
1 HA VP 1 HVAp
L = 599 FoF\,, L= —3€ F.F, . (3.11)

In the approach used in Sections [3.3] and as discussed in the following of this

section, the “magnetic” field dual components for the recoil velocity field strength

D-particles, interacting via stretched open strings with the brane world, as well as the bound D-
particles, screen the D-particle mass to an effective one Mp < M/gso. In this case, much higher
densities on the brane world are allowed, as can be seen from the above considerations.

6In other scenarios, even those effects may be screened by the bulk D-particle populations
that accompany the D3-brane world in its travel through the bulk space, and in this way much
higher densities of D-particles bound on our brane universe can be allowed without overclosing the
universe. In fact, in such cases one may use the induced refractive index of the (dense) “D-foam”
medium at late eras in order to explain certain observed delays of the more energetic photons
compared to lower energy ones, from distant active celestial sources such as Gamma Ray Bursts or
Active Galactic Nuclei [65]. On the other hand, under the assumption adopted in the current work
that the recoil effects are dominant until the current era, one obtains as we shall see (in Eq. )
an upper bound for the allowed D-particle densities that is much weaker than the one required to
reproduced these delays.

"Such derivative expansions are appropriate for weak recoil fields, which is the case characteris-
ing the galactic eras of the universe, of interest to us when one consider the réle of the D-particles
as providers of structure growth [61], as a DM component in the lensing analysis of Section
and as a medium altering the propagation of radiation as in Section (3.5} However, as we shall
discuss in Section dense D-particle populations in the early eras can condense and induce
an inflationary era, which is characterised by strong recoil velocity fields. The latter necessitates
keeping the Born-Infeld square-root structure intact.
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are subleading, and thus for us I, will not be considered further. This can be easily
understood once one considers a cosmological (almost homogeneous and isotropic,
slowly time-dependent) vector field background, yielding 0;4; ~ 0, as we will explic-
itly see later in this section. While this is true locally for the lensing analysis and
in a homogeneous universe, it is not on the cosmological scales where magnetic-like
and electric-like contributions are a priori of the same order. Still, these additional
contributions yield at most a factoxﬂ 2 and are thus ignored here. On the contrary,
in the computations of Section (see for instance Eq. (C.12)), these additional
contributions are relevant because of space and time dependences of the vector field
A, and turn out playing an important role.

Upon such derivative expansions, the resulting effective action on the D3-brane

universe, in the Einstein frame (3.7) (denoted by a superscript ‘E’), becomes

T e3%0 A 2¢0 1 T, e%o 1
- 3¢ - ‘ _Z<g,w/guy>+ (&‘F_)R

SeEff 4D = /d493v -9

950 K 9s0 K3
(27 )? Ty e3%0 2 _ 1
— ” - (1—ae P R) 4+ A Ap Al + = )1+ S, (312)

where the last term corresponds to the implementation of the vector field constraint
Eq. using the Lagrange multiplier .

Also, from now on and throughout this chapter, we work with a constant dilaton
¢ = ¢p, thus removing the dilaton kinetic term. This assumption is consistent with
the dilaton equation of motion Eq. derived from the action. In such case,

one may redefine the vector field A, so as to have canonical kinetic (Maxwell-type)

. 2 N2 T. 3¢
A#%AME\/< m)g 3¢ 4, (3.13)
s0

term, that is

which implies that the constraint (3.3)) becomes

~~ 4 2 /T 30 1
A,uAl/gw/: - T2 st :__/j ) (314)
gs0 &
where we defined o »
2 Ty e>%0
jz(mgo?’e . (3.15)

8This influences, for instance, the order of magnitude of the energy density to avoid overclosure
of the universe or the size of the condensate field leading inflation, which have no influence on the
constraints given in this work.

113



CHAPTER 3. MODIFIED GRAVITY 3.2. The D-material universe

Thus, from now on we shall be dealing with the action

Tae3%0  Ae200 1 Ty ebo 1
- —Z<g,wg“”>+(o‘ L +—>R

2
gso Ko Js0 Ko

SéEff 4D — /d437v —g

F? -
- (1—ae™R)+A <AHA“ + Jj) +Sm . (3.16)

where F is the Maxwell field strength for the field ;{u given in Eq. 1} and A is
now implementing the constraint (3.14). Notice that the first three terms on the
right-hand-side of Eq. (3.16]) play the role of a cosmological constant

Tyt A e
= +

Ao = 5
Js0 Ko

1
A=Ay + Z<g’“' g, (3.17b)

(3.17a)

where Ag is the non-conformal part, and bulk gauge field condensates of the form
(G, G") are conformal scalar-like constant terms. Indeed, the full action driving
the dynamics of these bulk gauge fields is generically non-linear — for instance
via a Born-Infeld type term — in these string theory inspired models. While for
simplicity and readability we ignore the details of such dynamics, one can safely
assume it consequently forms a constant condensate, as shown in Ref. [62]. Note
that it can be assumed constant within a cosmological era for the same reasons our
vector field strength F),, can, that is, due to the homogeneity of the universe on
large scales. The curvature prefactor can be identified with the (reduced) Planck

mass, as in

1 1 _OZT3€¢O

2 — — _i_i
2P T 16n G Gs0 K2

(3.18)

A detailed study of the equations of motion and background solutions for the
recoil vector field have been discussed in Ref. [61] and will be reviewed below within
our approximations, as we shall need them to make our estimates of the D-particle
recoil velocity fluctuation effects on the galactic dynamics. The string origin of the
vector field and its construction from vertex operators, as assumed for our purposes
in this chapter, are reviewed in Appendix [C] A complete low-energy action, keeping
all terms, as well as the equations of motion one can derive from it, are also given for
completeness, along with some basic properties and order of magnitude estimates of
the vector field.
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The graviton equation of motion obtained from Eq. (3.16)), on assuming to first
approximation that terms involving p) < E? or derivatives of F'2 can be neglectedﬁ
is given by

o+
oV
(=57

T, e%o 1 —2¢0 [2 1 ~ .~
e L | —5 (M —aeR) FPE, (3.19)

9s0 ’{_(2) 4
1~ ~ o [~ ~ 1 1 1
FF268 A NAFA, — N L[ AJAY+ =T | + <0 A = T
8 2 o/ 2 2
where T, = —2\/%7 gj:’; is the matter stress tensor.

For future use we note that, by contracting the vector field equation of motion

obtained from Eq. (3.16])

B (1—ac™R)|" +22(2) 4, =0 (3.20)

(where the semicolon denotes covariant derivative) with A*, and then applying the
constraint (3.14)), we obtain the following form for the (background value) of the
Lagrange multiplier field

_ 00 [ﬁ (1- ae—%OR)]W , (3.21)
82/ [T .

(Alx))
which we shall make use in the next section when we estimate the recoil effects of
the D-particles on the universe dynamics during the galactic era. An important
point to note, which was the subject of discussion in Ref. [61] and which we only
mention here for completeness, is that the constraint term in Eq. is vital in
coupling the recoil vector field perturbation to the density perturbations through
the </\(x)>AVMEV term in the respective stress-energy tensor obtained from Eq. .

Finally, before we embark on an estimation of the D-particle effects on the galac-
tic dynamics, we would like to comment on the physical importance of the constraints
imposed by the dilaton equation, which should be taken into account despite the fact
that the dilaton is considered to be constant in our analysis. The dilaton equation
of motion, obtained by varying the effective action with respect to the dilaton

9This is because spatial derivatives yield terms proportional to spatial derivatives of the metric,
that is proportional to the Newtonian acceleration ¢’ of a D-particle in the gravitational field of
the galaxy, while temporal derivatives yield terms proportional to the Hubble parameter today H,
which are again suppressed compared with the terms that are kept. See below, Eq. .
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field ¢ and setting it to a constant value ¢, at the end of the variation, reads

Tye® 260 2

3Tye3% 2 A e2%0
+
gso 2

2
Js0 Ko

R=0, (3.22)

where subleading terms, that is, dilaton kinetic terms, terms involving derivatives on
F? or terms proportional to the Lagrange multiplier A, are ignored (see Appendix
for details). Taking into account [61] that for galactic scales the terms o F2 R <
« Ti”g%?) R« 3 T?’QET?O, Eq. (3.22) can be well approximated by

13

oy
e3¢0 ~ _2 A e

~ 5 ,
Js0 3 Ko

(3.23)

which justifies the hypothesis ¢ = ¢, assumed of this Chapter.m In addition, it
implies that the cosmological constant on the brane world Ag, defined in Eq. (3.17a)

with positive tension T3 > 0 (as required for stability), is negative

Ay =~ L (3.24)
2 gso

This anti-de Sitter type cosmological constant would not be phenomenologically ac-
ceptable in the current era, as it would contradict the CMB, BAO and gravitational
lensing data. This can be remedied by assuming that such terms cancel against dila-
ton independent contributions to the brane vacuum energy, coming from appropriate
combinations of the mass terms of D-particles bound to the brane world [59] as in
Eq. , and bulk gauge flux fields inducing condensateﬂ of the form appearing
in the action (3.1)) — which as we shall argue in Section play an important role
for inflation. In this way, during the galactic era, only a small positive cosmological
constant term survives, which plays no significant role on the galactic scale lensing
phenomenology, in accordance to observations. This assumption will be understood
in what follows in the sense that A = Ay + i(gw G") + ... > 0, where ... de-
note potential other bulk D-particle contributions to the brane vacuum energy, here
ignored. Therefore, A¥*¢ is compatible with the bounds on the cosmological con-
stant A from observations in the context of the ACDM model [|6]. Even though this

model provides several terms with opposite signs which can cancel out to leave the

10Using the more complete Eq. G) would yield a constraint of the form 9, [13 2 R] = 0, which

is practically satisfied since R ~ 0 even during inflation and we neglect derivatives of F2.
U These terms are thus treated as scalars in the derivation of the graviton equation of motion.
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appropriate small positive cosmological constant, it does not alleviate the need for

fine-tunning, and thus these effects will not be covered in more details here.

Background field

We can now discuss background field configurations which satisfy the equations of
motion , and , obtained from the actions and . We give
in Appendix [C|a more detailed set of equations, as well as string theory motivations
for the ansatz given here.

For the cosmological time scales we are interested in, in the inflationary analysis
or the graviton propagation (as in Ref. [61]), we consider the FLRW spacetime

metric backgrounds, using cosmic time ¢ or the conformal time 7

gg[I;Rdeo‘dxﬁ = —dt* + a*(t) (dr® + r*d6* + r*sin® 6 dy?) (3.25)
= —a’(n) dn® + a(n)® (dr* 4+ r*d6® + r*sin® 0 dp?) . (3.26)

In such case, using Eq. (C.15]), the dimensionful (dimension [mass]) cosmological
form of the recoil vector field A, and its field strength F},, = 0,4, — 0,A,, on the

D3-brane universe take the form

A = —\/% a®(t) u; | Foi = —\/% aau; (3.27)
with u’ (i = x,y,2) the spatial components of the D-particle recoil velocity and
where the overdot denotes derivative with respect to the FLRW cosmic time ¢ and
o is the Regge slope of the string (of dimension [length]?).

However, when one considers local regions of spacetime, such as a galaxy, of
relevance to phenomenological tests of the model via lensing analyses, discussed in
Section [3.3] the spacetime background is assumed static and spherically symmetric

to a good approximation, of the form

gop dz¥da? = —e"Mdt? 4 £Ma?(t) (dr? 4 r2df? + % sin? fdp?)

_ _ey(\/a:2+y2+z2)dt2 + eC(\/a:Q-i-yQ—‘er) a2(t)(d:l:2 + dy2 —|—dZ2) ’ (328)

where we kept track of the (small) universe expansion at the galactic era through the
dependence of the metric on the scale factor a(t); here r = r(x,y, z) = /2% + y? + 22

in terms of Cartesian coordinates.
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In such metrics, following Eq. (C.13), the recoil vector field can be well approx-
imated by

A(F 1) = % 0 (7,4) VI ()0t — £.)

where t > t..

xXu;

In constructing the local velocity field above, we took into account the non-
clustering effects of the D-particles, by maintaining their spatial trajectories as given
by the geodesics Y(t) in the global case , but replacing the FLRW metric by
the local metric and keeping the explicit time dependence of Y(¢). However,
for populations of D-particles in the neighbourhood of a galaxy, which are relevant
for the lensing phenomenology of Section [3.3] the impact time ¢ is of the same order

of magnitude as the cosmic time t of a galaxy of given redshift z

2
Ho[1+ (14 2)?]

te ~ (3.30)
where H, is the present value of the Hubble constant. Because we discuss redshifts
z < 10, this essentially amounts to setting a(t.) ~ ag = 1 in an order of magnitude,
since in galactic eras the expansion of the universe is assumed small. In addition,
the cosmic time ¢ appearing there coincides with the time of observation, that is,
the present time t = .

The vector field A, in also satisfies the constraint . It can then be
shown after detailed computations that, on account of the constraint, any terms 0; A,
in F}; are subleading compared to 0;A;, and thus from , we conclude
that to a very good approximation

1 ; (a2(tc)

—2H(t) tc) , (3.31)

where H(t) = % is the Hubble parameter at (cosmic) time ¢. As already mentioned,
for lensing measurements the time ¢ is the time of observation, that is today t = t,,
for which a(tp) = 1 in our normalisation. Thus, using Eq. (3.30) and the fact that

for an expanding universe a(t.) = aop%z, with 2z the redshift of the galaxy in the

12We ignore, as subleading, any term in the geodesics of the D-particle associated with the local
acceleration induced by the galactic mass to only keep the fluctuations of their velocity due to their
interaction with open strings representing galactic matter in our brane world. See Appendix [C]for
more details.
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neighbourhood of which we consider local populations of D-particles, we obtain from
(3-31)

1 : { 1—3(142)? } (3.32)

Fu(2,t) = — i (7, 1) v (1+2)2(1+ (1+2)?)

In a similar manner, the “magnetic type” field strength components F;; are much

smaller than F}; as becomes clear from the expression

1 2
Fij = @AJ — @Al = a GZ(t) |:t ¢ (tC) — tC:| 8[1 <€<(r)>uj‘]

a?(t)
et ; N C(r) T a?
= a®(t) = wr! — ux’) (fa ) {t GQ((ttc)) — tc] , (3.33)

where i, 7, k, m,n denote Cartesian spatial 3-coordinates, the prime in {’(r) denotes
derivative with respect to r and [i...j] denotes antisymmetrisation in the respective
indices. We now notice that {’(r) —/TVI—Q, M being the mass of the galaxy, is the
gravitational acceleration induced by the galaxy on a D-particle, which is negligi-
ble compared to the terms we keep here, thus implying leads to suppressed
contributions in the dynamics as compared to the Fy; terms, which we concentrate
upon from now on.

For late (galaxy formation) eras of the universe, we consider populations of
D-particles with fluctuating recoil velocities, which are assumed to be Gaussian

stochastic for simplicity
(umu) =og(t) o™, (um) =0,  oy(t) =alt)*|Bl, (3.34)

in order to macroscopically maintain Lorentz invariance in populations of D-particle
defects. Notice that here, u’ are Cartesian coordinates, which is the reason we
previously were interested in expressing the local metric fluctuations in terms of
such coordinates. The transformation of the result to spherical polar coordinates is

straightforward.

3.3 Lensing phenomenology

In this section, we extend further the study of such models by discussing the role
that the D-particles can play in large structure and galaxy formation. We investigate
whether their effects can “mimic” and duplicate the effect of Dark Matter (DM) and

under which circumstances. Specifically, data from galactic lenses indicate a miss-
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match between the observed baryonic mass content of the galaxy and the strength
of the lensing it produces. This discrepancy is usually accounted for by the inclusion
of DM gravitational sources, however we would like to see if D-particles can play
a similar role. Their statistically averaged recoil velocities induce a modification
to the standard gravitational relation, enhancing such effect on these scales. This
mechanism might then compliment and enhance any DM component which may be
present.

For the current era, of relevance for lensing (and for the graviton propagation, as
in Section , the so-considered range of D-particle densities has to occur within
a reasonably small window, which also ensures perturbation growth and large-scale
structure but does not imply fine tuning of the model’s parameters. Moreover, as
we shall also study further on in Section [3.4.4] the age of the universe in our model
has to match the expected one from the ACDM model.

To discuss the phenomenology of our D-particle universe using galactic lensing
data, we use the action . We shall use the local form of the recoil vector field
Eq. , averaged at the end over populations of D-particles in the neighbourhood
of a galaxy. As mentioned previously, we also assume that at the local galactic level,
any contribution of the four-dimensional brane world vacuum energy A¥*° is small (or
cancelled appropriately), of the order of the observed cosmological constant today,
so that it may be safely neglected to a first approximation when considering the

dynamics at galactic scales, as relevant for lensing.

3.3.1 The equations of motion

Let us now give an order of magnitude estimate of the various terms appearing in the
graviton equation , setting AY*¢ to zero, before we proceed with the detailed
lensing phenomenology. This will be useful in yielding a qualitative understanding
of the order of magnitude of the quantity |5|, defined in Eq. , needed for the
D-particle defects to play the role of DM candidates and providers of large scale
growth structures [61].

To this end, we first notice that, upon using classical backgrounds, which are
discussed briefly in Appendix [C| the penultimate term on the left-hand-side of
Eq. will vanish identically, due to the constraint that such backgrounds
satisfy. In addition, on account of Eq. , the term on the stress tensor propor-
tional to the Lagrange multiplier A yields terms proportional to derivatives of the

field strength, which are suppressed compared to the remaining contributions from
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the vector field (however the reader should bear in mind the aforementioned impor-
tant role of this term in coupling the perturbations of the vector field to the density
perturbations [61], thus leading to the growth of structure).

Moreover, as we discussed above, any spatial (“magnetic” type) components of
the field strength are locally subleading compared to the “electric” type ones Fy;,
which, on account of , implies

tp T 2 ¢(r)—v(r) Jak J G2(tc) ?

FYF,,=—a*(t)e dipu’u oz \ 2 2H(t)t. ) (3.35)
where the local metric that contracts the velocities is given by Eq. (3.28)). For
a lensing galaxy at redshift z, we apply Eq. (3.32)) for today’s observational time
(t = t(), a(to) = 1)

tp T r)—v(r j ‘-7
FF, = — 070 5 adu® v H(2)?, (3.36)
. _ 1-3(1+2)2
with #(2) = | mrop a7 |-

At this point we can take the statistical average of the velocities over populations
of D-particles in the neighbourhood of galaxies, as given in Egs. (3.34)), (C.24])), which
yields

3 O'O(t)2

2

(F"F,) = -J S 3 ()2 (3.37)

QU

We also have, in Cartesian coordinates too, the other components

_36471/
~ = o2 S =SV )
(ELE,) =T —5 g H(2) (3.38)
_ec_l/
where the ... denote subleading terms of order either :1:”% H(z), or xixl %2 H(z)?,

which are ignored to a first approximation.

Einstein’s equations for the lensing system are best described in spherical polar
coordinates (t,r,0,¢) to which the above quantities easily transform to. When
investigating the modified Einstein’s equations, the two components we will use to
find the differential equation system that defines ((r) and v(r) will be the tt and 66

components. In fact, the symmetry of the system we are analysing allows us to set
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¢ = 5. Thus, the 80 component of ﬁ“pﬁ,,p will be given by

(F"Fy) = =T 25 OO n()?, with Th=T% when 0= . (3.39)

Hence, the components we will use in Eq. (3.19) will assume the form

«ﬁaﬁﬁaﬁ» —6j ¢(r)— V(T)H(Z)2 ’
<<Fthtﬂ>> —3j ¢(r)—v(r) 7‘[(2)2 ’
(F7Eop) = =T =85 SO0 922 (3.40)

with o2 (to) ~ |8] (cf. Eq. (3.34)).

