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1 Introduction

Parity violation was discovered in 1957 [1] in nuclear β decays, pion and muon
decays [2]. In the charged current interaction of the standard electroweak theory,
parity and charge conjugation symmetries are maximally violated due to the V −A
structure [3]. All the experimental results up to now are in full agreement with the
theory.

A surprising discovery of the CP violating KL → π+π− decays [4] was made
in 1964. The neutral kaon system still remains the only place where CP violation
has been seen. The Standard Model with three fermion families can accommodate
all the observed CP violation phenomena through a complex quark mixing matrix,
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [5]. However, no real precision test
has been made due to the large uncertainties in evaluating the effect of hadronic
interactions.

Interest in CP violation is not limited to elementary particle physics. It is one
of the three necessary ingredients to generate the observed excess of matter over an-
timatter in the universe [6]. The other two conditions are baryon number violation
and being out of thermal equilibrium. It was realised [7] that the Standard Model
could meet those three requirements: baryon number violation through transitions
to different vacuum states above the electroweak energy scale, being out of thermal
equilibrium at the electroweak energy scale through the first order phase transition,
and CP violation through the Kobayashi-Maskawa phase in the CKM matrix. How-
ever, the current lower limit of the Higgs particle mass is already too high [8] to
produce the first order phase transition. Furthermore, CP violation present in the
Standard Model is far too small to explain the observed matter-antimatter asymme-
try in the universe [9]. Baryogenesis at the electroweak energy scale is still possible
in various extensions of the Standard Model, which introduce additional sources of
CP violation. This provides a strong motivation to search for effects of new physics
in CP violation.

For CP violation in some B meson decay channels, the Standard Model can make
precise predictions with little influence from the strong interactions. Those channels
can be used to test the predictions quantitatively to look for a sign of new physics.
In addition, CP violation is expected in many decay modes in the B meson system.
The pattern of CP violation allows us to make a systematic qualitative comparison
with the Standard Model predictions. Therefore, it is now widely accepted that the
B-meson system provides in future an ideal place for testing the Standard Model for
CP violation [10].

In this article, we first derive the formalism [11] describing the particle-antiparticle
system, with and without CP violation. Three different mechanisms which can gener-
ate CP violation are clearly classified, together with experimental observables which
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identify contributions from the different mechanisms. Then, CP violation in the
neutral kaon system is analysed in this formalism. After a brief discussion on the
Standard Model description for CP violation in the neutral kaon system, we proceed
to the neutral B meson system. Some Standard Model predictions are described and
it is discussed how the situation could change if new physics existed and contributed
to the B meson system.

2 Description of a Particle-Antiparticle System

2.1 Basic Formalism

CP (charge conjugation and parity transformation) is a unitary transformation. Ar-
bitrary ket-vectors, |α〉 and |β〉, and the CP transformed ones,

CP |α〉 ≡ |αCP〉 and CP |β〉 ≡ |βCP〉 ,

satisfy

〈αCP|βCP〉 = 〈α|β〉,

i.e. [
〈α|(CP )†

]
CP |β〉 = 〈α|

[
(CP )†CP |β〉

]
= 〈α|β〉

which implies

(CP )†CP = 1.

T (time reversal) is an antiunitary operator. The relation between arbitrary
ket-vectors, |α〉 and |β〉, and the T transformed ones,

T |α〉 ≡ |αT〉 and T |β〉 ≡ |βT〉 ,

is given by

〈αT|βT〉 =
(
〈α|T †

)
T |β〉 = (〈α|β〉)∗ .

It follows that, (
〈α|T †

)
T |β〉 =

[
〈α|

(
T †T |β〉

)]∗
and

T †T = 1.

Note that an expression must be complex-conjugated when the direction to which T
operator acts is changed.
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For an arbitrary complex number c, it follows that

c〈α|α〉 = 〈α|c|α〉
= 〈α|

(
T †TcT †T |α〉

)
=

[(
〈α|T †

) (
TcT †T |α〉

)]∗
=

(
〈αT| T c T † |αT〉

)∗
=

(
〈αT|c′ TT †|αT〉

)∗
= c′∗〈α|α〉

thus c′ = c∗ and
T c = c∗ T.

In a similar way, we can derive

CP c = c CP .

Let |P0〉 and |P0〉 be the states of a neutral pseudoscalar particle P0 and its
antiparticle P0 at rest, respectively. They have definite flavour quantum numbers
with opposite signs: F = +1 for P0 and F = −1 for P0. Both states are eigenstates
of the strong and electromagnetic interaction Hamiltonian, i.e.

(Hst + Hem) |P0〉 = m0|P0〉 and (Hst + Hem) |P0〉 = m0|P0〉 (1)

where m0 and m0 are the rest masses of P0 and P0, respectively. The P0 and P0 states
are related through CP transformations. For stationary states, the T transformation
does not alter them, with the exception of an arbitrary phase. In summary, we
obtain

CP |P0〉 = ei θCP|P0〉 and CP |P0〉 = e− i θCP|P0〉
T |P0〉 = ei θT |P0〉 and T |P0〉 = ei θT |P0〉 (2)

where the θ’s are arbitrary phases, and by requiring CPT |P0〉 = TCP |P0〉 it follows
that

2 θCP = θT − θT . (3)

If strong and electromagnetic interactions are invariant under the CPT transfor-
mation, which is assumed throughout this paper,

CPT (Hst + Hem) (CPT )−1 = Hst + Hem ,

it follows that

m0 = 〈P0|(Hst + Hem)|P0〉
= 〈P0|

[
(CPT )−1 CPT (Hst + Hem) (CPT )−1 CPT |P0〉

]
=

{[
〈P0|(CPT )−1

]
(Hst + Hem)

[
CPT |P0〉

]}∗
.
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Using Equations 1 and 2, we obtain

m0 = m0 ,

i.e. the rest mass of a particle and that of its antiparticle are identical.
Now we switch on the weak interaction, V , through which P can decay into final

states f with different flavours (|∆F | = 1 process) and P0 and P0 can oscillate to
each other (|∆F | = 2 process). Thus, any state |ψ(t)〉 which is a solution of the
Schrödinger equation

i
∂

∂t
|ψ(t)〉 = (Hst + Hem + V ) |ψ(t)〉 (4)

can be written as

|ψ(t)〉 = a(t)|P0〉+ b(t)|P0〉+
∑
f

cf(t)|f〉

where the sum is taken over all the possible final states f, which are both real and
virtual, and a(t), b(t) and cf(t) are time dependent functions; |a(t)|2, |b(t)|2 and
|cf(t)|2 give the fractions of P0, P0 and f at time t respectively.

By introducing

ã(t) = a(t)ei(Hst+Hem) t (5)

b̃(t) = b(t)ei(Hst+Hem) t (6)

c̃f(t) = cf(t)e
i(Hst+Hem) t

and

|ψ̃(t)〉 = ã(t)|P0〉+ b̃(t)|P0〉+
∑
f

c̃f(t)|f〉

Equation 4 can be written as

i
∂

∂t
|ψ̃(t)〉 = V (t)|ψ̃(t)〉 (7)

where V (t) = ei(Hst+Hem) tV e−i(Hst+Hem) t. Note that V does not commute with
Hst + Hem. By operating 〈P0|, 〈P0| and 〈f ′| from the left side of Equation 7, we
obtain

i
∂

∂t
ã(t) = 〈P0|V |P0〉ã(t)+〈P0|V |P0〉b̃(t)+

∑
f

〈P0|V |f〉c̃f(t)e
i(m0−Ef)t (8)

i
∂

∂t
b̃(t) = 〈P0|V |P0〉ã(t)+〈P0|V |P0〉b̃(t)+

∑
f

〈P0|V |f〉c̃f(t)e
i(m0−Ef)t (9)
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and

i
∂

∂t
c̃f′(t) = 〈f ′|V |P0〉ã(t)ei(Ef′−m0)t + 〈f ′|V |P0〉b̃(t)ei(Ef′−m0)t

+
∑
f

〈f ′|V |f〉c̃f′(t)e
i(Ef′−Ef)t (10)

By applying the Wigner-Weisskopf approximation [12], the last term of Equation
10, which is due to the weak interaction between the final states, can be neglected
and partial integration of Equation 10 leads to

c̃f′(t) = lim
ε→+0

ei(Ef′−m0)t

m0 − Ef′ + iε

[
〈f ′|V |P0〉ã(t) + 〈f ′|V |P0〉b̃(t)

]
+O(V 2) (11)

where the choice of ε > 0 is made so that the expression remains finite for t →
∞. Since the weak interaction is much weaker than strong and electromagnetic
interactions, perturbation theory can be applied and terms with higher orders in V
are neglected. By inserting Equation 11 into Equations 8 and 9, ã(t) and b̃(t) are
now decoupled from c̃f(t).

