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Abstract

We investigate numerically and in part analytically the compact lattice quan-

tum electrodynamics with Wilson fermions. We studied the following particular

tasks of the theory: the problem of the zero-momentum gauge field modes in the

Coulomb phase and the performance of different Monte Carlo algorithms in the

presence of dynamical fermions.

We show that the influence of the zero-momentum modes on the gauge depen-

dent lattice observables like photon and fermion correlators within the Coulomb

phase leads to a behaviour of these observables different from standard pertur-

bation theory. These modes are responsible also for the screening of the critical

behaviour of the gauge invariant fermion values near the chiral limit line. Within

the Coulomb phase the elimination of these zero-momentum modes from gauge

configurations leads to the perturbatively expected behaviour of gauge dependent

observables. The critical properties of gauge invariant fermion observables upon

removing the zero-momentum modes are restored. The critical hopping-parameter

obtained from the invariant fermion observables coincides with that extracted from

gauge dependent values.

We implement the two-step multiboson algorithm for numerical investigations

in the U(1) lattice model with even dynamical Wilson fermion flavours. We discuss

the scheme of an appropriate choice of technical parameters for both two-step

multiboson and hybrid Monte Carlo algorithms. We give the theoretical estimates

of the performance of such simulation methods. We show both numerically and

theoretically that the two-step multiboson algorithm is a good alternative and

at least competitive with the hybrid Monte Carlo method. We argue that an

improvement of efficiency of the two-step multiboson algorithm can be achieved

by increasing the number of local update sweeps and also by decreasing the orders

of first and second polynomials corrected for by the reweighting step.

Keywords:

Compact lattice QED, Wilson fermions, zero-momentum modes, Monte Carlo sim-

ulation, dynamical fermions



Zusammenfassung

Wir untersuchen numerisch und teilweise analytisch die kompakte Quanten-

elektrodynamik auf dem Gitter mit Wilson-Fermionen. Dabei konzentrieren wir

uns auf zwei wesentliche Teilprobleme der Theorie: der Einfluß von Eichfeld-Moden

mit verschwindendem Impuls in der Coulomb-Phase und die Effizienz von verschie-

denen Monte-Carlo-Algorithmen unter Berücksichtigung dynamischer Fermionen.

Wir zeigen, daß der Einfluß der Null-Impuls-Moden auf die eichabhängigen

Gitter-Observablen wie Photon- und Fermion-Korrelatoren nahe der kritischen

chiralen Grenzlinie innerhalb der Coulomb Phase zu einem Verhalten führt, das

vom naiv erwarteten gitter-störungstheoretischen Verhalten abweicht. Diese Mo-

den sind auch für die Abschirmung des kritischen Verhaltens der eichinvarianten

Fermion-Observablen nahe der chiralen Grenzlinie verantwortlich. Eine Entfernung

dieser Null-Impuls-Moden aus den Eichfeld-Konfigurationen führt innerhalb der

Coulomb-Phase zum störungstheoretisch erwarteten Verhalten der eichabhängigen

Observablen. Die kritischen Eigenschaften der eichinvarianten Fermion-Observab-

len in der Coulomb-Phase werden nach dem Beseitigen der Null-Impuls-Moden

sichtbar. Der kritische Hopping-Parameter, den man aus den invarianten Fermion-

Observablen erhält, stimmt gut mit demjenigen überein, der aus den eichabhängi-

gen Observablen extrahiert werden kann.

Wir führen den zweistufigen Multiboson-Algorithmus für numerische Untersu-

chungen im U(1)-Gittermodell mit einer geraden Anzahl von dynamischen Fermi-

on-Flavour-Freiheitsgraden ein. Wir diskutieren die geeignete Wahl der techni-

schen Parameter sowohl für den zweistufigen Multiboson-Algorithmus als auch für

den hybriden Monte-Carlo-Algorithmus. Wir geben theoretische Abschätzungen

für die Effizienz dieser Simulationsmethoden. Wir zeigen numerisch und theore-

tisch, daß der zweistufige Multiboson-Algorithmus eine gute Alternative darstellt

und zumindestens mit der hybriden Monte-Carlo-Methode konkurrieren kann. Wir

argumentieren, daß eine weitere Verbesserung der Effizienz des zweistufigen Multi-

boson-Algorithmus durch eine Vergrößerung der Zahl lokaler Update-Schleifen und

auch durch die Reduktion der Ordnungen der ersten und zweiten Polynome zu La-

sten des sogenannten ’Reweighting’ erzielt werden kann.

Schlagwörter:

Kompakte Gitter–QED, Wilson–Fermionen, Moden verschwindenden Impulses,

Monte-Carlo-Simulation, dynamische Fermionen
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Chapter 1

Introduction

Quantum electrodynamics (QED) is the theory of electromagnetic interactions

between electrically charged particles like electrons or muons. In principle, QED

explains their behaviour with high accuracy in the framework of renormalizable

continuum perturbation theory [1] – [3]. This is due to the small coupling constant

of electromagnetic interactions at low energies. Hence, the nonperturbative lattice

study of QED is motivated neither by so far unexplained phenomena nor by an

absence of a computational method. One is studying lattice QED for reasons which

can be briefly formulated as follows: the problem of mathematical consistency of

the quantum electrodynamics [4, 5] and various physical and technical questions in

models of a Grand Unification which can be studied by an appropriate reduction

to the simple (compact) Abelian theory represented by lattice QED [6, 7].

An apparent mathematical inconsistency in QED contrary to quantum chro-

modynamics (QCD) is the existence of the so-called energetical ’Landau pole’ in

the perturbative behaviour of the renormalized coupling constant [4, 5]. Such

a problem is absent only if the electrical charge asymptotically vanishes (trivial

electrodynamics). The spurious pole might not appear if QED has an ultraviolet

stable fixed point for the running coupling which lies outside the perturbative re-

gion. That is why the lattice regularization [8] – [10] of QED could be the best

way to study the ’Landau pole’ problem. The problem of the existence of a pos-

sible ultraviolet stable fixed point in QED was intensively studied both by the

continuum mean field method [11] and in the framework of noncompact lattice

QED with staggered fermions describing Nf = 4 flavours [12] – [16]. A detailed

inspection of the renormalized coupling constant within this lattice approach pro-

vided a strong indication for the absence of the ’Landau pole’ in QED: a singular
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behaviour can never be reached and noncompact QED with staggered fermions

seems to have a trivial continuum limit when approaching the end point of the

chiral phase transition line [16].

But there are problems left. First of all, a lattice discretization scheme requires

a careful study of the continuum limit (see [15]). Second, the absence of the

’Landau pole’ should be independent of the number of fermion flavours. And

finally, the noncompact lattice formulation is a matter of discussions from both

mathematical and physical points of view. On the one hand, its action requires

gauge fixing and the results should be independent of various fixing procedures

[14]. On the other hand, the noncompact theory can not explain the discrete

electrical charge values and can not be embedded into a lattice discretized non-

Abelian gauge theory which requires a compactification of the gauge potential [8]

(see also [6, 7]).

The latter problems do not occur in compact lattice QED. This way to dis-

cretize quantum electrodynamics leads to the occurence of several phases separated

by phase transition lines at strong coupling [17, 18]. In particular, there is a phase

compatible with the continuum QED – the Coulomb phase. The topical task to un-

derstand the ’Landau pole’ phenomenon within the framework of compact lattice

QED requires a thorough investigation of the phase structure of the theory and of

the possible existence of (tri-) critical points to which one can approach from the

Coulomb phase. A corresponding ultra-violet fixed point - if it exists here - should

be determined by studying the flow of lines of constant physics obtained from

non-perturbatively renormalized lattice observables. Such an investigation can be

carried out by various methods, e.g. within the framework of the Schrödinger func-

tional approach [19, 20]. In any case one has to achieve agreement of both lattice

perturbation theory and numerical simulation results obtained for a finite lattice

volume with those of continuum perturbation theory. The comparison requires an

appropriate selection or tuning of physical and technical parameters on the lattice

and of boundary conditions for the boson and fermion fields (see [20]). Compact

lattice QED from this point of view remained purely understood over the years.

Let us come to a second point of the lattice QED destination – studies for

QCD as well as for the electro-weak theory. Compact lattice QED is the simplest

(Abelian) gauge theory i.e. the prototype for all compact gauge theories on the

lattice. Theoretical as well as numerical questions and methods can be nicely

tested first in the U(1) gauge theory. From the theoretical point of view, there
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are two problems which require the use of the compact Abelian theory: the quark

confinement phenomenon and the chiral symmetry breaking effect.

The lattice gauge theory appears to be the easiest way to display the quark con-

finement, when the static quark potential infinitely grows with increasing distance

between quarks [8, 9]. Confinement can be reproduced by every standard compact

lattice formulation including the U(1) lattice model. Theoretical arguments [6, 7]

and numerical studies [17, 18] of pure U(1) lattice gauge theory have shown that

confinement is caused mainly by the influence of the monopole-antimonopole pairs.

It is worthwhile to note that the lattice approach in QED gives a mathematically

rigorous way of describing topologically nontrivial gauge configurations such as

magnetic monopoles [6, 7, 17]. Moreover, it was indicated both theoretically [21]

– [24] and numerically [25] – [27] that the confinement phenomenon in QCD can

be understood in terms of Abelian degrees of freedom of the SU(3) gauge theory.

Next, the confinement mechanism has a deep connection to the chiral symmetry

breaking effect [28]. And again, analytical [29, 30] and numerical [31, 32] studies

of the latter effect detected the existence of a parity-flavour breaking (or Aoki)

phase with a similar behaviour of pseudofermion composite particles in both non-

Abelian [30, 31] and U(1) [32] gauge groups. These results mean that in order to

study the quark confinement as well as the chiral symmetry violation effects, one

should first turn to the investigation of corresponding phenomena in an Abelian

model. Here, the U(1) theory can be viewed as an Abelian projection of a more

general gauge theory [21] – [23].

Another aspect is the algorithmic problem in investigations of different lattice

fermion models of QCD. It is well-known [9, 10] that the inclusion of the fermion

loops (dynamical fermions) is much more complicated than simulations in the case

of pure gauge theory. However, as it was shown in [33], the critical behaviour

of lattice observables in lattice QCD with dynamical fermions resembles to the

dynamical fermion U(1) case at strong coupling. This would mean that since

numerical investigations of Abelian models are much easier and faster than for

other more complicate gauge groups, studies of the U(1) model with dynamical

fermions might give useful results applicable to more general theories.

The main purpose of this thesis are some numerical and also analytical in-

vestigations of the lattice compact 4-dimensional (4d) QED theory with Wilson

fermions required as an intermediate step to future lattice QED investigations. In

chapter 2 we give an introduction to the lattice QED, describe the approximation
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methods used for investigation of lattice models and present the phase structure

of the U(1) gauge theory. In chapter 3 we discuss the problem of gauge fixing

for a lattice study of gauge dependent observables. In chapter 4 we investigate

the particular problem of the physical Coulomb phase in compact lattice QED

– the influence of constant or zero-momentum gauge modes on gauge dependent

and gauge invariant fermion observables. Chapter 5 is devoted to a detailed study

of various simulation algorithms in the U(1) lattice model, mainly the dynami-

cal fermion ones. Finally in chapter 6 we present an itemized conclusion of our

investigation and give an outlook to the further study of lattice QED.

It will be shown that the disagreement of gauge dependent photon and fermion

zero-momentum correlators within the physical weakly interacting Coulomb phase

in comparison with standard lattice perturbation theory is caused by constant (or

zero-momentum) modes which are the gauge copies of the Lorentz gauge fixing

prescription in the pure gauge theory. Secondly, these constant modes hide also

the critical behaviour of the gauge invariant fermion observables in the vicinity of

the chiral limit. We discuss various methods of eliminating the zero-momentum

modes. Our numerical studies of the Coulomb phase show that as soon as one

removes these constant modes from gauge configurations, the correct behaviour of

both gauge dependent and gauge invariant lattice correlation functions is restored

[34, 35].

We have adapted the two-step multiboson algorithm (TSMB) [36] – [38] to

numerical investigations in the U(1) lattice model with even number of dynamical

fermion flavours. For this purpose, the simulation methods for the pure gauge

theory and for the evaluation of lattice fermion observables were carefully studied.

In order to investigate the performance of the TSMB in comparison with the

well-known hybrid Monte Carlo (HMC) method [39, 40] in the framework of the

U(1) lattice model, we give the prescription of an appropriate choice of technical

parameters for these dynamical fermion algorithms. Theoretical estimates of the

performance of these simulation methods are presented. Our numerical results as

well as theoretical arguments show that the TSMB algorithm is at least competitive

with the HMC one [41]. We also propose ways to improve the performance of the

TSMB algorithm.

Finally, we discuss proposals for further studies of compact lattice QED with

odd number of fermion flavours.
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Chapter 2

Formulation of lattice QED

2.1 Continuum theory

The QED action in the continuum Euclidean theory [1] – [3]:

SQED = SG + SF , (2.1)

consists of the pure gauge action SG and the fermion one SF :

SG =
1

4e20

∫
d4x

∑
µ,ν
µ<ν

F 2
x,µν , (2.2)

SF =

∫
d4x

{
1

2

∑
µ

(
ψxγµDµψx −Dµψxγµψx

)
+m0ψxψx

}
. (2.3)

Here the Fx,µν = ∂Ax,ν/∂xµ−∂Ax,µ/∂xν is the Abelian gauge field strength tensor,

the Ax,µ is the gauge potential, Dµ = ∂/∂xµ + iAx,µ denotes the gauge covariant

derivative. The e0 and m0 stand for the bare electric charge (or coupling constant)

and bare fermion mass, respectively. The ψ, ψ are anticommuting (Grassmann)

variables and γµ are the 4× 4 Dirac matrices satisfying to the algebra:

γµγν + γνγµ = 2δµν · 1, γ5 = γ1γ2γ3γ4,

γ5γµ + γµγ5 = 0, µ, ν = 1, . . . , 4.

The action (2.1) is invariant under local Abelian gauge transformations:

ψx −→ ψg
x = gxψx, ψx −→ ψ

g

x = ψxg
†
x,

Ax,µ −→ Ag
x,µ = Ax,µ − ∂αx/∂xµ, gx = eiαx , (2.4)
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and for m0 = 0 under global chiral rotations:

ψx −→ eiγ5λψx, ψx −→ ψxe
iγ5λ. (2.5)

Quantization with path integral of the theory described by the action (2.1)

requires gauge fixing and a regularization with subsequent renormalization [2, 3].

The quantum corrections violate the classical chiral invariance (2.5) and lead to

the Abelian chiral anomaly [42, 43]. In order to study the mathematically correct

theory, one has to introduce a suitable regularization. Such a regularization widely

used for the numerical nonperturbative investigations is just the lattice theory

[9, 10]. Below we describe its basic principles.

2.2 Lattice theory

2.2.1 Discretization steps

To go from the continuum theory to the discrete lattice version, it is necessary to

perform the following steps. First of all, the continuum 4-dimensional coordinates

x are replaced with discrete points called lattice sites:

x = a(n1, n2, n3, n4), nµ = 0,±1,±2, . . . ,

where a is a discrete 4-dimensional space-time size called lattice spacing. Then

the integration over 4-dimensional space is replaced with the sum over all lattice

points: ∫
d4x −→ a4

∑
x

= a4
∑

n1,...,n4

.

The Fourier transformation on the lattice looks like:

f̃p =
∑

x

eipxfx, fx =

π/a∫
−π/a

d4p

(2π)4
e−ipxf̃p

Note that the lattice discretization introduces the ultraviolet cut-off: |pµ| ≤ π/a.

In many practical cases such as numerical simulations, the number of lattice

points x must be finite. In other words, one has to consider a finite lattice:

nµ = −Nµ/2 + 1, . . . , Nµ/2, Nµ is even,
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and therefore to replace the integration measure and momentum in the infinite

Fourier transformation as follows:

π/a∫
−π/a

d4p

(2π)4
−→ 1

a4V

∑
l

, pµ =
2π

aNµ

lµ, lµ = −Nµ/2 + 1, . . . , Nµ/2,

where V = N1 . . . N4 is the dimensionless lattice volume. Therefore, the finite

lattice determines the infrared cut-off: |pµ| ≥ 2π/aNµ if pµ 6= 0.

To remove these cut-offs, one takes first the thermodynamic limit when the lat-

tice volume V → ∞ at fixed spacing a, then the continuum limit when a → 0 at

infinite volume V . Of course, the lattice discretization breaks the continuum rela-

tivistic invariance. But such invariance is expected to be restored in the continuum

limit.

Further, the continuum derivative ∂/∂xµ has be replaced with the discrete

forward ∂µ and backward ∂µ derivatives:

∂µfx =
fx+aµ̂ − fx

a
, ∂µfx =

fx − fx−aµ̂

a
, µ̂ = (0, . . . , 1

µ
, . . . , 0). (2.6)

Then in order to preserve the local gauge invariance (2.4) on the lattice, it is

necessary to work with the compact lattice gauge (or link) variable [8]:

Ux,µ = eiaAx,µ , (2.7)

which transforms under gauge rotations according to the following rule:

Ux,µ −→ U g
x,µ = gxUx,µg

†
x+aµ̂, gx ∈ U(1). (2.8)

From this we can construct lattice forward ∇µ and backward ∇µ covariant deriva-

tives as:

∇µfx =
1

a
{Ux,µfx+aµ̂ − fx} , ∇µfx =

1

a

{
fx − U †

x−aµ̂,µfx−aµ̂

}
. (2.9)

Note that the backward derivatives are Hermitean conjugated of the forward

derivatives with respect to the lattice space. In order to work with the lattice

derivatives on the finite lattice, one has to introduce boundary conditions (b.c.)

which are taken usually in the following way:

fx+aNµµ̂ = ±fx,

where the + or − sign denotes periodic or antiperiodic boundary conditions, re-

spectively. For gauge or boson fields as well as gauge transformations g, one uses

13



periodic b.c. In principle, it is possible to apply these conditions to fermion fields.

However, in order to avoid spurious infrared divergences in the fermion propaga-

tor which happen e.g. at the study of chiral fermion models, one usually takes for

Fermi-fields antiperiodic boundary conditions.

It is possible to consider the straightforwardly discretized lattice version of

the gauge action (2.2), where Ax,µ takes values in the (−∞,∞) interval. Such a

theory is called noncompact lattice QED and has been already used for study of

the ’Landau pole’ problem [12] – [16]. However, it is worthwhile to investigate

also the compact lattice QED model [8]. The latter requires to use the compact

link variables (2.7) where Ax,µ ∈ (−π, π], and the U(1) compactified gauge field

strength tensor is called plaquette variable:

Ux,µν = Ux,µUx+aµ̂,νU
†
x+aν̂,µU

†
x,ν , (2.10)

which is invariant under gauge transformations (2.8). Then the compact, or pla-

quette, version of gauge action SG can be written as follows:

SG[U ] = β
∑
x,µ,ν
µ<ν

(1− ReUx,µν) , (2.11)

where β = 1/e20 is the inverse squared bare coupling parameter.