Moreover, non-minimal terms in Eq. of the form F2R are also suppressed
and ignored in our leading order estimates below. Taking the above considerations
into account and concentrating on the ¢¢ component of the graviton equation
after taking statistical averages as in Eq. and using Eq. , we approximate

it as follows (the observation time is set to today ¢t = tg with a(tg) = 1)

I{% Js0 4 |
1 ~ 1~ ~ 1
T (F?) = SUFPEy) +... = 5 T
1 e~2%0 7 1
- { +j24 7 (1= 6m° |51 #(2)°) (RZ——R)
| .
4 /2*7|B|H( 2)? + 2§Tt, (3.41)

where the ... denote subleading terms, such as ae2% (F' F,,)) R and terms con-
taining derivatives on F. For ease of presentation above we also took into account
that for the lensing data e$(") (") = O(1), however for the full numerical calculation
presented in Tables and [3.2] these terms were computed explicitly.

To model the lensing systems we shall be looking at, we take the energy momen-

tum tensor to describe an ideal pressureless fluid, thus
T, = —p(r), T, =0. (3.42)

We hence observe from the right-hand-side of Eq. (3.41]) that the recoil velocity
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field contribution to the ¢t component of the stress tensor has the right sign to be
interpreted as a positive energy density contribution.

The quantity

1 _ 1 _i_je*%o (1—6 2|5|H( )2) (3.43)
R K 24 of g y '

plays the role of an effective inverse gravitational constant, which thus depends
on the statistical variance of the recoil field |3|. For the lensing analysis, |3| is
determined from Eq. and M; (the string mass) can take any value such
that M, < 10*® GeV; however the assumption of non observation of large extra
dimensions in current particle accelerators (including the run II of LHC) means
that Mg > 10* GeV.

For concreteness, from now on we set the constant dilaton value to zero ¢y = 0.
We also note at this stage that, in the analysis of Ref. [61], the brane tension was

taken to satisfy
(27a’)? Ty

Js0
In such a case, J = 1 in Eq. (3.15). However, as we shall see in section ,
one cannot obtain consistent inflation for brane tensions for which Eq. (3.44) is

adopted. On the contrary, for the case of consistent inflation (that is when we have

=1. (3.44)

large fields, compared to the Planck mass scale) in which the D-material universe
evolution connects smoothly the galactic structure era to the inflationary era, one
needs J > 1. This will be the case of interest to us in the present study. Again
for concreteness, we consider for the remainder of the section that the brane tension

and the parameter ko (which is phenomenological in our construction) satisfy

Ko Pl

> T a2 (3.45)

ﬁ s
The identification of the parameter #; 2 with half of the (square of the) four-dimen-
sional reduced Planck mass, M3 = (167TG)_1, was chosen so as, on account of

Eq. (3.43), to have
Kop =~ Mp, | (3.46)

given that the term proportional to 5 on the right-hand-side of Eq. is relatively
suppressed for || < 1 (which is the case in late eras). This is desirable from the
point of view of not having significant variations of the gravitational constant, due
to the unobserved (so far) violations of the weak equivalence principle. The reader
should also notice that the choice Eq. necessitates low string mass scales,
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M, < Mp,, as assumed in Ref. [61], if one requires J > 1 in order to satisfy the
criterion for a smooth connection of this era with inflation[™]

Using Eq. , demanding the recoil vector field contributions to the stress
tensor to be at most of the same order of magnitude as the mass terms, and consider-
ing typical values of the mass density p(r) for lenses to be of order p(r) ~ 10719 Mg,
(cf. Table below), we obtain from Eq. the following upper bound on the

parameter |f|

4 L (Mp\* _ o ( Mp\®
Bl gt e (3) ~o e (G0) L e
on account of Eq. . For e.g. M, ~ 10* GeV (used as a concrete case in
Ref. [61]) and taking into account that H € [—1, —1/3], i.e. of O(1), for a redshift
range of interest z € [0, 2], we observe from Eq. that |3] < 107%2.

However, as discussed in Ref. [61], there is a minimum |B|, i.e. a minimum
density of D-particles, that guarantees the existence of a growing model. The reader
should bear in mind that the normalisation of |3] in Ref. [61] was different from the
one used in the present study, since in there a dimensionless factor ¢./ V!, where
t. is the time of contact of the string matter with the D-particle defect, had been
absorbed in the definition of the recoil velocity. More precisely, the relation between
the recoil velocity v™3Y used in Ref. [61] and the dimensionless recoil velocity u used
here is :

MSY i i le
v =u o
For the galactic era, of interest to us here, t. ~ ty ~ Hj U and thus the relation
between the two || parameters, defined through Eq. for the respective recoil

velocities, is given by

Bl ~ o/ Hi |5 (3.48)

with again the notation |3M5Y| referring to definitions used in Ref. [61].
It was shown in Ref. [61] that, for M, ~ 10* GeV, g5 ~ 0.1, growth of structure

due to the recoil velocity field is possible for

|5MSY’ Z 1073 ’

I3If the latter is relaxed, one may consider more general cases, in which the string scale can be
as large as Mp [61] (in such a case the first two terms in Eq. (3.43) contribute more or less equally,
but the last one is still suppressed for small |3]).
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a value which is largely insensitive to the value of M € [10%, 10'8] GeV. This implies
(for the |B| used here)

Ho\? Mpp\?
1Bl >107° (MO> ~ 10712 (ﬁ) ~107% (3.49)

S S

taking into account that Hy ~ 107 Mp,.

The analysis in Ref. [61] assumed a brane tension satisfying Eq. (3.44). As we
shall discuss in the next section, inflation can only be driven by large D-particle recoil
velocity condensates which occur for relatively large brane tensions T3 compared to
those satisfying Eq. . It would be therefore essential to repeat the growth-of-
structure analysis of Ref. [61] for such large values of Tj.

Indeed, relaxing this condition and considering a wider range of values for the
tension does not affect the value that SMSY needs to take in order to ensure the
growth of structure. This is because the dominant terms in the equation governing
the growth of vector perturbations in Ref. [61] have a simple relationship with the
tension T3, such that it appears only as a scaling term. Thus, the vector field
associated with the D-particle recoil velocity excitation always enters a growing
mode for fMSY > 1073, and Ty simply scales the result. As a consequence, by
appropriately scaling the initial size of the vector perturbations in the early universe,
any value of T3 can be made compatible with the growth of structure.

Using Egs. (C.25), in our semi-microscopic model for estimating |3|, we
obtain the allowed range of || and densities of D-particles. Denoting by N](DO)
and N§°) the current (dimensionful) number densities of D-particles and photons,
respectively, and considering My ~ 10* GeVE we get

(0)

~ N. ~ ~
1079 < |8 < 1072 = 10792 < NJ(DO) < 1077¢,%, & <1, (3.50)
i

which serves as an indicative order of magnitude for the required densities so that the
D-matter recoil velocity fluid in this stringy universe can “mimic” DM in galaxies, in
the sense that its contribution to the energy density is of the same order as the mass
density of a galaxy. Upon comparing with the upper bounds on the number
density of D-particles , obtained in the case where the screening of their mass
effects by the D-particles neighbouring the D3-brane world did not occur, the alert

14While the left-hand-side of the bound on |3| is independent of the string scale, the right-
hand-side is quadratic in Mri/pm,; but because the same dependence appears in Eq. (C.25)), the
right-hand-side of the bound on N{’/N(? is string scale independent.
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reader can appreciate the significant increase in the allowed densities in our case,
without overclosing the universe.

In this latter respect some remarks are in order at this point. Although the rest
mass contributions of D-particles have been assumed to be neutralised to a large
extent by repulsive contributions from populations of D-particles in the neighbour-
hood of the brane world [61], it is worth mentioning that if the above upper bounds
on the present-era density of D-particles of (rest) mass M/ gy are satisfied, then the
corresponding contributions to the brane’s vacuum energy (as seen by a comoving
observer, and assuming the D-particles bound on the brane and comoving with its
expansion) would be pp_mass ~ N](DO) M/ gso. Now, assuming that NV(O) = 10° Nk()o),
where Néo) is the current number density of baryons in the universe, and estimating
the baryon density by considering a common proton mass m,, for all species of order
1 GeV, we obtain pp_pass ~ 10748 ,of)o) M/ (gs0omyp), with p](oo) the energy density of
the baryons in the present universe. For masses of M,/g, € [10%, 10'8] GeV, we
obtain that pp_mas € [107%, 1073Y] ,of)o), which means that the overclosing of the

universe is in fact not a problem at all.

3.3.2 The lensing system

After the above generic estimates, we now proceed with the detailed lensing phe-
nomenology. There are two spherical mass profiles which we use for the lensing
analysis. First, there is the Hernquist mass profile, which is used to model the
baryonic mass profiles of the galaxies we are looking at. It is described by
52
My(r) = (fﬂf—:h)Q ) (3.51)
This definition uses the standard Schwarzschild radius parameter, 7, which is related
to the radius parameter which appears in the metric system defined in Eq.
through 7 = €<")/2 . There is also a parameter, r,, which defines a scale for the
core of the mass distribution. This scale is derived from the observable half mass
radius R.. M denotes the total mass of the galaxy.
Second we use the Navarro-Frenk-White (NFW) profile [66], which is usually

applied to model the total DM and luminous matter contributions to a galaxy. It is
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described by

Mypw(7) = % [m (1 + Cf) B ] : (3.52)

Tvir Tvir +7r

where I' = In(1+C) — 1+c’

around 10 based on computer simulations, and r;, is the virial radius, related once

C is a concentration parameter, usually taken to be

again to the observable half mass radius R..
The above mass profiles are used in the equations describing the deflection of
light in our system. The deflection of light in our metric (3.28)) is given by

o0

1 d
Ag0:2/— — 7, (3.53)
r T
2T e

where 7y is the point of closest approach for the light ray and b is the observable

impact parameter of the light ray. They are related to each other through
b = ellro)mvlro) 2 (3.54)

The mass profiles implicitly appear in the above equations through the dependence
of {(r) and v(r) on the density profile p(r), which is derived from the mass profiles.
Similarly, the tt and 66 equations of the graviton equation of motion Eq. , after
using Eqs. and but keeping the non-minimal terms of the form F2R and

the exact exponential structure e”")=<(") and after some mixing and manipulations,

yield
—c”<r>=4”,(;[‘2¢°87r3Gp +3] TBIH(2)* e
[0} Oé
817G p(r) ) + 2 ) + 1Y (3.55)
VH(T’) _ 4,/TIG( |: —2¢0 87T3Gp + E/:| \7|B|H )2 2¢(r)—v(r)
[0} 0]
1 1
+87G p(r) &+~ [C(r) = V(0] + L [C()? =2/ ()], (3.56)

where any information about the mass profile lies in p(r). The limit 5 — 0 naturally
gives back the General Relativity equations. Solving these and using the data we
have for our lenses, for instance Q0142-100, yields the metric coefficients of Fig.[3.2]

We here give the deviation from 41, that is, flat spacetime, which is naturally
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[exp(£(r)) = 1]

2.x107°%+

1.x1078+

5.x107"+

0. +——+—+—+——+—+————+——+—+—f—+—+—+——F—+—————F r(kpc)
20 100 200 300 400 500

Figure 3.2: Profile of the deviation from 1 of the metric coefficients,
(—e’™ + 1) ~ (e£) — 1), for one of our lens, namely Q0142-100.

retrieved at sufficiently large distances.

Finally, the lensing system is described by the thin lens equation, that is

. Das
B =0—Dp(0,M,b) =,

(3.57)

where B is the unknown true angular position of the source galaxy, 6 is the observable
angular position of the source, Dy is the angular distance from the source to the
lens and Dy is the angular distance to the source. There are two unknowns in the
above equation, the deflection angle Ay and B , thus two images of the source are
needed and the data from both are combined to constrain the true values of these
parameters. Note that here we use a concordance cosmological model (2, Qp, Q) =
(0.3,0.7,0), since departures from it lead only to insignificant changes in our lensing
analysis.m The lensing equation is applied independently to the multiple
images of the background source, and solving it we obtain the actual position ,@ of
the source and the mass M of the lens.

To estimate the amount of DM in the system, the lensing mass is compared to

5 As we have seen above, the density of D-particles can be constrained appropriately so that
the Q,, parameter lies within its best-fit value today. The cosmological “constant” contribution
can also be made small as we discussed previously, below Eq. . The flatness is of course
guaranteed by our brane-world construction.
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Salpeter IMF Chabrier IMF

% DM T383 forno DM % DM T33 for no DM
Lens 2 in GR (X107 M) in GR (x 10712 M)
Q0142-100 0.49 0.4 £5.7 0.0072 £0.0960 47.9 £3.0 0.81 +0.05
HS0812+123 0.39 378 +22 0.66 +0.04 67.6 +1.3 1.2 £0.02
BRI10952-012 0.63 —6.3+4.5 — 48.6 +1.8 0.73 +0.03
LBQS1009-025 0.88 64.7 +2.3 1.2 £0.04 81.7 £1.2 1.5+£0.2
B1030+4-071 0.60 59.7+2.1 1.3 £0.04 78.5+1.3 1.74+0.3
HE1104-181 0.73 63.2+1.6 1.1 £0.03 81.9 +£0.8 1.5 £0.1
B1152+200 0.44 25.14+3.5 0.63 +0.09 61.0 +1.2 1.5 +0.3
SBS1520+530  0.71 41.1 +34 0.83 +0.07 67.5+1.8 1.44+04
B1600+434 042 61.4+1.3 1.2 £0.03 78.9 £0.5 1.6 £0.09
HE2149-275 0.60 60.7 1.7 1.1 +0.03 79.7 £0.9 1.54+0.2
Q0957+561A 0.36 76.7 0.5 1.6 £0.01 86.9 0.3 1.8 £0.06
Q0957+561B 0.36 77.44+0.5 1.6 £0.01 87.3 +0.3 1.9 +£0.06

Table 3.1: The best fit values of T3/ to get near zero Dark Matter (DM) for a
galaxy using the Hernquist mass profile. Here Mg = 15 TeV and 2 is the redshift
of the lensing galaxy. The DM requirements in standard GR gravity when
comparing the lensing mass to the stellar mass is also given. Error estimates arise
from errors on the stellar mass content of the galaxies, as presented in [70].

the stellar mass content of the galaxies. The stellar mass is calculated assuming
both a Salpeter [67] Initial Mass Function (IMF) and a Chabrier [68] IMF [ The
IMF is defined as the distribution of stellar masses at birth, and for our purposes it
is relevant as it dominates the conversion of light into mass. It is usually assumed
to be a universal function, although there is some discussion about the exact form
of the IMF. For this reason our analysis presents two choices of IMF, a classical
Salpeter function, which consists of a single power law, therefore along the lines of
a claimed excess of low-mass stars; and a Chabrier IMF, which truncates the power
law with a lognormal distribution at the low mass end, resulting in systematic lower
values of the mass to light ratio. The stellar mass estimates for the two cases were
based on the results presented in Ref. [69]. The stellar mass is measured out to
some aperture radius, and the lensing total mass is truncated to this radius when
comparing the two values.

Comparing the lensing mass and the luminous mass of the galaxies allows us to
estimate the DM content of the galaxies. We can then alter the value of the key
parameter in the D-particle model, that is T30, to give the best fit value of T3/ for

16For details about the different IMFs used here and their meaning, we refer the reader to
Ref. [61].
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Salpeter IMF Chabrier IMF

% DM T3 for no DM % DM T34 for no DM
Lens 2 in GR (X107 M) in GR (x10721M3)
Q0142-100 049 —-29+58 — 46.2 £3.1 0.78 £0.05
HS0812+123 0.39 30.2+25 0.53 +£0.04 63.6 +1.4 1.1 +£0.03
BRI0952-012 0.63 —3.04+4.3 — 50.3 £1.7 0.75 +£0.03
LBQS1009-025 0.88 66.9 +2.2 1.2 £0.04 82.8 +1.1 1.5 £0.02
B1030+071 0.60 61.3 £2.0 1.34+£0.04 794 +1.3 1.7 +£0.03
HE1104-181 0.73 54.5+2.0 0.99 +£0.04 77.6 1.0 1.4 +0.02
B1152+200 044 232436 0.58 £0.09  60.0 1.3 1.5 +0.03
SBS15204-530 0.71 43.8 +3.3 0.88 £0.06  69.0 £1.7 1.4 +0.04
B1600+434 042 64.2+1.2 1.3 £0.02 80.4 +0.4 1.6 =0.008
HE2149-275 0.60 58.8+1.8 1.1 £0.03 78.7+£0.9 1.4 £0.02
Q0957+561A  0.36 749 £0.5 1.6 £0.01  85.8 +£0.3 1.8 +£0.006
Q0957+561B  0.36 74.3+0.5 1.6 £0.01  85.5+0.3 1.8 +£0.006

Table 3.2: As Table , now with the NFW profile.

no DM to be required in these systems. Note that the purpose of this analysis is
not to show the lensing can be explained in the absence of DM, as DM candidates
come naturally with the string model we are working with. However, the results for
T3/ shown in Table [3.1] and represent the upper bound on the value of T35 in
these systems.

We examine a selection of lensing galaxies from the CfA-Arizona Space Telescope
Survey (CASTLES) |71] database. Given our 1-D lensing analysis, we are restricted
to only studying those lenses with 2 images only, as systems with quad images
require accounting for the ellipticity of the lens. We are also restricted to looking at
those galaxies for which there was high quality data for the luminous mass content.
We thus get the list of 11 galaxies for which we present results below. Note that
Q09574+561A and Q0957+561B are both a special case for which one galaxy was
lensing two separate sources simultaneously. The results for the Hernquist profile
are presented in Table[3.1]and the results for the NFW profile are given in Table[3.2]

Note that in the results, using the Salpeter IMF leads to a negative estimate for
the DM content of two galaxies, namely BRI0952-012 for the Hernquist and NFW
profile, and Q0142-100 for the NFW profile. This is a result of the form of the IMF,
which tends to systematically overestimate the contribution of low mass stars when
calculating the stellar mass of galaxies. We include both IMF’s for completeness
and also to show the weak dependence of our results on the specific IMF chosen,

but the Chabrier case is widely considered to be the most evidentially robust for
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precisely this reason [69]. In addition, as shown in [69, 70|, one can note that the
errors given are due to the errors in the astrophysical data (namely, in the evaluation
of the stellar mass) and are, in the vast majority, within 10%. The numerical code
does not amplify nor reduce these errors. Finally, we would like to recall once more
that one can safely assume, between different lenses, a 10% variation of 8 due to a
slight inhomogeneity in the D-particles distribution.

Thus, given the allowed range of values for 3 in Eq. for My =15 TeV, we
would expect T3 to be approximately in the range 107 Mg, < T3 < 107°7 My,. This
result is actually largely insensitive to the value of the string mass scale M. The cor-
responding range of J (cf. ), for ¢g = 0, Mg = 15TeV and phenomenologically
relevant values of the string coupling 87° /g, = O(10?) is then 1 < 10° < 7 < 1012,

3.3.3 Numerical estimates of the modified contributions

We shall now examine some numerical results for different contributions of the gravi-
ton equation of motion, to allow a more intuitive understanding of the different

contributions arising from our model.

1 aTse? ae 200 (FoBF, 3)) N
_ M? & M 2
2,{_% 2950 ( Pl) 4 ( Pl )

4.0 x 1072 | —5.8 T3 x 10%

Table 3.3: Comparison of the values for the different contributions to k7, defined
in Eq. (3.43). Note that the units in the second column are Mp?* since [T5] = M3,

(B, = 3¢"R) & (M) | p(r) (M) | §(F) = § (F*F,)
—4.9 x 10710 | 1.6 x 10717 | 5.8 T36 x 10°

Table 3.4: Comparison of the values for the different contributions to the tt
component of the metric Egs. , ; evaluated for the lens HS0818+123, at
a distance of 15 kpc. Note that the final column is given in dimensionless form
since [T3] = M3,

Table shows the values of the different contributions to /i;f?. The second term
will be of the same order as 1/87G when T33 = 10733 Mg,. Thus, in order to ensure
that there is a negligible contribution from our model to the value of the effective
gravitational constant, we get an upper limit on T30 of 10733 M}, which is satisfied

considering our above estimates. However, more stringent upper limits on this value
come from other considerations, as shown in Eq. (3.50).
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In Table 3.4l we show the values of the standard GR terms and the modifications
coming from our model. The following can be seen: looking at the last item in
the table we can see that this will be of the same order as the GR contribution
only when T33 ~ 107123 M},. Note that the above analysis can only provide a rough
understanding of the relative sizes of the contributions coming from different parts of
the model; a more accurate numerical analysis presented in Table does not make
the same simplifications as the ones that have been taken here, and this accounts

for the difference in the calculated value of T3/ and the one estimated above.