Using the theorem

lim
ε→+0

1

x + iε
= P

(
1

x

)
− iπδ(x) ,

where P stands for the principal part, and Equations 5 and 6, the original Schrödinger
equation 4 is reduced to

i
∂

∂t

(
a(t)
b(t)

)
= Λ

(
a(t)
b(t)

)
=

(
M − i

Γ

2

) (
a(t)
b(t)

)
(12)

where only a(t) and b(t) appear. The elements of the 2×2 matrices M (mass matrix)
and Γ (decay matrix) are given as

Mij = m0 δij + 〈i|V |j〉+
∑
f

P
(
〈i|V |f〉〈f|V |j〉

m0 − Ef

)
(13)

and
Γij = 2 π

∑
f

〈i|V |f〉〈f|V |j〉δ(m0 − Ef) (14)

respectively where the index i = 1(2) denotes P0(P0). Note that the sum is taken
over all possible intermediate states for the mass matrix, and only real final states
are considered for the decay matrix. In this matrix representation, |P0〉 and P0〉 are
given by

|P0〉 =

(
1
0

)
and |P0〉 =

(
0
1

)
. (15)

5



If the Hamiltonians are not Hermitian, transition probabilities are not conserved
in decays or oscillations, i.e. the number of initial states is not identical to the
number of final states. This is also referred to as the break down of unitarity. We
assume from now on that all the Hamiltonians are Hermitian. Therefore, we have

|a(t)|2 + |b(t)|2 +
∑
f

|cf |2 = 1,

and

Mij = M∗
ji, Γij = Γ ∗ji ,

from Equations 13 and 14, noting V † = V . Clearly |a(t)|2 + |b(t)|2 decreases as a
function of time, hence Λ is not Hermitian.

If V is invariant under the T transformation, i.e. T V T−1 = V , it follows that

〈P0|V |P0〉 = 〈P0|
(
T−1T V T−1T |P0〉

)
=

(
〈P0|V |P0〉e2iθCP

)∗
= 〈P0|V †|P0〉e−2iθCP

= 〈P0|V |P0〉e−2iθCP

and ∑
f

〈P0|V |f〉〈f|V |P0〉 =
∑
fT

〈P0|V |fT〉〈fT|V |P0〉e−2iθCP ,

where Equations 2 and 3 are used and |fT〉 = T |f〉. Since the sum is taken over all
the final states with all the possible kinematical configurations, it can be shown that

∑
f

|f〉〈f| =
∑
fT

|fT〉〈fT| .

From Equations 13 and 14, we now obtain Λ12 = Λ21e
−2iθCP : i.e.

T conservation =⇒ |Λ12| = |Λ21| .

In a similar way, the following relations can be obtained if V is invariant under
the CP transformation:

CP conservation =⇒ |Λ12| = |Λ21| and Λ11 = Λ22 .

By combining the two, we obtain for the CPT invariant case:

CPT conservation =⇒ Λ11 = Λ22 .
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It follows that

•if Λ11 
= Λ22, i.e. M11 
= M22 or Γ11 
= Γ22 :
CPT and CP are violated

•if |Λ12| 
= |Λ21| :
T and CP are violated .

Note that CP violation cannot be separated from CPT violation and T violation.
While there is no fundamental reason to respect CP and T symmetries, it can

be shown based on only a few very fundamental assumptions that no self-consistent
quantum field theory can be constructed that does not conserve CPT symmetry [13].
Therefore, we restrict our further discussion to the case where CPT symmetry is
conserved:

M11 = M22 ≡M and Γ11 = Γ22 ≡ Γ

so that
Λ11 = Λ22 ≡ Λ .

i.e.

Λ =

(
Λ Λ12

Λ21 Λ

)
(16)

where

Λ = M − i

2
Γ , Λ12 = M12 −

i

2
Γ12, Λ21 = M∗

12 −
i

2
Γ ∗12 .

Now Equation 12 can be written as

i
∂a(t)

∂t
= Λ a(t) + Λ12 b(t) (17)

i
∂ b(t)

∂t
= Λ21 a(t) + Λ b(t) . (18)

Equation 17 implies

b(t) =
1

Λ12

[
i
d a(t)

dt
− Λ a(t)

]
. (19)

By differentiating Equation 17 with respect to t, we obtain

i
∂2a(t)

∂t2
= Λ

∂ a(t)

∂ t
+ Λ12

∂ b(t)

∂ t
.

Using Equations 18 and 19, it follows that

∂2 a(t)

∂ t2
+ 2 iΛ

∂ a(t)

∂ t
+

(
Λ12Λ21 − Λ2

)
a(t) = 0 , (20)

7



where a general solution of this differential equation is given by

a(t) = C+e−iλ+ t + C−e
−iλ− t (21)

and C± are arbitrary constants which can only be defined by the initial condition.
Then, b(t) can be derived from Equation 19. Insertion of Equation 21 into Equation
20 leads to

λ2
± − 2Λλ± −

(
Λ12Λ21 − Λ2

)
= 0

from which the eigen-frequencies are obtained as

λ± = Λ±
√

Λ12Λ21

For an initially pure P0 state, we have a(t) = 1 and b(t) = 0 at t = 0, i.e.
C+ = C− = 1/2. If we focus our interest only on |P0〉 and |P0〉, the solution of
Equation 4 becomes

|P0(t)〉 = a(t)|P0〉+ b(t)|P0〉
= f+(t)|P0〉+ ζf−(t) |P0〉 (22)

=

√
1 + |ζ|2

2

(
|P+〉 e− i λ+ t + |P−〉 e− i λ− t

)
(23)

where

f±(t) =
1

2

(
e− i λ+ t ± e− i λ− t

)
and

ζ =

√
Λ21

Λ12

. (24)

The two states |P+〉 and |P−〉 are given by

|P±〉 =
1√

1 + |ζ|2
(
|P0〉 ± ζ |P0〉

)
. (25)

and their matrix representation can be derived to be

|P±〉 =
1√

1 + |ζ|2

(
1
±ζ

)
.

from Equation 15. Using this matrix representation and Equation 16, it follows that

Λ|P±〉 = λ±|P±〉 , (26)
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i.e. P+ and P− are the eigenstates of Λ with eigenvales λ+ and λ− respectively.
It must be noted that Λ12 and Λ21 are complex numbers, thus ζ has a two-fold

ambiguity. We can, however, select any of the two solutions without losing generality
as discussed in Section 2.2.

For an initially pure P0 state,

|P0(t)〉 =
1

ζ
f−(t) |P0〉+ f+(t) |P0〉 (27)

=

√
1 + |ζ|2
2 ζ

(
|P+〉 e− i λ+ t − |P−〉 e− i λ− t

)
(28)

describes the time evolution of the state.
It is common to introduce

λ± ≡ m± −
i

2
Γ±

where

m± = �λ± = M ± � (Λ12 Λ21 )1/2 (29)

and

Γ± = −2�λ± = Γ ∓ 2� (Λ12 Λ21 )1/2 . (30)

While P± have definite masses, m±, and decay widths, Γ± (as seen from Equations
23 and 28), P0 and P0 do not and they oscillate into each other (see Equations 22
and 27).

