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ABSTRACT

Photometric galaxy surveys, despite their limited resolution along the line of sight, encode rich information about the large-scale structure (LSS)
of the Universe thanks to the high number density and extensive depth of the data. However, the complicated selection effects in wide and deep
surveys can potentially cause significant bias in the angular two-point correlation function (2PCF) measured from those surveys. In this paper, we
measure the 2PCF from the newly published KiDS-Legacy sample. Given an r-band 5σ magnitude limit of 24.8 and survey footprint of 1347 deg2,
it achieves an excellent combination of sky coverage and depth for such a measurement. We find that complex selection effects, primarily induced
by varying seeing, introduce over-estimation of the 2PCF by approximately an order of magnitude. To correct for such effects, we apply a machine
learning-based method to recover an organised random (OR) that presents the same selection pattern as the galaxy sample. The basic idea is
to find the selection-induced clustering of galaxies using a combination of self-organising maps (SOMs) and hierarchical clustering (HC). This
unsupervised machine learning method is able to recover complicated selection effects without specifying their functional forms. We validate
this SOM+HC method on mock deep galaxy samples with realistic systematics and selections derived from the KiDS-Legacy catalogue. Using
mock data, we demonstrate that the OR delivers unbiased 2PCF cosmological parameter constraints, removing the 27σ offset in the galaxy bias
parameter that is recovered when adopting uniform randoms. Blinded measurements on the real KiDS-Legacy data show that the corrected 2PCF
is robust to the SOM+HC configuration near the optimal set-up suggested by the mock tests.
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1. Introduction

The fluctuation patterns of the mass distribution in the Universe
(i.e. the large-scale structure, LSS) is one of the central topics
of modern cosmology (see, for example, Dodelson & Schmidt
2020, for a comprehensive introduction to the LSS). Because the
matter in the Universe is mainly made up of invisible dark mat-
ter, one needs to observe visible LSS tracers to infer the matter
distribution. Among observations of various LSS tracers, large-
scale galaxy surveys have provided robust constraints on cos-
mological parameters. Spectroscopic surveys such as the Sloan
Digital Sky Survey (SDSS-IV; Alam et al. 2021) and the Dark
Energy Spectroscopic Instrument (DESI; DESI Collaboration
2024) map 3D galaxy distributions from which they measure
baryon acoustic oscillations (BAOs) and redshift-space distor-
tions (RSDs) to constrain the Hubble constant, matter density,
dark energy equation of state, and neutrino mass (Cuceu et al.
2019; Loureiro et al. 2019; Neveux et al. 2020). Recent pho-
tometric surveys, including the Kilo-Degree Survey (KiDS;
Asgari et al. 2021), the Dark Energy Survey (DES; Amon et al.
2022; Secco et al. 2022), and the Hyper Suprime-Cam Sub-
aru Strategic Program (HSC-SSP; Li et al. 2023a; Dalal et al.
2023) have obtained consistent joint constraints on the mat-
ter density, Ωm, and fluctuation amplitude, σ8, of the density
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field with a precision of ∼5%. As the precision improves, ten-
sions between the probes have begun to emerge, an impor-
tant one being the tension in S8, the matter clustering ampli-
tude parameter, between the CMB and the late-time Universe
probes. (for a review, see Abdalla et al. 2022). Future surveys,
including the Legacy Survey of Space and Time (LSST) at the
Vera Rubin Observatory (LSST Science Collaboration 2009),
the Euclid Survey (Euclid Collaboration: Mellier et al. 2025),
the Xuntian (Gong et al. 2019, also known as the Chinese Space
Station Telescope, CSST) are promising to tackle these problems
with better data quality and systematics estimations.

The galaxy distribution encodes rich information about the
LSS of the Universe and galaxy formation, so it has long been
used as a tracer to study the LSS (Peebles 1973; Shanks et al.
1983; Maddox et al. 1990; Efstathiou et al. 1990; Maddox et al.
1996; Nichol 2007). On large scales, it can be estimated
to be linearly biased relative to the matter distribution (see
Desjacques et al. 2018, for a review on galaxy bias). Sub-
tler bias terms can be modelled via an effective field theory
(Baumann et al. 2012; Carrasco et al. 2012). On small scales, the
galaxy distribution can be described by a halo occupation distri-
bution model (HOD; Zheng et al. 2005) in the context of the halo
model (Peacock & Smith 2000; Seljak 2000; Cooray & Sheth
2002; Asgari et al. 2023). An important summary statistic of the
galaxy distribution is the two-point correlation function (2PCF),
which describes the galaxy clustering between two points as
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a function of their separations. The measurements of 2PCF
have been used to constrain the matter density and clustering
amplitude of the LSS since the 1980s (Davis & Peebles 1983).
Recently, a combination of galaxy clustering, galaxy-galaxy
lensing, and cosmic shear, called the 3×2 pt analysis, has greatly
improved the constraining power on Ωm and S8 (Heymans et al.
2021; Abbott et al. 2022; Sugiyama et al. 2023; Dvornik et al.
2023).

Measurements of three-dimensional galaxy clustering
depend on reliable galaxy redshift measurements, typically
carried out by spectroscopic observations that are generally
time-consuming and limited in depth. While photometric
surveys can reach deeper, they cannot obtain precise redshifts
for each galaxy. In this case, given the angular coordinates of
galaxy positions, one can measure the angular galaxy clustering
with the 2PCF with respect to angular separation. With the
calibrated redshift distribution of a photometric sample, the
angular 2PCF can be modelled as projected 3D 2PCF weighted
by the redshift distribution. Angular 2PCF also encodes a sig-
nificant amount of cosmological information (see, for example;
Coupon et al. 2012) and is relatively easy to measure. However,
several systematic uncertainties need to be considered to obtain
accurate constraints. In terms of modelling, galaxy distributions
are affected by redshift space distortions (RSDs; Kaiser 1987)
and cosmic magnification (Menard 2002). On the observa-
tional side, galaxies are subject to selection effects by various
observational systematics, including seeing, sky background,
instrument response, survey strategy, galactic extinction, and so
on. In practice, the selection effects are anisotropic given the
various observational conditions and survey strategies, such that
the galaxy sample will show a variable depth pattern that will
introduce additional non-cosmological correlations that bias
the angular 2PCF measurement and subsequent cosmological
constraints1.

The selection effects of bright samples tend to be mild
(Johnston et al. 2021), but they are expected to be more signif-
icant for deeper samples since fainter galaxies are more sensi-
tive to the selection. However, we can benefit from the higher
number density and higher redshift of deep samples with their
lower shot noise and richer information about the higher red-
shifts. In this work we measure the angular galaxy clustering
with the Legacy catalogue selected from the fifth data release
of the KiDS survey (Wright et al. 2024). It is a deep sample
that reaches an r-band magnitude limit of 24.8 which is deeper
than the KiDS-Bright catalogue (Bilicki et al. 2021) used in
Johnston et al. (2021) by five magnitudes. Notably, the KiDS-
Legacy catalogue has a 5σ magnitude limit in i-band of 23.5,
which is deeper than the MagLim sample selected from DES
data (Porredon et al. 2021) with an i-band magnitude limit of
22.2. Although Morrison & Hildebrandt (2015) and Nicola et al.
(2020) have measured 2PCF using deeper galaxy samples from
Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS;
Heymans et al. 2012) and HSC, the KiDS-Legacy sample has
the advantage of larger sky coverage and enhanced accuracy on
photo-z at z > 1 thanks to additional near-infrared bands. The
KiDS-Legacy 2PCF will be included in the KiDS-Legacy 6×2 pt
analysis (see Johnston et al. 2024, for forecasts of the 6 × 2 pt
analysis), which is a combination of the six two-point statis-
tics among KiDS-Legacy galaxy shapes, galaxy positions, and
the spectroscopic samples of 2dFLenS (Blake et al. 2016) and

1 This work primarily deals with angular 2PCF, so in the following
text, if not explicitly stated otherwise, 2PCF means angular two-point
correlation function.

BOSS DR12 (Alam et al. 2015). The advantages of such a mea-
surement include low shot noise due to high number densities
and self-calibration of the redshift distribution, given the same
n(z) as the shear sample. As we show here, the strong and com-
plicated selection effects in the KiDS-Legacy catalogue causes
order-of-magnitude bias in the 2PCF. Therefore, it is crucial to
correct such a bias to ensure the accuracy of subsequent cosmo-
logical analyses.

Various methods have been proposed and applied to correct
for selection effects. Following Johnston et al. (2021), we clas-
sify them into three types:

– Mitigating selection bias in statistics. Correcting the
selection effects with the following two methods
(Weaverdyck & Huterer 2021): (1) template subtraction
method (Ho et al. 2012; Ross et al. 2011), which models
contamination terms as templates multiplied by an ampli-
tude factor. After determining the amplitude factor, these
terms are subtracted from the statistics; (2) mode projection
(Leistedt et al. 2013; Leistedt & Peiris 2014; Nicola et al.
2020; Berlfein et al. 2024), which mitigates systematics
contamination by marginalising the functional contribution
of systematic templates.

– Forward modelling with synthetic objects. This approach
calibrates the observational selections by injecting arti-
ficial galaxies into realistic images (Bergé et al. 2013;
Suchyta et al. 2016). The injected objects are passed through
a realistic measurement process, resulting in a random cat-
alogue mimicking realistic selection functions. This method
is computationally demanding, but it is under active devel-
opment for ongoing and future surveys (Everett et al. 2022;
Kong et al. 2024).

– Reconstructing the selection function by regression. This
method aims to probe the relationship between observed
galaxy number densities and systematics values to construct
weight maps or random catalogues that reflect the recon-
structed selection functions. For example, Elvin-Poole et al.
(2018), Rezaie et al. (2020), and Rodríguez-Monroy et al.
(2022) regress galaxy number and systematics with the help
of systematics templates, while Morrison & Hildebrandt
(2015) accounts for selection effects by finding selection-
induced galaxy clustering in high-dimensional systematics
space.

A subclass of regression methods uses machine learning to learn
the relationship between galaxy number densities and system-
atics values. This class of methods is more capable of find-
ing complex, non-linear, and potentially correlated selection
effects. For example, Rezaie et al. (2020) uses deep neural net-
works to derive weights of galaxies selected from the Dark
Energy Camera Legacy Survey (DECaLS; Dey et al. 2019);
Morrison & Hildebrandt (2015) applied a k-means clustering
method in the high-dimensional density-systematics space to
create weight maps. The method used in this work belongs to
this category.

We focus on 2PCF in this work. In practice, 2PCF can
be estimated with the Landy-Szalay estimator (Landy & Szalay
1993), which employs a random catalogue to factor out non-
cosmological correlations. If the catalogue has significant selec-
tion effects, a uniform random catalogue (UR) will fail to cap-
ture them and will not prevent a bias in the estimated 2PCF.
An organised random catalogue (OR) is a tailored random cat-
alogue reflecting the same selection effects that can be used to
correct such biases. Johnston et al. (2021) proposed a machine-
learning-based method to recover the OR. It uses a combination
of self-organising maps and hierarchical clustering (SOM+HC)
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to identify galaxy clusters2 in the systematics space. Galaxies
from the same cluster are assumed to be selected uniformly, so a
UR with the same galaxy number is generated in the sky region
occupied by those galaxies. The OR is constructed by com-
bining the URs corresponding to all the clusters. This method
has been validated in Johnston et al. (2021) for the KiDS-1000
bright sample.

In this work, we apply the SOM+HC method to correct for
complex selection effects in the full KiDS-Legacy sample. We
first present the SOM+HC methodology, then test it on mock
galaxy samples generated from the Generator for Large-Scale
Structure (GLASS; Tessore et al. 2023). The mock systematics
and selections are applied based on the real KiDS-Legacy sam-
ple. We evaluate the method by comparing the 2PCF measured
with the recovered OR with an unbiased 2PCF with no selection
effect. Then we perform a preliminary, blinded 2PCF measure-
ment from the real KiDS-Legacy catalogue. This work focuses
on comparing and modelling the 2PCFs on linear scales, as most
photometric surveys use such scales due to limitations in the the-
oretical modelling (Crocce et al. 2015; Rodríguez-Monroy et al.
2022). In forthcoming work, the OR recovered from the KiDS-
Legacy catalogue will be used to measure the 2PCF for the
KiDS-Legacy 6×2-pt analysis, and will also be useful for future
LSS surveys.

The paper is structured as follows: Sect. 2 describes the
definition and measurements of galaxy 2PCF; Sect. 3 presents
the data and mock that we use to run and test the method;
Sect. 4 introduces the SOM+HC method to correct the selec-
tion effects; Sect. 5 deals with validations of the SOM+HC
methods; Sect. 6 presents a blinded measurement with the
KiDS-legacy catalogue; and Sect. 7 summarises the conclu-
sion of this work and discusses the advantages of our method
and future prospects. Throughout this study we assume a
flat ΛCDM cosmology with the fixed cosmological parame-
ters from Planck Collaboration VI (2020) as our background:
(h,Ωch2,Ωbh2, σ8, ns) = (0.676, 0.119, 0.022, 0.81, 0.967). The
code used in this work is published as the tiaogeng3 package4

for future use.