3.4 Inflation induced by D-particles

Another important aspect of D-particles outlined in Ref. [59] is the fact that they
may induce (slow-roll) inflation consistent with the latest cosmological data such as
the Planck survey [10], through condensation of their recoil velocity field. There are
two physically relevant cases, which depend crucially on the size of the string scale
involved. One pertains to large condensate fields, which may arise in the case of very
dense populations in the early universe, and we ensure a smooth connection, in the
sense of a cosmic evolution, between the weak condensates of the recoil velocity field
at late epochs of the universe relevant for galaxy and large-scale structure formation,
with the strong condensates induced by dense D-particle populations in the early
universe. This case, which we shall study in second in Section [3.4.3] is appropriate
for low string mass scales Mg compared to the Hubble scale. The first case pertains
to weak condensates, which are associated with string scales large compared to the
Hubble inflationary scale and will be studied in Section We investigate to
see whether both cases can lead to consistent inflation, compatible with the Planck
data [6], before exploring the connection of successful inflationary period with the

late eras in the final Section [3.4.4] and after some common formalism.

3.4.1 Formalism

Before going to the specifics, it is useful to first introduce the reader to the pertinent
formalism. For the inflationary metric, the background recoil vector field assumes
the form (3.29)) but with the term ¢. being dominant over the term (¢ a(t.)/a(t))? as

a result of the exponential expansion of the universe and the fact that ¢, is of order

132



CHAPTER 3. MODIFIED GRAVITY 3.4. Inflation induced by D-particles

of a few string time scales ¢, ~ v/o'. The relevant background vector field is

Ai(t) ~ égz’j(t) u’ (Z(;;))j b= tc)

1 ; 1 ;
=W e~ — = gy >t~V (3.58)

and the metric g, (¢) is just the homogeneous and isotropic de Sitter FLRW metric
(3.25) with a(t) = ag ef'* and H; the Hubble scale during inflation, which is assumed
constant and of the following order of magnitude H; ~ 1075 Mp; > Hy [6]. Thus the
recoil vector field is assumed homogenoeus and isotropic in agreement with standard
cosmology. This is a feature consistent with the assumption of dense populations of
D-particles in the early universe. As discussed previously, we can covariantise the
background, using Eq. , which satisfies the constraint . The “electric”
field strength corresponding to this case is given by Eq. in Appendix .
Due to the time dependence only of the (cosmological) background there are no
“magnetic” field components, F;; = 0.

We shall adopt a mean field approach, that is, a coarse-grained approximation,
in which we shall consider appropriate distribution functions over the D-particle
recoil velocities, thus treating the ensemble of particles and their properties (such
as their velocities) over a small patch of the universe. We consider distributions of
the stochastic Gaussian type , which preserve the rotational symmetry and
isotropy and homogeneity of spacetime (and are thus consistent with the cosmolog-
ical principle).

As we study later on in Section [3.4.3] inflation may be induced in case there
are very dense populations of D-particles in the early universe, leading to large
condensates of the respective velocity fields. In such a case, the full structure of
the Born-Infeld action (3.1)) needs to be kept to describe inflation. Using Eq.
we do observe that in the Minkowski spacetime, there is an upper bound on the
allowed value of the condensate of the “electric” field ((F,, Fr) = —({(E?a*(t))),
with F% = E* otherwise the integrand of the square root becomes imaginary. This
is the problem of the maximal electric field in the Minkowskian Born-Infeld theory.
However, when we consider the dynamics of inflation, we necessarily work in a
finite temperature formalism, that is a Euclidean time, in order to account for the
(observer dependent) de Sitter temperature characterising the inflationary scenario.
In this case, the Euclidean Born-Infeld action does not have a bounded “electric”

field. Analytic continuation back to Minkowski spacetime can be performed at the
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end of the computations.
From Eq. (3.2]), one can define a dimensionless covariant condensate in the FLRW
spacetime background described by the FLRW metric g;; (3.25)

C(t) = (2na/)’ (FL F™) = (21a)? 2 {(Fos Fo; g g7) = =87 (Fy; Fy; % 5%

= —327° (%)2 (W™ U™ §17Y) = —967 (%)2 os (3.59)

where ufhys = au; is the D-particle recoil velocity in the comoving frame.
During inflation (approximately de Sitter spacetime background), there is a tem-
perature associated with this frame, the so-called Hawking-Gibbons temperature of

a de Sitter spacetime [72]
H

:%’

associated with the observer dependent horizon of the de Sitter spacetime.

T (3.60)

Depending on the relative magnitude of this temperature, we may have a rela-
tivistic or non-relativistic “thermal” motion of the D-particle ensemble. If Mp =
M,/ gy is the mass of the D-particle, set by the string scale My = 1/v/a/, then, for
the case where H ~ H; > Mp, that is when the string scale My < Hy ~ 10* GeV,
we have T'/Mp > 1 and the thermal motion of D-particles may be considered rel-
ativistic. In such a case, and again considering the properties of an ensemble of
D-particles within a small patch of the universe, that is, using a coarse-grained

approximation, a Boltzman distribution of the form

[ @t~ [@pert —an [apper™ . p=lpl >, oD
may be assumed without loss of generality.
The physical velocity u?™® = pP™s /My, = gy pi/M; is now assumed to undergo

this thermal distribution, because it is only in the physical (cosmological observer’s)
frame that such a (observer dependent) temperature can be defined, as explained

above. Thus, over such a patch, the variance ((ufhysu;?hys» (since (uP™*) = 0) can
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then be computed on the basis of Eq. (3.61)) to be of order

2 4 ,—p/T
(g = T gy = S TP

o - ME - M2 [dppPer/T
T\? H; \?
~ 125 [ — ) ~ 1242 T 3.62
gSO (Ms) gSO <27TMS) Y ’p| << ) ( )

during inflation, and that it is approximately constant, decreasing with Hj.
In the nonrelativistic case, that is, when the string scale M is much higher than
the inflationary scale Hj, one has, still using the coarse-grained approximation, a

Maxwell distribution (Gaussian in the velocities) instead, with

/dgp f(p) ~ 47T/dpp3 e—pZ/TMD , (363)
<<uphysuphys5ij>> . 9_520 f dpp5 e P / TMp
g J

- M2 [dpp? et/ TMD

T H;
~ 200 — )~ 2¢s 1. .64
QO(MS> go(?st> < (3.64)

It is important to notice that the correct treatment of a thermal distribution of
recoil velocities requires a Euclideanised spacetime, stemming from the replacement
of the time coordinate with a Wick rotated one, 2° — i7, which is then identified
with the inverse temperature. In this sense, the (dimensionless) condensate of the
field strengths then assumes the following form in an order of magnitude

estimate

CE(t) ~ 96 (Hy/My)* g%, for M, < Hy (relativistic)
~ 327 (Hy /M;)? gso for My > H; (non-relativistic), (3.65)

and notice that this Euclideanised condensate (indicated with the superscript ‘€”)
is positive definite, so large values (much larger than one) are allowed, which would
otherwise have been excluded on the basis of the reality of the argument of the square
root of the Minkowskian Born-Infeld Lagrangian. This Euclidean path integral
was adopted by Hawking in his treatment of the thermal properties of the black-
hole horizon [73], and by Gibbons and Hawking [72] when discussed the de Sitter

temperature, which is of interest to us here.
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3.4.2 The fate of inflationary scenarii for small condensates

We next proceed to consider the possibility of D-particle recoil-induced inflation in
the case where the condensate is a weak field (that is, much smaller than 1), which
pertains either to the case when Mg > Hjy in Eq. or to the case of arbitrary
string scales but with the brane tension satisfying Eq. , which was dismissed
in the lensing analysism Weak condensates characterise the galaxy growth era [61],
and such situations cannot lead to inflation driven by the recoil velocity, as we will
try to demonstrate here. Nevertheless, in such a case, other moduli fields in string
theory, such as the dilaton (for large negative values), can drive a Starobinsky-type
inflation, as discussed in Ref. [59] and reviewed briefly in Appendix [D}

The dynamics of small condensates is described by an appropriate weak-field
expansion of the Born-Infeld square root action of . For our purposes, it suffices
to keep terms up to quadratic order in the recoil field strength F?, leading to the
effective action (3.12). The reader should also recall that we have fixed the brane
tension to for convenience, which results in a canonical Maxwell kinetic term
for the recoil vector field. The latter satisfies the constraint . We also set
the dilaton field to zero ¢y = 0, since our primary purpose here is to examine the
possibility of a D-particle recoil driven inflation.

Using the condensation field
(F?) = —2403a*a’ = 240, Hf M? = Cyy (3.66)

(where Cyy = 1/(2r0/)2 C(t) has dimension [mass|?, C(t) being defined in Eq. (3.59))
and ignoring any matter during the inflationary era, the effective action we shall

make use from now on reads

1 1 1 T
Seﬁ" 4D — /d4.%' vV —g |:—A0 - <g2> - —CM4 + (—2 + a3 + gCM4> R‘| . (367)
4 4 kg g 4

Recall that even though Cy is here treated as a time-dependent scalar field in a
first approximation, it hides in fact a more complex (space- and time-dependent)
vector field structure, which turns out to be the kinetic term of our vector field A,,.
As usual in inflationary considerations, we only consider the vacuum expectation
values of the fields, in order to derive their cosmological evolution and ignoring local

variations or quantum fluctuations. Any term containing derivatives of £ included

17See the discussion around Eq. (3.86) in the next subsection.
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at this level would end up subleading and can thus be, here again, safely ignored.
We define then the following constants

1 1 T. T; A 1A A
=t A=t S e S= i <0 (3.68)
Kig K 9s0 gso Ko o 3 Kp Keft

where for the (non—conformal) cosmological constant we used Egs. (3.17a]) and (3.23))
and defined f, = 3 Z‘* We also define the scalar field
0

o k2 Caig (3.69)

o | =

and we obtain
4 1 -
Supt ap = dx\/_—gHT[—f,iA—D—a—i—(l—i—a)R : (3.70)
eff

where the constant term of dimension [mass|?, D = k23 D = /4 k2% (G, G, cor-
responds to a flux field condensatﬂ as well as potentially other dilaton-independent
terms such as the rest mass contributions of a population of D-particles on the brane

world to the vacuum energy density [59] /7]

Since we are concentrating here on the case of small fields ¢ < 1, this yields

o=iT 1 f 2402 H2 M2 = 2?02 (2L < (3.71)
4 6 M2° 0 Mp, ’ '
where we used o = %2]\}32 and = ~ Mlgl. Recalling H; ~ 10~° Mpy, one has

) 010 N 9
of < —5 =107, (3.72)

Changing the metric g, — gffy = (14 0) g, and defining

o= \/g In(1+0) (3.73)
3 0,0
8“S0_\/;1+0

18See Eq. (3.17b) and recall these flux gauge field condense due to the generic non-linearity of
their bulk dynamics, as in Ref. [62

19See Eq. 1' as well as Eq. 1) in Appendix @
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leads to the following

R=(1+0)[R"+ (9,00°¢)] (3.74)
1 E
V—g= S vV —=g". (3.75)

We hence get the action

1
SSap = <fxx/—¢3;§[RE+%8¢f-—V@®},

~ N %@ ~ 1 g
with V(@)ED+€ - —i—(fNA—E) e_\/;O’ (3.76)

where the flux gauge term D is conformal in four spacetime dimensions and thus
remains constant upon the change of frame. We note that, as in the large condensate
case of the following section, it is this field that drives inflation but the fluctuations
of the recoil velocity inflaton field ¢ are what leads to exit from it. In addition, one
can see the appearance from the curvature term of a kinetic term for our inflaton
field, confirming that it is a dynamic field even though it was not explicit previously
in actions and .

Assuming 0 < 1, then ¢ ~ /1.50 < 1 and thus the field ¢ is also small.
Taylor expanding the exponentials around ¢ ~ 0, one obtains that the effective

(inflationary) potential for small p < 1 reads
~ 1 2 1
D+ = [1-4/Z¢+=*+ 0
r2 (1= 3o o)

< 1 8 4

A—=) 1=+ +0(*
+(5a-2) (1o g row)|
_ ~ 2 /1 _
D—Ff,.gA-l—\/i(——Qf,iA)gp

3\«

+%(—g+4hﬁ)w”+0@%}- (3.77)

V(p) =~

~

We shall now proceed to demonstrate that a purely D-particle recoil driven slow-roll
inflation is impossible, in the case of weak condensate fields. To this end, one needs
to study the slow-roll conditions and the WMAP imposed constraints [5, |L0]. More

precisely, the slow-roll parameters €, n, £, the number N of e-folds, the spectral
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index ngs and the WMAP normalisation [5, |10] read

1 A%
€=3 M3, (7) <1, (3.78a)
V//
n= M2 (7> <1, (3.78b)
V/// V/
Pe V
= —/ 7 dy ~ 60 , (3.78d)
Pi
ns =1—6e+2n~0.96 , (3.78¢)
AN
% = 0.0275 Mp . (3.78f)

We note first that, as a result of the dilaton equation, the condition Eq. (3.24) is
imposed, implying that Ais negative and the coefficients of the linear and quadratic
terms in ¢ that are present in Eq. (3.77) are non-zero. This leads to nontrivial
slow-roll parameters, yielding

1% (Ap)? V' Ap

N:—A = — -
Ve T TN Ty TN

which, combined with the definition of ng, leads to

(A¢)2+2V_”% Vi 3Ap N 1-—n,

=1-6 Yo
" oN? VN T VI TaAN T Ap 2

(3.79)

Since N ~ 60 and Ay < 1, one has (1 —ng) N/Ap > 1 and Ap/N < 1. Hence, to

a good approximation, it gives

Vi N 1-n §<—§+4M)N N 1-n,

1 3 N 1—ng ~ 3N 1—ng

Since \/gN (1 —ng) ~ 1.5 and Ap < 1, the constant term in each bracket in the
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above equation is small and can be neglected. This yields

1 /15 ~ (15 1 ~
— |~ Al — -~ ~2K2 A 81
() 2o (1) lespisadia, s

o
leading to a positive Ay, incompatible with Eq. (3.24]), which is required by the
dilaton equation.

One is then led to the conclusion that no valid scenario exists for small field

inflation induced by D-particles alone.

3.4.3 Inflation for large recoil velocity condensate fields

Let us now concentrate on the low string scale case, where the condensate (3.65)) is
large
M, < Hy ~107° Mp; < Mpy (3.82)

where we used that the Planck data [6] point towards the fact that Hy ~ 1075 Mp,.
In this case, one cannot expand the square root of the Born-Infeld action, but one can

approximate it by ignoring the constant inside, that is the (Fuclideanised spacetime)
action (3.1)) becomes (setting ¢y = 0 from now on)

1 Ty [ce A
2 GG — [ -
4 gso 2 Ko
1 OéTg CS
+ = [ 1+k] \/ = | By
KJ% ( 0 9s0 2 > ( )
where « is given by Eq. (3.5) and the condensate is positive. Let us define the

dimensionless field
Ty [CE(t
o(t) = K3 @’ ®) >0, (3.84)
gs0 2

by means of which the action (3.83)) becomes

Seﬂ‘ 4D = /d4l’\/§

: (3.83)

1 K2 - O
Seff4D2/d4$\/§F [—ZOQ#VQMV—A—E#—(l—l—U)R(g) : (3.85)
0
Before going further, we should make some remarks regarding the magnitude of the

condensate field (3.84]). First of all we observe that, if we were to follow the structure

formation analysis |[61] mentioned in Section using brane tensions that satisfy
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Eq. (3.44)), the condensate field would be small o(t) < 1 since

2
o(t) ~ 29\3/% (ﬁ—;) <1, (3.86)
where we have used Egs. and and the fact that My < Mp (cf.
Eq. (3.82)) to approximate M2 ~ k52 As we saw in subsection m, such weak
condensates cannot lead to slow-roll inflation.

Here we are interested in large field inflation, which, as we try to demonstrate
here, can be induced by large recoil velocity condensate fields o(t) > 1. The latter
condition may be achieved if we relax again Eq. and use large brane tensions,

namely
(2ma’)? T3

gs0
The reader should recall Eq. (3.15) where the parameter J was first defined. In
such a case, we obtain from Eq. (3.84])

=J>1. (3.87)

2
9s0 2 772 9s0 Hy
o(t)  — T ri Hf >~ j(—) , 3.88

( ) 9 \/g 0-+1 \/§ MPI ( )
which can be much larger than one. In this case from Eq. (3.43)) we obtain that
ME = n—lg + £ M2 and k2 is a parameter independent from Mp;. Without loss of
generality one can simply assume the relation (3.45]), used in the previous section for
the lensing analysis, which is consistent with Eq. (3.82)). In such a case one obtains

a(t) ~ 83 g (A}?)Q > 1, (3.89)

during inflation. In the remainder of this subsection we shall stick to this case.

We now proceed to discuss how inflation is induced by such large condensates
and how one can show the induced inflation is of Starobinsky-type [59]. We first
redefine the metric in Eq. as

Quv —7 guu = (1 + U)g,w . (390)

We also define a canonically normalised scalar field

o(t) = \/g ln<1 + a(t)) , (3.91)
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in terms of which the action (3.85)) becomes
. 1 1 p K2 w
SeffllD2 dx\/;? R<g)+§au90890_zguug
0

CeVie (A _ l) 6—2\/@7] L (3.92)

(07 (07

where we took into account the conformal nature of the flux gauge term in four
spacetime dimensions. We may assume now that the flux field condenses into a
constant one, because of the non-linearity of its dynamics, as in Ref. [62], and

contributes to the vacuum energy as

16w =D, (3.95)

as in the previous case. The last three terms in the Euclidean effective action ((3.92))
define the Fuclideanised (superscript ‘€’) effective potential of the ¢ field in the

region of large values (defined with dimensions of [mass|?)

e i i
VE= k2D - (A - 1) e 2Vie (3.94)

«

The reader should take notice of the relative sign of the potential compared to the
kinetic term of the scalar field in , as appropriate for a euclidean effective
action, which is just the effective Hamiltonian of the system. We should now ana-
lytically continue back to the Minkowski spacetime. This implies that, apart

from the time being rendered a Minkowskian signature, 2 — it, the field ¢ acquires

2 2
\/;ga ~ In(ilo]) = In|o| + zg = \/;gaﬂg , (3.95)

where now the field ¢ is real.
Thus, from Eq. (3.94), and assuming that the flux condensate D is of “electric”

type so that under analytic continuation to Minkowski spacetime one has D — —D,

an imaginary part

the potential acquires an imaginary part and is approximated by

3 ~

~ 1 _ “V3¥

Vip)~r2D + (A - —) eVie &0 (3.96)
(6] [0
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Notice that the imaginary part of the potential is the only one appearing in the
analytically-continued effective action , given that the kinetic terms are real,
since the imaginary part of the ¢ field is constant in spacetime.

The presence of an imaginary part indicates an instability of the de Sitter infla-
tionary vacuum which is not an unwelcome fact. The field will roll down towards
smaller values of H2. Eventually, the condensate will become smaller than the
Born-Infeld critical field and hence the imaginary part will disappear. In this regime,
one may expand the square root of the Born-Infeld action, as done in Ref. [61], to
obtain the effective action relevant for the radiation and matter eras.

The imaginary part of the potential gives by definition the width, or equivalently,

the inverse of the lifetime of the de Sitter vacuum, namely

r=hl"'~kKyltae 9 (3.97)

which is sufficiently long (as compared to the reduced Planck time ko) for any
positive value of ¢ ~ v/6 In(Hy/Ms).
The real part of the effective potential ([3.96)

ReV(¢):75+<A—$)e—2 59, D=klD, (3.98)
is of Starobinsky type, provided one can tune the flux-field condensate to be D > 0
and such that the minimum of the potential occurs for the field value » = 0 and
corresponds to zero potential. The quantity A is negative, as a consequence of the
dilaton equation of motion, and in fact can be tuned to the value given by Eq.
in order to ensure continuity of the inflation phase with the growth era. Hence, the
coefficient of the 6_2\/2“7’ term is negative relative to D. Again, an important feature
of the approach here is that it is the gauge field flux condensate (G,,G"") that induces
a de Sitter phase (positive, almost constant, vacuum energy), and hence inflation,
but it is the recoiling D-particles velocity vector field that induces a slowly rolling
scalar degree of freedom that allows exit from inflation.