2.2 CP Conserving Case

If V remains invariant under the CP transformation, from Equations 2, 13 and 14 it
follows that

M12 = M21e
−i 2 θCP = M∗

12e
−i 2 θCP

thus

arg M12 = −θCP + nπ,

and

Γ12 = Γ21e
−i 2 θCP = Γ ∗12e

−i 2 θCP

thus

arg Γ12 = −θCP + n′π,

where n and n′ are arbitrary integer numbers.
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Γ12
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− θCP Re
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Im
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Im

Γ12

M12
0
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Im

Figure 1: Relative phase relations for M12, Γ12, and CP transformation phase θCP

when CP is conserved: 1) CP = +1 state is heavier and decays faster, 2) CP = +1
state is heavier and decays slower, 3) CP = +1 state is lighter and decays faster,
4) CP = +1 state is lighter and decays slower.

For ζ, we have

ζ =

√
Λ21

Λ12

= ei (θCP+n′′π)

where n′′ is 0 or 1 due to the two-fold ambiguity in the square-root operation of a
complex number mentioned earlier. The two mass eigenstates |P+〉 and |P−〉 become
CP eigenstates

CP |P±〉 = ± (−1)n′′|P±〉 .

The masses and decay widths of P± are derived from Equations 26, 29 and 30 as

m± = M ± (−1)n+n′′|M12|

and
Γ± = Γ ± (−1)n′+n′′|Γ12| .

By examining various combinations of n, n′ and n′′, we can show that the following
four physical possibilities exist:
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1. n=even, n′=even: CP = +1 state is heavier and decays faster,

2. n=even, n′=odd: CP = +1 state is heavier and decays slower,

3. n=odd, n′=even: CP = +1 state is lighter and decays faster,

4. n=odd, n′=odd: CP = +1 state is lighter and decays slower.

Figure 1 illustrates the phase relations in a pictorial way. The choice of n′′ does not
alter the conclusion and n′′ = 0 can be adopted without any loss of generality. In
this case, |P+〉 is the CP = +1 state and |P−〉 the CP = −1 state. If n′′ = 1 would
be adopted instead, |P+〉 would be the CP = −1 state and |P−〉 the CP = +1 state.
This is equivalent to swapping the notations for P+ and P−. We adopt n′′ = 0 from
now on.

2.3 CP Violating Case

Let us consider the time dependent decay rate for the initial P0 decaying into a CP
eigenstate f, given by |〈f |V |P0(t)〉|2, and that for the initial P0 decaying into f, given
by |〈f |V |P0(t)〉|2:

Rf(t) ∝ |f+(t)|2 +

∣∣∣∣∣ζ Af

Af

∣∣∣∣∣
2

|f−(t)|2 + 2�
[
ζ
Af

Af

f ∗+(t)f−(t)

]
(31)

Rf(t) ∝
∣∣∣∣∣Af

Af

∣∣∣∣∣
2

|f+(t)|2 +

∣∣∣∣∣1ζ
∣∣∣∣∣
2

|f−(t)|2 +
2

|ζ|2�
[
ζ∗

A∗f
A∗f

f ∗+(t)f−(t)

]
(32)

where the instantaneous decay amplitudes are denoted by Af ≡ 〈f|V |P0〉 etc. and
Equations 22 and 27 are used.

Since Rf(t) and Rf(t) describe the decay rates of the CP-conjugated processes
to each other, any difference between the two rates is a clear proof of CP violation.
As seen from the first terms of Equations 31 and 32, CP violation is generated if
|Af | 
= |Af |. This is called CP violation in the decay amplitudes.

From the second terms of Rf(t) and Rf(t), it can be seen that CP violation is
generated if |ζ| 
= 1 even if there is no CP violation in the decay amplitudes. From
Equations 22 and 27, it is clear that the oscillation rate for P0 → P0 is different from
that for P0 → P0 if |ζ| 
= 1, thus this is called CP violation in the oscillation.

The third term can be expanded into

2�
(
ζ
Af

Af

)
�

[
f ∗+(t)f−(t)

]
− 2�

(
ζ
Af

Af

)
�

[
f ∗+(t)f−(t)

]
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for Rf(t) and

2

|ζ|2�
(
ζ
Af

Af

)
�

[
f ∗+(t)f−(t)

]
+

2

|ζ|2�
(
ζ
Af

Af

)
�

[
f ∗+(t)f−(t)

]

for Rf(t). If CP violation in P0-P0 oscillation is absent, the first terms are identical.
Even in that case, if

�
(
ζ
Af

Af

)

= 0

CP violation is still present. Since the process involves the decays of P0 (P0) from
the initial P0 (P0) and decays of the P0 (P0) oscillated from the initial P0 (P0) into
a common final state, it is referred to as CP violation due to the interplay
between decay and oscillation.

If CP violation in P0-P0 oscillation is small, i.e. (|ζ| − 1)2 � 1, it follows from
Equation 24 that

|� (M∗
12Γ12) |

4|M12|2 + |Γ12|2
� 1

which can be due to

a) | sin(ϕΓ − ϕM)| � 1

b) |Γ12/M12| � 1

c) |M12/Γ12| � 1

where ϕΓ = arg Γ12 and ϕM = arg M12.
As explained in the following section, condition a) applies in the case of the

neutral kaon system. By introducing

ϕΓ − ϕM = N π −∆Γ/M (33)

where |∆Γ/M | � 1 and N is an integer number, ζ can be approximated as

ζ ≈
{

1− 2|M12||Γ12|∆Γ/M

4|M12|2 + |Γ12|2
[
(−1)N+1 + i

2|M12|
|Γ12|

]}
e−i ϕΓ (34)

m± = M ± (−1)N |M12|
Γ± = Γ ± |Γ12|

For the Bd and Bs meson systems, conditions a) and b) apply, and ζ can be
approximated as

ζ ≈
{
1 + �

(
Γ12

M12

)}
e−i ϕM (35)

m± = M ± |M12|
Γ± = Γ ± (−1)N |Γ12| .
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3 Neutral Kaon System

3.1 Adaptation of Formalism

Now we adapt the formalism developed above to the neutral kaon system. The two
mass eigenstates are called KS and KL with corresponding masses and decay widths
referred to as mS, mL, ΓS and ΓL respectively. More than 99% of the neutral kaon
decays are into the two-pion final states (π+π− and π0π0), which have CP = +1.
The next largest (but very much smaller) decay modes are π+π−π0, which is mainly
CP = −1, and π0π0π0, which is totally CP = −1. In the absence of CP violation
only KS can decay into the two-pion final states and KL only into three-pion final
states. This explains the observed pattern of ΓS � ΓL. It is also known that
mS < mL. Furthermore, tiny CP violation effects are well established in the KL

decays. In conclusion, M12 and Γ12 are almost antiparallel to each other (but
not exactly) and N = 1 in Equation 33.

From Equation 34, it follows that

ζ = (1− 2ε)e−iϕΓ (36)

where the small parameter ε is given by

ε =
|M12||Γ12| sin (ϕΓ − ϕM)

4|M12|2 + |Γ12|2
(

1 + i
2|M12|
|Γ12|

)
.

For Equation 25, KS corresponds to P+ and KL to P− and we obtain

|KS〉 =
1√

2− 4�ε

[
|K0〉+ (1− 2ε)e−iϕΓ |K0〉

]
(37)

|KL〉 =
1√

2− 4�ε

[
|K0〉 − (1− 2ε)e−iϕΓ |K0〉

]
. (38)

From the measured lifetimes [14],

τs ≡
1

ΓS

= (0.8934± 0.0008)× 10−10 s

and

τL ≡
1

ΓL

= (5.17± 0.04)× 10−8 s

i.e.
∆Γ = ΓS − ΓL = (1.1174± 0.0010)× 1010 s−1

and the mass difference [14],

∆m ≡ mL −mS = (0.5301± 0.0014)× 1010 h̄s−1
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we obtain,
|M12||Γ12|

4|M12|2 + |Γ12|2
= 0.24966± 0.00004

and
2|M12|
|Γ12|

= 0.9488± 0.0026 .

Since the lifetime of KL is much longer than that of KS, it is possible to produce
a KL beam. Therefore, many kaon experiments have been done using KL beams.

