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The top quark is the heaviest known elementary particle. With a coupling to the
Higgs boson close to unity, the top quark plays a special role in electroweak symmetry
breaking as well as in physics beyond the Standard Model. An accurate measure-
ment of its properties can provide key information for understanding the physics at
the TeV scale. In this dissertation, two measurements of the top quark properties are

presented.

The first part of this dissertation presents the first-ever ATLAS search for the
associated production of a single top quark and a photon. This analysis is performed
with 139 fb™! of pp collision data collected by the ATLAS detector at the LHC at
Vs = 13 TeV. Only final states with exactly one lepton and at least one photon are
considered in this analysis. Major backgrounds for the signal are tty, W~ and tf. A
deep learning, neural network approach is used for separating signal and background
events. A binned profile likelihood fit is performed with neural network output as
the discriminant. The expected best-fit value of the ratio of the observed tgy cross-
section to that of the SM prediction is 1.01)17 = 1.0 T35 (stat.) 513 (syst.). This

corresponds to an expected p-value of 6.5 ¢ for the no-signal hypothesis.

In the second part, results from the combination of ATLAS searches for flavor

changing neutral currents (FCNC) in ¢ — Hgq decays are presented. Four FCNC

Vil



analyses, probing different Higgs decay modes, performed with 36.1 fb=! of proton-
proton collision data collected by the ATLAS detector in 2015-2016 are considered
in the combination. They search for top-quark pair events in which one top quark
decays into Wb and the other top quark decay into Hg. The targeted Higgs decay
modes are: vy, WW* 77, Z2Z* bb. The combination of these searches yields ob-
served (expected) 95% CL upper limits on the ¢t — Hc and ¢t — Hu branching ratios
of 1.1 x 1073 (8.3 x 107*) and 1.2 x 1073 (8.3 x 107*), assuming A(t — Hu) =0 and
AB(t — Hc) =0 respectively. The corresponding combined observed (expected) upper
limits on the |M\.g| and | Ay p| are 0.064 (0.055) and 0.066 (0.055) respectively. These

results are the most restrictive direct bounds on tgH interactions measured to date.
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Chapter One: Motivation

Particle Physics is the study of the nature of the fundamental building blocks that con-
stitute our universe. The Standard Model (SM) of particle physics [1-3], constructed
from our observations from centuries of experimental and theoretical research, is the
most successful theory to date for understanding the elementary particles and their
interactions. However, it is still considered as an incomplete theory as it can not
explain many experimentally observed phenomenon like the existence of dark matter
and dark energy, matter-antimatter asymmetry, etc. Precise measurements of all SM
parameters and searches for physics beyond the SM are needed to further improve

understanding of our universe.

Motivation for this dissertation is presented in this chapter following a brief sum-

mary and shortcomings of the SM.

1.1 Summary of the Standard Model

1
According to the SM, all known matter in the universe consist of spin 3 particles,
called fermions. Interactions between these fermions are mediated by the exchange

of spin-1 particles, called gauge bosons.

1.1.1 Fermions

There are 12 fermions in the SM. Based on the color charge, these are classified into
two groups of six particles, quarks (u,d,c,s,t,b) and leptons (e™, ™, 77, Ve, Uy, Vr).
For each fermion in the SM, there is an anti-particle corresponding to it which has
same mass and properties but opposite electric charge.

Leptons and quarks are further divided into three generations. All three generations
are identical to each other except for mass and flavor quantum number. A fermion in

the higher generation has greater mass than the corresponding particle of the lower



generation.

Each quark generation consists of an up-type quark and its down-type partner. Up-

type quarks have an electric charge (Q) of —i—ge and a weak isospin (73) of —1—5. For
1 1
down-type quarks, ) = —ge and T3 = —5 Each lepton generation consist of a
1
charged lepton (Q = —e & T3 = —1—5) and its corresponding neutrino (Q = 0 & T3 =

1
——). In the SM, neutrinos are assumed to be massless particles.

1.1.2 Gauge bosons

In the SM, three types of fundamental interactions between fermions are described

using four gauge bosons:

e Photons () are the force carriers of the electromagnetic interaction. Photons

are massless particles with ) = 0.

e W* and Z bosons mediate weak interaction. W= boson are electrically charged
particles with mass = (80.3794+0.012) GeV/c? and @Q = +1le [4, 5]. Z bosons
are neutral particles with mass = (91.187640.0023) GeV /c? [6, 7].

e Gluons (g) are the mediators of strong interaction between color carrying par-
ticles. They are massless particles with () = 0. Gluons carry the color charge.

Due to color confinement, they can not be observed in isolation.

Gravitational interaction is not included in the SM.

1.1.3 Higgs boson

The Higgs boson is the only elementary scalar particle in the SM. It plays a key role
in the electroweak symmetry breaking, which explains how fundamental particles
acquire mass [8-10].

The Higgs boson, the last unverified SM particle for several years, was discovered
in 2012 by ATLAS and CMS experiments [11, 12]. The mass of the Higgs boson is
(125.09 + 0.21) GeV/c? [13]. It has no color charge and no electric charge.



1.1.4 Mathematical representation

Mathematically, the SM can be described using a quantum field theory in which all
particles are represented as the excited states of more fundamental objects, called the
quantum fields, that pervade space-time. The SM consists of the fermion fields (),
the electroweak boson fields (Wy, Wy, W3 and B), the gluon field (G,) and the higgs
field (¢).

The dynamics of these fundamental fields are determined by the following La-
grangian density (£), that exhibits the local SU(3) x SU(2) x U(1) gauge symmetry

as an internal symmetry,
1 — . _
Lowi = =7 Fo" + 000) + yigthihso + |Dudl® + 12676 — Me'9)”  (11)

Where, Fi, = 9,A% — 9, A% + gf**° AL AS,

b= YD, and D, = 0, —igAjt®.

Here, I, represents the field strength tensor for a specific gauge field A with gauge
coupling constant g. The structure constants for a given gauge group, represented in
above equation as f%¢, are determined from the commutation between the generators
(t?) of that group, i.e., [t%,t°] = i fobete.

The Yukawa coupling, y;;, describes the strength of the interaction between the higgs
field and the fermion field. The values of the parameters A and p signify the strength
of the interaction of the Higgs boson with itself.

1.2 Successful predictions of the SM

All particles of the SM and their properties are summarized in Table 1.1. With
just this concise particle composition, the SM has been enormously successful in
predicting many experimental phenomena. It predicted the existence and properties
of many particles like W and Z bosons, Higgs boson, top quark, charm quark and
tau neutrino before they were observed. Experimental confirmation of these particles
demonstrated the phenomenal predictive power of the SM.

Figure 1.1 shows the comparison of the SM predictions and the ATLAS measurements
of production cross-sections for various physics processes at /s = 7, 8 and 13 TeV.

The agreement between them, with cross-section values spanning over 15 orders of



Type Generation Particle Mass Spin  Color I3 Q Y
1 Electron neutrino (v) 0 1/2 - +1/2 0 -1/2
Electron (e™) 511 keV 1/2 - -1/2 -1 -1/2
Muon neutrino (v 0 1/2 - +1/2 0 -1/2
Leptons | 2 Muon (,,r)( g 105.7 MeV 1?2 - -1//2 1 -1?2
3 Tau neutrino () 0 1/2 - +1/2 0 -1/2
Tau () 178 GeV  1/2 - 1/2 1 -1/2
1 Up quark (u) 2.16 MeV ~ 1/2 Triplet +1/2 +2/3 +1/6
Down quark (d) 4.67 MeV ~ 1/2 Triplet +1/2 -1/3 +1/6
Quarks | 2 Charm quark (c) 1.27 GeV  1/2  Triplet +1/2 +2/3 +1/6
Strange quark (s) 93 MeV 1/2  Triplet +1/2 -1/3 +41/6
3 Top quark () 172.76 GeV  1/2  Triplet +1/2 +2/3 +1/6
Bottom quark (b) 418 GeV  1/2  Triplet +1/2 -1/3 +1/6
Photon (7) 0 1 - 0 0 0
Gluon (g) 0 1 Octet 0 0 0
Bosons W+ boson 80.38 GeV 1 - 1 *1 0
Z boson 91.19 GeV 1 - 0 0 0
Higgs boson (H) 125.10 GeV 0 - -1/2 0 +1/2

Table 1.1: Properties of all Standard Model particles. Particle masses are extracted
from the Particle Data Group website (2020) [14].

magnitude at 3 different energy scales, illustrates yet another remarkable success of

the SM.

1.3 Open questions in Particle Physics

The SM, despite being successful in explaining many physics phenomenon, is consid-

ered as an insufficient theory due to many limitations. Some shortcomings of the SM

are listed below.

e Baryon asymmetry: Equal amounts of baryonic matter and antibaryonic

matter should have been created in the early universe from the big bang. How-

ever, experimental observations indicate that our observable universe is dom-

inated by baryonic matter [16]. This asymmetry can not be explained by the

SM.

e Dark matter and Dark energy: Cosmological observations indicate that the
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Figure 1.1: Production cross-sections of various processes measured by the ATLAS
experiment at /s = 7, 8 and 13 TeV, compared to the corresponding SM predictions.

Figure taken from Ref. [15].



total mass-energy of the universe contains 5% ordinary matter and energy that
is described by the SM, 27% dark matter and 68% dark energy [17-20]. The
SM does not have any elementary particles that can describe the observed dark

matter. Physics behind the dark energy is unknown.

e Origin of neutrino mass: In the SM, neutrinos are massless particles. How-
ever, neutrino oscillation experiments have shown that at least two flavors of
neutrinos have a non-zero mass [21]. This can be fixed by adding Majorana
neutrino mass terms to the SM Lagrangian. The problem with this is that the
neutrino masses are extraordinarily small (~ 105 smaller) compared to other

known particles.

e Dark matter and Dark energy: Cosmological observations indicate that the
total mass-energy of the universe contains 5% ordinary matter and energy that
is described by the SM, 27% dark matter and 68% dark energy [17-20]. The
SM does not have any elementary particles that can describe the observed dark

matter. Physics behind the dark energy is unknown.

e Origin of neutrino mass: In the SM, neutrinos are massless particles. How-
ever, neutrino oscillation experiments have shown that at least two flavors of
neutrinos have a non-zero mass [21]. This can be fixed by adding Majorana neu-
trino mass terms to the SM Lagrangian. However, the origin of the Majorana

mass terms is unknown.

e Gravity The SM does not include the description of the gravitational force.
Extending the SM, simply by adding a graviton, a hypothetical mediator parti-
cle for gravitational interaction, does not work as the mathematical framework

of the SM is incompatible with the general theory of relativity.

1.4 Search for New Physics

There is no single way to address these open questions. Two popular approaches

taken by the collider physicists to answer them are:

e Precision measurements of Standard Model parameters: The preci-

sion measurements of all particle properties provide an important test for the



SM predictions. Any deviations in measurements from predictions will provide

indirect information about the new physics.

e Search for new particles/interactions predicted by beyond Standard
Model theories: There are many beyond the Standard Model (BSM) theories
like supersymmetric models, the Two-Higgs-doublet model [22], which provide
elegant solutions to the open questions listed in section 1.3. In this approach,
validity of those BSM theories are tested by directly searching for the new

particles and/or interactions predicted by them.

In the past 6.5 years, I have contributed to analyses related to both of the previously
mentioned approaches. The first part of this dissertation presents the search for the
production of a single top quark in association with a photon. In Part II, a search

for flavor changing neutral currents in ¢t — Hq decays is presented.



Chapter Two: The Experimental Setup

The work described in this thesis is done using the data collected by the ATLAS ex-
periment at the Large Hadron Collider (LHC) at CERN. In this chapter, a technical
overview about the LHC and the ATLAS experiment is presented.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [23] is a circular particle accelerator at the Euro-
pean Organization for Nuclear Research (CERN). It is 27 km in circumference and
located 100 m beneath the French-Swiss border, just outside of Geneva, Switzerland
[24, 25]. Four major experiments are located along the LHC: ALICE [26], ATLAS
[27], CMS [28] and LHCb [29]. The ATLAS and CMS are general purpose detectors,
i.e., they are built for probing broad range of physical processes, whereas the AL-
ICE and LHCbD are specialized detectors designed for probing heavy-ion physics and
b-hadron physics, respectively.

2.1.1 The LHC Injection Chain

The proton beams pass through a series of small accelerator systems, referred to as
the LHC ingjector chain [30], before they are introduced into the LHC ring. The ac-

celerator systems of the LHC injection chain are depicted in Figure 2.1.

The proton beams are created by ionizing the hydrogen atoms with an intense
electric field. They are first passed through Linac-2, a linear accelerator, which ac-
celerates the protons to 50 MeV. They then enter the first circular accelerator, the
Proton Synchrotron Booster (PSB), to attain an energy of 1.4 GeV. They are sub-
sequently accelerated up to 25 GeV by the Proton Synchrotron (PS), and to 450
GeV by the Super Proton Synchrotron (SPS). Finally, proton beams are injected

into the LHC in two separate beams travelling in opposite directions. Inside the LHC
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Figure 2.1: The chain of particle accelerators at the CERN accelerator complex that
is used for boosting the proton beams to a center-of-mass energy of /s = 13 TeV.
Figure taken from Ref. [31].

ring, super conducting radio-frequency (RF) cavities are used to accelerate the proton
beams up to a center of mass energy of /s = 14 TeV [32]. The LHC magnet sys-
tem also consists of 1232 dipole magnets to guide the beam around the ring and 392
quadrupole magnets to focus the beam. They are made of superconducting coils of
Niobium-Titanium (NbT1i) alloy and provide a magnetic field of up to 8.3 T. As NbTi
behaves as a superconductor only for temperatures below 10 K, the LHC magnets
are housed in cryostats filled with superfluid Helium operated at a temperature of 1.9
K. In total, the LHC uses approximately 120 tonnes of superfluid Helium, making it

the largest cryogenic facility in the world.



2.1.2 Bunch Structure and Luminosity

The proton beams at the LHC are not a continuous stream of protons, instead, they
are grouped into bunches. At full intensity, each LHC beam consists of 2808 bunches
of protons spaced by 25 ns, with 1.15 x 10'! protons in each bunch.

The number of collision that can be produced per cm? per second is measured
using a quantity known as the instantaneous luminosity [33], defined by the following
equation:

N2 rev
L = M F (2_1)

dro,oy
where N, is the number of protons in each bunch, n; is the number of bunches, fe,
is the bunch revolution frequency, o, and o, are the horizontal and vertical beam
size and F is the geometric reduction factor due to non-zero crossing-angles of the

colliding beams.

The LHC is designed to provide a maximum instantaneous luminosity of 1 x
10%* ecm~2 s71. However, it exceeded the design goal by achieving an instantaneous
luminosity of 2.1 x 10** cm™2 s7! in 2018. The total luminosity delivered by the
LHC, referred to as the integrated luminosity, can be obtained from the integral of

instantaneous luminosity with respect to time.

L= / Ldt. (2.2)

The integrated luminosity is useful in predicting the number of collision events (NV;)

that produce a specific physics process with cross-section o;, using

The integrated luminosity is typically expressed in inverse femtobarns (fb™1),

where 1 fb = 1073 cm—2.

One consequence of high instantaneous luminosity is the occurrence of multiple
pp interactions at the same time. This is quantified with the average number of in-

teractions per bunch crossing < u >, referred to as the pileup. It can be caused by
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additional pp interactions within the same bunch crossing (in-time pileup) or neigh-
boring bunch crossings (out-of-time pileup). The pileup scales with instantaneous

luminosity, via the relation:

(2.4)

As the pileup causes additional energy deposits in the detector, it degrades the the

performance of the ATLAS object reconstruction algorithms.

2.1.3 LHC Run-2 performance

During Run-2 data taking period, the LHC delivered 156 fb=! of pp collisions, out
of 139 fb~! of data were recorded by the ATLAS experiment with stable beams and
detector conditions. Cumulative integrated luminosity delivered to the ATLAS exper-
iment as a function of time is presented in Figure 2.2. The pileup (< p >) distribution

for each year of Run-2 data taking period is shown in Figure 2.3.

2.2 The ATLAS experiment

A Toridal LHC ApparatuS (ATLAS), located at the Point-1 on the LHC ring, is a
general purpose detector built for probing p-p and Pb-Pb collisions. It is designed
to discover the Higgs boson and to search for the physics beyond the SM. The AT-
LAS detector is cylindrical in shape, with a length of 25 m, a diameter of 44 m
and weighing about 7000 tonnes. It is coaxial with beam line and forward-backward
symmetric with respect to the interaction point. The ATLAS detector is hermetic

and provides a coverage of near 47 radians in solid angle around the interaction point.

