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Abstract

We investigate numerically and in part analytically the compact lattice quan-
tum electrodynamics with Wilson fermions. We studied the following particular
tasks of the theory: the problem of the zero-momentum gauge field modes in the
Coulomb phase and the performance of different Monte Carlo algorithms in the
presence of dynamical fermions.

We show that the influence of the zero-momentum modes on the gauge depen-
dent lattice observables like photon and fermion correlators within the Coulomb
phase leads to a behaviour of these observables different from standard pertur-
bation theory. These modes are responsible also for the screening of the critical
behaviour of the gauge invariant fermion values near the chiral limit line. Within
the Coulomb phase the elimination of these zero-momentum modes from gauge
configurations leads to the perturbatively expected behaviour of gauge dependent
observables. The critical properties of gauge invariant fermion observables upon
removing the zero-momentum modes are restored. The critical hopping-parameter
obtained from the invariant fermion observables coincides with that extracted from
gauge dependent values.

We implement the two-step multiboson algorithm for numerical investigations
in the U(1) lattice model with even dynamical Wilson fermion flavours. We discuss
the scheme of an appropriate choice of technical parameters for both two-step
multiboson and hybrid Monte Carlo algorithms. We give the theoretical estimates
of the performance of such simulation methods. We show both numerically and
theoretically that the two-step multiboson algorithm is a good alternative and
at least competitive with the hybrid Monte Carlo method. We argue that an
improvement of efficiency of the two-step multiboson algorithm can be achieved
by increasing the number of local update sweeps and also by decreasing the orders

of first and second polynomials corrected for by the reweighting step.
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Compact lattice QED, Wilson fermions, zero-momentum modes, Monte Carlo sim-

ulation, dynamical fermions



Zusammenfassung

Wir untersuchen numerisch und teilweise analytisch die kompakte Quanten-
elektrodynamik auf dem Gitter mit Wilson-Fermionen. Dabei konzentrieren wir
uns auf zwei wesentliche Teilprobleme der Theorie: der Einflufl von Eichfeld-Moden
mit verschwindendem Impuls in der Coulomb-Phase und die Effizienz von verschie-
denen Monte-Carlo-Algorithmen unter Beriicksichtigung dynamischer Fermionen.

Wir zeigen, dafl der Einflul der Null-Impuls-Moden auf die eichabhéngigen
Gitter-Observablen wie Photon- und Fermion-Korrelatoren nahe der kritischen
chiralen Grenzlinie innerhalb der Coulomb Phase zu einem Verhalten fiihrt, das
vom naiv erwarteten gitter-storungstheoretischen Verhalten abweicht. Diese Mo-
den sind auch fiir die Abschirmung des kritischen Verhaltens der eichinvarianten
Fermion-Observablen nahe der chiralen Grenzlinie verantwortlich. Eine Entfernung
dieser Null-Impuls-Moden aus den Eichfeld-Konfigurationen fiihrt innerhalb der
Coulomb-Phase zum storungstheoretisch erwarteten Verhalten der eichabhéngigen
Observablen. Die kritischen Eigenschaften der eichinvarianten Fermion-Observab-
len in der Coulomb-Phase werden nach dem Beseitigen der Null-Impuls-Moden
sichtbar. Der kritische Hopping-Parameter, den man aus den invarianten Fermion-
Observablen erhélt, stimmt gut mit demjenigen iiberein, der aus den eichabhéngi-
gen Observablen extrahiert werden kann.

Wir fithren den zweistufigen Multiboson-Algorithmus fiir numerische Untersu-
chungen im U(1)-Gittermodell mit einer geraden Anzahl von dynamischen Fermi-
on-Flavour-Freiheitsgraden ein. Wir diskutieren die geeignete Wahl der techni-
schen Parameter sowohl fiir den zweistufigen Multiboson-Algorithmus als auch fiir
den hybriden Monte-Carlo-Algorithmus. Wir geben theoretische Abschétzungen
fiir die Effizienz dieser Simulationsmethoden. Wir zeigen numerisch und theore-
tisch, daf} der zweistufige Multiboson-Algorithmus eine gute Alternative darstellt
und zumindestens mit der hybriden Monte-Carlo-Methode konkurrieren kann. Wir
argumentieren, dafl eine weitere Verbesserung der Effizienz des zweistufigen Multi-
boson-Algorithmus durch eine VergroBlerung der Zahl lokaler Update-Schleifen und
auch durch die Reduktion der Ordnungen der ersten und zweiten Polynome zu La-

sten des sogenannten 'Reweighting’ erzielt werden kann.

Schlagworter:
Kompakte Gitter—-QED, Wilson—Fermionen, Moden verschwindenden Impulses,

Monte-Carlo-Simulation, dynamische Fermionen
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Chapter 1
Introduction

Quantum electrodynamics (QED) is the theory of electromagnetic interactions
between electrically charged particles like electrons or muons. In principle, QED
explains their behaviour with high accuracy in the framework of renormalizable
continuum perturbation theory [1] — [3]. This is due to the small coupling constant
of electromagnetic interactions at low energies. Hence, the nonperturbative lattice
study of QED is motivated neither by so far unexplained phenomena nor by an
absence of a computational method. One is studying lattice QED for reasons which
can be briefly formulated as follows: the problem of mathematical consistency of
the quantum electrodynamics [4, 5] and various physical and technical questions in
models of a Grand Unification which can be studied by an appropriate reduction
to the simple (compact) Abelian theory represented by lattice QED [6, 7].

An apparent mathematical inconsistency in QED contrary to quantum chro-
modynamics (QCD) is the existence of the so-called energetical 'Landau pole’ in
the perturbative behaviour of the renormalized coupling constant [4, 5]. Such
a problem is absent only if the electrical charge asymptotically vanishes (trivial
electrodynamics). The spurious pole might not appear if QED has an ultraviolet
stable fixed point for the running coupling which lies outside the perturbative re-
gion. That is why the lattice regularization [8] — [10] of QED could be the best
way to study the 'Landau pole’ problem. The problem of the existence of a pos-
sible ultraviolet stable fixed point in QED was intensively studied both by the
continuum mean field method [11] and in the framework of noncompact lattice
QED with staggered fermions describing Ny = 4 flavours [12] — [16]. A detailed
inspection of the renormalized coupling constant within this lattice approach pro-

vided a strong indication for the absence of the 'Landau pole’ in QED: a singular
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behaviour can never be reached and noncompact QED with staggered fermions
seems to have a trivial continuum limit when approaching the end point of the
chiral phase transition line [16].

But there are problems left. First of all, a lattice discretization scheme requires
a careful study of the continuum limit (see [15]). Second, the absence of the
'Landau pole’ should be independent of the number of fermion flavours. And
finally, the noncompact lattice formulation is a matter of discussions from both
mathematical and physical points of view. On the one hand, its action requires
gauge fixing and the results should be independent of various fixing procedures
[14]. On the other hand, the noncompact theory can not explain the discrete
electrical charge values and can not be embedded into a lattice discretized non-
Abelian gauge theory which requires a compactification of the gauge potential [§]
(see also [6, 7]).