Now, let us see how one can get slow-roll inflation in this case by evaluating the
conditions (3.78). For large condensate o, one has

~ ~ 1 5 ~ -
V(¢)=D+(A——) e V3P =D Ae P?
«

V'(p) = ABe B% | V(@) = —AB*e % V"(p) = AB*e 5% | (3.99)
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where we defined the constants A = — <|A| + é) >0and B = 2\/§ ~ 1.15. Hence

~ € (3.100a)
A’B* 5. 1 AB? 5 1
~ — o L ~ _ 7B§0 e
~ R © = SgEN? and 7~ 5 ¢ =N (3.100Db)
2
A’BY 5. 1
£~ 5 © 2Be — e (3.100d)
) N
127\ 4 D\*
( Jré ) r~ (—) = 0.0275 Mp, (3.100e)
€ €
~ 5.7x 1077
= D~ (0.0275)" e M ~ N 4 (3.100f)

where the last equation comes from the WMAP constraint [, |10]. So, as is standard
in Starobinsky-type inflation, the constant A is not constrained by the slow-roll
conditions (in our microscopic model, as we have already mentioned, we may tune
it to the value determined by Eq. by demanding continuity of the inflationary
epoch to the galactic-growth era of the string universe). Thus, fixing n, fixes N

(and vice-versa). Indeed, one gets (from solving the second degree trinomial in N
from Eq. (3.100c|) and choosing the positive solution)

N:1—1ns <1+\/1+%) . (3.101)

Planck 2015 analysis [10] gives ngy = 0.968 £+ 0.006 (68% CL, PlanckTT+LowP)

which is shifted towards higher values compared to earlier results, that gave a central

value ng = 0.965. The solid black line in Figure [3.3| shows N as a function of ng
for B = 2\/%. The vertical blue shaded area corresponds to the 68% CL interval
for ng corresponding to the two central values ng = 0.965 and ng = 0.968, while the
horizontal shaded area in red shows the relevant interval for N. The black dashed
lines highlight the central values for ns and the corresponding values for N. One
notes the excellent fitting of the predictions of the model to the data.

If we adopt ng = 0.965, we get N = 57.7, leading to

ex56x10° <1, n=-17x102<1, £€~30x10*<1 (3.102a)
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Figure 3.3: N as a function of ns from the potential The vertical blue shaded

area corresponds to the 68% CL interval for ng around the central values ny = 0.965

and ng = 0.968, while the horizontal red shaded area shows the relevant interval for

N. The black dashed lines highlight the central values for ngy and the corresponding
values for V.

and
D~32x107" My, &  D~32x107" M3, (3.102b)

showing that every constraint related to the slow-roll conditions is satisfied: N ~ 60,
e 1, n<1, £ <1, while the WMAP constraint on V/e gives constraints on the
size of the potential.

The constant A and the value of the field ¢ are not constrained at all so far

except in that their combination A e~5? must satisfy
D> Ae 8% (3.103)

in order to ensure slow-roll. From Eq. (3.100a}), we know

ps D D -

= ~ 104
Ae BN S isxie &P (3.104)

which confirms the consistency of our model.

Note that this result is not very sensitive to the value of B, especially to larger
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B. Indeed, even with B a hundred times larger, the curve is shifted down by less
than 1 unit meaning that N decreases by 1 e-fold. Lowering B would modify a bit
more our results but not much either, since with a B twice as small, N increases
by less than 2 e-folds while with a B four times smaller, NV increases by less than 8
e-folds (reaching about 70 for ns = 0.968).

At this point it is worth making a few important remarks. The considerations
leading to Eq. indicate the possibility of inflationary scenarios for the redefined
metric g, through Eq. (3.90). Nevertheless, for a slowly rolling condensate o(t),
as required during inflation, the original metric is also inflationary, up to a time
coordinate change. Indeed, let us denote by t the cosmic time coordinate in the

g-metric. The latter during inflation corresponds to a line-element of the form
ds® = d? — a(f)*h;(2") da'da?
= (1+o()dt* — (1 +a(t))a(t)’hij(z") da'da’ | (3.105)

in a standard FLRW notation, with ¢ > 1, and where

dt = /(1 +0o(t))dt ~/odt, a(t) = /(1 +o(t))alt) ~oa(t). (3.106)

For a slowly moving o field (almost constant), the two metrics differ by an overal
scale factor, and the corresponding Hubble parameters are related as follows (quan-
tities with a tilde pertain to the metric (3.90]) and the coordinates (3.106]))

1

d _ - 1 (o a 1

since during inflation 6/0 < 1 and can be neglected in front of the H = a/a term

H

js )

(the overdot denotes time derivatives with respect to the cosmic time pertaining to
the initial metric g, ).
Taking into account (3.89) as a concrete example, for My < H;, we can estimate

HEH[N

M

1
V 8\/§ Js0 HI

from which it follows that the inflationary scale of the original metric is much higher
than Hi, of order

(3.108)

H2
Hw\/8\/§gSOMI > H;, M,< Hp. (3.109)
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The reader should bear in mind that above we matched the cosmological observa-
tions [6] on inflation with predictions made by the conformal rescaled metric g,
, and therefore it is the scale H that we call the “physical” Hubble scale
Hy ~ 107 Mp; used in observations [6]. For a smooth connection with the galaxy
data in this case we should use the action with the metric , after the
inflaton decays, that is we should couple it to matter and radiation. At the end
of inflation the condensate of D-particles vanishes ¢ — 0 and the two metrics co-
incide. At the radiation era that succeeds the exit from inflation, the condensate
field o is replaced by the weak field F Wﬁ " and the action describes now the
dynamics. Note that in the discussion in Section the possibility of large brane
tension Eq. , which replaces Eq. , has been taken into account as shown
in Egs. (3.45) and (3.47)

Another important aspect is that the condensate o(t) defined in Eq. , upon
the redefinition of the metric , can be expressed in terms of g, as follows

o= (1+0)% (3.110)

where & is the condensate ((F,,F.s5g"*g"?)), which, because it is a scalar, will
assume the same value if one passes onto the coordinates . For large 0 > 1
one obtains from o~ 1/ > 1. In terms of the ¢ field, the canonically
normalised inflaton field defined in Eq. reads ¢ ~ —In(7).

Finally, before closing this section, it is important to comment on the order of
magnitude of the statistical parameter o2 = nginﬂ during the large-condensate
inflationary era with My < Mp, = /{e_ﬂ}. As we have already mentioned, this param-
eter is assumed constant during inflation, due to the fact that during that epoch
the brane world moves in a bulk region which is densely populated by D-particle
defects, in such a way that there is a large incoming flux of D-particles from the

bulk onto the brane compensating any potential dilution of their population on the
brane due to the brane-universe expansion. From Eqs. (3.62)), (3.89) we estimate

2
90,mfil 90
— )
Oslow—roll 87T2 \/g

(3.111)

200therwise, it would have quantitative consequences in the allowed range of the 8 parameter
and hence in the density of D-particles relevant in late eras. Therefore, one would need to consider
the parameter J |5| to match the DM in a galaxy — see for instance Egs. or — thus
leading to much smaller upper bounds for the density of D-particles in order for them to mimic
DM through their recoil velocity field fluctuations.
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where gow—ron = 8V3 0w (F1/a.)°. For M, = O(10*) GeV, we obtain O =
O(10%6) P

3.4.4 Estimates of the age of the D-material universe

Before closing this section we would like to make some crude estimates of the age
of the D-material universe ¢, in the case where inflation is driven by strong conden-
sates of D-particle recoil velocities. It goes without saying that, without detailed
microscopic models it is not possible to find a precise connection of the value of
o2 ~ || during the galactic era with agﬁmﬁ, which would allow for a precise estimate
of tg. Indeed, this would require knowledge of the bulk distribution of D-particles
from the moment of the exit from inflation until the current era. In our complicated
dynamical system, the equation of state of the pertinent cosmic fluid is not a con-
stant and depends on many factors, including the density profile of the bulk and
brane D-particles at any given era. Nevertheless, one can make some simplifying
assumptions, which allow us to make some estimates of the age of the D-material
universe in a phenomenological context.

To this end, we first recall that in the case of complete dominance of the classical
recoil velocity condensates, based on statistical populations of D-particles whose
dynamics is governed by a Born-Infeld action of the vector field alone, the equation
of state of the recoil velocity fluid would be w = —1/3 [61]. This is the limiting case
(from above) for which acceleration of the universe occurs. From the corresponding
Friedmann equation, that would lead to a linearly expanding universe with the
cosmic time, a(t) ~ t, which is not physical. However, the D-material universe’s
Lagrangian is much more complicated than a simple Born-Infeld fluid. The presence
of matter as well as non-minimal couplings of the Born-Infeld factors with spacetime
curvature (cf. Eq. ), alter the situation drastically and one expects, as already
mentioned, a time (redshift) dependent equation of state for the total fluid, D-
particles and matter strings, wi(2), whose form is currently difficult to estimate
without detailed knowledge of the density profile of the bulk D-particles.

Matter domination era in our case includes contributions to the stress tensor
coming from the recoil velocities of the D-particles bound on the brane world, as a
consequence of their interactions with string matter. Matter dominance, therefore,
does not exclude the possibility that the contributions of the recoil velocity fluid to

the total energy density of the universe are of the same order of magnitude as the

2INotice that for large condensates the restriction 1) does not apply.

148



CHAPTER 3. MODIFIED GRAVITY 3.4. Inflation induced by D-particles

corresponding matter energy density during the galaxy formation era, that is with
redshifts z 2 1, which corresponds to the upper bound in the inequality . On
the other hand, for the current era, i.e. redshifts z < 1072, current data indicate a
cosmological constant dominance, wy(z ~ 0) = —1. If we make the (considerable)
simplification that there is a depletion of bulk D-particles from the exit of inflation
era until the galaxy formation era, and if we assume a simple power scaling of the

energy density of the total fluid pioa With the scale factor of the universe as
Ptotal a73(1+wt0t) (3112)

with wio; approximately constant, then, from the Friedmann equation, we would

obtain the following time dependence of the scale factor on the cosmic time
2
a(t)m—‘rD—part. rec. fl. ~ T30Fwot) (3113)

Then, assuming that Eq. (3.34) is valid from the galactic era all the way back to
the exit from inflation epoch, we obtain that, for a given moment ¢ in the history
of the D-material universe, the statistical variance of the D-particle recoil velocities

behaves as

18]
(a(t)/a0)3

where ag = a(ty), with ¢y the universe age, is today’s value of the scale factor, which

(u')) = o5(t) = (3.114)

is re-instated here to be linked with and allow the estimation of #g.

At the exit from inflation, at cosmic times ¢ = tj,g, the variance is assumed to
have the value 07 ;4. Since we are interested in an order of magnitude estimate of
the universe age, we are at liberty to ignore the short duration of the late de Sitter
accelerating phase of the universe, and assume the scaling for the statistical

fluctuations of the recoil velocities from the inflationary era until practically today
t = tyg. Then, from Eq. (3.114)), we obtain

a0 @(tma)® ~ [ af - (3.115)

Using the upper and lower bounds for |3| given in Egs. (3.47) and (3.49)), so that
the recoil velocity fluid either mimics the DM in galaxies (upper bound) or at least

is responsible for inducing growth of structures in the universe (lower bound), we
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obtain the following allowed range for the D-material universe age

1+wiot 1+wtot
<1060@ﬂ7{> < tO 5 (10615@£>

T Mp ™ ting T Mp
= 10945 (Hwe) < o < 10%6 (weer) (3.116)
infl

where in the last line we used that Hy ~ 107> Mpy, gs ~ 0.8, 7 ~ 10%5 and H = O(1).
Using that in conventional cosmology one estimates that exit from inflation occurs
at times ti,g ~ 1012 tp), where tp; is the Planck time (10745 s), we observe that the
age of the universe in units of Planck time is estimated to be

10665 (1+wto¢,) <

~J

f < 1098 (weor) (3.117)
tp1

If we insist that the age of the D-material universe ¢y is in agreement with the
corresponding ACDM model estimates from Planck data [6], i.e. £y ~ 1050 ¢p, then
in case the upper bound is satisfied — that is when the D-particle recoil
velocity fluid mimics DM in the galaxies, as far as lensing is concerned — we obtain
for the equation of state wy,; = —0.095. On the other hand, for the lower bound
case to be satisfied — that is when the fluid of recoiling D-particles induces

growth of structures in the universe, but falls short of reproducing the lensing effects

of DM in galaxies — one obtains wy, = —0.115.
These values are not far from the pure Born-Infeld equation of state w = —1/3
for classical condensates [61]. However, given that w = —1/3 is the maximum

value for inducing acceleration in an Einstein universe, that satisfies the positive
energy conditions, i.e. w > —1, we observe that in the matter dominated era
the D-material universe decelerates, as it should be. As discussed in Refs. [61]
62|, quantum fluctuations of the recoil velocity condensates that satisfy Born-Infeld
dynamics, when they are dominant, can lead to an accelerating almost de Sitter
phase, with an equation of state near to p ~ —p. To match with the current
universe phenomenology, according to which the universe today appears to be in
a de Sitter-like phase, one is led to the conclusion that quantum fluctuations of
the weak condensates, that characterise the current era, dominate over the classical

statistical effects. This is plausible in the low temperatures of the current universe.
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3.5 Gravitational radiation

The Gravitational Wave (GW) signals — GW150914 and GW151226 — detected
by Advanced LIGO (aLIGO) [4], based on the effects of the distortion of spacetime
on the arms of the 4-km-wide interferometric devices, opened a new window on the
universe and thus on fundamental laws governing it. The foreseen extended network
of terrestrial interferometers combined with eLISA, the first GW observatory in
space, may eventually detect even quantum aspects of gravity, or at least falsify
quantum gravity models which entail Lorentz Invariance Violation (LIV) for which
there are already stringent restrictions from various sources.

The D-material universe [58, 60] is one microscopic LIV model which evades
such constraints. The interaction, for instance of a photon with the population of
such D-particles, crossing or being confined on our brane-world, leads to time delays
proportional to the energy of the incident photon. This effectively yields a linear
modification of the corresponding dispersion relation, suppressed though, not by
the Planck scale but by an effective mass scale inversely proportional to the linear
density Ni"(2) of the defects encountered in the path of the photon [65]

Mp,

p
FE = 1— h Mo = ——— 3.118
p( MQG) R T ( )

Mp) = 2.4 x 10'® GeV is the four-dimensional (reduced) Planck scale and z is the
cosmic redshift. Notice that the dispersion relation (3.118)) is always subluminal for
specifically stringy reasons. The bound Mg > 1.22 Mp; on the Quantum Gravity
(QG) scale can be thus interpreted as an upper bound on the linear density of defects
NER(2), which, in an inhomogeneous D-material universe, depends in general on the
redshift.

In the presence of D-particle ensembles, both the pattern of emission and the
propagation of GW will in principle be modified. The modification of the GW
emission pattern due to the presence of D-particles in the region of the collapsing
black holes may be expected to be negligible in the sense that the ensemble of
massive D-particles will behave as matter in the presence of the spiralling black hole
system, and the gravitational pull they will exert on the black holes will be very
weak to affect the formation of the giant black hole and the subsequent emission of
GW.

However, this is not the case for the velocity of propagation of gravitons in the

medium, far away from the black hole source, which will be affected in two ways,
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discussed in the following. Firstly, the propagation speed of GW will be reduced as
compared to the massless case (subluminal propagation), due to the development of a
mass, as a result of the (gravitational) interaction with the recoil velocity condensate
field. Secondly, the presence of Dark Energy (DE) density in the universe, either
as a result of the recoil kinetic energy of the D-particles or due to additional Dark
Matter (DM) species in the universe (that may co-exist with the D-particles), will
also induce a superluminal contribution to the group velocity of gravitons. Current
observations, including GW interferometry, can provide restrictions to such effects
in a way that will be the topic of our discussion here.

In the following, we first discuss the effect of the induced graviton mass due to
the D-matter “medium”, then we look at the refractive index effects as a result of
the finite energy density of D-particles and other species of DM in the universe, and
finally we study the phenomenology of these effects using results from the recent
aLIGO GW detection and observations involving Ultra High Energy Cosmic Rays
(UHECR). Our analysis leads to constraints on the parameters of the model, in
particular lowering significantly the maximal allowed magnitude of the string scale

itself, under some natural assumptions.

3.5.1 Induced graviton mass

One of the most important role of the D-matter recoil field condensate arises from
its effects on the graviton equation of motion where, along with a modification in
the gravitational constant in the string frame description, it contributes to a mass
term for the graviton, leading to an additional polarisation mode. We shall discuss
this issue next, while later on in this section we shall discuss the implications of the
current bounds on the graviton mass in terms of the D-particle density and mass

M/ gs that enter the respective formulae.

Theoretical considerations

Our discussion starts with the effective (low-energy) action of Eq. (3.16)), describing
the interaction of the vector recoil velocity field A, with the graviton, in the Einstein

frame, after considering ¢ = ¢, and weak recoil fields vo/ A, < 1 as appropriate
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for late eras of the universe. Recall it yields

1 1 ae=20 [ I,}NW"’
Sit ap = /d43?v —g |—Ao— Z@W g") + (5 B+ 1 . >
1~ ~,. " 1
1 F F' 4 X (A#A“ + 5‘7)} + S 5 (3.119)
with, in particular

210l )2 T e3%0 1 T.e® 1 Toe3%0 A 200

7= @) e 5Mglzo‘ 0 b A= 2 (3.120)
gs0 gs0 Ko 9s0 Ko

Moreover, the reader should recall that, under the appropriate assumptions, the
dilaton equation of motion leads to Ay < 0, which is an anti-de Sitter type cosmo-
logical constant and is thus not phenomenologically acceptable in the current era.
To remedy this fact we assume that contributions from the bulk, such as 1(G,, G*),
fine tunes the negative cosmological constant to an acceptably small positive one
AY?¢ in the current era, as in Eq. (3.17b]).

As mentioned in previous sections and discussed in detail in Appendix (see also
Ref. |61] and references therein), the vector field excitation describing the D-particle
recoil presents two types of contributions:

(i) “Electric type”, associated with the linear recoil momentum excitations, de-
scribed by Eq. . They correspond, in our later era cosmological background, to
vector field excitations A; with a target-spacetime field strength (after the impact)
of the form

Foi = E; = M2 gju (3.121)

where E; denotes the “electric” field, as given in Eq. (C.20)).
(ii) “Magnetic type”, associated with non-zero angular momentum of the re-
coiling D-particles, described by Eq. (C.12]). These here imply a target-space field

strength with spatial components
Fii — ik B, = Mfeijkgkg u = B, = MS2 e ut (3.122)

where B; denotes the “magnetic” field, as in Eq. (C.21)).
Although in the gravitational lensing analysis of Section we have ignored

the angular momentum contributions, which as we show again, for instance in

Eq. (3.127) or below Eq. (3.130), would not change the order of magnitude of our
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conclusions, nevertheless for the purpose of our present analysis, which is to study
GW propagation in the D-material universe in the (low-temperature, compared
to the inflationary epoch) galactic era, such contributions shall play an important
role for the stability of the vacuum. Recall for the (unstable) inflationary high-
temperature phase, such contributions are negligible as found in Section [3.4] and
thus the conclusions obtained above remain valid.