To identify a wide variety of final state particles and topologies, the ATLAS de-
tector is designed as a nesting of several sub-detector systems, each of which are
optimised for the measurement of different particles. Each sub-detector system is
composed of a barrel system, centered around the interaction point, and an end-cap
system placed further along the beam axis. The inner detector (ID), which consists

of silicon and transition-radiation based detectors, is closest to the beam pipe. It

11
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Figure 2.2: Cumulative integrated luminosity delivered to the ATLAS experiment by
year for high energy pp collisions.

is used for tracking, momentum and vertex measurements, electron identification.
The electromagnetic and hadronic calorimeters, which surround the ID, allow the
measurement of energies of electrons, photons and hadrons through their electromag-
netic and hadronic showers. Finally, the muon spectrometer, outermost layer of the
ATLAS detector, allows the tracking and triggering of muons. A schematic of the
ATLAS detector is shown in Fig. 2.5.

2.2.1 Coordinate system

The ATLAS detector uses a right-handed coordinated system. The interaction point,
where the two proton beams cross-over, is designated as the origin of the coordinate

system. The z-axis is defined by the beam direction. The positive z-axis points to-
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Figure 2.3: Average number of pp interactions per bunch crossing (x) during Run-2
data taking period.

wards the center of the LHC ring and the positive y-axis points upwards. The side
of the detector in the positive z-direction is labelled as the side-A, while the side in
the negative z-direction is labelled as the side-C. The azimuthal angle ¢ is measured
around the z-axis, such that ¢ = 0 along the positive z-axis. The polar angle 6 is
measured with respect to the z-axis.

The momentum of an object in the direction ¢ is labelled as p; and the total energy
is labelled as E. The transverse momentum (pr) and the transverse energy (Er) are
defined by the momentum and the energy in the 2-y plane respectively. The rapidity

y of an object is defined as

_1E+p,

(2.5)
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Figure 2.4: Illustration of the ATLAS detector with its sub-detectors. Figure taken
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Figure 2.5: The layout of the ATLAS magnetic system. Figure taken from Ref. [34].

If the object is massless or ultra-relativistic (m << pr), then the rapidity of the
object will be equivalent to its pseudorapidity 7, defined as

n = —Intan(6/2). (2.6)

The distance between two objects in the pseudorapidity - azimuthal angle plane,
denoted by AR, is defined as

AR = /A + Ar. (2.7)

14



B End-cap semiconductor tracker

Figure 2.6: A cross-sectional view of the ATLAS inner detector. Pixel, SCT and TRT
detectors are shown for barrel and endcap regions. Figure extracted from Ref. [27].

2.2.2 Inner Detector

The Inner Detector is designed to measure the trajectories of the charged particles
with pr > 0.5 GeV and |n| < 2.5 [35]. It is located inside a central solenoid, which pro-
duces a 2 T magnetic field and extends over a length of 5.3 m with a diameter of 2.5 m.
The magnetic field in the z-direction produced by the solenoid, bends the incoming
charged particles in the x — y plane, providing information necessary for measuring
the momentum. As shown in Figure 2.6, the ID is composed of three sub-detectors,
listed in order of increasing radial distance from the beam line: the Pixel detector, the
Semiconductor Tracker (SCT), and the Transition Radiation Tracker (TRT). These
detectors allow the reconstruction of tracks associated with 1000 charged particles
emerging from each proton-proton collision occurring at every 25 ns. A cut-away

view of the inner detector is presented in Figure 2.7.

2.2.2.1 The Pixel detector

The Insertable B-Layer (IBL), located at a radius of 33.25 mm, is the innermost
layer of the Pixel detector [36]. It was installed before the beginning of Run-2 data
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Figure 2.7: A cut-away view of the ATLAS inner detector. Radial distance for all
layers of pixel, SCT and TRT detectors is indicated. Figure extracted from Ref. [27].

taking period to improve the spatial resolution and the vertex reconstruction in the
high-pileup environment. It alone has 8 million readout channels, with each pixel
consisting of reverse-biased n-type silicon semiconductor material with size of 50 x
250 pm? in the R — ¢ x z plane. IBL provides a spatial resolution of 8 pum in the

x — y plane and 40 pm along z-axis.

After the IBL, the Pixel detector is arranged as three co-axial cylinders in the
barrel region and three disks perpendicular to the z-axis in the endcap regions. The
cylinders in the barrel region are at distances of R = 50.5, 88.5, 122.5 mm and the
disks in the endcap are at z = 495, 580, 650 mm. In total, the last three layers of the
Pixel detector consists of 1744 sensors with 80 million readout channels. Each pixel
has a size in R — ¢ x z of 50 x 400 um? and provides a spatial of resolution of 10

pm in the z — y plane and 115 pym along the z-axis.
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2.2.2.2 The Semiconductor Tracker

The Semiconductor Tracker (SCT) surrounds the Pixel detector and uses the same
technology based on the Silicon sensors. It consists of 4 cylindrical layers in the barrel
region and 9 disks perpendicular to the z-axis in the endcap regions. The cylindrical
layers in the barrel region are located at R = 299, 371, 443, 514 mm, while the disks
in the endcap regions are in the range [854, 2720] mm along the z-axis. The silicon
sensors are in a 2-D strip-like geometry with each strip having a length of 12 em and
a pitch of 80 pm. In total, the SCT has 15912 sensors with 768 strips in each sensor,
thus, corresponding to a total of ~ 6.3 million readout channels. The SCT provides a

spatial hit resolution of 17 pym in the R — ¢ plane and 580 pum along the z direction.

2.2.2.3 The Transition Radiation Tracker

The Transition Radiation Tracker (TRT) is the outermost part of the ID that sur-
rounds the SCT. It consists of straw drift tubes with a diameter of 4 mm, and covers
the region up to || = 2.0. Each straw tube, made from polyimides, is filled with a gas
mixture of 70% Xe - 27% CO, - 3% Oy. A 31 um diameter tungsten wire plated with
gold is placed in each straw tube at its center. These wires, connected to the ground
potential, act as anodes. While, the inner walls of each tube, operated at ~ 1530 V,
act as cathodes, resulting in a gain of 2.5 x 10%. When a charged particle strikes the
drift tube, it ionizes the gas and the electrons drift towards the wire while the ions
drift to the walls. As the electrons approach the wire, an avalanche of electrons is
induced due to the large potential difference between the wire and the walls. This

induced current provides the timing information.

In the barrel region, the TRT is composed of 73 layers of 144 ¢m long straw tubes
parallel to the z-axis. They are located in the region 563< R <1066 mm with z <712
mm. While in the each end-cap region, the TRT contains 80 layers of straw tubes of
37 cm long arranged radially in wheels. In the barrel region, the tungsten wires are

divided into two halves at n = 0.

Additionally, a polypropylene-polyethylene fibre mat of thickness 3 mm is em-

bedded between each straw tube. Charged particles traversing through the mats will
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have a probability of emitting transition radiation as they are moving between media
with different index of refraction. Since the transition radiation is proportional to the
Lorentz factor +, it will be higher for electrons due to their low masses than for pions
and muons. This difference in response is a crucial information for discriminating
electrons and pions and for enhancing the performance of ATLAS electron identifica-

tion algorithms.

Overall, the TRT contains approximately 351,000 readout channels. It is capa-
ble of providing information in r — ¢ coordinates only (no z information), with a
straw hit resolution of 130 pum. The hit resolution of the TRT is worse when com-
pared with the Pixel or the SCT, however it is compensated by the large number hits
per track in this sub-detector. Typically, a charged particle leaves 36 hits in the TRT.

2.2.3 Calorimeters

The ATLAS calorimeter system is situated outside of the ID and the central solenoid.
As illustrated in Figure 2.8, it consists of two types of calorimeters: Electomagnetic
Calorimeter to detect and measure the energy of electrons and photons; Hadronic
Calorimeter to measure and absorb the energy from hadronic showers. Both calorime-
ters are sampling calorimeters, i.e., they consist of alternating layers of absorbers and
active material. The absorber layer produces showers from incoming particles, while,

the active layer measures the energy of the resulting shower.

2.2.3.1 Electromagnetic Calorimeter

The ATLAS Electromagnetic Calorimeter (ECAL) uses liquid argon as the active
material, lead as the absorber, and is refered to as the Liquid Argon (LAr) Calorime-
ter [37]. When high-energy electrons interact with lead, they lose energy through
scattering and by emitting Bremsstrahlung photons. These photons then convert
into ete™ pairs, creating a "shower” as the process continues. When the resulting
electrons and photons interact with LAr in the active layer, they cause ionization.
These ionization signals are then measured using the interleaved readout electrodes.

Readout electrodes, made of copper, are operated at a voltage of 2kV and are placed
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Figure 2.8: Schematic of the ATLAS calorimeter system. Different sub-systems are
used in barrel, end-cap and forward regions. Figure taken from Ref. [27].

at a distance of 2.1 mm from the absorbing material.

The ECAL is designed in an accordion geometry to provide a complete coverage
in ¢. It is composed of a a barrel part (|n| < 1.475) and two end-cap sections (1.375
< |n| < 3.2). The barrel calorimeter is divided into two identical half-barrels, sepa-
rated by a gap of 4 mm at z = 0. A cut-away view of the barrel LAr calorimeter is

presented in Figure 2.9.

In the end-cap regions, the LAr calorimeter is divided into two coaxial wheels.
The outer wheel covers the region 1.375 < |n| < 2.5, while the inner wheel covers
the region 2.5 < |n| < 3.2.

The barrel part of the calorimeter is split into three layers, each with different
thickness, depth and granularity. The first layer has a thickness of 4.3X,. Here,
Xo represents the radiation length, the distance in a given material over which an
electron or a photon loses all but 1/e of its energy. The first layer is finely segmented
into high granularity strips in the n direction, to distinguish single photons showers
from those arising due to 7% — 7 decays. The second layer has a thickness of 16X
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Figure 2.9: A view of the barrel LAr calorimeter. It has accordion geometry and
contains three sampling layers. Absorption properties and granularity in A¢ x An
for each layer are indicated. Figure taken from Ref. [37].

and collects the majority of the EM shower energy. Finally, the third layer has a
thickness of 2X. It is used to correct for the leakage of EM shower energy into the

Hadronic calorimeter.

Additionally, a pre-sampler detector is used in the region || < 1.8, to correct for
energy lost by electrons and photons upstream of the ECAL. It consists of an active

layer of LAr with a thickness of 1.1 ¢m (0.5 ¢m) in the barrel (end-cap) region.

2.2.3.2 Hadronic Calorimeter

The Hadronic Calorimeter system (HCAL) consists of two different calorimeters: a
scintillating Tile Calorimeter and a Hadronic End-cap Calorimeter based on LAr-

technology.
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The Tile calorimeter is placed just outside the ECAL [38]. It consists of a barrel
section covering the region |n| < 1.0 and two extended barrel sections covering the
range 0.8 < |n| < 1.7. It is a sampling calorimeter which uses tiles of steel as the
absorber and tiles of scintillating plastic as the active material. The steel tiles pro-
duces hadronic showers when high-energy hadrons traverse through them, while the
plastic tiles generate a light signal that is proportional to the number of minimum
ionizing particles in the showers. These light signals are read-out by wave-length
shifting fibers and delivered to photomultipliers. The tile calorimeter extends the
region 2.28 < r < 4.25 m and is segmented into three layers. They have a depth of
1.5, 4.1 and 1.8 interaction lengths (\) in the barrel section and 1.5, 2.6, and 3.3 A

in the extended barrel sections.

The Hadronic End-cap Calorimeter (HEC) consists of two independent wheels in
each end-cap section and covers the region 1.5 < |n| < 3.2. It uses copper as the

absorber and LAr as the active material.

2.2.3.3 Forward Calorimeters

To extend the coverage of the calorimetric system, a Forward Calorimeter (FCAL)
system is used in the region 3.1 < |n| < 4.9 [39]. As shown in Figure 2.10, it is
composed of three layers in the z-direction: an electromagnetic layer (FCAL 1) and
two hadronic layers (FCAL 2 & FCAL 3). All three layers use LAr is used as the
active material. The EM layer uses Copper as the absorber, while the hadronic layers

use tungsten as their absorber.

2.2.4 Muon spectrometer

The Muon Spectrometer (MS) is the outermost layer of the ATLAS detector and also
the largest sub-system by volume [40]. It is designed to measure the momentum of
muons in the region || < 2.7 and to trigger on these particles in the region |n| <
2.4. A large superconducting air-toroid magnetic system is used to deflect muons for
measuring their momentum from the curvature. It consist of a large barrel toroid

covering the region |n| < 1.4 and two end-cap toroids in the range 1.6 < |n| < 2.7.
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Figure 2.10: A view of the ATLAS forward calorimeter system. Figure taken from
Ref. [39].

In between 1.4 < |n| < 1.6, magnetic field is provided by a combination of barrel

and end-cap magnets.

As illustrated in Figure 2.11, the MS uses four types of gaseous chambers: Moni-
tored Drift Tubes (MDT) [42], Cathode Strip Chambers (CSC) [43], Resistive Plate
Chambers (RPC) [44] and Thin Gap Chambers (TGC) [45]. MDTs and CSCs, re-
ferred as precision chambers, are used for providing precision measurements of track
coordinates. RPCs and TGCs, referred as trigger chambers, have fast read-out times

and are used for providing bunch-crossing identification.

In the barrel region, the MS contains three cylindrical layers of MDTs aligned
parallel to the z-axis at radial distances 5, 7.5 and 10.5 m. MDT chambers have
rectangular geometry and have multiple layers of drift tubes arranged perpendicu-
lar to the z-direction to make precision measurements along n. Each drift tube is
filled with a gas mixture of 93% Ar- 10% CO, and has a diameter of 3 cm with a
tungsten-rhenium wire operated at 3 kV running through its center. The last two
layers of MDTs are surrounded by RPCs. Each RPC unit consists of two parallel
resistive plates with a gap of 2 mm filled with CyHyFy. RPCs operated at a very
high potential difference of 9.8 kV to provide a timing resolution of 2 ns.

In the end-cap regions, the MS contains four wheels of MDT chambers at z = 7.5,
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Figure 2.11: A view of the Muon Spectrometer system in the r — z plane. Figure
taken from Ref. [41].

10, 14 and 22 m covering the region 1 < |n| < 2.7. The MDT tubes are arranged
azimuthally to provide precision measurement in 7. As the 2 < |n| < 2.7 region in
the first layer experiences a very high influx of particles, CSCs are used instead of
MDTs to provide higher granularity. The CSCs are mutli-wire proportional chambers
filled with Ar/CO,/CF, mixture. The cathode in the CSC detectors is segmented
into strips perpendicular to anode wires allowing spatial information measurement in
both 1 and ¢. The TGCs surround the third wheel of MDTSs in three layers. Like
CSCs, TGCs are also multi-wire proportional chambers filled with a gas mixture of
CO5 and n-pentane. They have gold plated tungsten wires as anodes separated by
a distance of 1.8 mm operated at 2.9 kV. This allows TGCs to provide a timing

resolution of 4 ns.

2.2.5 Trigger and Data Acquisition

During Run-2 data taking period, the LHC delivered proton beams to the ATLAS

detector at a bunch crossing rate of 40 MHz. To record all events, it would require
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a data-write speed of 60 TB/s, as each bunch-crossing event produces ~ 1.5 MB of
data. This is neither technically possible nor desirable as most of the events do not
contain any interesting physics. A two level trigger system is used to reduce the rate
from 40 MHz to 1 kHz [46].

The first level of the trigger system, referred to as the Level-1 (L1) trigger, is a
hardware-based trigger consisting of fast electronics. It performs the first level se-
lection within 2.5 us based on the coarse grained information from the calorimeters
and the MS. It is designed to reduce the 40 MHz rate to 100 kHz. The L1 trigger
also defines Region of Interests (Rol) where it found interesting features. It delivers

information about Rols to the high level trigger if the event is accepted.

The second level of the trigger system, called the High Level Trigger (HLT), is a
software-based trigger [47]. It uses a large farm of CPUs to perform refined measure-
ments by reconstructing physics objects in Rols. It reduces the rate from 100 kHz

to 1 kHz. Events accepted by the HLT are sent to CERN’s permanent storage facility.

A summary diagram of the ATLAS Trigger and Data Acquisition system is shown
in Figure 2.12.
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Figure 2.12: A summary of the ATLAS Trigger and Data Acquisition system used
during Run2 data taking period. Figure taken from Ref. [47].
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Chapter Three: Particle Reconstruction &

Identification

Efficient and precise reconstruction of physics objects from raw detector signals is a
necessary requirement for any physics analysis. This chapter presents an overview
about methods used for the identification and isolation of physics objects like elec-

trons, muons, photons, jets, b-jets and MET.

3.1 Charged Particle Tracks

Charged particle tracks are reconstructed using the information provided by the ID
[48, 49]. Raw detector signals —hits— from different layers of the ID are converted
into three dimensional measurements, referred in to as space-points. In the Pixel de-
tector, each hit in a layer will provide a space-point. Whereas in the SCT detector, a
space-point is obtained by combining the information from both sides of a strip to get
three dimensional information. The TRT detector provides only two dimensional in-

formation, along r — ¢ direction in the barrel region and ¢ — z direction in the endcaps.