The latter problems do not occur in compact lattice QED. This way to dis-
cretize quantum electrodynamics leads to the occurence of several phases separated
by phase transition lines at strong coupling [17, 18]. In particular, there is a phase
compatible with the continuum QED — the Coulomb phase. The topical task to un-
derstand the ’Landau pole’ phenomenon within the framework of compact lattice
QED requires a thorough investigation of the phase structure of the theory and of
the possible existence of (tri-) critical points to which one can approach from the
Coulomb phase. A corresponding ultra-violet fixed point - if it exists here - should
be determined by studying the flow of lines of constant physics obtained from
non-perturbatively renormalized lattice observables. Such an investigation can be
carried out by various methods, e.g. within the framework of the Schrodinger func-
tional approach [19, 20]. In any case one has to achieve agreement of both lattice
perturbation theory and numerical simulation results obtained for a finite lattice
volume with those of continuum perturbation theory. The comparison requires an
appropriate selection or tuning of physical and technical parameters on the lattice
and of boundary conditions for the boson and fermion fields (see [20]). Compact
lattice QED from this point of view remained purely understood over the years.

Let us come to a second point of the lattice QED destination — studies for
QCD as well as for the electro-weak theory. Compact lattice QED is the simplest
(Abelian) gauge theory i.e. the prototype for all compact gauge theories on the
lattice. Theoretical as well as numerical questions and methods can be nicely

tested first in the U(1) gauge theory. From the theoretical point of view, there
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are two problems which require the use of the compact Abelian theory: the quark
confinement phenomenon and the chiral symmetry breaking effect.

The lattice gauge theory appears to be the easiest way to display the quark con-
finement, when the static quark potential infinitely grows with increasing distance
between quarks [8, 9]. Confinement can be reproduced by every standard compact
lattice formulation including the U(1) lattice model. Theoretical arguments [6, 7]
and numerical studies [17, 18] of pure U(1) lattice gauge theory have shown that
confinement is caused mainly by the influence of the monopole-antimonopole pairs.
It is worthwhile to note that the lattice approach in QED gives a mathematically
rigorous way of describing topologically nontrivial gauge configurations such as
magnetic monopoles [6, 7, 17]. Moreover, it was indicated both theoretically [21]
— [24] and numerically [25] — [27] that the confinement phenomenon in QCD can
be understood in terms of Abelian degrees of freedom of the SU(3) gauge theory.
Next, the confinement mechanism has a deep connection to the chiral symmetry
breaking effect [28]. And again, analytical [29, 30] and numerical [31, 32] studies
of the latter effect detected the existence of a parity-flavour breaking (or Aoki)
phase with a similar behaviour of pseudofermion composite particles in both non-
Abelian [30, 31] and U(1) [32] gauge groups. These results mean that in order to
study the quark confinement as well as the chiral symmetry violation effects, one
should first turn to the investigation of corresponding phenomena in an Abelian
model. Here, the U(1) theory can be viewed as an Abelian projection of a more
general gauge theory [21] — [23].

Another aspect is the algorithmic problem in investigations of different lattice
fermion models of QCD. It is well-known [9, 10] that the inclusion of the fermion
loops (dynamical fermions) is much more complicated than simulations in the case
of pure gauge theory. However, as it was shown in [33], the critical behaviour
of lattice observables in lattice QCD with dynamical fermions resembles to the
dynamical fermion U(1) case at strong coupling. This would mean that since
numerical investigations of Abelian models are much easier and faster than for
other more complicate gauge groups, studies of the U(1) model with dynamical
fermions might give useful results applicable to more general theories.

The main purpose of this thesis are some numerical and also analytical in-
vestigations of the lattice compact 4-dimensional (4d) QED theory with Wilson
fermions required as an intermediate step to future lattice QED investigations. In

chapter 2 we give an introduction to the lattice QED, describe the approximation



methods used for investigation of lattice models and present the phase structure
of the U(1) gauge theory. In chapter 3 we discuss the problem of gauge fixing
for a lattice study of gauge dependent observables. In chapter 4 we investigate
the particular problem of the physical Coulomb phase in compact lattice QED
— the influence of constant or zero-momentum gauge modes on gauge dependent
and gauge invariant fermion observables. Chapter 5 is devoted to a detailed study
of various simulation algorithms in the U(1) lattice model, mainly the dynami-
cal fermion ones. Finally in chapter 6 we present an itemized conclusion of our
investigation and give an outlook to the further study of lattice QED.

It will be shown that the disagreement of gauge dependent photon and fermion
zero-momentum correlators within the physical weakly interacting Coulomb phase
in comparison with standard lattice perturbation theory is caused by constant (or
zero-momentum) modes which are the gauge copies of the Lorentz gauge fixing
prescription in the pure gauge theory. Secondly, these constant modes hide also
the critical behaviour of the gauge invariant fermion observables in the vicinity of
the chiral limit. We discuss various methods of eliminating the zero-momentum
modes. Our numerical studies of the Coulomb phase show that as soon as one
removes these constant modes from gauge configurations, the correct behaviour of
both gauge dependent and gauge invariant lattice correlation functions is restored
(34, 35].

We have adapted the two-step multiboson algorithm (TSMB) [36] — [38] to
numerical investigations in the U(1) lattice model with even number of dynamical
fermion flavours. For this purpose, the simulation methods for the pure gauge
theory and for the evaluation of lattice fermion observables were carefully studied.
In order to investigate the performance of the TSMB in comparison with the
well-known hybrid Monte Carlo (HMC) method [39, 40] in the framework of the
U(1) lattice model, we give the prescription of an appropriate choice of technical
parameters for these dynamical fermion algorithms. Theoretical estimates of the
performance of these simulation methods are presented. Our numerical results as
well as theoretical arguments show that the TSMB algorithm is at least competitive
with the HMC one [41]. We also propose ways to improve the performance of the
TSMB algorithm.

Finally, we discuss proposals for further studies of compact lattice QED with

odd number of fermion flavours.
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Chapter 2

Formulation of lattice QED

2.1 Continuum theory
The QED action in the continuum Euclidean theory [1] — [3]:
Sqep = Sa + Sr, (2.1)

consists of the pure gauge action Si and the fermion one Sg:

1

_ 4 2
Sq = e d x;Fwy, (2.2)
iy

SF = /d4LL’ {% Z (ng}/up,uwx - ’D_;ﬂ/}x’}/;ﬂ/}w) + mo@x%} : (23)

1
Here the F, ,, = 0A,,/0x,—0A,,/0z, is the Abelian gauge field strength tensor,
the A, , is the gauge potential, D, = 0/0x, + 1A, , denotes the gauge covariant
derivative. The ey and mg stand for the bare electric charge (or coupling constant)
and bare fermion mass, respectively. The 1), 1) are anticommuting (Grassmann)

variables and «, are the 4 x 4 Dirac matrices satisfying to the algebra:

VYo + W = 20 - 1, Vs = M7273Y4;
V5V + VY5 = 0, wv=1... 4.

The action (2.1) is invariant under local Abelian gauge transformations:

Aa:,lt - Ag%li = Axylt - aa/x/axua gz = eiaz’ (24)

11



and for mg = 0 under global chiral rotations:
Ve — €Ny, Gy — e (2.5)

Quantization with path integral of the theory described by the action (2.1)
requires gauge fixing and a regularization with subsequent renormalization [2, 3].
The quantum corrections violate the classical chiral invariance (2.5) and lead to
the Abelian chiral anomaly [42, 43]. In order to study the mathematically correct
theory, one has to introduce a suitable regularization. Such a regularization widely
used for the numerical nonperturbative investigations is just the lattice theory

[9, 10]. Below we describe its basic principles.