The plaquette variable (2.10) in case of U(1) group is invariant also under the

constant transformations:

Ux,µ −→ U c
x,µ = cµUx,µ, cµ ∈ U(1). (2.12)

Let us now discuss the difference between the infinite and finite lattice cases. For

the infinite lattice, the constant transformations are a special case of the usual

(2.8) ones:

gx =
∏
µ

c†µ
xµ/a

, cµ ∈ U(1). (2.13)

But in case of finite lattice volume, the transformations (2.12) can not be reduced

to (2.8) because of the impossibility to fulfill the periodic b.c. for gauge transfor-

mation g except for discrete values:

cµ = e2πikµ/Nµ , kµ = 0,±1,±2, . . . , µ = 1, . . . , 4.

The constant transformations (2.12) or (2.13) which can not be represented by

ordinary gauge rotations (2.8) will be called nonperiodic gauge transformations

but the usual (2.8) ones are named periodic transformations.
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In the classical theory in the continuum limit a→ 0, the plaquette action (2.11)

as well as the lattice discretized fermion action (2.3) coincide with their continuum

origins. But in the case of quantum theory, one is interested first in the particle

spectrum described by the given model. So, the photon propagator in the compact

gauge theory (2.11) (in diagonal gauge):

〈AµAν〉p =
δµν∑

λ(2/a)
2 sin2 (pλa/2)

−→ δµν

p2
, a→ 0,

correctly reproduces the photon spectrum. But the fermion propagator of the

naively discretized fermion action (2.3):

〈
ψψ
〉

p
=
−i
∑

µ γµ sin(pµa)/a+m0∑
µ sin2(pµa)/a2 +m2

0

−→
∑
s=0,1

−i
∑

µ(−1)sµ (pµ − πsµ/a) γµ +m0

(p− πs/a)2 +m2
0

,

in the limit a→ 0 describes 24 = 16 fermion states instead of one in the continuum.

This effect is called spectrum degeneracy and the nonphysical fermion states are

called doublers.

The above result is explained by the ’no-go’ theorem [44, 45] which states that

if a fermion action is Hermitean, local (its momentum operator in the Fourier space

is continuous) and invariant under discrete translations and global chiral rotations

(2.5), it inevitably describes the chirally positive and the same number of chirally

negative fermion states.

2.2.2 Wilson fermions

To cure the problem of fermion spectrum degeneracy, one can either remove the

doublers or exploit them in an appropriate way. The former method, proposed by

Wilson [8], requires the addition of the following mass-like term:

SW = a4
∑
x,µ

ar

2
∇µψx∇µψx, r > 0, (2.14)

to the straightforwardly discretized, or naive, fermion action (2.3). Such a term

vanishes in the classical theory in the continuum limit. But in the quantum case,

the perturbative fermion propagator

〈
ψψ
〉

p
=
−i
∑

µ γµ sin(pµa)/a+ (2r/a)
∑

µ sin2 (pµa/2) +m0∑
µ sin2(pµa)/a2 +

[
(2r/a)

∑
µ sin2 (pµa/2) +m0

]2 −→ −i 6 p+m0

p2 +m2
0
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correctly describes the fermion spectrum since all doublers acquire masses of order

O(a−1) and therefore do not propagate. At the same time, the Wilson term (2.14)

breaks the global chiral symmetry (2.5). Perturbative investigations of the lattice

Wilson fermion model have shown [46] that in the continuum limit the well-known

expression for the chiral abelian anomaly [42, 43] is reproduced.

The total lattice Wilson fermion action can be rewritten as follows:

SWF [U, ψ, ψ] = a4
∑
x,y

ψxM[U ]xyψy, (2.15)

whereM is Wilson fermion matrix:

M[U ]xy =

(
4r

a
+m0

)
δxy −

1

2a

∑
µ

{(r − γµ)Ux,µδx+aµ̂,y+

+(r + γµ)U †
y,µδy+aµ̂,x

}
. (2.16)

Introducing the so-called hopping-parameter κ:

κ =
1

2(4r + am0)
, (2.17)

and rescaling the fermion fields by the coefficient
√

2κ/a3, one rewrites the Wilson

fermion matrixM in the following way:

M[U ]xy = δxy − κ
∑

µ

{(r − γµ)Ux,µδx+aµ̂,y+

+(r + γµ)U †
y,µδy+aµ̂,x

}
. (2.18)

The fermion matrix (2.16) or (2.18) is covariant under the gauge transformations

(2.8):

M[U g]xy = gxM[U ]xyg
†
y, (2.19)

and is γ5-Hermitean:

M† = γ5Mγ5, (2.20)

where the complex conjugation is taken with respect to all coordinate and spinor

indices. The parameter r is expected to be irrelevant at the renormalization or

finite tuning of lattice observables. Hence and also for convenience (see [9]), we

will take it equal to r = 1.

Another method to handle the fermion spectrum degeneracy was proposed by

Kogut and Susskind [47]. In this method, the fermion doublers are transformed

to the 24/2 = 4 fermion flavours by means of the spin diagonalization of the naive
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lattice fermion action (2.3) and retaining only one spinor component in the trans-

formed action. Such a theory, called staggered fermions, is invariant under global

chiral rotations (2.5) but the flavour symmetry is broken. In the framework of the

staggered fermion model the ’Landau pole’ problem was investigated [12] – [16].

However the staggered fermions describe 4 mass degenerate flavours. In order to

study the case of a small number of fermion flavours, one takes a fermion model

like the Wilson one (2.15).

At the same time, the Wilson fermion method requires more additional fine

tuning of lattice observables in the continuum limit than for staggered fermions

since the Wilson mass term (2.14) brings the lattice corrections of order O(a) to

the continuum fermion action (2.3) whereas in case of the staggered fermions, such

corrections have order O(a2). To get the lattice computed observables closer to

the continuum ones, the Wilson fermion action requires O(a) improvement. At the

present moment, there are many improved actions based on the original Wilson

(2.15) one. Let us mention the model with perturbatively improving clover term

[48, 49], the nonperturbatively improved overlap fermions [50] – [52] and the exact

Ginsparg-Wilson fermions [53] – [55], and also the approximate Ginsparg-Wilson

fermions [56] – [58] generalizing the perturbative clover improvement. In this

thesis we will not touch the problem of the Wilson action improvement since it

complicates the numerical lattice simulations. We note only that the influence of

the Wilson term is reflected in the phase structure of the compact Wilson lattice

QED.

2.3 Gauge invariant observables on the lattice

The standard action of compact lattice QED [8] consists of pure compact gauge

action (2.11) and Wilson fermion one (2.15):

SQED[U, ψ, ψ] = SG[U ] + SWF [U, ψ, ψ] (2.21)

Then the average value of a lattice observable can be computed according to the

equation:

〈O〉 =
1

Z

∫
[dU ][dψ̄dψ]O[U, ψ, ψ] exp(−SQED[U, ψ, ψ]), (2.22)

where the normalization constant

Z =

∫
[dU ][dψdψ] exp(−SQED[U, ψ, ψ]) (2.23)
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also depends on the bare lattice parameters β, κ. The integration with respect

to the gauge field is taken over a compact space. And therefore, in contrast to

continuum and lattice noncompact theory cases, one is not forced to fix a gauge

in compact lattice models.

For practical evaluation of fermion observables, it is convenient to perform the

following trick. Let us add to the action (2.21) the auxiliary fermion source term:

Sηη = −
∑

x

(
ψxηx + ηxψx

)
,

where η, η are external anticommuting variables. Then substituting it to the equa-

tion (2.22) and integrating out the ψ, ψ variables in case of Nf fermion flavours,

the equation for average observables can be represented as follows:

〈O〉 =
1

Z

∫
[dU ]O

[
U,

←−
∂

∂η
,
∂

∂η

]
exp
(
−SG[U ] + ηM−1[U ]η

)∣∣∣∣∣
η, η=0

detNfM[U ],

(2.24)

where
←−
∂
∂η

denotes the left acting derivative with respect to η. Note that the fermion

determinant detM is gauge invariant and real as it follows from the properties

(2.19) and (2.20), respectively.

The equation (2.24) is the standard quantization formula for the investigation

of the gauge invariant observables O:

O[U g, ψ
g
, ψg] = O[U, ψ, ψ]. (2.25)

Without loss of generality we will restrict ourselves to invariant observables (2.25)

which depend only on the gauge field U : O = O[U ]. The reason is that the

average values of fermion observables are expressed in terms of elements of the

inverse fermion matrixM−1[U ] as it follows from equation (2.24).

Let us present some gauge invariant observables which are very important in

the investigation of lattice theory. In this thesis, we will study the mean gauge

energy 〈EG〉 [9], the scalar condensate 〈ψψ〉 and the pion norm 〈Π〉 [18]:

〈EG〉 = 〈 1

6V

∑
x,µ,ν
µ<ν

(1− ReUx,µν)〉, (2.26)

〈ψψ〉 = 〈 1

4V

∑
x

ψxψx〉 = 〈 1

4V
TrM−1〉, (2.27)

〈Π〉 = 〈 1

4V

∑
x

(ψxγ5ψx)
2〉 = 〈 1

4V
Tr γ5M−1γ5M−1〉. (2.28)
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where the trace is taken over coordinate and spinor indices. Note also that the

fermion observables are independent of the choice of boundary conditions for

Fermi-fields as it follows from invariance of the integral (2.22) under nonperiodic

gauge transformations (2.12). The mean gauge energy (2.26) is proportional to the

∂ lnZ/∂β, where Z is defined according to equation (2.23). The scalar condensate

(2.27) and the pion norm (2.28) are represented via sums of inverse eigenvalues

of the M and M†M operators, respectively. And therefore, these fermion values

(especially pion norm) can serve for an identification of the critical zero eigenvalue

behaviour of the Wilson fermion matrix (2.18).

Hence, the gauge invariant observables (2.26) – (2.28) are widely used for study-

ing of the phase structure of lattice fermion models (see [18]).

2.4 Quenched and dynamical fermion approxi-

mations

In both analytical and numerical studies of a lattice theory, the investigation of

the fermion determinant detM is very difficult. Traditional methods of computing

the determinant directly fail to extract numerical as well as physical information

about the contribution of fermion loops to the theory.

Nevertheless, one can enormously simplify the consideration of lattice models

by taking into account the smallness of the hopping-parameter κ. From its def-

inition (2.17) it follows that κ satisfies the inequality κ < 1 for r = 1 or more

concretely, κ is of order 1/8. This in case of large fermion mass allows us to

perform an expansion in powers of κ of the Wilson fermion matrix (2.18) in the

fermion determinant. In the leading order:

detM = const.

One retains often only this order of the determinant in the integral (2.24) [59] –

[61]. But higher orders can be considered as corrections to the average observable

value.

This approximation known as quenched approximation, corresponds to:

Nf = 0. (2.29)

In other words, one neglects the contribution of the fermion loops to the weight

19



function. One then simply averages lattice observables with the weight factor

exp(−SG[U ]) which facilitates numerical as well as analytical lattice investigations.

However, the approximation (2.29) and the hopping-parameter expansion are

not valid in case of very large condition number ζ:

ln ζ � 1, ζ =
λmax

λmin

, (2.30)

where λmax and λmin are the maximal and minimal eigenvalues of theM†Mmatrix,

respectively. Then one has to take into account the whole determinant in (2.24).

This case, when one does not neglect the influence of the fermion loops, is called

the dynamical fermion case [10].

The evaluation of the fermion determinant requires much more computer re-

sources than a numerical simulation of a pure gauge theory described by action

SG[U ] (2.11). Another difficulty is the sign problem of the fermion determinant

which may lead to a pathological result for physical observables. However, if the

number of fermion flavours

Nf = even, (2.31)

the simulations of the determinant can be facilitated due to its parametrization by

an auxiliary complex spinor field [60]. The calculation of lattice observables then

does not need the knowledge of the sign of the determinant.

We consider in this thesis compact lattice QED in both the quenched approx-

imation (2.29) and in the dynamical (2.31) Nf = 2 case. But we will discuss also

the problem of the odd fermion flavour investigation.

2.5 The phase structure of compact lattice QED

Let us remember that the lattice gauge theory is only a regularization for the

investigation of the continuum field theory. The results obtained by means of

lattice caluclations, make physical sense only in the continuum limit a → 0. At

the same time, the continuum renormalized parameters such as masses or running

couplings, must take finite values. Hence in order to go to the continuum limit,

one has to require that the couplings β and κ depend on the lattice spacing a (see

[9, 10]).

It is necessary to know which lines in the (β, κ) plane correspond to constant

physics in the limit a→ 0. One of such lines is obtained by means of the study of
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lattice renormalized masses. They can be extracted from corresponding correlators

in the following way [62]:

ΓΦ(τ) =
∑

~x

〈Φ0Φx〉 ∝ exp(−mΦτ), x = (~x, τ), a→ 0. (2.32)

For example, the operator for the extraction of the pseudoscalar ’pion’ mass mπ

is Φ
(π)
x = ψxγ5ψx.

Keeping with τ = an4 the integer value n4 in the (2.32) finite, one can formulate

the condition for the bare lattice parameters in the continuum limit:

amphys → 0, a→ 0. (2.33)

where mphys = mphys(β, κ) are masses of physical particles or energies of their

ground states extracted according to (2.32).

Equation (2.33) determines the critical line κ = κc(β) where the fermion parti-

cles in a units have zero masses [63] – [65]. It means that along this line known as

the chiral limit line, the chiral symmetry broken by the Wilson mass term (2.14) is

partially restored. On the other hand, since the powers of the 1/amphys contribute

to fermion observables like (2.27) or (2.28) and the masses mphys are finite, the

chiral limit line in the language of the thermodynamics must be a line of at least

second order phase transition. Instead of the bare fermion mass m0, one can define

the naive lattice fermion mass mq [63] as

amq =
1

2

(
1

κ
− 1

κc(β)

)
. (2.34)

Studies of the 4-dimensional U(1) model with Wilson fermions have shown

(see e.g. [6, 7], [17, 18], [63] – [70]) that such a theory has a nontrivial phase

structure (Figure 2.1). It consists of at least 4 phases in the (β, κ) plane separated

by different order phase transition lines. But there is a difference between the

quenched approximation and Nf = 2 dynamical fermions. While in the quenched

case the critical line separating Coulomb and confinement phase has the same β

value equal to 1.01(1) (Figure 2.1a), in the dynamical case it coincides partially

with the chiral limit line (Figure 2.1b) [70]. This line κ = κc(β) connects the

points κc(0) = 1/4 and κc(∞) = 1/8 at the Wilson coefficient r = 1 [63]. The

deviation of κc(β) from the exact perturbative value 1/8 can be explained as an

influence of the chirally noninvariant Wilson mass-like term (2.14).
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Figure 2.1: Phase structure of compact lattice QED in the quenched approx-

imation (a) and with Nf = 2 dynamical fermions [70] (b).
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We are interested mostly in the Coulomb phase because it describes the usual

static Coulomb potential and the vanishing photon mass. It is characterized by

the suppression of magnetic monopoles [17]. However, it is worth to discuss also

the confinement phase having many similarities with QCD one. In this phase

in quenched approximation, the static potential for charged particles is directly

proportional to the distance between them [8], the corresponding gauge bosons

acquire a non-zero mass and one detects a condensation of monopole-antimonopole

pairs [17].

These phases are separated by the line of the first order phase transition [17],

[71] – [73] (see Figure 2.1). It means that one has to search for the continuum

limit points (β?, κ?) outside this line. According to the above presented arguments,

these points should lie on the curve κ = κc(β) in the Coulomb phase. The precise

numerical value for the β? point is unknown so far in spite of numerous efforts in

this direction (see e.g. [74] – [76]). We will not touch this problem but note that

it requires a very careful study of the renormalized masses and coupling constant

[13] – [16].

At the same time, the investigation [77] of the confinement phase near the chiral

limit and also the 4th (Aoki) phase [29] (see Figure 2.1b) is complicated because the

well-known method for such purposes, the hybrid Monte Carlo algorithm [39, 40],

does not work well in the case of large condition numbers ζ (2.30) (see also [33, 78]).

To decrease this number, in case of Nf = 2 one can introduce the following twisted

mass term [30, 31]:

hψγ5 ⊗ τ3ψ, (2.35)

and then at the evaluation of desired observables take the limit h → 0. The

investigation of the Aoki phase led to the conclusion that there the composite

pseudoscalar fermion masses are equal to 0 and the combined parity-flavour sym-

metry is broken [29] – [32]. But in order to better understand the properties of this

phase, one should use an alternative to the hybrid Monte Carlo algorithm. And

moreover, presently the studies of the lattice compact QED were done in the frame-

work of the quenched approximation or for even dynamical fermion flavours [77].

It would be interesting to investigate also the dynamical models with odd fermion

flavours. The problems of such investigation will be discussed later together with

the consideration of the dynamical fermion algorithms.

In the following let us use the convention a = 1 for the lattice spacing. If it
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is necessary, dimensions can be easily re-inserted. The lattice size will be V =

N3
s ×N4, with N4 ≥ Ns in order to compute masses from correlators as (2.32).
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Chapter 3

Gauge fixing on the lattice

3.1 Motivation

As it was already mentioned, studying the gauge invariant observables on the

lattice in the framework of compact gauge models [8] does not require a gauge

fixing (see [9]). Nevertheless, applying the Faddeev-Popov trick [79] to the integral

(2.24) by inserting the unity:

1 = ∆FP[U ]

∫
[dg]δ (F [U g]) ,

where ∆FP[U ] is the so-called Faddeev-Popov determinant, and by integrating out

the gauge transformation field g, we get the following expression for the averaged

gauge invariant operator O (2.25):

〈O〉 =
1

Z

∫
[dU ]∆FP[U ]δ (F [U ])O[U ]e−SG[U ]detNfM[U ], (3.1)

similar to the continuum field theory case.

However, in the case of perturbative study of a lattice model [46], one has

to introduce a gauge fixing term just as in the continuum theory. Moreover, the

evaluation of such gauge invariant objects as Wilson loops is very simple e.g. in

2-dimensional gauge models when an additional gauge fixing method is employed

[9].

We note that usual gauge invariant values describe either composite particles

or bounded states of quantum fields e.g. mesons or glueballs [10]. At the same

time, studies of gauge dependent observables like photon or fermion propagator

can give us more detailed and natural information about quantum objects such as
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behaviour of renormalized Green functions [14]. But the straightforward averaging

of gauge dependent operators over gauge field without any gauge fixing term leads,

according to group symmetry properties, to zero. For instance, in the case of

fermion propagator one has:

〈ψxψy〉 =
1

Z

∫
[dU ]

(
M−1[U ]

)
xy

e−SG[U ]detNfM[U ] = δxy〈ψψ〉,

as it follows from the covariance property (2.19) of the Wilson matrix, and where

the translational invariance of the theory has been used. Hence, to consider on

the lattice the gauge dependent objects, one has to use a gauge fixing procedure.

And the expression (3.1) can serve as a definition for the average value of a gauge

dependent observable.