2. The galaxy clustering correlation function

2.1. Definition and connection with matter distribution

Galaxy 3D 2PCFs describe the correlation of galaxy number
over-density between points separated by a certain distance. For
two galaxy samples a and b, their 2PCF is defined as (Peebles
1973)

wab(r) :=
〈
δa(x)δb(x − r)

〉
, (1)

where 〈·〉 denotes the ensemble average. Due to the large-
scale ergodicity of the Universe, the ensemble average can be
approximated as a spatial average. In addition, due to the large-
scale isotropy and homogeneity of the Universe, the 2PCF only

2 Here the galaxy clusters are in the systematics space, and are not
related to gravitationally bounded galaxy clusters in the Universe. In the
following text we use the term cluster to refer to the cluster of galaxies
in the systematics space.
3 Tiaogeng (??) is the Chinese word for ‘spoon’, more commonly used
in southern China. It contains two characters: tiao (?) meaning to rec-
oncile and geng (?) referring to a Chinese-style thick soup. The code
reconciles the unevenly observed sky, just as a tiaogeng stirs soup to
make it taste more balanced and delicious.
4 https://github.com/yanzastro/tiaogeng/

depends on r, the length of spatial separation between two
points. δ(x) denotes the galaxy number over-density at point x:

δg(x) :=
n(x) − n̄

n̄
· (2)

Here n(x) denotes the galaxy number density at x and n̄ is the
mean galaxy number density. Since we mainly focus on the
galaxy 2PCF, we omit the subscript g in the following formu-
las. We note that the 2PCF can also be defined for fluctuations
of any LSS fields.

According to Parseval’s theorem, the 2PCF is the Fourier
transform of the power spectrum, the correlation function in
Fourier space. They are both widely used summary statistics
of the spatial distribution of cosmological fields, and they both
depend on the evolution and ingredients of the Universe. For
detailed mathematical descriptions of the 2PCF and power spec-
tra, we refer to Dodelson & Schmidt (2020).

For photometric surveys, we usually cannot measure the dis-
tance of an individual galaxy. Thus we can only project galaxies
onto the celestial sphere and study their angular distribution. We
can define the angular two-point correlation function by replac-
ing x with a 2-dimensional angular vector θ. Since we only
care about the angular galaxy distribution in this paper, we use
2PCF to denote the angular two-point correlation function unless
otherwise stated. Under the ‘flat-sky approximation’, the angu-
lar 2PCF is related to the angular power spectrum via (Peebles
1973)

wab(θ) =

∫
d`
2π
`J0(`θ)Cab

` , (3)

where J0(x) is the zeroth order Bessel function of the first kind;
Cab
` is the angular galaxy cross-correlation power spectrum of

samples a and b. We note that this formula works for 2PCF and
angular power spectra between any cosmological fields. At suf-
ficiently large `, the angular power spectra can be calculated via
the Limber approximation (Limber 1953):

Cab
` =

∫ χH

0

dχ
χ2 Wa(χ)Wb(χ)Pab

gg

(
` + 1/2
χ

, z(χ)
)
. (4)

Here χ is the comoving distance and the subscript H is the hori-
zon; Pgg(k, z) is the galaxy power spectra at redshift z; Wa(χ) and
Wb(χ) are the radial kernels of the two galaxy samples. We note
that this formulation works for flat cosmology. For sample a,
given its normalised galaxy redshift distributions na(z), its radial
kernel is

Wa(χ) =
H (z(χ))

c
na(z(χ)), (5)

where H(z) is the Hubble parameter at redshift z. The radial ker-
nel for field b is defined likewise.

The galaxy power spectra Pgg(k, z) encode the 3D fluc-
tuations of galaxy distributions, which follow the fluctua-
tions of underlying mass distribution. On small scales, the
non-linear clustering of galaxies can be modelled as a halo
model-based halo occupation distribution (HOD; Seljak 2000;
Cooray & Sheth 2002; Zheng et al. 2005). On large scales,
galaxy fluctuations can be approximated as linearly biased
matter fluctuations with δg(x, z) = bg(z)δm(x, z) where bg(z)
is the redshift-dependent galaxy bias. Thus Pab

gg(k, z) =

ba
g(z)bb

g(z)Pm(k, z). We can take the galaxy biases outside of the
Limber integral by approximating them at the mean redshift
z̄a ≡

∫
na(z)zdz/

∫
na(z)dz of the galaxy samples (denoted as

A259, page 3 of 27

https://github.com/yanzastro/tiaogeng/


Yan, Z., et al.: A&A, 694, A259 (2025)

ba ≡ bg(z̄a) and bb ≡ bg(z̄b)). Therefore, on linear scales we
have

wab(θ) = babbwm(θ), (6)

where wm(θ) is the 2PCF of the matter field which can be cal-
culated similarly to galaxies, but with galaxy power spectra
replaced by matter power spectra.

2.2. The measurement of two-point correlation function

In practice, the galaxy 2PCF is measured in angular bins by
counting the number of galaxy pairs (one galaxy from cata-
logue a and the other from b) with separation angles within
each angular bin. Given a pair of galaxy catalogues (denoted
as D hereafter) and corresponding random catalogues (denoted
as R hereafter), the 2PCF can be measured using a standard
Landy & Szalay (1993) estimator,

ŵab(θi) =
(DaDb)i − (DaRb)i − (RaDb)i + (RaRb)i

(RaRb)i
, (7)

where θi is the mean angle in the i-th angular bin. Here (DaDb)i
is the normalised number of galaxy pairs with separation angles
within the i-th bin, which can be formally expressed as

(DaDb)i ≡

∑Na
D

p=1
∑Nb

D
q=1 Θi(θpq)

Na
D(Nb

D − δ
ab
K )

, (8)

where ND is the number of galaxies, θpq is the separation angle
between the p-th and q-th galaxies, Θi(θ) is the rect function
that equals 1 when θ falls in the i-th bin and 0 otherwise. δab

K
is the Kronecker δ symbol. The denominator in Eq. (8) is the
total number of galaxy pairs and the δab term concerns removing
galaxies paired with themselves for auto-correlation (i.e. a = b).
The RR term is likewise defined while DR is defined without δab

K .
For this work, instead of counting galaxy pairs in angu-

lar bins, we pixelised the galaxy distribution into the Healpix
scheme (Gorski et al. 2005) and counted pixel pairs weighted
by galaxy numbers in each pixel. This loses sub-pixel informa-
tion, but we had three reasons for doing this: (1) pixelisation
can speed up the calculation: the original KiDS catalogue con-
tains ∼200 million galaxies, while a pixelised galaxy map with
Nside= 2048 which we use throughout this work only has about
one million non-zero pixels, so counting pixel pairs instead of
galaxy pairs will significantly speed up the measurement; (2) as
we introduce later, our method to recover ORs is pixel-based, so
any sub-pixel variable depth cannot be corrected; (3) the pixel
size for an Nside= 2048 HEALPix map is 1.7 arcmin, corre-
sponding to a physical size of 0.86 Mpc at z = 1.5, which is
much below the linear scales that we probe in this work.

With pixelised galaxy fields, the terms in the Landy-Szalay
estimator are modified as (take DD as an example)

(DaDb)i ≡

∑Pa
D

p=1
∑Pb

D
q=1 Θi(θpq)Na

D,pNb
D,q

Na
D(Nb

D − δ
ab
K )

, (9)

where p and q are now pixel indices; θpq is the angular separation
between these two pixels; Pa,b

D is the total number of occupied
pixels in samples a and b; Na

D,p is the number of galaxies from
sample a in pixel p. The random terms are defined likewise. The
pixelised UR map can be taken as the footprint map with pixel
value Na

R,p representing the coverage fraction of pixel p.

The random catalogue or map is used to factor out
galaxy distributions induced by cosmology-unrelated systemat-
ics, including galactic and atmospheric foregrounds, instrument
response, and survey strategy. If all those systematics are uni-
form across the survey footprint, the random catalogue is usu-
ally taken as a uniform Poisson random sample within the sur-
vey footprint with several times the mean galaxy number den-
sity. However, deep surveys, such as the KiDS survey, have non-
uniform systematics that cause variable depth in the galaxy sam-
ple. A UR will fail to capture the spatial variation in galaxy
number density caused by those selection effects and biases the
2PCF.

To de-bias the 2PCF, we can create a random catalogue with
the same variable depth, namely an ‘organised random’ cata-
logue, or, for pixelised measurement, an OR weight map for the
R terms in the estimator. The method to recover the OR will be
presented in Sect. 4. We note that the OR can be used for sum-
mary statistics other than the angular 2PCF. We present the OR
application in angular power spectra C` in Appendix B.

3. The KiDS-Legacy data and GLASS mock data

3.1. The Kilo-degree Survey and the Legacy data

In this work, we use the KiDS-Legacy galaxy catalogue selected
from the fifth data release (DR5) of the Kilo-degree Sur-
vey (KiDS; Wright et al. 2024). KiDS is a wide-field imag-
ing survey that measures the positions and shapes of galax-
ies using the VLT Survey Telescope (VST) at the European
Southern Observatory (ESO). Both the telescope and the survey
were primarily designed for weak gravitational lensing appli-
cations. High-quality optical images are produced with VST-
OmegaCAM, and these data are then combined with imaging
from the VISTA Kilo-degree INfrared Galaxy survey (VIKING;
Edge et al. 2013), allowing all sources in KiDS to be photo-
metrically measured in nine optical and near-infrared bands:
ugriZY JHKs (Wright et al. 2019). Although the sky coverage
of KiDS is smaller than some galaxy lensing surveys (such as
DES, Abbott et al. 2016), galaxy photometric redshift estimation
and redshift distribution calibration (especially at high redshift)
benefit from complementary NIR information from VIKING
(which was co-designed with KiDS to reach complementary
depths in the NIR bands). Cosmological constraints have already
been made available from DR3 and DR4 (Hildebrandt et al.
2017; Heymans et al. 2021). KiDS DR5 covers a survey area
of 1347 deg2. It also includes an i-band re-observation of the
full footprint, thereby increasing the effective i-band depth by
0.4 mag and enabling multi-epoch science. There is a 27 deg2

overlap with deep spectroscopic surveys, which enables the
robust calibration of photometric redshifts across the full survey
footprint (Hildebrandt et al. 2021).

The “KiDS-Legacy” sample used in this work is a subset of
the full DR5 sample primarily determined by the availability of
reliable shape measurements. It is the lensing sample that will
be used for the fiducial KiDS DR5 cosmological analyses. Each
galaxy in the KiDS-Legacy sample has ellipticities measured
with the lensfit algorithm (Miller et al. 2013; Fenech Conti et al.
2017; Li et al. 2023b) for weak lensing analyses. The footprint
of the KiDS DR5 is divided into a Northern and a South-
ern patch. Artefacts around bright, saturated starlight, planets,
the Moon, satellite flares, aeroplanes, and higher-order reflec-
tions from very bright stars have been masked out, leaving an
unmasked ∼1000 deg2 footprint. In addition, blended sources,
unresolved binaries, transients, point sources flagged by lensfit,

A259, page 4 of 27



Yan, Z., et al.: A&A, 694, A259 (2025)

130140150160170180190200210220230

4
2
0
2
4

De
c 

[d
eg

]

KiDS-Legacy galaxy map

302010010203040
RA [deg]

36
34
32
30
28

De
c 

[d
eg

]

20 40

Galaxy number per pixel

Fig. 1. Galaxy distribution of the KiDS-Legacy catalogue. The map is pixelised into HEALPix grids with Nside= 2048. The map is colour-coded
by galaxy number per pixel, which has a size of 1.7 arcmin. A tile-based selection pattern can be seen by eye. The shaded region in the colour bar
shows the normalised distribution of galaxy number per pixel.

and sources with failed photometry, badly estimated shapes, low
resolution, or zero lensing weight are removed from the full
sample, resulting in a Legacy sample of 43 205 156 galaxies,
corresponding to 12 galaxies per arcmin−2. A Bayesian photo-
z (BPZ, Benítez 2000) estimation gives an approximated red-
shift range of 0.1 < zB < 2.0. The redshift distribution is
calibrated with a combination of SOM and clustering-redshift
method (van den Busch et al. 2020), which will be presented in
a companion paper. For more details about the construction of
the KiDS-Legacy catalogue, we refer to Sect. 7 of Wright et al.
(2024). The galaxy distribution is shown in Fig. 1. We can tell by
eye that the galaxy distribution has a clear tile-like pattern that is
not likely the LSS.

The KiDS-Legacy data will be used to constrain cosmology
with cosmic shear (Wright et al., in prep.), the combined anal-
ysis of three two-point functions (3× 2 pt), and the combined
analysis of six two-point functions (6× 2 pt; see Johnston et al.
2024 for the forecast). The 3× 2 pt measurements include cos-
mic shear, galaxy-galaxy lensing (GGL), and galaxy clustering.
The galaxy clustering correlation function in KiDS-1000 3× 2 pt
presented in Heymans et al. (2021) is measured from the Baryon
Oscillation Spectroscopic Survey Data Release 12 (BOSS DR12,
Reid et al. 2016; Tröster et al. 2020), while for KiDS-Legacy
the 3× 2 pt statistics will be measured with the Bright sample
selected from the Legacy data. The KiDS-Legacy 6× 2 pt anal-
ysis measures the 2-point functions among KiDS galaxy shapes,
galaxy positions, and the spectroscopic samples of 2dFLenS
(Blake et al. 2016) and BOSS DR12 (Alam et al. 2015); there-
fore, six 2-point functions in total.

The KiDS survey strategy is tile-based. That is, the survey
footprint is divided into adjacent 1◦ × 1◦ square tiles, each of
which gets five exposures and is never re-observed afterwards
except for the i-band, which was observed twice. Therefore,
observational systematics can have three types of spatial vari-
ation based on their origin:
Type A, inter-tile: uniform in each tile but differ across tiles,

usually originating from varying observation condi-
tions across tiles;

Type B, intra-tile: varying in each tile, usually originating from
focal plane distortion;

Type C, observation-independent variations: usually generated
from the anisotropy of the Milky Way or the Solar Sys-
tem.

A synthesis of systematics results in a complex selection pat-
tern, namely variable depth, in the galaxy distribution. Figure 1

illustrates the galaxy map of the KiDS-Legacy catalogue, which
exhibits a tile-based pattern of variable depth. For example,
galaxies in the anomalous dark blue tile around (α = 196 deg,
δ = 1.5 deg) in the centre of KiDS-North in Fig. 1 are signif-
icantly depleted. Heydenreich et al. (2020) studied the effect of
variable depth on cosmic shear and concluded that the impact is
insignificant for KiDS-like surveys. However, the variable depth
will introduce significant bias in angular clustering measurement
if not corrected. As galaxy clustering measurements form part of
the KiDS-Legacy 3 × 2 pt and 6 × 2 pt analyses, it is essential to
correct this bias.