2.2 Lattice theory

2.2.1 Discretization steps

To go from the continuum theory to the discrete lattice version, it is necessary to
perform the following steps. First of all, the continuum 4-dimensional coordinates

x are replaced with discrete points called lattice sites:
r = a(ny, ng, ng,ny), n, =0,£1,£2,...,

where a is a discrete 4-dimensional space-time size called lattice spacing. Then

the integration over 4-dimensional space is replaced with the sum over all lattice

/d%%a‘lZ:a‘l Z }

P ¥

points:

The Fourier transformation on the lattice looks like:

w/a
r ipx d4p —ipz ¢
fp:Zep fI? fx: / (27T)4e P fp
r —7/a

Note that the lattice discretization introduces the ultraviolet cut-off:  |p,| < 7/a.
In many practical cases such as numerical simulations, the number of lattice

points x must be finite. In other words, one has to consider a finite lattice:
n,=—-N,/2+1,...,N,/2, N, is even,
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and therefore to replace the integration measure and momentum in the infinite

Fourier transformation as follows:

w/a
d*p 1 27
/W—)WZ’ pH:a—]Vul”, l}u:—N‘u/Z—'—l,...,N‘u/Z,
—7/a !

where V = N;...N, is the dimensionless lattice volume. Therefore, the finite
lattice determines the infrared cut-off:  |p,| > 27/aN,, if p, # 0.

To remove these cut-offs, one takes first the thermodynamic limit when the lat-
tice volume V — oo at fixed spacing a, then the continuum limit when a — 0 at
infinite volume V. Of course, the lattice discretization breaks the continuum rela-
tivistic invariance. But such invariance is expected to be restored in the continuum
limit.

Further, the continuum derivative d/0x, has be replaced with the discrete
forward 0, and backward 5# derivatives:

e T e O

, )
a H

.,0). (2:6)

Then in order to preserve the local gauge invariance (2.4) on the lattice, it is

necessary to work with the compact lattice gauge (or link) variable [8]:
U, = e, (2.7)

which transforms under gauge rotations according to the following rule:
Usy — U2, = 0:Usp0) 0py 92 € U(1). (2.8)

From this we can construct lattice forward V, and backward W covariant deriva-

tives as:

V,ufm - % {Um,,ufa:—i-aﬂ - fx} y vufz — {fw x aji, Mfz a,u} (29)

Note that the backward derivatives are Hermitean conjugated of the forward
derivatives with respect to the lattice space. In order to work with the lattice
derivatives on the finite lattice, one has to introduce boundary conditions (b.c.)

which are taken usually in the following way:

feraNH,u :l:fxa

where the + or — sign denotes periodic or antiperiodic boundary conditions, re-

spectively. For gauge or boson fields as well as gauge transformations g, one uses
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periodic b.c. In principle, it is possible to apply these conditions to fermion fields.
However, in order to avoid spurious infrared divergences in the fermion propaga-
tor which happen e.g. at the study of chiral fermion models, one usually takes for
Fermi-fields antiperiodic boundary conditions.

It is possible to consider the straightforwardly discretized lattice version of
the gauge action (2.2), where A, , takes values in the (—oo, 00) interval. Such a
theory is called noncompact lattice QED and has been already used for study of
the 'Landau pole’ problem [12] — [16]. However, it is worthwhile to investigate
also the compact lattice QED model [8]. The latter requires to use the compact
link variables (2.7) where A, , € (—m,x], and the U(1) compactified gauge field

strength tensor is called plaquette variable:

Ux,,uu = Ux,/,LUIE“ra[L,l/UT UT (210)

z+ab,u” T,V

which is invariant under gauge transformations (2.8). Then the compact, or pla-

quette, version of gauge action S can be written as follows:

SelU]=B> (1= RelUsp), (2.11)

T,V
pu<v

where 3 = 1/e? is the inverse squared bare coupling parameter.

The plaquette variable (2.10) in case of U(1) group is invariant also under the

constant transformations:
Uz — Uy, = cuUs y, ¢, € U(1). (2.12)

Let us now discuss the difference between the infinite and finite lattice cases. For
the infinite lattice, the constant transformations are a special case of the usual
(2.8) ones:
g =[], e, (2.13)
1

But in case of finite lattice volume, the transformations (2.12) can not be reduced
to (2.8) because of the impossibility to fulfill the periodic b.c. for gauge transfor-

mation g except for discrete values:

¢, = e2mku/Nu, ky=0,+£1,42,..., p=1,... .4

m

The constant transformations (2.12) or (2.13) which can not be represented by
ordinary gauge rotations (2.8) will be called nonperiodic gauge transformations

but the usual (2.8) ones are named periodic transformations.

14



In the classical theory in the continuum limit @ — 0, the plaquette action (2.11)
as well as the lattice discretized fermion action (2.3) coincide with their continuum
origins. But in the case of quantum theory, one is interested first in the particle
spectrum described by the given model. So, the photon propagator in the compact

gauge theory (2.11) (in diagonal gauge):

(Sul/ 5uu
p 2 w2 3
> x(2/a)?sin” (pra/2) p

correctly reproduces the photon spectrum. But the fermion propagator of the

(Audy)

naively discretized fermion action (2.3):

—i ZM Vusin(pua)/a+mo —i ZM(_l)S” (Pu — msp/a) Y + Mo
2

<¢¢>p - ZM sin?(p,a)/a? + mé 7 =0 (p— 773/@)2 + m?

.
in the limit @ — 0 describes 2% = 16 fermion states instead of one in the continuum.
This effect is called spectrum degeneracy and the nonphysical fermion states are
called doublers.

The above result is explained by the no-go’ theorem [44, 45] which states that
if a fermion action is Hermitean, local (its momentum operator in the Fourier space
is continuous) and invariant under discrete translations and global chiral rotations
(2.5), it inevitably describes the chirally positive and the same number of chirally

negative fermion states.

2.2.2 Wilson fermions

To cure the problem of fermion spectrum degeneracy, one can either remove the
doublers or exploit them in an appropriate way. The former method, proposed by

Wilson [8], requires the addition of the following mass-like term:

ar — —
Sw=a'y_ 5 Vil Vb, >0, (2.14)

z,p
to the straightforwardly discretized, or naive, fermion action (2.3). Such a term
vanishes in the classical theory in the continuum limit. But in the quantum case,

the perturbative fermion propagator

—1i>, yusin(pua)/a+ (2r/a) 3, sin (p,a/2) + mq . —i p+ mg

<1/@>p = 2 ) 2
¥, sin(pua)/a? + | (2r/a) ¥, sin? (puaf2) +mg| T
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correctly describes the fermion spectrum since all doublers acquire masses of order
O(a™!') and therefore do not propagate. At the same time, the Wilson term (2.14)
breaks the global chiral symmetry (2.5). Perturbative investigations of the lattice
Wilson fermion model have shown [46] that in the continuum limit the well-known
expression for the chiral abelian anomaly [42, 43] is reproduced.