Seeds for track finding algorithm are obtained from sets of three space-points.
Track candidates are then built using a combinatorial Kalman filter algorithm. A
dedicated ambiguity resolver algorithm is used to remove track candidates with in-

correctly assigned space-points.

The track finding strategy includes two sequences: an inside-out track reconstruc-
tion and a outside-in track reconstruction. Inside-out track reconstruction is the
primary pattern recognition algorithm for reconstructing the majority of the tracks.
In this procedure, track candidates, built from the Pixel and SCT detector hits, are
extended outwards to find compatible measurements in the TRT. The Outside-in
track reconstruction procedure starts with the segments built from the hits in the

TRT detector and extends inward to find compatible measurements in the Silicon de-
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tector. The outside-in approach is really useful in reconstructing tracks coming from
secondary vertices (e.g. K, decays) and photon conversions, which may not have any

hits in the Silicon detector.

Each track is fully characterized by five perigee parameters: (dy, 29, ¢,0,q/p).
Here, dy (29) = The transverse (longitudinal) impact parameter,
¢ and 6 = The azimuthal and polar angles of the track respectively,

q/p = ratio of electric charge to the momentum of the track.

The perigee parameters of the track are estimated by assuming a perfect helical

trajectory inside the solenoidal magnetic field.

3.2 Primary Vertices

Primary vertices are defined as the coordinates in space where pp interactions have
occurred. The primary vertex reconstruction algorithm [50, 51] uses the collection
of reconstructed ID tracks as the input. Two main stages are involved in this proce-
dure: vertex finding and vertex fitting. In the vertex finding stage, seed positions for
the primary vertices are obtained by associating reconstructed tracks to them. The
actual primary vertex position and its error are determined in the vertex fitting stage
by iteratively fitting the tracks with the vertex seed. Only vertices associated with

at least two reconstructed tracks with pr > 400 MeV are considered.

Due to pile-up, each event is generally associated with many primary vertices. The
vertex corresponding to the hard-scatter interactions, referred in to as the hard-scatter
primary vertezx, is chosen as the primary vertex with the highest sum of squared trans-
verse momenta of tracks originating from that vertex. All other primary vertices are
considered as pile-up vertices. Only objects originating from the hard-scatter primary

vertex are considered in the subsequent steps of the reconstruction.
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3.3 Photons

Reconstruction of photon candidates begins with the formation of topo-clusters in the
EM calorimeter. If there are one or two ID tracks matching to the electromagnetic
cluster, it is reconstructed as converted photon else as unconverted photon. Based
on the number of tracks matching to the cluster and hits in the Silicon detector,
photon is categorized into 6 different conversion types. These are listed in Table
3.1. Candidates in the calorimeter transition region 1.37 < |n| < 1.52 are excluded.
An identification criteria [52], based on a set of rectangular cuts on the EM shower
shape variables, is applied to separate photons produced in the hard-scatter process
(prompt-photons) from fake photons, i.e., photons due to radiation from hadrons,
mis-identified electrons, etc,. Further more, all photon candidates are required to be
1solated, i.e., the amount of energy around the photon must be below a threshold.
The methods used for calibrating the photon energy measurements are described in
Ref. [53].

Conversion Type # tracks matched to cluster
Unconverted = 0 Zero
SingleSi = 1 One track only, with Si hits
SingleTRT = 2 One track only, no Si hits (TRT only)
DoubleSi = 3 Two tracks, both with Si hits
DoubleTRT = 4 | Two tracks, none with Si hits (TRT only)
DoubleSiTRT = 5 Two tracks, only one with Si hits

Table 3.1: Based on the number of ID tracks matching to the EM cluster, photons
are classified into six different conversion types.

3.4 Electron Reconstruction

Electron candidates are reconstructed from electromagnetic clusters matched with
the reconstructed charged particle tracks in the inner detector. Prompt electrons,
i.e., electrons produced in the hard-scatter process, are identified using a likelihood
discriminant [54] constructed from quantities measured in the inner detector and the

calorimeter. Electron candidates in the calorimeter transition region 1.37 < |n| < 1.52
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are excluded. They are required to pass further selections on the transverse and lon-
gitudinal impact parameters: |zpsinf| < 0.5 mm and |dy/o(dy)| < 5. Electrons are
calibrated with the method described in Ref. [53].

3.5 Jet Reconstruction

Jet candidates are reconstructed from 3-dimensional topological clusters [55] in the
calorimeter using the anti-k; algorithm [56] with a radius parameter of R=0.4. Each
topological cluster is calibrated to electromagnetic scale response prior to jet re-
construction. The reconstructed jets are then calibrated to the particle level by the
application of a jet energy scale derived from simulation and in situ corrections based
on y/s=13 TeV data [57]. After energy calibration, jets are required to have pr >
25 GeV and |n| < 4.5. Quality criteria are imposed to identify jets arising from
non-collision sources or detector noise and any event containing at least one such jet
is removed. To reduce the contamination due to jets originating from pile-up inter-
actions, jets with pr < 60 GeV and |n| < 2.4 are required to pass a selection based
on the Jet Vertex Tagger (JVT) tool [58].

3.6 b-jets

Jets containing b-hadrons are identified (b-tagged) using the DLI1r algorithm [59,
60]. This algorithm is basically a neural network trained with information from the
impact parameters of displaced tracks as well as topological properties of secondary
and tertiary decay vertices reconstructed within the jet. The working point used in
this analysis corresponds to an average efficiency of 70% for b-jets with pr > 20 GeV
and |n| < 2.5 in tt events. The expected rejection factors against light and c-jets are
280 and 13, respectively [61].
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3.7 Muon Reconstruction

Muons are reconstructed and identified primarily using information provided by the
ID and the MS, supplemented with information from the calorimeter energy deposits.
The first step in the muon reconstruction is the independent reconstruction of tracks
in the ID and the MS. The independently reconstructed tracks are then combined to

form a complete track representing the traversal of the muon through the full detector.

In the ID, muon tracks are reconstructed like any other charged particles as de-
scribed in Section 3.1. In the MS, muon tracks are built by constructing track seg-
ments from hit patterns in different muon sub-systems. Muon track candidates are
then obtained by fitting together hits from all track segments. To build a muon track
candidate, at least two matching segments are required, except in the transition re-
gion between the barrel and endcap where a single track segment can be used. Once
a muon track candidate is formed, a global y? fit is between the track candidate
and associated hits. If the x? of the fit is small enough, then the track candidate is
accepted as a MS track.

The muon tracks from the ID and MS are combined using several algorithms using
the information provided by the ID, MS and calorimeters. Based on the subdetectors

used in the reconstruction, four types of muons are defined:

e Combined (CB) Muon: This type of muon is formed when a track in the
ID is found to be consistent with the trajectory of the MS track. A combined
muon track is formed with a global refit of hits from the tracks in the ID and
MS. During the global refit, hits from the MS may be added or removed to
improve the fit quality. Most of the muons are reconstructed using an outside-
in pattern recognition algorithm, in which a muon is first reconstructed in the
MS and then extrapolated inwards to find a matching ID track. An inside-out
algorithm, in which an ID track is extrapolated outwards to find a matching

MS track, is used as a complementary approach.

e Segment-tagged (ST) Muon: A segment-tagged muon is formed when an

ID track, once extrapolated to the MS, is associated with at least one local
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track segment in the MDT or CSC chambers. ST muons are used when a muon
crosses only one layer of the MDT chambers, either because of its low pr or

because it falls into regions with reduced MS coverage.

e Calorimeter-tagged (CT) Muon: This type of muon is formed when an ID
track is matched to an energy deposit in the calorimeter that is consistent with
a minimum ionizing particle. As the CT muons have lowest purity, they are
used only in the || < 0.1 region where the MS is only partially instrumented

to allow for cabling and services to the calorimeters and the ID.

e Extrapolated (ME) Muon: Exatrapolated muon is formed based only on the
MS track and a loose requirement on the track be compatible with originating
from the primary vertex. ME muons are mainly used in the region 2.5 < |n| <
2.7, which is not covered by the ID.

Overlaps between different types of muons sharing the same ID track are resolved by
giving preference to CB muons, then to ST muons, and finally to CT muons. The

methods used for the reconstruction, identification, calibrations of muons are detailed
in Ref. [62].

3.8 Missing Transverse Momentum

The colliding proton beams in each pp interaction are assumed to colliding head-on,
with momentum only along the z-axis. Thus, conservation of momentum in the z —y
plane implies that the vector sum of transverse momenta of all objects originating
from the hard-scatter primary vertex should be exactly zero. The missing transverse
momenta EJ* in an event represents the imbalance in the sum of visible transverse
momenta. Nonzero values of E¥* may indicate the presence of weakly interacting
particles that do not leave any signatures in the detector. Within the SM, these
particles are neutrinos. In theories beyond the SM, there are many prospects for such

particles. Consequently, £7"° is an important variable in various searches for physics
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beyond the SM.

The components of missing transverse momentum along x— and y— directions
are calculated [63] using,

miss __ miss ,e miss ,7y miss ,7 miss ,u miss, jets miss, soft
By = Boy "+ Boy "t By T By U Bry T T By (B

The terms for charged leptons, photons, jets represent the negative sum of the mo-
menta of all objects of the respective type in the event. The soft term E:E‘ys)s ) soft.
represents the negative sum of the momenta of all reconstructed tracks originating
from the hard-scatter primary vertex and not associated with any reconstructed hard

object.

The magnitude (E¥*) and the azimuthal angle (¢™) are then given by,

E;niss — \/(i?;:niss)2 + (E?IJniSS)2 (32)

@™ = arctan (E)" /EM) (3.3)

The measurement of EX is affected by the detector mismodelling, limited ac-
ceptance of the detector and the miscalibration of the reconstructed objects. It is
also susceptible to pile-up effects. Generally, high pile-up degrades the resolution of
the Emiss,

3.9 Overlap Removal between Reconstructed
Objects

To avoid, double counting of objects and to remove leptons likely originating from

hadron decays, following overlap removal procedure is applied.

Firstly, electron candidates sharing a track with muon candidates are removed to

suppress contributions from muon bremsstrahlung.

Next, overlaps between electrons and jet candidates are resolved. Any jet candi-

date whose axis is within AR < 0.2 of electron candidate is discarded. This is to
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remove jets are formed primarily from the showering of prompt electrons. After this
removal, any electron that is within AR < 0.4 of the axis of any jet is removed.
This selection is applied to remove electrons that are produced in the decay chain of

hadrons.

After that, muon candidates within AR < 0.4 of the axis of any jet are removed.
This selection is designed to remove those muons that are likely to have produced in

the decay chain of hadrons.

Photons within AR < 0.4 cone of electrons and muons are removed. Finally, jets

within AR < 0.4 cone of photons are removed.

Object overlap removal procedure applied in this analysis is summarized in Table
3.2.

Keep | Remove | Cone size (AR)
Muon Electron 0.01
Electron Jet 0.2
Jet Electron 0.4
Jet Muon 0.4
Electron | Photon 0.4
Muon Photon 0.4
Photon Jet 0.4

Table 3.2: Summary
photons and jets

of the overlap removal procedure between electrons, muons,
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Part 1

Seeing a single top quark: Search
for the associated production of a

single top quark and a photon

34



Chapter Four: Associated production of a single

top quark and a photon

Electroweak production of a single top quark in association with a photon, pp — tg~,
is one of the rare processes predicted by the SM. Observation and precise measure-

ment of the cross-section of this process provides an important test for the SM.

Figure 4.1: Leading-order Feynman diagram for ¢gy production in 5-flavor scheme

The cross-section of tqy process (oy4,) is sensitive to the top quark coupling to
photons, a key parameter in the SM which quantifies the strength of the interaction
between the top quark and the photon. Measurement of o, can also identify or dis-

ambiguate anomalous electric and magnetic dipole moments of the top quark [64][65].

The most general Lorentz-invariant expression for ty-vertex can be represented in

the form,
2y _ 2 2 Ouw  yr: 2 2
Lu(q7) = —ie{vu[Fiv(q") + Fra(a™)ys] + 2, ! [iFov(q°) + FoA(q ) s}y, (4.1)

where ¢ is the four-momentum of the photon, e is the proton charge, m; is the top
quark mass, and o, = (i/2)[7,,7]. The terms F;y and F; 4 represent the form factors

for vector and axial-vector couplings, respectively. In the low energy limit ¢ — 0,
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the form factors are related to the physics quantities via,

2myd
Fiy(0) = Qy Fov(0) = aiQy; Foa = et 3 (4.2)

where () is the electric charge of the top quark, a; and d; are the anomalous magnetic
and electric dipole moments of the top quark, respectively. In the SM, at tree level,
all form factors except Fiy are equal to zero. When higher-order loop corrections
are considered, Fyy and F,4 receive non-zero contributions. The corresponding pre-
diction for the anomalous magnetic dipole moment is a; ~ 0.02 while the anomalous
electric dipole moment is d; < 107%° e cm. Any observation of deviations from
these predictions, for example enhanced dipole moments, would indicate the physics
beyond the SM. The expected bounds on the top quark anomalous dipole moments
with pp collision data from the LHC at /s = 14 TeV are shown in Figure 4.2.
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Figure 4.2: Expected 68% CL (left) and 95% CL (right) limits on the top quark
anomalous dipole moments with LHC pp collision data at /s = 14 TeV. Figure
taken from Ref. [64]

This process has not been observed by any experiment yet. However, the CMS
collaboration published an evidence for this process with partial Run-2 dataset, cor-
responding to an integrated luminosity of 35.9 fb™! [66]. Only events with a single
muon in the final state are considered in this analysis. The measured value of fiducial
cross-section time branching fraction is o(pp — tqy) x B(t — pvb) = 115 £ 17 (stat)
+ 30 (syst) fb. This result is in agreement with the expected SM value: 81 + 4
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fb. The median expected significance is 3.0 standard deviations, while the observed
events correspond to a significance of 4.4 standard deviations above the background-

only hypothesis.

This dissertation reports the first-ever ATLAS search for pp — tqvy process. The
goal of this analysis is the observation and the measurement of fiducial cross-section
of the tqy process. It uses the full run-2 dataset collected by the ATLAS experi-
ment during the 2015-18 period, which corresponds to an integrated luminosity of
139 fb~1. After establishing the tqy production process, a subsequent analysis will
be performed which will feature differential cross-section measurements to set con-

straints on the anomalous top quark dipole moments with the Effective Field Theory

(EFT) approach.

The organization of this analysis is as follows: Chapter 5 describes the data and
Monte Carlo (MC) samples. Chapter 6 describes the event pre-selection. Estimation
methods for e — + and j — ~ fake photon backgrounds are detailed in Chapter
7. Data/MC comparison plots for signal region, ¢ty CR and W+~ CR are shown in
Chapter 9. Neural network training and optimization studies are detailed in Chapter
10. Theoretical and experimental systematic uncertainties are described in Chapter
11. Chapter 12 describes the results from signal region fit to Asimov data and back-

ground only fit to data. Finally, conclusions are summarized in Chapter 13.
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Chapter Five: Data and Monte Carlo samples

Dataset and Monte Carlo samples used in the SM tqvy analysis are described in this
chapter.

5.1 Dataset

This analysis uses pp collision data collected by the ATLAS experiment during 2015-
18 at y/s = 13 TeV. The luminosity corresponding to this data is determined using
multiple redundant luminosity sensitive detectors [67] in the forward region. The
absolute calibration of the luminosity scale of each detector is performed using ded-

icated beam-separation scans in X-Y plane with a method known as van der Meer

(vdM) method [68].

Figure 5.1 shows time versus the cumulative luminosity delivered by the LHC
(green), recorded by the ATLAS experiment (yellow), and marked to be good quality
data by applying standard data-quality selections (blue). Luminosity recorded by
the ATLAS experiment is lower than the luminosity delivered by the LHC due to
trigger dead-time and the warm-start procedure of the ATLAS Inner Detector. Total
integrated luminosity corresponding to the good quality data collected during Run-2
is 139 fb~! £ 1.7%. Summary of integrated luminosity and it’s uncertainty for each

year are presented in Table 5.1.

Year Luminosity (fb™!) Uncertainity (fb~!)

201542016 36.2 0.8
2017 44.3 1.0
2018 58.5 1.2
Total 139.0 2.4

Table 5.1: The integrated luminosity and it’s uncertainty for each year’s data after
applying standard data-quality selections
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Figure 5.1: Time versus the cumulative luminosity delivered by the LHC (green),
recorded by the ATLAS experiment (yellow), and marked to be good quality data
by applying standard data-quality selections (blue). Luminosity recorded by the
ATLAS experiment is lower than the luminosity delivered by the LHC due to trigger
dead-time and the warm-start procedure of the ATLAS Inner Detector.