To correct the selection effects, we create an OR which
reflects the same variable depth as the galaxy sample from the
systematics given by the KiDS-Legacy catalogue. Those sys-
tematics generally originate from the Galactic foreground, atmo-
spheric seeing, survey strategy, and instrument set-up, and are
ideally independent of cosmology, galaxy properties, and the
LSS. In the catalogue, systematics are described by metadata
that are calculated or derived from the instrument set-up, observ-
ing conditions, image properties, and so on. In the following
text, we use ‘systematics’ to also refer to the metadata we
use to obtain the OR. We select five systematics that are most
likely to have selection effects: {Level, PSF_size, PSF_ell,
EXTINCTION_r, GAIA_nstar}. Their types of distribution, def-
initions, origins and selection effects are summarised in Table 1.
These systematics, with the exception of GAIA_nstar, are mea-
sured in the r-band because this is the detection band and we do
not consider tomographic redshift binning in this analysis.

Figure 2 shows the maps of these systematics. Each system-
atics map is divided into south and north fields, colour-coded by
the mean systematics value in each pixel. The shaded regions in
the colour bars are the probability distributions of the systemat-
ics. From Fig. 2, we can see how Level, PSF_size, PSF_ell
are distributed based on the 1◦ × 1◦ tiles. Among them, Level
and PSF_size are determined by the seeing of each exposure
and are therefore relatively uniform in each tile, but vary from
tile to tile; while PSF_ell depends on the curvature of the focal
plane, which changes from the centre to the edge of each tile.
On the other hand, EXTINCTION_r5 and Gaia_nstar reflect the
spatial distribution of the Milky Way and are therefore more
diffuse and independent of the tiles. To illustrate the selection

5 Given that the extinction in different bands is commonly just assumed
to be the same template scaled by a different factor (thus they are fully
correlated), we only use the r-band extinction for our model training.
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Table 1. Summary of the systematics of each galaxy that we used to recover the OR.

Systematics Type Definition Main origin Selection effect

Level A Detection threshold (in the r-band) above
background

Background sky luminos-
ity; CCD temperature, etc.

Fainter objects will be lost from an area of
observation where Level is higher.

PSF_size A Full-width at half-maximum of the r-band
point-spread function in arcseconds

Seeing The blurring could cause small or faint
objects to drop below detection thresholds.

PSF_ell B Ellipticity (1 − q), where q is the 2D
major/minor axis ratio) of the r-band point-
spread function.

Distortions on the focal
plane

Non-isotropic blurring of object isophotes
may induce a directional dependence for
detections.

EXTINCTION_r C Galactic extinction in the r-band derived
from the Schlafly & Finkbeiner (2011) coef-
ficients for the Schlegel et al. (1998) dust
map

The Milky Way Dust preferentially scatters short-wavelength
light from extragalactic objects; the loss of
flux could prevent detection.

GAIA_nstar C The number of Gaia DR3 (Gaia
Collaboration 2016; 2023) stars with
14 < G < 17 within 5 arcmin around each
KiDS source.

The Milky Way Light from star-dense regions obscures back-
ground objects, and can also result in spuri-
ous galaxy detections through the misidenti-
fication of PSF-blurred, or blended, stars as
galaxies.

Notes. The second column indicates the spatial variance type: inter-tile (type A), intra-tile (type B), and tile-independent (type C). The other
columns indicate their definitions, physical origins, and how they potentially select the galaxy sample.

effect of each systematics, we plot galaxy number contrast with
respect to systematics values as black curves in the colour bars
of Fig. 2. We note that the black curves share the same dynamic
range between −0.25 and 0.25, so one can see that PSF_size has
the strongest selection effect. In addition, the selection effects of
EXTINCTION_r and Gaia_nstar are slightly non-linear.

It should be noted that we could recover the OR with all
the systematics such as PSF shape components and background
counts, but in practice, it is advantageous to only use a subset of
systematics that is most likely to select galaxies to reduce com-
putation time. The rest of the systematics are either not corre-
lated with galaxy numbers or are strongly correlated with the
selected systematics. In Appendix C we run our method with
all the systematics provided in the catalogue and prove that the
performance does not improve. In the following sections of this
paper, we present and test the method for recovering the organ-
ised random from these five systematics.

3.2. The GLASS mock catalogue

In this paper, we use mock catalogues generated by the Gener-
ator for Large Scale Structure (Tessore et al. 2023, GLASS)6 to
test and validate our method. GLASS is a public code for gener-
ating mock data for LSS surveys. It takes as input pre-calculated
matter power spectra that are projected within a sequence of
shells through the light cone and generates lognormal mat-
ter density fields. Galaxy positions and shears can be gener-
ated accordingly with additional input of redshift distributions,
galaxy bias and intrinsic alignment model. GLASS can also gen-
erate a Poisson random sample according to the galaxy num-
ber density in each spherical shell, which can be used as a UR
sample. All the samplings are done on HEALPix spheres which
specify the minimum spatial resolution of the mock.

In this work, we only need galaxy positions generated by
GLASS. We generate realisations of galaxy samples and corre-
sponding random samples to validate our method of recovering
organised random samples. The input cosmology is assumed to
be the fiducial cosmology. We also note that under the assump-
tion that the selection is independent of cosmology, the cosmol-

6 https://github.com/glass-dev/glass

ogy used to generate mock catalogues should not affect the eval-
uation of our method.

4. The SOM+HC method to recover organised
randoms

Figure 3 shows a flowchart of the 2PCF measurement of galaxies
with variable depth. Through observation, we obtain a depleted
catalogue of galaxies with systematics evaluated for each galaxy.
If we follow the upper half of the flowchart by using UR to
compute the 2PCF, we get a biased “UR” 2PCF. Instead, we
can recover OR to correct for non-uniform selection effects and
obtain the unbiased “OR” 2PCF. In this section we introduce
the method that we used to generate OR, namely a combination
of self-organising map (SOM) and hierarchical clustering (HC).
Figure 4 summarises this “SOM+HC” method.

4.1. The selection effects induced by systematics

The variable depth of the galaxy catalogue can be treated as
non-uniform selection effects due to systematics. In other words,
some systematics make certain galaxies more difficult to observe
and thus deplete them from the catalogue. For example, poor see-
ing results in large PSF size, which smooths the galaxy bright-
ness and prevents us from observing low-magnitude galaxies.
Spatially variable systematics cause spatially variable selections,
hence the variable depth. Our task is to find the spatial distribu-
tion of the selection effects from these systematics and create an
OR with the same selection distributions.

The selection effect of each systematic can be interpreted as
the probability of removing a galaxy from the sample as a result
of this systematic. If the unselected spatial distribution of galaxy
numbers is N(θ), then the selected sample number Ñ(θ) will dis-
tribute as

Ñ(θ) = Pkeep (θ, {sa(θ)}) N(θ), (10)

where Pkeep (θ, {sa(θ)}) is the selection function describing the
probability that a galaxy at θ is kept in the sample given a set
of systematics {sa(θ)}. Thus Pkeep(θ) acts as a “weight” of the
galaxy distribution. When using selected galaxy samples, all
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Fig. 2. Maps of the KiDS-Legacy systematic considered in this paper. Each map is divided into northern and southern fields, plotted together with
their colour bars. The black curves over-plotted in the colour bars show the relationship between galaxy contrast and systematics value, and the
dynamic ranges are [−0.25, 0.25]. The shaded regions show the probability distributions of each systematics.
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Fig. 3. Flowchart of the measurement of the 2PCF with reconstructed
organised randoms. The colour block after the 2PCF indicates the
colours shown in the following w(θ) − θ figures.

the “galaxy numbers” in the definition of correlation functions,
including both data and random samples for Eqs. (7), (8), (9),
should be depleted galaxy numbers Ñ. The OR is just a UR
selected by Pkeep(θ).

If the systematics are uncorrelated, the overall selection
function is a multiplication of the selection functions of indi-
vidual systematics. One can reconstruct the total selection
function by modelling the selection effect of each systemat-
ics (Rodríguez-Monroy et al. 2022). In practice, however, it is
not always possible to construct reliable quantitative models to
describe the effect of each systematics on the galaxy number
density. In addition, systematics can be correlated (e.g. extinc-
tion in different bands, extinction and GAIA stars), making the
overall selection function more complicated.

The key to recovering the ORs is to group galaxies into sub-
samples, each sharing a similar selection effect. Galaxies from
each subsample occupy a subregion in the survey footprint that
is presumably selected uniformly. Therefore, we can generate a
UR in the same sky region for each group, and combine them to
obtain the OR. In this work, we use a combination of hierarchical
clustering (Murtagh & Contreras 2012, HC) and SOM, namely
the SOM+HC method, to group the galaxies and recover the OR
weight to account for the selection effect. This method does not
assume formal models for selection functions and their correla-
tions, so it is flexible enough to account for arbitrarily complex
selection effects.

4.2. Self-organising map and hierarchical clustering

HC is a widely used clustering algorithm. It has the advantages
of flexibility, robustness, and interpretability, but is computa-
tionally expensive (the computational time scales with the data
volume as O(N2), where N is the number of galaxies). On the
other hand, the SOM has a complexity of O(N). In this work,
we combine these two algorithms: first, we group the systemat-
ics vectors into SOM cells and then we further group the SOM
cells into hierarchical clusters7. After the training, the hierar-
chical clusters are projected back onto the sky, resulting in dis-
crete regions occupied by galaxies with uniform systematics and
selection effects. We then randomly redistribute galaxies across

7 Training a small SOM in the first place instead of grouping big SOM
into clusters will restrict the accuracy of the manifold’s mapping. More-
over, It’s more flexible and faster to change the number of HC clusters
from a pre-trained SOM than to change the dimension of a SOM and
retrain.

1. Input systematics vector:

3. Hierarchical Clustering

4. Find the effective area 
of each cluster

[ .. . ]

5. Uniformly  re-distribute galaxies in 
each effective area and co-add

2. SOM Training

Fig. 4. Flowchart illustrating the SOM+HC method to recover OR and
correct selection effects in the 2PCF. Starting from the top: 1. Input
systematics; 2. SOM training: left panel: SOM grid colour-coded by
galaxy number in each cell; right panel: projection of systematics vec-
tors (small grey dots) and SOM cells (red dots connecting) on the plane
of two systematics. The projected adjacent SOM cells are connected
with black lines; 3. HC output: left panel: SOM cells colour-coded
according to hierarchical cluster indices; right panel: systematics vec-
tors and weight vectors colour-coded by corresponding cluster indices;
4. Effective areas corresponding to galaxies from each cluster; 5. Recov-
ered OR weight map which will be used in a subsequent 2PCF measure-
ment.

these regions and combine galaxies from all the clusters to form
the OR. The details of the method are presented below.

SOM is an unsupervised machine-learning algorithm that
maps high-dimensional vectors to cells on a two-dimensional
map while preserving the topological properties of the high-
dimensional vectors by faithfully maintaining the distance
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between these data vectors. This means that when data vectors
are close together in high-dimensional space, they are mapped
to the same cell or cells that are close together on the SOM grid.
Therefore, SOM can be used to group data, find correlations and
visualise data. Specifically, the redshift distribution of the KiDS
sample we use is calibrated by the SOM algorithm: mapping data
vectors in colour space to SOM, and synthesising the redshift
distribution in all SOM cells containing galaxies from spectro-
scopic samples (Wright et al. 2020; Myles et al. 2021). In addi-
tion, Jalan et al. (2024) use the SOM technique to quantify the
completeness of spectroscopic samples used for photo-z training
of the KiDS-Legacy bright sample.

In this work, instead of training a SOM in the colour space,
we train it in the systematics space: the data vectors are Ngal
(number of galaxies) Nsys-dimensional vectors, where Nsys is the
number of systematics to account for (Nsys = 5 in our fiducial
case). A SOM consists of Ndim × Ndim = Ncell/, cells to rep-
resent the Ngal data vector. The positions of SOM cells in the
Nsys-dimensional systematics space are called weight vectors.

For the n-th galaxy, we use Vn to denote its systematics vec-
tor and Vn,i, i = 1, 2, . . . ,Nsys to denote its i-th component. We
can calculate the Euclidean distance between the weight vector
of each SOM cell Wa, a = 1, 2, . . . ,Ncell

8 and the systematics
vector as

da
n =

√√√Nsys∑
i=1

(
Vn,i −Wa

i

)2
. (11)

For each data vector, the representing weight vector is chosen
as the one with minimum da

n . The corresponding SOM cell is
termed the “best matching unit” (BMU).

By definition, data vectors that share the same BMU are clus-
tered in the systematics space. The training of the SOM is to iter-
atively update Wa so that the clustered data vectors are mapped
to the same or close BMU. In each epoch, all the weight vec-
tors are brought closer to the data vector, with the requirement
that distant weight vectors and weight vectors around the BMU
do not move much. To achieve this, a “neighbourhood function”
Σ(a, σ) is defined as a function of the grid distance between a
cell and the BMU (not the distance between weight vectors). Σ
is close to 1 when the weight vector is close to the BMU, and
drops to zero outside a typical width σ. In each epoch, the opti-
misation is performed iteratively over the whole galaxy sample.

The training steps are summarised as follows:
1. Initialise the SOM by setting up the initial position of Ncell

weight vectors as the two highest principal component anal-
ysis (PCA) components. This is equivalent to initialising
the weight vectors as the Ncell on the 2-dimensional sub-
space spanned by the first two eigenvectors of the correlation
matrix of the data vectors9.