The total lattice Wilson fermion action can be rewritten as follows:

SWF[U7 Ea M = a‘4 ZEmM[U]Iywya (215)

where M is Wilson fermion matrix:

4r 1
MUy = (4 10) by = 5 50 = )V asait
m

+(r + ) Uy Oy taia ) (2.16)

Introducing the so-called hopping-parameter x:

1
=" 2.17
" 2(4r + amy)’ (2.17)

and rescaling the fermion fields by the coefficient \/2k /a3, one rewrites the Wilson

fermion matrix M in the following way:

M[U]xy = 0py — K Z {(r— ’Vu)Uw,uéx+aﬂ,y+

w
+(r + %)U W Oyapa ) - (2.18)

The fermion matrix (2.16) or (2.18) is covariant under the gauge transformations
(2.8):
MUY,y = gmM[U]xyg;;, (2.19)

and is v5-Hermitean:

Mt = Y5 Mys, (2-20)

where the complex conjugation is taken with respect to all coordinate and spinor
indices. The parameter r is expected to be irrelevant at the renormalization or
finite tuning of lattice observables. Hence and also for convenience (see [9]), we
will take it equal to r = 1.

Another method to handle the fermion spectrum degeneracy was proposed by
Kogut and Susskind [47]. In this method, the fermion doublers are transformed

to the 242 = 4 fermion flavours by means of the spin diagonalization of the naive
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lattice fermion action (2.3) and retaining only one spinor component in the trans-
formed action. Such a theory, called staggered fermions, is invariant under global
chiral rotations (2.5) but the flavour symmetry is broken. In the framework of the
staggered fermion model the 'Landau pole’ problem was investigated [12] — [16].
However the staggered fermions describe 4 mass degenerate flavours. In order to
study the case of a small number of fermion flavours, one takes a fermion model
like the Wilson one (2.15).

At the same time, the Wilson fermion method requires more additional fine
tuning of lattice observables in the continuum limit than for staggered fermions
since the Wilson mass term (2.14) brings the lattice corrections of order O(a) to
the continuum fermion action (2.3) whereas in case of the staggered fermions, such
corrections have order O(a?). To get the lattice computed observables closer to
the continuum ones, the Wilson fermion action requires O(a) improvement. At the
present moment, there are many improved actions based on the original Wilson
(2.15) one. Let us mention the model with perturbatively improving clover term
[48, 49], the nonperturbatively improved overlap fermions [50] — [52] and the exact
Ginsparg-Wilson fermions [53] — [55], and also the approzimate Ginsparg-Wilson
fermions [56] — [58] generalizing the perturbative clover improvement. In this
thesis we will not touch the problem of the Wilson action improvement since it
complicates the numerical lattice simulations. We note only that the influence of

the Wilson term is reflected in the phase structure of the compact Wilson lattice
QED.

2.3 Gauge invariant observables on the lattice

The standard action of compact lattice QED [8] consists of pure compact gauge
action (2.11) and Wilson fermion one (2.15):

Sqen[U, ¥, ¢] = Sa[U] + SwrlU, ¢, ] (2.21)
Then the average value of a lattice observable can be computed according to the
equation:
1 - — —
(©) = 5 [lAUIGIOW. vl exp(-SamnlU. T 0]). (222)
where the normalization constant
2= [1v[dau) exp(~SamolU. . v) (2.23)
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also depends on the bare lattice parameters 3, k. The integration with respect
to the gauge field is taken over a compact space. And therefore, in contrast to
continuum and lattice noncompact theory cases, one is not forced to fix a gauge
in compact lattice models.

For practical evaluation of fermion observables, it is convenient to perform the

following trick. Let us add to the action (2.21) the auxiliary fermion source term:

Sﬁn = Z (E;U,UI + 7_7#/1:::) )

xT

where 77, 7 are external anticommuting variables. Then substituting it to the equa-
tion (2.22) and integrating out the ¢, v variables in case of N s fermion flavours,

the equation for average observables can be represented as follows:

1

()=

b
0o 0
/[dU]O [U, 5 51 exp(—Sg[U] + 7M~[U]n) det™r M[U],
noon 7, =0
(2.24)
h

where a% denotes the left acting derivative with respect to 7. Note that the fermion
determinant det M is gauge invariant and real as it follows from the properties

(2.19) and (2.20), respectively.
The equation (2.24) is the standard quantization formula for the investigation

of the gauge invariant observables O:
O, 4,49 = OlU, §, 4. (2.25)

Without loss of generality we will restrict ourselves to invariant observables (2.25)
which depend only on the gauge field U: O = O[U]. The reason is that the
average values of fermion observables are expressed in terms of elements of the
inverse fermion matrix M~[U] as it follows from equation (2.24).

Let us present some gauge invariant observables which are very important in
the investigation of lattice theory. In this thesis, we will study the mean gauge

energy (Eg) [9], the scalar condensate (1)) and the pion norm (IT) [18]:

(Fa) = (= 31— Reli)), (2.26)
_ 1 1 .
(00) = (47 Z Potha) = (7 TTMTY), (227)
(IT) = <% > (W@ 51:)%) = <% Tr s M s M1, (2.28)

xT
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where the trace is taken over coordinate and spinor indices. Note also that the
fermion observables are independent of the choice of boundary conditions for
Fermi-fields as it follows from invariance of the integral (2.22) under nonperiodic
gauge transformations (2.12). The mean gauge energy (2.26) is proportional to the
0In Z/0p3, where Z is defined according to equation (2.23). The scalar condensate
(2.27) and the pion norm (2.28) are represented via sums of inverse eigenvalues
of the M and M'M operators, respectively. And therefore, these fermion values
(especially pion norm) can serve for an identification of the critical zero eigenvalue
behaviour of the Wilson fermion matrix (2.18).

Hence, the gauge invariant observables (2.26) — (2.28) are widely used for study-

ing of the phase structure of lattice fermion models (see [18]).

2.4 Quenched and dynamical fermion approxi-

mations

In both analytical and numerical studies of a lattice theory, the investigation of
the fermion determinant det M is very difficult. Traditional methods of computing
the determinant directly fail to extract numerical as well as physical information
about the contribution of fermion loops to the theory.

Nevertheless, one can enormously simplify the consideration of lattice models
by taking into account the smallness of the hopping-parameter x. From its def-
inition (2.17) it follows that r satisfies the inequality x < 1 for r = 1 or more
concretely, x is of order 1/8. This in case of large fermion mass allows us to
perform an expansion in powers of k£ of the Wilson fermion matrix (2.18) in the

fermion determinant. In the leading order:
det M = const.

One retains often only this order of the determinant in the integral (2.24) [59] —
[61]. But higher orders can be considered as corrections to the average observable
value.

This approximation known as quenched approximation, corresponds to:
Ny =0. (2.29)
In other words, one neglects the contribution of the fermion loops to the weight
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function. Ome then simply averages lattice observables with the weight factor
exp(—Se[U]) which facilitates numerical as well as analytical lattice investigations.

However, the approximation (2.29) and the hopping-parameter expansion are
not valid in case of very large condition number (:

)\max
In¢>1, (= (2.30)

3
)\min

where Ay and Ay, are the maximal and minimal eigenvalues of the MM matrix,
respectively. Then one has to take into account the whole determinant in (2.24).
This case, when one does not neglect the influence of the fermion loops, is called
the dynamical fermion case [10].

The evaluation of the fermion determinant requires much more computer re-
sources than a numerical simulation of a pure gauge theory described by action
Sc[U] (2.11). Another difficulty is the sign problem of the fermion determinant
which may lead to a pathological result for physical observables. However, if the
number of fermion flavours

Ny = even, (2.31)

the simulations of the determinant can be facilitated due to its parametrization by
an auxiliary complex spinor field [60]. The calculation of lattice observables then
does not need the knowledge of the sign of the determinant.