In our case, studying the ’Landau pole’ problem in the compact lattice QED

requires an investigation of the renormalized coupling constant and fermion mass

[15, 16]. They can be extracted in the best way from the gauge dependent photon

(link) and fermion correlators by the method analogous to (2.32) (see [13, 14]).

That is why we are interested in the study of gauge dependent objects in the U(1)

theory on the lattice.

3.2 Methods of gauge fixing

One of the very popular methods of gauge fixing in quantum theory is the Lorentz

(or Landau) gauge fixing condition. For the U(1) gauge theory it looks as follows

[80, 81]:

Fx[U ] =
∑

µ

∂µAx,µ = 0 mod 2π, ∀x, (3.2)

where the backward derivative ∂µ is defined according to (2.6). However for practi-

cal reasons, it is convenient to consider the nonlinear lattice version of the Lorentz

gauge fixing [82, 83]:

Fx[U ] =
∑

µ

∂µ ImUx,µ = 0, ∀x, (3.3)

which can be reached in numerical calculations demanding the maximization of

the following functional Gmax[U ] with respect to all periodic gauge transformations

(2.8):

Gmax[U ] =
1

4V

∑
x,µ

ReUx,µ, Gmax[U
g]

g−→ max. (3.4)
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The maximization of this functional can be realized as follows. One performs

successive for every lattice point x, or cyclic, rotations (2.8) of the gauge links U

according to the rule:

Ux,µ → gxUx,µ, Ux−µ̂,µ → Ux−µ̂,µg
†
x, ∀µ = 1, . . . , 4,

gx = (Kx/|Kx|)−ω , Kx =
∑

µ

{
Ux,µ + U †

x−µ̂,µ

}
, ∀x, (3.5)

where the remaining components of the transformation g are put equal to 1 and all

other links are kept fixed. Here ω is the overrelaxation parameter. In case of ω = 1,

the transformations (3.5) maximize the functional (3.4) step by step, whereas if

the ω = 2, the Gmax is kept unchanged. But for the best convergence of the (3.5)

prescription, the parameter ω should be taken somewhere in the 1 < ω < 2 interval

(see [84]), e.g. we choose ω = 1.7. These updates are continued until both the

mean and the local maximal absolute values of the l.h.s. in equation (3.3) become

less than some small given numbers ε1 and ε2, respectively:

1

V

∑
x

|Fx[U ]| < ε1, max
x
|Fx[U ]| < ε2.

For instance, in our case ε1 = 10−6 and ε2 = 10−5.

Now let us describe another method of gauge fixing on the lattice which is very

popular in the study of confinement phenomena – Laplacian gauge fixing [85]. In

this method in the case of the U(1) gauge group, the gauge field U is fixed in such

a way that each component of the eigenvector φ(min) corresponding to the smallest

eigenvalue λmin of the covariant Laplacian ∆[U ],

∆[U ]φ(min) = λminφ
(min), ∆[U ] =

∑
µ

∇µ[U ]∇µ[U ], (3.6)

is real and non-negative:

φ(min)
x ≥ 0, ∀x. (3.7)

Here the covariant derivatives ∇µ and ∇µ are defined according to (2.9). Due to

the covariance property of the Laplacian ∆[U ]:

∆[U g] = g∆[U ]g†,

to reach the condition (3.7), one searches first for a eigenvector φ(min) satisfying

to the equation (3.6) and then performs the periodic gauge transformation (2.8)
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with the function g equal to:

gx = φ(min)
x

†
/‖φ(min)‖, ∀x; ‖φ(min)‖ =

(∑
x

|φ(min)
x |2

)1/2

.

In this thesis, we will not study the Laplacian gauge fixing procedure (3.6),

(3.7). We only note that the evaluation of the smallest eigenvalue and corre-

sponding eigenvector of the covariant Laplacian ∆[U ] can be done, for instance,

by various versions of the Lanczos or conjugate gradient methods (see chapter 5).

3.3 The problem of the gauge fixing ambiguites

It is well known that a gauge fixing procedure can lead to the occurence of gauge

fixing ambiguities called as Gribov copies [86]. For QED this happens even in

the continuum, as long as the theory is defined with toroidal boundary conditions

[87]. The problem of Gribov copies is related to topology and can be explained

as follows. If the smooth gauge fixing functional Fg = F [U g] on a compact space

takes a zero value, it should pierce the zero line at least twice [87]. Otherwise the

Faddeev-Popov determinant ∆FP[U ] will be degenerated.

At the same time, contrary to the gauge invariant objects, the average values

of gauge dependent operators depend on the gauge fixing condition F [U ] = 0.

Hence one has to find a gauge fixing procedure which allows us to get configura-

tions providing the best agreement of the gauge dependent observables computed

according to (3.1) with the lattice perturbative ones.

The standard iterative way to fix the Lorentz gauge for compact U(1) lattice

gauge theory has been shown to lead to serious Gribov copy effects [81, 83, 88,

89]. As a consequence, the transverse non-zero momentum photon correlator does

not reproduce the perturbatively expected zero-mass behaviour. For the fermion

correlator, a strong dependence on the achieved gauge copies has been also reported

[81]. The standard fermion mass determination becomes badly defined. Careful

numerical [83], [89] – [91] and analytical [92, 93] studies have shown that the main

gauge field excitations, responsible for the occurence of disturbing gauge copies,

are double Dirac sheets (DDS) and zero-momentum modes (ZMM).

DDS are identified as follows. Let us write the following decomposition for the

plaquette angle i.e. the gauge field strength tensor in case of U(1) lattice theory
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[6, 7, 17]:

∂µAx,ν − ∂νAx,µ = F x,µν + 2πnx,µν . (3.8)

Here ∂µ, ∂ν are the forward lattice derivatives defined in (2.6). The gauge potential

Ax,µ ∈ (−π, π] determines the compact gauge field (2.7). The value F x,µν ∈ (−π, π]

due to the definition of the compact plaquette (2.10) can be interpreted as physical

gauge invariant electromagnetic flux. The discrete gauge dependent term 2πnx,µν ,

nx,µν = 0,±1,±2 represents a Dirac string passing through the given plaquette in

case of nx,µν 6= 0 (the Dirac plaquette). A set of Dirac plaquettes providing a world

sheet of a Dirac string on the space orthogonal to this plaquette is called Dirac

sheet. Double Dirac sheets consist of two sheets with opposite flux orientation

which cover the whole lattice and are closed by periodic boundary conditions.

Thus, they can easily be identified by counting for every plane (µ, ν) the total

number of Dirac plaquettes

N
(µν)
DP =

∑
x

|nx,µν |. (3.9)

The necessary condition for the appearance of a DDS is that at least for one of

the six planes (µ, ν) holds the following inequality:

N
(µν)
DP ≥ 2

V

NµNν

. (3.10)

Let us present an analytic expression for a DDS [92]:

Ax,µ = Ãx,µ(R(a))− Ãx,µ(R(b)),

where

Ãx,µ(R) =
2∑

ν=1

εµν∂νfx(R), fx(R) =
2π

N1N2

∑
k, |k|6=0

e2πik(x−R)/N

K2(k)
,

k = (k1, k2), x = (x1, x2), R = (R1, R2), K2(k) =
2∑

µ=1

4 sin2(πkµ/Nµ).

It can be transformed to the trivial potential Ax,µ = 0 by periodic gauge rotations

(2.8). It satisfies to the linear Lorentz fixing condition (3.2) and

2∑
µ,ν=1

εµν∂νAx,µ = 2π(δx,R(a) − δx,R(b)).
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Comparing the latter result with the plaquette decomposition (3.8), we can con-

vince ourselves that such a configuration satisfies the condition (3.10) and repre-

sents a DDS.

Double Dirac sheets can be removed, or at least be reduced – in case of the

confinement phase – by decreasing the Dirac plaquettes number (3.9) [94] apply-

ing periodic gauge transformations (2.8). The latter have to be coupled to the

Lorentz gauge because, as it was demonstrated in [83], the standard Lorentz fixing

procedure usually does not succeed in doing this.

DDS occur quite independently of the lattice size and the chosen β. And, as it

was detected in [90] – [92], they are mainly responsible for the significant deviation

of the non-zero momentum transverse photon correlator from the expected zero-

mass perturbative one. However, as soon as one eliminates the unwanted DDS

configurations, the correct zero-mass behaviour is restored (see also next chapter).

It is a common believe (see [95, 96]) that the Gribov problem can be solved by

searching for the global maximum of the gauge functional (3.4) providing the best

gauge copy (or copies, in case of degeneracy). For the DDS, this functional does

not reach its maximum value. It was shown [90] that in order to reach the global

maximum, one has necessarily to remove both the DDS and the ZMM from the

gauge fields.

We have discussed here DDS gauge copies. Other copies, ZMM, deserve special

attention and will be considered in the next chapter with the study of the Coulomb

phase.
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Chapter 4

The problem of zero-momentum

modes

4.1 Zero-momentum modes

Let us investigate now the problem of other gauge copies, zero-momentum modes,

for the case of the physically interesting Coulomb phase.

The constant or zero-momentum modes of the gauge field (2.7) are defined as

follows:

φµ[U ] =
1

V

∑
x

Ax,µ. (4.1)

Let us describe their properties. First of all, they do not contribute at all to the

pure gauge field action (2.11) because it is invariant under the transformation:

Ux,µ → Ux,µe−iφµ[U ], ∀x, µ.

And hence, these constant modes are gauge copies of a gauge fixing procedure in

the quenched fermion case. However, they can not be removed by usual periodic

gauge transformations (2.8). As an example, for the Lorentz gauge fixing (3.3),

(3.4) with DDS suppression, we measure the probability distributions P (φ) for

the space- and time-like components of ZMM evaluated according to equation

(4.1). The distributions turn out to be more or less flat within some interval

φµ ∈ [−φmax
µ , φmax

µ ] with effective cutoff φmax
µ ∼ π/Nµ (see Figure 4.1) providing

an average value:

〈|φµ|〉 ∼
π

2Nµ

, (4.2)

and to be widely independent of β.
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Figure 4.1: Distributions of the spacelike zero-momentum mode at different

β-values and lattice sizes at the Lorentz gauge fixing. DDS excluded.

One can explain the behaviour of such constant modes as follows. For ordinary

i.e periodic gauge transformations (2.8), the zero-momentum modes are changed

only by values proportional to 2π/V :

φµ[U g] = φµ[U ] +
2π

V
kµ, kµ = 0,±1, . . . (4.3)

At the same time, for gauge configurations representing small fluctuations around

constant modes (that takes place in the Coulomb phase):

Ax,µ = φµ + δAx,µ,
∑

x

δAx,µ = 0, |δAx,µ| � 1, (4.4)

the Lorentz functional Gmax (3.4) becomes larger with decreasing φµ values. And

the iterative Lorentz fixing procedure (3.5) maximizing Gmax, tends to decrease

also the ZMM (4.1) but obviously can not succeed in their complete elimination.

Hence, in order to reach the global maximum of the Lorentz functional provided

that all φµ = 0, one must explicitely remove these constant modes from the gauge

field configurations.
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4.2 Methods to eliminate the zero-momentum

modes

In order to remove the zero-momentum modes, it was proposed [90] to use the

iterative Lorentz gauge fixing procedure (3.3), (3.4) together with the suppression

of the constant modes (4.1):

Ax,µ → A′
x,µ = Ax,µ − φµ[U ] mod 2π, ∀x, ∀µ = 1, . . . , 4. (4.5)

One notes that such subtraction removes the zero-momentum modes only up to

values proportional to 2π/V . And the proper elimination of these modes, when

φµ = 0, can be achieved only if the Lorentz gauge fixing (3.4) is employed. Hence,

the successive Lorentz gauge iteration steps (3.5) are always followed by non-

periodic gauge transformations (2.12) suppressing the ZMM. Of course, we should

check at the end whether the gauge field also contains the DDS. The latter can

be excluded (in Coulomb phase) simply by repeating the same algorithm starting

again with a random gauge transformation applied to the same gauge field config-

uration. We call the combined procedure (3.4), (4.5) as zero-momentum Lorentz

(ZML) gauge. It is worth noting that the ZML gauge fixing alone removes al-

ready most of the DDS configurations. In Figure 4.2 we show how the achieved

values of the gauge functional Gmax (3.4) are correlated with the occurence of

DDS which are visible as sharp peaks in the maximal number of Dirac plaque-

ttes NDP = max
µ,ν

N
(µν)
DP where N

(µν)
DP defined in (3.9). Whereas for Lorentz gauge

strong fluctuations occur (Figure 4.2a), they disappear after ZML gauge fixing.

The few DDS seen in Figure 4.2b are easily removed by restarting the procedure

with random initial gauges. Random gauges can also be used in order to convince

oneself that the ZML gauge prescription leads to the global maximum of the gauge

functional in more than 99% of all events [90, 91].

We will now discuss an alternative method to get rid off the constant modes

(4.1) of the gauge fields. In [83] it was proposed to use the nonperiodic gauge ro-

tations (2.12) transforming the average Polyakov lines Pµ[U ] into real and positive

numbers:

Pµ[U ] =
Nµ

V

∑
x⊥

Nµ∏
xµ=1

Ux,µ > 0, ∀µ = 1, . . . , 4. (4.6)

where the x⊥ are points in the subspace orthogonal to µ direction. The Polyakov

line fixing exactly removes the constant gauge configurations Ux,µ = cµ which
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Figure 4.2: Time history of Gmax and NDP at β = 1.1 on the 63 × 12 lattice

in the standard Lorentz gauge (a) and in the ZML gauge (b).
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correspond to the free gauge case β → ∞. But contrary to the ZMM (4.1), the

Polyakov lines (4.6) are invariant under periodic gauge transformations (2.8). Let

us defines the Polyakov phases φ
(Pol)
µ [U ] according to the equation:

exp(iNµφ
(Pol)
µ [U ]) = Pµ[U ], − π

Nµ

< φ(Pol)
µ [U ] ≤ π

Nµ

. (4.7)

Then in order to reach the Pµ > 0 condition, one must take the following constant

gauge transformation in (2.12):

cµ = exp
(
iφ(Pol)

µ [U ]
)
.

And such transformation leads immediately to the gauge configuration with Polya-

kov phase φ
(Pol)
µ = 0.

At the end, let us present the integral for average gauge dependent observables

in case of gauge fixing with an additional ZMM subtraction. Since the fermion

matrix is not invariant under constant gauge transformations (2.12) such aver-

ages must differ from the standard ones defined by equation (3.1). Now they are

evaluated as follows:

〈O〉φ=0 =
1

Z

∫
[dU ]∆FP[U c]δ (F [U c])O[U c]

∣∣∣∣
φ[Uc]=0

e−SG[U ]detNfM[U ], (4.8)

where the U c configuration, obtained from U by the nonperiodic transformation

(2.12), satisfies the zero-momentum suppression condition φµ[U c] = 0, ∀µ =

1, . . . , 4, and φµ[U ] is defined according to (4.1) or (4.7). Note that in case of

gauge invariant observables, one can omit the Lorentz fixing condition F [U ] = 0

and use only the Polyakov gauge fixing (4.6) in order to get rid off the contribution

of zero-momentum modes.

4.3 Gauge dependent observables

4.3.1 Photon correlator

In this section we study the effects of the zero-momentum modes in case of the

gauge dependent observables in the quenched approximation within the Coulomb

phase.

The first gauge variant observable we are going to discuss is the transverse

photon correlator at various (including non-zero) momenta [83]:

Γph(~p, τ) =
1

N4

N4∑
x4=1

〈
Φ(~p, x4 + τ)Φ†(~p, x4)

〉
, τ = 0, . . . , N4 (4.9)

35



where

Φ(~p, x4) =
∑

~x

exp(i~p~x+ ipµ/2) ImUx,µ, µ = 1 or 3,

~p = (0, p, 0), x = (~x, x4), p = 2πk/Ns, k = 0, 1, . . .

In the free perturbative case, this photon correlator has the following behaviour

(see also [83, 91]):

Γ
(pert)
ph (~p, τ) ∝


cosh [Eph(~p)(τ −N4/2)]

sinh [Eph(~p)/2] sinh [Eph(~p)N4/2]
, ~p 6= 0

N2
4 − 1
6N4

+ τ
(
τ
N4
− 1
)
, ~p = 0

, (4.10)

where

sinh2 Eph(~p)

2
=

3∑
l=1

sin2 pl

2
.

Let us convince ourselves that the removal of the above mentioned gauge copies

leads to the correct behaviour of the transverse photon correlator. First of all

we consider the normalized photon correlator Γph(~p, τ)/Γph(~p, 0) for lowest non-

vanishing momentum p = 2π/Ns and for different Lorentz gauge prescriptions (see

Figure 4.3a). For the standard one (open boxes) we see a clear deviation from

the expected perturbative zero-mass result (4.10). On the other hand, Lorentz, as

well as ZML, gauges without DDS (filled circles) provide an agreement with the

perturbative result [83, 90, 91]. The given observations do not change, when β

and/or the lattice size are considerably increased [91]. As it is obvious from the

decomposition (4.4), in case of non-vanishing momenta p, the constant modes do

not contribute to the photon correlator (4.9). Therefore application of the ZML

gauge in this situation is not necessary.

But in case of the zero momentum p = 0 (see Figure 4.3b), there is no an agree-

ment of this correlator in the Lorentz gauge with the perturbative result (4.10).

Even the elimination of the DDS does not change the wrong behaviour. However

in the ZML gauge (with additional DDS suppression) the photon correlator is in

a good agreement with the perturbative one [90, 91].

A detailed inspection of the influence the zero-momentum modes on the photon

correlator (4.11) has been performed in [90, 91, 93]. Next two sections will be

devoted to analogous investigation in case of the fermion observables.
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Figure 4.3: Transverse photon correlator at β = 1.1 on the 63× 12 lattice for

the nonzero momentum k = 1 (a) and for zero momentum k = 0 (b) cases.
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4.3.2 Fermion correlator

The second gauge dependent observable in our investigation is the fermion zero-

momentum correlator. For a given gauge field U we have:

Γ(τ) =
1

V

∑
x,~y

M−1
xy [U ], x = (~x, x4), y = (~y, x4 + τ). (4.11)

For simplicity, we restrict ourselves to the scalar and vector parts of the fermion

correlator, respectively:

ΓS(τ) =
1

4
Re tr Γ(τ), ΓV (τ) =

1

4
Re tr γ4Γ(τ), (4.12)

where the trace is taken with respect to the spinor indices. For antiperiodic in x4

(or time-antiperiodic) b.c., the vector (scalar) part becomes an even (odd) function

in τ around τ = N4/2, for periodic b.c. vice versa.

In quenched QED, the fermion correlator (4.11) has to be averaged with re-

spect to the gauge field U distributed with the weight exp(−SG[U ]). We will also

compare the quantum averages within the zero-momentum mode approximation

where only background gauge fields being constant in space-time are taken into

account (it corresponds to the case β →∞). Therefore, we construct analytically

the correlator for a uniform gauge configuration given by:

Ax,µ = φµ, −π < φµ ≤ π, µ = 1, . . . , 4.