3.2 CP Violation in Oscillations

The CPLEAR experiment observed CP violation in K0-K0 oscillation by measuring
the difference in the oscillation rates between K0 → K0 and K0 → K0. The initial
neutral kaons were produced in pp annihilations: pp → K0K−π+ and K0K+π−,
where the initial flavour can be identified by the charge sign of the accompanying
kaon. Semileptonic decays were used in order to determine the flavour at the moment
of the decay. Since the K0 contains an s-quark (and K0 an s-quark), K0 (K0) can
decay only into e+π−ν (e−π+ν) instantaneously. Therefore, the initial K0 (K0) can
produce the final state e−π+ν (e+π−ν) only through the K0 → K0 (K0 → K0)
oscillation. From the two measured time dependent decay rates, Re−(t) and Re+(t),
an asymmetry

AT(t) =
Re+(t)−Re−(t)

Re+(t) + Re−(t)

is constructed as shown in Figure 2. Using Equations 22, 27 and 36, it follows that

AT(t) =
1− |ζ|4
1 + |ζ|4 = 4�ε

and from the measurement AT(t) = (6.6± 1.6)× 10−3 [15],

|ζ| = 0.9967± 0.0008 
= 1

is obtained exhibiting a clear sign of CP violation and T violation in K0-K0 oscillation.

The parameter |ζ| can also be measured from the semileptonic branching fractions
of KL by the lepton sign asymmetry: using Equations 38 and 36, we obtain [14]

δ� ≡
B(KL → -+π−ν)−B(KL → -−π+ν)

B(KL → -+π−ν) + B(KL → -−π+ν)

=
1− |ζ|2
1 + |ζ|2 = 2�ε

= (3.27± 0.12)× 10−3

14



Figure 2: Measured rate asymmetry between the initial K0 decaying into e+π−ν and
the initial K0 decaying into e−π+ν as a function of the decay time in units of τS by
the CPLEAR experiment [15]. The solid line is obtained by fitting a constant value.

where - can be e or µ and B stands for a branching fraction.

Using all the measurements, we obtain

�ε = (1.64± 0.06)× 10−3 (39)

and

arg ε = tan−1 2|M12|
|Γ12|

= tan−1 2∆m

∆Γ
= (43.50± 0.08)◦.

3.3 CP Violation due to Decays and Oscillations

Since the two-pion final state is a CP eigenstate with CP = +1, KL decaying into
π+π− is a CP violating decay. This was indeed the first observed sign of CP violation.
A commonly used CP violation parameter η+− is defined as

η+− ≡
〈π+π−|V |KL〉
〈π+π−|V |KS〉

=
1− ζ

A+−
A+−

1 + ζ
A+−
A+−

(40)

where Equations 37, 38 are used and A+− and A+− denote the K0 and K0 → π+π−

decay amplitudes respectively.
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Figure 3: The time dependent rate distributions for the initial K0 (solid circles) and
K0 (open circles) decaying into π+π− as a function of the decay time in units of τS

obtained by the CPLEAR experiment [16]. The rate asymmetry is also shown.

The parameter η+− can be measured from the time dependent decay rates for the
initial K0 and K0 into π+π−. From Equations 23 and 28, the two rates are given by

R+−(t) ∝ 1

2
e−ΓS t + |η+−|2 e−ΓL t + 2|η+−|e−Γ̄ t cos(∆m t− φ+−)

and

R+−(t) ∝ 1 + 4�ε

2

[
e−ΓS t + |η+−|2 e−ΓL t − 2|η+−|e−Γ̄ t cos(∆m t− φ+−)

]

where φ+− is the phase of η+− and Γ̄ is the KS-KL average decay width. The
second term is CP violating KL decays and the third term is due to the interference
between the KS decay and CP violating KL decay amplitudes. Figure 3 shows [16]
the measured R+−(t) and R+−(t) together with the CP asymmetry defined as

A+−(t) =
R+−(t)−R+−(t)

R+−(t) + R+−(t)

where the interference term is well isolated. At around t = 10τS, the KS decay rate is
reduced to the level of the CP violating KL decay rate, thus the asymmetry becomes
very large.

This direct comparison between the two CP-conjugated processes provides an-
other straightforward demonstration of CP violation in the neutral kaon system.
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From the asymmetry, the value of η+− is measured to be [16]

|η+−| = (2.264± 0.035)× 10−3 (41)

φ+− = (43.19± 0.60)◦ (42)

which leads to

�
(
ζ
A+−
A+−

)
= −(3.099± 0.048)× 10−3

exhibiting that CP violation due to the interference between the decay and oscillation
is present.

3.4 CP Violation in Decays

The two-pion final state can be in a total isospin state of I = 0 or I = 2. The I = 1
state is not allowed due to Bose statistics. Using the isospin decomposition, we can
derive the K0 and K0 decay amplitudes to π+π− to be

A+− =

√
2

3
〈2π(I = 0)|V |K0〉+

√
1

3
〈2π(I = 2)|V |K0〉

and

A+− =

√
2

3
〈2π(I = 0)|V |K0〉+

√
1

3
〈2π(I = 2)|V |K0〉 .

Using CPT symmetry and the S-matrix, the K0 and K0 decay amplitudes can be
related and it follows that

A+− =

√
2

3
a0e

i δ0 +

√
1

3
a2e

i δ2

A+− =

√
2

3
a∗0e

i (δ0+θCP−θT) +

√
1

3
a∗2e

i (δ2+θCP−θT)

where a0 and a2 are the K0 decay amplitudes into 2π(I = 0) and 2π(I = 2) states
due to the short-range weak interactions and δ0 and δ2 are the π-π scattering phase
shifts for the I = 0 and I = 2 two-pion configuration at

√
s = mK respectively.

It is important to note that the two-pion scattering is totally dominated by elastic
scattering at the energy scale of the kaon mass. Similarly for the π0π0 final state, we
have

A00 = −
√

1

3
a0e

i δ0 +

√
2

3
a2e

i δ2

A00 = −
√

1

3
a∗0e

i (δ0+θCP−θT) +

√
2

3
a∗2e

i (δ2+θCP−θT) .
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As seen from the amplitudes, B(KS → π0π0)/B(KS → π+π−) would be 0.5 if
a2 = 0. Since the measured ratio is ∼ 0.46 [16], we can conclude that |a2/a0| � 1.
It follows that

A+−
A+−

= (1− 2ε′) e−i (2ϕ0+θT−θCP) (43)

where the parameter ε′ is given by

ε′ =
1√
2

∣∣∣∣a2

a0

∣∣∣∣ sin(ϕ2 − ϕ0)e
i(π/2+δ2−δ0) (44)

and ϕ0, 2 = arg a0, 2.
As seen from Equation 43, CP violation in the decay amplitude, |A+−| 
= |A+−|,

is present if �ε′ 
= 0. From Equation 44, this is possible only if

sin(ϕ2 − ϕ0) 
= 0 and sin(δ2 − δ0) 
= 0 .

i.e. both the weak and strong phases have to be different for the I = 0 and I =
2 decay amplitudes. More generally, there must be two processes leading to the
identical final state and both the strong and the weak phases must be different
between the two processes in order to generate CP violation in the decay amplitudes.
It should be noted that from the measured π-π scattering phase shift values, we
have [17]

arg ε′ = (43± 6)◦ .

Using Equations 36 and 43, it follows that

ζ
A+−
A+−

= (1− 2ε− 2ε′)e−i (ϕΓ+2ϕ0+θT−θCP)

≈ 1− 2(ε + ε′)− i (ϕΓ + 2ϕ0 + θT − θCP)

where the approximation is made assuming that the phase difference between Γ12

and A0A0 is small, which will be justified later. From Equation 40, η+− can be
derived to be

η+− = ε + i(ϕΓ + 2ϕ0 + θT − θCP) + ε′ . (45)

Similarly the CP violation parameter for the π0π0 decay channel, η00, is given by

η00 = ε + i(ϕΓ + 2ϕ0 + θT − θCP)− 2ε′ .