We consider in this thesis compact lattice QED in both the quenched approx-
imation (2.29) and in the dynamical (2.31) Ny = 2 case. But we will discuss also

the problem of the odd fermion flavour investigation.

2.5 The phase structure of compact lattice QED

Let us remember that the lattice gauge theory is only a regularization for the
investigation of the continuum field theory. The results obtained by means of
lattice caluclations, make physical sense only in the continuum limit a — 0. At
the same time, the continuum renormalized parameters such as masses or running
couplings, must take finite values. Hence in order to go to the continuum limit,
one has to require that the couplings 5 and x depend on the lattice spacing a (see
9, 10]).

It is necessary to know which lines in the (3, k) plane correspond to constant

physics in the limit @ — 0. One of such lines is obtained by means of the study of
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lattice renormalized masses. They can be extracted from corresponding correlators

in the following way [62]:

Ie(1) = Z(CIDOCDQ x exp(—meT), x=(Z,71), a— 0. (2.32)

For example, the operator for the extraction of the pseudoscalar 'pion’ mass m;
is {7 = V50
Keeping with 7 = any the integer value ny in the (2.32) finite, one can formulate

the condition for the bare lattice parameters in the continuum limit:
aMphys — 0, a— 0. (2.33)

where mpnys = Mpnys(5, k) are masses of physical particles or energies of their
ground states extracted according to (2.32).

Equation (2.33) determines the critical line k = k.(3) where the fermion parti-
cles in @ units have zero masses [63] — [65]. It means that along this line known as
the chiral limit line, the chiral symmetry broken by the Wilson mass term (2.14) is
partially restored. On the other hand, since the powers of the 1/amyys contribute
to fermion observables like (2.27) or (2.28) and the masses myys are finite, the
chiral limit line in the language of the thermodynamics must be a line of at least
second order phase transition. Instead of the bare fermion mass mg, one can define

the naive lattice fermion mass m, [63] as

-3 k)

Studies of the 4-dimensional U(1) model with Wilson fermions have shown
(see e.g. [6, 7], [17, 18], [63] — [70]) that such a theory has a nontrivial phase
structure (Figure 2.1). It consists of at least 4 phases in the (3, k) plane separated

by different order phase transition lines. But there is a difference between the
quenched approximation and N; = 2 dynamical fermions. While in the quenched
case the critical line separating Coulomb and confinement phase has the same (3
value equal to 1.01(1) (Figure 2.1a), in the dynamical case it coincides partially
with the chiral limit line (Figure 2.1b) [70]. This line x = k.(5) connects the
points k.(0) = 1/4 and k.(oc0) = 1/8 at the Wilson coefficient » = 1 [63]. The
deviation of k.(() from the exact perturbative value 1/8 can be explained as an

influence of the chirally noninvariant Wilson mass-like term (2.14).
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Figure 2.1: Phase structure of compact lattice QED in the quenched approx-
imation (a) and with Ny = 2 dynamical fermions [70] (b).
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We are interested mostly in the Coulomb phase because it describes the usual
static Coulomb potential and the vanishing photon mass. It is characterized by
the suppression of magnetic monopoles [17]. However, it is worth to discuss also
the confinement phase having many similarities with QCD one. In this phase
in quenched approximation, the static potential for charged particles is directly
proportional to the distance between them [8], the corresponding gauge bosons
acquire a non-zero mass and one detects a condensation of monopole-antimonopole
pairs [17].

These phases are separated by the line of the first order phase transition [17],
[71] — [73] (see Figure 2.1). It means that one has to search for the continuum
limit points (5*, k*) outside this line. According to the above presented arguments,
these points should lie on the curve k = k() in the Coulomb phase. The precise
numerical value for the §* point is unknown so far in spite of numerous efforts in
this direction (see e.g. [74] — [76]). We will not touch this problem but note that
it requires a very careful study of the renormalized masses and coupling constant
[13] — [16].

At the same time, the investigation [77] of the confinement phase near the chiral
limit and also the 4th (Aoki) phase [29] (see Figure 2.1b) is complicated because the
well-known method for such purposes, the hybrid Monte Carlo algorithm [39, 40],
does not work well in the case of large condition numbers ¢ (2.30) (see also [33, 78]).
To decrease this number, in case of Ny = 2 one can introduce the following twisted

mass term [30, 31]:
hipys @ T3, (2.35)

and then at the evaluation of desired observables take the limit h — 0. The
investigation of the Aoki phase led to the conclusion that there the composite
pseudoscalar fermion masses are equal to 0 and the combined parity-flavour sym-
metry is broken [29] — [32]. But in order to better understand the properties of this
phase, one should use an alternative to the hybrid Monte Carlo algorithm. And
moreover, presently the studies of the lattice compact QED were done in the frame-
work of the quenched approximation or for even dynamical fermion flavours [77].
It would be interesting to investigate also the dynamical models with odd fermion
flavours. The problems of such investigation will be discussed later together with

the consideration of the dynamical fermion algorithms.

In the following let us use the convention a = 1 for the lattice spacing. If it
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is necessary, dimensions can be easily re-inserted. The lattice size will be V' =

N3 x Ny, with Ny > N, in order to compute masses from correlators as (2.32).
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Chapter 3

Gauge fixing on the lattice

3.1 Motivation

As it was already mentioned, studying the gauge invariant observables on the
lattice in the framework of compact gauge models [8] does not require a gauge
fixing (see [9]). Nevertheless, applying the Faddeev-Popov trick [79] to the integral
(2.24) by inserting the unity:

| — App[U] / dgle (F[U7))

where App|U] is the so-called Faddeev-Popov determinant, and by integrating out
the gauge transformation field g, we get the following expression for the averaged

gauge invariant operator O (2.25):

(0) = % / [AU]App[U)8 (F[U]) O[U]e%¢WdetNr MU, (3.1)

similar to the continuum field theory case.

However, in the case of perturbative study of a lattice model [46], one has
to introduce a gauge fixing term just as in the continuum theory. Moreover, the
evaluation of such gauge invariant objects as Wilson loops is very simple e.g. in
2-dimensional gauge models when an additional gauge fixing method is employed
9].

We note that usual gauge invariant values describe either composite particles
or bounded states of quantum fields e.g. mesons or glueballs [10]. At the same
time, studies of gauge dependent observables like photon or fermion propagator

can give us more detailed and natural information about quantum objects such as
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behaviour of renormalized Green functions [14]. But the straightforward averaging
of gauge dependent operators over gauge field without any gauge fixing term leads,
according to group symmetry properties, to zero. For instance, in the case of
fermion propagator one has:

— 1

(03,) = [1a0) (M), o5t MIU) = 8y 45,

as it follows from the covariance property (2.19) of the Wilson matrix, and where
the translational invariance of the theory has been used. Hence, to consider on
the lattice the gauge dependent objects, one has to use a gauge fixing procedure.
And the expression (3.1) can serve as a definition for the average value of a gauge
dependent observable.

In our case, studying the 'Landau pole’ problem in the compact lattice QED
requires an investigation of the renormalized coupling constant and fermion mass
[15, 16]. They can be extracted in the best way from the gauge dependent photon
(link) and fermion correlators by the method analogous to (2.32) (see [13, 14]).
That is why we are interested in the study of gauge dependent objects in the U(1)
theory on the lattice.

