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Abstract: There are many methods of searching for traces of the so-called new physics in particle
physics. One of them, and the main focus of this paper, is athe study of the Z-boson decay in e+e−

collisions. An improvement in the precision of calculations of the Standard Model (SM) electroweak
pseudo-observables, such as scattering asymmetries, effective weak mixing angles, and decay widths,
related to the Z-boson will meet severe experimental requirements at the planned e+e− colliders and
will increase the chance to detect non-standard effects in experimental analysis. To reach this goal,
one has to calculate the next order of perturbative SM theory, namely three-loop Feynman integrals.
We discuss the complexity of the problem, as well as the methods crucial for completing three-loop
calculations. We show several numerical solutions for some three-loop Feynman integrals using
sector decomposition, Mellin–Barnes (MB), and differential equation methods.

Keywords: Feynman multi-loop integrals; sector decomposition method; Mellin–Barnes method;
integration-by-parts; differential equations

1. Introduction

The search for non-standard effects can be conducted in various ways, from which
the study of Z-boson decay in e+e− collisions is discussed in this paper. This process was
essential in the LEP era, leading to the precise knowledge of essential parts of the Standard
Model (SM) [1,2]. A few successors of this experiment are planned: ILC [3,4], CLIC [5,6],
CEPC [7,8] and FCC-ee [9–13]. Up to 5× 1012 Z-boson decays are planned to be observed
at the Z-boson resonance with the FCC-ee collider, which is about six orders of magnitude
more than at LEP. This will lead to very accurate experimental measurements of the so-
called Electro-Weak Pseudo-Observables (EWPOs), if the systematic experimental errors
can be kept appropriately small.

This level of accuracy is sensitive to virtual beyond-the-standard-model (BSM) effects
from particles with multi-TeV masses and/or very feeble interactions. The interpretations
of EWPOs in terms of BSM physics requires accurate predictions of these observables
within the SM. To match the precision offered by FCC-ee, at least one additional order
of perturbation theory has to be included beyond what is known today. For Z-boson decays,
the complete two-loop SM corrections are currently known [14–16], whereas three-loop
corrections will be required for the FCC-ee program.

The three-loop challenge is very demanding since no universal methods exist for the
calculations. The methods and corresponding tools have to be further developed so that all
the contributing Feynman integrals can be efficiently calculated. A subset of leading
fermionic third order corrections to electroweak and mixed EW-QCD observables was
recently accomplished in [17,18]; however, these corrections did not require the evalua-
tion of genuine three-loop integrals.
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2. Progress in Three-Loop Calculations for Z-Boson Observables

To match the accuracy offered by the upcoming FCC-ee collider for the Z-boson ob-
servables, three-loop corrections have to be included. This is a tough challenge from a
mathematical and computational point of view. At first, self-energy integrals are discussed.
The goal is to calculate all of the integrals up to eight-digit accuracy where possible, aiming
for 10−5 accuracy of the whole result of the combined contributions.

2.1. Three Loop Z-Boson Self-Energy Integrals

The initial step to address three-loop calculations is to compute self-energy contribu-
tions. Those integrals are, in general, simpler than the vertices, and therefore it is a natural
follow-up after completing two-loop calculations. Lacking a universal method for numeri-
cal evaluation of loop integrals, we can track the strong and weak points of the available
software, which leads to further development of these programs.

In total, there are 546 integrals that have to be calculated, spanning in between five
to eight propagators, zero to three inverse propagators - leading to up to rank 6 tensor
integrals and zero to seven massive propagators.

The next step is to include three-loop Z-boson vertices.

2.2. Three Loop Z-Boson Vertices

For the case of vertex diagrams, the following initial classifications are introduced.
Bosonic diagrams refer to diagrams with no fermionic loops inside, and EW-QCD diagrams
are with/without gluons inside. No tadpoles or products of lower loop diagrams are
included. One can easily see a huge increase in the number of diagrams between two and
three loops from around two thousands to nearly half a million in the Z → bb̄ process.

Next, the current status of the calculations is discussed for three-loop self-energy dia-
grams, which is the first step in our calculations toward solving vertex integrals connected
with diagrams in Table 1. All calculations are performed for the SM masses scaled to the MZ
mass, namely

MZ = 1, MW =
√

0.78, MH =
√

1.88, Mt =
√

3.6 . (1)

Additionally, for Euclidean region s = −M2
Z and s = M2

Z in case of Minkowskian kine-
matics. Recently, the numerical evaluation of planar-type three-loop self-energy integrals
with arbitrary masses was discussed in [19].