Thus, we expect CP violation parameters to be different between the π+π− and π0π0

decay modes if ε′ 
= 0.
Figure 4 shows |η+−/η00|2 measured by four recent experiments, NA31 [18],

E731 [19], KTeV [20] and NA48 [21], together with the averaged value. It shows
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Figure 4: Most recent measurements of |η+−/η00|2 together with the averaged value.

a strong indication for |η+−/η00|2 
= 1, i.e. CP violation in the decay amplitude is
present in the neutral kaon system. As demonstrated in the next section, (ϕΓ +
2ϕ0 + θT − θCP) can be neglected and we obtain

�
(

ε′

ε

)
=

1

6




∣∣∣∣∣η+−
η00

∣∣∣∣∣
2

− 1


 = (1.92± 0.47)× 10−3 (46)

where the error has been scaled by
√

χ2/3 = 1.86, to account for the spread of central
values seen in Figure 4.

From Equations 45, 39 and 46 and using the fact arg ε ≈ arg ε′, �η+− is given by

�η+− = �ε + �ε′ ≈ �ε

[
1 + �

(
ε′

ε

)]
= (1.64± 0.06)× 10−3

which agrees well with the measured value of (1.651 ± 0.030) × 10−3 obtained from
Equations 41 and 42.

3.5 Phase of Decay Matrix

As seen from Equation 14, evaluation of Γ12 involves the decay final states which are
common to K0 and K0, which are 2π(I = 0), 2π(I = 2), 3π(I = 1), 3π(I = 2) and
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3π(I = 3) states:

Γ12 ≈
∑

I=0,2

A∗2π(I)A2π(I) +
∑

I=1,2,3

A∗3π(I)A3π(I) .

The contribution from the decay amplitude to the 2π(I = 2) state is suppressed
by the ∆I = 1/2 rule and the small measured value of ε′. The contribution from
the three-pion decay amplitudes are suppressed by ΓL/ΓS and the measured upper
limits for the CP violation parameter for the π+π−π0 and π0π0π0 final states. In
conclusion, the phase of Γ12 is essentially given by the phase of the A0 amplitude,
and it can be expressed as

ϕΓ ≈ arg A∗0A0 = −2ϕ0 − θT + θCP

so that

|ϕΓ + 2ϕ0 + θT − θCP| < O(10−5) .

Thus |ϕΓ + 2ϕ0 + θT − θCP| � |ε|, justifying the approximations made before.

3.6 The Standard Model Description

In the framework of the Standard Model [22], the short-range contribution to K0-K0

oscillation is obtained from the box diagrams (Figure 5) to be

Mbox
12 = −G2

Ff 2
KBKmKm2

W

12π2

[
η1σ

2
cS(xc) + 2η2σcσtE(xc, xt) + η3σ

2
t S(xt)

]

where GF is the Fermi constant, fK, BK and mK are the decay constant, B-parameter
and mass of the K-meson respectively and mW is the mass of the W-boson. The QCD
correction factors are denoted by η1 = 1.38±0.20, η2 = 0.57±0.01 and η3 = 0.47±0.04
and S and E are known functions of the mass ratios, xi = m2

i /m
2
W for top (i=t) and

charm (i=c). Note that

S(xc) ≈ 2.4× 10−4, S(xt) ≈ 2.6, E(xc, xc) ≈ 2.2× 10−3 (47)

for mc = 1.25 GeV/c2, mt = 174 GeV/c2 and mW = 80 GeV/c2. The parameters
σc and σt are the combination of the elements of the Cabibbo-Kobayashi-Maskawa
quark mixing matrix (CKM-matrix),

VCKM =


 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 ,
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Figure 5: The box diagrams contributing to K0-K0 oscillations.

σc = VcsVcd
∗ and σt = VtsVtd

∗. We adopt the following approximation of the CKM
matrix using the parameters introduced by Wolfenstein [23]:

VCKM ≈


 1− λ2/2 λ Aλ3 (ρ− i η)
−λ− i A2λ5η 1− λ2/2 Aλ2

Aλ3 (1− ρ̃− i η̃) −Aλ2 − i Aλ4η 1


 (48)

where ρ̃ = ρ(1 − λ2/2) and η̃ = η(1 − λ2/2). The parameter λ is known from light
hadron decays to be 0.221 ± 0.002. From B-meson decays, |Vcb| = 0.0404 ± 0.0034
and |Vub/Vcb| = 0.090 ± 0.025 are measured [14], giving A = 0.827 ± 0.0702 and√

ρ2 + η2 = 0.41 ± 0.11. The B-parameter takes in account the difference between
〈0|V |K±〉 and 〈f |V |K0〉 where 〈0| is the hadronic vacuum state and 〈f | is the common
quark states between K0 and K0. The theoretical evaluations for this value vary
between 0.5 and 1.

In addition to Mbox
12 , there are large contributions from long-range interactions

MLR
12 , which are difficult to evaluate. Therefore, theoretical predication for M12 =

Mbox
12 + MLR

12 cannot be given. The long-range interaction involves only the light
flavours and its contribution to M12 is real in the CKM phase convention; the imag-
inary part of M12 is generated only by the box diagram. Therefore we can derive

sin(ϕM) =
�M12

|M12|
=

2�Mbox
12

∆m
.

In the CKM phase convention, Γ12 can be approximated as real. Therefore, it follows
that

�ε = − �Mbox
12

2 ∆m
.

Although there are considerable uncertainties to evaluate numerically this expression,
the currently allowed range of the Wolfenstein parameters, λ, A, ρ and η gives a value
of �ε consistent with the experimentally measured value.

Prediction of ε′ requires an accurate evaluation of the phase difference between
a0 and a2. For the a0 amplitudes, the tree, the gluonic penguin and the electroweak
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Figure 6: Gluonic and electromagnetic penguins contributing to the K0 → 2π decays.

penguin diagrams contribute. Only the tree and electroweak penguin diagrams make
contributions to the a2 decay amplitude. All the penguin diagrams are shown in
Figure 6. Not only the short range interactions, but also the hadronic matrix elements
with long range interactions have to be evaluated in the calculations. This makes the
numerical determination of ε′ very difficult. The measured value of �(ε′/ε) given in
Equation 46 is well within the range of various theoretical predictions from −1.3 ×
10−3 to 6.4× 10−3 with the currently allowed range of λ, A, ρ and η. Note the large
uncertainties in the predictions.

3.7 CP Violation in Rare Decays

Experimental detection of KL → π0νν is clearly very challenging. The final state is
a CP eigenstate with CP = +1. Therefore, observation of this decay is a sign of CP
violation. In the Standard Model, the decay is generated by penguin diagrams or
box diagrams as shown in Figure 7.

Since the final state consists of only one hadron, long range strong interactions
do not play a role and the decay amplitudes can be denoted as

〈π0νν|V |K0〉 = aπ0νν

〈π0νν|V |K0〉 = a∗π0νν ei (θCP−θT) .
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Figure 7: The box and penguin diagrams generating K0 → π0νν decays.
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Unlike for the K0 → 2π decays, φπ0νν = arg aπ0νν could be very different from φ0, so
that we could have the situation∣∣∣sin (

φΓ + 2 φπ0νν + θCP − θT

)∣∣∣ = |sin (2 φπ0νν − 2φ0)| � |ε| .

The KL decay amplitude then becomes

〈π0νν|V |KL〉 =
aπ0νν√

2

[
1− (1− 2ε)e−i (2 φπ0νν−2φ0)

]

≈
√

2 i |aπ0νν | sin(φπ0νν − φ0) .

Using isospin symmetry, the hadronic matrix element of the K0 → π0νν decay
amplitude and that of the K+ → π0e+ν decay amplitude can be related as

〈π0|V |K0〉 = 〈π0|V |K+〉 .