3.2 Methods of gauge fixing

One of the very popular methods of gauge fixing in quantum theory is the Lorentz
(or Landau) gauge fixing condition. For the U(1) gauge theory it looks as follows
(80, 81]:

FU] =) 0,Asu =0 mod 27,  Va, (3.2)

"
where the backward derivative d,, is defined according to (2.6). However for practi-
cal reasons, it is convenient to consider the nonlinear lattice version of the Lorentz

gauge fixing [82, 83]:

F,[U)=) 0,ImU,, =0,  Vuz, (3.3)
w

which can be reached in numerical calculations demanding the maximization of
the following functional G,.[U] with respect to all periodic gauge transformations
(2.8):
1
GmaX[U] = E Z Re Ux,,ua GmaX[Ug] i) max. (34)

T,
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The maximization of this functional can be realized as follows. One performs
successive for every lattice point z, or cyclic, rotations (2.8) of the gauge links U

according to the rule:

U$,;L - gzUz,m Ua:—ﬂ,u - x_g,ugl, V/L =1,...,4,
go= /D™, K=Y {U+Ul,} v (3.5)
w

where the remaining components of the transformation g are put equal to 1 and all
other links are kept fixed. Here w is the overrelaxation parameter. In case of w = 1,
the transformations (3.5) maximize the functional (3.4) step by step, whereas if
the w = 2, the Gax is kept unchanged. But for the best convergence of the (3.5)
prescription, the parameter w should be taken somewhere in the 1 < w < 2 interval
(see [84]), e.g. we choose w = 1.7. These updates are continued until both the
mean and the local maximal absolute values of the Lh.s. in equation (3.3) become

less than some small given numbers £, and &5, respectively:

1
v Y IR[U]| <e, max | F,[U]] < e2.

For instance, in our case €; = 107% and e, = 107°.

Now let us describe another method of gauge fixing on the lattice which is very
popular in the study of confinement phenomena — Laplacian gauge fixing [85]. In
this method in the case of the U(1) gauge group, the gauge field U is fixed in such
a way that each component of the eigenvector ¢™™) corresponding to the smallest

eigenvalue A, of the covariant Laplacian A[U],
AlUJGM™ = Apnd™™, A[U] =YV, [UIV,[U], (3.6)
o
is real and non-negative:
MM >0 V., (3.7)

Here the covariant derivatives V, and V, are defined according to (2.9). Due to

the covariance property of the Laplacian A[U]:
AlU?] = gAlU]g",

to reach the condition (3.7), one searches first for a eigenvector ¢™™" satisfying

to the equation (3.6) and then performs the periodic gauge transformation (2.8)
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with the function g equal to:

1/2
minT min min min
ge = O8I0, v o) = <Z|¢§; )|2> :

In this thesis, we will not study the Laplacian gauge fixing procedure (3.6),
(3.7). We only note that the evaluation of the smallest eigenvalue and corre-
sponding eigenvector of the covariant Laplacian A[U] can be done, for instance,

by various versions of the Lanczos or conjugate gradient methods (see chapter 5).

3.3 The problem of the gauge fixing ambiguites

It is well known that a gauge fixing procedure can lead to the occurence of gauge
fixing ambiguities called as Gribov copies [86]. For QED this happens even in
the continuum, as long as the theory is defined with toroidal boundary conditions
[87]. The problem of Gribov copies is related to topology and can be explained
as follows. If the smooth gauge fixing functional F, = F[U?] on a compact space
takes a zero value, it should pierce the zero line at least twice [87]. Otherwise the
Faddeev-Popov determinant App[U] will be degenerated.

At the same time, contrary to the gauge invariant objects, the average values
of gauge dependent operators depend on the gauge fixing condition F[U] = 0.
Hence one has to find a gauge fixing procedure which allows us to get configura-
tions providing the best agreement of the gauge dependent observables computed
according to (3.1) with the lattice perturbative ones.

The standard iterative way to fix the Lorentz gauge for compact U(1) lattice
gauge theory has been shown to lead to serious Gribov copy effects [81, 83, 88,
89]. As a consequence, the transverse non-zero momentum photon correlator does
not reproduce the perturbatively expected zero-mass behaviour. For the fermion
correlator, a strong dependence on the achieved gauge copies has been also reported
[81]. The standard fermion mass determination becomes badly defined. Careful
numerical [83], [89] — [91] and analytical [92, 93] studies have shown that the main
gauge field excitations, responsible for the occurence of disturbing gauge copies,
are double Dirac sheets (DDS) and zero-momentum modes (ZMM).

DDS are identified as follows. Let us write the following decomposition for the

plaquette angle i.e. the gauge field strength tensor in case of U(1) lattice theory
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6, 7, 17]:
a,uAa:,u - auAm,u - Fx,uu + 27Tnm,,uy' (38)

Here 0,,, 0, are the forward lattice derivatives defined in (2.6). The gauge potential
A, € (=, 7] determines the compact gauge field (2.7). The value F,, ,, € (—7, 7]
due to the definition of the compact plaquette (2.10) can be interpreted as physical
gauge invariant electromagnetic flux. The discrete gauge dependent term 27n, ,,,,
new = 0, £1, £2 represents a Dirac string passing through the given plaquette in
case of n, ,, # 0 (the Dirac plaquette). A set of Dirac plaquettes providing a world
sheet of a Dirac string on the space orthogonal to this plaquette is called Dirac
sheet. Double Dirac sheets consist of two sheets with opposite flux orientation
which cover the whole lattice and are closed by periodic boundary conditions.
Thus, they can easily be identified by counting for every plane (u,v) the total

number of Dirac plaquettes
Nt =" gyl (3.9)

The necessary condition for the appearance of a DDS is that at least for one of

the six planes (p, ) holds the following inequality:

) 1%
NI > 9

. 1
= “N,N, (310)

Let us present an analytic expression for a DDS [92]:

Afc,u = Aw,u(R(a)) - Az,u(R(b))7

where

A R 5 R R It e?ﬂ'ik(fo)/N
cnB) =D €l fo(R), f:(R) = NN, TR
v=1 k, |k|#0

2
k=(kiky), o= (x1,32), R= (R Ry), K(k)=) dsin’(rk,/N,).
pn=1

It can be transformed to the trivial potential A,, = 0 by periodic gauge rotations

(2.8). It satisfies to the linear Lorentz fixing condition (3.2) and

2

D wdAey = 27(0, g — Oy mn)-

Hv=1
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Comparing the latter result with the plaquette decomposition (3.8), we can con-
vince ourselves that such a configuration satisfies the condition (3.10) and repre-
sents a DDS.

Double Dirac sheets can be removed, or at least be reduced — in case of the
confinement phase — by decreasing the Dirac plaquettes number (3.9) [94] apply-
ing periodic gauge transformations (2.8). The latter have to be coupled to the
Lorentz gauge because, as it was demonstrated in [83], the standard Lorentz fixing
procedure usually does not succeed in doing this.

DDS occur quite independently of the lattice size and the chosen 3. And, as it
was detected in [90] — [92], they are mainly responsible for the significant deviation
of the non-zero momentum transverse photon correlator from the expected zero-
mass perturbative one. However, as soon as one eliminates the unwanted DDS
configurations, the correct zero-mass behaviour is restored (see also next chapter).