2. In each epoch, perform the following steps iteratively until
all the galaxies are iterated over:
(i) Calculate the distance between the data vector and all the

weight vectors, then find the BMU;
(ii) Choose a data vector and update the weight vector as

Wa(t + 1) = Wa(t) + LΣ(a, σ(t))
[
V(t) −Wa(t)

]
, (12)

where t denotes a time-step (i.e. the presentation of a new
data vector to the SOM); L is the learning rate specifying
how fast the weight vectors approach V(t) in each step,
and Σ is the neighbourhood function;

8 A SOM is two-dimensional, so one could use two cell indices (col-
umn and row indices).
9 One can also initialise the SOM with random weight vectors.

(iii) Choose another galaxy and perform Eq. (12) until all the
galaxies are iterated over.

3. Perform the iteration in Step 2 for several training epochs.
During the first few epochs,σ is roughly the size of the SOM,
meaning that almost all the cells are updated. It decreases
through the epochs so that only cells that are close to the
BMU are updated. The learning rate also decreases to pre-
vent “jumping over the minimum”. The training stops when
the weight vectors converge.

Here, we use hexagonal SOM cells, which means that each cell
has six neighbouring cells. The SOM will be smoother in the
systematics space compared to rectangular cells. We choose the
toroidal topology for the SOM, which means that the top and
bottom boundaries and the left and right boundaries are adjacent.
This can prevent edge effects in the training. The neighbourhood
function is defined as a Gaussian with σ equal to half the dimen-
sion of the SOM then decreasing linearly to 1 at the last iteration
of each epoch. The initial learning rate is 0.1 and decreases lin-
early to 0.01 in the last iteration of each epoch. We notice that
the weight vectors barely update after five epochs, so we train
the SOM in 10 epochs to ensure convergence.

After training, each systematic vector is represented by its
BMU in the SOM. Since SOMs preserve the topological struc-
ture of the systematic vectors, they properly take into account
the correlations between systematics. Galaxies that are clustered
in the systematics space will be mapped into the same SOM cell,
or the cells that are close both in the SOM grids and in the sys-
tematics space.

After training the SOM, we further group galaxies by run-
ning HC on weight vectors according to the distance between
them. Since the distance between the weight vectors reflects the
distance between the systematic vectors by construction, each
cluster represents a group of galaxies with similar systematics
just like each SOM cell, but with more galaxies to eliminate sam-
ple variance. In this work, we use “agglomerative clustering”,
a bottom-up clustering method. The procedure can be briefly
described as follows:
1. Treat each SOM cell as a cluster (so we have Ncell clusters in

the beginning);
2. Iteratively merge two clusters separated by the shortest dis-

tance specified by the complete linkage criteria10;
3. Hierarchically merge clusters until there is only one cluster,

and construct the dendrogram of the whole clustering pro-
cess;

4. Cut the dendrogram where the cells are merged into the
desired number of clusters (we use NC to denote the number
of clusters hereafter). See Fig. 5 for an example of a dendro-
gram.

By construction, a galaxy cluster in the systematics space repre-
sents a particular combination of systematics. If the galaxy dis-
tribution in systematics space does not depend on the LSS of
the Universe (we validate this assumption in Sect. 5.2.2), we can
assume that the number of galaxies in each cluster is determined
by a uniform selection probability given by the synthetic sys-
tematics represented by that cluster. After being grouped into
clusters through SOM+HC, the galaxies from one cluster are
distributed into discrete regions in the survey footprint and are
assumed to be uniformly depleted by the associated combina-

10 In this work, we use the “complete linkage criteria” with Euclidean
distance, for which the distance between clusters equals the Euclidean
distance between two data vectors (one in each cluster) that are farthest
away from each other.
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Fig. 5. Example of a dendrogram showing the clustering of 900 SOM
cells into 20 HCs. The cells are clustered from the bottom to the top
according to their Euclidean distance in the systematics space. The
black dashed line shows the distance threshold where the cells are
grouped into 20 clusters. SOM cells resulting in the same clusters are
colour-coded with the same colour.

tion of systematics. The detailed process of generating OR from
clustered galaxies is presented in the next subsection.

The number of hierarchical clusters NC is an important
parameter. If NC is too large, there will be higher sampling noise
in each cluster. In addition, high NC will cause over-fitting of the
OR, resulting in over-correction in the 2PCF. If NC is too small,
the resolution in the systematics space will be too low to detect
systematics variability. Therefore, we evaluate the NC value that
optimises the trade-off between resolution and sampling noise in
Sect. 5.

In this work, we use the somoclu package (Wittek et al.
2017) to train the SOM. Hierarchical clustering is then
performed via the AgglomerativeClustering class from
sklearn.cluster package (for a more detailed technical
explanation of the algorithm, see Müllner 2011). In the follow-
ing text, we use “SOM+HC” to denote the procedure to create
an OR with a combination of SOM and hierarchical clustering.

4.3. Reconstructing organised randoms

The basic idea of constructing an OR is to first find the effective
sky region containing galaxies from each cluster. Galaxies in this
region can be treated as uniformly selected according to the spe-
cific synthetic systematics of that cluster. We then generate a uni-
form random sample in the region according to the mean number
density of that cluster and then add up the URs corresponding to
all the clusters to get the overall OR. It is desirable to obtain an
OR catalogue (i.e. coordinates of points within the observation
footprint whose spatial distribution strictly follows the depletion
distribution). However, with a finite number of hierarchical clus-
ters, we cannot achieve such a resolution. Instead, we generate
pixelised OR maps of the sky. That is, we aim for the OR weight
in sky pixels that reflects the selection function for galaxies in
that pixel (Pkeep). When measuring the 2PCF, we use it to calcu-
late the RR term in Eq. (9). In this work, we use the HEALPix
scheme to pixelise the sky.

The OR is constructed as follows: after identifying the
galaxy clusters in the systematics space via SOM+HC, we first
find N i

p, the number of galaxies in the i-th cluster that are in the

p-th pixel of the sky; we note that a pixel can contain galaxies
from different clusters. For a given cluster index i, N i

p should
occupy only discrete sub-regions within the footprint that con-
tain galaxies distributed closely in the high-dimensional space.
We calculate the effective area of the p-th pixel corresponding to
the i-th cluster as

Ai
p ≡

N i
p

Np
Ap, (13)

where Np is the total number of galaxies in that pixel and Ap is
the area of the p-th pixel in the footprint11. If we assume that the
SOM+HC are not affected by the underlying LSS, then we can
assume that N i

p and Np have the same LSS contribution that can-
cels each other out. So Ai

p is the area in the p-th pixel occupied
by galaxies with uniform selection effect of the i-th cluster.

Now we add up Ai
p across pixels to get the total effective area

for each cluster,

Ai ≡
∑

p

Ai
p, (14)

and the effective surface number density of the i-th cluster,

ni ≡
N i

Ai · (15)

The average number of galaxies from the i-th cluster in the p-th
pixel is niAi

p. We can uniformly sample this number of galaxies
within the occupied region of the i-th cluster and combine them
across clusters to get an OR catalogue. However, as mentioned
before, for a pixelised sky, it is more efficient to construct the
OR weight by simply adding up niAi

p across clusters:

Wp =
∑

i

Ai
pni. (16)

The OR weightWp is an estimate of Pkeep, so it is used as the
R terms in Eq. (7) to measure the unbiased 2PCF. We note that
we use the calligraphic fontW for the OR weight to distinguish
from the 2PCF w. Figure 4 summarises the SOM+HC method in
a flowchart.

The left panel of Fig. 6 shows the KiDS-Legacy galaxy num-
ber fluctuation colour-coded by galaxy number per pixel. The
holes in this map are the masked regions. From the left panel,
one can notice an obvious tile-based variable depth in the galaxy
map by eye. The right panel shows the organised random weight
map constructed with a 30×30 SOM, grouped into 400 hierarchi-
cal clusters. Both maps are pixelised with Nside= 2048. Visu-
ally, it is clear that the OR weight map also shows a tile-based
pattern that roughly matches the pattern on the galaxy number
map.

Pixel size is another important parameter affecting the per-
formance of the OR reconstruction. If the pixel size is too large,
we lose the spatial resolution of the variable depth, resulting
in an overestimated 2PCF with residual variable depth correla-
tions. If the pixel size is too small, the organised random weight
map will be too sparse, with many unintentionally masked pix-
els in the organised random map, since the organised random
weight will only be non-zero in pixels containing galaxies. Thus
the organised random will correlate with the LSS. If we correct
this, we will remove the LSS from the 2PCF and under-estimate

11 The pixel area can be calculated as the full pixel area times the frac-
tion between masked and unmasked random sources.
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Fig. 6. Left panel: Galaxy number per pixel on a subregion of the KiDS-
Legacy footprint; right panel: OR weight on the same region.

it. Therefore, we need to choose the pixel size carefully to bal-
ance the trade-off between resolution and over-correction. For
the HEALPix scheme used in this paper, the pixel size is deter-
mined by the Nside parameter of the map. Nside can only be a
power of 2, and if Nside doubles, the pixel size is halved. Our
baseline analysis uses Nside= 2048 corresponding to an angu-
lar size of 1.7 arcmin. We validate this choice below.

5. Validation of the method

In this section we validate the SOM+HC method with two case
studies. In Sect. 5.1, we recover the OR for mock galaxy sam-
ples selected by systematics with simple spatial distributions
and selection functions, while in Sect. 5.2.2, we recover the OR
for mock galaxy samples selected by realistic systematics dis-
tributions and data-driven selection functions. We evaluate the
method by calculating the bias in the OR-corrected 2PCF.

5.1. Testing the organised random with toy systematics
model

In this subsection, we present a validation test of the SOM+HC
method on mock galaxy samples with variable depth induced by
simple depletion functions of anisotropic systematics. Figure 8
shows a flowchart of this test. The mock galaxy sample is gen-
erated by the GLASS package within a rectangular sky foot-
print with 0◦ < RA < 100◦; −5◦ < Dec < 5◦ under the fidu-
cial cosmology and a Gaussian redshift distribution centred at
zmean = 0.3 with a standard deviation of 0.1. Before assigning the
systematics and applying the depletions, a “point-source” mask
is applied to mimic the mask in the real observation. The point
source mask is a high-resolution (Nside= 8192, corresponding
to a pixel size of 0.4 arcmin) binary mask, on which we generate
a mock point source mask by removing circular holes (with value
zero) on random positions with angular sizes of 5−15 arcmin.
Galaxies that fall in the holes are removed from the mock cata-
logue.

We then divide the footprint into 1000 1◦ × 1◦ tiles. For each
galaxy, we assign four systematics with different spatial distri-
butions:

– Systematics A1 varies discretely across tiles but is con-
stant within them, mimicking per-exposure effects such as
limiting depth variations (e.g. background level, PSF size)
resulting from the use of a step-and-stare observing strategy.

– Systematics A2 is the same idea as Systematics A1, but
with a different realisation.

– Systematics B mimics telescope and camera effects such
as PSF shape variations over the focal plane, so in each tile
it depends roughly on the angular distance to the tile cen-
tre. We take 2-dimensional Gaussian functions in each tile
as the Systematics B distribution. The centre of the Gaus-
sian is close to each tile centre with a small random jitter;
the covariances are close to diagonal (hence the Gaussian
has small ellipticities).

– Systematics C varies smoothly over large angles. We
model it as a Gaussian function of Galactic latitude. It mim-
ics large-scale variations such as the Galactic foreground.

These four systematics are corresponding to type A
(Systematics A1 and Systematics A2), type B
(Systematics B), and type C (Systematics C) system-
atics introduced in Sect. 3. Their values are normalised to
be between 0 and 1. Since SOM+HC does not change the
topology of the galaxy distributions in systematics space, this
normalisation does not affect the performance of the method.

We define simple selection functions for Systematics A1
(a linear function), Systematics B (a quadratic function), and
Systematics C (a trigonometric function modulated by a lin-
ear function). Systematics A2 has no selection effect and thus
acts as a “distractor” for the SOM. We show the systematics map
and the associated selection function in Fig. 7. We also assume
that the selections between the systematics are independent so
that the overall selection function is a multiplication of the selec-
tion functions of the individual systematics. To make the selec-
tion, we generate a uniform random number between 0 and 1
for each galaxy, and if the random number is smaller than the
selection function Pkeep(θ) at its position, the galaxy is kept in
the catalogue. After selection, we have a galaxy catalogue with
an angular number density of ∼1 arcmin−2.

We also generate a “true” OR catalogue by applying the
same selection functions to a UR catalogue in the same foot-
print. If we use it as the R terms for the 2PCF measurement
with the depleted mock catalogue, we should get an unbiased
w(θ). We note that in reality, we do not have access to the true
OR. In this validation test, we recover the OR with a 30× 30
SOM with hexagonal cells and a toroidal topology (so that the
horizontal and vertical edges are adjacent), grouped into 200
hierarchical clusters. To check whether the SOM+HC recovers
the input selection functions, we plot the relationship between
galaxy number contrast (relative difference between galaxy num-
ber in each cluster and the mean galaxy number across clus-
ters) and median systematics values of each cluster in Fig. 9.
The blue curves are the number contrast derived from the input
selection rates (the black curves in the colour bars of Fig. 7). The
median systematics and number contrast for each point are cal-
culated by first sorting the median systematics for all clusters in
a realisation, then averaging the median systematics and number
contrasts across realisations. Standard errors are also calculated
and presented as error bars. The errors of the median system-
atics are too small to be visible. The galaxy number contrasts
of the HCs generally follow the input selection rate, indicat-
ing that SOM+HC is able to recover the input selection func-
tions of each systematics. Notably, SOM+HC will not intro-
duce additional correlation for Systematics A2, which does
not select galaxies. We also note that the number contrast slightly
mismatches the selection functions at the edges. This is prob-
ably because the SOM is less effective closer to the boundary
in the systematics space, where there are fewer neighbouring
galaxies.
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Fig. 7. Left panels: Spatial distribution of the four toy systematics. Systematics A1 and A2 are uniform in each tile, but differ across tiles (type
A); Systematics B varies within each tile (type B); Systematics C is tile-independent (type C); Right panels: Black curves in the colour bar
show the selection function of each systematic and the shaded region is the normalised distribution of the systematics. The numbers on the right
show the selection rate values.