The graviton equation of motion obtained from the action reads

1., e 2% F?
PR

1 1 1
= ST — Z g, A T (3.123)

Juv
(R*“’_LR) T2 9 9 T

2

where from now on we use the short-hand notation F2 = F Wﬁ ¥ Note that Tlf; de-
notes the stress tensor of conventional matter, including DM other than D-particles,
and T),7¢ is the recoil velocity contribution

2

TliiC:FﬂaFua_g#V_

y (3.124)

The latter resembles of course the corresponding stress tensor of electrodynamics,
but here the vector field Au is the recoil velocity field, which satisfies the Constrain

ALA% + é] =0.
A few remarks are in order here. Recall the dynamics of the vector recoil field flu
in the action is much more complicated than the lowest-order weak-field
expansion given above. Actually, as discussed in Ref. [61], detailed string theory
considerations imply that there is a Born-Infeld term, whose perturbative expansion
yields the Maxwell kinetic term in the action . Such non-linear square root
interactions may be responsible for the formation of condensates of the recoil velocity
field, following the discussion in Ref. [62], which was adapted to the D-matter case

so far. Therefore, as we assumed so far, F? can condense, forming a scalar-like field,

22This is the only effect of the Lagrange multiplier field X. Indeed, as the analysis of earlier
sections and of Ref. [61] has demonstrated, any terms in the equations of motion involving the field
A become — upon its expression, via the equations of motion, in terms of the other fields in the
Lagrangian — proportional to terms with gravitational-covariant derivatives acting on F', which
are negligible under our assumptions here.
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which is at most time-dependent at cosmological scales. In addition, we have
or(t) = (F?) = (F?) + (F*)q , (3.125)

where ((...)) denote classical condensates, due to the statistical nature of the recoil
velocity field in macroscopic D-particle populations in the universe, whose magni-
tude has been estimated above, while (...), denotes quantum vacuum effects [62],
associated with the full Born-Infeld dynamics of the vector field, which cannot be
computed at present. Since our point here is to study GW propagation from sources
at redshifts z < 10, as is the situation characterising the recent discovery reported in
Ref. [4], where z ~ 0.09, we consider short enough scales for which o is practically
constant, thus suppressing all its derivatives. Of course between cosmological eras
the value of o changes, in particular at the inflationary era, where strong conden-
sates of the field o are needed to drive inflation. For the matter-dominated era, of
interest to us here, o can be safely assumed to be weak.

In a mean-field approximation, one may first consider with the stress
tensor of the recoil field averaged in the sense of . If we consider equal strength
electric and magnetic contributions, given respectively by (3.121)) and (3.122)), then

we get

op = (F2) = 2 (Fo; Foy) 69" + (Ey, Fye) g7 g* . (3.126)

For the classical statistical averages, we have

(Foi Foj g7) = M (u'lgi3) > 0.,
(Foi Foj 9%g7) = =M {u'u? g;5)) < 0,
«Ek ﬁjﬁ g7 g") = 2M (u'? giy)) > 0, (3.127)
and hence, on account of (3.126]), we recover the equipartition theorem for the

classical condensates of the vector field we are familiar with from ordinary electro-

dynamics, according to which the classical condensate vanishes, namely
(F?) =0. (3.128)

Note again that this is neither happening in the lensing framework, where the metric
form implies subleading “magnetic” type field with respect to the “electric” one, nor
in the inflation regime, where the cosmological principle (homogeneity and isotropy,

hence a space-independent metric) implies no “magnetic” field. We thus have for
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the appropriately averaged recoil stress tensor (3.124))

(T = (Fua ) = 0 (F2) (3129)

which, on account of Eqs. (3.127)), (3.128)), leads to

REEY) + 1 (BBY = o (uwdsy) , (3130)

Trecyy = class _
<< 00 » Prec a2(t)

N | —

class

e is of the same order of magnitude as the recoil

The reader should notice that p
energy density considered Section (3.3, where only “electric” type FE; fields were
considered (the result is larger by a factor of 2) and hence the lensing phenomenology
conclusions remain unchanged whether these “magnetic” contributions are included
or not.

The quantum fluctuations of the recoil velocity field are significant in the low
temperature, galactic eras and for those we have, as dictated by the isometry struc-

ture of the FLRW cosmological spacetime [62]

~  ~ a(t
(Foa ™)y = ti ) oo
Ini kel ds(t)
<EaFj >q: A Gij 5
~ 1
op =a=(F?),= 1 (ay +3as) >0, (3.131)

where a; = ay(t) and as = as(t). Note that we assume the positivity of the quantum
condensate a, so as to be able to use such condensates as providers of zero-point
(vacuum) energy of de Sitter type [61, 62]. The corresponding contribution to the

recoil stress tensor is then

rec 1 ~ ~
<T00 >q = 1 (a - at) oo
rec 1 ~ ~
<Tz’j g = 1 (@ —ay) gij - (3.132)

Another important point we wish to make is that in the current work we view any
vacuum energy contribution, including those obtained from the bulk dynamics, as
microscopic, due to the (quantum) dynamics of fields of the underlying string theory,
and hence related to the stress tensor (right-hand-side of the (low energy) Einstein
equations ), rather than geometric in origin thereby related to the left-hand-
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side. In the latter case one would have to deal with (anti) de Sitter spacetimes, since
those are the maximally symmetric spacetimes about which one expands, in which
case the concepts of the graviton mass and the refractive index, upon which we
shall concentrate here, become more complicated. For our purposes in the current
analysis we take the point of view that there should be always a flat limit of the left-
hand-side of the Einstein’s equations, since the result of any cosmological constant
type term is due to some sort of condensate (either bulk field or recoil D-particle
fluctuations). This allows for a conventional definition of GW and massive graviton
effects in the GW propagation, which will be the focus of our attention in what
follows.

With the above in mind, one can then expand the metric around its (non—ﬂaﬂ
unperturbed cosmological value g, = gﬁ?—l—hum where the background ng) takes into
account the presence of a (space-independent, field-induced) “cosmological constant
type” vacuum energy and |h,,| < 1. Working, as appropriate for GW analysis, in
the transverse traceless (TT) gauge, for which

B, =0, B =0, hy=0, (3.133)

v [0}

the perturbed Einstein tensor becomes?]]

1 1
Ry = 5 9B = =3 O?h, . (3.134)

In the TT gauge, the only non-zero contributions to the recoil stress tensor to first

order in the metric expansion (indicated by the superscript ‘(1)’) are the spatial

ones

(Fia FPNW = (Fa Fje i) = MY €amen (™ u™) B
1

1
= 0t Owge 5 9 ht = -3

od hij (3.135)

where we used h;; = hj; and 02 = M2 (umung{)), as well as [61]

1 1
Ms4 <<umun>> = g 08 9527)1 = § Ug Omn

23The expanding four-dimensional metric is not flat, even though the space slicing is flat.
?4Our conventions are (—, 4, +,+) for the signature of the metric, and Ry, = R%,,, = 9,T

9,08, + 12,08, — T8 .

[ed —
v
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since for the galactic era g,(,% =a? (t) Srn 2 O

Recalling that the zeroth order (in the metric expansion) equation of motion is
satisfied and taking into account Eqs. (3.124]), (3.127)), (3.128)), (3.131) and ([3.135)),
one obtains a first-order equation of motion for the spatial perturbations h;; in the
TT gauge (3.133) of the form

1 1
iy — i |5 M () — 5 (@) + A By =0,
1 1 T e®o —2¢0
where —— = — + et L Y (3.136)
Keg Ko gs0 4

Assuming that the condensate o is small and that AY?¢ is also small as compared
to M3, then to leading order in o and A¥, one may replace from now on k2 by
2 Mp;®. Hence, Eq. (3.136)) is just the equation of motion of a massive graviton, with

mass squared
1
me(t) = Mp? | = M2 {(u™u" 6 ) — 5 (@ — ay) + 2pavec | (3.137)

where ppvac = AV

One can remark that should we explicitly write perturbations for the vector field,
of the form A, 4+ 6A, with |0A4,| < |A,|, or similarly u, + du, with |du,| < |u,l,
the first additional term in Eq. would be of the form ((u™ du,,)) = 0 since
{(uu) = 0 as in Eq. (and u and du are completely uncorrelated), while the
next one would read (du™ du,,)) which is subleading and can thus safely be ignored.
There is therefore no doubt concerning the physical interpretation of Eq. as
a true graviton mass.

The mass is real, provided the right-hand-side of Eq. is positive, otherwise
the graviton would appear tachyonic.@ Fortunately, this can be easily guaranteed
by assuming either small quantum corrections compared to the statistical classical
terms or that the condensates a and a; are both positive. The latter assumption is in
line with attempts |62], in the context of Born-Infeld electrodynamics, to associate
such quantum condensates with positive (de Sitter type) contributions to the vacuum

energy. We shall thus make this assumption in what follows.

25Note indeed that our AY2° is of dimension of an energy density, as one can see in the ac-

tion (3.119)) or in the definition given below in Eq. (3.120]).

26Causality is defined with respect to the front velocity so is not in jeopardy. In addition, our
theory is embedded in a UV complete, causally valid theory.
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In this latter respect, from Eqs. (3.127)) and (3.132]), we observe that the recoil
energy density, including quantum condensate contributions, reads

a— Qg

4

phit = M (g + —= > 0. (3.138)

full
rec

matter energy density p2“PM of the ACDM model. For the value of p2“PM we take

m m

We now impose the requirement that the upper bound of p.%. should not exceed the

here the benchmark point [6]
phCPM — 0.3 00 = 0.9 H2 M3, = 9 x 10712 M}, | (3.139)

with p? the current-era critical density and Hy ~ 1075 Mp; the present-day Hubble

rate. Hence we obtain

0 < pm = plec + porign ~ PO (3.140)
and
. {uzu; 6 + 4 =0 o acom (3.141)
a?(t) " g P '

where p,, is the total matter energy density of the universe, including D-matter
as well as (conventional) DM and baryonic matter (denoted together as ppaip)
contributions, which, according to Section [3.3] would imply that the recoil veloc-
ity contributions in the D-material universe would be compatible with the ACDM
model.

If the upper bound in the inequality of is saturated, then D-matter pro-
vides the dominant component of DM. The reader should recall though that the
Born-Infeld form of the recoil velocity vector field flu studied so far in this work
and in Ref. [61] provide a dark fluid which also contributes to DE, hence recoiling
D-matter should be viewed as a mized DE/DM model.

In this respect, the condition also ensures that the total energy density

of the D-material universe, including vacuum energy contributions

Protal = Pm T PAvac (3142)

is of the order dictated by the current data [6], i.e. close to the critical density.
Thus, the conclusions of Section that D-matter can play the role of DM in

galactic lensing measurements remain valid, given that the order of magnitude of
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the contributions to the recoil energy density does not change by the inclusion of
“magnetic” field components in the Born-Infeld fluid describing the recoil
excitations of the D-particles.

Let us make a short remark on the order of magnitude of the allowed density
of D-particles in the D-material universe [61]. We recall that in the galactic era,
following Eq. (C.24)), one has the following estimate for the statistical (classical)

component of the recoil velocity condensate

0) =
Nl())fg |Pohys|” 7
N—\(/O) M52 s0 »

(w67 ~ (3.143)
with 50 < 1 an order O(1) parameter, that describes the momentum transfer during
the scattering of a D-particle with an open string representing radiation (which
is assumed to be the dominant species with which the D-particles interact). The
quantity ppnys is the “physical” average 3-momentum of a photon as observed by a
comoving cosmological observer in the FLRW universe, assumed to be a thermalised
CMB photon at T'= 2.7 K, hence |pphys| =~ 3k T~ 7.2 x 107* eV ~ 3 x 1073 Mp,.
By N](DO) and NV(()) we denote the (dimensionful) number densities of D-particles
and photons, respectively, in the current era of the universe; note that NW(D) =4 X
10797 M3, [6]. In deriving we assumed N > N so that x© /(n© 4 y©) ~
NP /N is the probability of interaction of D-particles with the CMB photons that
constitute the most dominant species for the recoil of D-particles in the medium.
We also note that the analysis of Ref. [61] and of Section implied a lower
limit to the density of D-particles, as a result of the requirement that the D-matter
can enhance the growth of large-scale structure in the universe. In fact, if we ignore
(assuming them as subleading) the quantum corrections in Eq. , then, in view
of the inequality , we get the following bounds on the statistical condensate

((u;u;6")) defined in (3.143)

2 2
1071 My (ugu; 67 < 107120 My,

Mz S Mz (3.144)
which lead to the following bounds on the D-particle density N](DO)
0
—123 Mlgl < N]() ) < 10—120 Mlgl (3 145)
o, ~ 0) ~~ i, Y .
930 &3 [Pphys|* N,g ) 90 &5 | Pphys|?
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which turn out to be independent of M,
6x 1079962 M3 S NY < 6x 10719062 M, (3.146)

These estimates are affected if the quantum fluctuations a, a; to the condensate o
are included. Unfortunately, lacking a microscopic theory of stringy D-particles we
cannot estimate the magnitude of the quantum condensates a, a; entering the mass
and hence we can only discuss below some phenomenological bounds coming
from experimental constraints on the graviton mass. At any rate for the galactic
eras of relevance to us today we assume that the quantum fluctuations are of the

same order as the statistical condensate.

Phenomenological constraints on induced graviton mass and implications

for the D-material universe

To discuss effects of matter in the GW propagation, let us first remark that the
relativistic dispersion formula for massive gravitons w? = k*+m2 (in natural units),

leads to the subluminal group velocity (denoted by a subscript ‘g’)

2
mass __ 8_(") k 1 mass ~, { _ mga

= =—=—= , 3.147
& Ok w  ovpas ¢ 2w? ( )
assuming mg < w, where ng*° denotes the index of refraction of GW due to the

mass
p

unity, without conflict with causality, as the phase of the wave does not carry out any

graviton mass and v is the corresponding phase velocity (which is larger than

physical information). For two gravitons with frequencies w and ', the difference

in group velocities is thus

1 1

2
o m

Q,Umabb — G

w2 w?

: : (3.148)

The induced dispersion in the GW, taking into account the cosmic expansion (red-
shift z) of a standard ACDM universe, leads to differences in the observation times
of GW components of two different (low) frequencies w and w’, emitted with a time
difference At, at the source [74]

w2 w'?

2 /1 1
At =(142) |Ate+(14+2)D % (— - —)} ; (3.149a)
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where
(1+2)72

D= dz — ,
/0 Ho\/Q L+ 2)3 4 Qp

with D = (1 +2)D = (1 + z) [," a(t) dt the proper distance, a(t) the scale factor

(in units where today ay = a(t,) = 1) and where the subscipt o (e) pertains to

(3.149b)

observation (emission) quantities. In the standard ACDM fiducial cosmology [6],
which we assume here again, we have (Q,,, Q4, Q%) = (0.3,0.7,0).

Assuming for simplicity that the two gravitons where emitted simultaneously
(At, ~ 0) one may get from (3.149a) a lower bound for the graviton mass to be
detectable by interferometric GW devices with time-difference sensitivity Ats and

w' = &w, given by
S £2 2 Aty w?
m?
ST -¢ (1+2)2D°

(3.150)

The aLIGO measurements [4] achieve a very good time-frequency coverage for a
broad range of signal morphologies by having the analysis repeated with seven fre-
quency resolutions ranging from 1 Hz to 64 Hz in steps of powers of two, correspond-

ing to time resolutions
AHCO = 15 (AWME) ™ € 78 x 1072, 5 x 1071 s (3.151)

The clusters at different resolutions overlapping in time and frequency are then
combined into a trigger that provides a multi-resolution representation of the excess
power event recorded by the detectors. The minimum of the right-hand-side of the
inequality is obtained for the minimum value of the time resolution possible,
that is in our case At2190 ~ 7.8 x 1073 s, and the minimum value of £. Theoretically,
if Aw = 0 could be measured experimentally, then the experiment would have infinite
sensitivity to measure the graviton mass; however the minimum possible detectable
frequency difference is the frequency resolution given by Eq. , which for the
lower limit on At considered, leads to Aw?9Y ~ 64 Hz. With these values, for
gravitons in the aLIGO frequency detection rangd®’| w ~ 100 Hz ~ 4 x 10713 eV ~
1.7 x 10710 Mp; emitted at a distance of 410 to 440 Mpc (corresponding to a redshift
2~ 0.09 and hence D = 0.08 Hy ' [4], with Hy ~ 107 Mp)), we get

mq > 4.6 x 107 Mp; ~ 1.1 x 10722 eV, (3.152)

2"While the two available detections allow us to constrain gravitons with frequencies w ~ 100 Hz
and w ~ 400 Hz, we use here the former because it yields stronger bounds. In any case, considering
the latter would only slightly change the numerics and not the qualitative conclusions of this work.
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in order for the graviton mass to be observable by aLIGO. If the time and frequency
resolution improves in future interferometric networks, leading to improvements of
the signal to noise ratio w At smaller than 1/10, value which characterises alLIGO [4],
then the sensitivity to the graviton mass will increase.

Assuming a standard ACDM cosmology, the LIGO collaboration performed a de-
tailed statistical analysis [4] during the observation of GW by the black-hole merger
event GW150914, and found no significant signal up to Compton wavelengths of

aLIGO
>\q

order = h/m&1S0 > 101 km , implying an upper bound on the graviton

mass
mAMGO <19 % 1072 oV ~ 5.0 x 1070 Mp; (aLIGO) , (3.153)

which is in perfect agreement with the analytical bound (3.152). It can be used
in our model to bound the condensate effects responsible for the induced graviton
mass (3.137)).

Before doing so, let us discuss first some additional effects of the D-particle
“medium” on the propagation of GW in the D-material universe. As we shall argue
in the next section, D-matter may induce a refractive index for graviton propagation,
which leads to additional constraints, beyond the ones discussed due to the induced

graviton mass.

3.5.2 Other effects on graviton propagation in the D-material

universe

In addition to the mass induced effects, graviton propagation in the D-material
universe (which includes also conventional DM components) is also affected by re-
fractive index effects in the medium of D-particles. Given the low-frequency regime
(w ~ 100 Hz) of GW of relevance to the LIGO observations, we expect (and shall
verify explicitly below) that any stringy effect of the D-foam on the GW propaga-
tion — in general expected to increase with frequency, being proportional to some
positive power of it — is negligible. This leaves the low-energy point-like field theory
interactions of GW with the environment of matter (including DM) scatterers in the

universe as the dominant source of induced refraction for low-frequencies.

Refractive index of gravitons

If GWs propagate in a medium of matter scatterers with density p.,, then they

will experience an induced refractive index, arising from the coordinate dependent
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gravitational potential corrections to the Newtonian metric, as demonstrated long
ago in Ref. |75]. To estimate such effects, it suffices to consider the approximate
situation in which all matter is assumed to be concentrated in a “thin” spatial layer
of thickness Az, through which GW pass. Such layers modify the gravitational
Newtonian potential felt by GW. To lowest order in w, for massless gravitons, the

index of refraction is larger than unity for p, > 0 and of the form

DM_lNQWGPm_ Pm
G

O0<n ~ -
w? 4M§,lw2

<1, (3.154)

to linear order in the gravitational potential induced by matter. Here, py, is the (4-
dimensional) matter density (including DM and D-matter) (see Eq. (3.139))); we took
that the (4-dimensional) gravitational constant is 87 G' = Mp? and the frequency
range which we are interested in is w ~ 100 Hz. In our case, the recoil contribution of
the D-material universe is included in p,, which is then expressed as in Eq. .

Equation implies that the phase velocity of GWs, UI])DM = 1/n, is subluminal
while the group velocity, ng, is superluminal for low w. Indeed, to obtain the latter,

one can use the derivative of the refractive index with respect to w

1 d
— —ntwes (3.155)
Vg dw
which, in the case of a medium with refractive index given by n — 1 = yw™=2 with y
a constant (as we have here), leads to
1 -2 -2 -2
—=n—-2yw “=1—yw = vyxl4+yxw>1, (3.156)

Ug

if yw™2? < 1. Hence, the superluminal group velocity for massless gravitons propa-

gating in the DM and D-matter medium, yields here

UDM:I—I— Pm

_m o ~1410M 3.157

where we considered again w ~ 1.7 x 10740 Mp,.
This will lead to time differences in the arrival times of two gravitons with
frequencies w and w’, using Eq. (3.149a)) and replacing the term 1/2 mg by #m/anm2,
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yielding

11
APM = (1 At,+(14+2)D-P (- = 1
= (1+2) +(1+2) Mg <w2 w’Q)} , (3.158)

with (1 + 2)D the proper distance from the GW source to the observer as in
Eq. . Note that the relative minus sign in Eq. , as compared to
Eq. , is due to the fact that AtPM now denotes an advance rather than a
delay due to the superluminal nature of the graviton group velocity.