It is a common believe (see [95, 96]) that the Gribov problem can be solved by
searching for the global mazimum of the gauge functional (3.4) providing the best
gauge copy (or copies, in case of degeneracy). For the DDS, this functional does
not reach its maximum value. It was shown [90] that in order to reach the global
maximum, one has necessarily to remove both the DDS and the ZMM from the
gauge fields.

We have discussed here DDS gauge copies. Other copies, ZMM, deserve special
attention and will be considered in the next chapter with the study of the Coulomb

phase.
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Chapter 4

The problem of zero-momentum

modes

4.1 Zero-momentum modes

Let us investigate now the problem of other gauge copies, zero-momentum modes,
for the case of the physically interesting Coulomb phase.
The constant or zero-momentum modes of the gauge field (2.7) are defined as

follows:

oulU] = %ZAW (4.1)

Let us describe their properties. First of all, they do not contribute at all to the

pure gauge field action (2.11) because it is invariant under the transformation:
Upp — UI,#e_i%[U], YV, .

And hence, these constant modes are gauge copies of a gauge fixing procedure in
the quenched fermion case. However, they can not be removed by usual periodic
gauge transformations (2.8). As an example, for the Lorentz gauge fixing (3.3),
(3.4) with DDS suppression, we measure the probability distributions P(¢) for
the space- and time-like components of ZMM evaluated according to equation
(4.1). The distributions turn out to be more or less flat within some interval
bu € [0, @] with effective cutoff ¢}** ~ /N, (see Figure 4.1) providing

an average value:
T

(10ul) ~ 57 (12)

o
and to be widely independent of 3.

31



4.0 | 6°x12; B=2 :

+ LA s

P(lo,)

= 40 6x12 B 10 3

® oo LOOMONOOAP A

= 40 : e 8x16 B 2 :

oL AT TN

=40 oo 12°x24; B=2 3

) igo] 01 O.Hﬂm““ 04 05 o065 07 *
|,

Figure 4.1: Distributions of the spacelike zero-momentum mode at different

[B-values and lattice sizes at the Lorentz gauge fixing. DDS excluded.

One can explain the behaviour of such constant modes as follows. For ordinary
i.e periodic gauge transformations (2.8), the zero-momentum modes are changed

only by values proportional to 27 /V:

2T

ouU7] :¢M[U]+7ku, k,=0,%£1,... (4.3)

At the same time, for gauge configurations representing small fluctuations around

constant modes (that takes place in the Coulomb phase):

=@t 0Auy, D> A, =0, |04, <1, (4.4)

the Lorentz functional Gyax (3.4) becomes larger with decreasing ¢,, values. And
the iterative Lorentz fixing procedure (3.5) maximizing Gy, tends to decrease
also the ZMM (4.1) but obviously can not succeed in their complete elimination.
Hence, in order to reach the global maximum of the Lorentz functional provided
that all ¢, = 0, one must explicitely remove these constant modes from the gauge

field configurations.
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4.2 Methods to eliminate the zero-momentum

modes

In order to remove the zero-momentum modes, it was proposed [90] to use the
iterative Lorentz gauge fixing procedure (3.3), (3.4) together with the suppression
of the constant modes (4.1):

App — Al = Apy — ¢u[U] mod 2m, Ve, Vp=1,...,4. (4.5)

One notes that such subtraction removes the zero-momentum modes only up to
values proportional to 27/V. And the proper elimination of these modes, when
¢, = 0, can be achieved only if the Lorentz gauge fixing (3.4) is employed. Hence,
the successive Lorentz gauge iteration steps (3.5) are always followed by non-
periodic gauge transformations (2.12) suppressing the ZMM. Of course, we should
check at the end whether the gauge field also contains the DDS. The latter can
be excluded (in Coulomb phase) simply by repeating the same algorithm starting
again with a random gauge transformation applied to the same gauge field config-
uration. We call the combined procedure (3.4), (4.5) as zero-momentum Lorentz
(ZML) gauge. It is worth noting that the ZML gauge fixing alone removes al-
ready most of the DDS configurations. In Figure 4.2 we show how the achieved
values of the gauge functional Gp.x (3.4) are correlated with the occurence of
DDS which are visible as sharp peaks in the maximal number of Dirac plaque-
ttes Npp = max N 1(3” ;) where N 1(3” IZ) defined in (3.9). Whereas for Lorentz gauge
strong ﬂuctuaﬁ:’iyons occur (Figure 4.2a), they disappear after ZML gauge fixing.
The few DDS seen in Figure 4.2b are easily removed by restarting the procedure
with random initial gauges. Random gauges can also be used in order to convince
oneself that the ZML gauge prescription leads to the global maximum of the gauge
functional in more than 99% of all events [90, 91].

We will now discuss an alternative method to get rid off the constant modes
(4.1) of the gauge fields. In [83] it was proposed to use the nonperiodic gauge ro-
tations (2.12) transforming the average Polyakov lines P,[U] into real and positive
numbers:

N, all
P#[U]ZV“ZHUW>O, Viu=1,...,4. (4.6)

z) zu=1
where the x, are points in the subspace orthogonal to p direction. The Polyakov

line fixing exactly removes the constant gauge configurations U,, = ¢, which
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Figure 4.2: Time history of G« and Npp at 8 = 1.1 on the 6 x 12 lattice
in the standard Lorentz gauge (a) and in the ZML gauge (b).
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correspond to the free gauge case § — oo. But contrary to the ZMM (4.1), the
Polyakov lines (4.6) are invariant under periodic gauge transformations (2.8). Let

us defines the Polyakov phases gbfLPOl)[U ] according to the equation:

. (Pol) _ T (Pol) o
PN, U) = AU}~ < ofU) < - (47)

Then in order to reach the P, > 0 condition, one must take the following constant

gauge transformation in (2.12):

¢, = exp (ingLPOl) [U]) .

And such transformation leads immediately to the gauge configuration with Polya-
kov phase ¢ Y = 0.

At the end, let us present the integral for average gauge dependent observables
in case of gauge fixing with an additional ZMM subtraction. Since the fermion
matrix is not invariant under constant gauge transformations (2.12) such aver-
ages must differ from the standard ones defined by equation (3.1). Now they are
evaluated as follows:

(O)g—0 = % / [AU]App[U)0 (FIUC]) O[U] e %elldet™ MIUJ,  (4.8)
p[U°]=0

where the U¢ configuration, obtained from U by the nonperiodic transformation

(2.12), satisfies the zero-momentum suppression condition ¢,[U¢] = 0, Vu =

1,...,4, and ¢,[U] is defined according to (4.1) or (4.7). Note that in case of

gauge invariant observables, one can omit the Lorentz fixing condition F[U] = 0

and use only the Polyakov gauge fixing (4.6) in order to get rid off the contribution

of zero-momentum modes.

4.3 Gauge dependent observables

4.3.1 Photon correlator

In this section we study the effects of the zero-momentum modes in case of the
gauge dependent observables in the quenched approximation within the Coulomb
phase.

The first gauge variant observable we are going to discuss is the transverse

photon correlator at various (including non-zero) momenta [83]:

1

Na
th(ﬁT) = E Z <(I)(]5:1‘4—|-7')CI)T(]77$4)>7 TZO)"'7N4 (49)

zr4=1
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where

O(pxy) = Zexp(iﬁf+ ip,/2)Im U, ,, w=1or 3,

T

p=(0,p,0), x= (& z4), p=2wk/Nsy, k=0,1,...