Fig. 8. Flowchart of the toy model validation of the SOM+HC method.
We note that the UR case (w(θ) calculated with depleted mock catalogue
and mock UR) is not shown in this figure.

The recovered OR weight map is pixelised into a HEALPix
map with Nside= 102412. The true OR weight map, the recov-
ered OR weight map, and the relative difference are shown in
Fig. 10. Visually, the recovered OR shows the same spatial pat-
tern as the true OR, but it appears more discrete. This is due
to a finite number of clusters in the systematics space (in other
words, if we had an infinite number of galaxies grouped into an
infinite number of clusters, we would recover the smooth OR
weights). The relative difference (the bottom panel of Fig. 10) is
well within ∼±20%.

12 The Nside used here is lower than the optimal Nside for the real data
because we generate fewer mock galaxies in this test, and Nside=1024
ensures that each pixel has ∼10 galaxies.
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Fig. 9. Relationship between the galaxy number contrast and the mean
systematic value of each hierarchical cluster. The blue curves are the
number contrast derived from the input selection rates (black curves in
the colour bars of Fig. 7). The average median systematics and number
contrast are calculated by averaging the sorted values in each realisation
across all the realisations. The standard errors are also calculated and
presented as error bars. The errors of the median systematics are too
small to be visible.
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Fig. 10. Top panel: True OR weights (normalised by their mean) cal-
culated from the total selection function of the toy systematics; mid-
dle panel: Recovered OR weights generated by the SOM+HC method.
Both panels show only part of the footprint. We note that the holes in the
maps are masked regions around point sources; bottom panel: Relative
difference between the recovered OR weights and the true OR weights.

In summary, we have an unselected mock galaxy catalogue
and a selected catalogue, plus a uniform random, a true organ-
ised random and a recovered organised random. To evaluate the
SOM+HC method quantitatively, we measure four w(θ)’s from
them. They are summarised in Table 2. In summary, we val-
idate the method by comparing the “Recovered OR” and the
“No selection” 2PCFs. The 2PCF is measured in 20 angular
bins between 2.5 and 250 arcmin (following DeRose et al. 2022)
with the TreeCorr13 package (Jarvis 2015). To evaluate the
covariance matrix and reduce the sample variance, we perform
the above validation on 40 GLASS realisations and evaluate the
covariance as

Ci j =
1

40 − 1

40∑
r=1

(
wr(θi) − w̄(θi)

)(
wr(θ j) − w̄(θ j)

)
, (17)

where the subscript r denotes the realisation number, and w̄(θ)
is the average 2PCF over realisations. We also compute a the-
oretical covariance matrix using the OneCovariance code
(Reischke et al. 2024)14 and find that it is consistent with the
“No selection” covariance matrix (see Appendix A for a com-
parison). We evaluate the bias of the 2PCFs by calculating the

13 https://rmjarvis.github.io/TreeCorr/_build/html/
index.html
14 https://github.com/rreischke/OneCovariance

χ2 between each w(θ) and the “No selection” w(θ)

χ2
d = ∆w̄T C−1∆w̄, (18)

where ∆w̄ is the difference between the 2PCF and the “No
selection” 2PCF. Assuming χ2

d follows a χ2 distribution with
degrees-of-freedom equal to the number of angular bins taken
into account, we can calculate the corresponding probability-to-
exceed (PTE) value. The 2PCF is less biased if the PTE value is
closer to 1.

The measured 2PCFs and their relative difference to the “No
selection” case are shown in Fig. 11. In this work, we focus
on linear scales, so we calculate χd only on the angular scale
θ < θcut where the cutting scale θcut is the angular scale cor-
responding to a physical scale of 8 h−1 Mpc at the mean red-
shift of the mock sample (z̄ = 0.3 in our case), which has a
value of 42.74 arcmin. For the UR case, χd = 1616, meaning
a huge bias if we use uniform random for the depleted cata-
logue. For the true OR case, χd = 0.08 (corresponding to a
PTE = 0.99999987), meaning that true organised random can
give an unbiased w(θ) as expected. For the “Recovered OR” case,
χd = 0.24 (corresponding to a PTE = 0.999992). This means
that the OR recovered by the SOM+HC method also gives unbi-
ased w(θ). Johnston et al. (2021) have shown that SOM+HC can
correct a slight variable depth bias in the KiDS-Bright sample.
Notably, in this test, SOM+HC can correct w(θ) that is biased
by orders of magnitude. It should also be noted that the wiggle
at small scales is due to pixelisation, which changes the angular
distance between galaxies as they are effectively moved to the
centre of the pixel. This effect particularly affects scales close to
the pixel size (3.4 arcmin in our case).

5.2. Validation with data-driven systematics

5.2.1. Introduction to the method

The previous test with simulated systematics and depletions
proves that the SOM+HC can correct for spatially variable
depth, but the test is oversimplified and not realistic. In real-
ity, the spatial distribution of systematics can be more com-
plicated, stochastic and correlated. In addition, the selection
function can be arbitrary. Therefore, it is difficult to cre-
ate mocks with realistic variable depth to test the SOM+HC
method. In addition, the SOM+HC method might over-correct
the 2PCF by obtaining organised randoms “contaminated” by the
LSS.

To tackle this problem, we apply “data-driven systematics”
to the mock catalogue following Johnston et al. (2021). First,
we generate a mock galaxy catalogue following the fiducial
cosmology given in Sect. 1 with a galaxy bias b = 1. The
galaxy sample follows the same calibrated redshift distribution
of the KiDS-Legacy sample15 and is generated within the KiDS-
Legacy footprint; then we generate the “data-driven mock sys-
tematics” by assigning systematics values to each mock galaxy
with a nearest neighbour interpolation from the real KiDS sys-
tematics. Thus, we get a mock galaxy sample with the same spa-
tial distributions of systematics as the real data. We note that
even if the spatial distributions of the systematics are correlated
with the LSS, this step removes any such correlation because
the mock galaxy catalogue has a different spatial distribution.
Next, we train a SOM+HC on the real galaxy catalogue (we call

15 If the variable depth does not encode cosmological information, it is
not necessary to use a realistic cosmology and redshift distribution to
generate the mock.
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Table 2. Information for the four w(θ) measured from the mock sample.

Galaxy catalogue Random catalogue Label Biased? Colour

Unselected catalogue UR “No selection” Unbiased
Selected catalogue UR “UR” Biased
Selected catalogue True OR “True OR” Unbiased
Selected catalogue Recovered OR “Rec. OR” Unbiased

Notes. The ‘Label’ column indicates the aliases of the w(θ) values in the following discussion and figures; the ‘Biased?’ column indicates whether
the 2PCF is biased; the ‘Colour’ column indicates the colours of the data points shown in the figures. The ‘No selection’ (first row) and ‘True OR’
(third row) cases are unbiased benchmarks and the ‘UR’ (second row) case is a biased measurement. The ‘Recovered OR’ case (fourth row) is the
2PCF that we used to validate our method.
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Fig. 11. Top panel: Measured w(θ) in the toy-systematics test. The def-
initions of the four w(θ) are presented in Table 2. The data points are
the mean w(θ) from 40 realisations and the error bars are the diagonal
elements of the covariance matrices evaluated from the realisations. The
black curve is the theoretical w(θ) computed with PYCCL (Chisari et al.
2019) using the same cosmology and redshift distribution. The shaded
region shows the angular scale smaller than 8 h−1 Mpc evaluated at the
mean redshift. The middle panel is the relative bias of each w(θ) with
respect to the No selection case, and the bottom panel is the w(θ) bias
related to the error. Most points of the UR case are drastically biased
and are outside the range of the middle and bottom panels.

it “SOM+HC+KiDS”) and get an OR weight map WKiDS as a
proxy of the realistic variable depth (we call it the “data-driven
OR weight”); then we select mock galaxies according to it. We
define the “OR contrast” as

δOR,KiDS(θ) :=
WKiDS(θ) − W̄KiDS

W̄KiDS
, (19)

Fig. 12. Flowchart of the data-driven test.

where W̄KiDS is the average OR weight across the footprint. In
practice, we generate a large mock catalogue and select galaxies
according to the selection function given by δOR,KiDS:

Pkeep(θ) =
Nout

Nin

[
1 + δOR,KiDS(θ)

]
. (20)

Here Nout is the desired galaxy number of the depleted mock
sample. In this work, we choose Nout = 49, 875, 861, the galaxy
number in the KiDS-Legacy catalogue. The galaxy number of
the input, unselected mock sample Nin is chosen to ensure
Pkeep ≤ 1. The selection procedure is the same as described in
Sect. 5.1. For each galaxy we generate a uniform random num-
ber between 0 and 1 and compare it with Pkeep associated with
the pixel containing the galaxy. If the random number is less than
Pkeep, we keep the galaxy in the sample; otherwise, we discard
it.

The assignment of mock systematics with nearest-neighbour
interpolation ensures that the spatial distribution of the mock
systematics is realistic. If SOM+HC recovers an unbiased OR
weight on the real data, the data-driven OR weight should rep-
resent the realistic variable depth. When applied as a selection
function to the mock data, it should produce the variable depth
caused by the realistic selection function of the mock system-
atics. We run SOM+HC on the post-selected mock catalogue
with the mock systematics to test this consistency. Ideally, the
resulting OR weight should match the imported selections (i.e.
the data-driven OR weight), and we expect to measure an unbi-
ased 2PCF from the selected mock catalogue corrected with the
recovered mock OR. Figure 12 shows the flowchart of the data-
driven systematics test.

With this test we can also check whether the recovered OR
weight contains the LSS. If so, the data-driven OR weight would
have an imprint of the LSS from our real Universe, while the
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mock OR weight should have the imprint of the mock LSS.
These two OR weights would not match, and the mock 2PCF
corrected by the mock OR weight should be over-corrected.

Several configuration parameters affect the accuracy of the
recovered OR weight. In particular, the SOM+HC procedure
depends on NC, the number of hierarchical clusters, and Nside,
the OR weight resolution. If NC and/or Nside is too low,
SOM+HC will fail to resolve systematic clustering in system-
atic/real space, resulting in uncorrected variable depth. If NC
is too high, then SOM+HC will start to resolve LSS-induced
clustering in systematics space. If Nside is so high that signif-
icant amounts of pixels get no galaxy, then the OR weight will
follow the LSS. In this section, we aim to perform data-driven
systematics tests to find the optimal {NC, Nside}. We note that
the data-driven systematics test depends on these parameters for
both data-driven and recovered mock OR. In the following dis-
cussion, we use {NCKiDS, NsideKiDS} to denote the set-up for the
data-driven OR, and {NCrec, Nsiderec} for the recovered mock
OR. To avoid endless tests for different parameter value com-
binations, we assume that the same SOM+HC set-ups on real
and mock data, with the same systematics choices, will yield
equally good or bad performance on both real and mock data.
With this assumption in mind, we can evaluate the performance
of a {NCKiDS, NsideKiDS} combination based on the recovered
OR 2PCF with NCKiDS = NCrec, NsideKiDS = Nsiderec:
1. If the recovered OR 2PCF is generally higher than the “No

selection” case, the {NCKiDS, NsideKiDS} choice is likely to
under-estimate the variable depth;

2. If the recovered OR 2PCF is significantly lower than the “No
selection” case, the {NCKiDS, NsideKiDS} option is likely to
over-correct the variable depth by removing the LSS;

3. If the recovered OR 2PCF agrees with the “No selection”
case, it is possible that the choice is optimal. It is also pos-
sible that the data-driven OR under-estimates the variable
depth and induces too soft selections, which can be corrected
by the same {NCrec, Nsiderec} combination, while a realistic
variable depth actually requires higher {NCKiDS, NsideKiDS}.
For the second case, one can think of an extreme case:
NCKiDS = NCrec = 1. This case is the same as “No selection”
and will give an unbiased 2PCF, but the number of clusters
is clearly too low for the real data with complex selection
effects.

Another consideration is that instead of calculating 2PCF with
varying Nside, we calculate the fraction of unmasked empty
pixels (i.e. the pixels in the footprint that do not contain a
galaxy). If the fraction is large, the OR weight will show the LSS
pattern (one can imagine an extreme case: using a pixel size so
small that each pixel contains either one or zero galaxies. In this
case, the OR weight map is exactly the galaxy map and no 2PCF
signal is measured with it). We find that when Nside≤ 2048,
the unmasked empty pixels are less than 0.5% of the footprint;
when Nside= 4096, the fraction increases to 2%. Therefore, in
this test we fix NsideKiDS = Nsiderec = 2048 and only vary NC.

With these assumptions and simplifications in mind, we find
the optimal NCKiDS by first choosing the same NCKiDS and NCrec
values for data-driven OR and recovered mock OR, respectively.
We vary the cluster number from low to high until it is high
enough to pick up the LSS and the recovered 2PCF starts to be
systematically lower than the unbiased case. On the other hand,
if a certain choice of NC gives an unbiased mock 2PCF, it is still
possible that NCKiDS is too low to recover the selection function,
which results in a soft data-driven OR map that can be recovered
with the same NCrec = NCKiDS. To test if this is the case, we
can manually amplify the variance of the data-driven selection
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Fig. 13. Upper panel: Part of the data-driven OR weight generated from
the KiDS-Legacy map; middle panel: Mock OR weight recovered from
GLASS mock galaxy sample selected according to the data-driven OR;
bottom panel: Relative difference between recovered OR weights and
true OR weights. Both OR weights are generated with 600 hierarchical
clusters and pixelised on a HEALPix map with Nside= 2048.

function that applies to the mock by

δ(m)
OR,KiDS(θ) ≡

Wm
KiDS(θ)

Wm
KiDS

− 1. (21)

We note that Wm
KiDS is WKiDS to the power of m. When

the adjustment parameter m > 1, the variance in δOR,KiDS is
enhanced. If the mock OR can still recover an unbiased 2PCF,
then we can conclude that this set-up is powerful enough to
recover the realistic variable depth. In this test, we choose m =
1.5 so that the bias in the 2PCF with URs is almost doubled.