Some comments are in order here regarding the superluminal nature of the group
velocity . This was to be expected by the corresponding case for light propa-
gation in a nontrivial vacuum. The graviton excitations find themselves in a negative
(as compared to the trivial flat spacetime empty vacuum) gravitational energy den-
sity p = —pm < 0 environment (as a result of the attractive gravitational potential
of the scatterers exerted on the graviton “particles”). Indeed, in such nontrivial vac-
uum with an energy density p, the group velocity of massless photons or gravitons,
after taking into account vacuum polarisation effects, deviates from 1 by an amount
vg —1 x —p = +py > 0. The (low-frequency) superluminal GW velocity is not
in conflict with causality, since no physical (i.e. observer independent) information
can be transmitted, given that the results pertain to a specific frame (Robertson

Walker); moreover, it is the high-frequency limit that would be of relevance.

Refractive index of photons

It should be remarked at this point that is similar in form to the refractive
index of a photon in Quantum ElectroDynamics (QED) passing through a gas of
charged particles, upon making the substitutions that yield the gravitational inverse
square law from the corresponding Coulomb force law. More precisely, one must
replace the charge density by the mass density of scatterers, set the charge per unit
mass equal to 1 and replace the constant !/are, (where €y is the permeability of the
vacuum) by the opposite of the gravitational constant, namely —G. Note that this
minus sign is crucial, in that it implies a subluminal group velocity for photons due
to vacuum polarisation effects.

Thus, for photons in a flat spacetime, scattered of a density of free (non-interac-

ting) charged particles, we may write the induced index of refraction (in natural
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units where ¢ = 1) af™

2 2 ~
qg-e p
nYyac pol. 1

v ~ st (3.159)

with respectively p > 0, m and ge the mass density, mass and charge of the charged
particles. The ... indicate subleading positive contributions coming from polaris-
ability of the scatterer, which are either constant or proportional to positive powers
of w?.

It should be noted that the expression is generic and may incorporate
milli-charged DM candidates that may exist in some models of particle physics
but not in the majority of phenomenologically relevant ones. If we ignore such
milli-charged DM candidates, then it becomes clear that the photon polarisation
refractive index effects are subleading compared to the ones induced by the scat-
tering of photons off (neutral) DM, which is the dominant candidate by several
orders of magnitude. For instance, the dominant source of charged scatterers in the
universe are protons, for which the corresponding cosmic energy density, that is the
baryon density, is two orders of magnitude smaller than the DM density; the ACDM
parameters today read Q,/Qpy =~ 2.2 x 1072 [6].

Hence, for all practical purposes, we only consider the effects on the photon
refraction of the weak gravitational potential induced by the matter density pu,
which, according to Ref. [75], are negligible. That is, to linear order in the weak
gravitational potential at hand, the refractive index of photons with low-frequencies

should be considered as that of the vacuum

nPM ~ 1 (3.160)

28This is obtained from the standard expression following the optical theorem, according to
which the index of refraction is expressed in terms of the coherent forward scattering amplitude
for a photon with polarisation A as

n(w) =1+ 225\[ £ (0)

where N is the number density of the scatterers, m denotes their mass, k is the wave-vector of
light (equivalently k& may be replaced by the frequency w of photons assumed massless) and in the
framework of a quantum field theory model

1
8mm

f)\,\(O)Z M)\,\(k‘,k‘/—)k,k/) s

with the overall phase of the field theory amplitude M) fixed by the optical theorem, relating
the total scattering cross section to the imaginary part of fy(0).
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upon ignoring vacuum polarisation effects. In this sense, at the low-frequency regime

we are interested in, the photons behave as light-like particles.

Purely stringy effects of D-matter

We should remark at this point that, in the context of the D-particles foam, there
are also terms in the refractive index that scale linearly with the frequency w, which
arise from the nontrivial interactions of the D-particles with the photons, viewed as
open strings, that can be captured by the D-matter defects. Such terms stem from
the stringy uncertainty principle, At Az > o, and can be computed by considering
string scattering amplitudes of open strings, representing the photons, off a D-
particle background [65]. Taking into account the cosmic expansion, the induced
delays of photons with observed frequencies w due to these purely stringy effects are

of the form

(NI w (1+2)
M2 Hy\/Qu(1+2)3+Q,

AD—foam ~ / azo (3.161)
0
where C' < 1 is some fudge factor, entailing information on the momentum transfer
of the incident string on a D-particle during the scattering, while N](DO) is again to-
day’s D-particle number three-volume density, which in principle should read Np(z)
and depend on the redshift for inhomogeneous D-particle foam models, but for our
purposes here is considered z-independent for small z < 10 and thus is identified
with today’s value. Note that this effect is also valid, in a first approximation, for
closed strings such as gravitons which, by hitting the D-particle, would open and at-
tach to the brane and thus act in a similar way. This computation is thus applicable

to the case of gravitons.

3.5.3 Gravity wave phenomenology of the D-material uni-

verse

In this section we shall compare the various refractive index effects (3.149aj), (3.158))
and against the current GW phenomenology. The aim is to derive constraints
on the string scale within the context of the D-material universe.

It can be readily seen that the stringy delays are subleading (by at several
orders of magnitude, thus negligible) compared to the w™2 terms in , for the

low frequencies we are interested in this work and the very small D-particle number
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densities N](DO) (3.144]) required so that the D-matter fluid acts as DM in the universe,
as in Section [3.3] Indeed, one has

ADToam <14 5 1071 My < [APM] = 8.4 x 10 My, | (3.162)

as can be seen from (|3.158) for GW frequencies of order of 100 Hz and where we
used Eq. (3.146) to get NS < 6x 107156 &2 M3, < 6x 107154 M3, with say & ~ 0.1,
and M, Z 10715 Mpy.

Constraining the condensate using experimental bounds on the graviton

mass

Once the stringy effects are ignored, one is left with two competing effects on GW
propagation: (i) delays (compared to the propagation in vacuum) due to the induced
graviton mass and (ii) advances due to the propagation of gravitons in the
weak gravitational potentials induced by D-matter and DM distributions .
In principle, as already mentioned, the above effects and (3.158)) will lead
to a modification of the pattern of the GW signal, due to induced dephasings of
the various frequency components comprising the signal. We shall here discuss the
conditions under which the mass effects are dominant, in which the graviton group
velocity would be subluminal.

By comparing the two cases and , we conclude that the graviton
would have a subluminal propagation velocity if and only if its mass is larger than

a critical minimal value

Pm — —
20 ~7x107% Mp ~2x 107 eV | (3.163)

C
mg 2> mg =

where we assume the ACDM value given in (3.139)) [6] for the matter density.
Equations (3.137)), (3.138)), (3.141]) and (3.157)) lead to the following remarks:

e (A) If quantum fluctuations are sub-dominant as compared to statistical ef-
fects, mass effects dominate over the energy density induced refraction, and
subluminal graviton velocities in the D-material universe are attained. In such
a case, the induced mass of the graviton is (in units of Mp)) of the order of the
critical density of the universe, which in the current era is by several orders of
magnitude smaller than the sensitivity of al.IGO/Virgo, or even pulsar timing
experiments 76| which give the strongest limit to date (cf. Eq. below).
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e (B) If recoil quantum fluctuations are taken into account, much larger graviton
masses are allowed.@ Indeed, in such a case, the refractive effects of Eq. (3.154))
due to a medium of matter scatterers with density p,, reduce the effective mass

of the graviton, to be constrained by experiments, to

2 Pm

0 < (md? =m2 — T (3.164)
Pl
111, 4 i poM4b
== M—l%l 6 s <<ulu]5 ]» ‘I‘ 2pAvac —_— T - ﬂ (CL - at) 9

where we remind the reader that ppyip denotes any conventional matter con-
tent of the D-material universe, including both (ordinary) baryonic matter and
(conventional) DM. Equation (3.164) is a necessary and sufficient condition
for positivity of (m&h)? (that is a condition for dominance of mass effects over
the refractive index ones). The reader should bear in mind that in (3.164),
2ppvac — % ppomab > 0, as a result of the ACDM cosmic concordance in the

current era.

Now, in what follows, we shall make the assumption (as a special but quite
indicative case), that 0 < @ < a;, which is required for consistency of (3.141)) if one

assumes, as we do here, that
M ((uu;07) > phCtPM (3.165)

The positivity of the condensates is a mild assumption we make, following Ref. [62],
where such quantum condensates have been argued to provide DE contributions.
Thus, the importance of non-zero quantum condensates lies on the fact that their
presence allows a much larger induced graviton mass than the critical density of the

universe. Indeed, on requiring further
g ~ @+ AM? {(uu;67)) | (3.166)

we see that (3.141)) is guaranteed even with the assumption (3.165)), and hence the
conclusions of Section [3.3] remain unchanged.
Note that the presence of the symbol ~ instead of equality in (3.166|) indicates

a small but non-zero difference between the left- and right-hand-sides of the above

Z9Nevertheless, the stringy effects (3.161)), that grow linearly with the GW frequency w, are still
subleading, for the very low-energies we consider here, compared with the mass and refractive
index effects, that are inversely proportional to the square of w.
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equation of order of the critical density of the universe, which is the same order as
the total (observed) energy density today piota; as in Eq. . One may solve
Eq. by assuming (as an indicative example) that in the current era of the
universe

a~ MMuu; 67 = a, ~5a, (3.167)
implying that the induced effective mass of the gravitons can be much larger
than the total energy density of the D-material fluid, namely

_ 4
(md)? Mp) o~ — @ + 2ppvee — —le\éHb ~3 M} {ugui6v))

O W~

> {p/\"a°7 IODM-H)} ) (3168)

for @ > {pavac, ppran t, assumed in Egs. (3.165) and (3.167). Thus, in this example,
the effective mass of the graviton is of the same order as the mass (3.137|) induced

by the dominant “magnetic” field condensates. It is important to remark that here
one should no longer assume the range (3.144]), since the quantum effects are the
ones responsible for ensuring the satisfaction of the upper bound .

The most stringent current bounds on the mass of the graviton are given by
pulsar timing experiments [76], which are stronger than the bound from
aLIGO’s direct detection of GW [4]. They give

md < 85x107* eV = 3.5 x 107" Mp; (pulsar)
md < 1.2x 1072 eV =5.0 x 107 Mp; (aLIGO) . (3.169)

If quantum effects are ignored, in case (A) above, the induced mass is of the order
of the current critical density of the universe and hence cannot be constrained by

the current limits. However, in case (B), assuming for concreteness example (3.167)),

then (3.168), (3.169) imply

a<9.2x1071 M3, (pulsar)
a<1.9x10"% M3, (aLIGO) , (3.170)

namely the upper bounds are much larger values (by several orders of magnitude)
than the ACDM critical density.
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Gravitational Cherenkov radiation

The subluminal nature of the graviton in the case considered above implies other
effects, independent of the GW aLIGO observations, which may constrain further
the string scale in our model. We will thus investigate gravitational Cherenkov
radiation [77], namely the emission of a graviton from a highly relativistic particle,
propagating with a velocity almost equal to that of the speed of light in vacuum.
Such a process is kinematically allowed, provided the graviton group velocity is less
than the speed of light in vacuum. We will therefore examine under what conditions,
if at all, such an effect exists in the D-material universe. In the affirmative case,
following Ref. [77] and using Ultra High Energy Cosmic Rays (UHECR), we shall
impose constraints on the lower allowed bound of the graviton propagation speed.

For electrically charged particles, the D-matter medium looks transparent [65],
on account of gauge invariance properties. This is the case of the UHECR, which
therefore can propagate in the D-matter medium, for which is satisfied, with
a speed higher than that of (low-frequency) gravitons, and therefore gravitational
Cherenkov radiation is kinematically allowed [77]. As a result, cosmic rays will lose
energy. The observation of the most energetic cosmic rays, with energies 10% eV,
implies then stringent constraints on the lower bound of the propagation velocity
of such subluminal low-frequency gravitons. According to the analysis in Ref. [77]
and depending on the assumptions on the origin (galactic or extragalactic) of the
UHECR, one obtains the bounds

0<1l—v,<2x107" for UHECR of galactic origin
0<l—v,<2x107" for UHECR of extragalactic origin (3.171)

in units of the speed of light in vacuum. From (3.147), upon substituting mgq by
mt (3.164), we then obtain the bounds

(m&? <4 x 107 w?  for UHECR of galactic origin
(m&? <4 %1071 w?  for UHECR of extragalactic origin (3.172)

which, in the example (3.167)) leading to (3.168)) and for the frequency range of the
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GW of alLIGO [4], that is w ~ 100 Hz ~ 1.7 x 10710 Mp,, yields

a<87x107% M, for UHECR of galactic origin
a<87x107% My, for UHECR of extragalactic origin . (3.173)

Thus, if UHECR are of extragalactic origin, then the bounds on the minimal value
of the (subluminal) graviton propagation speed obtained as a consequence of the
gravitational Cherenkov radiation, are at best of the same order of magnitude as the
bounds , otherwise (namely, for UHECR of galactic origin) the corresponding

bounds are several orders of magnitude weaker.

3.6 Conclusions and outlook

In this work we built upon previous discussions on the potential role of the recoil
velocity fluctuations of D-particle (effectively point-like) defects in brane universes,
by presenting a cosmic evolution of the so-called D-material universe. The latter is
a brane world which is punctured by populations of D-particles and propagates in
a bulk space with varying densities of such defects. Their string interactions, with
(open and closed) string modes representing matter and radiation on the brane
world, generate a recoil velocity, which can be promoted to a dynamic field once
related to the local spacetime deformations. In the early stages of the universe, one
may encounter dense populations of bulk D-particles, which imply a dense popula-
tion of D-particles bound to the brane world. For low string scales Mg compared
to the Hubble scale and for sufficiently large brane tensions compared to M2, the
recoil velocity fluctuations lead to the formation of large condensate scalar fields
which can safely be assumed homogeneous and slowly time varying. The careful
analysis of the potential emerging from our model shows that such large scalar field
can drive slow-roll Starobinsky-like inflation and yield a successful exit. In the case
of large string scales compared to the Hubble scale, or smaller brane tensions of the
order of M, the resulting condensates are small and cannot drive inflation. In such,
inflation might be induced by other mechanisms, for instance it may be driven by
large negative values of a slowly rolling dilaton field.

As (the cosmic) time lapses, the universe exits from a bulk region of such dense
D-particle populations, inflation ends and the universe enters a radiation dominated

era, with power-law expansion of the scale factor in cosmic time. In such a case, the
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recoil velocity fluctuations of the D-particle diminish with the inverse cubic power of
the scale factor. The pertinent condensates are weak. At such late eras of the uni-
verse, it has been shown that the recoil velocity fluctuation fluid may “mimic” Dark
Matter (DM) in a way compatible with lensing phenomenology. Of course, given
that the underlying string theory contains its own particle DM candidates, our find-
ings here should be interpreted only as suggesting that the recoil velocity component
might be the dominant one in agreement with current lensing data. Certainly, given
that this assumption implies only upper bounds for the pertinent densities of D-
particles, the picture of a multicomponent DM where both conventional particle
and D-particle candidates might play an equal role in DM composition cannot be
excluded at present. The density of D-particles at a given era in the history of
the D-material universe is in a sense a free parameter in our low-energy treatment,
although this can be actually controlled by performing numerical simulations of the
evolution of a dense population of D-particles in colliding brane scenarios (whereby
the collision implies the initial Big-Bang-like cosmically catastrophic event [58]).
This is not feasible at present.

In addition, we considered the effects of the recoiling D-particles on the propa-
gation of GW. For the low-energy regime of interest for GWs observed by aLLIGO,
which was the focus of our attention here, the main effect is an induced effective
mass for the graviton, given by , which, depending on the magnitude of the
D-particle recoil velocity fluctuations, can be much larger than the vacuum energy
and DM density, and hence can be bounded by pulsar timing or aLIGO measure-
ments. As the magnitude of such quantum fluctuations cannot be determined theo-
retically at present, due to uncertainties in the underlying dynamics of the collection
of D-particle defects that require going beyond the current perturbative analysis in
brane/string theory, such studies can only be phenomenological at present, and this
is what we concentrated upon in this work.

One of the most important features of a massive graviton is that it is subluminal
as compared to photons, due to a negligible refractive index effect for the low-energy
regime of interest to us here. In that case, gravitational Cherenkov radiation may
impose additional constraints, in particular if one considers Ultra High Energy Cos-
mic Rays (UHECR) of an extragalactic origin. As we have shown, one gets upper
bounds on graviton masses comparable (in order of magnitude) to those obtained
from aLLIGO interferometric measurements of GW, but still weaker than those ob-

tained from pulsar timing data. Certainly, Cherenkov radiation bounds may improve
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in the future (once higher energies can be probed). Of course, if Lorentz violation
due to the D-particle populations is significant, then the optical transparency of
the high-energy universe may be further affected, modifying the above discussed
bounds.

We feel stressing once more the point of view taken in this part of our work as far
as the effects of recoil velocity condensates on the GW propagation are concerned.
Any such effects contribute to the so-called vacuum energy and in the context of
our D-material universe, such contributions were assumed as being due to the stress
tensor of string matter rather than the geometry. This allowed us to treat any such
effect as corrections on top of a virtually flat spacetime FLRW background, where
a mass for the graviton can be defined. We hope that the D-material universe as a
concept is an interesting one, especially because it seems that the model is capable
of passing all of the current phenomenological challenges, including the effects of the
medium on the GW, but also lensing phenomenology on challenging sources and a
consistent, successful inflationary era.

Before closing, we should point out that there are some important predictions of
the D-material universe, given that the refractive indices of the D-particle medium
are dominantly affecting photons and gravitons. In the early universe, where the
density of D-particles is significantly higher than that of the current era, one expects
that such Lorentz-violating effects of the D-foam impact significantly the propaga-
tion of primordial GWs. In our inflationary phenomenology above we assumed
standard analysis of the cosmological perturbations in order to match the slow-roll
parameters to the data, and in particular the tensor-to-scalar ratio. In the actual
situation, where the dynamics of the densely populated medium of D-particles is
properly taken into account, one may have non-trivial effects on this ratio, which
might lead to observational signatures. This is an open issue that would be inter-
esting to pursue in the future.

A final comment concerns the production of D-particles, in case their masses are
less than 7 TeV, in the run II of the Large Hadron Collider (LHC) and their potential
detection. The production of neutral D-D pairs, from decays of (for instance) highly-
energetic off-shell Z%bosons, is a rare but possible event at LHC. The neutral defect
pairs should manifest themselves in a way similar to ordinary particle/antiparticle
DM pairs at colliders. However, the D-particles have an additional peculiar property,
which implies non conventional ways of detection since their presence results in a

deficit angle in the neighbouring spacetime. Once therefore a D-particle is produced
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(in a pair with its antiparticle) in a collider, the colliding Standard Model particles
in the beam will find themselves in the environment of a spacetime with a deficit
angle, leading to locally maximal scattering amplitudes under some circumstances
and thus to peculiar scattering patterns (“Newton-like rings”) around the trajectory
of the defect. This specificity makes the detection of such pair possible in ATLAS
and CMS LHC experiments, or even in the MoEDAL LHC experiment [78|, which
is the seventh LHC recognised experiment, dedicated to the detection of highly
ionising avatars of new physics, including the aforementioned D-matter. In view of
the interesting cosmological properties of D-matter, outlined in the present work,
producing it at LHC, if it exists and is sufficiently light, would further enhance the
opportunities of studying its peculiar properties and unravel its brany structure.
This in turn, may result in a better understanding of fundamental properties of

brane theory itself.
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Chapter 4
Conclusions and perspectives

Studies of our universe have revealed it to be extremely homogeneous and isotropic
(up to a part in 10°), very flat (within a 0.4% margin) and currently in accelerated
expansion (for at least 3 to 4 billion years) [6]. Still, the mechanisms leading to
such a state are not fully understood. Inflation explains why it is so uniform and
flat but a plethora of models compete to deliver the most sensible and accurate
inflationary era. The energy budget of the universe is mainly divided into three
components: about 70% Dark Energy (DE), 30% matter (out of which a seventh
is conventional baryonic matter while the rest is made of Dark Matter (DM)) and
a pinch of highly relativistic species (mostly photons and neutrinos). However, the
nature of the dark sector (DM and DE) is not completely understood and again a
large variety of models describes possible origins, compositions and behaviours for
such fluids.