Table 1. The number of two and three loop vertex topologies and diagrams for the Z → e+e−

process. In brackets, we give the number of topologies in which those diagrams appear. QCD stands
for diagrams with gluons, and EW is the remaining part. Bosonic means no fermionic loops inside. A
similar table for the Z → bb̄ process can be found in [11].

Z→ e+ e−

Number of topologies
2 loops 3 loops

14 211

Number of diagrams 2012 397,690

Bosonic 1711 305,293

Fermionic 301 (4) 92,397 (82)

QCD 1 1228

EW 2011 396,462

Planar 1914 (13) 350,709 (183)

Non-planar 98 (1) 46,981 (28)
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3. Current Status of Numerical Results—Examples
3.1. PySecDec

PySecDec works very well for multiscale Feynman integrals [20,21]. Results in Eu-
clidean kinematics obtained with various integrators that were available in pySecDec
for the three-loop self-energy diagram in Figure 1 are presented in Table 2. The Monte-
Carlo integrators are used, since they typically offer better accuracy for the results of high
dimensional integrals compared to deterministic algorithms with the same number of calcu-
lation points. As one can see from Table 2, even in the Euclidean case, a comparison of dif-
ferent integrators and methods is needed for precise accuracy control.

p1

[k2,0]

[k2 + p1,0]

-p1

[k3,0]

[k3 + p1,0]

[k1 - k2,0]

[k1,0]

[k1 + p1,0]

[k1 - k3,MW]

Figure 1. List of propagators: PR[k1, 0, n1] PR[k1 − k2, 0, n2] PR[k2, 0, n3] PR[k1 − k3, MW, n4]
PR[ k3, 0, n5] PR[k1 + p1, 0, n6] PR[k2 + p1, 0, n7] PR[k3 + p1, 0, n8] where PR[k,M,n] stands
for (k2 −M2)−n. In this and the following numerical examples, all powers of propagators are equal
to 1. This and the next figures were generated using PlanarityTest [22], which is available at [23].

Table 2. Comparison of three of the integrators available in pySecDec, each evaluated using 107

points for the integral corresponding to the diagram shown in Figure 1 in Euclidean kinematics,
s = −1. The MB result is also given; for details, see Section 3.3.

Integrator Result Absolute Error

QMC [21] 8.62988528 4.99 × 10−6

Divonne [24] 8.62995472 5.31 × 10−5

Vegas [24] 8.62990260 2.17 × 10−4

MB 8.62995364 9.77 ×10−6

One can also use pySecDec for the calculation of integrals below the threshold (the contour
deformation option in pySecDec is not needed in this case) in Minkowskian kinematics. If
we aim at 10−5 accuracy for the combined result, in the case ofO(103) three-loop self-energy
diagrams, a rough estimation is that 10−8 accuracy for single integrals is needed. Equation (2)
provides a result for such an individual integral calculated with the QMC integrator and 107

points, s = 1

0.0255102498599± 6.23× 10−10. (2)

A corresponding diagram is shown in Figure 2.

p1

[k1,MT]

[k1 + p1,MT] -p1[k2 + p1,MT]

[k2,MT]

[k3,0]

[k1 - k3,MT]

[k1 - k2,0]

[k2 - k3,MT]

Figure 2. A self-energy three-loop diagram with propagators: PR[k1, MT, n1] PR[k1 − k2, 0, n2]
PR[k2, MT, n3] PR[k1 − k3, MT, n4] PR[k2 − k3, MT, n5] PR[k3, 0, n6] PR[k1 + p1, MT, n7] PR[k2 +
p1, MT, n8].
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Unfortunately, it appears much worse in the case of integrals with one or two internal
masses, and above the threshold, even without the highest number of propagators. For
the diagram with seven propagators in Figure 3, the result calculated with 107 points,
s = 1, is

− 1.9779024373062− 3.1707021356232i± (0.00069572988945 + 0.00056233082827i). (3)

p1

[k2,0]

[k2 + p1,0] -p1[k3 + p1,MT]

[k3,MT]

[k1 - k2,0]

[k1,0]

[k1 - k3,MW]

Figure 3. A self-energy three-loop diagram with propagators: PR[k1, 0, n1] PR[k1 − k2, 0, n2] PR[k2,
0, n3] PR[k1 − k3, MW, n4] PR[k3, MT, n5] PR[k2 + p1, 0, n6] PR[k3 + p1, MT, n7].