If we find the NCKiDS so that the “Recovered OR” 2PCF is
also unbiased for the enhanced data-driven selection, we can fix
it for the data-driven OR weight. Based on our previous discus-
sion, we can treat the data-driven OR weight with this NCKiDS
as a realistic selection function. With this data-driven selection,
we then vary NCrec for the mock OR and evaluate the bias of the
resulting 2PCF.

5.2.2. Evaluating the performance of SOM+HC with
data-driven systematics

Figure 13 shows an example of the true data-driven OR (the top
panel), associated recovered OR (the bottom panel), and the rel-
ative difference between them. Both OR weights are generated
with 600 hierarchical clusters and pixelised on a HEALPix map
with Nside= 2048. Visually they look very similar to each other,
and the relative difference is well within ∼±20%.
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Fig. 14. 2PCFs measured for the data-driven systematics test with the same choices of NCKiDS (the number of hierarchical clusters for the data-
driven OR) and NCrec (for the recovered mock OR) Each column of panels corresponds to one set-up. Nside is fixed at 2048 for both the
data-driven OR and the recovered OR. The right-most column is an enhanced data-driven OR with m = 1.5 according to Eq. (21). The top panels
show the 2PCF data points calculated as the mean values from 40 GLASS realisations, and the error bars are calculated as the square root of the
diagonal terms of the theoretical covariance matrix. The middle panels show the biases in 2PCFs with respect to the No selection 2PCFs and the
bottom panels show the biases relative to the errors in the 2PCFs (The UR case is well beyond the range). The shaded regions are angular scales
corresponding to a physical scale r < 8 h−1 Mpc at the mean redshift of the galaxy sample.

Following Sect. 5.1, we quantitatively evaluate the effective-
ness of SOM+HC by comparing the 2PCF from the depleted
mock catalogue corrected by the recovered mock OR (the “Rec.
OR w(θ)”) and the “No selection” 2PCF (measured from a com-
plete catalogue with the same number of galaxies, corrected
by a uniform random). Since the “No selection” 2PCF is unbi-
ased, it serves as the reference 2PCF. The consistency between
these two 2PCFs indicates the consistency between the recov-
ered mock OR and the data-driven OR (not necessarily between
the recovered mock OR and the realistic selections). The angular
separation is binned into 20 logarithmic bins from 2.5 arcmin to
250 arcmin. The covariance matrices are again calculated by the
OneCovariance code with the same cosmology, redshift distri-
bution, sky coverage and galaxy number density as the GLASS
mock (see Fig. 14).

To achieve satisfactory statistical power and to suppress sam-
ple variance, we perform the data-driven systematics test on
40 GLASS realisation samples and calculate the average w(θ).
At the data vector level, we compute the χ2

d value between the
recovered OR w(θ) and the no-selection w(θ) following Eq. (18).
We also use the PTE value to evaluate the goodness of fit. If the
PTE is close to 1, then it is almost certain that χ2 will be larger
than a completely random variation, and the difference between
“Recovered OR” 2PCF and “No selection” 2PCF is significantly
smaller than the sample variance.

We can also evaluate the consistency at the level of parameter
fits. For example, we set the matter density parameter Ωm and
the galaxy bias b as free parameters. First, we define a Gaussian
likelihood,

logL(w(θ)|Ωm, b) = −
χ2

dm

2

= −
1
2

∑
i, j

(
ŵ(θi) − w(θi; Ωm, b)

)
C−1

i j

(
ŵ(θ j) − w(θ j; Ωm, b)

)
, (22)

where χ2
dm denotes the χ2 between data and model; ŵ is the mea-

sured 2PCF averaged across realisations and w(θi; Ωm, b) is the
theoretical 2PCF. We run an MCMC using the emcee pack-
age (Foreman-Mackey et al. 2013) to sample the posterior dis-
tribution. We then compare the consistency between the MCMC
chains from the “No selection” and “Recovered OR” cases. The
inference bias of each parameter is described by ∆Ω̄m and ∆b̄,
the difference of the mean values of the parameters across the
converged chains, with the units of their standard deviations. We
also compare the entire posterior with the distance of the mean
values of {Ωm, b} on the parameter plane parametrised with the
χ2 value on the Ωm−b plane:

χ2
Ωm,b =

(
∆Ω̄m
∆b̄

)T

C−1
Ωm,b

(
∆Ω̄m
∆b̄

)
. (23)

Here C is the covariance matrix of the inferred parameters
derived from the MCMC chains. The PTE value is then derived
from the χ2 value given the degrees of freedom of 2.

5.3. Results

In the upper panels of Fig. 14, we present the 2PCFs measured
from the data-driven systematics test. Each column of panels
shows a set-up specified by the number of clusters for data-
driven OR and recovered mock OR. The right-most column cor-
responds to an enhanced data-driven OR by setting m = 1.5 in
Eq. (21). The colour scheme and meaning of data points are the
same as introduced in Table 2. The data points are the mean
2PCF computed from 40 GLASS realisations and the error bars
are the square root of the diagonal terms of the theoretical covari-
ance matrix given by the OneCovariance code. The middle
panels show the fractional bias of the 2PCFs with respect to the
“No selection” 2PCF and the bottom panels show the bias of the
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Fig. 15. 1 −σ confidence contours of the parameter posterior shift with
respect to the best-fit values constrained from the No selection 2PCF.
The pink arrow indicates the direction of the UR contour with the best-
fit values of ∆Ωm = −0.03, ∆b = 1.33, which is well outside the
dynamic range of the plot.

2PCFs with respect to the error. The 1σ confidence contours of
the parameter posterior shift with respect to the best-fit values
constrained from the “No selection” 2PCF are shown in Fig. 15.
We note that the “UR” 2PCF gives such biased constraints that
the contour is well outside the plot area.

Table 2 summarises the statistics defined in Sect. 5.2.2. The
uniform random gives extremely biased 2PCF, highlighting the
necessity to mitigate the variable depth. The “True OR” case
agrees well with the “No selection” case as expected, and this
means that using the true OR in Eq. (7) can indeed correct the
variable depth for the 2PCF. From NC = 200 to NC = 800 the
SOM+HC changes from under-correcting the 2PCF to slightly
over-correcting it. The measured 2PCF and constrained cosmo-
logical parameters are in best agreement with the “No selec-
tion” case at NC = 600. When we use an enhanced data-driven
selection on the mock catalogue by setting m = 1.5, χd for UR
increases from 8475 (when m = 1) to 20 578, meaning that the
bias in UR 2PCF is more than doubled when m = 1.5. The
SOM+HC method with NC = 600 can still correct the bias in the
2PCF. Therefore, we conclude that SOM+HC with NC ∼ 600 is
the optimal choice for the KiDS-Legacy galaxy clustering 2PCF
measurement.

Now we fix NCKiDS = 600 so that the data-driven selection
reflects the realistic variable depth, then we vary NCrec from 200
to 800. The evaluation statistics are summarised from the 6th row
to the 8th row of Table 3, plus the third row with NCrec = 600.
Again we see that the recovered 2PCF goes from biased high
(when NCOR = 200) to well corrected. We also note that the
recovery biases are generally low with NCrec varying from 400 to
800, for which χ2

d values are at a level of ∼0.5σ, with a minimum
value of 0.39 when NCrec = 600. The goodness of recovery is
also robust to the choice of NCrec from 400 to 800. In conclusion,

we choose NCrec = 600 for the galaxy clustering measurement
with KiDS-Legacy data.

6. 2PCF measurement with KiDS-Legacy sample

6.1. Application of SOM+HC on the real data

In this section we apply the SOM+HC method to the real KiDS-
Legacy galaxy catalogue. The systematics used to train the SOM
are described in Sect. 3. The SOM+HC set-up is the same as
the data-driven systematics test: the SOM dimension is 30, with
hexagonal cells (so each cell has six adjacent neighbourhoods),
toroidal topology (so the left and right edges are adjacent, and
the top and bottom edges are adjacent). Training lasts for 10
epochs, with an initial width of the Gaussian neighbourhood
function σ = 30/2 = 15, decreasing linearly to σ = 1 in the
last epoch. The initial learning rate is 0.1 and decreases linearly
to 0.01. The trained SOM cells are grouped into 600 clusters,
from which the OR weight is generated on a HEALPix map with
Nside= 2048.

Figure 16 shows the results of the post-trained SOM+HC.
The first five panels show the SOM colour-coded by the average
systematics values of each cell. We note that the SOM inherits
the grained patterns of the mean Level and GAIA_nstar spa-
tial distributions (see Fig. 2). The last panel shows the galaxy
number contrast of the 600 hierarchical clusters (denoted by
cells with black borders). Due to the toroidal topology, clusters
near the edge may actually cross the edge and continue on the
other side. One can see the correlation between galaxy number
contrast and each systematics from the SOM maps. For exam-
ple, the galaxy number contrast is strongly anticorrelated with
PSF_size. This is expected, as a larger PSF size indicates poorer
atmospheric seeing, making galaxies harder to detect under these
conditions. A quantitative correlation can be evaluated using
Spearman correlation coefficients. Figure 17 shows the corre-
lation coefficient matrix. The bottom row shows the correlation
between systematics and galaxy number contrast, and it is clear
that PSF size has a strong anti-correlation with galaxy num-
ber contrast, in agreement with the contrast-systematics relation
shown as black curves in Fig. 2. On the other hand, the PSF
shape only has a weak correlation with the contrast in galaxy
numbers. We also find that Level and GAIA_nstar are corre-
lated with extinction.

6.2. Blinded measurement of 2PCF

Since the KiDS-Legacy cosmological analysis is not yet
unblinded, in this paper we only make blinded measurements of
the 2PCF. We leave more sophisticated measurements, including
tomographic galaxy clustering, to later work. This section serves
as a showcase of the SOM+HC method on real data.

The 2PCF is measured the same way as those from Sect. 5.
The “UR” 2PCF is measured by using the coverage map as the
random term Na

R,p in Eq. (9) (for the similar definition of the RR
and DR terms), and the “OR” 2PCF uses the OR weight from
SOM+HC. Both 2PCFs are then blinded using the method given
in Muir et al. (2020). The blinding method includes the follow-
ing steps:
1. Select a reference cosmology and calculate the associated

theoretical 2PCF. In our case, we use the fiducial cosmology
defined in Sect. 1.

2. Shift the cosmological parameters to be blinded with a Gaus-
sian random number. The standard deviation of the Gaussian
random defines how much one wants to blind the parame-
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Table 3. Summary statistics of data-driven systematics test.

Configuration χ2
d PTEd ∆Ωm[σ] ∆b[σ] χ2

∆Ωm,∆b
NCKiDS NCrec

200 200 11.66 0.3088 0.36 1.69 4.26
400 400 0.32 1.0 0.31 0.33 0.12
600 600 0.29 1.0 0.23 0.16 0.05
800 800 0.58 1.0 0.44 0.09 0.3
600 (m = 1.5) 600 0.45 1.0 0.35 0.32 0.14
600 200 11.19 0.3431 0.27 1.54 3.35
600 400 0.4 1.0 0.38 0.37 0.17
600 800 0.57 1.0 0.44 0.09 0.33

True OR 0.08 1.0 0.09 0.08 0.01
UR 8475.94 0.0 −0.72 27.39 1759.8

Notes. Four statistics are used to evaluate the consistency between 2PCFs and “No selection” 2PCFs. They are (1) χ2
d (defined in Eq. (18)) describes

the difference between 2PCF data vectors; (2) probability-to-exceed (PTE) indicates the probability for a random data vector having higher χ2
d

value; (3) ∆Ωm and ∆b describes the individual parameter bias in the unit of constraining error; (4) χ2
∆Ωm ,∆b describes the overall constraining bias

on the parameter space. The first five rows evaluate the difference between “Recovered OR” and “No selection” with the same NC set-up for the
data-driven OR and recovered mock OR, and the following three rows evaluate the difference for fixed NCKiDS test, and the last two rows evaluate
the difference between “True OR”, “UR” cases, and “No selection” cases, respectively.
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Fig. 16. Self-organising maps trained on the KiDS-Legacy catalogue, with the dimension 30 × 30. The first five panels are SOMs coloured by the
average systematics values in each cell. The last panel (bottom right) is the SOM coloured by the galaxy number contrast of each hierarchical
cluster. The black lines are the boundaries of each HC. We note that we use a toroidal topology for the SOM, so the left and right edges and the
top and bottom edges are adjacent.

ters. In this paper we shift {Ωm, b} with standard deviation
{0.1, 0.1} respectively.

3. Calculate the shifted 2PCF given the shifted parameters and
obtain the data vector shift by subtracting it from the refer-
ence 2PCF.