5.2 Monte Carlo samples

5.2.1 Signal Modelling

The SM tqy process is simulated [69] at next-to-leading order (NLO) in four flavor
scheme and at the t-channel of single top production using MADGRAPH5 aMC@NLO
v2.6.2 event generator [70] interfaced to the PYTHIAS [71] parton showering. The top
quark is decayed using MadSpin. Only final states with at least one lepton are
generated. The decays of bottom and charm hadrons are simulated using EvtGen
v1.2.0 [72]. The photon transverse momentum (pr) is required to be at least 10 GeV.
The photon and the lepton are required to have || < 5.0. The angular separation
between photon and other final state particles is required be AR > 0.2. Where,
AR = \/m and ¢ is the azimuthal angle in radians. The renormalization
and factorisation scales are set to Hr /2, where

Hy =Y \/m?+p3, (5.1)
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Where, i runs over all outgoing particles from the matrix element calculation. The
cross-section obtained from the generator is 1.14fg:8 Z;ﬂ:ggj pb, where the uncertain-

ties are due to renormalization & factorization scales and PDF variations, respectively.

5.2.2 Background Modelling

The ttvy process is modelled at leading order in QCD using MADGRAPH5_aMC@NLO
v2.3.3 event generator interfaced to PYTHIA 8.212 parton showering algorithm tuned
with the A14 parameter set [73]. Events in which the photons originate from the top
quark decay products are also included in this sample. The matrix-element calcula-
tion uses the NNPDF2.3LO PDF set [74, 75]. An inclusive k-factor of 1.16, derived
from NLO QCD calculations [76], is applied to the generator cross-section.

Simulated events of W+ + jets and Z~+jets are produced at NLO using SHERPA
2.2.2 and SHERPA 2.2.4 generators [77, 78] respectively.

MC samples for tt process, t-, s- and tW-channels of single-top quark produc-
tion processes are generated at NLO in QCD using POWHEG-BOX [79-81] interfaced
to PyTHIA 8.230 parton showering program. Inclusive k-factors are used for each
sample to extrapolate to NNLO in QCD [82-85]. Furthermore, spin correlations are
preserved for the top quarks. The decays of hadrons containing b or ¢ quarks is mod-
eled with the EvtGen 1.6.0 package.

Events with W and Z bosons in association with additional jets are simulated
with SHERPA 2.2.1 at next-to-leading order in QCD. The samples are normalised to

the next-to-next-to-leading-order cross-section in QCD [86].

5.2.3 Detector response & Pileup simulation

All Monte Carlo samples are processed through a simulation of the ATLAS detector
response based on the GEANT4 tool [87]. In-time and out-of-time pileup simula-
tions are overlaid on all hard-scatter events before digitization. They modelled using

minimum-bias events generated using PYTHIA8. The number of pileup events overlaid
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for each hard-scattering interaction is a random number sampled from the Poission
distribution with a mean < g >, where < p > is the average number of interac-
tions per bunch crossing. Simulated events are reweighted to ensure that the pileup

distribution in simulation matches that observed in data.
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Chapter Six: Event selection

6.1 Event categorization

As this analysis targets a signal topology that contains a well-reconstructed photon,
other objects that are mis-identified as photons represent a major background source
in this analysis. The most dominant contributions of this type of background arise
from electrons that are mis-identified as photons and jets that are mis-identified as
photons, which are referred to as e — v fakes and j — ~ fakes, respectively, in
the following. In order to estimate these two different fake contributions, events
are classified in MC into three different categories, prompt, e — v fake and j — ~
fake. This classification relies on information of the truth particle that is associated
with the leading photon, where the association is performed by the Truth to cluster
matching algorithm by the MCTruthClassifier package. Events are classified by the

following scheme:

e e — 7 fake:

— the truth particle is an electron

— the truth particle is a photon and there is a truth electron within a distance
of AR =10.05

e j — ~ fake: the truth particle is a hadron or the photon originates from a truth

particle classified as hadron

Events, where the leading photon does not fulfill any of the aforementioned crite-
ria, is referred to as prompt.

6.2 Pre-selection region

Signal events are characterized by exactly one lepton, at least a photon, one b-tagged
jet in the final state. A pre-selection region enriched with signal events is defined by

applying following selection requirements:
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At least one v with pr > 20 GeV

Exactly one lepton with pr > 27 GeV

Emis > 30 GeV

Exactly 1 b-tagged jet passing 70 % working point (WP) of the DL1r algorithm

Table 6.1 shows the yields in this pre-selection region for converted and for un-

converted photons.

Table 6.1: Yields of the different background contributions in the pre-selection region.
Only statistical uncertainties are given here.

process converted photons | unconverted photons combined
7% 149.0 £ 3.0 103.0 + 3.0 252.0 £ 4.0
Zy+jets 1312.0 &+ 23.0 2867.0 £ 33.0 4179.0 £ 40.0
Wr+jets 3733.0 £ 67.0 8919.0 £+ 106.0 12652.0 £+ 125.0
tty 9074.0 £ 19.0 21810.0 &+ 30.0 30883.0 + 35.0
tt 16564.0 £+ 52.0 9897.0 £ 40.0 26461.0 £+ 66.0
W+jets 648.0 £+ 115.0 874.0 £+ 202.0 1522.0 £ 233.0
Z+jets 5438.0 £ 136.0 2784.0 £+ 102.0 8222.0 £+ 170.0
tq 675.0 & 6.0 1435.0 £ 9.0 2110.0 + 11.0
tW+tb 2496.0 + 19.0 3021.0 £+ 20.0 5517.0 £ 28.0
lepton fake 1388.0 £+ 41.0 2641.0 £+ 58.0 4029.0 + 71.0
tqy 1382.0 £ 26.0 2947.0 £ 37.0 4329.0 £+ 45.0
e — 7y 20972.0 4+ 144.0 9561.0 £+ 103.0 30532.0 + 177.0
J =7 2977.0 £ 88.0 3788.0 £ 143.0 6765.0 £ 168.0
prompt 18911.0 £+ 119.0 43947.0 + 200.0 62858.0 + 233.0
total SM 42859.0 + 206.0 57296.0 £+ 267.0 100155.0 £ 338.0
data 42450.0 + 206.0 59268.0 4+ 243.0 101718.0 4 319.0

Figure 6.1 shows the composition of the pre-selection region with respect to the
photon origin and to the different processes. Events containing prompt photons
provide = 63% of the total expected yield, where =~ 30% and ~ 8% of all events
contain a e — v fake and j — ~ fake, respectively. Therefore, the estimation of the
e — =y fake contribution is a crucial step in this analysis. Although j — ~ fakes are the
smaller fake contribution, a sophisticated estimation is mandatory as normalization

and shape of kinematic distributions may not be well-modeled in MC.
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Moreover, the dominant background processes are ttv, tt, W~y-+jets and Z+jets.
Figure 6.2 shows the composition of the pre-selection region with respect to the
different processes for the different photon types. The prompt photon contribution is
mainly arising from ¢y and Wy+jets events. The semi-leptonic channel of ¢ provides
more than 75 % of the j — v fakes. The e — v fake contribution is dominated by #t
where an electron and another lepton is produced by the leptonic decays of the top
quarks and Z-+jets with Z — ee.

ATLAS Slmulatlon Work in Progress ATLAS Slmulat|on Work in Progress
13 TeV, 139 fb™* 13 TeV, 139 fb™* 2
electron + muon channel electron + muon channel 2
. . N
SRinc SRinc ,\7& *
o A AN
p ~
A—'\e‘s
lepton fake
tqy

<
§
S
N

Figure 6.1: Composition of the pre-selection region with respect to the photon origin
(left) and to the different processes (right).

Figure 6.3 shows the composition with respect to the photon category for con-
verted and unconverted photons. Almost 50% of all events arise from e — v fakes
for converted photons. In the case of unconverted photons the contribution of e —
fakes is significantly smaller. As the composition for converted and unconverted pho-
tons is fairly different, the separate estimation of the fake contributions for converted

photons and unconverted photons represents a key element to this analysis.

6.2.1 Reducing Z+jets background

The large contribution from Z — ee(— =) is reduced by vetoing events that fulfill

80 GeV < me, < 100 GeV, where m,., represents the invariant mass of the leading
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Figure 6.2: Composition of the pre-selection region with respect to the different
processes for prompt photons (left), e — ~ (middle) and j — v (right).

photon and an electron candidate. The distributions of 1, before and after applying
theis Z mass window cut are depicted in Figure 6.4.

The yields of the different processes after applying this criterion are shown in Table
6.2. The contributions from Z+jets and consequently from e — v are significantly

reduced.

6.2.2 Choosing the DL1r working point

In order to provide the highest sensitivity to the tqvy signal process, it is checked
whether choosing a different DL1r working point enhances the \% ratio. The results
of this checked are listed in Table 6.3, where it can be seen that the largest sensitivity

is provided by the 70% working point.
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Figure 6.3: Composition of the pre-selection region with respect to the photon origin
for converted photons (left) and unconverted photons (right).
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Figure 6.4: Distribution of the invariant mass of the lepton and the leading photon
my, before (left) and after (right) applying the Z mass window cut.

6.2.3 Final definition of the pre-selection region

The final definition of the pre-selection region is given in Table 6.4.
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Table 6.2: Yields of the different background contributions in the pre-selection region
after applying the Z mass window cut. Only statistical uncertainties are given here.

process converted photons | unconverted photons combined
4% 84.0 £ 3.0 70.0 £ 3.0 154.0 + 4.0
Zy+jets 1192.0 £+ 22.0 2600.0 £+ 31.0 3791.0 £+ 38.0
Wr+jets 3490.0 £ 65.0 8369.0 £ 102.0 11859.0 + 121.0
ttry 8480.0 £ 19.0 20332.0 = 29.0 28811.0 £ 34.0
tt 15487.0 £ 50.0 9175.0 £ 39.0 24662.0 £+ 63.0
W +jets 630.0 + 115.0 821.0 £+ 202.0 1452.0 £+ 232.0
Z+jets 1182.0 + 61.0 566.0 + 43.0 1748.0 + 74.0
tq 630.0 = 6.0 1341.0 £ 9.0 1971.0 £ 11.0
tW+tb 2352.0 £ 18.0 2803.0 £ 19.0 5155.0 £ 27.0
lepton fake 1327.0 £ 41.0 2580.0 £ 58.0 3907.0 £ 71.0
tqy 1285.0 + 25.0 2733.0 £ 35.0 4018.0 £+ 43.0
e — 7y 15697.0 £ 75.0 6852.0 & 45.0 22549.0 4+ 88.0
J—= 2748.0 £ 88.0 3468.0 £+ 143.0 6217.0 £+ 168.0
prompt 17694.0 £+ 117.0 41069.0 + 197.0 58763.0 + 229.0
total SM 36139.0 + 165.0 51390.0 + 248.0 87529.0 + 297.0
data 34986.0 + 187.0 52834.0 4+ 230.0 87820.0 + 296.0

Table 6.3: Signal and background yields for the different DL1r working points and
the resulting values of

S

VB
60% WP 70% WP 77% WP 85% WP
signal 3715 + 41 4018 =+ 43 4175 + 44 4238 + 44
background | 74876 + 224 | 83511 + 294 | 94463 + 386 | 120275 + 612
% 13.58 13.90 13.58 12.22

Table 6.4: Definition of the pre-selection region.

Object/Variable Requirement
Photons > 1w/ pr>20 GeV
Leptons =1w/ pr>27 GeV

Jets 1w/ pr > 25 GeV
being b-tagged =1 DL1r 70%

Eiss > 30 GeV

Mes ¢ [80, 100] GeV
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Chapter Seven: Estimation of fake photon

backgrounds due to mis-reconstructed electrons

In the ATLAS experiment, electrons and photons are reconstructed using very sim-
ilar algorithms. Thus, electrons can be mis-reconstructed as photons due to either
tracking inefficiency or failure to find a match between the Inner Detector track and
the electromagnetic cluster. These mis-reconstructed electrons are referred to in the

following as e — ~ fakes.

Events with e — ~ fakes are one of the leading background in the tqy analysis.
However, simulation does not model these fakes well. Thus, scale factors are derived
from data, in bins of 7, and photon conversion type, to correct the simulation for this

mis-modelling.

7.1 Definition of electron-to-photon fake rate

scale factor

The electron-to-photon fake rate (Fi._,,) is defined as the ratio of probability that
an electron is mis-reconstructed as a photon to the probability that an electron is
correctly reconstructed. This can be estimated from Z+4jets events that are recon-

structed as ete™ and ey pairs:

N(Z — ev)
2X N(Z — ete)

A factor of 2 is included in the denominator as either of the two electrons can be

(7.1)

Fe—>'y:

mis-reconstructed as photon.

Electron-to-photon fake rates are calculated both in MC (F}{ ) and data (F%)
in bins of 1, and photon conversion type. Scale factor to be applied to MC in each

bin for the mis-modelling of electron-to-photon fakes is given by:
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Data

F,
Scale factor (SF) = egg (7.2)

e—y

Substituting equation (7.1) in equation (7.3),

NP¥a(7 — en) | NMO(Z = ey)  pizes

SF = —
NDbata(7 — ete=) | NMC(Z — ete™)  fizee

(7.3)

NPata(7 s en)
NMC(Z — e)

NData(7 s ete™)
NMC(Z — ete)

Where, (17, = and fze. =

7.2 Control & Validation regions

Two control regions (CR) and one validation region (VR) enriched with Z+jets events

are defined to measure and validate e — 7 fake rate scale factors

e 7 — e¢te” CR: Events with exactly two reconstructed electrons with opposite
electric charge (OS).

e 7/ — ey CR: Events with exactly one reconstructed electron, exactly one recon-

structed photon and zero b-tagged jets.

e / — ey VR: Events with exactly one reconstructed electron, exactly one re-

constructed photon and at least one b-tagged jet.

The reconstructed photon in the Z — ey CR/VR events is assumed to be an mis-
reconstructed electron. Region selection cuts are provided in Table 7.1. All three

regions are orthogonal to SR as the requirement on the missing pr is inverted.

Object Z —ete” CR Z — ey CR Z — ey VR
Photons =0 w/ pr > 20 GeV =1w/pr >20GeV | =1 w/ pr > 20 GeV
Electrons =2 (08) w/ pr >27 GeV | =1 w/ pr > 27 GeV | =1 w/ pr > 27 GeV

b-jets - =0 w/ pr > 25 GeV | >1 w/ pr > 25 GeV

Missing pr < 30 GeV < 30 GeV < 30 GeV
M(ete™) [70, 110] GeV - -
M(ey) - [70, 110] GeV [70, 110] GeV

Table 7.1: Definitions of control and validation regions used for electron-to-photon
fake estimation.
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7.3 Overview of scale factor calculation

7.3.1 Measurement of iz,

The normalization factor pyz.. is measured by fitting templates of M (eTe™) distri-
bution, obtained from MC, to data in Z — e*e~ CR. Normalization factor for the
template of Z — ete™ process, NP*(Z — ete™), is determined from the profile-
likelihood fit to data. Normalization factors for all other processes are fixed to their
MC expected values during the fit. Pre-fit and Post-fit distributions of M(ete™) are
shown in Figure 7.1.

Observed value of pz.. = 1.03 £ 0.00026

L B L B B LRI IR I
ATLAS Internal 4 DATA Bz + jets

{s=13TeV, 139 fo™ [JWy +jets [Zy + jets

none 772 Uncertainty

Z- eyzee

Post-Fit

L L B B I L L
ATLAS Internal 4+ DATA Bz + jets
(s =13TeV, 139 fb™ [JWy +jets [Zy + jets
none 772 Uncertainty

Z- ey zee
Pre-Fit

Events
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Figure 7.1: Pre-fit (left) and Post-fit (right) distributions of M(ete™) [GeV] for
Z —ete” CR

7.3.2 Measurement of /7.,

The normalization factor jiz., is measured by fitting templates of M (ey) distribution

to data in the Z — ey CR.
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e Template shape of M (evy) distribution for Z — ey process is obtained from

MC. It’s normalization factor, NP*?(Z — ev), is determined from the profile-
likelihood fit to data.

e For other major processes in the region, i.e., W~ and Z+~, both normalization

and shape of M (e7y) distribution are obtained from MC.

e Third order Bernstein polynomials are used as M (e7y) templates for missing

rare backgrounds like VV, W+jets and v+jets, etc. Coefficients for these poly-

nomials (a0, al, a2, a3) are allowed to float during the fit to data.

Pre-fit and Post-fit distributions of M (e7y) for different bins of Z — ey CR are shown

in Figure 7.2.

7.3.3 Parameterisation of scale factors

Scale factors have been calculated, in bins of 7, and photon conversion type, by

substituting fizee and fize, in Equation (7.3). These are shown in Figure 7.3 and

Table 7.2. In general, the scale factors are larger for central regions, which is expected

as the amount of the detector material traversed by photons is smaller compared to

the forward regions.

