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Abstract

Germanium detectors with sub-keV sensitivities can probe low-mass WIMP Dark Matter. This experimental ap-
proach is pursued at Kuo-Sheng Neutrino Laboratory (KSNL) in Taiwan and at China Jinping Underground Labo-
ratory (CJPL) in China via TEXONO and CDEX programs, respectively. The highlights of R&D efforts on point-
contact germanium detectors and in particular the differentiation of surface and bulk events by pulse shape analysis
are described. The latest results on WIMP-nucleon scattering cross-sections are also presented. Some of the allowed
parameter space implied by other experiments are probed and excluded.
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1. Introduction

There are several compelling evidences from Astro-
physics and Cosmology on the existence of dark mat-
ter [1] and suggests ∼ 27% of universe energy density
is comprised by dark matter. The evidences also sug-
gest certain properties of dark matter: non-luminous,
non-interacting (electro -magnetic), non-baryonic, non-
relativistic (cold) and long lifetime (as of the age of uni-
verse). Thus, knowing precise properties of dark matter
has evolved into one of the fundamental physics prob-
lem of 21st century.

Weakly Interacting Massive Particles (χ, WIMP’s)
arise naturally in theories beyond Standard Model and
are most favored dark matter particles. WIMP’s pos-
sess above mentioned properties and can be produced
in early universe with relic abundance that matches ob-
served dark matter relic density.

The experimental efforts on WIMP’s search can be
broadly classified into: Direct detection, Indirect detec-
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tion and Searches at accelerators. The direct searches
of WIMP’s requires detectors with large mass, ultra low
energy threshold at ultra-low background.

The theme of our current experimental research ef-
forts is to deploy germanium detectors with sub-keV
sensitivities for light WIMP’s direct searches: with the
TEXONO [2] and CDEX [3] experiments at Kuo-Sheng
Reactor Neutrino Laboratory [4] (KSNL, 28 meter from
a 3 GW thermal power reactor core, 30 meter-water-
equivalent overburden) and China Jinping Underground
Laboratory [5] (CJPL, >2400 m of rock overburden
with drive-in access), respectively.

The ”baseline design” is: germanium detectors are
enclosed by an NaI(Tl) anti-Compton (AC) detector and
copper passive shielding inside a plastic bag purged
by nitrogen gas evaporated from liquid nitrogen dewar.
The set-up is further shielded by copper, boron-loaded
polyethylene, steel and lead. At the surface laboratory
(KSNL), an additional shielding in the form of cosmic-
ray (CR) veto panels comprising of plastic scintillators
that are read out by photomultipliers is deployed. The
AC and CR detectors are crucial and serve as vetos to
reject background and as tags to identify samples for ef-
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ficiency measurements. The details of signal processing
and data analysis can be referred to [2, 3, 6].

Point Contact Germanium Detection (PCGe) tech-
nology (described in Section 2) is being employed
for studies on low mass WIMP’s. The p-type PCGe
(pPCGe) exhibits anomalous surface events behavior
that restricts physics sensitivities [6]. The physics ori-
gin, separation of bulk from surface events by rise-time
measurements along with derivations of efficiency and
associated uncertainties are discussed in section 4&5.

To illustrate the analysis procedures in this report, we
use 39.5 kg-days of data acquired at KSNL [2, 6] with
a 900 g pPCGe whose target is a cylindrical germanium
crystal of 60.1 mm in diameter and 60.8 mm in height
The application of analysis method on different data set
from same detector or other pPCGe detectors gives con-
sistent behavior and results.

2. Point Contact Germanium Detector

The schematic crystal structure of PCGe is depicted
in Fig.1. In this configuration capacitance reduces to 1
pF as compared to 20 pF in co-axial configuration and
thus resulting in sub-keV energy threshold.
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Figure 1: (a) Schematic diagram of pPCGe crystal. (b) Schematic
diagram of nPCGe crystal.

The crystal of pPCGE is made of p-type germanium.
The outer surface electrode is at positive high voltage
towards which the electrons are drifted. The central
point contact electrode is at zero-potential. The outer
surface electrode is fabricated by lithium diffusion and

it’s thickness is ∼1 mm. The electron-hole pairs pro-
duced by radiations at surface (S) layer are subjected
to a weaker drift field than those at the bulk (B) region
of crystal. A portion of the pairs will recombine while
the residual will induce signals which are weaker and
slower than those originated in B. Therefore, S-events
have partial charge collection and slower rise-time [6].