Even in this case, where we have seven propagators, we already lack accuracy, and,
the case of scalar integrals with eight propagators using the same number of points leads to,
at best, ∼5% accuracy. These results can eventually serve as a cross-check result for other
methods.

In the case of tensor integrals, for the ones with loop momenta not only in the de-
nominator but also in the numerator, a similar discussion can be held. The complexity
of tensor integrals lies in their rank and, thereby, in how many loop momenta appear
in the numerator. The more of loop momenta, the more complex integral. In the case
of pySecDec, the bottleneck is the available RAM memory. Memory usage grows very fast
with the increased rank of tensor integrals. Most of the integrals below the threshold can
be calculated even with rank 6 tensors.

However, when going above the threshold, even most of the rank 4 integrals are prob-
lematic and not always possible to calculate with the available computational resources.
Concerning accuracy, there is not much difference from the scalar case. Since many tensor
integrals cannot be calculated with pySecDec up to the desired accuracy, or even at all, one
needs another approach. One such approach is the well-known integration by parts (IBP)
method, which is further discussed.

3.2. Differential Equations and IBP Methods

In the context of the well known integration-by-parts (IBP) reductions [25] and differ-
ential equations method [26–29] for Feynman integrals, we present an improved strategy
that is capable of computing an arbitrary three-loop self-energy diagram, which is needed
for this project. The IBP reductions with Kira [30,31] based on the Laporta algorithm [32]
are computationally demanding if the number of loops and scales increases. The three-loop
self-energy diagrams require several days for a successful reduction if we keep the relevant
kinematic invariants and masses generic.

If we set all masses to physical numerical values and keep only the external kine-
matics in symbolic form, this reduces the reduction time to few minutes. IBP identities
help us to relate a large set of Feynman integrals to a smaller basis of integrals, which
are typically called ‘master integrals’. We may derive a linear system of differential equa-
tions for the master integrals, from which we can solve the master integrals. In order
to solve the master integrals from their differential equations, we provide a numerical
set of boundary values obtained through pySecDec as an expansion in the dimensional
regulator ε = (4− D)/2.

With the help of series expansions of the system of differential equations implemented
in DiffExp [33], we may transport the boundary terms to any other point in phase-space.
In our approach, we choose the kinematic point at which we compute boundary values
such that the numerical evaluation of pySecDec is stable and fast, and then we transport
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it to the physical region using DiffExp. First, we use the method of analytic regular-
ization that was introduced in [34–37] to change to a finite basis of Feynman integrals.
The resulting integrals typically have multiple dots and shifted dimensions. They can
be related to the original basis by using IBP and momentum-shift identities. Secondly,
we compute our boundary terms in the Euclidean region. Both simplify the numerical
evaluation of master integrals due to the absence of contour deformation and the need to
resolve the divergences of Feynman integrals with pySecDec.

Thus, we obtain stable and fast numeric convergence for all master integrals with
pySecDec. Using DiffExp, we may transport these boundary values to physical points
in phase-space, which works by iteratively expanding and solving the differential equations
in terms of series expansions. The numerical accuracy of the results in Euclidean kinematics
typically propagates to the Minkowskian kinematic point, which we may check by deriving
two different sets of boundary conditions in the Euclidean region, and transporting them
to the same physical point, after which the error is obtained by taking the difference
in the resulting expressions.

The tensor integrals are a by-product of the method described above, since any tensor
integral is a sum of master integrals. We are optimistic regarding the computations of the
arbitrary three-loop self-energy diagrams needed for this project by applying the afore-
mentioned method because the IBP reductions and the PySecDec numerical evaluations
simplify a great deal, and these were the previous bottlenecks of three-loop computations.

We demonstrate the application of this method with the following example (Figure 4):

IMerc[D, {ai}, s, M2
W ] =∫ dDq1

iπD/2
dDq2
iπD/2

dDq3
iπD/2

[(p1 + q1)2]a1 [(q1 − q2)2]a2 [q2
2]

a3 [−M2
W + (q2 − q3)2]a4 [(q1 − q3)2]a5 [q2

3]
a6 [q2

1]
a7 [(p1 + q2)2]a8 [(p1 + q3)2]a9

,
(4)

with p2
1 = s. To define the Feynman integral we follow the same conventions as in [38]. For

a shorter notation, we suppress the Feynman iδ prescription. The functions in the square
brackets[...] are the so called inverse propagators. The exponents ai are the propagator pow-
ers, which we treat as integer numbers. In further discussion, we study IMerc[D, {ai}, s, M2