Conversion type/n, (0.0, 0.3) (0.3, 0.6) (0.6, 1.0) (1.0, 1.37) (1.52, 1.81) (1.81, 2.37)
Unconverted 1.12 £+ 0.0181 | 0.98 £ 0.0175 | 1.00 £ 0.0132 | 1.03 £ 0.0147 | 1.06 £ 0.0136 | 1.07 £ 0.0111
SingleSi 2.62 + 0.0865 | 1.88 + 0.0606 | 1.77 4+ 0.0602 | 1.38 4 0.0441 | 1.04 4+ 0.0356 | 1.13 4 0.0241
SingleTRT 1.81 £ 0.0528 | 1.52 £ 0.0581 | 1.08 £ 0.0352 | 0.92 £ 0.0242 | 0.93 £ 0.0235 | 0.96 £ 0.0296
DoubleSi 1.05 £ 0.0178 | 1.00 £ 0.0157 | 0.98 £ 0.0115 | 0.92 £ 0.0114 | 0.90 £ 0.0109 | 0.98 + 0.0065
DoubleTRT 1.29 £ 0.0948 | 1.12 £ 0.0832 | 0.86 £ 0.0614 | 0.98 £ 0.0348 | 0.92 £ 0.0340 | 0.83 £ 0.0652
DoubleSiTRT 1.70 £ 0.2426 | 1.73 £ 0.1781 | 1.17 £ 0.0674 | 1.17 £ 0.0442 | 0.88 £ 0.0240 | 0.79 &£ 0.0357

Table 7.2: Electron-to-photon scale factors in bins of 1, and photon conversion type

7.4 Closure test in Z — ey CR

Electron-to-photon scale factors have been tested for closure in Z — ey CR, the same

region from which they are derived. Comparison of Data/MC plots with and without
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Figure 7.3: Electron-to-photon scale factors in bins of 7, and photon conversion type

scale factor corrections is presented in Figure 7.4. Scale factor corrections to MC,

clearly, improves the agreement with data.

7.5 Validation of scale factors in 7 — ey VR

Scale factor corrections to MC have been tested in Z — ey validation region. Com-
parison of data and MC plots before and after applying scale factors, as shown in
Figure 7.5, indicates that applying scale factors to MC improves the agreement with
data.

53



7.6 Additional studies: parameterisation in
photon pp

To check if additional parameterisation of scale factors is needed, scale factors have
been derived in bins of photon pr after applying scale factor corrections to MC in
bins of 7, and conversion type. As shown in Figure 7.6, scale factors do not depend

on the transverse momentum of photon.
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Figure 7.5: Comparison of data and MC plots before (left) and after (right) applying
electron-to-photon scale factors for Z — ey validation region
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Chapter Eight: Estimation of fake photon

backgrounds due to mis-reconstructed jets

In each proton-proton collision, many jets and hadrons are produced. Hence, it may
happen that a jet is mis-identified as a photon or a photon is radiated in a hadron
decay, e.g. ™ — v decays. These mis-reconstructed hadrons are referred to in the
following as j — ~ fakes. As the modelling of j — ~ fakes is not accurate in the
simulation, data driven scale factors are derived using the ABCD method to correct

the simulation for any deviation from data.

8.1 ABCD method and control region definitions

The ABCD method exploits the weak correlation between the isolation and the pho-
ton ID variables measured in the first layer of the ECAL. The photon isolation vari-
ables are constructed using the information retrieved from the outer core of the photon
candidate, while the photon ID variables are constructed based on the shape infor-
mation of the shower induced by the photon candidate in the ECAL. As shown in
Table 8.1, different categories of photons are defined based on the ID and isolation

variables. More information about these variables can be found in Ref. [53].

category variables
relaxed-tight | Rhada, Re, Ry, Wy2, W, tot
narrow-strip Fide, ws, 3, AE, Eatio
Loose’2 relaxed-tight+ A E+ Frati0
Loose’3 relaxed-tight+ Eati0
Loose’4 relaxed-tight

Table 8.1: Different categories of photons that are used for the tight working point
of the photon identification algorithm.

A photon candidate is considered as a Tight photon if it passes the criteria de-

fined by the narrow-strip and the relaxed-tight selection.
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Different sets of looser photon ID criteria are defined, where a photon candidate
is required to fulfill the relaxed-tight criteria, which is referred to as Loose’4. When
Loose’3 or Loose’2 criteria are applied, the photon candidate is required to fulfill the
tight-ID criterion for E.;, and criteria for F,.;, and AFE. The correlation between
the photon isolation and photon ID increases with increasing from Loose’2 to Loose'4.
In the nominal ABCD method, the Loose’4 variables are used in order to construct
the ABCD regions, where the Loose’2 and Loose’3 definitions are used to derive
systematic uncertainties for the ;7 — = estimation. This weak correlation is exploited
for the definition of the ABCD regions which are defined as follows:

e Hadron fake region (HFR) A: the photon candidate passes the isolation criteria

but fails at least one of the tight-ID criteria and passes the Loose’4 criteria

e HFR B: the photon candidate fails the isolation criteria and at least one of the

tight-ID criteria and passes the Loose’4 criteria
e HFR C: the photon candidate fails the isolation criteria and passes the tight-ID

e HFR D: the photon candidate passes the photon isolation and passes the tight-
ID

The photon candidate is considered as failing the isolation criteria only when it
fails both, the track and calorimeter isolation criteria. Imposing this requirement
reduces the amount of prompt photons in the non-isolated regions and therefore,
increases the fraction of the j — + contribution in these regions.

The definitions of the HFRs are shown in Figure 8.1 and in Table 8.2. Here, the
definition of the HFR D is given by the definition of the pre-selection region.

The measurement of the j — v is performed for converted and unconverted pho-

tons, separately, in the following six |7?| and to pJ bins of the leading photon:

7 : [0,0.3), [0.3,0.6), [0.6,1.0), [1.0,1.37), [1.52,1.81), [1.81, 2.37]
pr o [20,40), [40,inf]

Due to this weak correlation that the validity of Equation (8.1) can be assumed

and can be used in order to estimate the contribution of 7 — = in the SR.
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Figure 8.1: Regions used in the ABCD method for the estimation of j — = scale
factors

Object/Variable HFR A HFR B HFR C

>1w/pr>20 | >1w/pr>20 | >1w/pr>20

Photons isolated not isolated not isolated

fail Loose’4 fail Loose’4 pass Loose’4
Lepton =1w/pr>27 |=1w/pr>27 | =1w/pr>27
Jets >lw/pr>25 | >1w/pr>25 | >1w/pr>25
being b-tagged | = 1 DL1r 70% | = 1 DL1r 70% | = 1 DL1r 70%

Eimiss > 30 > 30 > 30
Mery not in [80, 100] | not in [80, 100] | not in [80, 100]

Table 8.2: Definitions of the HFRs used for the ABCD method to estimate the j — ~
contribution in the pre-selection region.

NJ—W<A) ~ Nj_’V(D)
Ni=v(B) ~ Ni~(C)

(8.1)

As in data the classification of photons in the three different types cannot be

made, the yields observed in each region have to be corrected for the prompt and
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e — v fake contribution. This is done by subtracting the prompt photon and e — ~
fake contributions estimated from MC from the observed data yields. Therefore, the

number of hadron-fakes in data in region ¢ is given by the following equation:

Niata (1) = Naata (i) = Nye™" (1) = SF(e = ) x Ny (0) (8.2)

data

Consequently, the contribution of hadron fakes in the SR can be estimated by

Nj_W(A) -Nj_W(C)

Nj:;(D) — data : data (83)
" Niwa (B)
Finally, the data/MC SF for hadron fakes is given by
NI(D
SF(j =) = s (D) (5.4
Ny (D)
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8.2 Results for j — v SFs

The resulting 7 — « SFs are shown in Figures 8.2 and 8.3 for the different |1”| and
pt for converted and unconverted photons, respectively. The uncertainty bars show
the total uncertainties as well as the statistical and systematic components of it. The
systematic uncertainties on the SFs are estimated by including the following sources

of uncertainties:
e Limited data and MC statistics
e Variation of SF(e — )
e Switching to different Loose’s

e Variation of oy and oy,

[y

= 3r T \ \ \ = 16 T \ \ \
: E ATLAS Internal a1 une ; ATLAS Internal total unc
) [ 13Tev, 139" —— systunc o 1.4F 13Tev,139m* systunc
LL 2.5 electron + muon channel —— statunc LL electron + muon channel stat unc
n E  converted 0 converted
F o pl<40Gev 1.2 p! > 40 Gev
2 —

1.5F 0.8 I
1 0.6 ¥
F 04 =
0.5 4 ]
u ] 0.2 -
C | | | | | = | | | | | ]
< 03 Og ) R 18; Yy 03 [ 20 155 18;
0. <Y <y <y < < <o <y <hy <hYy < <
3 Misog Msiy sy, MW-& Mis<2g, 3 Misog <1y Msis, ’”7<1,81 M<zg,

Figure 8.2: Resulting j — ~ SF's for converted photons.

The numerical values of the SFs are shown in Table 8.3. These SFs are applied

to the 5 — v contributions in all considered regions in this analysis.
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Figure 8.3: Resulting j — v SFs for unconverted photons.
” converted unconverted
7| T = 40 TS 4 o o
pr < pr > 40 pr < 40 pr > 40

[0, 0.3) 1.60£0.22+0.26 | 0.84 £0.11 £0.09 | 1.22 £0.10 £ 0.27 | 0.62 £0.10 £ 0.07
[0.3, 0.6) 1.57+0.19+£032 | 0.81+£0.10£0.14 | 1.18 £0.10£0.11 | 0.98 £ 0.11 £0.17
[0.3, 1.0] 1.51+0.16 +£0.17 | 0.924+0.09+0.19 | 1.65+0.17+0.25 | 1.06 = 0.11 £ 0.29
(1.0, 1.37) | 0.924+0.16 £0.23 | 1.02 £ 0.09 +0.08 | 1.36 +£0.16 +0.36 | 1.20 +0.16 = 0.15
[1.52, 1.81) | 0.96 +0.18 - 0.85 | 0.80 +0.14 £ 0.08 | 1.41 £0.17 £ 0.60 | 1.57 £ 0.26 £+ 0.31
[1.81,2.37) | 1.06 £0.17+0.34 | 0.49+0.15+0.30 | 1.41 £0.17 £ 0.60 | 1.57 £0.26 + 0.31

Table 8.3: Resulting j — v SF's. The first value in each row and column correspond
to the nominal value, where the second and third value correspond to the statistical
and systematic uncertainty of the SFs, respectively.
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Chapter Nine: Background validation &

Pre-selection region plots

In this chapter, leading backgrounds of the tqy analysis are validated in dedicated
control regions. tty background is validated in Section 9.1. Section 9.2 presents the
validation plots of W+ background process. Data/MC comparison plots for the pre-

selection region are illustrated in Section 9.3.

9.1 tty control region

tty control region is defined by the following selection criteria.

Exactly one lepton

At least one photon

Exactly 1 b-tagged jet at 70% WP and at least two b-tagged jets at 85% WP
of the DL1r algorithm

e Missing pr > 30 GeV
o M(evy) ¢ (80,100) GeV

The only difference with respect to the pre-selection region is the number of b-jets
is required to be at least 2 at DL1r-85% working point. Overall purity of ¢ty yield
in this region is 48%. The observed and expected number of events for different pro-
cesses are presented in Table 9.1. The composition of this region with respect to the
different photon origins and to the different background processes is illustrated in 9.1.

Data/MC comparison plots for tfy control region are illustrated in Figures 9.2 and 9.3.
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Process Yield
tqy 548.366 £+ 16.0655
tty 8854.52 £+ 17.697
W~ + jets | 885.014 + 29.3585
Z~v + jets | 359.127 + 13.7014

tt 6306.99 + 32.6307
s-chan 23.8228 + 0.886865
tW 801.467 + 10.7679

t-chan 283.752 £ 4.22656
\AY 14.7281 £ 0.940961
W 4 jets | 87.9167 £+ 16.4917
Z + jets | 98.9954 + 11.1118
Total 18264.7 £ 56.157
DATA 19119

Table 9.1: Yields of signal and background processes in the ¢y control regions. Only
statistical uncertainties are included in the calculation.

ATLAS Simulation Work in Progress
13 TeV, 139 fb* 13 TeV, 139 fb*
electron + muon channel electron + muon channel
tty CR tty CR

ATLAS Simulation Work in Progress

S
et
’\\(:\ ,(\st
W Ao

lepton fake
tqy

Q *x\@

X
§Q
X
[

Figure 9.1: Composition of the ¢ty control region region with respect to the photon
origin (left) and to the different processes (right).
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Figure 9.2: tt~y control region plots
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Figure 9.3: tt~y control region plots
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9.2 W control region

W~ control region definition:

e Exactly one lepton

e At least one photon

e No b-tagged jets at 70% WP of the DL1r algorithm

e Missing pr > 30 GeV

o M(evy) ¢ (80,100) GeV

It is orthogonal to the pre-selection region as the number of b-jets is required to be
zero at DL1r-70% working point. Purity of W+ events in this region is 51 %. The
observed and expected number of events for different processes are presented in Table
9.2. The composition of this region with respect to the different photon origins and to

the different background processes is illustrated in 9.4. Data/MC comparison plots

for W+~ control region are illustrated in Figure 9.5.

Process

Yield

t(p
tiy
W + jets
Z7y + jets
tt
s-chan
twW
t-chan
\AY%
W + jets
Z + jets

857.031 = 20.3278
6446.47 £+ 14.9794
27791.6 + 187.28
6798.11 £ 56.4213
4779.01 £ 28.3664
22.5721 £ 0.871548
1218.81 £ 13.2457
442.85 £+ 5.13729
402.668 + 6.36916
3309.72 £ 345.308
2039.67 £ 143.221

Total

54108.5 £ 420.612

DATA

61670

Table 9.2: Yields of signal and background processes in the W+ control regions. Only

statistical uncertainties are included in the calculation.
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Figure 9.4: Composition of the W~ control region region with respect to the photon
origin (left) and to the different processes (right).

9.3 Pre-selection region plots

Pre-selection region is defined by the following selection criteria:
e Exactly one lepton
e At least one photon
e Exactly 1 b-tagged jet at 70% and 85% WPs of the DL1r algorithm
e Missing pr > 30 GeV
o M(evy) ¢ (80,100) GeV

S/B in the pre-selection region is 5.4%. The observed and expected number of events
for different processes are presented in Table 9.3. The composition of this region with
respect to the different photon origins and to the different background processes is il-
lustrated in 9.6 Data/MC comparison plots for the pre-selection region are illustrated

in Figures 9.7 and 9.8.
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Figure 9.5: W~ control region plots
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Table 9.3: Yields of signal and background processes in the pre-selection region. Only

Process

Yield

tq_7
tiy
W~ + jets
Zvy + jets
tt
s-chan
twW
t-chan
VvV
W + jets
Z + jets

3428.41 £ 39.6025
19814.9 £ 25.8841
10468.5 £ 110.564
3350.23 £ 39.3838
17917.3 £ 53.8612
76.6172 £ 1.57179
4145.94 + 24.1357
1651.71 £ 9.83593
124.105 £ 3.65797
1027.24 £ 137.636
1037.05 £ 70.6005

Total

63042 £ 208.536

DATA

66078

statistical uncertainties are included in the calculation.
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Figure 9.6: Composition of the pre-selection region with respect to the photon origin
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(left) and to the different processes (right).
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Figure 9.8: Pre-selection region plots
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Chapter Ten: Separation of signal events from

background events

As described in the previous section, major backgrounds for gy process arise from
tt, tty and W~y+jets events. To distinguish between signal and background events, a

deep-learning, neural network based approach is used.

10.1 Signal region categorization

In order to optimize the sensitivity of the analysis, the signal region is classified into
two categories based on number of forward jets: Zero-forward jet region (”0-fj”) or
At least one forward jet region (”>1-fj”). This is motivated by the fact that S/B is
high for bins corresponding to nfjets>0 compared to nfjets==0, as illustrated in Fig-
ure. Signal and background composition for these two regions are shown in Figure.

Expected yields are presented in Table.

Two different neural networks, one for each region, are trained to separate signal

from background.

10.2 Architecture of the neural networks

The neural networks are implemented using Keras library, with TensorFlow as the
backend. Each network consists of one input layer, two hidden layers and one output
layer. The input layer contains n nodes, where n = number of input features. Each
hidden layer has n+1 nodes and the output layer has a single node. All layers are
dense, i.e., each node in a layer is connected to all nodes present in the previous and
next layer. For input and hidden layers, the Leaky Rectified Linear Unit (ReLU)

function f(z) is used as the activation function.
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x, ifz >0
f(@) = (10.1)
0.05z, ifx<0.

For the output layer, the sigmoid function o(z) is used as theactivation function:

B 1
1 4e®

o(z) (10.2)

Binary cross-entropy function is used as the loss function. Adam algorithm is used
as the optimizer for the network for updating the weights of each node during train-
ing. Accuracy and Area Under the ROC Curve (AUC) are used metrics during the

neural network training.