4. Add the data vector shift to the measured 2PCF to obtain the
blinded 2PCF.

Both the UR and OR 2PCFs are shifted by the same amount to
make a meaningful comparison. We then run an MCMC on the

blinded 2PCFs to sample the posterior of {Ωm, b}. To prevent
accidental unblinding, we never save the blinded data vector,
but directly pass it to the MCMC code. The covariance matrix
is computed from the OneCovariance code. Since we do not
know the true parameter values a priori, we use an iterative fit-
ting procedure: first, we compute the covariance matrix with the
fiducial cosmology and run MCMCs with it, then we compute
the best-fit parameters from the posterior and update the covari-
ance matrices for OR and UR respectively. The posterior is then
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Fig. 17. Spearman correlation coefficient matrix. The numbers in each
grid are the correlation coefficient between the median systematics and
the galaxy contrast in each hierarchical cluster.

sampled with the updated covariance matrices. The MCMCs are
sampled with the same modelling code when we blind the data
vector. We note that we only constrain the linear model with data
points at θ > 8 h−1 Mpc/DA(z̄), where DA(z̄) is the angular diam-
eter distance at the mean KiDS-Legacy redshift z̄ = 0.7. The
redshift distribution is calibrated with a combination of SOM
and the clustering-redshift method, which will also be presented
in a companion paper.

Data-driven systematics tests (see Sect. 5) suggest that NC =
600 is the optimal choice. In this section, we use this as the fidu-
cial setting, but also try NC = {200, 400, 800} to test the robust-
ness of the NC choice. All 2PCFs are shifted with the same
blinding shift. The posteriors are also fitted from these measure-
ments.

The blinded 2PCFs are shown in Fig. 18 with error bars
derived from the updated covariance matrices. The black dashed
line shows the theoretical 2PCF calculated from the best-fit
parameters from the blinded 2PCF measurement with NC =
600. The reduced χ2 value between the OR (NC = 600) 2PCF
and the best-fit 2PCF is 1.28, corresponding to a PTE of 0.25,
indicating a good fit between the model and the blinded data.
Figure 19 shows the posteriors sampled from the MCMC, shifted
with respect to the best-fit value of the NC = 600 case. The
left panel shows the contours of shifted posteriors constrained
from 2PCF corrected by OR with different NC, while the right
panel shows contours corresponding to 2PCF corrected by OR
(NC = 600) and UR, respectively. On linear scales, the OR and
UR 2PCFs differ at a level of 70σ and the galaxy bias parameter
differs at a level of 40σ. Interestingly, the matter density Ωm does
not change significantly with the correction. This is because the
selection does not cause significant bias in Ωm (Ωm is not biased
even for the UR 2PCF), but this might be not the case for other
surveys.

10 30 100 250
[arcmin]

10 2

10 1

w
(

)

Best fit OR
NC=200
NC=400
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NC=800
UR

Fig. 18. Blinded 2PCFs measured from the KiDS-Legacy sample. The
blue and pink dots are the measurements corrected by the recovered
organised random and by the uniform random, respectively. The shaded
regions are angular scales corresponding to physical scales smaller
than 8 h−1 Mpc estimated at the mean redshift. The error bars are the
standard deviations derived from the covariance matrix computed by
the OneCovariance code. The black dashed curve shows the best-fit
2PCF from the MCMC.

The 2PCF measurements with different NC suggest that the
OR 2PCFs decrease with NC (i.e. the corrections increase with
NC). If we treat NC = 600 as the fiducial choice, the corre-
sponding χd values are 5.75, 0.27, 0.07 with NC = 200, 400,
800, so the change is significant from NC = 200 to NC = 400,
while moderate from NC = 400 to NC = 800. This is consistent
with the data-driven validation test. Therefore, we conclude that
the OR correction is quite robust around NC = 600.

7. Discussions and conclusions

The aim of this work was to correct the bias in the galaxy
2PCF from deep surveys due to complicated selection effects.
We showed that for deep surveys such as KiDS, the selection
effect is very pronounced and can lead to a bias in the 2PCF
about ten times the signal, especially on large scales. Therefore,
a critical step is to correct for the variable depth caused by com-
plex selection effects. We introduce the SOM+HC method pro-
posed by Johnston et al. (2021) on the KiDS-Legacy sample and
show that it can correct the bias for faint galaxy samples.

SOM+HC is a machine-learning method for recovering
organised randoms that have the same selection pattern as
the galaxy sample. The method uses a combination of self-
organising maps and hierarchical clusters that group galaxies
in systematics space and redistributes them across the survey
footprint. Compared to other methods used to mitigate selection
bias in the 2PCF, SOM+HC has the advantage of being model-
independent. As an unsupervised machine learning algorithm,
it does not need to parametrise selection functions or biases in
statistics, but directly captures arbitrary selection-induced pat-
terns in the systematics space. Therefore, it can recover com-
plex selection functions and their correlations without making
a priori assumptions about them. In addition, the SOM+HC
method is purely data-driven, meaning that it can be trained on
the real data itself without relying on mock data or any external
information.
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Fig. 19. Contours of 68.3% and 95.4% credible levels of the parameter posterior shift with respect to the best-fit values constrained from NC = 600
case. Left panel: Contours from the OR 2PCFs with different NC choices. The fiducial choice NC = 600 is shown as green filled contours; Right
panel: Contours of OR 2PCF (NC = 600, green) and UR 2PCF (pink).

Johnston et al. (2021) proved that SOM+HC can correct the
slight bias in the bright sample, while this work further validates
the method on a faint galaxy sample with more complex selec-
tion effects and a more significant bias in the 2PCF. The valida-
tions are performed on mock galaxies from GLASS with both
toy selections and data-driven selections. The toy test is a direct
demonstration of how SOM+HC can recover the selection func-
tions and the unbiased 2PCF. The data-driven test demonstrates
the performance of SOM+HC on deep surveys such as KiDS
and determines the optimal set-up for realistic 2PCF measure-
ments. From Fig. 14, we note that the bias in the UR 2PCF is
scale-dependent. This scale dependency may arise because dif-
ferent scales are dominated by selection effects of different sys-
tematics, but it is hard to quantitatively isolate them in different
scales. OR is able to correct such complicated selection effects.
From this test, we see that the selection effects in the real KiDS-
Legacy galaxy sample bias the 2PCF by χ2 ∼ 8500 and that the
SOM+HC with NC = 600 can correct this bias down to a level
of χ2 ∼ 0.3 given a degree of freedom of 10, resulting in the
reduction of bias on the (Ωm, b) from a level of 27σ to 0.3σ.
Notably, this set-up can recover an unbiased 2PCF even with an
enhanced selection, correcting a 2PCF bias of χ2 ∼ 20 000 to
χ2 ∼ 0.4.

Several set-ups of the SOM+HC algorithm can affect its per-
formance, so the optimal set-up varies from survey to survey. For
example, the number of galaxies (data volume) is important for
the SOM+HC set-up. A catalogue with a larger number of galax-
ies is less sensitive to Poisson noise and has a more obvious vari-
able depth, making the SOM+HC more efficient in recovering
an accurate OR. On the other hand, smaller galaxy catalogues
require lower NC and Nside to reduce cosmological contam-
ination in the OR, but this will limit the spatial resolution of
the OR. Furthermore, data-driven regression methods, including
SOM+HC, aim to nullify modes of variance in the training data,
which carries the risk of over-correction. A potential solution is
to train the model on data from a disjoint sky region and run it

on the region of interest. This approach requires ensuring that
the training region is both representative and uncorrelated with
the testing region (the region of interest), making it practically
challenging. For datasets with weaker selection effects than the
LSS fluctuation (such as the KiDS bright sample), SOM+HC is
more prone to over-correction. Therefore, SOM+HC should per-
form better on larger, fainter galaxy samples. For KiDS-Legacy,
we show that NC = 600 gives a parameter constraint accuracy of
∼0.3σ and performance is found to be stable around this choice.
In this work we also set the pixel size to 1.4 arcmin, equivalent
to Nside= 2048, to avoid unintentionally masking pixels within
the footprint, while maintaining the best performance of the OR.
We expect smaller pixels to give a more accurate OR for future
surveys with higher galaxy number densities.

Using the validated SOM+HC method, we performed a pre-
liminary blinded 2PCF measurement from the KiDS-Legacy
galaxy catalogue. We find that the UR 2PCF is significantly
higher than the OR 2PCF by an order of magnitude. Further-
more, the corrected 2PCF is robust to the choice of NC around
600. We applied the SOM+HC method to the photometric
galaxy clustering measurement for the KiDS-Legacy 6× 2 pt and
the bright galaxy clustering measurement for the KiDS-Legacy
3× 2 pt measurements. More detailed discussions of the method-
ology (e.g. tomographic galaxy clustering) will be given in the
forthcoming papers.

We moreover note that the tests carried out in this work were
focused on linear scales. The bottom panels in Fig. 14 show that
the performance of the method is worse on small scales. This
is because the variance is very small on small scales, so the bias
tends to be significant compared to it. Therefore, we need to take
extra care at these scales. For example, future work could com-
bine different algorithms to correct for variable depth at different
scales.

Combinations of multiple 2PCFs, namely the N × 2 pt
measurements, will form the main analysis components of the
next generation of LSS surveys, including LSST and Euclid.
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Galaxy 2PCF will be a critical part of these measurements.
For these deep surveys, selection effects will also lead to vari-
able depths. For example, the rolling cadence survey strategy
of LSST (Bianco et al. 2021) will introduce stripe-like non-
uniformity. Based on Hang et al. (2024), this will cause a sig-
nificant bias up to an order of magnitude for the LSST Y3
galaxy clustering measurement. The Euclid survey, on the other
hand, will combine ground-based multi-band photometry to esti-
mate photo-z (Euclid Collaboration: Desprez et al. 2020), so any
photo-z-based selection will introduce variable depth. With large
sky coverage and depth, the measurement precision of these sur-
veys will be greatly improved, requiring cleaner and more reliable
bias correction. As discussed above, SOM+HC is more effective
with larger galaxy samples. Therefore, we expect that as the data
volumes of the next generation of surveys increase, SOM+HC
will become more powerful in recovering selection-induced clus-
tering. In addition, one can use smaller pixels (or higher Nside)
for such galaxy catalogues, and obtain the OR weights at higher
angular resolutions. To this end, we published the code used in
this work as the tiaogeng package16 for future implementation
in pipelines for next-generation surveys (e.g. TXPipe17). A com-
bination with other methods, such as template-based correction
methods, could be even more effective in mitigating the complex
selection effects for future deep surveys.

Data availability

Our software is open-source for future usage.
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Appendix A: Covariance matrix comparison

In this Appendix we compare the covariance matrix from
mock realisations and the theoretical covariance computed by
the OneCovariance code. The mock covariance is computed
based on Eq. (17). To ensure consistency, we configure the input
file of the OneCovariance code so that the cosmology, foot-
print, redshift distribution and galaxy number density match
those of the GLASS mock. In addition, since the GLASS pack-
age only generates a Gaussian field, we assume that the theoreti-
cal covariance matrix contains only the Gaussian covariance plus
the super-sample covariance (Takada & Hu 2013) to account for
the covariance of modes larger than the observed field.

In this section we compare only the covariance of the 2PCFs
from the data-driven test with {NCKiDS = 600,NCrec = 600}.
The three panels in Fig. A.1 show the square root of the main
diagonal, the 5th and the 10th diagonal above the mean diago-
nal. We note that the covariance of the uniform random case is
significantly higher than that of the “no selection” case, imply-
ing that variable depth contamination also introduces additional
covariance into the data. The covariance for the “No selection”
and “True OR” cases matches the theoretical covariance given
by OneCovariance as expected. The covariance of “Recov-
ered OR” agrees with that of the unbiased cases, so we conclude
that the SOM+HC method can also recover accurate covariance
in the correlation function in the linear regime.

Appendix B: Correcting selection effects for
angular power spectra with SOM+HC

Another widely used two-point statistic is the angular power
spectrum, which is defined as the correlation of galaxy over-
density in harmonic space. In general, angular power spectra
have weak correlations between ` modes, allowing us to study
different angular scales independently.

In practice, there are two estimators of the power spectra.
One is the “band power”, where we measure the correlation
functions first, then invert Eq. (7) by performing the integra-
tion C` =

∫ ∞
0 w(θ)J0(`θ)θ dθ at the central ` in each band. The

accuracy of the band power depends on the integral limit of θ
and the discrete θ’s when calculating the correlation function
(Schneider et al. 2002).

The other estimator is the pseudo-C` (PCL, Wandelt et al.
2001; Alonso et al. 2018), where one calculates the coupled C`

from the weighted sky map, then decouples it with the mode
coupling matrix of the weight, and bins it. The weight can be
a binary mask specifying the footprint of the survey (so that a
source gets a weight of 1 if it is in the footprint, otherwise 0);
or a weight for each source to suppress errors (like the lensing
weight) or to correct for selection effects (like the organised ran-
dom weight in this paper). In this appendix we briefly discuss
the usage and performance of SOM+HC on the measurement of
PCL C` from the same GLASS mock samples. Detailed discus-
sions will be given in a companion paper presenting the method-
ology of the KiDS-Legacy 6×2pt cosmology.

The galaxy PCL is based on pixelised galaxy over-density
maps. On a weighted sky, the galaxy over-density in the p-th
pixel is given by (Nicola et al. 2020):

δ(p) =
N(p)

w(p)N
− 1, (B.1)

where N(p) is the number of galaxies in the pixel, w(p) is the
weight value (the organised random weight in our case) in the
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Fig. A.1. Comparison of the covariance matrices. Panels from top to
bottom show the square root of the main covariance diagonal, the 5th
and 10th diagonals above the main diagonal, as shown by the black
grids in the top right theoretical covariance matrices in each panel. The
coloured curves show the covariance terms of the four 2PCFs defined
in Table 2 from the data-driven test with {NCKiDS = NCrec = 600}; the
dotted lines are calculated from the OneCovariance code. The lower
x-ticks are the row indices, while the upper x-ticks on the top panel are
the corresponding angular scale for the diagonal term.

pixel. By dividing the galaxy number by w(p), we have effec-
tively corrected for the variable depth. The average galaxy num-
ber is given by

N̄ ≡
∑
p∈w

Np

wp
, (B.2)

where the sum is taken within the footprint.
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Fig. B.1. Upper panel: Pseudo-C` measured from GLASS mock sam-
ples. The data points of each series are the average PCL from 40 real-
isations; the error bars are the square root of the covariance diagonal
given by NaMaster. The χ2

d values, which describe the difference
between each dataset and the No selection PCL, are calculated simi-
larly to Eq. (18). Lower panel: Relative difference of each case with
respect to the no selection case. The shaded regions are the ` modes
corresponding to a physical scale smaller than 8 h−1Mpc estimated at
the mean redshift.