W ]
integrals with ai > 0, i = 1, . . . , 6 and aj ≤ 0, j = 7, 8, 9. With IBP and dimension raising
identities, we manage to write these integrals as a linear combination of eight master
integrals in different dimensions by exploiting [39–41] in the intermediate steps:

masters =

{IMerc[D + 4, {3, 3, 3, 5, 0, 0, 0, 0, 0}]/ε2,

IMerc[D + 4, {3, 0, 3, 4, 3, 0, 0, 0, 0}]/ε2,

IMerc[D + 4, {3, 0, 3, 5, 3, 0, 0, 0, 0}]/ε2,

IMerc[D + 2, {2, 2, 2, 3, 1, 0, 0, 0, 0}],
IMerc[D + 2, {2, 2, 2, 0, 2, 2, 0, 0, 0}]/ε2,

IMerc[D + 2, {0, 2, 2, 2, 2, 2, 0, 0, 0}]/ε2,

IMerc[D, {1, 1, 1, 2, 1, 1, 0, 0, 0}],
IMerc[D, {1, 1, 1, 3, 1, 1, 0, 0, 0}]}.

(5)

Here, we have omitted the explicit mass scales notation. The system of differential
equations with respect to the integrals in masters and the integrals in the set masters
are finite in the dimensional regulator parameter expansion ε = (4 − D)/2 around 0.
We evaluate with PySecDec these integrals in the Euclidean point with euclidean1 =
{s = −4, MW =

√
0.78} up to the first order in the ε expansion. With the tool DiffExp,

we transport to the desired Minkowski point minkowski = {s = 1, MW =
√

0.78}, which
leads to the numeric values for the integrals in masters:
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masters[1] = (0.0346758− 0.0632853i)− 0.00333868
ε2 − (0.0100722 + 0.0209775i)

ε

+ (0.145509− 0.0581786i)ε, (6)

masters[2] = −(0.16772 + 0.190894i)− (0.00813811 + 0.00158389i)
ε2

− (0.0326871 + 0.0251144i)
ε

− (0.114929 + 0.913393i)ε, (7)

masters[3] = (−0.111853 + 0.245297i) +
(0.0033199 + 0.00359974i)

ε2

+
(0.00578857 + 0.0452637i)

ε
− (1.02476− 0.629932i)ε, (8)

masters[4] = (0.230024 + 0.431755i)− (1.8778− 1.27956i)ε, (9)

masters[5] = (23.7712− 40.2283i)− 1
ε2 −

(4.26835 + 9.42478i)
ε

+ (131.033− 55.0182i)ε, (10)

masters[6] = 17.4032 +
0.641026

ε2 +
2.89342

ε
+ 58.7097ε, (11)

masters[7] = −(6.59241 + 5.50072i) + (12.6453− 31.3415i)ε, (12)

masters[8] = (2.3054 + 4.17386i)− (9.17972− 22.7285i)ε. (13)

The numeric result in the point minkowski is verified by a second computation starting
with the second Euclidean point in euclidean2 = {s = −2, MW =

√
0.78} and transporting

to the desired minkowski point with DiffExp. Printed here are only the significant digits.

p1

[p1 + q1,0]

[q1 - q2,0]

[q2,0]

-p1

[q1 - q3,0]

[q3,0]

[q2 - q3,MW]

Figure 4. A diagram that corresponds to the integral in Equation (4).

3.3. Mellin–Barnes Method

In this part, we will show perspectives of the MB method [42] for the calculation
of three-loop integrals mentioned in Section 3. As was discussed in [14], the MB method
works very well for one-scale problems at the two-loop level. In going to three-loop dia-
grams, the situation remains the same. A natural application of the MB method is a single-
scale problem and, in the case discussed in this article, these are three-loop self-energy
integrals with one or two equal masses inside. Planar diagrams corresponding to the prob-
lem have at most six-dimensional MB representations. Let us show several examples
of this type.

The first example is the diagram in Figure 1, and the corresponding numerical result
is presented in Table 2. The MB representation for this diagram is 5-dimensional and
has the following form

I =
1

(−s)2+3ε

∫ +i∞

−i∞

5

∏
i=1

dzi

(
−

M2
W

s

)z1
Γ(−z1)Γ(−ε− z12)Γ(−z2)Γ(−ε− z13)

Γ(1− 2ε)Γ(1− 2ε− z1)

× Γ(1 + z123)Γ(1 + ε + z123)Γ(−ε− z4)Γ(−z4)Γ(1− ε + z24)Γ(−ε− z5)Γ(ε− z2345)

Γ(1− z24)Γ(1− z35)Γ(2− 2ε + z2345)

× Γ(−z3)Γ(−z5)Γ(1− ε + z35)Γ(1 + z45)Γ(1 + ε + z45), (14)
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where we abbreviated zijk = zi + zj + zk and omitted (2πi) factors as in the AMBRE pack-
age [42,43], available at [23], used for automatic derivation of this and the following
representations.