Nentries

loss == > [p(i) log (i) + (1 = p(i)) log (1 — q(3)) | - (103

10.2.1 Input features for the neural networks

A total of 135 (94) kinematic and topological variables are considered as inputs for
the neural network in > 1-fj (0-fj) category. Using XGBoost, feature importance score
is calculated for all of these variables. Ranking of all variables based on the feature
importance score for > 1-fj and 0-fj categories is presented in Figures 10.1 and 10.2,

respectively.

In each category, variables that are ranked high in the feature importance plot
are selected as the input features for the NN. Table 10.1 lists the input variables used
for training the neural network in 0-fj and > 1-fj cateogries. To reduce theoretical
systematic uncertainties, maximum value for njets and nfjets is set at 4. Data/MC
comparison plots for input variables are shown in Figures 10.3, 10.4, 10.5 for 0-fj

category and Figures 10.6, 10.7, 10.8 for > 1-fj category.
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Variable
b-jet n
Number of jets
An(b, )
Transverse mass
Top quark mass
pr of (b+7)
Invariant mass of (b4 ¢)
b-jet pseudo-continuous tag weight bin
Invariant mass of (b+ )
b-jet pr
pr of (top-quark + )
Lepton ID
An(b, {)
Missing transverse momentum
AR(b, 0)
Invariant mass of (b+forward-jet)
Invariant mass of (¢ + )
cos(8) (v, leading forward-jet)
HT
pr of leading forward-jet
An(leading forward-jet, )
Energy of (v, leading forward-jet)
Is leading non b-tagged jet n > 2.5 7
Number of forward-jets
Energy of W-boson
Total variables 15

.C>
&h
Y,

T
o

MR K K A

R Il e i i
>

NisRaReRaRa RN alie

Table 10.1: List of variables used as input features of the NN for 0-fj and >1-fj regions
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Feature importance
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Figure 10.1: Feature importance plot for > 1-fj category

10.3 Training of the neural networks

Before the input features are provided to the NN, they are transformed into a range

[0, 1] using the following equation.

X — X.min(axis=0)
X .max(axis=0) — X.min(axis=0)

Xy = (10.4)

The events are labeled as 0 (=background) and 1 (=signal) and the event weights

are included in the training progress. The full sample is split into three subsamples
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Figure 10.2: Feature importance plot for 0-fj category
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Figure 10.3: Input variable plots for 0-fj category

79



Events

Data / Pred.

Events

Data / Pred.

Events

Data / Pred.

=
o
w

T
ATLAS Internal -¢-DATA COtay
Vs =13 TeV, 139 fo* [tty Wy +jets

None Wzy +jets Wt
E zerofj [s-chan otw E
F Pre-Fit [Jtchan MWW 7
r WW +jets [@Z +jets
7 Uncertainty

o

10

6
50 100 150 200 250 300 350 400 450 500
b+lepton mass [GeV]

ATLAS Internal -¢-DATA COtay
(s =13 TeV, 139 fo* [tty Wy +jets

mm N RN RN AR RERER R R

None Wzy +jets Wt
E zerofj [Os-chan Otw E
[ Pre-Fit [Jtchan WV 1
WW +jets [@Z +jets
77 Uncertainty

50 100 150 200 250 300 350 400 450 500
b+photon mass [GeV]

T I L e e e o o B R AN
ATLAS Internal -¢-DATA Otay
Vs =13 TeV, 139 fo* [tty Wy +jets

None Wzy +jets Wt

zerofj [[s-chan Otw E

Pre-Fit [Jt-chan mvv 3
WW +jets [@Z +jets ]
77 Uncertainty

100 150 200 250 300

top+photon P, [GeV]

Events

Data / Pred.

Events

Data / Pred.

Events

Data / Pred.

L e e e
I I I I I I I

-
E ATLAS Internal -¢-DATA Ctay E
s =13 TeV, 139 fb* @tty Wy +jets 3
[ None Wzy +jets Wt N
zerofj Ols-chan  [tw E
F Pre-Fit ]

[Jt-chan
EW +jais

1 2 3 4 5 6

Leading b-jet DL1r continuous bin

e R A Ra Ea o e !
ATLAS Internal -¢-DATA Ctay
(s =13 TeV, 139 fo* [tty Wy +jets

None Wzy +jets Wt
L zerofj [Os-chan Otw
Pre-Fit [Jt-chan mvv

WW +jets
. Uncertainty

[z +jets

:

27

;;,
i:;

20 40 60 80 100 120 140 160 180 200

b-jet P, [GeV]

L e e e
ATLAS Internal -¢-DATA Otay 9
s =13 TeV, 139 fb* [tty Wy +jets |
None Wzy +jets Wt E

F zerofj [Os-chan  [OtwW 7
| Pre-Fi [Jt-chan (] _
E BW +jets @ ts 3
77 Uncertainty ]

.® ® o ]

-15 -10 -5 0 5 10 15 20
Lepton PID

Figure 10.4: Input variable plots for 0-fj category
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Figure 10.5: Input variable plots for 0-fj category

where it is ensured that all of these samples have nearly the same relative signal
and background compostions and that the events are divided randomly into these
three subsamples in order to avoid any bias due to the sample composition. One of
the subsamples is used for the training of the NN where one validates the training
progress. After the training, the third subsample is analyzed by processing the events
through the NN and predicting if the events are “signal-like” or “background-like”
events.

To ensure that the background is not favored in the training process as the sum of

weights of the background processes is much larger compared to the sum of weights
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Figure 10.6: Input variable plots for 1-fj category
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Figure 10.7: Input variable plots for 1-fj category
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Figure 10.8: Input variable plots for 1-fj category
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of the signal sample, the event weights for signal events in the training sample are
scaled in order to equalize the sum of weights, so that the loss function considers
signal and background events equally.

The NN is trained for 5000 epochs where 10,000 events are considered in each step
of an epoch. The value of loss function and the accuracy as a function of number
of epochs trained are shown in Figures 10.9 and 10.10 for 0-fj and >1-fj categories,

respectively. After the training, an accuracy of 70 % is achieved in both categories.

10.3.1 Output of the neural networks

The output of the neural networks for 0-fj and >1-fj categories are shown in Figures
10.11 and 10.12. Signal and background events are normalized to their nominal event

weight in these plots.
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Chapter Eleven: Systematic Uncertainties

Systematic uncertainties that affect the normalization of signal and background and/or
the shape of the neural network discriminant distributions are documented in this
chapter. Individual sources of systematic uncertainty are considered uncorrelated
with respect to each other. Correlations of a given systematic uncertainty are main-

tained across all signal and control regions, unless specified otherwise.

These are classified into two categories: Experimental and Theoretical. Section
11.1 describes the experimental systematic uncertainties. Theoretical uncertainties
related to the MC modelling are presented in Section 11.2. Tables 11.1 & 11.2 presents
a list of all systematic uncertainties considered in this analysis and indicates whether

they are taken to be normalization-only, or to affect both shape and normalization.

11.1 Experimental systematic uncertainties

11.1.1 Luminosity

The uncertainty in the combined 2015-18 luminosity is 1.7%. The luminosity un-
certainty is applied to all MC samples. To account for the difference in pile-up
distributions for data and MC simulations, an uncertainty related to the MC scale
factors is applied.

The uncertainty on the integrated luminosity is 1.7%, affecting the overall nor-
malization of all processes estimated from the simulation. It is derived, following a
methodology similar to that detailed in Refs. from a preliminary calibration of the
luminosity scale using x-y beam-separation scans performed in August 2015 and May
2016.
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Systematic uncertainty Type Components

Luminosity N 1
Pile-up reweighting SN 1
Physics Objects
Photon SN 2
Electron SN 4
EGamma SN 2
Muon SN 15
Jet energy scale (JES) SN 29
Jet energy resolution (JER) SN 8
Jet vertex tagger (JVT) SN 1
b-tagging efficiency SN 45
c-tagging efficiency SN 20
Light-tagging efficiency SN 20
Missing pr SN 3
Total (Experimental) 152
Data-driven background estimates
e — vy fakes N 1
h — ~ fakes N 1
Non-prompt leptons N 1
Total (Data-driven reducible background) 3

Table 11.1: Sources of experimental systematic uncertainty considered in the analysis.
“(N)” means that the uncertainty is taken as normalisation-only for all processes and
regions affected. All other uncertainties affect also the shape of the fitted distributions
and/or the acceptance in the fit regions. Some of the systematic uncertainties are
split into several components, as indicated by the number in the rightmost column.

11.1.2 Leptons

Uncertainties associated with leptons arise from the trigger, reconstruction, identifi-
cation, and isolation, as well as the lepton momentum scale and resolution. The re-
construction, identification and isolation efficiency of electrons and muons, as well as
the efficiency of the trigger used to record the events, differ slightly between data and
simulation. Scale factors are derived using tag-and-probe techniques on Z — (1(~
(¢ = e, ) data simulated samples, and are applied to the simulation to correct for
differences. The effect of these uncertainties is propagated as uncertainties to the

event weight.
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Systematic uncertainty Type Components

tqy modelling

HUR SN 1
HF SN 1
Parton shower and hadronisation model =~ SN 1
PDF uncertainty SN 1
tty modelling
HR SN 1
Ur SN 1
Parton shower and hadronisation model =~ SN 1
PDF uncertainty SN 1
PYTHIAS var3c SN 1
W~ modelling
HUR SN 1
PDF uncertainty SN 1
Z~ modelling
HR SN 1
HUE SN 1
PDF uncertainty SN 1
tt modelling
MR SN 1
HE SN 1
PDF uncertainty SN 1
PYTHIAS var3c SN 1
Other background modelling
Single-top Cross section N 1
Z+jets Cross section N 1
W +jets Cross section N 1
Diboson Cross section N 1
Total (Signal and background modelling) 23
Total (Exp.+Theory+Data-driven) 178

Table 11.2: Sources of theoretical systematic uncertainty considered in the analysis.
“(N)” means that the uncertainty is taken as normalisation-only for all processes and
regions affected. All other uncertainties affect also the shape of the fitted distributions
and/or the acceptance in the fit regions. Some of the systematic uncertainties are
split into several components, as indicated by the number in the rightmost column.
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Additional sources of uncertainty originate from the corrections applied to adjust
the lepton momentum scale and resolution in the simulation to match those in data,
measured using reconstructed distributions of the Z — ¢*¢~ and Jv — £T¢~ masses,
as well as the measured F/p in W — ev events, where F and p are the electron
energy and momentum, as measured by the calorimeter and the tracker respectively.
To evaluate the effect of momentum scale uncertainties, the event selection is redone
with the lepton momentum varied by +10. For the momentum resolution uncertain-

ties the event selection is redone with the lepton momentum smeared.

11.1.3 Photons

Uncertainties associated with photons arise from the identification and isolation pro-
cedures. The scale factor for the photon ID efficiency is derived from three measure-
ments: he radiative Z boson method using a sample enriched in events with radiative
Z boson decays, the electron extrapolation technique using a sample enriched in
Z — ee events where the similarity between electrons and photons in the detector
is exploited, and the matrix method using a sample enriched with isolated, high-ps
photons and exploiting that the narrow-strip variables are only weakly correlated to
the isolation. The scale factor is computed as the ratio of the efficiency measured in
data and that determined in simulation. The sets of scale factors of all measurements
are combined into one single set that is applied to simulation to correct for deviations
between efficiencies measured in data and found in simulation. The scale factors for
photon isolation are measured as described in Ref. [88]. The scale factors are varied

up and down by one standard deviation.

11.1.4 Jets and missing transverse momentum

Uncertainties associated with jets in principle arise from the efficiency of jet identifi-
cation based on the JVT variable, as well as the jet energy scale (JES) and resolution.
Differences between data and MC on the JVT efficiency for hard-scatter jets are cor-
rected via dedicated scale factors measured in Z-jets events. Uncertainties on the
JVT scale factors include the statistical uncertainty and 30% uncertainty on the es-

timation of the residual contamination from pile-up jets after pile-up suppression.
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These two uncertainties are combined into a single uncertainty that is varied up and

down.

The jet energy scale and its uncertainty were derived by combining information

from test-beam data, LHC collision data and simulation.

The EM* reconstruction is affected by uncertainties associated with leptons and
jet energy scales and resolutions, which are propagated to E*** and thus are included
under the corresponding per-object uncertainty category. Additional small uncertain-
ties associated with the modelling of the underlying event, in particular its impact

on the pr scale and resolution of unclustered energy, are also taken into account.

11.1.5 Flavour-tagging

Uncertainties on the efficiencies of b-tagging are evaluated from auxiliary measure-
ments in data in separate control regions enriched in either b-,c- or light-flavoured jets.
A set of 45 independent uncertainty sources are considered for b-jets and 20 sources

are considered for c-jets, while 20 components for light-flavour jets are considered.

11.2 Theoretical systematic uncertainties

11.2.1 tgy modelling

All theoretical systematic variation samples for gy simulation are normalized to the
cross-section obtained from the nominal prediction to avoid dependencies on the MC-
generated phase space. However, differences in rate and shape might still occur due

to differences in reconstruction efficiency and migration effects.

Uncertainties due to 7-point QCD scale variations are obtained by varying renor-
malization scale (ug) and factorization scale (up) separately and together up and
down by a factor of 2 with respect to the nominal sample value. No smoothing and

symmetrisation methods are applied to the variation. These variations are shown in
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Figure 11.2: Impact of tqy parton shower model uncertainty on the neural network
discriminants for 0-fj, > 1-fj, ¢ty and W~ control regions.

11.2.2 ¢ty modelling

All theoretical systematic variation samples for ¢ty simulation are normalized to the
cross-section obtained from the nominal prediction to avoid dependencies on the MC-
generated phase space. However, differences in rate and shape might still occur due

to differences in reconstruction efficiency and migration effects.

Uncertainties due to 7-point QCD scale variations are obtained by varying renor-
malization scale (ug) and factorization scale (up) separately and together up and
down by a factor of 2 with respect to the nominal sample value. No smoothing and

symmetrisation methods are applied to the variation. These variations are shown in

Figure.

The uncertainty due to the choice of parton shower and hadronisation model
(tty PS model) is estimated by comparing the ¢ty nominal sample, produced with
MG5+PyTHIAS, with MG5+HERWIGT sample. Same LHE events are used for both
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PyTHIA8 and HERWIGT samples.

The uncertainty due to the choice of PDF set is evaluated by performing fits to an
ensemble of 100 “replica” pdfsets (reduced set) provided by the NNPDF. Uncertainty

is determined by the standard deviation of all the replicas.

The uncertainty due to ISR/FSR modelling is estimated by varying var3c param-
eter of Al14 eigenset to low and high radiation scenarios. Dedicated tty AFII samples

produced for this purpose are used.
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Figure 11.3: Impact of renormalization and factorization scale variations of tty sample
on the neural network discriminants for 0-fj, > 1-fj and ¢¢vy control regions.
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Figure 11.4: Impact of var3c and parton shower variations of ¢qy sample on the neural
network discriminants for 0-fj, > 1-fj and ¢ty control regions.

11.2.3 W~ and Z7v modelling

For W~ and Zv samples, 7-point QCD scale variations and PDF variation uncertain-

ties are included.
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Figure 11.5: Impact of renormalization and factorization scale variations of W~ sam-
ple on the neural network discriminants for 0-fj, > 1-fj and ¢t~y control regions.

11.2.4 ¢t modelling

For tt sample, 7-point QCD scale variations, var3c variation and PDF variation un-

certainties are included.

11.2.5 Modelling of other backgrounds

Uncertainties on the total cross-section are included for minor backgrounds: single-

top production, Diboson, Z+jets and W+jets
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Figure 11.6: Impact of renormalization and factorization scale variations of Z~ sample
on the neural network discriminants for 0-fj, > 1-fj and ¢¢vy control regions.
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Figure 11.7: Impact of renormalization and factorization scale variations of ¢t sample
on the neural network discriminants for 0-fj, > 1-fj and ¢t~y control regions.
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Figure 11.8: Impact of var3c variations of ¢t sample on the neural network discrimi-
nants for 0-fj, > 1-fj and ¢t~y control regions.
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Chapter Twelve: Statistical Analysis

12.1 Asimov fit results

A simultaneous profile-likelihood fit to Asimov dataset produced with fi;qy = ftzy =
pw~ = 1.0 is performed in the signal regions, t#y CR and W+ CR. In the signal
regions and tty CR, the output of the neural network is used as the discriminant.
In W~ CR, a single bin fit, with number of events as the discrimination variable,
is performed because some input variables for the neural network are not available
in this region. Normalization factors for signal ( pug,), tty samples ( ) and Wy

samples (pw~) are freely floated during the fit.

In order to speed up the fit, a pruning algorithm is applied before the fit to remove
systematic uncertainties that have a very small effect. This algorithm is applied per
sample and per region. The normalization of a systematic uncertainty is dropped if
it has < 1% impact on the normalization. The shape of a systematic uncertainty is

dropped if the impact in all bins of the discriminant is < 1%.