We can measure the PCL directly between the maps of two
galaxy samples a and b as

C̃ab
` =

1
2` + 1

∑
m

ãa
`mãb∗

`m, (B.3)

where ãa
`m is the harmonic coefficient of sample a on weighted

sky and ãa∗
`m is its complex conjugate. For weighted galaxy maps,

it is linked to the underlying power spectra C` via

C̃ab
` =

∑
`′

M``′ (wa,wb)Cab
` , (B.4)

where M``′ (wa,wb) is the mode-mixing matrix determined by the
weight maps (wa,wb) of the two fields. Therefore, the directly
measured C̃ab

` is called “coupled PCL”. An unbiased angular
power spectrum is estimated by decoupling it via the inverse
of the mode-coupling matrix. Assuming Poisson-distributed
objects, the OR weight is proportional to the inverse variance
of the field, we use OR weight to calculate the mode-coupling
matrix. In practice, one also wants to bin the PCL into ` bins. For
technical details, we refer to Alonso et al. (2019). The calcula-
tions are implemented in the NaMaster package (Alonso et al.
2019) which we use in this section to measure the PCL.

The measured galaxy auto-power spectrum contains a shot
noise which needs to be subtracted. We assume a Poissonian shot
noise, for which the coupled noise spectrum (the “noise bias”
termed in Alonso et al. 2019) is given by:

Ñ` = Ωpix
〈w〉

N
, (B.5)

where Ωpix is the pixel area in the units of steradians; 〈w〉 is the
mean weight value per pixel across the whole sky.
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Fig. B.2. 1-σ credible contours of parameter posterior shift with respect
to the best-fit values constrained from the “No selection” PCL

The Gaussian covariance matrix depends on unbiased esti-
mations of the angular power spectra. In this section we only
measure angular power spectra from GLASS mock catalogue,
so we take the input angular power spectra for GLASS to esti-
mate the theoretical Gaussian covariance matrix.18 The mode-
coupling induced by the OR weights is also taken care of by
the NaMaster package. The non-Gaussian term includes a
connected covariance matrix which is dominated by the galaxy
trispectra (Krause & Eifler 2017) which only affects the small
scales, so we neglect it in this section. Another non-Gaussian
term is the super-sample covariance (SSC; Takada & Hu 2013)
which accounts for the correlated modes that are larger
than the survey footprint. We calculate this term using the
OneCovariance package, but we note that this term is negli-
gible for KiDS-Legacy.

Therefore, for PCL, the variable depth affects the mapping
process, the mode-mixing matrix, the shot noise and the covari-
ance matrix. In this section we perform the data-driven test for
PCL with the same 40 GLASS mock samples with interpolated
systematics. Here we show the case NCKiDS = NCrec = 600.
That is, the mock sample is selected with the data-driven OR
weight with NCKiDS = 600 and the recovered OR weight is from
600 HCs trained on the selected mock sample. We first gener-
ate the galaxy fluctuation map according to Eq. (B.1) and mea-
sure the four PCLs defined similarly to Table 2: the UR case
is a depleted galaxy sample for which the mode-mixing matrix
is calculated from the footprint; the ‘No selection’ case is the

18 In real measurement when the true angular power spectra are
unknown, an iterative estimation is usually used to evaluate the covari-
ance (Eifler et al. 2009). That is, one uses the theoretical angular power
spectra calculated from reasonable cosmological parameters to calcu-
late the covariance and constrain the parameters with the corresponding
likelihood. The covariance matrix is updated with the best-fit param-
eter. This process is performed iteratively until the best-fit parameter
converges.
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unselected galaxy sample for which the mode-mixing matrix is
calculated from the footprint.

The PCL measure is shown in Fig. B.1. Data points in the top
panel show the averaged PCL across realisations. Error bars are
the standard deviation of each C` calculated from the covariance
matrix given by NaMaster. The bottom panel shows the rela-
tive difference between each C` measurement and the “no selec-
tion” case. The shaded region corresponds to physical scales
smaller than 8h−1Mpc estimated at the mean redshift. We ignore
these scales in this analysis. To assess the consistency between
the OR-corrected PCL and the “no selection” PCL, we calcu-
late the χd (defined similarly to Eq. (18) but using C` instead of
w(θ)) between them. The values are quoted in the upper panel
of Fig. B.1. The uniform random again gives a very large bias
(χd = 3230) in the PCL and the true OR completely corrects
the bias as expected. The OR recovered by SOM+HC gives a
residual of χd = 0.42.

In the same way as for the 2PCF, we run an MCMC on
the measured PCL. The Gaussian likelihood is defined with the
Gaussian covariance given by NaMaster plus the SSC given
by OneCovariance. We calculate the shifted posterior with
respect to the best-fit values constrained from the “No selec-
tion” case. The contours of the 68% credible level are shown
in Fig. B.2. We calculate the parameter constraint bias follow-
ing the 2PCF test and get ∆Ωm[σ] = 0.21, ∆b[σ] = −0.17,
χ2

∆Ωm,∆b = 0.07 and for the recovered OR weight case. For the
true OR case, the constraining bias is at the 0.001σ level. We
note that both posteriors have the same shape, indicating a close
degeneracy between the galaxy bias and Ωm.

From this exercise, we can conclude that the OR weight
recovered by the SOM+HC method can also correct for variable
depth in 2-point statistics in harmonic space. Furthermore, the
optimal choice of NC that we found with data-driven system-
atics also provides accurate PCL measurements and parameter
constraints. We leave further tests, including tomographic galaxy
clustering PCL, to a future KiDS-Legacy 6 × 2pt methodology
paper.

Appendix C: SOM+HC with all the systematics from
KiDS-Legacy

Our fiducial choice of five systematics is based on the consid-
eration that some systematics are strongly correlated with each
other (such as extinction in different bands), so introducing them
will not add information to the SOM. In addition, some sys-
tematics have no selection effect in the galaxy field. Therefore,
including them in the training vector will not improve perfor-
mance, but will increase the time and computational resources
required (especially in the validation procedure). In this section
we validate our fiducial choice of systematics described in
Section 3 by training the SOM with all the available systematics
in the KiDS-Legacy catalogue. This increases the number of sys-
tematics from 5 to 16 and also increases the number of training
epochs required for the SOM to converge.

We group the galaxy into 600 clusters as the fiducial set-up
and calculate Spearman’s correlation coefficient between median
systematics and galaxy contrast in each hierarchical cluster.
Figure C.1 shows the correlation coefficient matrix. The first row
of the correlation matrix shows the correlation between galaxy
number contrast and each systematics, indicating the selection
effect captured by SOM+HC. The extinction in different bands
is fully correlated because it is calculated by scaling the redden-
ing template given by Schlafly & Finkbeiner (2011) according
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Fig. C.1. Spearman correlation coefficient matrix. The numbers in each
grid are the correlation coefficient between the median systematics and
the galaxy contrast in each hierarchical cluster.
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Fig. C.2. Blinded 2PCFs measured from the KiDS-Legacy catalogue.
The pink dots are UR measurements; the blue dots are our fiducial OR
measurements (OR recovered from 5 systematics) and the orange dots
are measured with OR recovered from 16 systematics. The error bars
are derived from the theoretical covariance matrices with best-fit UR
and OR parameters.

to the band, so we only include r-band here as the fiducial case.
PSF size has the highest negative correlation, which is in agree-
ment with the fiducial run. Level and GAIA star number density
are both slightly correlated with galaxy number contrast. We do
not include Background in our fiducial run because it correlates
weakly with galaxy number contrast, while it correlates strongly
with GAIA star number density, so including it does not add
much information.
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Fig. D.1. Photometric redshift distribution of the KiDS-1000 bright
sample, with the zphot. = {0.02, 0.2, 0.5} redshift bins (dashed lines)
employed in our w(θ) measurements

To further justify our choice of systematics, we measure the
2PCF corrected by the OR weight generated from all the sys-
tematics. Figure C.2 shows the UR (pink), fiducial OR (blue)
and full systematics OR (orange) 2PCFs. The χ2

d value between
the fiducial 2PCF and all differences are insignificant over the
entire angular scale considered. Therefore, we conclude that the
5 systematics that we choose are representative of the whole set
of systematics to recover the organised random.

Appendix D: Angular galaxy clustering for the
KiDS-1000 bright sample

Johnston et al. (2021) measured the 2PCF from the KiDS-1000
Bright sample (Bilicki et al. 2021) selected with a magnitude cut
r < 20 from the 4th KiDS data release. Its redshift distribution
is reliably calibrated from the overlap with Galaxy And Mass
Assembly (GAMA) spectroscopy using the neural network algo-
rithm implemented in the ANNz2 software (see Fig. D.1 for the
redshift distribution). The sample covers a sky area of 789 deg2

and has a number density of 0.36 arcmin−2.
In this section we re-measure the 2PCF of the KiDS-

Bright sample with the new SOM+HC implementation to check
the consistency between our code and the pipeline used in
Johnston et al. (2021). Following the fiducial set-up (the “100A”
set-up) in Johnston et al. (2021), we recover the OR with a
100×100 SOM trained on the same systematics (r-band detec-
tion threshold, PSF size and PSF shape) grouped into 100 hier-
archical clusters. The OR weight map has a Nside=1024, which
corresponds to an angular resolution of 3.4 arcmin, slightly
larger than the fiducial set-up in Johnston et al. (2021). The cor-
relation function is then measured in 30 angular bins between 3
and 300 arcmin.

After recovering the OR weight, we measure the correla-
tion functions of the two tomographic bins of the bright sam-
ple, defined by selecting galaxies with ANNz-calibrated photo-
z with the cut {0.02, 0.2, 0.5}. The 2PCFs corrected by the uni-
form random and the recovered organised random are presented
in Fig. D.2 with pink points and blue points, respectively. We
notice that our measurements are fairly consistent with that from
Johnston et al. (2021), shown as orange curves. The error bars
are the standard deviation derived from the covariance matrix
given by the OneCovariance code with the same redshift dis-
tribution and the best-fit Ωm and galaxy biases to be determined

below. The shaded regions are angular scales corresponding to
physical scales smaller than 8h−1Mpc estimated at the mean red-
shift. We then fit {Ωm, b1, b2} in the linear model with the 2PCFs
in the linear scale. We note that we don’t know the parameters
a priori to compute the covariance matrix, so we do an itera-
tive parameter fit. We choose the initial value of Ωm=0.33 and
b1 = 1.1, b2 = 1.25 to compute the covariance matrix. The
pilot galaxy bias values are taken from van Uitert et al. (2018),
which apply to a GAMA-like subsample of KV-450 with a sim-
ilar redshift distribution to the bright sample used here. We
define a Gaussian likelihood and run an MCMC to obtain the
best-fit parameters, and then update the covariance matrix with
them. We then run the MCMC again with the updated covariance
matrix to obtain the posterior.

The posteriors of the UR and OR cases are shown as pink
and blue contours in Fig. D.3. The mean value of the parameters
in the converged MCMC chains and the 1−σ levels are summa-
rized in Table D.1. The theoretical w(θ) calculated from the best-
fit parameters of the OR case is shown as dashed black curves in
Fig. D.2. The reduced χ2 value between the OR 2PCF and the
best-fit 2PCF is 1.06, corresponding to a PTE of 0.38, indicat-
ing a good fit between the model and the data. All three parame-
ters are constrained. Notably, the matter density is constrained in
agreement with previous cosmological probes. The galaxy biases
are constrained to be close to 1 with a slightly increasing trend.
However, we note that the bias parameters are highly degenerate
with σ8, which is fixed in our case. To break this degeneracy we
need to introduce matter field tracers such as cosmic shear or use
the halo model like in Dvornik et al. (2023). This is the content
of the ongoing KiDS-Legacy 3 × 2pt and 6 × 2pt projects.

From the data and the posterior, we found that the difference
between UR and OR is at the ∼ 1σ level, suggesting that the
variable depth in the bright sample is much less pronounced than
in the faint sample. This is expected, as the detectability of bright
galaxies should be less affected by the Galactic or atmospheric
foreground.
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Fig. D.2. 2PCFs measured from the KiDS-1000 bright sample. The three panels are the auto-correlation w(θ) of the whole sample, and the first and
the second tomographic bins, respectively. The blue and pink dots are the measurements corrected by recovered organised random and uniform
random. The shaded regions are angular scales corresponding to physical scales smaller than 8h−1Mpc estimated at the mean redshift. The error
bars are the standard deviations derived from the covariance matrix provided by the OneCovariance package. The orange curve is the OR-
corrected 2PCF data points measured by Johnston et al. (2021). The black dashed curves in the second and third panels are the best-fit 2PCF from
MCMC.

Table D.1. Parameter fit from KiDS-1000 bright galaxy 2PCF.

Parameter Prior range Best-fit, OR Best-fit, UR

Ωm [0.01, 1] 0.338+0.066
−0.085 0.350+0.068

−0.089
b1 [0, 5] 1.19+0.18

−0.14 1.24+0.19
−0.16

b2 [0, 5] 1.28 ± 0.11 1.41 ± 0.12

Notes. The best-fit values are those with maximum posterior and the
errors are the 68.3% credible level.
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Fig. D.3. Posterior of Ωm, b1, b2 fit by the 2PCF from KiDS-1000 bright
samples. The deep shaded and lightly shaded contour is the 68% and
95% credible levels, respectively. The blue and pink contours corre-
spond to the posterior from 2PCF corrected with OR and UR respec-
tively.
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