The numerical result in Table 2 was obtained using the MB package [44] (http://
projects.hepforge.org/mbtools/ (accessed on 30 May 2021)) with the Cuhre integrator [24]
and 108 integration points. Increasing the number of points by one order did not increase
the integration time. Due to the compact form of the integral, the integration time remained
at the same level as for the Sector Decomposition (SD) method. The accuracy is also
compatible with that obtained with the SD approach.

For the next example, we chose a diagram in Figure 5 with one less propagator.
The MB representation for this diagram is 4-dimensional and is shown in Equation (15).

I = − 1
(−s)1+3ε

∫ +i∞

−i∞

4

∏
i=1

dzi

(
−

M2
W

s

)z3
Γ(−ε− z1)Γ(−z1)Γ(1 + 2ε + z1)

Γ(1− 2ε)Γ(1− 3ε− z1)

× Γ(−2ε− z12)Γ(1− ε + z2)Γ(1 + z12)Γ(1 + ε + z12)Γ(1 + 3ε + z3)Γ(1− ε− z4)

Γ(1− z2)Γ(2 + ε + z12)

× Γ(−ε− z2)Γ(−z2)Γ(1 + z3 − z4)Γ(−z4)Γ(−z3 + z4)Γ(−3ε− z3 + z4)

Γ(1− 4ε− z3)Γ(2 + 2ε + z3 − z4)
. (15)

This example is very representative. After expansion in ε and simplifications
by the barnesroutines.m package [45], we obtained only the 1-dimensional MB rep-
resentation as shown in Equation (16).

I =
3
s

∫ +i∞− 17
28

−i∞− 17
28

dz3

(
−

M2
W

s

)z3
Γ(−1− z3)Γ(−z3)(Γ(1− z3)Γ(−z3)− Γ(−2z3))

Γ(1 + z3)Γ(−2z3)

× Γ(1 + z3)ψ
(2)(1). (16)

The obtained representation can be easily integrated in both Euclidian and Minkowskian
kinematic regimes. In Table 3, a numerical result calculated by the MBnumerics
package [14,44,46–48], which is available at [23], is compared with the SD result.

p1

[k1 + p1,MW]

[k1,MW]

-p1

[k1 - k2,0]

[k2,0]

[k1 - k3,0]

[k3,0]

[k2 - k3,0]

Figure 5. A diagram corresponding to the integral in Equation (15).

Table 3. A comparison of the MB and SD methods for the integral corresponding to the diagram in
Figure 5 in Minkowskian kinematics with s = 1.

Method Result Absolute Error

SD + QMC −18.787167067–6.384327811 i 0.0093 + 0.0097 i

MBnumerics −18.779406962–6.390785027 i 10−9 + 10−9 i

The last example in this section represents one of the most complicated cases for con-
sidered one-scale planar self-energy three-loop electroweak diagrams. The MB represen-
tation for a diagram in Figure 6 in a form that comes directly from the AMBRE package
is 7-dimensional.

http://projects.hepforge.org/mbtools/
http://projects.hepforge.org/mbtools/
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I =
1

(−s)2+3ε

∫ +i∞

−i∞

7

∏
i=1

dzi

(
−

M2
W

s

)z4
Γ(−ε− z1)Γ(−z1)Γ(−ε− z2)Γ(−z2)

Γ(1− 2ε)Γ(1− z1)Γ(−3ε− z24)

× Γ(−z3)Γ(1 + ε + z123)Γ(−z5)Γ(1− ε + z235)Γ(1 + z456)Γ(−z6)Γ(−z4 + z6)Γ(−z7)

Γ(1− z235)Γ(2 + ε + z12345 − z6)

× Γ(1− 2ε− z2345 + z6)Γ(ε− z2357)Γ(−ε + z1 − z67)Γ(1− ε + z7)Γ(1− z1 + z345)

Γ(1− z7)Γ(2− 2ε + z2357)

× Γ(1 + z12)Γ(2 + 2ε + z23457). (17)

It is not difficult to check that, after the transformation z5 → z5 − z3, one can sim-
plify this representation by integrating over z3 with the help of the so-called first Barnes
lemma (details about Barnes lemmas can be found, for example, in [42]). This also can be
done by barnesroutines.m after ε expansion. In this way, the final representation is 6-
dimensional.