One obtains the following finite size results for the scalar and vector parts,

respectively:

ΓS(τ ;φ) =
δτ,0

2(1 +W)
− 1 + E2 − 2E(1 +W)

1− E2
×

× [Eτ − E2N4−τ ] cos(φ4τ)− c[EN4+τ − EN4−τ ] cos[φ4(N4 − τ)]
1 + E2N4 − 2cEN4 cos(φ4N4)

, (4.13)

ΓV (τ ;φ) =
1− δτ,0

2(1 +W)
×

× [Eτ + E2N4−τ ] cos(φ4τ)− c[EN4+τ + EN4−τ ] cos[φ4(N4 − τ)]
1 + E2N4 − 2cEN4 cos(φ4N4)

, (4.14)

where c = +1 and c = −1 holds for periodic and time-antiperiodic boundary

conditions, respectively, and

E = 1 +
W2 +K2

2(1 +W)
+

√
W2 +K2

√
(W + 2)2 +K2

2(1 +W)
;

W = m0 +
3∑

l=1

(1− cosφl) , K =

√√√√ 3∑
l=1

sin2 φl, m0 > 0,
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Figure 4.4: The fermionic vector correlator ΓV and the effective mass meff at

β = 2 and κ = 0.122 on a 63 × 12 lattice for LG and ZML gauges.

where the bare fermion mass m0 is related to the hopping-parameter κ according

to formula (2.17). If we put all φµ = 0, the equations (4.13), (4.14) reproduce the

results for the standard free fermion correlator [97]. The formulas analogous to

equations (4.13), (4.14) were obtained also in the case of staggered fermions [14].

The renormalized fermion masses are extracted in the following way. We con-

sider an effective mass meff(τ) determined from the correspondence of the vector

part (4.12) of the ordinary correlator with the vector part of the free fermion cor-

relator (4.14) at φµ = 0 in case of time-antiperiodic b.c. (or scalar parts (4.12)

and (4.13) for periodic b.c.) according to the recipe:

〈Γ(τ + 1)〉
〈Γ(τ)〉

=
cosh [E(τ)(τ + 1−N4/2)]

cosh [E(τ)(τ −N4/2)]
, E(τ) = ln(meff(τ) + 1). (4.15)

Then one searches for a plateau of the function meff(τ) in order to identify the

value of fermion mass.

Let us consider quenched QED within the Coulomb phase at β values between

2 and 10 for κ parameters not too close to κc(β). In order to extract the pure ZMM

effect, we first apply the standard Lorentz gauge procedure (3.3), (3.4) modified by

initial random gauges in order to suppress DDS. Let us abbreviate the notation for
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Figure 4.5: Free fermionic vector correlator (dashed line) and averaged con-

stant mode correlator (full line) for two β-values and lattice sizes 63 × 12,

83 × 16.

this modified Lorentz gauge procedure by LG. We compare the result with that for

the ZML gauge described above. For definiteness, we choose the time-antiperiodic

boundary conditions for Fermi-fields and study the vector part ΓV (4.12) of the

fermion correlator.

For both these gauges we have computed the averaged fermion correlator (4.11)

as defined in equations (4.12) and normalized to unity at τ = 1. In the upper part

of Figure 4.4 we have plotted the vector part 〈ΓV (τ)〉 for β = 2, κ = 0.122 and

lattice size 63 × 12. The situation seen is typical for a wide range of parameter

values within the Coulomb phase. Obviously, there is a strong dependence of the

fermion correlator on the gauge copies differing by the different amount of ZMM.

If ZMM are present, the correlator decays much stronger, than when they become

suppressed.

In the lower part of Figure 4.4 the corresponding numerical results for the

effective masses meff(τ) (4.15) are shown. In the standard LG case no real plateau

is visible, whereas the ZML case provides a very stable one. Thus, the ZML gauge
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Figure 4.6: Effective masses corresponding to the fermion correlator results

shown in Figure 4.5.

yields a reliable mass estimate, whereas the LG fails here. Naively, when only

considering the LG method, one would be tempted to relate a ’bad plateau’ to

finite-size effects and to believe that the given LG effective mass result is already

near to the real mass. Such a point of view obviously fails. Taking now the ZML

mass estimate as the reliable one, the LG estimate fails by a factor ∼ 3 in our

case.

In order to estimate roughly the effect of the ZMM on the fermion correlator for

various β and lattice size, we consider the zero-momentum mode approximation as

follows. According to equations (4.13), (4.14) we compute the fermion correlator

only within the constant background modes extracted from the quantum gauge

fields in the LG case with the distribution P (φ):

〈Γ〉φ =

π∫
−π

d4φ

(2π)4
P (φ)Γ(φ)

/ π∫
−π

d4φ

(2π)4
P (φ). (4.16)

The results of this calculation for the vector part of the fermion correlator in

the LG case are presented in Figure 4.5 together with the corresponding free, i.e.
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φµ = 0, correlator (dashed lines). One can see that the effect of the ZMM does

not weaken with increasing β and lattice size, respectively. Having the estimate

(4.2) for 〈|φµ|〉 one finds from (4.13), (4.14) and (4.16) that the ZMM effect does

not disappear even in the limit Nµ →∞.

The computations of the fermion correlator (4.11) within the full gauge field

background confirm these observations.

We can take the pure zero-momentum mode approximation described above in

order to check, how the corresponding effective fermion mass would behave. This

result is shown in Figure 4.6. We clearly see, that for the LG case providing the

ZMM background field configurations we do not find a plateau (full lines). The

effective mass values strongly differ from the real ones, i.e. m0 of the free correlator

(dashed lines).

And at the end, in Figure 4.7 we present the renormalized fermion mass mf

extracted from the vector fermion correlator by use of (4.15) within the ZML

gauge for β = 2.0 and various κ values. We see a nice linear behaviour mf ∝
mq where mq defined in (2.34), from which by extrapolating (solid line) to zero
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mass mf = 0 (dashed line) one estimates the critical hopping-parameter value

κc = 0.1307(1). This value coincides with κc obtained by studying of the gauge

invariant observables: the pion norm variance [33] and the PCAC-like fermion

mass [98].

4.4 Gauge invariant fermion observables

Now we consider the influence of the zero-momentum modes on gauge invariant

fermion observable. For this investigation we choose the scalar condensate (2.27)

and the pion norm (2.28) values. We are not interested at the moment in the pure

gauge observables like mean gauge energy (2.26) since their operators are invariant

under the constant gauge transformations (2.12).

Remember the definition of the scalar condensate and pion norm average values:

〈ψψ〉 ≡ 〈 1

4V
TrM−1〉 = 〈 1

4V

∑
j

1

µj

〉, (4.17)

〈Π〉 ≡ 〈 1

4V
Tr γ5M−1γ5M−1〉 = 〈 1

4V

∑
j

1

λ2
j

〉, (4.18)

where the averaging 〈. . .〉 is performed according to the equation (2.24), and µj, λj

are the eigenvalues of M and γ5M matrices, respectively. We remind that these

values (4.17) and (4.18) are independent of the choice of the boundary conditions

for fermion fields. One expects 〈ψψ〉 and 〈Π〉 values (especially the latter one) to

be good indicators of the chiral limit at κ → κc(β) as some of the µj and λj are

expected to become very small [33].

However, the numerical study of fermionic observables like 〈Π〉 near the chiral

limit does not reveal the critical properties as expected from lowest order and

finite lattice size perturbation theory. This can be seen from the κ-dependence of

the pion norm numerically computed at low β-values within the Coulomb phase

[70] (see Figure 4.8). Its behaviour is very smooth and no sign of any critical

behaviour is observed. The volume dependence of 〈Π〉 is rather weak, and there is

no significant difference between the quenched and the dynamical case.

It is interesting to compare these results for 〈Π〉 with the standard perturbative

free fermion case given by the expression:

〈Π〉0 =
1

V

∑
p

{
4κ2

∑
µ

sin2 2πpµ

Nµ

+
(
1− 2κ

∑
µ

cos
2πpµ

Nµ

)2
}−1

, (4.19)
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Figure 4.8: Pion norm as function of κ for full (and quenched) compact QED

with Wilson action at β = 1.1 for various lattice sizes (data taken from [70]).

where the pµ, µ = 1, . . . , 4 are integers except for time-antiperiodic b.c. causing

p4 to take half-integer values. In Figure 4.9 one can see the κ-dependence of 〈Π〉0
calculated on a symmetric lattice (N4 = Ns = 6) for periodic and time-antiperiodic

b.c. For periodic b.c. 〈Π〉0 obviously becomes singular at κ = 1/8, whereas for

time-antiperiodic b.c. the κ-dependence of 〈Π〉0 becomes smooth for symmetric

lattices. However, note that in the latter b.c. case 〈Π〉0 develops a peak for strongly

elongated lattices (N4 →∞ with Ns=fixed), too.

This behaviour can be explained by a rough analytical estimation of the free

pion norm value from equation (4.19) near the critical point κc = 1/8. For periodic

b.c. owing to the contribution of the p = 0 term one has:

〈Π〉0 ∝
1

V (1− 8κ)2
, κ→ κc = 1/8. (4.20)

But in case of time-antiperiodic boundary conditions, 〈Π〉0 ∝ N2
4/V , and there is

no critical behaviour for the symmetric lattice Ns = N4. However if N4 � Ns, the

critical effect is restored that is confirmed by our numerical observations.

We are going to demonstrate that this drastic difference between 〈Π〉 in the

finite β (Figure 4.8) and free (Figure 4.9) cases is due to influence of constant or
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modes and in the zero-momentum mode approximation, lattice size 64, periodic
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zero-momentum modes of the gauge fields φµ[U ] as defined in equation (4.1).

Within the zero-momentum mode approximation this can be easily demon-

strated by averaging 〈Π〉 over constant modes with uniform distribution. It yields

the following expression independent of the b.c.:

〈Π〉φ =

π∫
−π

d4φ

(2π)4

{
4κ2

∑
µ

sin2 φµ +
(
1− 2κ

∑
µ

cosφµ

)2
}−1

, (4.21)

which is completely smooth in κ and agrees with the former time-antiperiodic, free

result for symmetric lattices (see Figure 4.9).

Now let us consider the gauge interacting case, i.e. the finite β-values. We

compute the pion norm in the ZML gauge according to the integral (4.8) when the

zero-momentum modes in the observable become eliminated. Since the fermion

operator (2.18) is not invariant under constant gauge transformations (2.12), the

new average 〈Π〉 differs from the ordinary one averaged according to (2.24). In the

following we choose periodic boundary conditions, because owing to (4.20) in the

free case we expect that they lead to a more pronounced chiral behaviour than the
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Figure 4.10: Pion norm 〈Π〉 (a) and scalar condensate 〈ψψ〉 (b) as functions

of κ in the ZML gauge for full and quenched QED, as well as without any

gauge fixing for full QED; all data for β = 2.0, lattice size 44, periodic b.c.
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time-antiperiodic ones.

In Figure 4.10a we show the dependence of the pion norm 〈Π〉 on κ. One can see

that for dynamical fermions (full circles) as well as for quenched fermions (boxes)

the ZML observable 〈Π〉 has a sharp singularity near the point κc = 0.1307(1)

for β = 2.0 (compare with Figure 4.7). In contrast, the standard definition of

the pion norm demonstrates a completely smooth behaviour (open circles). We

checked these results for 〈Π〉 also on larger lattices. For κ approaching κc the same

critical behaviour is observed, whereas very close to and slightly above κc the influ-

ence of an increasing number of very small fermionic eigenmodes leads to stronger

fluctuations (’exceptional configurations’). The dynamical and quenched results

resemble each other. This can be interpreted as the zero-momentum modes which

are removed from the observable 〈Π〉 evaluated by (4.8), continue to dominate the

fermion determinant.

What about the scalar condensate 〈ψψ〉 (4.17)? It also demonstrates the crit-

ical behaviour in the ZML gauge for both quenched and dynamical cases (see

Figure 4.10b). As expected from (4.17), (4.18), its peak near the chiral limit line

is not so pronounced as for the pion norm.

We have also studied the gauge invariant fermion observables in the Polyakov

gauge (4.6). Our results have shown that this nonperiodic gauge fixing – without

the necessity to employ the Lorentz gauge – leads to the singular chiral behaviour

for both pion norm and scalar condensate values similar to the ZML gauge case.

At the end let us discuss the width of the critical behaviour in case of the

periodic b.c. for fermions. As it follows from the asymptotic behaviour (4.20) for

the free pion norm, the gap of the singularity shrinks to zero in the thermodynamic

limit V →∞. Our numerical results confirm this statement. However, the singular

behaviour of gauge invariant fermion observables without ZMM can serve in the

finite lattice case for an evaluation of the critical hopping-parameter κc(β).

4.5 Discussion

Within the physically interesting Coulomb phase we have studied the effect of dif-

ferent gauge copies of the gauge field on gauge dependent correlators, in particular

on the fermion one, and also on the gauge invariant fermion observables.

We have convinced ourselves that the standard Lorentz gauge fixing prescrip-

tion to maximize the functional (3.4) provides gauge copies with DDS and ZMM.
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These modes disturb the photon and the fermion correlator behaviour in compar-

ison with standard perturbation theory and consequently spoil the naive effective

mass estimate. A Lorentz gauge employing non-periodic gauge transformations

(2.12) in order to suppress the ZMM (4.1) (the ZML gauge) – additionally to

DDS – allows us to reach the global maximum of the Lorentz gauge functional

(3.4). Furthermore, it provides a reliable fermion mass determination, at least, if

κ is chosen not too close to the chiral critical line κc(β). A computation of the

fermion correlator with constant background gauge fields taken from the ZMM of

the quantum fields demonstrates the disturbing effect of these modes very clearly.

Moreover, it shows the effect to be independent of the bare coupling and not to

disappear for large volumes.

The ZMM configurations smooth out also the critical chiral behaviour expected

from lowest order perturbation theory for gauge invariant fermion observables like

the pion norm and the scalar condensate. This was proven in the free fermion

case and confirmed in the finite β theory. But the elimination of ZMM by the

use of ZML gauge fixing (3.4), (4.5) or the Polyakov line one (4.6) restores the

critical behaviour in case of the periodic b.c for fermions. And the position of the

chiral limit line κc(β) appears to be coincident with that obtained from the gauge

dependent fermion mass estimates. Although there is no singular behaviour in case

of the time-antiperiodic b.c. for symmetric lattices, it becomes again visible for the

pion norm if N4 � Ns. And the width of the peak shrinks in the thermodynamic

limit V →∞.

So far we have studied the gauge dependent observables in the framework of

the quenched approximation of U(1) lattice gauge theory. The gauge action (2.11)

is invariant under constant gauge transformations (2.12). Thus, we are allowed to

use the ZML gauge for the evaluation of gauge dependent objects. Contrary to

the gauge action, the fermion action (2.15) does depend on the ZMM. And these

constant modes lead as shown (see Figure 4.10) to the smoothing of the fermion

determinant in the integral (2.24) for lattice observables. In this case another way

of dealing with the Gribov problem has to be searched for.

Rigorously speaking, the consistent study of the compact U(1) theory without

zero-momentum modes requires also their elimination from the fermion determi-

nant. However on the one hand, it strongly complicates the numerical calculations.

And on the other hand, the ZMM suppression (4.5) owing to the gauge covari-

ance (4.3) must be accompanied by the maximization of the Lorentz functional
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(3.4), and gauge invariant observables will depend on the gauge fixing. Here, the

Polyakov gauge (4.6) could be a good candidate of the gauge invariant constant

modes suppression.

However, there is an important objection to use the elimination of the zero-

momentum modes. As one sees from the Figure 4.10, the critical behaviour of

gauge invariant fermion observables without ZMM near the chiral limit line seems

to indicate a first order phase transition. But it is spurious because of its vanishing

in the thermodynamic limit V →∞. At the same time, it could disturb the correct

study of lattice observables in the continuum limit and the precise determination

of critical points (β?, κ?), if they exist. Hence, one should try to find alternatives to

the ZMM suppression. One of such ways is to employ the C∗-boundary conditions

[99] to both gauge and fermion fields, which implicitly suppress the ZMM and also

Gribov copies like double Dirac sheets.

Another way nevertheless, could be considering standard Lorentz gauge with

additional DDS suppression and taking the constant background modes properly

into account in describing the perturbative finite volume fermion correlator (4.13),

(4.14) and then identifying correspondingly the renormalized fermion mass [14].

And moreover, it is enough to use only LG in case of objects independent of the

zero-momentum modes as the photon correlator (4.9) at ~p 6= 0 [83, 90, 91].

The basic material of the chapter 4 was published in papers [34, 35].
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Chapter 5

Algorithms for the lattice

5.1 Monte Carlo method

In practical numerical studies of average observables on the lattice one has to eval-

uate the integral (2.24). However computations of this integral by usual numerical

methods are impossible because they require an exponentially large number of

computer operations. For instance even in case of the simplest discrete group

Z2 = {+1,−1} for 4d gauge theory, such number is equal to 24V which can never

be reached by present computing devices.

It means that one has to use qualitatively different, statistical way for the

evaluation of the lattice integral (2.24) – Monte Carlo method (see e.g. [9, 10]).

The idea of this technique is that one generates a series of gauge configurations

U (1), U (2), etc. distributed with a weight m[U ]. The integral (2.24) for average

observable O = O[U ] is then evaluated as follows:

〈O〉 = lim
N→∞

N∑
j=1

O[U (j)] exp(−SG[U (j)])detNfM[U (j)]/m[U (j)]

N∑
j=1

exp(−SG[U (j)])detNfM[U (j)]/m[U (j)]

. (5.1)

It is obvious from this equation that in order to suppress strong fluctuations

of the integral measure in (2.24), one should generate the gauge configurations

distributed as:

m[U ] ∝ exp(−SG[U ])
∣∣detNfM[U ]

∣∣ . (5.2)

Then the expression (5.1) with the assumption detNf M > 0 is just the arithmetic
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mean value for sampled observables O[U (j)]:

〈O〉 = lim
N→∞

1

N

N∑
j=1

O[U (j)]. (5.3)

But usually the direct generation of the weight (5.2) is impossible. One may

only perform a Markov process U → U ′ to get a new configuration U ′ from the

previous one U , described by some transition probability p[U ′, U ]. However if the

weight m[U ] satisfies the equilibrium relation:

m[U ] =

∫
[dU ′]p[U,U ′]m[U ′], (5.4)

then the transition process p[U ′, U ] will converge to the distribution proportional

to the function m[U ].

A sufficient condition for the equilibrium equation (5.4) is the detailed balance

relation:

p[U ′, U ]m[U ] = p[U,U ′]m[U ′]. (5.5)

Indeed, integrating out the U ′ field in this relation and taking into account the

normalization condition ∫
[dU ′]p[U ′, U ] = 1,

one comes to the equation (5.4). Below we describe various methods generating

the weight (5.2) for different fermion flavour Nf cases.

5.2 Quenched approximation: Metropolis and

heatbath methods

Let us start with the quenched approximation case (2.29) when the weight has the

following pure gauge distribution:

m[U ] ∝ exp(−SG[U ]), (5.6)

Note that in contrast to the fermion determinant, the compact action SG[U ] (2.11)

can be computed almost immediately.