Pre-fit and Post-fit distributions of the neural network output for all regions are
shown in Figure 12.1 and 12.2. Pre-fit and post-fit values for all nuisance parameters
are illustrated in Figure 12.4. As can be seen from this plot, a number of nuisance
parameters related to tqy, tty and W~ modelling (tgy PS model, ¢ty var3c, tty PS
model, W+~ ugr, W ur), are overconstrained. This is expected as the fit has sufficient
statistics for these processes in the signal and control regions that the fit is able to
rule out the 1 sigma variations. The correlation matrix for the nuisance parameters
having at least one correlation coefficient above 10% is shown in Figure 12.3. In
general correlations are small, although there are several nuisance parameters corre-
lated at the level of 40-70% which is not unexpected as several of them have large

uncertainties that cause similar changes in the background prediction.

The norm factors and the y-factors which describe the per-bin statistical uncer-

tainties are shown in Figure 12.6. The expected best-fit value of j,, is 1.0 115 =
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1.0 +8:8§ (stat.) fg:%g (syst.). The expected significance with respect to no-tqy hy-

pothesis is 6.5 o.

Ranking of nuisance parameters based on the impact on (i, is presented in Figure
12.5. The largest impact on the signal strength comes from the tqvy parton shower
model variation uncertainty. As can be observed from Figure 11.2, this is mainly
because the NP corresponding to the tqy PS model changes the signal yield approx-
imately by 10% in the highest S/B bin.

12.2 Background only fit to data

A simultaneous profile-likelihood fit to data is performed for bins with S/B < 10%
in the signal regions, tty CR and W+~ CR. In the signal regions and tty CR, the
output of the neural network is used as the discriminant. In W~ CR, a single bin
fit, with number of events as the discrimination variable, is performed because some
input variables for the neural network are not available in this region. Normalization
factors for signal (pu4,) is fixed at 1.0. Normalization for t¢y samples (puz,) and Wy
samples (pw~) are freely floated during the fit.

In order to speed up the fit, a pruning algorithm is applied before the fit to remove
systematic uncertainties that have a very small effect. This algorithm is applied per
sample and per region. The normalization of a systematic uncertainty is dropped if
it has < 1% impact on the normalization. The shape of a systematic uncertainty is

dropped if the impact in all bins of the discriminant is < 1%.

Pre-fit and Post-fit distributions of the neural network output for all regions are
shown in Figure 12.7 and 12.8. Pre-fit and post-fit values for all nuisance param-
eters are illustrated in Figure 12.10. As can be seen from the pull plot, a number
of nuisance parameters related to tqvy, tty and W+ modelling (tgy PS model, tty
var3c, tty PS model, W~ ugr, W~ ur), are overconstrained. This is expected as
the fit has sufficient statistics for these processes in the signal and control regions

that the fit is able to rule out the 1 sigma variations. The correlation matrix for
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Figure 12.1: Pre-fit distributions of the neural network output with Asimov data for
all regions used in the fit.
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Figure 12.2: Post-fit distributions of the neural network output with Asimov data for
all regions used in the fit.
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Figure 12.3: Correlation matrix of the nuisance parameters that are included in the
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nuisance parameters having at least one correlation coefficient above 10% is shown
in Figure 12.9. In general correlations are small, although there are several nuisance
parameters correlated at the level of 40-70% which is not unexpected as several of

them have large uncertainties that cause similar changes in the background prediction.

The norm factors and the ~-factors which describe the per-bin statistical uncer-

tainties are shown in Figure 12.11. The best-fit value of iz, is 0.98 7007 and puyy is

1.23 7543,
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Figure 12.7: Pre-fit plots with data for bins with S/B < 10%. Statistical and Sys-
tematic uncertainties are included in these plots.

111



%25000’—#\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\ g L L I B B L B BB
2 [ ATLAS Internal -¢-DATA Mty 1 <12000~ ATLAS Internal -#-DATA Oty 7
2 L {s=13Tev, 139 o @tTy COWy+jets 1 £ L Vs=13TeV, 139 fo’’ [tTy Wy +jets 1
%20000; None Wzy +jets Wt 7 L%loooo; None Wzy +jets Wt n
+ SR: Zero fj category [[]s-chan otw B I SR: Atleast 1 fj categ[}s-chan Otw B
[ Post-Fit [Jt-chan [\ ] [ Post-Fit [Jt-chan Bvv ]
- BW +jets [Z +jets B 8000/— BW +jets [Z +jets
15000 [[]FakeLeptons’ Uncertainty™| C [[JFakeLeptons’ Uncertainty 7|
b 6000 =
10000 - 1
4000
5000 2000
3 2 3 oF E555 BERame e e
o b2 ER a3 E
g ¢ * 3 s ¥ * - * E
§ o5t 3 8 o7sft 3
0.5- : : : : : : : - 0.5% : : : : :
0 01 02 03 04 05 06 07 08 0 0.1 0.2 0.3 0.4 0.5 0.6
NN Score NN Score
x10°
__% \\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\ g k\l\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\l\A
216000~ ATLAS  Internal 4-DATA  [tqy 1 =2 [ ATLAS  Internal 4-DATA  [tqy ]
£ {s =13 TeV, 139 ib™ @ty COOwWy+jets 1 2 100 Vs=13TeV, 139 o @tty Wy +jets —
% None Wzy +jets Wt i L%’ [ None Wzy +jets Wt ]
tty CR [Js-chan otw ] L WyCR [Js-chan ojtw i
12000 post-Fit [Jtchan VWV = 80— Post-Fit [Jtchan W -
BW +jets [Z +jets ] r BW +jets [Z +jets ]
[]FakeLeptons’ Uncertainty ] L Fakel eptons’ Uncertaint,
] 60
40— —
20
3 ——— e . e ARt
I g 1.25? E
g g k * E
& g orst .
01 02 03 04 05 06 07 08 05 -04-02 0 02 04 06 08 1 12 14
NN Score Nevts

Figure 12.8: Post-fit distributions obtained from background-only fit to data for bins
with S/B < 10%. Statistical and Systematic uncertainties are included in these plots.
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Figure 12.9: Correlation matrix of the nuisance parameters included in the
background-only fit to data.
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Figure 12.10: Pre- and post-fit values of the nuisance parameters considered in the
background-only fit to data.
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Chapter Thirteen: Conclusion

A first ATLAS search for the associated production of a single top quark and a pho-
ton is presented in this dissertation. The analysis is based on the full Run-2 dataset
of pp collisions at /s = 13 TeV collected by the ATLAS experiment at the CERN

Large Hadron Collider and corresponding to an integrated luminosity of 139 fb~1.

Major backgrounds for the signal are tty, W+, tt. A small contribution from
other processes like Zv, Z+jets is also expected. Backgrounds with prompt photon
and prompt lepton are estimated using simulation. For estimating backgrounds with
fake photons, simulation is corrected using data-driven scale factors. In particular,
for estimating fake photon backgrounds due to mis-reconstructed electrons, e — ~
fake rates are measured in data and simulation in bins of 1, and photon conversion
type. Scale factor SF(e — =) is obtained from the ratio of e — 7 fake rate in data
over that in simulation. For backgrounds with j — ~ fakes, scale factors SF (j — 7)
are derived in bins of 7,, pr, and photon conversion type using the ABCD method.
SF(j — =), defined as the ratio of number of events with a hadronic fake photon in
data over that in simuation, is estimated from four regions A, B, C and D constructed
using photon isolation and identification criteria. Dedicated control regions are used

for validating tfvy, W+~ backgrounds.

To optimize the sensitivity of the analysis, signal region events are classified into
two categories based on the number of forward jets (0 fj or >1 fj). In each category, a
neural network trained with kinematic and topological event variables is used to sep-
arate signal from background. Signal strength p,,, defined as the ratio of measured
tqy cross-section to the SM expectation, is extracted by performing a simultaneous
profile likelihood fit to signal regions, ¢ty CR and W~ CR.

The expected best-fit value of the ratio of the observed tqy cross-section to that
of the SM prediction is 1.0773 = 1.0 7392 (stat.) 513 (syst.). This corresponds to

a p-value of 6.5 ¢ for the no-signal hypothesis.

116



Part 11

The combination of ATLAS

searches for flavour changing

neutral currents in ¢t — Hq decays
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Chapter Fourteen: Flavour Changing Neutral
Currents in t — Hq decays

Flavour changing neutral current (FCNC) interactions, like the decay of a top quark
to an up-type quark and a Higgs boson, are forbidden at tree level in the Stan-
dard Model (SM). These decays are possible at higher orders via loop diagrams, but
highly suppressed compared to the dominant top quark decay mode (¢t — bWW) due
to the Glashow-Iliopoulos-Maiani mechanism [89]. In the SM, the predicted branch-
ing ratios for t — ¢H decays are exceedingly small: &(t — Hu) ~ 10717 and
PB(t — Hc) ~ 1071 [90]. Thus, any observation of this process will be a clear hint
towards the physics beyond the SM.

An examples of an FCNC process at tree level is shown in Figure 14.1.

Y

.
.
-
.
.
.,
-
.
-
.

Figure 14.1: The diagram illustrates the tree level FCNC decay of the top quark.
FCNC interactions like this decay are forbidden in the SM at tree level.

In many theories beyond the SM, large enhancements in #(t — Hq) are possible
due to contributions from loop diagrams mediated by new bosons. Examples include
quark-singlet models[91-93], two-Higgs doublet model with (FC-2HDM) or without
(FV-2HDM) flavour-conservation [94], the minimal supersymmetric model [95], su-

persymmetry models with R-parity violation [96], or models with warped extra di-
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mensions [97]. Among them, the largest branching ratio, Z(t — Hc) ~ 1.5 x 1072,
appears in the 2HDM in which the tree level FCNC coupling is not forbidden by
any additional symmetry. The quoted branching ratio corresponds to a tree level
coupling that scales with quark masses as A\igg ~ \/thq /v, where m; is the top
quark mass, m, is the light up-type quark mass and v is the SM Higgs field vacuum

expectation value [98].

The ATLAS and CMS collaborations have performed searches [99-105] for t — Hgq
decays using 7, 8 and 13 TeV pp collision data collected during Run-1 and Run-2 of
the LHC. These analyses primarily searched for ¢¢ events where one top quark decays
via t — Wb and the other decays via t — Hq. The Higgs boson is assumed to have
a mass of 125 GeV and to decay as predicted by the SM. With Run-1 data, ATLAS
obtained #(t — Hc) < 0.46% and AB(t — Hu) < 0.45% [99] and CMS obtained
Bt — He) < 0.40% and B(t — Hu) < 0.55% [101], in both cases at 95% confi-
dence level (CL). Compared with Run-1, Run-2 searches benefit from the increased
tt cross-section at /s = 13 TeV, as well as the larger integrated luminosity delivered
by the LHC. Using 35.9 fb™! of data at /s = 13 TeV, the CMS collaboration has
performed a search using tf — WbHq events targeting H — bb decays, resulting in
upper limits of Z(t — He) < 0.47% and A(t — Hu) < 0.47% [102].

Using 36.1 fb~! of data at /s = 13 TeV, the ATLAS collaboration has per-
formed four analyses searching for t£ — WbHq events, and targeting H — bb, H —
WWH*, rr, ZZ*, H — vy, H — 77 decay modes [103-105]. Results from the combi-

nation of these searches are presented in Chapter 15.
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Chapter Fifteen: The combination of ATLAS
searches for FCNC in t — Hq decays

The ATLAS collaboration has performed four searches for flavour changing neutral
current decays of a top quark into an up-type quark (¢ = u,c) and the Standard
Model Higgs boson (t — Hq) using partial run-2 data, corresponding to an integrated
luminosity of 36.1 fb™! collected in 2015 and 16. All the analyses search for top-quark
pair events in which one top quark decays into Wb and the other top quark decay

into Hq. The targeted higgs decay modes in each analysis are:
e H — ~7 in both hadronic and leptonic ¢t decay channels [tqH (yv)] [103]

H — WW* 11, ZZ* — leptons with either two same-sign light leptons or three
light leptons [t¢H (ML)] [104]

H — 77 [tqH(r7)] [105]

e H — bb in the single lepton and opposite-sign dilepton ¢t decay channels
[tqH (0b)] [105]

Here, light leptons refers to electrons and muons, including those from 7 lepton decay.
Results from the combination of these four searches are presented in this chapter

following a brief summary of individual FCNC analyses is Section 15.1.

15.1 Individual ATLAS FCNC searches

15.1.1 tqH(y7v) analysis

This FCNC analysis (documentation found in Ref. [103]) exploits the excellent dipho-
ton mass resolution to identify H — +v decay over the continuum background. Major
backgrounds for the signal are vy, tty, W~~ and Z~v. Based on the decay mode of
the W boson, the analysis is split into two categories, namely, events with only one

lepton in the final state (leptonic category) and events with no leptons in the final
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state (hadronic category).

The two top quarks are reconstructed with corresponding masses (M;, M) by
forming three-body objects from photons, leptons, jets and MET. Signal and back-
ground events are separated by applying selection cuts on M; and Ms. As shown in
Figure 15.1, an unbinned maximum likelihood fit is performed as a function of m.,

to determine the best-fit value of the parameter of interest ji,, defined as:

foy = B(t — qH) (15.1)

> [ T T T T | T T T T T T T T I T T T T I T T T T I T -|1 T T H
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Figure 15.1: An unbinned maximum likelihood fit of m,, distribution to data

A total of 33 nuisance parameters (NP) are introduced in the construction of the
likelihood function. Leading systematic uncertainties in this analysis are ¢t produc-
tion cross-section, B(H — 77), integrated luminosity and photon energy scale &

resolution.
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15.1.2 tqH (ML) analysis

This analysis (documentation found in Ref. [104]) exploits multilepton signatures re-
sulting from Higgs decays to vector boson and/or 7 leptons. Two final states are
considered in this analysis: two same-sign light leptons(2¢SS) and three light leptons

(3¢). Events with 7,,q are vetoed to avoid overlap with tgH (77) analysis.

Major backgrounds in this analysis are t£V and t¢ events with fake leptons. In each
channel, two different Boosted Decision Tree (BDT) discriminants are constructed for
separating signal events from ¢tV and ¢t backgrounds, respectively. Flavor and kine-
matic properties of leptons, jets & angular separations between them are used as the
inputs to the BDT training. Figure 15.2 illustrates the BDT discriminant distribution
for t — uwH signal in the 3¢ channel.

The distributions of BDT discriminants are fitted to data to determine the best-fit

value of the parameter of interest iy, that is defined as:

Bt — qH)
0.002
A total of 152 nuisance parameters (NP) are introduced in the construction of the

likelihood function.

15.1.3 tqH(77) analysis

This analysis (documentation found in Ref. [105]) is sensitive to tt — Wb+ Hgq
events with H — 77 and W — jj. Major backgrounds in this analysis are due to
fake 7-lepton bkgs from ¢t & QCD multijet production processes. Signal selection is
optimized in four different categories based on the number of jets (exactly 3j or > 4j)

and the decay modes of 7 leptons (ThadThad OF TiepThad)-
In each category, a BDT discriminant, constructed using variables like m,,, mgy,
is used for separating signal from the background. BDT discriminant distribution for

the (ThadThada, 3j) category is shown in Figure 15.3.

The parameter of interest in this analysis is .., defined as:
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Figure 15.2: BDT discriminant distribution for ¢t — uwH signal in the 3¢ channel

Bt — qH)
0.01
A total of 109 nuisance parameters (NP) are introduced in the construction of the

Hrr = (153)

likelihood function.

15.1.4 tqH(bb) analysis

This analysis (documentation found in Ref. [105]) targets tt — WbHq process, with
H — bb and W — [v. Events with exactly one lepton are selected. Major back-

grounds for the signal arise due to tt+jets and QCD multi-jet processes.
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Figure 15.3: BDT discriminant distribution for the (7,447haa, 3j) category

Based on the number of jets (4, 5, >6) and b-tagged jets (2, 3, >4), this analysis is
split in 9 different regions. In each region, a likelihood discriminant used to separate
signal from the background. Invariant masses of leptons, jets and MET, and those
corresponding to W, t and H resonances are used as the inputs for constructing the
likelihood. BDT discriminant distribution for (47, 2b) category is shown in Figure
15.4.

The parameter of interest in this analysis is fu:

Bt — qH)

15.4
0.005 (154)

Koy =

A total of 140 nuisance parameters (NP) are introduced in the construction of
the likelihood function. Leading systematic uncertainties in this analysis are the b-

tagging and c-tagging calibration uncertainties.
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Figure 15.4: BDT discriminant distribution for (4, 2b) category

15.2 The Combination of ATLAS FCNC searches

A binned likelihood function L£(Zeome, 5) is constructed by combining the distribu-
tions of discriminants from each individual analysis. The likelihood function depends
on the signal-strength parameter Z,,,,;, defined as the branching ratio £ of the decay
t — c(u)H, and nuisance parameters 5, denoting a continuous set of parameters that
parametrise the effect of each systematic uncertainty on the signal and background
expectations in each region.
As the parameter of interest (POI) is defined differently in each individual analy-
sis, a parametrization scheme (shown in Table 15.1) is introduced in the combined
workspace to correlate the signal strength parameter across all channels.