The pre-amplifiers are coupled to point and sur-
face contact from which electrical signals are extracted.
These signals are then processed by shaping and timing
amplifiers before feeding to 60 MHz and 200 MHz digi-
tizes, respectively. The process of noise and background
suppression are presented in the next section.

The thickness of S layer was measured to be
(1.16±0.09)mm by comparing intensity ratios of sim-
ulated and observed γ-peaks from 133Ba source [7]. The
corresponding fiducial mass for B-region is 840 g.

3. Event Selection

A typical shaping Amplifier (SA) output pulse is
shown in Fig. 2. The waveform is characterized by sev-
eral parameters and some of them are shown in Fig.2.
The noise events are then eliminated by exploring cor-
relations between the stored waveform parameters. For
example, distribution of pedestal is shown in Fig. 3. The
cumulative efficiency of all such cuts (PN:Physics and
Noise) is shown in Fig.6c.
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Figure 2: Shaping amplifier (Canberra 2026) output with definitions
of some of the analysis parameters.

The energy calibration was performed by using X −
rays from 68Ge (10.37 keV), 68Zn (8.98 keV), and
68Ge + 65Zn (1.21 keV) with random trigger events
providing zero-energy definition.

The nuclear recoil χN events are uncorrelated with
other detector components and are uniformly distributed
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Figure 3: Pedestal fluctuation as a function of T

in pPCGe volume. If superscript −/(+) denotes anti-
coincidence (coincidence) of cosmic ray and anti-
Compton veto systems with pPCGe signals, then χN
events are designated by AC−⊗ CR−. The AC+⊗ CR−
and AC−⊗ CR+ selects ambient gamma and cosmic ray
induced high energy neutron events, respectively.

4. Bulk and surface events selection

The typical pulse shape of fast-timing amplifier (TA)
are shown in Fig.4. The B&S behavior as described in
section 2 is also depicted in Fig.4 a&b at 700 eVee and
2 keVee, respectively.

The rise-time of TA pulse were evaluated by using the
hyperbolic tangent function:

A0

2
tanh(

t − t0
τ

) + P0 (1)

where, A0, P0 and t0 are amplitude, pedestal offset and
timing offset, respectively.

P0 and A0 are evaluated from the TA-pulses through
the difference of asymptotic levels, respectively. The
time difference as a function of energy between the TA-
edge and the DAQ-trigger instant defined by SA signals
is pre-determined, and provides constraints on t0.

TA amplitude becomes comparable to noise fluctu-
ations at threshold. Therefore, TA pulses were first
smoothed by Savitzky-Golay filters [8] with (τ,t0) as
free parameters. The obtained fitting parameters were
then employed as initial values to fit raw TA pulses and
final fitting parameters were obtained. The smoothed
and final fit are shown by blue and red lines in Fig. 4.

The scatter plot of τ versus T for AC−⊗ CR− events
is shown Fig.5. A small fraction (<8%) of events at
low energy fails the fitting procedures. These events
are excluded in subsequent analysis. The signal effi-
ciency is accounted by survival probability of AC+⊗
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Figure 4: Typical B/S events at (a) 700 eVee and (b) 2 keVee energy,
showing the raw (black) and smoothed (blue) pulses, together with the
best-fit functions (red).

CR+ samples, and is 80% at 500 eVee. Events with
τ less(greater) than a selected cut-value τ0 (=1.23 μs)
are categorized as B(S).

The width’s of measured B and S bands at T >
1.5 keVee is much less than separation of bands from
τ0. Therefore, measured τ provides valid information
on locations of events and efficiently differentiate S and
B events. This behavior also manifest as distinct two-
band structure in Fig.5, with a small fraction (about 8%
within 3−6 keVee of AC−⊗ CR−) of events in interme-
diate transition zone. By studying the corresponding
fractions of events with 241Am (<1%) and 137Cs (7.5%)
γ-sources, a thickness of 0.16 mm for this zone was de-
rived. The choice of τ0 is equivalent to defining the spa-
tial borderline between B/S within this transition thick-
ness. This gives rise to a systematic uncertainty in eval-
uation of pPCGe fiducial mass. It translates to about 3%
of total error at 500 eVee.
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Figure 5: The τ versus T scatter plot for AC−⊗ CR− tags events.