One of the well-known transition processes U → U ′ used in the lattice field

theory is the Metropolis one [100]. In this process the new configuration U ′ is

obtained by a uniform random distribution and accepted with probability

wacc[U
′, U ] = min

(
1, exp(−SG[U ′] + SG[U ])

)
. (5.7)
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It is obvious that the transition probability of this process p[U ′, U ] ∝ wacc[U
′, U ]

satisfies the detailed balance relation (5.5) with (5.6). However in case of large

β values, the acceptance rate of new configurations is very low. That is why one

uses another transition dynamics algorithm called as heatbath method [101].

In this method, one performs successive updates known as sweeps of the gauge

links Ux,µ for each site x and direction µ keeping remaining links fixed. The

updating algorithm follows from the expression for the U(1) gauge action (2.11)

which can be rewritten as follows:

SG[U ] = −Re
(
Ux,µF

(G)
x,µ

)
+ (terms, independent of Ux,µ) , (5.8)

with the so-called complex gauge force

F (G)
x,µ = β

∑
ν

ν 6=µ

(
Ux+µ̂,νU

†
x+ν̂,µU

†
x,ν + U †

x−ν̂+µ̂,νU
†
x−ν̂,µUx−ν̂,ν

)
. (5.9)

Then the heatbath sweep Ux,µ → U ′
x,µ for certain x and µ link point looks as

U ′
x,µ =

(
F (G)

x,µ /
∣∣F (G)

x,µ

∣∣)−1
exp(iηx,µ), (5.10)

where the ηx,µ is real random number in the interval (−π, π] distributed as

pη ∝ exp
(∣∣F (G)

x,µ

∣∣ cos ηx,µ

)
. (5.11)

Using the equations (5.8) – (5.11), one can convince himself that the heatbath

transition probability function p[U ′, U ] is proportional to the pure gauge weight

(5.6) for the new configuration U ′: p[U ′, U ] ∝ m[U ′]. And therefore, it fulfills the

detailed balance relation (5.5) with the pure gauge measure (5.6).

Since the heatbath method (5.10), (5.11) performs the sequential updates of

gauge links without total rejection of the new gauge configuration, it usually con-

verges faster than the Metropolis (5.7) one [9].

But now we must generate the random numbers ϕ ∈ (−π, π] distributed as:

p(ϕ) = N−1 exp(|F | cosϕ). (5.12)

There is no a fast direct way to obtain such a distribution. Hence one uses the

following method known as filtering [10]. We generate the random numbers ϕ with

another distribution density pfilt(ϕ) (called as filter) that can be done exactly, and

this ϕ is accepted or rejected with the probability:

wacc(ϕ) =
p(ϕ)/pfilt(ϕ)

max
ϕ

(p/pfilt)
. (5.13)
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For an appropriate choice of the filter function pfilt, the filtering method controlled

by probability (5.13) converges rapidly to the function (5.12) (see [10]). Indeed, the

transition dynamics for such process of generating the p(ϕ) function is described

by the equation [10]:

p(ϕ′, ϕ) = ap(ϕ′) + (1− a)δ(ϕ′, ϕ),

where the δ is the delta-function and the a is the average acceptance rate:

a =

π∫
−π

dϕwacc(ϕ)pfilt(ϕ).

From these equations it follows that the filtering method converges to p(ϕ) as fast

as the acceptance probability (5.13) is close to 1 [10].

At the end let us present the filtering function pfilt which is used in our simu-

lations [102]. It is equal to:

pfilt(ϕ) = N−1
filt exp (−|F | · |φ|/π) . (5.14)

This function due to the concavity of cosϕ leads to the target distribution (5.12)

much faster than the uniform filter pfilt = const. However, if |F | � 1, one has to

improve the filter (5.14). Moreover, in order to accelerate the covergence of the

heatbath method (5.10), (5.11), it is worth in these cases to employ the overrelax-

ation procedure [84] U → U ′:

U ′
x,µ =

(
F (G)

x,µ /
∣∣F (G)

x,µ

∣∣)−2
U †

x,µ, (5.15)

which leaves the gauge action (5.8) unchanged. Such overrelaxation is used in the

case of the dynamical fermion two-step multiboson algorithm (see section 5.5).

5.3 Evaluation of fermion observables

5.3.1 Noisy estimator and point-like source methods

As we know from the chapter 2, fermion observables can be expressed via matrix

elements of the inverse fermion operatorM−1. To calculate all these elements, one

needs to perform at least O(V 3) operations which occupies much computer time.
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However, one can simplify the treatment of the inverse fermion matrix by em-

ploying a statistical method – Gaussian noisy estimator [60, 103]. In this method,

we generate the random complex spinor vector η distributed with probability

pη ∝ exp
(
−η†η

)
. (5.16)

Then we compute the vector ξ:

ξ =M−1η, (5.17)

assuming that the matrix inversion can be done exactly. And denoting for conve-

nience by letters a, b, etc. the common indices (x, r) where r (and also s) stand

for spinor labels, one estimates the following expression:

〈ξa1 . . . ξanη
†
b1
. . . η†bn

〉η = lim
N→∞

N∑
j=1

ξ(j)
a1
. . . ξ(j)

an
η

(j)
b1

†
. . . η

(j)
bn

†
. (5.18)

Here the η(1), η(2), etc. are statistically independent Gaussian vectors with distri-

bution (5.16) and the average value 〈O〉η of an operator O = O[η†, η] is computed

according to the equation:

〈O〉η =

∫ [
dη†dη

]
O[η†, η] exp

(
−η†η

)∫
[dη†dη] exp (−η†η)

. (5.19)

To evaluate the l.h.s. of equation (5.18), we use the fictitious sources method as

in the case of integral (2.24) for fermionic observables. And finally we obtain:

〈ξa1 . . . ξanη
†
b1
. . . η†bn

〉η =
∑

σ

M−1
a1bσ(1)

. . .M−1
anbσ(n)

, (5.20)

where σ is a permutation of 1, . . . , n numbers and summation is done over all such

permutations. Equations (5.16) – (5.20) constitute the noisy estimator method

and allow us to compute fermion values in the integral (2.24).

The simulation of the vectors η with Gaussian distribution (5.16) is realized as

follows (see also [10]). Consider the simplest one-dimensional case where one has

to produce the complex numbers z distributed as exp(−C|z|2). Their generation

is based on the relation for an arbitrary function O[z†, z]:

∫ [
dz†dz

]
O[z†, z] exp(−C|z|2) ∝

π∫
−π

dϕ

∞∫
0

dρρ exp(−Cρ2)O[ρe−iϕ, ρeiϕ].
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From this expression follows that the complex values z =
√
−C−1 ln ξeiϕ are indeed

distributed with the probability exp(−C|z|2), if the real values ξ and ϕ are random

numbers distributed uniformly on the intervals [0, 1] and [−π, π], respectively. Now

the generalization to the multidimensional case of η vectors is trivial.

An alternative to the noisy estimator method for the calculation of fermion

values is the so-called point-like source method [104]. Here instead of random

Gaussian vectors, in the case of U(1) lattice theory one has to compute the ξ(s)

vectors (5.17) for the following 4 η(s) sources:

η(s)
a = δxx0δrs, a = (x, r), s = 1, . . . , 4, (5.21)

where x0 is an arbitrary lattice point. Then the matrix elements of the M−1

operator are expressed as follows:

M−1
ab = ξ(s)

a , a = (x, r), b = (x0, s), (5.22)

and in the evaluation of average fermion observables one uses the translational

invariance of the lattice theory (2.21).

The point-like source method (5.21), (5.22) appears to be more precise than

the noisy estimator one (5.16) – (5.20) [104]. The former method is widely used by

us for the investigation of the fermion observables such as the fermion correlator

(4.11), the scalar condensate (2.27) and the pion norm (2.28).

5.3.2 Conjugate gradient and Lanczos methods

For both the noisy estimator and the point-like source methods, we have to com-

pute the ξ vector (5.17). It means that one has to solve for a given vector y the

following linear equations system:

Ax = y, (5.23)

where A > 0 is some Hermitean positively defined matrix. The expression (5.17)

can be transformed to this system by multiplying both sides with the positive

operator M†M. Note that such a multiplication requires the knowledge of only

the nearest neighbouring lattice sites to each vector point. In other words, we have

a large sparse system.

A very popular algorithm for the fast solution of such a system (5.23) is the

conjugate gradient (CG) method (see e.g. [10, 105]). In this method, one computes
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the series of vectors xn approximate to x according to the following scheme:

xn+1 = xn + αngn, rn = y −Axn,

rn+1 = rn − αnAgn, αn =
‖rn‖2

(gn,Agn)
, (5.24)

gn+1 = rn+1 + βngn, βn =
‖rn+1‖2

‖rn‖2
,

where the vectors gn and rn are called respectively gradient and residual, n =

0, 1, . . .. Here, the initial residual vector r0 is obtained from an initial approxima-

tion x0 (to x) and the initial gradient vector g0 = r0. The stopping criterion for

the algorithm (5.24) is:

‖rn+1‖ < δ, (5.25)

for some small value δ. The CG algorithm is constructed in such a way that

the residual vectors rn are mutually orthogonal. It means that this method must

converge for finite number of iterations restricted by the dimension of the matrix

A. However, for the residual vectors the following estimate is valid [105]:

‖rn‖ ≤
2ρn

1 + ρ2n
‖r0‖, ρ =

√
ζ − 1√
ζ + 1

, ζ =
λmax(A)

λmin(A)
, (5.26)

where the λmax and λmin are the maximal and minimal eigenvalues of the positive

matrix A, respectively, and we note that the ζ is called the condition number. In

case of ζ ∼ 1, the CG method (5.24) converges almost immediately. But if the

condition number ζ � 1, the rough number of CG iterations N (CG) required to

reach the terminating condition (5.25) according to the estimate (5.26) looks as

follows:

N (CG) '
√
ζ

2
ln(2/δ). (5.27)

Let us rewrite the updating scheme (5.24) in a more elegant form. Introducing

the unit vectors en = rn/‖rn‖, we have:

Aen =

(
1

αn

+
βn−1

αn−1

)
en −

√
βn−1

αn−1

en−1 −
√
βn

αn

en+1, n = 0, 1, . . . , (5.28)

e−1 = 0, and other vectors en are mutually orthogonal: (em, en) = 0, m 6=
n. It means that the A matrix in the orthonormal basis e is tridiagonal. Such

tridiagonal decomposition of Hermitean operator A is called Lanczos method (see

e.g. [106]).
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In the usual Hermitean case the Lanczos decomposition looks as follows [106]:

Aen = βnen+1 + αnen + βn−1en−1, n = 0, 1, . . . , (5.29)

where α and β coefficients are determined by the equations:

αn = (en,Aen), βn = ‖Aen − αnen − βn−1en−1‖, n = 0, 1, . . . ,

for some initial e0 vector when e−1 = 0. But contrary to the CG case, this

decomposition does not produce correctly all vectors e owing to finite computer

precision. One has either to use an additional reorthogonalization of the e vectors,

or employ some restarting procedure when the new starting Lanczos vector is a

linear combination of previous ones [106] – [109].

The Lanczos decomposition (5.29) can be used for the evaluation of the small-

est and largest eigenvalues of Hermitean matrices. Let us present the so-called

explicitely restarted Lanczos method [106, 108]:

1. Take for n = 1 an arbitrary vector e
(n)
0 :

‖e(1)
0 ‖ = 1. (5.30)

2. Construct a set of first M Lanczos vectors for n = 1, 2, . . . until convergence:

v(n) = (e
(n)
0 , e

(n)
1 , . . . , e

(n)
M−1) (5.31)

3. Construct the tridiagonal M ×M matrix T(n):

T(n) = v(n)†Av(n). (5.32)

4. Compute the extremal (minimal or maximal) eigenvalue λ(n) and correspond-

ing eigenvector s(n) of the matrix T(n):

T(n)s(n) = λ(n)s(n). (5.33)

5. Construct an approximate eigenvector x(n) which is a new starting vector

e
(n+1)
0 for the Lanczos decomposition:

x(n) = e
(n+1)
0 = v(n)s(n). (5.34)

6. Go to step 2 with:

n := n+ 1. (5.35)
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In the case of M = 2, this method coincides with the Ritz algorithm [105] for the

evaluation of smallest and largest eigenvalues. The Ritz method can be also used

for fast evaluation of extremal eigenvalues λ(n) and eigenvectors s(n) of the tridiag-

onal (not very large) M ×M matrix T(n). The stopping criterion for prescription

(5.30) – (5.35) can be taken to be either:

|λ(n+1) − λ(n)| ≤ δ,

or (which is more accurate):

‖Ax(n) − λ(n)x(n)‖ ≤ δ.

Let us mention other restarting methods which are widely used for the investigation

of a small set of eigenvalues: the complex gradient method for Hermitean [107, 109]

and the implicitly restarted Arnoldi method (IRAM) for arbitrary large sparse

matrices [108].

5.3.3 Even-odd decomposition

We return to the problem of the fermion matrix inversion. One notes that for

the matrix M only nearest-neighbour coordinates to x, i.e. x ± µ̂ are necessary

to perform the matrix-vector multiplication. Hence we can define for all x the

signature function c(x) = ±1 with the following property:

c(x± µ̂) = −c(x), ∀x, µ.

The unique up to a sign solution of such an equation is:

c(x) = (−1)
∑

µ xµ . (5.36)

On a finite lattice, with the identification of the points x and x ± Nµµ̂ ∀µ, one

requires that all Nµ must be even numbers. This explains why we take even lattice

sizes Ns and N4. After the definition of the function c(x) we will call x an even

point if c(x) = 1 and odd otherwise [110].

Using such a definition of even-odd sites, one can represent the Wilson matrix

M (2.18) in the following way:

M =

[
1e Meo

Moe 1e

]
, (5.37)
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where 1e is unity in the even or odd subspace, and Meo and Moe are even and

odd parts of (2.18) matrix, respectively. Note that from this decomposition and

γ5-Hermiticity (2.20) of the Wilson fermion matrix it follows that:

Meo = γ5M†
oeγ5. (5.38)

And the linear equation for the ξ vector (5.17) can be written as follows:{
ξe +Meoξo = ηe

Moeξe + ξo = ηo

. (5.39)

where we decompose vectors ξ and η onto even and odd parts. This means that

one can solve the equivalent system:{
Q†Qξo = Q†(ηo −Moeηe)

ξe = ηe −Meoξo
, (5.40)

where we have denoted

Q = 1e −MoeMeo. (5.41)

Let us note that for the even-odd represented matrixM (5.37)

detM = detQ. (5.42)

It turns out to be better to work with the Q†Q matrix rather than withM†M
[111]. Indeed, suppose that λ is an eigenvalue ofM i.e. for some nonzero complex

spinor vector Ψ:

MΨ = λΨ.

Then in terms of even-odd decomposition:{
Ψe +MeoΨo = λΨe

Ψo +MoeΨe = λΨo

,

or using the matrix Q: {
QΨo = 2λ(1− λ/2)Ψo

Ψe = (λ− 1)−1MeoΨo

.

Hence the matrix Q has the corresponding eigenvalue 2λ(1 − λ/2). Thus, if λ

is the smallest eigenvalue (by magnitude) then the respective eigenvalue for Q is

approximately twice larger. In case of κ ∼ 1/8, the largest eigenvalue λ ∼ 1.
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Hence, the condition number ζ for the Q†Q matrix is ∼ 2 times smaller than that

for the M†M operator. And according to the estimate (5.27), the CG algorithm

for Q†Q converges ∼
√

2 faster than for theM†M matrix.

Thus, to obtain the inverse vector ξ (5.17), we apply the CG method to get

the odd part ξo of vector ξ in the upper equation of the system (5.40). Then it is

not difficult to find the even part ξe.

5.4 Dynamical fermions: the hybrid Monte Carlo

method

5.4.1 Formulation of the method

In the dynamical fermion case with Nf = 2 fermion flavours, one has to generate

gauge configurations U distributed with weight

m[U ] ∝ exp(−SG[U ])det2M[U ]. (5.43)

The most popular algorithm for simulations of this weight is the hybrid Monte

Carlo (HMC) method [39, 40]. Below we describe its main constituents.

First of all one notes, that due to the γ5-Hermiticity property (2.20) of the

Wilson fermion matrix M, the determinant det2M can be factorized as follows

[60, 103]:

det2M = det
(
M†M

)
∝
∫

[dχ†dχ] exp
{
−χ†

(
M†M

)−1
χ
}
, (5.44)

where the auxiliary complex spinor variables χ†, χ are called pseudofermions.

Plugging the l.h.s. of equation (5.44) into the integral (2.24) for average ob-

servables in case of Nf = 2 flavours, one can represent this integral in the following

form [112, 113]:

〈O〉 =
1

Z

∫
[dU ][dΠ][dχ†dχ]O[U ] exp(−H[U,Π, χ†, χ]), (5.45)

where the functional

H[U,Π, χ†, χ] =
1

2
Π2 + SG[U ] + χ†

(
M†[U ]M[U ]

)−1
χ (5.46)

is called the Hamiltonian and we denote

Π2 =
∑
x,µ

Π2
x,µ,
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where the auxiliary real field Π = {Πx,µ} is called the adjoint momentum to the

gauge field U .

The integral (5.45) is the core of the hybrid Monte Carlo algorithm. In this

algorithm, one generates the series of sampled gauge configurations U (1), U (2), etc.

distributed with the weight exp(−H). Here a new configuration U ′ is obtained

from previous U one according to the following prescription.

We select the initial random momentum Π according to the Gaussian distribu-

tion:

pΠ ∝ exp

(
−1

2
Π2

)
, (5.47)

and choose the pseudofermion fields χ†, χ randomly with respect to the weight:

pχ[U ] ∝ det−2M exp
{
−χ†

(
M†M

)−1
χ
}
, M =M[U ]. (5.48)

The latter fields are taken merely as χ =M†[U ]η, where η is the Gaussian vector

distributed as (5.16). Then one performs the discrete Hamilton (or molecular,

called also leapfrog) dynamics {U,Π} → {U ′,Π′} [112, 113, 40]. We solve for

the compact U(1) gauge field U = exp(iA) (2.7) and its adjoint momentum Π

the following second order discrete equation of motion system with Nτ time steps

where the time step size ∆τ = ∆t/Nτ for some auxiliary time period ∆t. First,

one performs the initial step for the adjoint momentum:

Π1/2 = Π0 +
∆τ

2
F [A0]. (5.49)

For the next time steps with number j = 1, . . . , Nτ − 1, the gauge and adjoint

momentum variables are updated via the following rule:

Aj = Aj−1 + ∆τΠj−1/2 mod 2π, Πj+1/2 = Πj−1/2 + ∆τF [Aj]. (5.50)

And in the final step for the gauge and adjoint momentum:

ANτ = ANτ−1 + ∆τΠNτ−1/2 mod 2π, ΠNτ = ΠNτ−1/2 +
∆τ

2
F [ANτ ], (5.51)

Here we omitted for convenience the link number (x, µ) and denoted initial (at

j = 0) and final (for j = Nτ ) variables as follows:

A0,Π0 = A,Π, ANτ ,ΠNτ = A′,Π′,

where the gauge force F [A] = −∂H/∂A is determined by the expression:

F [A] = 2 Re

{
X†∂M

∂A
Y

}
− ∂SG

∂A
, X =

(
M†)−1

χ, Y =M−1X, (5.52)

61



and the pseudofermion fields χ†, χ are kept fixed during this dynamics.