Moreover, the standard ACDM model as well as the theories on which it is
constructed — such as General Relativity (GR) and the Standard Model of particle
physics — are all effective theories, known to be valid only at low energy densities. A
UV complete description which would encompass all phenomena of nature is still to
be written. Two candidates which are currently being most seriously considered are
non-perturbative quantum gravity and string theory. Still, many corrections, either
ad hoc or suggested by a higher energy picture, can be added to the known models.
The study of their self-consistency, as well as a comparison with the available (or
foreseeable) data, yield information about the favoured models and their parameter
space.

Detailed analysis of the Cosmic Microwave Background (CMB) and statistical
studies of surrounding sources in the whole electromagnetic spectrum have led us to
our present state of understanding. New advances will be achieved by reaching ever

greater precision in such investigations but also through the use of additional tools
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such as Gravitational Waves (GWs). While their existence was long inferred by
indirect effects, the first direct detections occurred only very recently [4] and com-
plementary data should soon be available to explore as yet unreachable phenomena.
For instance, isolated events are shedding light on compact objects binaries, col-
lapsing supernovae and other extremely violent processes. Knowledge of their inner
mechanisms and their abundance, as well as of the properties of GWs themselves,
could emerge from such studies. On the other hand, investigations of the GW back-
ground, similar to the CMB, could enlighten us about the nature of inflation and
the very early universe. Likewise, the stochastic superposition of individual sig-
nals from the multiplicity of local sources could reveal additional cosmological and
astrophysical information.

With this in mind, our work here has focused on two specific models and their
phenomenological consequences. In Chapter [2] we studied peculiar events produc-
ing GW Bursts (GWB) in a network of cosmic strings. As presented in Section [2.1]
these networks are thought to be generic in many scenarii which include some Spon-
taneous Symmetry Breaking (SSB) and/or certain types of supersymmetric or string
theory inflation. Indeed, the Kibble mechanism [28] is responsible for the creation
of topological defects, which are confined regions in which the normal phase sur-
vives in an ordered phase background. Under certain circumstances regarding the
symmetries, these defects can be linear, namely Cosmic Strings (CS). Alternatively,
some string-inspired models, in which our universe is a brane evolving within a
larger-dimensional bulk and where inflation is related to brane collisions, can also
lead to the quantum equivalent, namely Cosmic SuperStrings (CSS). The properties
and parameters of such strings depend on the model they emerge from, but can be
studied, as we do in Section from an effectively one-dimensional perspective,
that is, following the Nambu-Goto action given in Eq. . It is interesting to
notice this common framework for CS and CSS, even though their formation, and
thus some of their parameters and their evolutions, might be different.

One exciting feature of such linear objects is called a cusp, and this corresponds
to a region of the C(S)S momentarily reaching the speed of light ¢ = 1. The
interest in such events lies in the GWB emitted at that point, whose high frequency
spectrum has been analytically examined [36]. Our work in Section focused on
such events from a light string stretched between two heavy, almost fixed strings,
as could appears in C(S)S networks. We investigated in particular the rate of such

phenomena. Doing so numerically, we also saw some potentially important relatives
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to cusps emerging, called pseudocusps, where the velocity reached was very close to
1 but still a bit (say 107°) below. An analytical criterion allowing us to discriminate
between cuspy and non-cuspy strings was found, Eq. , and compared to our
simulations, confirming several of our intuitions. For instance, we found that the
wavier a C(S)S is, the cuspier it will be, and that there could be on average as
many pseudocusps as they are cusps, in order of magnitude. The actual number
of cusps being very model- and parameter-dependent, and our setup being specific
even though quite realistic, we can only give the overall trends and not definite rates
of occurrence.

Still, we would like to stress that our study led not only to a better understanding
of cuspy events with respect to their GWs emissions, but also of the frequency of
such phenomena and their occurrence rates relative to the main parameters of string
networks [45]. This opens up possibilities for future work on several fronts. Firstly,
the GW spectrum of pseudocusps could be studied in order to derive the dependence
of the high frequency behaviour on the local velocity. This would provide a more
informed choice for the relevant points regarding GWBs (as the threshold used here
was somewhat arbitrary and mainly motivated by the limits on numerical accuracy).
The incidence of cusps and pseudocusps could also be studied for additional string
configurations, such as loops, strings between moving junctions or strings with kinks.
Once this is determined, dynamical evolutions of C(S)Ss and networks could be
simulated, taking into account properties such as the expansion of the universe
and the scaling of the network, the string interactions, and the local features (for
instance kinks, junctions, and zipping). Such model dependent analyses would refine
our knowledge of the number of cuspy events on a more realistic, complete network.
We could thus obtain multiple predictions of the high frequency GW signal one could
expect on Earth. We believe that this would allow a better understanding of future
detections, both stochastic backgrounds and potential single events, in addition to
providing more accurate constraints on a large range of high energy models.

We discussed in Chapter (3| a specific (string inspired) brane world scenario, that
is, a model where our lower-dimensional universe evolves in a larger-dimensional
bulk. The graviton is seen as a closed string and is also located in the bulk, while
other fields are open strings whose extremities end on the branes. The key fea-
ture of this model, as detailed in Section [3.2] is the presence of a foam of effectively
point-like D-particles in the bulk, either as DO-branes or as three-times-compactified

D3-branes, depending on the string background. Their interactions with our uni-
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verse brane and its contents, namely open strings, generate a vector recoil velocity
field. This influences the graviton equations of motion, Eq. , mainly via extra
content terms due to the squared field strength. These can be interpreted differently
depending on the hypotheses adopted and were shown to lead to various astrophys-
ical and cosmological consequences.

As we showed in Section [3.3] this recoil velocity field can form a condensate in
late eras of the universe and act as a DM fluid, thus reducing the need for other
types of DM, although it generically appears in such string-inspired models. We
detailed under which circumstances this condensate can fully replace the need for
alternative DM, relying on a lensing analysis and relating our constraints to the ones
previously obtained in the context of large scale structure growth [61]. We would
emphasise, once more, however, that we do not seek via this model to eliminate the
need for DM, but rather to partially relax the current bounds. Looking back to
the early universe in Section [3.4] we then studied the inflationary era and produced
a successful scenario in which the condensate, which is homogeneous and slowly
varying in time, plays the role of the inflaton scalar field. Two limits are studied,
one in which the condensate is weak (in the case of large string scale with respect
to the Hubble scale during this era) which turns out to be unsatisfactory, and the
second where it is large (with small string scale) which fulfils all the requirements
for inflation. The constraints of this scenario were then tested with respect to the
late era limits, and the age of the universe was computed for overall consistency.
An alternative scenario for the former, deficient case was also given, where the
dilaton field induces the inflationary era. Finally, driven again by the late direct
detections [4], we studied in Section the propagation of GW in such a modified
theory and obtained a mass for the graviton. Additional effects, such as refractive
ones, both on the graviton and the photon, were studied and compared, in order
to constrain the parameters of our model. It is important to note that for such
analysis, the so far neglected “magnetic” type field strength of our vector recoil
velocity field plays an important role, as well as the quantum fluctuations of the
condensate. Still, this is consistent with the previous sections; each setup implies
different hypotheses such as homogeneity or time independence, leading to different
leading and subleading terms in the equations and thus to different physical effects.

Our analysis provides multiple tests of this D-material universe model, spanning
several eras as well as several space scales, which consistently fits the current data

and solves several outstanding problems of the ACDM model. Let us stress that this
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scenario provides microphysical interpretations for the introduction of additional
terms in the equations, and thus proves to be not only experimentally successful
but also theoretically well motivated. Still, the lack of a better string theoretic
understanding limited our ability to produce a detailed analysis of the quantum
fluctuations of the condensate. These are necessary to relax some assumptions,
refine the underlying mechanisms and further constrain the model. In addition, a
full comparison to the CMB temperature and polarisation anisotropies, regarding the
GW and photon propagations, could yield additional limits on the model parameters.
Our inflationary era could produce specific signatures, such as GW signals or effects
on the tensor-to-scalar ratio, distinguishing foam models from other brane world
scenarii. Finally, the presence of D-particles in our immediate surroundings could
be indirectly observed in particle detectors such as the Large Hadron Collider (LHC),
for example, by the spacetime angle deficit they create locally.

Finally, a word on the theories which were investigated. For us, their appeal lay
in the fact that they provide immediate phenomenological consequences, as well as
being strongly theoretically motivated. The link between hypothesis and observable
outcome is unambiguous, allowing us to disprove a theory, however beautiful, and
whatever the amount of time and energy that has been spent to develop it. This
is at the heart of the necessary and productive conversation between theoretical
and experimental research. The following famous quote from Richard Feynman |79,
Chapter 7, p. 156] conveys well these views, as well as the tough truth about the

theorist’s task:

In general we look for a new law by the following process. First we
guess it. Then we compute the consequences of the guess to see what
would be implied if this law that we guessed is right. Then we compare
the result of the computation to nature, with experiment or experience,
compare it directly with observation, to see if it works. If it disagrees
with experiment it is wrong. In that simple statement is the key to
science. It does not make any difference how beautiful your guess is. It
does not make any difference how smart you are, who made the guess,
or what his name is — if it disagrees with experiment it is wrong. That
is all there is to it.

The true goal is to fail one’s own theory, to force it to confront the reality of obser-
vations, to constrain it, until there is no parameter space left.
With these ideas in mind, this thesis has sought to push further on the limits of

the theories it presents. It is hoped that future work will build upon this one, in
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cosmic strings, in dark matter, in the early universe, in such a way as to carry on

this fruitful dialogue between theory and reality.
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Appendix A

Generalised configuration of

strings between Y-junctions

We here extend our initial strings’ configuration detailed in Section [2.3.1] in order to

show that the quasi-periodicity of the movement of the light string is indeed generic.

A.1 Coplanar heavy strings with various angles

In this section, we choose different angles at the two junctions and denote Wq (re-
spectively W,,) the angle between the z-axis and the heavy string at the o = 0
(respectively o = 0,,,) junction. In addition, by setting the upper half-plane to be
the symmetric of the lower half-plane, one forms a (7 —2Wg) (respectively (7 —2¥,,))
angle along the heavy string. Note that here, the two heavy strings remain coplanar
and orthogonal to the y-axis, as shown in Fig.

One can then define Sy = sign(X7(0,¢)) and S, = sign(X.(om,t)) the signs of
the z-component of the light string’s velocity at each end. These both take the value
+1 depending on whether we consider the z < 0 half-plane, respectively. They allow
us to write in a compact way all the boundary conditions coming from Egs. (2.20)),

giving
X, (t,0)=0 (A.la)
X, (t,0) — Sy tan(¥g) X, (t,0) = (A.1b)
Sotan(Wq) X, (¢,0) + X (¢,0) =0, (A.lc)
and
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Figure A.1: A light string stretched between two junctions with heavy strings.
Here the upper-half plane is symmetric to the lower-half plane and each heavy
string forms a different angle with the z-axis. The heavy strings are coplanar.

X, (t,om) =0 (A.1d)
X, (t,0m) + Sy tan(0,,) X, (t,0,,) =0 (A.le)
Smtan(V,,) X! (t,0,,) — X (t,0m) =0, (A.1f)
leading to the system of equations
X\, (t)=X", (-t (A.2a)
(X, () — X, (—t)] Sotan o = X', (t) — X', (—1) (A.2b)

X )+ X (—t)=—[X, () + X', (=t)] Sotan ¥y,  (A.2¢)

and
Xy, 2om+1t) =X, (—t) (A.2d)
(X, 2oy +t) — XL (1)) Sptan ¥,, = =X’ (20, + ) + X', (—1) (A.2e)
X\, 2oy +t)+ X, (—t) = [X, Qop + 1) + X, (—t)] S tan ¥,
(A.2f)

replacing Eqgs. . Manipulating Eqgs. and allows us to express
X' ,(t) and X! (—t) in terms of X' (t), X’ ,(—t) and polynomials of (Sytan W),
and thus X' (20, + t) after a shift ¢ — 20,, + ¢. Replacing in Egs. and
(A.2f), one gets two equations involving X' (20, +1t), X! .(t), X", (=20, —t) and
X' ,(—t), and combination of (Sptan ¥y) and (S, tan W, ).
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Shifting the variable t — 20, +t, one gets four equations involving six variables:
X\ 4oy +1), X, (20, +t), X\ (), X . (—40oyn —1t), X' (=20, —t) and X (—t).
One can then use three of them to eliminate the three X', variables — namely
X' (—4o, —1t), X' (=20, —t) and X’ (—t) — to obtain an expression similar to
Eq. (2.26))

XL, () =-RX,, (200, +1t) — X, (40, +1) , (A.3)

where

R = —2cos (250¥¢ + 25, V,,) (A.4)

and similarly for X’ .

This expression is very similar to the one we obtained in the initial setting, which
we can retrieve by setting S, = 1 = 5y and ¥y = ¥,,. In addition, this equation
also reveals that the functions X and X! , are periodic for a dense subset of angles,
otherwise quasi-periodic; one simply needs to replace 2¥ by Wy 4+ WU,,,. This justifies

our initial simpler choice.

A.2 Non-coplanar heavy strings

In this section, we choose to modify the initial configuration by rotating the o,,-end
string in the plane containing the y-axis, as shown on Fig. In other words,
one rotates the string around the axis which is perpendicular both to the initial
position of the string and to the y-axis, that is the axis directed by the vector
(cos U, 0, sin V).
This rotation generates a coupling between X jry and the other components of X, ,
/

namely X' and X! _, contrarily to previous cases. Indeed, the boundary conditions

at ¢ = 0 remain the same while the ones at ¢ = 7,,, become

—sin¥ sin® [X',, (200, + 1) — X', (—t)] +cos ® [ X', (200, + 1) — X', (—1)]
+cos W sin® [X',, (20, +t) — X' _(—1)] =0
(X, (200 +1) — X', (—t)] + tan ¥ [ X', (20, + 1) — X', (—t)] =0
sin W cos ® [ X, (205, +1) + X', (—t)] +sin® [X', (205, + 1) + X', (—t
—cos W cos® [X', (20, + 1) + X', ()] =0 (A.5c)

replacing Eqs. (2.22d)) to (2.22f). These are significantly more complicated than

previously and imply that one needs to manipulate more equations to obtain a
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(b) side view

(a) front view

Figure A.2: A light string stretched between two junctions with heavy strings.
Here the 0 = 0, end string has been rotated in the plane containing the y-axis
by an angle ®. The two heavy strings are no longer coplanar.

relationship similar to Eq. . In the end, this coupling generates a 3" order
equation for X/, and X/, instead of the 2™ order one that is Eq. (2.26).

We believe that the conclusion on the periodicity, obtained in the previous string
configurations, is still valid in this general setup, basically since the energy density
per unit length remains constant (no emission has been incorporated). Indeed,
the energy being constant implies that any damping or amplification in one of the
components of the signal along the string is linked to some compensation somewhere
else in the system.

In the previous situations, if, for instance, the energy of the y-component was
null at the beginning, it remained that way; similarly, an energy loss in the z-
component would be balanced by a gain in the z-component, and vice versa. In
our non-coplanar situation, one needs to take into account all three components in
a very entangled and more complex way. This suggests that a loss of energy in,
say, the z-component can be balanced by an amplification in the y-component, for
instance. Indeed, at the ¢ = ¢, junction, this kind of transfer can happen since
all three modes are coupled. In addition, it is believed that the damping in the
z-direction could be seen as a source term in the x- and y-directions, linked to a

general conservation of energy density and implying a globally periodic movement.
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More precisely, the 3" order equation is of the form
Ximizs—RXy o+ RX 41 —Xin=0, (A.6)
where R depends solely on the angles; it gives solutions of the form
Xin=Ae"+e" (Bcosvn + Csinwvn) | (A.7)

where A, B and C' are constants depending on the initial conditions (i.e. on
X.0, Xy and X, ,) and u and v depend directly and solely on R. Taking A
to be non-zero gives unphysical solutions since one needs to keep in mind that
X, =+y/1-(X},)?— (X;Z)Q. One would get large values for X! and X' , as

n grows, giving a negative value for (1 — (X’ ,)* — (X’,,)?). Similarly, one cannot

understand physically the exponential prefactor " unless there is a mechanism to
either suppress this factor or reverse it after some time. Indeed, let us divide this in
three cases: if u is null, one obtains a periodic motion; if u > 0, we find ourselves in
the case described previously, that is unphysical complex values for X, ; finally, if
u < 0, one would have a situation where X', = 0 = X', and all the energy lies in
X ’+y, which is unrealistic as well. A mechanism suppressing or reversing this pref-
actor would imply a balance between each component through time, which again
makes sense physically.

Generally, it is believed that the rotation of the o = o, string should not change
the global understanding of the movement of the light string, meaning that what

was considered as consistent in the coplanar case should remain valid here.

Indeed, recall X2 =1 = (X/,)? + (X/,)? + (X/,).
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Appendix B

Snapshots of the strings simulation

We present in Fig. some snapshots of a string simulated using our code. The
chosen parameters here are such that ¢ ~ 2/5,, = 0.25 and ( ~ 2 since 4 modes
have been implemented on the string. Finally, we use here a rescaled time t' = t/o,,,,
meaning that ¢ = 1 after a half of the period. Note though that using symmetries,
one can deduce how the string is behaving in the second half of the period from the

string’s position during the first half. Finally, note that ¥ = 0.
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20 20

t' = 0.75 t' = 0.875

Figure B.1: Snapshots of a simulated light string (in blue) stretched
between two junctions with fixed heavy strings (in red).
t' = t/o,, is the rescaled time. ¢ ~ 2/o,, = 0.25 and ¢ ~ 2.
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Appendix C

Background field considerations in

the D-material universe

Here, we discuss background field considerations which satisfy equations of motion

obtained from the actions (3.1]) and (3.16]).

Equations of motion

Let us first give the detailed equations of motion one gets from the low-energy, weak-
fieldT action in which we include a dilaton kinetic term as well as derivatives of the

vector field strength. The action, in such case, yields [61]

Ty e3% A e2%0 1 a Ty e 1
- 3 - ) _Z<g;u/guy>+ ( 3 ‘I’_)R

ng 4D = /d4$\/ -9

s K2 s kg
F2 ~ 1
— — (1 —ae®™R) + A (AMA“ + —,j)
4 o
—2¢0 .
30w g P06+ O ((agb)z)} 48, (C.1)

where the last two terms are the ones ignored in Eq. (3.16]) and in our main compu-
tations. The first term contains derivatives of the dilaton and of the squared field
strength, and leads to an additional set of terms in the graviton equation of motion,

of the form

<3a ZM) [% V2F? — vuvuﬁ2 -2V’ [ﬁ/‘)\ﬁy/\ﬂ . (€2)

1 As in action 1) we use here the renormalised vector field Z/u following Eq. 1)
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Hence the full graviton equation of motion reads’|

(%)

aTye? 1 =200 2

gl“’ vac
Z=A C.3
gs() K/% 4 + ( )

2

G 72 1 -2 S Juw o, 1 et
s o L1 actoR) F,,A—%A<AQA +JJ)+AA#AV

3o e~ 200

G 2 2 2 2 oA N
; [TVF — VWV F2 2V [F R = =T

Again, assuming the squared field strength is almost constant (homogeneous and
isotropic on cosmological scales, and slowly time varying) leads to Eq. .