The width’s of the measured B and S band at T <
1.5 keVee is comparable to band separation and leads to
merging of bands. Therefore, there exist contaminations
between in B and S events. The evaluation of leakage
factors and process to correct the measured spectra are
further discussed in the section 5.

5. BS cut Efficiencies Measurement and Correction

The calibration of BS cut requires measurement of
bulk signal retaining (εBS) and surface background sup-
pressing (λBS) efficiencies. These efficiencies can be ob-
tained by relating the observed (B,S) and actual rates
(B0,S0) [6].

The normalization assignment (B0,S0)=(B,S) is made
on events within T0=2.7-3.7 keVee. It is equivalent to
setting εBS and λBS to 1.0. This energy range is selected
because it is above the complications of L-shell X-rays
at ∼1 keVee as well as the physics region in dark matter
analysis.

At lower energy, (B,S) and (B0,S0) are related by the
coupled equations:

B = εBS · B0 + (1 − λBS) · S0

S = (1 − εBS) · B0 + λBS · S0 , (2)

with an additional unitarity constrain: B0+S0=B+S.
The derivation of (εBS,λBS) therefore requires at least
two measurements of (B,S) where the actual rates
(B0,S0) are known.

The data with 241Am, 137Cs and in situ cosmic-ray
induced fast neutrons are used for obtaining εBS and λBS.

The chosen three sources plays a complementary role
and these data samples are displayed in Fig.6a.
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Figure 6: The derivation of (εBS, λBS). (a) The measured Total and
B′ spectra from pPCGE with surface-rich γ-ray (241Am, 137Cs) and
bulk-rich cosmic-ray induced neutrons. They are compared to refer-
ence B-spectra acquired via simulations for γ-rays and nPCGe mea-
surement for cosmic-neutrons. (b) Allowed bands at threshold and
at a high energy band. (c) The measured (εBS,λBS) and εPN as func-
tions of energy. Independent measurement on εBS with Ga-L X-rays
is included.

(I): Surface-rich events with γ-ray sources − Calibra-
tions with both low and high energy γ-sources (241Am
at 60 keVee and 137Cs at 662 keVee, respectively)
were performed. As displayed in Fig.6a, the mea-
sured B′-spectra are compared to the reference B de-
rived from full simulation with surface layer thickness
of 1.16 mm as input. The simulated B-spectra due to
external γ-sources over a large range of energy are flat
for T<10 keVee.

(II): Bulk-rich events with cosmic-ray induced fast
neutrons − A 523 g first-of-its-kind nPCGe detector
was constructed. The components and dimensions are
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identical to those of pPCGe. The surface of nPCGe
is a p+ boron implanted electrode of sub-micron thick-
ness. There are no anomalous surface effects. Data were
taken under identical shielding configuration. The trig-
ger efficiency was 100% above T=500 eVee, and en-
ergy calibration was obtained from the standard internal
X-ray lines. The AC−⊗ CR+ condition selects cosmic-
ray induced fast neutron events without associated γ-
activities, which manifest mostly(∼85%) as bulk events.
Accordingly, the AC−⊗ CR+ spectrum in nPCGe is
taken as the B-reference and compared with those of
AC−⊗ CR+ in pPCGe.

Using calibration data (I) and (II), (εBS,λBS) are mea-
sured by solving the coupled equation 2. Standard error
propagation formulae are adopted to derive their uncer-
tainties using errors in (B,B′,S′) as input. As examples,
three allowed bands at threshold and at a high energy
band are illustrated in Fig.6b. The different orientations
of bands are consequences of different depth distribu-
tions of the samples, which give rise to different B:S
ratios. The bands have common overlap regions, in-
dicating the results are insensitive to event locations.
The surface-rich γ-events and bulk-rich cosmic-ray in-
duced neutron-events play complementary roles in con-
straining λBS and εBS, respectively. The results are de-
picted in Fig.6c, with εPN overlaid. By comparing the
measured in situ Ga-L X-ray peak at 1.3 keVee after
BS-selection to that predicted by corresponding K-peak
at 10.37 keVee, a consistent εBS is independently mea-
sured.

The efficiency-corrected (B0,S0) of physics samples
can then be derived with the help of measured (εBS, λBS)
by the solution of Equation 2, and is given by

B0 =
λBS · B − (1 − λBS) · S

(εBS + λBS − 1)

S0 =
εBS · S − (1 − εBS) · B

(εBS + λBS − 1)
. (3)

The formulae can be understood as: B0(S0) should ac-
count for loss of efficiency in the measurement of B(S)
in the first positive term, followed by a subtraction of
leakage effect from S(B) in second negative term.