The discrete molecular dynamics (5.49) – (5.51) violates the energy conserva-

tion law for Hamiltonian (5.46):

H[U ′,Π′, χ†, χ] 6= H[U,Π, χ†, χ].

This Hamiltonian is conserved only in the limit ∆τ → 0. Then in order to maintain

the desired weight exp(−H), one has to introduce the last, Metropolis accept-

reject step for Hamiltonian. The new gauge configuration U ′ is accepted with the

probability

wacc[U
′,Π′;U,Π] = min

(
1, e−∆H

)
, (5.53)

where ∆H = H[U ′,Π′, χ†, χ]−H[U,Π, χ†, χ].

The combination of successive steps (5.47) – (5.53) is called the hybrid Monte

Carlo method. Let us show that it indeed generates the gauge configurations

distributed according to weight (5.43) [10]. First of all, one notes that the forward

and backward transition probabilities for the gauge variables are proportional to

the corresponding adjoint momentum distribution weights (5.47):

p̃[U ′, U ] ∝ exp

(
−1

2
Π2

) ∣∣∣∣det
∂Π

∂A′

∣∣∣∣ , p̃[U,U ′] ∝ exp

(
−1

2
Π′2
) ∣∣∣∣det

∂Π′

∂A

∣∣∣∣ . (5.54)

Further, we must prove that the leapfrog scheme (5.49) – (5.51) satisfies the area

preserving law:

det

 ∂A′

∂A
∂A′

∂Π

∂Π′

∂A
∂Π′

∂Π

 = 1, (5.55)

from which follows the reversibility relation:∣∣∣∣det
∂Π

∂A′

∣∣∣∣ =

∣∣∣∣det
∂Π′

∂A

∣∣∣∣ . (5.56)

The definition of the adjoint momentum at the time step with number j:

Πj =
1

2

{
Πj+1/2 + Πj−1/2

}
,

where j = 1, . . . , Nτ − 1, allows us to rewrite the equations (5.49) – (5.51) in the

following compact form:

Aj+1 = Aj + ∆τΠj +
1

2
(∆τ)2F [Aj] mod 2π,

Πj+1 = Πj +
1

2
∆τ (F [Aj] + F [Aj+1]) , j = 0, . . . , Nτ − 1. (5.57)
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Direct calculations based of the equations (5.57) show that for elementary discrete

steps the area preserving law is fulfilled:

det


∂Aj+1

∂Aj

∂Aj+1

∂Πj

∂Πj+1

∂Aj

∂Πj+1

∂Πj

 = 1. (5.58)

Multiplying the equations (5.58) for each time steps j = 0, . . . , Nτ − 1, one gets

the relation (5.55) for the total transition dynamics {U,Π} → {U ′,Π′}.
Now using equations (5.48) for the pseudofermion distribution, (5.54) for the

molecular dynamics transition probabilities, (5.56) for reversibility relation and

(5.53) for the accept-reject step, we can convince ourselves that the total transi-

tion probability of the hybrid Monte Carlo algorithm, p = waccp̃pχ satisfies the

detailed balance relation (5.5) with Nf = 2 dynamical fermion weight (5.43). This

completes the proof.

So far in the description of the hybrid Monte Carlo algorithm we have tacitly

assumed that the inverse fermion matrixM−1 is known in advance. However since

the exact matrix inversion is time consuming, one uses fast but approximate inver-

sion methods e.g. conjugate gradient one (5.24) applied to even-odd decomposed

system (5.39) for the evaluation of the X and Y vectors in the HMC force (5.52)

and also for the (M†[U ′])−1χ vector in the updated Hamiltonian H[U ′,Π′, χ†, χ]

in the accept-reject step (5.53). This means that the hybrid Monte Carlo method

is approximate owing to the lack of exactness in the inversion of the fermion ma-

trix. Nevertheless, the accuracy of the hybrid Monte Carlo algorithm using the

CG method can be controlled by an appropriate selection of the δ parameters in

the stopping criteria (5.25): δmd for molecular dynamics process (5.49) – (5.51)

and δacc for accept-reject step (5.53). Later on we present a recipe for choosing

such parameters [114, 115].

5.4.2 Acceptance rate

Let us now consider the problem of new configuration acceptance in the discrete

hybrid Monte Carlo dymamics [116]. For the leapfrog dynamics (5.49) – (5.51),

the variation of Hamiltonian ∆H in (5.53) satisfies the following relation:

〈
e−∆H

〉
= 1, (5.59)
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where the averaging 〈. . .〉 is performed according to the equation (5.45). To prove

it, one uses the area preserving law (5.55). Then owing to the convexity of the

exponent function, 〈
e−∆H

〉
≥ e−〈∆H〉.

The latter inequality together with (5.59) means that the average Hamiltonian vari-

ance 〈∆H〉 in the hybrid Monte Carlo dynamics is always non-negative: 〈∆H〉 ≥ 0.

Equality can be achieved only in case of exact Hamilton dynamics.

For very small time step size ∆τ in the leapfrog dynamics, one may use the

Taylor expansion of the exponent in the equation (5.59). In the leading order one

gets:

〈∆H〉 =
1

2

〈
(∆H − 〈∆H〉)2〉+ O

(
〈|∆H|〉3

)
. (5.60)

Hence in the ∆τ → 0 limit, the probability distribution of ∆H value can be well

approximated by the Gaussian function:

p∆H(x) ' 1

4π〈∆H〉
e−(x− 〈∆H〉)2/4〈∆H〉.

And the average value of acceptance rate (5.53) 〈wacc〉 is approximately equal to

[116]:

〈wacc〉 '
∫

dxp∆H(x)min
(
1, e−x

)
= erfc (

√
〈∆H〉/2) ≈ 1−

√
〈∆H〉/π. (5.61)

At the same time, in the 2nd order discrete molecular dynamics scheme (5.49) –

(5.51) the sampling variance ∆H ∝ (∆τ)2 [40]. Therefore, in order to keep the

acceptance rate (5.61) close to 1, one would require owing to (5.60) that V (∆τ)4 ∝
1 [116]. But it is also necessary to take into account the magnitude of the gauge

force (5.52) which is not small in the case of large condition number ζ (2.30).

We will return to this question at the investigation of performance of the HMC

algorithm.

5.4.3 Advantages and shortcomings

There are several merits of the HMC algorithm. First of all, it requires the knowl-

edge of only a few parameters. Namely, we must set ∆τ , Nτ , and the conjugate

gradient stopping criteria (5.25) δmd and δacc for the fermion matrix inversions in

the leapfrog dynamics steps (5.49) – (5.51) and in the Metropolis accept-reject one

(5.53), respectively. It does not need to find all elements of the inverse fermion
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matrix M−1 since the CG (5.24) performs this indirectly and fast enough. And

the convergence of the HMC, controlled mainly by acceptance rate (5.61), can be

tuned by plausible choice of the molecular dynamics parameters ∆τ , Nτ [114, 115].

However, the precision of the equation of motion in case of very large lattices

may get lost which leads to false generated gauge configurations [117, 118]. Fur-

ther, the CG method owing to the computer precision limitation does not work

properly in case of a large condition number ζ (see e.g. [117, 118]). This happens

e.g. for the above mentioned confinement phase near the chiral limit line and for

the Aoki phase in case of compact QED theory [77]. The main disadvantage of

the HMC algorithm is that it can be used due to the pseudofermion factorization

(5.44) only for an even number of fermion flavours in spite of various proposals to

implement it for odd Nf values (see e.g. [40, 119, 120]).

That is why one requires an alternative to the hybrid Monte Carlo method,

which allows us to simulate the gauge configurations for odd (and possibly for

arbitrary) Nf fermion flavours.

5.5 Dynamical fermions: the two-step multibo-

son algorithm

5.5.1 First step: the multiboson method

One of the alternatives to the HMC method is the two-step multiboson (TSMB)

algorithm [36] – [38]. It consists of two basic parts. Its first part is the multiboson

method proposed by M. Lüscher [121] (see also [122]). The idea of the method

is to approximate the fermion determinant by the inverse determinant of a local

positive polynomial operator which can be easily factorized by a set of complex

spinor fields called multibosons. To do this, one has to approximate the x−Nf /2

function by an appropriate polynomial P1(x) for x > 0:

x−Nf /2 ' P1(x) = cn1

n1/2∏
j=1

(x− rj)(x− r†j), Im rj > 0, n1 is even. (5.62)

Using this starting approximation, one can evaluate the x−Nf function by the

following polynomial:

x−Nf ' P1(x
2) = cn1

n1∏
j=1

(x− ρj)(x− ρ†j), x > 0, (5.63)
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where ρ2
j = rj, ρj+n1/2 = −ρ†j, Im ρj ≥ 0, j = 1, . . . , n1/2.

We know from section 5.3 that in order to improve the efficiency of a simu-

lation method involving a fermion determinant it is worthwhile to work with a

preconditioned fermion matrix [110, 111]. Taking into account the equality (5.42)

for the determinant of even-odd decomposed matrix Q (5.41) and the polynomial

approximation (5.63), one approximates the modulus of the fermion determinant

power as follows [123]:

∣∣detNfM
∣∣ ∝ {detP1(Q

†Q)
}−1 ∝

{
n1∏

j=1

det (γ5Q− ρj)
† det (γ5Q− ρj)

}−1

.

(5.64)

Remembering the equation for the block matrix determinant, one notes that

det (γ5Q− ρj) = detM̂j, (5.65)

where the matrix M̂j looks as:

M̂j =

[
1e Meo

γ5Moe (γ5 − ρj)1e

]
. (5.66)

Substituting (5.65) into the r.h.s. of equation (5.64), one factorizes the determinant

power as follows [123]:

∣∣detNfM[U ]
∣∣ ∝ {detP1(Q

†Q)
}−1 ∝

∫ [
dΦ†dΦ

]
exp (−SB[Φ, U ]) . (5.67)

Here SB is the multiboson field action:

SB[Φ, U ] =

n1∑
j=1

Φ†
j(M̂

†
jM̂j)Φj, M̂j = M̂j[U ], (5.68)

and the fields Φj are complex spinor variables called as multibosons.

Using this representation one can define the integral for average observables in

the multiboson method:

〈O〉1 =
1

Z

∫ [
dU ][dΦ†dΦ

]
O[U ] exp(−S[Φ, U ]), (5.69)

where the total action of multiboson and gauge fields [121, 122]:

S[Φ, U ] = SB[Φ, U ] + SG[U ]. (5.70)
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One has to reduce the matrix M̂j in (5.68) to an analysable form. Let us

introduce first the even-odd subspace projectors:

Π+ =

[
1e 0

0 0

]
, Π− =

[
0 0

0 1e

]
. (5.71)

These projectors in the lattice coordinate representation according to (5.36) look

like

(Π±)xy =
1± (−1)

∑
µ xµ

2
δxy. (5.72)

The projectors (5.71) have the following properties:

Π2
± = Π±, Π±Π∓ = 0, Π+ + Π− = 1, Π±(1−M) = (1−M)Π∓,

Using (5.71) we find a representation for M̂j defined by equation (5.66):

M̂j = Π+M+ Π−γ5M− ρjΠ−. (5.73)

Taking into account expression (5.73), the coordinate representation (5.72) and

the properties of projectors (5.71), one can write down an algorithm of local scalar

and gauge fields updates. To do this, we must first extract terms related to the

element Φjxr for each j, x, r coordinate (r and also s denote spinor indices), then

to each Ux,µ component of the U set. For the former case we have:

SB[Φ, U ] = Ajxr

∣∣∣∣Φjxr +
Vjxr

Ajxr

∣∣∣∣2 + (terms, independent of Φjxr) . (5.74)

Here we denote Ajxr and Vjxr as follows:

Vjxr = κ
∑
µ,s

{
U †

x−µ̂,µ

(
[ρjxγ5 (1 + γµ)− 2]rs Φj,x−µ̂,s + [γ5 (1 + γµ)]rs χj,x−µ̂,µs

)
+

+Ux,µ

(
[ρjxγ5 (1− γµ)− 2]rs Φj,x+µ̂,s + [γ5 (1− γµ)]rs χj,x+µ̂,µs

)}
,

Ajxr = 1 + 4× 4κ2 +
1− (−1)

∑
µ xµ

2

{
|ρj|2 − 2 [γ5]rr Re ρj

}
,

where

χjxµr = κ
∑
ν,s

ν 6=µ

{
[γ5 (1− γν)]rs Ux,νΦj,x+ν̂,s + [γ5 (1 + γν)]rs U

†
x−ν̂,νΦj,x−ν̂,s

}
,

ρjx =
1 + (−1)

∑
µ xµ

2
ρj +

1− (−1)
∑

µ xµ

2
ρ†j.
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We use such a representation of Dirac matrices in which the γ5 matrix is diagonal

i.e. it has the only nonzero components [γ5]rr = ±1.

For the latter case, one gets:

SB[Φ, U ] = −Re
(
Ux,µF

(B)
x,µ

)
+ (terms, independent of Ux,µ) , (5.75)

where we denoted the complex multiboson force by

F (B)
x,µ = −2κ

∑
jrs

{
[γ5 (1− γµ)]rs

(
ρjxΦ

†
jxrΦj,x+µ̂,s + Φ†

jxrχj,x+µ̂,µs+

+χ†jxµrΦj,x+µ̂,s

)
− 2δrsΦ

†
jxrΦj,x+µ̂,s

}
.

Remembering the expression for the gauge action (5.8) and for the gauge force

F
(G)
x,µ (5.9) in the pure gauge heatbath update (5.10), (5.11), one can present the

total multiboson action (5.70) as follows:

S[Φ, U ] = −Re (Ux,µFx,µ) + (terms, independent of Ux,µ) , (5.76)

where the total force Fx,µ = F
(B)
x,µ + F

(G)
x,µ .

Equations (5.74) and (5.76) allow us to use the following updating algorithm

for scalar Φ and for gauge U fields, respectively. We perform first the multiboson

field updates at the fixed U field configuration:

– NBH multiboson field heatbath sweeps for each point (jxr):

Φ′
jxr = − Vjxr

Ajxr

+ ξjxr, (5.77)

where ξjxr is a complex Gaussian random number distributed according to:

pξ ∝ exp
(
−Ajxr |ξjxr|2

)
.

– NBO multiboson field overrelaxation sweeps:

Φ′
jxr = −Φjxr − 2

Vjxr

Ajxr

. (5.78)

Now perform for fixed multiboson fields Φ the gauge field updates which resemble

to the pure gauge ones (5.10), (5.15):

– NGH gauge field heatbath sweeps for each link (x, µ):

U ′
x,µ = (Fx,µ/|Fx,µ|)−1 exp(iηx,µ), (5.79)

68



where ηx,µ is a real random number in the interval (−π, π] distributed as

pη ∝ exp (|Fx,µ| cos ηx,µ) ,

and for the generating such numbers we use the filtering method (5.13) with the

filter (5.14).

– NGO gauge field overrelaxation sweeps:

U ′
x,µ = U †

x,µ (Fx,µ/|Fx,µ|)−2 . (5.80)

Using arguments similar to the quenched heatbath case one can prove that

each of the steps (5.77) – (5.80) {Φ, U} → {Φ′, U ′} with a transition density

p1[Φ
′, U ′,Φ, U ] satisfies the detailed balance relation:

p1[Φ
′, U ′,Φ, U ] exp(−S[Φ, U ]) = p1[Φ, U,Φ

′, U ′] exp(−S[Φ′, U ′]). (5.81)

Hence, the updating algorithm (5.77) – (5.80) (called also multiboson method)

indeed generates both the gauge and the multiboson field configurations with the

weight exp(−SB[Φ, U ]) in integral (5.69).

All these steps require nearest-neighbouring indices to certain (jxr) or (xµ)

point, hence the multiboson method belongs to a class of local algorithms. It allows

us to provide efficient vector or parallel simulation with the appropriate ordering of

the above indices. In our realization, each component of the coordinate indices x for

the multiboson updating steps (5.77), (5.78) is split into even and odd constituents.

One performs first even coordinate projection sweeps then odd ones, at certain

polynomial j and spinor r indices [124]. Such sweeps are independent, because due

to (5.74) the updated multiboson field Φ at the certain index x depends only on the

fixed fields Φ at coordinates x± µ̂ and x± µ̂± ν̂, where µ 6= ν. Moreover, one can

perform independent polynomial index sweeps. For independent gauge updating

sweeps (5.79), (5.80) we widely use the even-odd decomposition (5.36) due to the

representation (5.76) with notations in (5.9), (5.74) and (5.75) and perform first

even then odd coordinate gauge updates at the fixed µ direction.

5.5.2 Second step: noisy correction

The algorithm (5.77) – (5.80) assumes a very good approximation (5.62) of the

x−Nf function. In practice however, this requires very large polynomial orders

n1 which strongly increase the computational efforts [123, 125, 126]. In order to
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cure the problem, one uses a second step after the multiboson method – the noisy

correction accept-reject step [36, 127, 128].

To realize this idea, first of all, let us approximate the x−Nf /2 function by the

product of two polynomials but not one as earlier:

x−Nf /2 ≈ P1(x)P2(x), (5.82)

where the first polynomial P1(x) appoximates the x−Nf /2 function but with not

very high accuracy. However, the second polynomial P2(x) of order n2 � n1

improves the approximation by the first polynomial of the x−Nf /2 function. At the

same time, it is assumed to take values which are not very different from 1.

Using the approximation (5.82) and adopting the multiboson realization (5.64),

(5.68) of the fermion determinant power with respect to the P1 polynomial where

one takes into account the equality (5.42) for even-odd decomposed fermion matrix

Q, we can correct the measure in the integral (5.69) as follows [36, 127, 128]:

〈O〉12 =
1

Z

∫ [
dU ][dΦ†dΦ

]
O[U ] exp(−S[Φ, U ])det−1 P2(Q

†Q[U ]). (5.83)

In order to generate the gauge configurations with the measure in the integral

(5.83), one performs first the multiboson updates {Φ, U} → {Φ′, U ′} according

to the prescription (5.77) – (5.80), then the new gauge configuration U ′ accepted

with some probability wacc[U
′, U ]. The total transition probability p12 = waccp1,

where p1 is a multiboson transition function, has to satisfy the detailed balance

condition:

p12[Φ
′, U ′,Φ, U ] exp(−S[Φ, U ])det−1P2(Q

†Q[U ]) =

= p12[Φ, U,Φ
′, U ′] exp(−S[Φ′, U ′])det−1 P2(Q

†Q[U ′]). (5.84)

Owing to the detailed balance equation (5.81) for the multiboson transition density

p1, the acceptance probability function wacc must obey the relation:

wacc[U
′, U ]det−1 P2(Q

†Q[U ]) = wacc[U,U
′]det−1 P2(Q

†Q[U ′]). (5.85)

A usual choice for such a function is the Metropolis one [36, 127, 128]:

wacc[U
′, U ] = min

(
1,

detP2(Q
†Q[U ])

detP2(Q†Q[U ′])

)
. (5.86)

It is not difficult to check that the acceptance probability (5.86) fulfills the relation

(5.85) and therefore the total transition density p12 satisfies detailed balance (5.84),

indeed.
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We have to compute the determinant ratio in the equation (5.86). For this

purpose, one can use the noisy estimator technique [60, 103] for the inverse deter-

minant of any positive matrix. Thus we can write [36, 127, 128]

detP2(Q
†Q[U ])

detP2(Q†Q[U ′])
=

∫
[dη†dη] exp(−η†P2(Q

†Q[U ′])η)∫
[dη†dη] exp(−η†P2(Q

†Q[U ])η)
,

where η is an arbitrary complex spinor vector in the even (odd) subspace. Making

the following substitution of integration variables for both numerator and denom-

inator integrals [36]:

η → ξ = P
−1/2
2 (Q†Q[U ])η (5.87)

we get the final expression for the determinant ratio:

detP2(Q
†Q[U ])

detP2(Q†Q[U ′])
=
〈
exp

(
−ξ†P2(Q

†Q[U ′])ξ + η†η
)〉

η
, (5.88)

where the noisy estimator averaging is defined according to equation (5.19).