In the vector equation of motion, extra terms would be proportional to derivatives
of the dilaton field ¢, which is taken (exactly) constant. Unlike the approximation
VE? ~ 0, the assumption ¢ = ¢ is considered to be exact, meaning that terms of
the form 9,¢ or V2¢ are negligible in front of any other kind of subleading term.
The vector equation of motion thus gives, as already stated in

[ﬁw 1-a e*2¢0R)} U ron@) A, =0, (C.4)

where again the semicolon denotes covariant derivative. Note that the Lagrange

multiplier, obtained by contracting the above equation by AP and using the con-

straint (3.14)), is given in Eq. (3.21)) as

_ M0 q B (1—ac*R)| " . (C.5)
8m2a/ | T3 .

(Ax))

It is subleading as it yields derivatives of F w and R.
Finally, the dilaton equation of motion is affected by both additional terms in
the action above. While the kinetic term O ((9¢)?) is ignored in the end, we feel
the need to give some details on the computations arising from the first additional

term of the action. Denoting

3o e 2%0

S O"F?0,0| (C.6)

Spg = /d493\/—_9{

20Once more, we assumed the condensate of bulk gauge fields of the form (G#*G,,,) to be scalar-
like when deriving this equation of motion.
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which we vary with respect to the dilaton field, we obtain
§Spy = / divy/=g <—g a) [e*% O"F20,(80) — 266 =2 9 2 am}
- / dizy/—g (—g a) [e—2¢ 0" F20,(8¢) — e~ (5¢ V22 4 or a#(&m)}

o]

+3ae ™ _,~

% VQFQ] 5 | (C.7)
where, between the first and the the second line, we used an integration by part on
the second termﬁ The dilaton equation of motion (once we assumed ¢ = ¢g, only

removing the kinetic term) thus yieldsﬁ

Tyeto =200 2

9s0 2

3o e 2%0
-

3Tyed 2\ 290
+

2
gs0 Ko

~ 3
VF?+ A =J =0, (C.8)
@
which, assuming again V,\ﬁ w = 0 (and hence A >~ 0), gives back Eq. 1}

Vertex operators

As discussed in detail in Ref. |[61] and references therein, the D-particle recoil fluc-
tuations are in general represented by a vector mean-field excitation of a stringy
o-model that describes the propagation of strings in cosmological FLRW spacetime
backgrounds, punctured by populations of fluctuating D-particles, with two types
of contributions:

(i) “Electric type”, associated with the linear recoil momentum excitations, de-

scribed by o-model world-sheet boundary (0%) deformations of the form

1

2ma!
1

2ma!

Viin. mom. —

/ dr gix Y*(7) 0(X°) 9, X°
o

/ dr g u® X0 (X" 0, X", (C.9)
(o))

with ©.(X") a regularised Heaviside function, describing the impact (and impulse)

of the matter string on the D-particle at a time X° = 0 and 9, X" the normal world-

3Using the notation [ uv’ = [uv] — [ u'v, we here chose u = §¢ OMF? and v/ = —2e 2% 0.
4Recall the definition of J in Eq. (3.15). It leads to the (subleading) term containing the
Lagrange multiplier.
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sheet derivative, where X* are o-model fields obeying Dirichlet boundary conditions
on the world sheet, and 7 is a o-model field obeying Neumann boundary conditions
on the world-sheet, whose zero mode is the cosmic target time. The path Y?(7) may
be identified with the geodesic equation of a massive D-particle in the spacetime de-
scribed by the metric g;;. One can rewrite Xy = t —%. and use cosmic time t, ¢, being
the impact time. The quantity u’ is the D-particle recoil velocity emerging from the
inelastic interactions and g;; = a*(t)d;; are the spatial components of the metric for a
(spatially flat) Friedmann-Lemaitre-Robertson-Walker (FLRW) universe, with scale
factor a(t), we assume here, as dictated by the current astrophysical/cosmological
data [6]. For the galactic eras we are interested in in the lensing analysis of Sec-
tion and in the graviton propagation study of Section , one can assume
a(t) ~ 1. The vertex operators satisfy a (logarithmic) conformal algebra’| on
the world-sheet, hence they are consistent string deformations.
Upon a T-duality transformation (which exchanges Neumann and Dirichlet bound-

ary conditions), assuming it to be an exact symmetry of the underlying string theory,
we observe that the “impulse” vertex operator on 9% ((C.9)) corresponds to that of

a covariant vector (gauge) ﬁeldﬂ

1

Vin. mom. — —_ ,— dr A 87-XM s C.10
1 QW\/J o5 " ( )

where 0, denotes tangential world-sheet derivative. The vector field has spatial

components [61]
1

\/J

(ii) “Magnetic type”, associated with o-model deformations corresponding to

Ai = Gik Yk(t) @e(t - tc) : (Cll)

non-zero angular momentum of the recoiling D-particles, described by the world-

sheet boundary vertex operators

1 . .
— / dr e, uf X70.(X°) 0, X", (C.12)
ox

Van mom. —
& T 27l

5From a world-sheet viewpoint, the Heaviside function is an operator, which is such that the
impulse/recoil operator (C.9) satisfies a logarithmic conformal algebra on the world-sheet of the
string, which is the limiting case between conformal theories and general renormalisable two-
dimensional theories, that can be classified by conformal blocks. For the purposes of this work, we
shall work with Xy > 0, that is, ¢t > t., so that the Heaviside function can be set safely to one.

6There is an Abelian gauge symmetry associated with the vertex due to the fact that,
upon a U(1) target-space gauge transformation, with parameter (X (o, 7)), under which A, —
A+ 0,0(X), the vertex remains unchanged, since ¢, 9,0(X) - X" = ¢, %9 = 0, recalling the
boundary of a boundary is zero by construction.
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with €;;; the antisymmetric symbol in three-space dimensions. As is the case of
the “impulse” linear momentum vertex operators , the operators also
satisfy a (logarithmic) conformal algebra on the world-sheet of the string.

These “magnetic type” contributions are either subleading, due to symmetric
metric conditions used in some parts of the lensing analysis of Section |3.3| or in
the homogeneous isotropic cosmological background of the inflationary era in Sec-
tion [3.4] Alternatively, they can be of the same order than the “electric type” ones,
for instance in the galactic scales of the matter dominated era, as used in the gravi-
ton propagation analysis of Section [3.5] Still, they have been sometimes ignored for
simplicity in our estimates as they would at most add a factor 2, thus not changing

our conclusions.

Background configurations

Let us now look in more details at the form the vector field takes. For a FLRW
background with a power-law scale factor a(t) ~ t* relevant for the matter dominated
era we are interested in some parts of this work (see as well [61]), and for times large

compared to the moment of impact t. for any given D-particle, one has

: v a’*(t.) v
Y(t) ~ t — t. S — te t>tg, C.13
) 1—2p( =0 )+ - 2p > (C.13)

which, on account of Eq. (C.11]), implies the cosmological form of the recoil vector
field A, and its field strength F},, on the D-brane given in Eq. (3.27)), that is

1 2
A =— a’(t) u; | Fyi = ——=aau; , C.14

having absorbed irrelevant numerical factors into the definition of the recoil velocity

and restored the correct dimensionality via appropriate powers of Vo'

The temporal component of the covariant vector field Ay cannot be fixed in
this approach, given that the target time coordinate satisfies Neumann boundary
conditions on the world-sheet, and as such 9,t(¢) = 0 and thus does not appear in
the original vertex in the Dirichlet picture. As in Ref. [61], and for the case
of cosmological spacetimes only, we have covariantised the vector background by

considering the temporal component of the (T-dual) vector field to be such that the
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four-vector field A, (of mass dimension one) assumes the form

1 v
AM = _ﬁ gu,/(t) u (015)
where v = da*/dr is a (dimensionless) four-velocity, thus satisfying the time-like

constraint (in our convention)
u v g = —1. (C.16)

Recall that in this approach, the recoil velocity field u, is elevated to a dynamical
one, as a part of a dynamical gauge background field in the D-particle recoil process.
That is to say, upon T-duality, the vertex operator is related to the gauge
potential deformation A; = u; X° ©(X?) (where one can assume, without any loss of
generality, the time axial gauge Ay = 0). The interaction of neutral matter with the
background of the recoiling D-particle is described in average by such new dynamical
vector field degrees of freedom, associated with the back reaction of the D-matter
on spacetime.

The cosmological FLRW spacetime have the conformally flat form (in conformal

time 1 coordinates, cf. (3.26))

v = a2(77) N (C17)

where a(n) is the scale factor as a function of the conformal frame. In view of

Egs. (C.16) and (C.17)), the vector field ((C.15|) appears to satisfy the constraint

1
Ay A, g = —— (C.18)

O[/

since g = a~%(n)n* for the FLRW metric in conformal time frame. Since the
left-hand-side of is coordinate-frame independent, the constraint also
characterises the FLRW time frame . Note that in conformal time 7, the prime
here meaning derivation with respect to 7, the field strength becomes

FOi = — CL/ Uj; . (019)

\/&

Thus, the cosmological background appears to break (spontaneously) the stringy

gauge symmetry, leading to a massive vector field. This has been taken into account
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in this work (as in Ref. [61]), whenever the global (cosmological) background
is used, like, for instance, in the Section |3.4] where we shall consider its role in an
inflationary era of this string/fluctuating-D-particle universe.

Under such conditions, the vertex operators correspond to vector field
excitations 4; with a target-spacetime field strength (after the impact, that is, for
t > t.) of the form

Foi = E; = M2 giju (C.20)

where E; denotes the “electric” field, while the vertex operators (C.12)) imply a

target-space field strength with spatial components
ﬁij = —Gijk Bk = Mg&ijkgkg Uz = Bk == Ms2 (9] uf s (021)

where B; denotes the “magnetic” field. This leads to the form of the field strength in

the cosmological picture of the late eras, as considered in the graviton propagation
of Section 3.5

Numerical estimations

The reader is invited at this stage to notice the presence of the (inverse cube of the)
scale factor in Eq. , which plays a role in the cosmological evolution between
eras (see Section and arises from the fact that the statistical fluctuations
are proportional to the cosmic density of defects at a global scale [61], with a(t)3
denoting the proper volume in a FLRW universe. In a semi-microscopic treatment,

this scaling of oy can be justified by noting that essentially
(wasg O ~ V5" [ Py g7 (22
D

where g;;(Z, t) is the metric (3.28), D is a spatial domain (with (proper) three-volume
Vp) upon which the (statistical) average over D-particle populations is considered
at any given moment in cosmic time ¢, and P = ]]\\7[—3 is a probability of recoil of
a D-particle under its interaction with low-energy cosmic photons, assumed to be
the main contribution for the generation of the recoil field, with Np, IV, the corre-
sponding number densities of D-particles and photons respectively. The quantity u;

is the spatial recoil velocity arising from a single scattering event of a photon with a
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D-particle. It is proportional to Ap; the momentum transfer during the scattering

_ Ap, &0 pi o pp™"
U; = gs0 = ](:/[ gs0 = ao(twgso (0-23)

with {0 < 1 is a spacetime local constant “fudge” factor (hence independent of the
universe’s expansion), characteristic of the microscopic theory, and pphys denotes
the “physical” momentum observed by a cosmological observer who is comoving
with the Hubble flow for an expanding universe with scale factor a(t). The quantity
M,/ g is the mass of a D-particle, with My = 1/\/& the string scale and gy < 1
the string coupling, assumed weak so that string loop perturbation theory (and thus
world-sheet formalism of recoil) is valid. From Egs. , and , and
taking into account the scaling with the scale factor a(t) of the densities of the (non
interacting among themselves) D-particles, Np = N](Do)a_3(t), and the photons (ra-
diation) N, = NW(O) a~4(t), with the superscript (0) denoting present-day quantities,

we obtain

.
1 ng)gg‘pphyS‘Q 2
@) NO - ME

((uiujg?)(t) ~ (C.24)
with |ppnys|® the square of the amplitude of the physical spatial momenta, computed

with the time-independent part of the spatial metric (3.28) with a?(t) factored out.
Comparing ((C.24]) with (3.34]) we obtain an estimate for | 3| at late (galactic) epochs

of the universe o =
1 Np” & [Pphys|” g2

0 .
3 NASO) M? s

8] ~ (C.25)

We remind the reader that Eq. relies on the assumption that the dominant
contributions to the recoil velocity field and its statistical fluctuations come from
scatterings of D-particles with the abundant background of cosmic photons, taken
for concreteness to be mostly CMB for the galactic era. In this case |ppnys| denotes
an average energy £ of such photons as observed in the present day, i.e. E(eV) =
1.24/A(pm), with A(um) a typical wavelength of the CMB photon, A ~ 1.9 mm.
This yields

EME =[PP ~ 7 x 1074 eV . (C.26)

We now remark that the a(t)™2 dependence of oy in (3.34) is over and above any
inhomogeneities that may characterise local populations of D-particles in the neigh-
bourhood of galaxies we shall concentrate upon in our lensing analysis. The latter

may be incorporated in a mild dependence of o from galaxy to galaxy, which, as we
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show in Section [3.3] may arise from uncertainties in cosmological measurements. It
is also understood that the statistical averages above, leading to Egs. ,
and are only applied at the end of the pertinent computations.

At this point, we should make the following remark. The quantum fluctuations
about such averaged quantities over populations of D-particles can be described in
terms of the low-energy string effective action Eq. . The nonlinear Born-Infeld
dynamics encoded in this action might then be responsible [62] for the formation of
quantum condensates of the recoil velocity field that characterise the early universe
epoch, which are distinct from the statistical averages that correspond to the
classical part of a condensate ((F},, F*)) of the D-particle recoil velocity field. In
our considerations in this work, the inflationary epoch of Section [3.4]is characterised
by very dense populations of D-particles, and as such one may consider the clas-
sical, statistical effects as dominant, while the quantum fluctuations are explicitly

expressed and necessary in our graviton propagation analysis of Section |3.5|
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Inflation for small condensates of

the D-material universe

Although small condensate inflation induced by the D-particle population alone,
with a zero dilaton, is not a viable scenario, as we have seen above, nevertheless one
may [59] obtain Starobinsky-type inflation induced by the dilaton in a slow-rolling
regime where the dilaton assumed large negative values. In this case, a crucial role is
played by the D-particle small condensates in assisting this inflation in the sense of
providing the means for a potential minimum towards which the dilaton field (which
plays here the role of an inflaton) rolls slowly. The details have been presented in
Ref. [59] and will not be repeated here, however, for completeness, we shall outline
below the main features.

In the case of a non trivial dilaton ¢, a convenient starting point is the o-model-
frame effective action (3.1]), expanded (for small condensate fields) up to quadratic

order in F? recoil field strength

Tae—® Ae 20 T = —2¢
Seff4dim2/d4x\/_g - 5° - e2 _D_As+<a 3¢ +62>R(g>
gs0 Ko Gs0 Ko

ral)? Le ¢ F? 2
—%%u—amg))w(w) >] . (D

where D are dilaton independent flux condensates in the brane, defined previously

(cf. (3.93)), and
M, 4 o
Aszgoe ¢ NET (D.2)

with Ng* the (dimensionfull) proper space density of D-particles in the string frame,

is a contribution to the brane vacuum energy due to the (rest) mass of the D-particles
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(cf. Eq. (3.6)).

Upon considering vacuum condensates in a Hartree-Fock approximation, i.e. re-
placing F,, F'* by the condensate field in the presence of a dilaton ((F),, F*)) ~

Cma(t), such that one can define the dimensionless condensate field o (¢, x)

o(t,z) = ialigﬁ (e72°T) Caa(t) | (D.3)

where one recalls the definition of J as in Eq. (3.15)), the effective ation (D.1])

becomes [59]

—2¢ 2
Seff 4dim = /d4ZU vV —g : 2 |:(1 + 20—('%#)) R—— U('x‘u)
2K e
— 2% (2B+¢*D) | + ... (D.4)
where o = 7 /6 o/ as before, the ... denote dilaton derivatives, which are subleading

terms in the slow-roll inflationary phase we are interested in here, and where we
have defined % = (M + %) ~ £ M}, along with
eff

2k gs0 K§

e (D.5)

which is an effective vacuum energy and is almost a cosmological constant for slowly
rolling ¢(t) ~ ¢, large and negative. The reader should recall at this stage that
the dilaton equation imposes the condition , which allows us to express the
parameter |A| in terms of the brane tension Ty > 0.

We next pass into the Einstein frame, denoted by a supersctipt F, by redefining
the metric [59)

G — gEy = (14 20(t,z)) e 2% v (D.6)

in which case the field o(t,z) becomes a dynamical scalar degree of freedom. We

define a canonically-normalised scalar field (¢, x)

o(t,x) = \/gln (14 20(t,x)) , (D.7)
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so that the action (D.4) becomes

1
2K2

d'z V —g® [RE + gEW/auSD oo =V (‘P)}

+0(9° 0 00, " 0u00 00) . (D)

E _
Seff 4dim —

with the effective potential V(¢) in the inflationary regime of large negative values

of ¢y given approximately by [59]

1 _
V(p) ~ {E (e\/g“" — 1) + 4/13HBE] 290 V5 4 262D | (D.9a)
_ T, e%0
where 2B ~ —% + %P0 A (D.9b)
sO

with AP the Einstein frame (dilaton-independent) vacuum energy correspond-
ing to the o-model-frame quantity A, (D.2)) (cf. Eq. (3.8))

AE o M o Np M3, (D.10)
9s0
where Np is the number density of D-particles per (reduced) Planck three-volume
on the brane world (assumed more or less constant during inflation [59]).

It is important to note that, in order to arrive at Eq. , we took into account
the conformal nature of the flux condensate term in the four-dimensional spacetime
action [ d*z,/gD (under rescalings of the form ), and have ignored terms that
are more than quadratic in the vector potential. Moreover, as already emphasised,
for our purposes here we concentrate on the slow-roll phase of the dilaton field ¢,
so any potential-like terms with dilaton time-derivative factors are ignored. In this
approximation, we do not need to worry about the cross-kinetic terms 9,¢,0"¢,
which can, in any case, be eliminated by a further redefinition (mixing) of the fields
@ and ¢ [59)].

From the discussion in Ref. [59], an extra factor v/2 needs to be absorbed into
the dilaton normalisation in order to obtain a canonical kinetic term for this field,
yielding finally

o V(p) = o (V3 1) eV ie v
265 o 2K
13
2950

V3P V3% 1 AB ~V5e 2V20 | D (D.11)
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APPENDIX D. INFLATION FOR SMALL CONDENSATES

For weak condensates ¢ < 1, where the approximations in this work hold, and large
negative values of the dilaton ¢g, the reader will recognise in the Starobinsky-
like form of the effective potential for the dilaton-driven inflation provided A+D > 0.
This can fit the Planck data [6] due to the very small value of the tensor-to-scalar
ratio r predicted by this class of theories.

By minimising the effective potential with respect to the condensate field,
for fixed large negative values of the dilaton ¢g, we observe that the minimum occurs

for ¢ ~ 0 (as required for consistency) provided that

AE ~
2950

2 2
T3 3980 Ms MPI 6_%@) + 1 6_%(“) . (D12)
w2 T

Taking into account (D.10) with the rescaled dilaton ¢q — ¢0/v2, we have from
(o8E)

_ T o M2M2 1
: {390 T ﬂ¢°+1} (D.13)

Np ~
PUTOM MR | 72 Ty
for the (dimensionless) number of D-particles on the brane world during the dilaton-
driven inflation area.
If we adopt the standard relation (used in Ref. [61]) (27a/)? T3 = 1, that is
472 Ty = M2, which is consistent with weak condensate fields ¢, as we have seen

previously, then one obtains

— 1 M, 3 Mp1 2 —Lg
Np~ — [ —2) [12¢. % 4
D™~ e (MPI) [ gO(MS) e +

Now for My ~ 106 GeV > H; ~ 10" GeV, gy ~ 0.8 and nominal values of the
dilaton field in the range |@o| € [1, 10] (with ¢o < 0), we obtain Np € [107% 1071].

Higher densities can be obtained for larger brane tensions 73. Thus, we observe

(D.14)

that, even for the weak recoil velocity condensate fields case, during slowly-rolling
dilaton-driven inflation, the density of D-particle defects must be much higher than
then corresponding one in the galactic era. This is a rather generic feature of the

D-material universe.
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