The AC−⊗ CR− tagged events from pPCGe data
taken at KSNL at various stages of analysis are depicted
in Fig.7a. The measured-B and corrected-B0 spectra are
almost identical at T > 1.5 keVee, this is a direct con-
sequence of εBS = λBS = 1. At low energy, efficiency-
correcting and background-subtracting effects compen-
sate each other in this data set.

After subtracting flat background due to high en-
ergy γ-rays and known L-shell X-rays contributions pre-
dicted accurately by measured higher energy K-peaks,

the residual spectrum is shown in inset of Fig.7b.
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Figure 7: (a) Measured and corrected AC− ⊗ CR− tag spectra. (b)
Shown in magenta are flat background due to high-energy γ-rays from
ambient radioactivity, and contributions from the L-shell X-rays. De-
picted in inset is the residual spectrum after background subtraction,
corresponding to candidate (χ/ν)N events.

6. Error Sources and Assignment

The errors on (εBS,λBS) are shown in Fig.6c. They
are derived from global fits on allowed bands in Fig.6b.
Standard error propagation techniques were applied to
derive the resulting uncertainties on (B0,S0) via Eq.3.

The uncertainties include contributions from their
own measurement errors, (εBS,λBS) calibration errors, as
well as systematic uncertainties. Their relative contribu-
tions in three representative energy bins are summarized
in Table 1. The leading contribution is statistical errors
on (B,S), scaled by a factor 1/(εBS + λBS − 1). This can
be seen from structure of the formulae in equation 3.
The total errors therefore increase as εBS and λBS deviate
from unity towards the analysis threshold of 500 eVee.

(b)
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Energy Bin 0.50−0.55 keVee 0.95−1.00 keVee 1.90−1.95 keVee
Measurement and Total Error (kg−1keV−1day−1) 10.6±5.0 9.8±2.4 6.1±1.6

Relative Contributions to Total Error† :
I) Uncertainties on Calibration (εBS,λBS) from Fig. 6c : 0.26 0.064 <0.03
II) Measurement Error on B0 from Eq. 3 :

Statistical Errors of (B,S) { 0.41 { 0.90 { 0.99
Scaling by 1/(εBS + λBS − 1) 2.29 1.07 1.00

Combined 0.95 0.96 0.99
III) Systematic Uncertainties due to Parameter Choice :

(i) Rise-time Cut-Value τ0

{

0.12

{

0.25

{

0.09
(ii) Fiducial Mass from Choice of τ0 0.03 0.06 0.06
(iii) Normalization Range 0.13 0.10 0.07
(iv) (B0,S0)=(B,S) at Normalization 0.08 0.03 0.03
(v) Choice of Discard Region 0.05 0.01 0.001

Combined Systematic Error 0.20 0.27 0.12

Table 1: The contribution of uncertainties on AC−⊗CR−⊗B0 spectrum. † Errors are combined in quadrature and total error is normalized to 1.0.

7. Studies on χN spin-independent interaction
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Figure 8: The 90% confidence level upper limit on σSI
χN from TEX-

ONO, CDEX-1 and other benchmark experiments.

The residual spectrum corresponds to χN candidate
events is depicted in inset of Fig. 7b. The Constraints
on σSI

χN were then derived via “binned Poisson” method
with conventional astrophysical models[1] (local den-
sity of 0.3 GeV/cc and Maxwellian velocity distribution
with v0=220 km/s and vesc=544 km/s). The event rates
of χN spin-independent interaction cannot be larger
than residual spectrum. The Ge quenching function is
derived with TRIM software.

Exclusion plot for σSI
χN versus mχ at 90% confidence

level from TEXONO [2] and CDEX-1 [3] are displayed

in Fig.8, with other benchmark results superimposed[3].
The projected sensitivity at 100 eVee threshold, 1 kg-
Year data size and background at 1 cpkkd is also shown.

8. Conclusion and Future Prospects

A method for evaluating the efficiency and desired
correction on obtaining the surface and bulk spectrum
is established. Projects on improvement of electron-
ics, sub-noise-edge analysis [10] and scaling up detector
mass are being pursued.
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