For practical evaluations of ξ vectors defined in (5.87), one can approximate

the P
−1/2
2 (x) function by some polynomial P3(x) with order n3 [36]:

P3(x) ≈ P
−1/2
2 (x). (5.89)

Then one can use the equation (5.88) presuming that the approximation (5.89) is

fulfilled with high accuracy.

The second, additional to multiboson updates (5.77) – (5.80) step described

by equations (5.86) – (5.89) is called noisy correction accept-reject step, and the

combination of both steps is called the (Hermitean) two-step multiboson (TSMB)

algorithm. Note that for the noisy correction step, the deviation of the P2(x) from

1 should not be very large.

In another (non-Hermitean) scheme proposed in [127, 128], the choice of the ξ

vectors for the estimate (5.88) differs from the (5.87), (5.89) one. Moreover, their

scheme together with multiboson method (5.77) – (5.80) was claimed [127, 128]

to be an exact algorithm. We will not describe this alternative approach. Let

us only note that the noisy correction step in the form (5.86) – (5.89) on the

one hand, can be implemented to arbitrary number of fermion flavours Nf and

on the other hand, the precision of this second step is tunable by an appropriate

choice of the approximating polynomials [36]. Another problem, related to the

approximation of x−Nf /2 function by the first polynomial P1(x) in both approaches,

will be considered later (see also [37]).
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5.5.3 Reweighting

If the approximation (5.82) of x−Nf /2 function by a product of two polynomials is

still not very accurate, one can improve the approximation by means of a choice

of an auxiliary polynomial P4(x) with order n4 ≥ n2 in a such way that the

approximation [38]:

x−Nf /2 ≈ P1(x)P2(x)P4(x). (5.90)

is much better than the (5.82) one. But the P4 polynomial should deviate from 1

less than the P2 one.

As in the case of the second step, the use of the approximation (5.90) to

represent the fermion determinant power and also taking into account the sign of

the fermion determinant lead to an integral for average observables analogous to

(5.83) (see [38, 129, 130]):

〈O〉rew =
1

Z

∫ [
dU ][dΦ†dΦ

]
O[U ] exp(−S[Φ, U ])×

× det−1 P2(Q
†Q)det−1 P4(Q

†Q)

(
detQ

| detQ|

)Nf

, (5.91)

where we have employed the identity (5.42) for the determinant of the even-odd

decomposed matrix Q. Here, in case of not very large deviation of det−1 P4(Q
†Q)

from 1, one may use the two-step multiboson algorithm (5.77) – (5.80), (5.86) –

(5.89) for generating the weight function in the integral (5.83). Hence, the last two

multipliers related to P4 polynomial determinant and to the determinant phase,

play the role of the reweighting factor.

Realizing this idea, we rewrite the expression (5.91) as follows:

〈O〉rew =

〈
Odet−1 P4(Q

†Q)(detQ/| detQ|)Nf

〉
12〈

det−1 P4(Q
†Q)(detQ/| detQ|)Nf

〉
12

, (5.92)

where the averaging 〈. . .〉12 is performed according to equation (5.83).

For practical simulations of the inverse determinant in the expression (5.92),

one uses the noisy estimator representation like (5.88) in case of the noisy correction

step [38, 129, 130]:

det−1 P4(Q
†Q) ∝

〈
exp

(
−η†P4(Q

†Q)η + η†η
)〉

η
. (5.93)

This auxiliary step for improvement of measured observables described by equa-

tions (5.92), (5.93) is known as reweighting step. Its use assumes a small deviation

of P4 polynomial from 1.
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5.5.4 Polynomials

All these polynomials Pk(x), k = 1, . . . , 4 approximating the x−Nf /2 function are

obtained according to the following prescription [37]. First of all, one selects the

approximation interval [ε, λ] in a such way that it contains the average minimal

〈λmin〉 and maximal 〈λmax〉 eigenvalues of the preconditioned fermion matrix Q†Q:

[〈λmin〉, 〈λmax〉] ⊂ [ε, λ]. (5.94)

The averaging of eigenvalues is done according to the equation (5.92).

Then one applies the least squares method for mean integral polynomial devia-

tion to the successive evaluation of 1st then 2nd and 4th (reweighting) polynomials:

λ∫
ε

dx
∣∣x−Nf /2P1(x)− 1

∣∣2 P1−→ min,

λ∫
ε

dx
∣∣x−Nf /2P1(x)P2(x)− 1

∣∣2 P2−→ min, P1 fixed, (5.95)

λ∫
ε

dx
∣∣x−Nf /2P1(x)P2(x)P4(x)− 1

∣∣2 P4−→ min, P1, P2 fixed,

where the minimization is performed with respect to the coefficients of a polyno-

mial Pk(x) at the fixed order nk.

For the 3rd polynomial P3 we employ the Newton tangential method with the

appropriate least squares polynomial approximation of the (P2P3)
−1 function:

P
(j+1)
3 (x) =

1

2

(
P

(j)
3 (x) + P̃

(j)
3 (x)

)
, j = 0, 1, . . . , (5.96)

λ∫
ε

dx
∣∣∣P2(x)P

(j)
3 (x)P̃

(j)
3 (x)− 1

∣∣∣2 P̃
(j)
3−→ min, P2, P

(j)
3 fixed.

and

P3(x) = lim
j→∞

P
(j)
3 (x).

Here the P
(j)
3 and P̃

(j)
3 are polynomials of order n3, and the P2, P

(j)
3 polynomials

are kept fixed during the least squares integral minimization with respect to the

coefficients of P̃
(j)
3 .

In this way we evaluate the coefficients of all these polynomials. To obtain the

complex roots of the first polynomial P1, one applies the Legendre method [105].
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All such calculations require very large computer precision. Therefore, for this

purpose we use codes for the MAPLE or Mathematica software. But in case of

ordinary (low precision) computations, to reconstruct the polynomials with reason-

able accuracy, one should employ the orthogonal polynomial basis decomposition:

Pk(x) =

nk∑
j=0

c
(k)
j O

(k)
j (x), O

(k)
j+1(x) = (x+ β

(k)
j )O

(k)
j (x) + γ

(k)
j−1O

(k)
j−1(x), (5.97)

where k = 1, . . . , 4, polynomials Oj(x) have the order j, O0(x) = 1, γ−1 = 0 and

the orthogonality condition for polynomials looks as follows:

λ∫
ε

dxρ(k)(x)O
(k)
i (x)O

(k)
j (x) = 0, i 6= j. (5.98)

The integral weights ρ(k)(x) are taken in the following way:

ρ(1)(x) = xNf , ρ(2)(x) = xNfP 2
1 (x),

ρ(3)(x) = P 2
2 (x)P 2

3 (x), ρ(4)(x) = xNfP 2
1 (x)P 2

2 (x). (5.99)

Our numerical studies of the polynomials obtained according to the recipe (5.94) –

(5.99) have shown that they indeed can be reproduced with high enough accuracy

by usual (e.g. FORTRAN) codes.

5.5.5 Acceptance rate

Let us discuss now the acceptance rate of the two-step multiboson algorithm. From

the detailed balance relation (5.84) follows the equality [127, 128]

〈exp (−∆E)〉η,{U,Φ},{U ′,Φ′} = 1, ∆E = ξ†P2(Q
†Q[U ′])ξ − η†η.

Here the ξ vector is defined according to (5.87) and averaging over {U,Φ} and

{U ′,Φ′} fields is peformed with respect to the weight p12 exp(−S):

〈O〉{U,Φ},{U ′,Φ′} =
1

Z

∫
[dU ][dΦ†dΦ][dU ′][dΦ′†dΦ′]×

× O exp(−S[Φ, U ])p12[Φ
′, U ′,Φ, U ], (5.100)

where p12 is a transition probability of the TSMB algorithm. The same arguments

as for the acceptance rate of the HMC method lead to the expression (5.61) for
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〈wacc〉, averaged according to (5.100). Where ∆E substitutes the ∆H and satisfies

the relation (5.60). Hence, for the 〈∆E〉 the following estimate [127, 128] is valid:

〈∆E〉 ∝ V ‖P2 − 1‖2. (5.101)

Here the ‖ . . . ‖ is a norm in the polynomial space corresponding to a maximal

deviation absolute value.

5.5.6 Technical notes

In contrast to the hybrid Monte Carlo method, the two-step multiboson algorithm

is bulky in computer memory owing to the auxiliary multiboson fields. An ap-

proporiate choice of its technical parameters is complicate. Moreover, it needs

an information about the minimal and maximal average eigenvalues of the ma-

trix Q†Q. Their correct values can be obtained either by means of self-consistent

checks and correspondent tunings of approximation interval margins or from pre-

liminary HMC runs (in case of even flavours Nf and when the hybrid Monte Carlo

works normally). And at the end, the algorithm requires the polynomial roots and

coefficients data which can be found by use of separate high precision calculations.

However, one should mention the stability of the TSMB algorithm in case of

large lattices owing to use of local update cycles. It can work also in case of very

large condition numbers. And the most important advantage of the algorithm is

that it can be used for simulations with any number Nf of dynamical fermion

flavours (see [36] – [38]).

The two-step multiboson algorithm (5.77) – (5.80), (5.86) – (5.89) and also

the reweighting step (5.92), (5.93) which use the recursive polynomial evaluation

(5.97), were implemented by us for investigations of the U(1) lattice model with

an even number Nf of dynamical fermion flavours, where it is not necessary to

evaluate the sign of the determinant detQ. As far as the application of the TSMB

has been successful in the supersymmetric case [36] – [38], it is natural to ask the

question, how this algorithm is efficient in comparison with HMC in our case of

compact QED with Nf = 2 Wilson fermions. Next section will be devoted to the

answer to this question.
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5.6 Performance of the dynamical fermion algo-

rithms

5.6.1 Autocorrelation time

Let us now study the performance of both the HMC and TSMB methods. The

performance of an algorithm means the average number of total operations between

statistically independent measurements.

Statistically independent measurements can be identified as follows [10, 131].

Let us first consider the Markov chain of sampled observables: O1,O2, . . . with

the mean average 〈Oj〉 = 〈O〉 and the autocorrelation function which depends only

on the difference j − k:〈(
Oj − 〈O〉

)(
Ok − 〈O〉

)〉
= ΓO(j − k) = ΓO(k − j).

Then the squared deviation for the sampled mean value:

MN(O) =
1

N

N∑
j=1

Oj, (5.102)

looks as follows: 〈(
MN(O)−O

)2〉 ' 2τint

N
ΓO(0), (5.103)

where τint is the so-called integrated autocorrelation time:

τint = lim
N→∞

1

2N

N∑
j,k=1

ΓO(j − k)
ΓO(0)

. (5.104)

In case of an exponentially decreasing autocorrelation function ΓO(j) ∝ exp(−|j|/τ ?)

(which is usually not realized), τint ' τ ? holds. The τint can be represented as fol-

lows:

τint =
1

2
+ lim

N→∞

N∑
j=1

ΓO(j)

ΓO(0)
. (5.105)

For the mutually independent sampled observables ΓO(j) = 0, j 6= 0, the

integrated autocorrelation time is τint = 1/2. Hence, the expression (5.103) means

that an effective number of statistically independent measurements is equal to

N/2τint. And τint can be treated as an effective distance between the nearest

independent measurements.
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The integrated autocorrelation time τint can be evaluated by means of the

equation (5.105), where the approximated autocorrelation functions are evaluated

as follows:

ΓO(j) ≈ 1

N − j

N−j∑
i=1

(
Oi −

1

N − j

N−j∑
k=1

Ok

)(
Oi+j −

1

N − j

N∑
k=j+1

Ok

)
.

The sum in (5.105) is taken (instead of the total number of measurements N) up

to some cut-off value W called the window [131]:

τint ≈
1

2
+

1

W

W∑
j=1

ΓO(j)

ΓO(0)
. (5.106)

The relative accuracy of such method is the follows [131]:√
〈(∆τint)2〉
τint

≈
√

2(2W + 1)

N
.

In an alternative method of evaluating τint called binning (see e.g. [10, 132])

the total set of N measurements is divided into N/B blocks with length B: N �
B � 1. For each block one computes the sampled mean value (5.102) denoted

as [O]B. Then, according to (5.103) and to the original definition (5.104) of the

autocorrelation time one evaluates τint as follows:

τint ≈
B
〈(

MN(O)− [O]B
)2〉

2ΓO(0)
. (5.107)

Errors of the binning method are estimated by the formula [133]:√
〈(∆τint)2〉
τint

≈ max

(
τint

B
,

√
B

N

)
.

In our simulations, we used mostly the binning method (5.107) since it can be

easily accustomized to the evaluation of errors for the functions of mean measured

values by the jack-knife method [134, 132]. However, the summation method

(5.106) appears to be more precise than the binning (5.107). The best window

size is W ∝ lnN since the systematic error of the expression (5.106) decreases as

exp(−W/τint) [133].

5.6.2 Theoretical estimates

Summarizing, one can define the performance value P of an algorithm by the

equation:

P = Noperτint, (5.108)
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where Noper is a total number of operations per 1 update.

Before studying the values (5.108), one should also know how to choose the

technical parameters in an appropriate way. In case of HMC we use the arguments

[117, 118] of the harmonic oscillator Hamiltonian approximation:

H(eff) =
1

2
Π2 +

1

2
A†ΩA.

Here the matrix Ω is roughly estimated as:

Ω =
∂F

∂A
,

where the HMC force F is defined according to equation (5.52). In order to keep

the average acceptance rate 〈wacc〉 ≈ 1, one chooses the time step size ∆τ and

number of time steps Nτ in such a way that:

V ‖Ω‖2(∆τ)4 ∝ 1,
√
‖Ω‖Nτ∆τ ∝ 1. (5.109)

Here, owing to the pseudofermion distribution (5.48),

‖Ω‖ ∝ 〈 1
V

Tr
1

M†M
〉 ∝ 〈 1

V

∑
j

1

λj(M†M)
〉 ∝

√
ζ, ζ =

〈λmax(Q
†Q)〉

〈λmin(Q†Q)〉
.

Further, the CG precision δ in (5.25) should not spoil both the molecular dynamics

and the precise Hamiltonian accept-reject step. The δmd for molecular dynamics

and δacc for accept-reject step must obey the following estimates [114, 115]:

δmd ∝
1

V
, δacc ∝

1

V 2
. (5.110)

According to (5.27) this gives the estimate for the average number of corresponding

iterations of the CG method applied to even-odd decomposed systems (5.40):

〈N (CG)〉 ∝
√
ζ lnV. (5.111)

The parameters for the TSMB in case of Nf = 2 should be choosen in the best

way as follows [135]. The interval margins ε and λ are selected as:

ε = 0.5〈λmin〉, λ = (1.2−−1.4)〈λmax〉. (5.112)

Here one takes into account the statistical fluctuations of the minimal eigenvalue

λmin. But the value for the upper interval margin λ can be selected closer to the
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average maximal eigenvalue 〈λmax〉 due to the possibility of finding an exact upper

limit ‖Q†Q‖ depending on the hopping-parameter κ.

And again in order to keep the acceptance rate 〈wacc〉 ∼ 1 and to deal with the

reweighting determinant values detP4

(
Q†Q

)
∼ 1, the deviations of the second and

reweighting polynomials P2(x) and P4(x), respectively, should satisfy the following

conditions according to (5.101) and (5.93):

‖P2 − 1‖ ∝ 1√
V
, ‖P4 − 1‖ ∝ 1

V
, (5.113)

which give rough estimates for orders of the first and second polynomials:

n1 ∝ ζ1/4 lnV, n2 ' 〈N (CG)〉. (5.114)

Here we take into account the effective square root decreasing of the condition

number ζ →
√
ζ for the approximation of 1/x by the least squares first polynomial

P1(x) [37] which has been established by empirical observations.

Indeed, in an alternative to the least squares polynomial approach in the case

of Nf = 2, the Chebyshev polynomial approximation [121, 122]:

P1(x) =
1

x

(
1−

Tn1+1(
2x−(λ+ε)

λ−ε
)

Tn1+1(−λ+ε
λ−ε

)

)
, Tn(x) = cos (n arccos x) ,

the choice of the same approximation interval leads to much worse interpolation of

1/x for the Chebyshev polynomial than for the least squares one (see Figure 5.1a).

But if one increases the lowest interval margin for the Chebyshev method as follows:

ε→
√
ζε,

one reaches almost the same approximation of the 1/x function as in the case of

the least squares method (Figure 5.1b).

At the same time, the deviation of the least squares polynomial P1(x) from 1/x

function in the vicinity of the x = ε margin is larger than for the Chebyshev one

(see Figure 5.2) [37]. This means that in order to reach a good approximation of

1/x in the whole interval x ∈ [ε, λ], the correcting least squares polynomial P2(x)

must deviate large from 1 when x is close to ε, and our numerical observations

confirm this statement. And the contribution of lowest eigenmodes of the operator

Q†Q, owing to such discrepancy decreases the acceptance rate (5.86) of TSMB

algorithm, especially when the condition number ζ is very large. A reasonable
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TSMB acceptance is maintained, seems, due to a good closeness to 1 of the second

polynomial P2(x) for the remaining eigenmodes of the fermion operator.