This allows us to express the branching fraction for KL → π0νν using the branching
fraction for K+ → π0e+ν as [22]

B(KL → π0νν) =
|〈π0νν|V |KL〉|2

ΓL

= B(K+ → π0e+ν)
τL

τ+

3 α2 [�(V ∗tsVtd)X(xt)]
2

|Vus|22π2 sin4 ΘW

= B(K+ → π0e+ν)
τL

τ+

3 α2 [X(xt)]
2

2π2 sin4 ΘW

A4λ8(1− λ2/2)2η2

≈ 3× 10−11

where X is a known function of xt = (mt/mW)2 and ΘW is the weak mixing angle.
Since the hadronic matrix element is taken from the data, the theoretical uncertain-
ties in this determination is very small. Also the imaginary part of the amplitude is
dominated by the short range interactions which can be reliably calculated. There-
fore, the theoretical prediction can be considered to be clean.

It is interesting to note that the CP violation parameter

ηπ0νν ≡
〈π0νν|V |KL〉
〈π0νν|V |KS〉

= i tan(φπ0νν − φ0)

as defined in the 2π case, has |ηπ0νν | � |ε|, although both final states have CP = +1.
The current experimental upper limit for this branching fraction is 5.9×10−7 with

90% confidence by the KTeV experiment [24], which is still far from the expected
number. However, there are several proposals with sensitivities which should allow
to observe this decay in the near future.
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Figure 8: Three elements of the CKM matrix, Vtd, Vub, and Vts and the definitions
of φ1, φ3 and δφ3.

4 Neutral B-meson System

4.1 The Standard Model Description

4.1.1 Some CKM Matrix Elements

Among the nine elements of the CKM matrix, five of them related to the third
generation play important roles in the B meson system: Vtd, Vub, Vts, Vcb and Vtb.
In the approximation given in Equation 48, the phases of the five elements are given
by

arg Vtd = −φ1, arg Vub = −φ3, arg Vts = δφ3 + π, arg Vcb = arg Vtb = 0

where

φ1 = tan−1 η

1− ρ
, φ3 = tan−1 η

ρ
, δφ3 = tan−1 λ2η.

Figure 8 shows the angles in the ρ-η plane. Note that φ1 and φ3 are often referred
to as β and γ. Clearly δφ3 is very small, ∼ 0.02.

4.1.2 Oscillation Amplitude

In the Standard Model, B-B oscillation is totally governed by the short range inter-
actions, i.e. the box diagrams. Furthermore, only the top quark plays a role in the
box diagram due to the large top quark mass (see Equation 47) and the structure of
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the CKM matrix;

�(V ∗tdVtb)

�(V ∗cdVcb)
= (ρ̃− 1) ≈ 1,

�(V ∗tdVtb)

�(V ∗cdVcb)
≈ 1

λ2
� 1

as seen from Equation 48.
Therefore, the off-diagonal element of the mass matrix, M12 is given by [22]

M12 = −G2
Ff 2

Bd
BBd

mBd
m2

W

12π2
ηBd

S(xt)(V
∗
tdVtb)

2 for Bd (49)

where fBd
, BBd

and mBd
are the decay constant, B-parameter and the mass of the

Bd meson.
Similarly for the Bs meson, we obtain

M12 = −G2
Ff 2

Bs
BBsmBsm

2
W

12π2
ηBsS(xt)(V

∗
tsVtb)

2 for Bs

where fBs , BBs and mBs are the decay constant, B-parameter and the mass of the Bs

meson.
The phase of M12 is then given by

arg M12 =

{
arg(V ∗tdVtb)

2 + π = 2φ1 + π for Bd

arg(V ∗tsVtb)
2 + π = −2δφ3 + π for Bs.

The parameter Γ12 can also be determined by taking the absorptive part of the
box diagrams with charm and up quarks in the loops. For both Bd and Bs, we can
derive ∣∣∣∣ Γ12

M12

∣∣∣∣ ≈ 3πm2
b

2m2
WS(xt)

≈ 5× 10−3 for Bd and Bs (50)

for mb = 4.25 GeV/c2, mW = 80 GeV/c2 and mt = 174 GeV/c2.
The phase difference between M12 and Γ12 is given by

arg M12 − arg Γ12 = π +
8

3

(
mc

mb

)2

η ×




1

(1− ρ)2 + η2
: Bd

λ2 : Bs

(51)

i.e. sin(arg M12 − arg Γ12) is small for Bd and very small for Bs. Note that M12 and
Γ12 are antiparallel.

We can now adopt the approximations given by Equations 35 with N = 1 and
derive

ζ ≈
[
1− 1

2
�

(
Γ12

M12

)]
e−i ϕM (52)
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where ϕM = arg M12 as before. Seen from Equation 50 and 51, the approximation
|ζ| ≈ 1 is accurate to 10−3 or better; i.e. CP violation in the oscillation is small for
Bd and very small for Bs.

By referring to the mass eigenstate with larger mass as Bh (B-heavy) and the
other Bl (B-light) with their masses and decay width, it follows that:

mh = M + |M12|, Γh = Γ − |Γ12|

and
ml = M − |M12|, Γl = Γ + |Γ12|

respectively, and Bh (Bl) corresponds to P+ (P−) defined in Equation 25.
The mass and decay width differences between Bh and Bl, ∆m and ∆Γ respec-

tively, are defined as positive:

∆m = mh −ml, ∆Γ = Γl − Γh .

Using the measured values of ∆m = (0.472 ± 0.017) × 1012 h̄s−1 and the average
lifetime τ = 1/Γ̄ = (1.548± 0.032)× 10−12 s for the Bd mesons [14], where Γ̄ is the
averaged decay width, it follows that

∆Γ

Γ̄
≈ 4× 10−3 for Bd

and ∆Γ can be neglected in the decay time distribution for the Bd system. For the
Bs mesons, only the lower limit of ∆m has been measured to be 10.6×1012 h̄ s−1 with
95% confidence level [14]. Using the measured lifetime (1.493± 0.062)× 10−12 s [14],
it follows that

∆Γ

Γ̄
> 0.08 for Bs.

The effect of ∆Γ can no longer be neglected in the decay time distributions.
The small decay width differences of the Bd and Bs systems do not allow to

separate one mass-eigenstate from the other, which can be done for the kaon system
by creating a KL beam. Therefore, CP violation cannot be established by just
observing the decays as in the case of KL → 2π. We either have to compare the
decay rates of the initial B0 and initial B0 states or measure the time dependent
decay rates of at least one of the two cases, i.e. either initial B0 or B0.

Since ∆m = 2|M12|, one can extract

|Vtd|2 = A2λ6
[
(1− ρ̃)2 + η̃2

]

i.e. ρ and η, from the measured B0-B0 oscillation frequency ∆md using Equation 49.
However, theoretical uncertainties in calculating the decay constant and B-parameter
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are considerable and limit the accuracy on the extracted value of |Vtd|2. If the B0
s -B

0
s

oscillation frequency ∆ms = 2|M s
12| is measured, |Vtd|2 can be determined with much

smaller uncertainty by using the ratio ∆md/∆ms, due to better controlled theoretical
errors in fBd

/fBs and BBd
/BBs . However, the frequency of the B0

s -B
0
s oscillation is

expected to be > 1/λ2 = 20 times larger than that of the B0-B0 oscillation and we
may still have to wait for some time before it is measured.

Similar to the kaon system, CP violation (and T violation) in the oscillation can be
measured from the time-dependent rate asymmetry between the initial B0 decaying
into semileptonic final states with e+ or µ+, R+(t) and the initial B0 decaying into
semileptonic final states with e− or µ−, R−(t). The asymmetry is given by

R+(t)−R−(t)

R+(t) + R−(t)
=

1− |ζ|4
1 + |ζ|4 ≈ O(10−3) for Bd and � O(10−3) for Bs.