A total of 434 nuisance parameters are incorporated in the combined likelihood func-

tion. These are constrained by Gaussian or log-normal probability density functions
in the likelihood fit.
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Channel Parametrization
H — vy fyy = 0.01 X Beomp
H — WW* 77, ZZ* — leptons | piar =5 X PBeoms
H — 77 frr = 1 X Beomp
H — bb Uy = 2 X Beomp

Table 15.1: Parametrization scheme for correlating POIs across all individual chan-
nels.

15.2.1 Correlation Schemes

The following correlation scheme for nuisance parameters has been implemented

across all individual analyses.

e Signal modelling systematics: Uncertainties related to the signal cross section
and the signal parton shower modelling are correlated across all analyses. Un-

certainties due to the variation of initial state radiation/final state radiation
(ISR/FSR) scales are also correlated

o Jet Energy Resolution: The NP corresponding to the Jet Energy Resolution

uncertainty is correlated across all analyses

o Jet Energy Scale: 20 NPs corresponding to uncertainties on Jet Energy Scale
are correlated across bb, 77 and multilepton analyses. (In H — 7~ analysis, Jet
Energy Scale uncertainty is represented with only one 1NP. Thus, it is treated

as uncorrelated in this analysis)

o Jet Vertex Tagging: The NP corresponding to the Jet Vertex Tagging uncer-

tainty is correlated across all analyses

o Luminosity & pileup reweighting scale factor: The NPs related to the uncer-
tainties on luminosity and the pileup reweighting scale factor are treated as

correlated across all analyses

e b-tagging: Although all analyses use MV2cl0 tagger, the b-tagging working
points are different in each analysis: H — ~v analysis uses 77% WP, H — bb

analysis uses 60% WP, where as multilepton and H — 77 analyses use 70%

126



WP. 27 NPs related to the flavour tagging uncertainties are correlated across

bb, 77 and multilepton analyses.

e Background modelling systematics: The NPs related to background modelling
systematics are kept uncorrelated as the composition of real and fake back-

grounds is different across all analyses

As shown in Table 15.2, the above correlation scheme has negligible impact on

the best fit value of the signal strength parameter.

Correlated NP Asimov fit to Bpymp=0% | Asimov fit to Bomp=0.2%
None (Only POI) 0 00200 0.270:025
Luminosity 0f8;8‘%8? O'thﬁggg
Jet Energy Resolution Ofgjg%% 0-2f8:8‘23
Jet Vertex Tagger 01002100 0.250:029
Pileup Reweighting Ofg:g%g? 0-2458:822
Parton Shower Modelling otg;g‘%gg 0.2t8182§
Signal cross-section 0t8;8‘%2$8 0-2t8:825
ISR/FSR 0790401 0.2%5:0%5
Jet Energy Scale (20 NPs) Ofgjgéggg 0.250:029
Flavour-tagging (27 NPs) 0.270085
All of above NPs 070 orees 0.27002

Table 15.2: Best fit value (Asimov) of #(t — Hc) is shown for different correlation
scenarios. Impact on .,y due to the NP correlations is found to be negligible as
the analysis is dominated by statistical uncertainties.

15.3 Results from the Combination

A binned profile likelihood fit is performed simultaneously in all channels to obtain
the best fit value of the t — ¢H branching ratio( @) Uncertainties on the % mea-
surement are determined by varying the test statistic g, as defined in Equation

15.5, by one unit from its minimum. 95% CL upper limits on the branching ratio
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AB(t — qH) are determined from the g4 distribution using the CL; method.

gz = —2n {c(@, 0)/L(%. 5)1 , (15.5)

where, %, 0 are the branching ratio and nuisance parameter values obtained from

the profile likelihood fit; ] represent nuisance parameter values which maximizes the

likelihood L for a given branching ratio 4.

Negative Log-likelihood (NLL) scan plot for Asimov and data fits are presented
in Figures 15.5, 15.6 and 15.7.

3
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BR(t— Hc) BR(t— Hu)

Figure 15.5: Negative Log-likelihood (NLL) scan plot for Asimov fit to = 0%.

The first set of combined results is obtained for each branching ratio separately,
setting the other branching ratio to zero. The best-fit combined branching ratios are
B(t — cH) =3.0759 x 107* and B(t — uH) = 4.2¥52 x 10~*. A comparison of the
best-fit branching ratios for the individual searches and their combination is shown
in Table 15.3 and Figure 15.8 for #(t — ¢H) and in Table 15.4 and Figure 15.9 for
Bt — uH).
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Figure 15.7: NLL scan plot for data fit.
Channel Observed B(t — cH) | Expected B(t — cH)=0% | Expected AB(t — cH)=0.2%
: +8.0 —4 +0.08 +0.09
+7.4 —4 +0.06 +0.10
Y 6.9%5, x 10 02002 0.27508
+9.9 —4 +0.12 +0.15
+2.3 -3 +0.16 +0.17
; : +4.0 —4 +0.04 +0.06
Combination 3.0, x 10 020,02 027505

Table 15.3: Observed and Asimov (in %) fitted #(t — cH) results are shown for
individual analyses and their combination.
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Channel Observed A(t — uH) | Expected B(t — uH)=0% | Expected Z(t — uH)=0.2%
multilepton 42778 % 1074 0 ooy 027508
Ay 75780 x 1074 0o 0255
T —5.31%1 x 107 (R 0.250:15
bb 0.2727 x 1073 07920 02752
Combination 127725102 07001 027505

Table 15.4: Observed and Asimov (in %) fitted Z(t — uH) results are shown for
individual analyses and their combination.
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Figure 15.8: Best-fit #(t — c¢H) for the individual analyses and their combination
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Figure 15.9: Best-fit #(t — wH) for the individual analyses and their combination

The observed (expected) 95% CL combined upper limits on the branching ratios
are B(t — cH) < 1.1x107% (8.3x107%) and #(t - uH) < 1.2x107 (8.3x107%).
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A summary of the upper limits on the branching ratios obtained by the individual

searches, as well as their combination, is illustrated in Figures 15.10 and 15.11.
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Figure 15.10: Observed and expected 95% CL upper limits on #(t — cH) for indi-
vidual searches and their combination.

Upper limits on the branching ratios Z(t — Hq) (¢ = u,c) can be translated
into upper limits on the non-flavour-diagonal Yukawa couplings A,z appearing in

the Lagrangian [106]:
Lrone = —MpgrtLgrH — At Gutr H + hec.

Using the expression derived in Ref. [100], the coupling |A\m| can be extracted
as || = (1.92 £+ 0.02)\/%(t — Hgq). The observed (expected) upper limits on
the couplings from the combination of the searches are |Ag| < 0.064 (0.055) and
Near| < 0.066 (0.055).

A similar set of results can be obtained by simultaneously varying both branch-

ing ratios in the likelihood function. Figure 15.12 shows the 95% CL upper limits
on the branching ratios in the #(t — Hu) versus #(t — Hc) plane. The corre-
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Figure 15.11: Observed and expected 95% CL upper limits on A(t — uH) for indi-
vidual searches and their combination.

sponding upper limits on the couplings in the |A\y,z| versus |A\.g| plane are shown in
Figure 15.13.
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Figure 15.14: Nuisance parameter Ranking plot for ¢ — Hc analyses (fit to Data);
Top Row: Multilepton (left), vy (Middle), bb (Right); Bottom Row: 77 (left),
Combination (Right); Only systematic NPs are shown in the plot. NPs related to
MC statistics are excluded in above plots
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Ranking of the nuisance parameters included in the fit according to their impact
on the measured branching ratio are shown in Figure 15.14 for (t — Hc) and in
Figure 15.15 for A(t — Hu).

Figure 15.16 shows the summary of the current 95% confidence level observed lim-
its the branching ratios of the top quark decays via flavour changing neutral currents
to a quark and a neutral boson t — Xq (X=g, Z,v or H, g=u or ¢) by the ATLAS

and CMS Collaborations compared to several new physics models.

136



Pre-fit impact on p:

I
-0.015 -0.01 -0.005 31 0.005 0.01 0.015

[ 6=B+A8 0=8-00
Post-fit impact on p:
o 6=8+08 6=8-08

—e— Nuis. Param. Pull

Fakes_CR_Stat_130tau_fenc_tuH_bin3_m
fenc_Gen_from_ttbar_mi
Fakes_CR_Stat_20tau_fenc_tuH_bind_m
Diboson_Xs_ml

Fakes_Mu_Stat_18_m|
Fakes_CR_Stat_I30tau_fenc_tuH_bin2_m
Fakes_CR_Stat_I20tau_fenc_tuH_bins_m
Fakes_I20tau_MM_Closure_em_mi
Fakes_CR_Stat_I20tau_fenc_tuH_bin0_m
Fakes_CR_Stat_I30tau_fenc_tuH_bin0_m
QMisid_I20tau_ml

Fakes_Mu_Stat_14_ml
Fakes_I20tau_MM_FracConv_ee_ml
fenc_PS_from_ttbar_m
Fakes_CR_Stat_I20tau_fenc_tuH_bin3_m
Fakes_I30tau_MM_Closure_ml
Fakes_CR_Stat_I20tau_fonc_tuH_bin1_m
fene_XS_QCDscale_ml
TLAS_JES_Flavor_Comp_I30tau_Other_mi
Fakes_Mu_Stat_17_mi
Fakes_CR_Stat_I20tau_fenc_tuH_bin2_m
Fakes_MM_SubtrOther_mi
Fakes_I20tau_MM_Closure_ee_ml
ATLAS_JES_PU_Rho_ml

tH_PS_ml

fenc_varRF_ml

e Xs_ml

W_XS_PDFunc_ml
ttW_XS_QCDscale_ml
1tZ_XS_QCDscale_ml

AN AR RN AR R AR AR R RRRRR A
ATLAS Internal
Vs=13TeV, 36.1fb"

|

I

|

[ 16=8+28

i

i

N

-0.5 0 05
(66,)/08

-

15 2

oY
-0.02-0.015-0.01-0.005 61 0.005 0.01 0.015 0.02

Pre-fit impact on y:
Post-fit impact on j:
6=6+40

—e— Nuis. Param. Pull

nuialp_lepTight yy
nuibias_hadLoose_yy

nuialp_lepLoose_yy
nuibias_hadTight_yy

2 -15
Pre-fit impact on p:

[ 16=B+n0 0=0-00
Post-fit impact on p:

o 6=0+A8 0=8-08

—e— Nuis. Param. Pull

nos_topFrac_hh_tt
theory_ME_tt
btag_light_10_tt
jet_jes_etaintercalibration_modelling_tt
jet_jes_flavor_composition_tt
tau_eff_jetid_total_tt
theory_Vijets_tt
jet_jes_etaintercalibration_totalstat_tt
jet_jer_tt

btag_light_9_tt

pu_prw_tt
jet_jes_pileup_rhotopology_tt
btag_light_11_tt
nos_sys_lh4j_tt
jet_jes_effectivenp_1_tt
jet_jes_effectivenp_4_tt
jet_jes_flavor_response_tt
jet_jes_effectivenp_2_tt
theory_shower_tt
tau_tes_insitu_tt
btag_b_0_tt
jet_jes_effectivenp_5_tt
nos_fakeOrig_tt
jet_jes_pileup_offsetnpv_tt
el_es_scale_extra2015pre_tt
mur_muf_tt
mu_es_sagitta_rho_tt
fakeLep_lh_tt
jet_jes_effectivenp_6_tt

btag_light_7_tt

T T T[T [T T[T [T [T TIT]oT

ATLAS Internal
(s=13TeV, 36.1fb"

—_—
D ———

|

L ————
T S FURE s SUUTE FTETE FURE A

-2

-15 -1 -05 0 0.5 1 15

(©-6,)/00

2

nuimassca_yy

nuipsmihad_yy

a
0=0-00 -0.015 -0.01 -0.005 0

0005 001 0015

Pre-fit impact on p:

[ 16=B+A0 0=8-00
Post-fit impact on p:
I 6=5+00 6=8-08

—e— Nuis. Param. Pull

btag_C_EV_0_bb
tibarlight_PS_bb
ttbarbb_flavour_bb
ATLAS_JES_Flavor_Comp_bb
ttbarcc_XS_bb
ATLAS_JER_bb

6=8-00 ATLAS Internal

Vs=13TeV,36.1fb™

nuigene_yy

nuibr_yy
nuixs_yy
nuinh_yy
nuirad_yy
nuijes_yy

nuibta_yy
nuilum_yy
nuiphres_yy
nuiphid_yy

nuijer_yy
nuiprw_yy
nuigedsca_yy

il

nuitmas_yy

nuisof_yy.

nuipdt_yy
iy
nuimuid_yy
nuielid_yy

ttbarlight_generator_bb
ttbarbb_isr_bb

ttbar_XS_bb
ATLAS_JES_PU_Rho_bb
signal_PS_bb

QCDE_S5j_2b_bb
signal_generator_bb
btag_L_EV_0_bb
QCDE_4j_3b_bb
btag_B_EV_0_bb
ttbarlight_isr_bb
QCDMU_4j_3b_bb
QCDE_6j_3b_bb
QCDE_S5j_3b_bb
ttbarcc_PS_bb
tibarbb_generator_bb
tibarc_isr_bb
JET_Flavor_Response_bb
signal_isr_bb

Lumi_bb

QCDE_4]_4b_bb
ATLAS_JES_EffectiveNP_1_bb
ATLAS_JES_Etalnter_Model_bb
Viets_XS_bb

g
(©:6)/08
Pre-fit impact on p:
[ 16=B+18
Post-fit impact on p:
o 6=0+AB 0=8-08

—e— Nuis. Param. Pull

0=B-08

ttbarcc_XS_bb

nuimassca_yy
Fakes_CR_Stat_I30tau_fcnc_tuH_bin3_ml
Cor_ATLAS_FTAG_CO
Fakes_CR_Stat_|20tau_fcnc_tuH_bind_ml
XSttbar

fene_Gen_from_ttbar_ml

Diboson_XS_ml

tau_eff_jetid_total_tt
Fakes_CR_Stat_I30tau_fcnc_tuH_bin2_ml
Fakes_CR_Stat_|20tau_fcnc_tuH_bin5_ml
ttbarlight_PS_bb

ISRFSR

Cor_ATLAS_FTAG_BO

nuialp_lepTight_yy

Fakes_Mu_Stat_18_ml
Fakes_CR_Stat_|20tau_fcnc_tuH_bin0_ml
Fakes_|20tau_MM_Closure_em_ml
tau_tes_insitu_tt

ATLJER

nuinh_yy

ttbarbb_flavour_bb

theory_Vijets_tt

QMisld_[20tau_ml
Fakes_CR_Stat_I30tau_fcnc_tuH_bin0_ml
Fakes_CR_Stat_I20tau_fcnc_tuH_bin3_ml
nos_sys_lh4j_tt

Fakes_Mu_Stat_14_ml

nuigene_yy
Fakes_|20tau_MM_FracConv_ee_ml|

il
1

K
-0.01 -0.005 0.005

¢
-04 -03 -0.2 0.1 01 02 03 04

ATLAS Internal
fs=13TeV, 36.1 fb™

|

e
[
==
=
B
__.—_,f—
—-—
——
=
I
=

2 -15 -1 -05

0

05 1 15

(66,100

0.01

YYT[YYYT[YTYY[TTYY[Y
ATLAS Internal
Vs=13TeV, 36.1fb"

——
———
—_——

R

—

y—.—.a

o

——S.
—
— -

e

+

—a—

P S T PR n A

I

(I

|

——
e
— =

J——
J——— S

T T

Lol

-2

-15 -1 -05 0 0.5
(©-0,)/00

1

15

Figure 15.15: Nuisance parameter Ranking plot for ¢ — wH analyses (fit to Data);
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Combination (Right); Only systematic NPs are shown in the plot. NPs related to
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Chapter Sixteen: Conclusion

The combination of ATLAS searches for flavour-changing neutral-current decays of
a top quark into an up-type quark (¢ = u,c) and the Standard Model Higgs boson,
t — Hgq, is presented. Four ATLAS searches for tt — WbHq events, probing the
H — bb, H— WW* 17, Z7Z*, H — ~vv, H — 77 decay modes, are considered in

the combination.

The combined measurement yields observed (expected) 95% CL upper limits on
the t — Hc and ¢ — Hu branching ratios of 1.1 x 1072 (8.3 x 107*) and 1.2 x 1073
(8.3 x 107%), assuming %(t — Hu) =0 and %(t — Hc) =0 respectively. The cor-
responding combined observed (expected) upper limits on the |Aey| and Ay pm| are
0.064 (0.055) and 0.066 (0.055) respectively. These results are the most restrictive

direct bounds on tqH interactions measured to date.
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