The deviations for the approximate square root polynomial inversion as well

as a good enough approximation of the 1/x function:

‖P2(x)P
2
3 (x)− 1‖ ∝ 1

V 2
, ‖xP1(x)P2(x)P4(x)− 1‖ ∝ 1

V 2
, (5.115)

require the following estimates of the orders of third and reweighting polynomials:

n3 = (1.2−−1.4)n2, n4 ≥ n2. (5.116)

Before presenting numerical results, let us speculate about the theoretical per-

formance estimate according to the formula (5.108). In the case of HMC, the

number of operations per update is

NHMC
oper ∝ V 〈N (CG)〉Nτ . (5.117)

For the TSMB in case of very large order of the correcting polynomial P2, the

number of operations per sweep is determined mostly by the number of operations

in the noisy correction step:

NTSMB
oper ∝ V n2, n2 � n1. (5.118)

The autocorrelation time in the HMC case for almost total acceptance for the

oscillator dynamics [117, 118, 136] is

τHMC
int ∝ (∆t)−2, ∆t = Nτ∆τ. (5.119)

In the case of TSMB for an acceptance rate near to 1, the autocorrelation time is

proportional to the inverse imaginary part of the polynomial roots Im rj in (5.62)

[137] (see also [125, 126]). Therefore by use of Chebyshev polynomial arguments

to the least squares polynomial case, this time is proportional to the expression:

τTSMB
int ∝ n1ζ

1/4. (5.120)

Taking into account the estimates (5.109), (5.111), (5.114) and (5.117) – (5.120),

one can find roughly the theoretical gain GTSMB/HMC of TSMB over HMC algo-

rithm:

GTSMB/HMC =
PHMC

PTSMB

∝ V 1/4

lnV
. (5.121)
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Figure 5.1: Approximation of 1/x function by Chebyshev and least squares

polynomials, n1 = 50, λ = 4.0: (a) ε = 0.0001 for both polynomials and (b)

ε = 0.016 for Chebyshev and ε = 0.0001 for least squares polynomials.
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Figure 5.2: Deviation |xP1(x)− 1| for the 1/x approximation by Chebyshev

and least squares polynomials in the vicinity of x = ε. Polynomial order

n1 = 50, interval margins ε = 0.0001 and λ = 4.0.

5.6.3 Numerical studies

Now we turn to the numerical investigation of the performance of dynamical

fermion algorithms in the case of Nf = 2 for both Coulomb and confinement

phases. The lattice size in our case is 63 × 12 and time-antiperiodic boundary

conditions for Fermi-fields are employed. In the Coulomb phase, we choose the

parameters β = 2, κ = 0.130 but in the confinement phase β = 0, κ = 0.238. The

κ parameters lie quite near the critical chiral limit line κc(β) (see section 2.5 and

chapter 4). Due to the prescription (5.109), (5.110), we took the parameters Nτ ,

∆τ , δmd, δacc for HMC as in Table 5.1. Then we are able to evaluate numerically

an average number of CG iterations in leapfrog dynamics 〈N (CG)
md 〉 (see this Table).

In the TSMB case, the corresponding polynomial parameters n1, n2, n3, n4 and

interval margins ε, λ selected according to (5.114), (5.116) and (5.112) are given

in the Table 5.2.

Almost all these parameters require a knowledge of the average lowest 〈λmin〉
and largest 〈λmax〉 eigenvalues of even-odd decomposed fermion matrix Q†Q. They

82



phase β κ Nτ ∆τ δmd δacc 〈N (CG)
md 〉

Coulomb 2 0.130 40 1/40 10−3 10−7 36.0(2)

confinement 0 0.238 10 0.01 10−3 10−7 500(2)

Table 5.1: Parameters for simulation by HMC algorithm in both Coulomb

and confinement phases on a 63 × 12 lattice.

phase β κ n1 n2 n3 n4 ε λ

Coulomb 2 0.130 6 36 48 200 0.025 2.5

confinement 0 0.238 50 360 450 500 0.000225 9

Table 5.2: Parameters for simulation by TSMB Nf = 2 algorithm in both

Coulomb and confinement phases on a 63 × 12 lattice.

quenched dynamical

phase β κ 〈λmin〉 〈λmax〉 〈λmin〉 〈λmax〉
Coulomb 2 0.130 0.065(1) 1.60(1) 0.13(1) 1.63(1)

confinement 0 0.238 0.0010(1) 6.78(1) 0.0005(1) 6.59(1)

Table 5.3: Minimal 〈λmin〉 and maximal 〈λmax〉 average eigenvalues of even-

odd decomposed Wilson fermion matrix Q†Q for both Coulomb and confine-

ment phases in quenched and dynamical Nf = 2 fermion models on a 63 × 12

lattice.
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were evaluated by the explicitely restarted Lanczos method (5.30) – (5.35). Ini-

tially they were taken from the quenched gauge configurations and then tuned to

the dynamical Nf = 2 case (Table 5.3). It is worthwhile noting that if in the

Coulomb phase the condition number decreases by the factor ∼ 2 with the in-

corporation of the fermion loops, in the confinement phase the situation is quite

different.

Our numerical results have shown that the choice of polynomial orders (5.114)

and (5.116) confirms the conditions (5.113) and (5.115). As an example, in Figure

5.3 we show the behaviour of the second P2(x) (Figure 5.3a) and fourth P4(x) (Fig-

ure 5.3b) polynomials for the approximation of 1/x function (for the confinement

case). One sees that maximal deviation of these polynomials from 1 indeed satis-

fies the estimate (5.113) required for the lattice 63×12. Also measurements of the

reweighting factors det−1 P4(Q
†Q) according to (5.93) indicate for both Coulomb

and confinement phases (see Figure 5.4 for confinement phase) that such factors

are commensurable with 1.

Let us present the numerical results for comparison of the performance for both

the HMC and TSMB algorithms. We investigated the following mean gauge in-

variant observables 〈O〉: mean gauge energy 〈EG〉 (2.26), scalar condensate 〈ψψ〉
(2.27) and pion norm 〈Π〉 (2.28). The statistics in our case (10000 measurements)

was enough to evaluate the integrated autocorrelation time τint by use of the bin-

ning method (5.107). To compute observables in the case of the TSMB algorithm,

we used also the reweighting step (5.92), (5.93). At the end we measured the gain

of the TSMB algorithm over HMC method GTSMB/HMC according to the equations

(5.121) and (5.108), where instead of the measurement of the number of operations

Noper we took the measured CPU time for one update tCPU since, as one expects,

Noper ∝ tCPU.

Results of the comparison for the Coulomb phase are presented in the Ta-

ble 5.4. The acceptance rate in case of HMC method was 〈wHMC
acc 〉 = 0.94(1), in

the case of TSMB algorithm 〈wTSMB
acc 〉 = 0.48(1). Numbers of heatbath and overre-

laxation updating sweeps in the multiboson method (5.77) – (5.80) are the follows:

NBH = 1, NBO = 9, NGH = 1, NGO = 0. The observables obtained from simula-

tions of TSMB algorithm agrees with those from HMC runs. The autocorrelation

time for the pion norm is an order larger than that for mean gauge energy and
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Figure 5.3: Least squares polynomials P2(x) (a) and P4(x) (b) to the poly-

nomial approximation of the 1/x. Polynomial orders n1 = 50, n2 = 360,

n4 = 500. Interval margins ε = 0.0001, λ = 4.0.
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Figure 5.4: Distribution of reweighting factors det−1 P4(Q
†Q) in the TSMB

simulations on a 63 × 12 lattice, confinement phase.

scalar condensate. CPU times per update for HMC and TSMB algorithms look as

tHMC
CPU = 15.1(2) sec and tTSMB

CPU = 8.96(2) sec. One sees a little gain for plaquette

and scalar condensate, and no win of performance for the pion norm.

The situation is rather different in the confinement case (Table 5.5). The

autocorrelation time for the pion norm is smaller than for the mean gauge energy

and scalar condensate. In spite of agreement of the measured observables, there

is no visible win of TSMB performance over HMC one. The acceptance rates

〈wHMC
acc 〉 = 0.72(1) and 〈wTSMB

acc 〉 = 0.68(1) are comparable. CPU times in this

case are tHMC
CPU = 76(1) sec and tTSMB

CPU = 69(1) sec. The numbers of local update

sweeps in the multiboson algorithm were taken as follows: NBH = 2, NBO = 2,

NGH = 2, NGO = 2.

It is worth to note also that measured average reweighting factors:

〈 det−1 P4(Q
†Q)〉 ≈ 1

for both Coulomb and confinement phase cases. And therefore, the reweighting

step (5.92), (5.93) in our Nf = 2 case brings only subtle corrections to the observ-

ables evaluated according to the ordinary two-step multiboson averaging (5.83).
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〈EG〉 〈ψψ〉 〈Π〉
〈OHMC〉 0.1332(1) 0.9381(1) 1.378(1)

〈OTSMB〉 0.1331(1) 0.9379(1) 1.376(1)

τHMC
int 3.2(3) 2.0(2) 25(4)

τTSMB
int 3.0(3) 2.8(2) 50(8)

GTSMB/HMC 1.7(2) 1.2(2) 0.8(2)

Table 5.4: Performance of HMC and TSMB Nf = 2 algorithms in the

Coulomb phase (β = 2, κ = 0.130). Lattice size 63 × 12.

〈EG〉 〈ψψ〉 〈Π〉
〈OHMC〉 0.939(1) 0.95(1) 13.9(2)

〈OTSMB〉 0.938(1) 0.96(1) 13.7(2)

τHMC
int 65(7) 60(7) 35(5)

τTSMB
int 120(20) 125(15) 45(5)

GTSMB/HMC 0.5(1) 0.5(1) 0.7(1)

Table 5.5: Performance of HMC and TSMB Nf = 2 algorithms in the con-

finement phase (β = 0, κ = 0.238). Lattice size 63 × 12.
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5.6.4 Methods to improve TSMB performance

The numerical results for both Coulomb and confinement phases presented above

mean nevertheless, that the TSMB algorithm is competitive with the HMC one.

And moreover, the theoretical gain expected from the rough estimate (5.121) is

not very large for 63 × 12 lattice:

GTSMB/HMC = 0.90(1).

In order to improve the gain of TSMB algorithm over HMC one, it is necessary

to use more local update sweeps (5.77) – (5.80). Indeed, the autocorrelation time

τTSMB
int can be decreased to values of order 1 by applying a number of gauge sweeps

commensurable with the initial autocorrelation time (5.120):

NGH +NGO ∝ τTSMB
int .

where according to estimates (5.111) and (5.114), τTSMB
int ∝ n2. However, the

number of operations in the TSMB algorithm remains the same magnitude as

earlier in (5.118) due to the correspondent choice (5.114), (5.116) of polynomial

orders:

NTSMB
oper ∝ V n2, n2 � n1.

This increases the gain (5.121):

GTSMB/HMC ∝ (V ζ2)1/4.

Another way to improve the TSMB performance follows from the estimates

(5.120), (5.118) and also from the numerical observation that the TSMB measure-

ments required use only the first and the second steps of the algorithm (for Nf = 2)

without necessity to employ the reweighting procedure (5.92), (5.93). To enlarge

the TSMB gain, one should decrease the n1 and n2 polynomial orders. And then

the reweighting step will be very important for the correct evaluation of average

lattice observables.

5.7 Discussion

We have studied the performance of the two-step multiboson algorithm in the

I. Montvay version [36] – [38] and compared it with the well-established hybrid

Monte Carlo method [39, 40] for compact lattice QED with Nf = 2 dynamical
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Wilson fermions within both Coulomb and confinement phases. Results of our

investigation have shown that on the one hand, the TSMB algorithm is a robust

alternative to the HMC method and on the other hand, the former algorithm is

competitive with the latter one. It can be used for the investigation of the Aoki

phase in the compact Wilson fermion QED (see Figure 2.1b) without auxiliary

twisted mass term (2.35) and also for the study of the QED with odd fermion

flavours Nf .

Nevertheless, we can further improve the performance of the TSMB method

by increasing the number of local update sweeps e.g. for gauge fields. One should

take the number of operations commensurable with that for the noisy correction

accept-reject step.

The gain can be enlarged also by decreasing the orders of the first and the

second polynomials. It needs to revise the role of the reweighting step correcting for

the average observable values. One should note nevertheless, that this way requires

a very careful choice of the approximating polynomials especially the P4(x) one in

order to avoid the pathologically huge reweighting factors | det−1 P4(Q
†Q)| � 1.

Let us now discuss the application of the TSMB algorithm to a study of the U(1)

lattice theory with an odd number of dynamical Wilson fermions. In principle,

this algorithm is suitable for simulations with arbitrary Nf number but in the

reweighting procedure (5.92), (5.93) one has to take into account the fermion

determinant phase (or sign, in case of integer odd Nf ). Fortunately studying the

Coulomb phase, one may not think about the sign problem. It was shown (see e.g.

[62, 10]) that owing to reflection symmetry:

detM > 0, |κ| < 1/6.

And since the critical κ? parameter lies on the chiral limit line κc(β) such as

κc(∞) = 1/8 (see Figure 2.1), for evaluation of a large critical β? it is not necessary

to compute the sign of fermion determinant.

This sign might be taken into account only in case of confinement or Aoki

phase investigation. Unfortunately, the sign can not be found by means of pseu-

dofermion factorization (5.44) as in the squared fermion determinant case. The

straightforward method to obtain information about the determinant sign – direct

evaluation of the fermion determinant – is enormously slow for large lattice sizes

and is very expensive in computer memory. One can, however, bypass the problem

using the complex gradient method [107, 109] for evaluation of lowest eigenvalues
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of even-odd decomposed matrix Q†Q (5.41) at different κ′ values: κ′ ∈ [κ0, κ].

Here κ0 is such a hopping-parameter when exactly detM > 0 and κ is the studied

value. Then corresponding eigenvectors of Q†Q will be eigenvectors of the operator

γ5Q which is Hermitean according to the property (5.38). If one of the lowest

eigenvalues of the latter matrix crosses 0 in the interval [κ0, κ], it means that

contribution of this eigenvalue to the target determinant is negative. And the

determinant sign will be equal to the −1 value in the power of the number of such

crosses.

Such a method of determinant sign evaluation is still not very fast. A possible

alternative to the lowest eigenvalue study could look as follows. Let us consider

the Hermitean unitary operator:

U = γ5Q
(
Q†Q

)−1/2
. (5.122)

One can write the following expressions:

detQ

| detQ|
= detU = (−1)n− , n− = 2V − TrU = 2V − 〈η†Uη〉η, (5.123)

where n− is the number of−1 eigenvalues of the U matrix and the η is the Gaussian

noise (5.16), (5.19). The unitary operator (5.122) requires the knowledge of the(
Q†Q

)−1/2
matrix. To compute it, one can use the polynomial approximation

[138] of the x−1/2 function, e.g. (5.90), when Nf = 1:(
Q†Q

)−1/2 ≈ P1(Q
†Q)P2(Q

†Q)P4(Q
†Q). (5.124)

The equations (5.122) – (5.124) allow to evaluate the sign of the determinant

detQ in the equation (5.92) for reweighted average observables. The disadvantage

of this method is the low precision for the n− value. Other ways to study the

fermion determinant sign are now under investigation (see e.g. [139]).

The basic content of the section 5.6 will be published in paper [41].
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Chapter 6

Summary and outlook

In this thesis, we investigated numerically and partly analytically the compact

lattice QED with Wilson fermions. We studied the particular tasks in compact

lattice QED: the problem of the zero-momentum modes in the Coulomb phase and

the performance of dynamical fermion algorithms for U(1) gauge theory. Results

of our inspection look as follows:

• The influence of the constant or zero-momentum modes on the gauge depen-

dent lattice observables like photon and fermion zero-momentum correlators

within the Coulomb phase leads to a disagreement of these observables in

comparison with standard lattice perturbation theory.

• These constant modes are responsible for the screening of the critical be-

haviour of the gauge invariant fermion values in the vicinity of the chiral

limit.

• The elimination of these zero-momentum modes from gauge configurations

leads to the expected perturbative behaviour of gauge dependent observables

within the Coulomb phase.

• The critical behaviour of gauge invariant fermion observables in the Coulomb

phase upon removing the zero-momentum modes is restored. The critical

hopping parameter κc(β) then coincides with that obtained from gauge de-

pendent observables.

• The two-step multiboson algorithm in the version of I. Montvay was im-

plemented for numerical investigations in the U(1) lattice model with even

dynamical Wilson fermion flavours.
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• A scheme of an appropriate choice of technical parameters for both the two-

step multiboson and the hybrid Monte Carlo algorithms is proposed. Theo-

retical estimates of the performance of such simulation methods are obtained.

• The two-step multiboson algorithm appears to be a good alternative and is

at least competitive with the hybrid Monte Carlo method. This was proven

by numerical results and explained by a theoretical analysis.

• Further improvement of the performance of the two-step multiboson algo-

rithm can be achieved by increasing the number of local update sweeps and

also by decreasing the orders of first and second polynomials and by com-

pensating the errors with a reweighting step.

Finally, let us give some recommendations to the future investigation of the

compact U(1) Wilson fermion model:

• For the study of the Aoki phase without an extra mass term as well as of

the phase structure of the model in case of odd Nf fermion flavours, it is

recommended to use the two-step multiboson algorithm. Its local update

cycles can be improved, the role of the reweighting step should be increased,

and an algorithm for the evaluation of the fermion determinant sign must

be implemented to U(1) theory. However, in the case of large β values the

problem of the determinant sign does not occur.

• The investigation of gauge dependent operators is necessary to determine the

constant physics lines, containing more physical information about QED. In

order to evaluate correctly the critical parameters β? and κ? in the Coulomb

phase for the resolution of the ’Landau pole’ problem (or problem of triviality

of U(1) theory), one can directly eliminate the disturbing zero-momentum

modes, or one has to take them properly into account. An alternative to be

investigated might be the use of C∗-boundary conditions for the lattice fields

in order to get rid of the zero-momentum modes.
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Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbständig ohne fremde Hilfe verfaßt

zu haben und nur die angegebene Quellen und Hilfsmittel verwendet zu haben.

Berlin, 30. September 2001

Nikolai Zverev

107



Lebenslauf

Angaben zur Person

Name: Nikolai Zverev

Geburtsdatum: 14. Dezember 1971

Geburtsort: Moskau

Staatsangehörigkeit: Rußland

Familienstand: ledig

Dienstanschrift: Institut für Physik, Humboldt-Universität zu Berlin,

Invalidenstr., 110, Berlin D-10115

Tel. (+0049-030) 2093-7974

e-mail: zverev@physik.hu-berlin.de

Privatanschrift: Ketscherskaja ul., 6/1-192, Moskau 111402, Rußland

Tel. (+007-095) 375-82-11

Ausbildung

Sep. 1986 – Mai 1989: Studium an der Physikalischen und Mathematischen

Schule Nr. 57, Moskau, Rußland.

Sep. 1989 – Jan. 1995: Studium an der Physikalischen Fakultät der Moskauer

Staatlichen Lomonossow-Universität.

Jan. 1995: Diplom der Physik am Lehrstuhl für Theoretische Physik, Physikali-

sche Fakultät, Lomonossow-Universität, Moskau.

Titel der Diplomarbeit:

i



Berechnung abelschen Anomalie im chiralen

SO(10) Modell auf dem Gitter

Betreuer: Prof. Dr. A.A. Slavnov.

Apr. 1995 – Apr. 1998: Aspirant am Lehrstuhl für Theoretische Physik, Physikali-

sche Fakultät, Lomonossow-Universität, Moskau.

Feb. 1996 – Dez. 1996: Tätigkeit als Übungsassistent im Fach Theoretische
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