Experimentally, 1− |ζ|2 = 0.004± 0.014 for Bd [14].
From now on, we assume

ζ = e−i ϕM

for both Bd and Bs and ∆Γ = 0 for Bd.
In summary, the two mass eigenstates are given by

|Bh〉 =
1√
2

[
|B〉+ e−i ϕM |B〉

]

|Bl〉 =
1√
2

[
|B〉 − e−i ϕM |B〉

]

and
mh = m0 + |M12|, ml = m0 − |M12|, ∆m = mh −ml

for Bd and Bs. For the decay width, we have

Γl = Γh for Bd

Γl = Γ0 + |Γ12|, Γh = Γ0 − |Γ12|, ∆Γ = Γl − Γh for Bs

4.1.3 Time Dependent Decay Rates

Since ∆Γ is small in the B meson system, it is more convenient to derive the time
dependent decay rate from the particle-antiparticle base rather than the mass eigen-
state base. Using, Equations 22 and 27 the time dependent decay rates for the final
state f can be derived as

Rf(t) ∝
|Af |2

2
e−Γ̄ t [I+(t) + I−(t)] (53)

Rf(t) ∝
|Af |2
2|ζ|2 e−Γ̄ t [I+(t)− I−(t)] (54)
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where Γ̄ is the averaged decay time, Γ̄ = (Γ+ + Γ−)/2, and Af is the instantaneous
decay amplitude for the B0 or B0

s → f decays. The two time dependent functions,
I+(t) and I−(t), are given by

I+(t) = (1 + |Lf |2) cosh
∆Γ

2
t + 2�Lf sinh

∆Γ

2
t

I−(t) = (1− |Lf |2) cos ∆m t + 2�Lf sin ∆m t .

The parameter Lf is given by

Lf = ζ
Af

Af

where Af is the instantaneous decay amplitude for the B0 or B0
s → f decays.

The time dependent decay rate for the CP-conjugated final states fCP are derived
to be

RfCP(t) ∝ |AfCP|2
2

e−Γ t
[
I

CP
+ (t) + I

CP
− (t)

]
(55)

RfCP(t) ∝ |AfCP|2|ζ|2
2

e−Γ t
[
I

CP
+ (t)− I

CP
− (t)

]
(56)

where AfCP is the instantaneous decay amplitude for the B0 or B0
s → fCP decays.

Two time dependent decay rates, I
CP
+ (t) and I

CP
− (t) are given by

I
CP
+ (t) = (1 + |LCP

f |2) cosh
∆Γ

2
t + 2�LCP

f sinh
∆Γ

2
t

I
CP
− (t) = (1− |LCP

f |2) cos ∆m t + 2�LCP
f sin ∆m t

where the parameter, LCP
f , is given by

LCP
f =

1

ζ

AfCP

AfCP

and AfCP is the instantaneous decay amplitude for the B0 or B0
s → fCP decays.

The decay rates Rf(t) and RfCP(t) are for processes which are conjugate to each
other and so are Rf(t) and RfCP(t). If there exists any difference between Rf(t) and
RfCP(t) or Rf(t) and RfCP(t), this is a clear sign of CP violation.

The final state f can be classified into the following four different cases:

I. Flavour specific final state

II. Flavour non-specific final state

II-a. CP eigenstate

II-b. mixed CP eigenstate

II-c. CP non-eigenstate.

28



4.1.4 CP Violation: Clean Case

The contributions to the B0 decaying into J/ψ KS are dominated by the tree diagram
with V ∗cbVcs. Although there exist some contribution from the penguin diagrams, the
dominant penguin diagram contribution has the CKM phase V ∗tbVts which is close to
that of the tree diagram (Figure 9). Thus, we can safely assume that there is no CP
violation in the decay amplitude and the ratio of the B0 and B0 decay amplitudes is
given only by the CKM part. By noting that CP (J/ψ KS) = −1 we obtain

A(B0 → J/ψ KS)

A(B0 → J/ψ KS)
= −(V ∗cbVcsV

∗
usVud)

2

|V ∗cbVcsV ∗usVud|2
.

Using the formulae developed in the previous section, the time dependent rates for
the initial B0 decaying into J/ψ KS, RJ/ψ KS

(t), and that for B0 decaying into J/ψ KS,
RJ/ψ KS

(t) are given by

RJ/ψ KS
(t) ∝ e−Γ̄ t

(
1 + �LJ/ψ KS

sin ∆m t
)

RJ/ψ KS
(t) ∝ e−Γ̄ t

(
1−�LJ/ψ KS

sin ∆m t
)

which allow us to extract

�LJ/ψ KS
= �

(
ζ × A(B0 → J/ψ KS)

A(B0 → J/ψ KS)

)
= −�

[
(V ∗tdVtbV

∗
cbVcsV

∗
usVud)

2

|V ∗tdVtbV ∗cbVcsV ∗usVud|2
]

.

With the Wolfenstein parameterization, it follows that

�LJ/ψ KS
= − sin 2φ1 .

The same argument holds for the Bs → J/ψ φ decays and from the time dependent
decay rates

RJ/ψ φ(t) ∝ e−Γ̄ t
(
cosh

∆Γ

2
t + 2�LJ/ψ φ sinh

∆Γ

2
t + �LJ/ψ φ sin ∆m t

)

RJ/ψ φ(t) ∝ e−Γ̄ t
(
cosh

∆Γ

2
t + 2�LJ/ψ φ sinh

∆Γ

2
t−�, LJ/ψ φ sin ∆m t

)

one can extract

�LJ/ψ φ = �
[
ζ × A(B0

s → J/ψ φ)

A(B0
s → J/ψ φ)

]
= − sin 2δφ3 .

Note that we assumed in the calculation above that CP (J/ψ φ) = +1, i.e. the
J/ψ φ state is in the lowest orbital angular momentum state of l = 0. If there exists
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Figure 9: Tree and penguin diagrams contributing to the B0 → J/ψ KS and B0
s →

J/ψ φ decays.

the l = 1 state with CP (J/ψ φ) = −1, the measured �LJ/ψ φ will be diluted and
the fraction of the CP = −1 state must be experimentally measured. If there is the
same amount of CP = +1 state and CP = −1 state, �LJ/ψ φ will vanish.

An even cleaner decay channel is B0 → D∗∓π±. There is only one tree diagram,
b→ c+W+ followed by W+ → u+d, which contributes to the B0 → D∗−π+ decays.
The same final state can be produced from the B0 decays with another tree diagram,
b → u + W− followed by W− → c + d (Figure 10). Therefore, the time dependent
rate for the initial B0 decaying into D∗−π+ is given by

RD∗−(t) ∝ e−Γ̄ t

[
1 +

(1− |LD∗−π+ |2)
(1 + |LD∗−π+ |2) cos ∆m t +

2�LD∗−π+

(1 + |LD∗−π+ |2) sin ∆m t

]

where

LD∗−π+ = ζ × A(B0 → D∗−π+)

A(B0 → D∗−π+)
.

The weak phase of A(B0 → D∗−π+) is given by VubV
∗
cd and that of A(B0 → D∗−π+)

by V ∗cbVud. The phase of LD∗−π+ is then derived to be

arg LD∗−π+ = arg Vub − arg M12 + ϕS

= −φ3 + 2φ1 + ϕS

where ϕS is a possible strong phase difference between the b → u + W− and b →
c + W+ tree diagrams.

CP-conjugated decay amplitudes of A(B0 → D∗−π+) and A(B0 → D∗−π+), i.e.
A(B0 → D∗+π−) and A(B0 → D∗+π−) respectively, are obtained by taking the
complex conjugate of the weak amplitudes while the strong phase remains unchanged.
Thus for D∗+π− we obtain

RD∗+(t) ∝ e−Γ̄ t

[
1− (1− |LCP

D∗−π+ |2)
(1 + |LCP

D∗−π+ |2)
cos ∆m t− 2�LCP

D∗−π+

(1 + |LCP
D∗−π+ |2)

sin ∆m t

]
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Figure 10: Tree diagrams contributing to the B0 → D∗−π+ and B0 → D∗−π+ decays.

where

LCP
D∗−π+ =

1

ζ
× A(B0 → D∗+π−)

A(B0 → D∗+π−)

and the phase of LCP
D∗−π+ is given by

arg LCP
D∗−π+ = − arg Vub + arg M12 + ϕS

= φ3 − 2φ1 + ϕS .