The result obtained by the MBnumerics in Minkowskian kinematics with s = 1 is

I = −22.5213 + 4.74442i± (0.001 + 0.001i). (18)

The accuracy, in this case, is not high in comparison to the 4-dimensional 2-loop
vertex cases considered in [14–16]. Nevertheless, it can be used for crosschecks and some
preliminary results. The SD result for this integral has only an accuracy of about 5–10%
with the setup discussed in Section 3.2.

p1

[k1,0]

[k1 + p1,0]
-p1

[k2 + p1,MW]

[k2,MW]

[k3,0]

[k1 - k3,0]

[k1 - k2,0]

[k2 - k3,0]

Figure 6. A diagram corresponding to the integral in Equation (17).

3.4. Reduction of Scales Using Taylor Expansion

Since, for both IBP and MB methods, it is highly desirable to have as few scales
in the integral as possible, one can think of a way to reduce their number. A simple way to
do that is to Taylor-expand, as discussed and applied in more general contexts in [49,50].
We apply a Taylor-expansion to the diagram depicted in Figure 7. The integrand can be
expanded at e.g., MW = MZ and the expanded propagator takes the following form

1
k2 −M2

W
=

1
k2 −M2

Z
+

(M2
W −M2

Z)

(k2 −M2
Z)

2
+

(M2
W −M2

Z)
2

(k2 −M2
Z)

3
+

(M2
W −M2

Z)
3

(k2 −M2
Z)

4
+ . . . . (19)
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p1

[k1,MW]

[k1 + p1,MZ]

-p1

[k3,MT]

[k2 + p1,MT]

[k2 - k3,0]

[k1 - k3,MT]

[k1 - k2,MT]

Figure 7. The diagram represents an exemplary integral for which the propagator with MW has
been expanded as presented in Equation (19). An artificial integral is also considered where, instead
of MW , the mass of propagator is equal to MH and then expanded in MH = MZ.

As the result, one can calculate more but, in principle, simpler integrals. This can
be applied recursively in order to reduce the number of scales in the integral. Below are
two exemplary plots for a three-loop Z boson self-energy integral in Figures 8 and 9 that
were calculated using the Taylor expansion. The results show how the integrals converge
when including more terms. Calculations were made in Minkowskian kinematics, and
thus for s = 1. Each point represents the value of the integral after adding another order
of expansion.

Figure 8. Evaluation of the integral corresponding to the diagram in Figure 7 at MW = MZ, including
the sequential terms of expansion presented in Equation (19).

Figure 9. Evaluation of the integral corresponding to the diagram in Figure 7 with MW replaced
by MH , expanded at MH = MZ, including sequential terms of expansion analogous to the one
presented in Equation (19).
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The first integral, with MW inside, converges faster than the other where, instead
of MW , we have MH for two reasons. First, the difference between squares of MW and
MZ is smaller than for MH and MZ. Second, the difference ∆HZ ≡ M2

H −M2
Z is negative,

and the terms in this series are positive for even powers of ∆HZ and negative for odd
powers, which makes it an alternating series. More explicitly, for the first integral including
nine terms in expansion already leads to 10−8 accuracy, while the other one reached 10−4

accuracy with 21 terms taken into account.

4. Conclusions

The SD and MB methods served well at the two-loop level of EWPOs calculations [14–16].
In this work, we discussed the present capabilities of these methods with suitable three-loop
examples. Preliminary studies based on the present implementations of the SD and MB
methods in available packages showed that these methods are insufficient for the current
challenges. Then, we sketched another very promising approach based on differential
equations, presenting the first three-loop examples that can push the calculations on.

The minimum set of master integrals required for the efficient evaluation of differen-
tial equations relies on catching all relations between the Feynman integrals. Therefore,
we choose Kira which implements as well as PySecDec the so-called Alexey Pak algorithm
to detect all relevant symmetry relations in all computations. With the method of Taylor
expansion, we were able to enrich the number of relations between the Feynman integrals
and, in this way, simplify the computations as well.

Since the studies at the three-loop level are dominantly numerical, it is highly desired
to have a few independent methods available and, thereby, the possibility to cross-check
the results. Merging all the presented methods, we hope to fulfil the theoretical require-
ments for future Z-boson factories.
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