From the two time-dependent decay rates, we can extract φ3 − 2φ1 and ϕS.
Note that

|LD∗−π+ | =
∣∣∣LCP

D∗−π+

∣∣∣ ≈
∣∣∣∣∣VubV

∗
cd

V ∗cbVud

∣∣∣∣∣ = λ2
√

ρ2 + η2 � 1

i.e. the effect we have to measure is small.
The CP-conjugated time dependent decay rate distributions are given by

RD∗+(t) ∝ e−Γ̄ t

[
1 +

(1− |LCP
D∗−π+ |2)

(1 + |LCP
D∗−π+ |2)

cos ∆m t +
2�LCP

D∗−π+

(1 + |LCP
D∗−π+ |2)

sin ∆m t

]

and

RD∗−(t) ∝ e−Γ̄ t

[
1− (1− |LD∗−π+ |2)

(1 + |LD∗−π+ |2) cos ∆m t− 2�LD∗−π+

(1 + |LD∗−π+ |2) sin ∆m t

]

which can be used to obtain the same information.
A similar method can be used for the B0

s → D∓s K± decays to extract φ3 − 2δφ3.
The effect is larger since

|LD−s K+ | ≈
∣∣∣∣∣VubV

∗
cs

V ∗cbVus

∣∣∣∣∣ =
√

ρ2 + η2 = O(1) .

31



4.1.5 CP Violation: Not So Clean Case

The penguin contribution to the Bd → π+π− decay was originally thought to be
small and the decay would be dominated by the b→ u + W tree diagram. However,
the discovery of B(Bd → K±π∓) > B(Bd → π+π−) indicates that the contribution
of the penguin diagrams to the Bd → π+π− amplitude should be ∼ 20% or more.

Due to the penguin contribution, the phase of the B0 → π+π− decay amplitude
deviates from that of V ∗ub. Furthermore, CP violation in the decay amplitude could
be present. Evaluation of those effects involves calculating contributions from dif-
ferent diagrams accurately. Strong interactions may play an important role as well.
Therefore, this decay mode may not be ideal to make precise determinations of ρ
and η from CP violation.

4.2 Case with New Physics

Decay processes where only tree diagrams contribute should be unaffected by the
presence of physics beyond the Standard Model. Therefore, |Vcb| and |Vub| obtained
from the semileptonic decays of B mesons would not be affected by the new physics
and A and ρ2 + η2 can be obtained even if physics beyond the Standard Model is
present.

New physics could generate B0-B0 and B0
s -B

0
s oscillations by new particles gen-

erating new box diagrams. They could also generate a tree level flavour changing
neutral current contributing to the oscillation. Since these contributions are through
“virtual” states, they contribute to M12 with little effect on Γ12, i.e.

M12 = MSM
12 + MNP

12 , Γ12 = Γ SM
12

where MSM
12 and Γ SM

12 are due to the Standard Model and MNP
12 is the contribution

from the new physics. The measured ∆m is given by 2|M12| and can no longer used
to extract |Vtd|2 due to MNP

12 .

Since ∣∣∣∣ Γ12

M12

∣∣∣∣ =
2

∣∣∣Γ SM
12

∣∣∣
∆m

remains small, CP violation in the oscillation remains small as seen from Equation 52.
Therefore,

ζ = e−i ϕM

is still valid. However, note that

ϕM ≡ arg M12 
= arg MSM
12 .
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Decay amplitudes from the penguin diagrams can be affected by physics beyond
the Standard Model since new particles can contribute virtually in the loop. There-
fore, the modes such as Bd decaying into π+π−, K±π∓ may have some contribution
from the new physics.

Since the decays Bd → J/ψ KS and Bs → J/ψ φ are tree dominated, they are
little affected by new physics. Therefore we have

A(B0 → J/ψ KS)

A(B0 → J/ψ KS)
= −A(B0

s → J/ψ φ)

A(B0
s → J/ψ φ)

= −1

with the phase convention due to the Wolfenstein parameterization and

LJ/ψ KS, J/ψ φ = ∓e−iϕM (− for Bd → J/ψ KS and + for Bs → J/ψ φ)

and studies of the time dependent decay rates give arg M12.
The Bd → D∗π and Bs → DsK decays are generated by only the tree diagrams

and are not affected by new physics. Therefore we have

arg LD∗−π+ = −φ3 − arg M12 + ϕS

and
arg LD∗+π− = φ3 + arg M12 + ϕS

and studies of the time dependent decay rates provide arg M12 + φ3. Similar studies
can be made for Bs → DsK.

By combining the measurements of Bd → J/ψ KS and D∗π or Bs → J/ψ φ and
DsK, the angle φ3 can be determined even in the presence of physics beyond the
Standard Model. By comparing the result from Bd and that from Bs, consistency of
the method can be tested. Since the phase of Vub is given by φ3 and its modulus is
measured from the semileptonic decay, ρ and η can be extracted. Once λ, A, ρ and
η are known, MSM

12 can be calculated and from the measured ∆m and arg M12, the
new physics contribution MNP

12 is obtained. This can be used to identify the nature
of the new physics contributing to the oscillation.

4.3 Experimental Prospects

A possible experimental programme for the study of CP violation in the B meson
system and search for physics beyond the Standard Model can be summarised in the
following steps:

1. Determination of |Vcb| and |Vub| from semileptonic (and some hadronic) decays,

2. Measurement of ∆m for Bd and Bs,
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3. Measurement of �LJ/ψ KS
,

4. Measurement of LJ/ψ φ, LD∗∓π± and LD∓s K± .

The first step has been made by ARGUS and CLEO at Υ(4S) machines and the
four LEP experiments. BABAR and BELLE at the new asymmetric Υ(4S) machines
and CLEO will improve the precisions on those determinations. Future improvement
of theory is also an important factor. Half of the second step, ∆m(Bd) was done
by ARGUS, CLEO, UA1, the four LEP experiments, SLD and CDF. For ∆m(Bs),
we may have to wait for the next data taking by CDF, D0 and HERA-B. The third
step will be made by BABAR, BELLE, CDF, D0 and possibly HERA-B by the year
2005.

After the second step, four parameters of the CKM matrix are all defined within
the framework of the Standard Model, e.g. A, λ, ρ and η. The third step provides an
additional information tan−1 η/(1− ρ) within the framework of the Standard Model
and consistency of the CKM picture can now be tested. Table 1 summarises the
current sin 2φ1 measurements.

Table 1: The current sin 2φ1 measurements.
Experiments sin 2φ1 Reference

OPAL 3.2+1.8
−2.0
± 0.5 [25]

CDF 0.79+0.41
−0.44

[26]

ALEPH 0.84+0.82
−1.04

± 0.16 [27]

BABAR 0.12± 0.37± 0.09 [28]

BELLE 0.45+0.43+0.07
−0.44−0.09

[29]

As demonstrated in the previous chapter, if physics beyond the Standard Model
exists, the fourth step is needed to clearly establish the evidence of new physics and
separate the effect due to the Standard Model and that from new physics. After the
third step, only ρ2+η2 will be known from |Vub| and the information on tan−1 η/(1−ρ)
is spoiled by new physics. Only after the fourth step, ρ and η can be determined,
together with isolating the new physics contribution.

For the last step, a new generation of experiments with statistics much higher
than 1010 B mesons are needed. The Bs meson is an essential ingredient. After
2005, LHC will be the most powerful source of B mesons. Experiments must be
equipped with a trigger efficient for hadronic decay modes to gain high statistics for
the necessary final states. Particle identification is also crucial in order to reduce
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background. LHCb is a detector at the LHC optimised for CP violation studies with
B mesons. The two general purpose LHC detectors, ATLAS and CMS can contribute
only to a limited aspect of the fourth step. BTeV at Tevatron could also make the
last two steps.

Clearly CP violation is expected in many other decay channels. For many of
them, there are some theoretical problems for making accurate predictions. However,
they can be used to make a systematic study which will provide a global picture of
whether CP violation can fit into the CKM picture. With all those experiments,
we will continue to improve our understanding of CP violation and hope to discover
physics beyond the Standard Model.
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[13] Lüders, G. (1954), Dan. Mat. Fys. Medd. 28, No5 ,
Pauli, W. (1995), Niels Bohr and the development of physics, ed. W. Pauli , pp.
30, New York, Pergamon Press,
Jost, R. (1975), Helv. Phys. Acta 30, 409,
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