In the free perturbative case, this photon correlator has the following behaviour
(see also [83, 91]):

cosh [Epn(P) (T — Nu/2)]

. | 540
D () o { SR BT BN P70y
4 — T _ D —
6N, +T<N4 1)’ p=0

where

3
E
sinh? %(ﬁ) = Z sin? %
=1

Let us convince ourselves that the removal of the above mentioned gauge copies
leads to the correct behaviour of the transverse photon correlator. First of all
we consider the normalized photon correlator I'p, (), 7)/T'pn(p,0) for lowest non-
vanishing momentum p = 27 /N; and for different Lorentz gauge prescriptions (see
Figure 4.3a). For the standard one (open boxes) we see a clear deviation from
the expected perturbative zero-mass result (4.10). On the other hand, Lorentz, as
well as ZML, gauges without DDS (filled circles) provide an agreement with the
perturbative result [83, 90, 91]. The given observations do not change, when g
and/or the lattice size are considerably increased [91]. As it is obvious from the
decomposition (4.4), in case of non-vanishing momenta p, the constant modes do
not contribute to the photon correlator (4.9). Therefore application of the ZML
gauge in this situation is not necessary.

But in case of the zero momentum p = 0 (see Figure 4.3b), there is no an agree-
ment of this correlator in the Lorentz gauge with the perturbative result (4.10).
Even the elimination of the DDS does not change the wrong behaviour. However
in the ZML gauge (with additional DDS suppression) the photon correlator is in
a good agreement with the perturbative one [90, 91].

A detailed inspection of the influence the zero-momentum modes on the photon
correlator (4.11) has been performed in [90, 91, 93]. Next two sections will be

devoted to analogous investigation in case of the fermion observables.
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Figure 4.3: Transverse photon correlator at 8 = 1.1 on the 63 x 12 lattice for

the nonzero momentum k£ =1 (a) and for zero momentum k = 0 (b) cases.
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4.3.2 Fermion correlator

The second gauge dependent observable in our investigation is the fermion zero-

momentum correlator. For a given gauge field U we have:
1 — — —
M) = S ML w=@w) y=@mtn). (@)
.,y

For simplicity, we restrict ourselves to the scalar and vector parts of the fermion

correlator, respectively:
1 1
Fs(7'> = ZRetr F(T), FV(T) = ZRetrfmr(T), (412)

where the trace is taken with respect to the spinor indices. For antiperiodic in x4
(or time-antiperiodic) b.c., the vector (scalar) part becomes an even (odd) function
in 7 around 7 = N, /2, for periodic b.c. vice versa.

In quenched QED, the fermion correlator (4.11) has to be averaged with re-
spect to the gauge field U distributed with the weight exp(—Sg[U]). We will also
compare the quantum averages within the zero-momentum mode approximation
where only background gauge fields being constant in space-time are taken into
account (it corresponds to the case [ — o0). Therefore, we construct analytically

the correlator for a uniform gauge configuration given by:

Az#]‘:(ﬁ‘u" —7T<¢#§7T’ M:ly'.-74.
One obtains the following finite size results for the scalar and vector parts,
respectively:
80 1+&E2-26(1+W)
Is(ri¢) = WY
S(Ta Qb) 2(1_|_W) 1-&2 *
y [57’ _ 82N47‘F] COS(¢47—) — C[gN4+T - 8N477] COS[¢4(N4 — 7—)] (4 13)
1+ E2N1 — 9cENa COS(¢4N4) 7 |
1— 57’0
T . = — X
vmo) = sawy
o e N cos(0ur) — €N 4 M T eoslou (N = 1]y
1+ E2Ne — 2¢EN1 cos(p4Ny) -
where ¢ = +1 and ¢ = —1 holds for periodic and time-antiperiodic boundary

conditions, respectively, and

W2+ K2 VIV 4+ K2 /(W +2)2 4+ K2

=1
£ +mywm 2(1+W) ’

3
W:mg—l—Z(l—cosqﬁl),

=1
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Figure 4.4: The fermionic vector correlator I'y; and the effective mass meg at
B =2and k =0.122 on a 63 x 12 lattice for LG and ZML gauges.

where the bare fermion mass my is related to the hopping-parameter s according
to formula (2.17). If we put all ¢, = 0, the equations (4.13), (4.14) reproduce the
results for the standard free fermion correlator [97]. The formulas analogous to
equations (4.13), (4.14) were obtained also in the case of staggered fermions [14].

The renormalized fermion masses are extracted in the following way. We con-
sider an effective mass meg(7) determined from the correspondence of the vector
part (4.12) of the ordinary correlator with the vector part of the free fermion cor-
relator (4.14) at ¢, = 0 in case of time-antiperiodic b.c. (or scalar parts (4.12)

and (4.13) for periodic b.c.) according to the recipe:

(T(t + 1)) _ cosh [E(7)(T + 1 — Ny/2)]
(L'(7)) cosh [E(7)(1 — N4/2)]

E(7) = In(meg(r) +1).  (4.15)

Then one searches for a plateau of the function meg(7) in order to identify the
value of fermion mass.

Let us consider quenched QED within the Coulomb phase at 3 values between
2 and 10 for k parameters not too close to £.(3). In order to extract the pure ZMM
effect, we first apply the standard Lorentz gauge procedure (3.3), (3.4) modified by

initial random gauges in order to suppress DDS. Let us abbreviate the notation for
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Figure 4.5: Free fermionic vector correlator (dashed line) and averaged con-
stant mode correlator (full line) for two [(-values and lattice sizes 6% x 12,
8% x 16.

this modified Lorentz gauge procedure by LG. We compare the result with that for
the ZML gauge described above. For definiteness, we choose the time-antiperiodic
boundary conditions for Fermi-fields and study the vector part I'y (4.12) of the

fermion correlator.

For both these gauges we have computed the averaged fermion correlator (4.11)
as defined in equations (4.12) and normalized to unity at 7 = 1. In the upper part
of Figure 4.4 we have plotted the vector part (I'y(7)) for 8 = 2, kK = 0.122 and
lattice size 63 x 12. The situation seen is typical for a wide range of parameter
values within the Coulomb phase. Obviously, there is a strong dependence of the
fermion correlator on the gauge copies differing by the different amount of ZMM.
If ZMM are present, the correlator decays much stronger, than when they become

suppressed.

In the lower part of Figure 4.4 the corresponding numerical results for the
effective masses meg(7) (4.15) are shown. In the standard LG case no real plateau

is visible, whereas the ZML case provides a very stable one. Thus, the ZML gauge

40



08 7././'/./._.\'\.\.\. 3 7./././.’._.\.\.\.\. 3
04 | 6x12; p=2 L 6%12; p=2 ]

0.0 I A ]

m_(T)

0.8 oo "o, I e ana S W :

S04 6x12 B=10 + - 6x12; B=10 ]
e
0.0 [ - ]
0.8 | E ]
E ./././::/.,H—O*.\.\.\.\. 3
E% 04 E 8 X16, B=2 ! F 8 X16, B:Z 3
0.0 | I b ]
0 4 12 16 0O 4 12 16
T T

Figure 4.6: Effective masses corresponding to the fermion correlator results

shown in Figure 4.5.

yields a reliable mass estimate, whereas the LG fails here. Naively, when only
considering the LG method, one would be tempted to relate a 'bad plateau’ to
finite-size effects and to believe that the given LG effective mass result is already
near to the real mass. Such a point of view obviously fails. Taking now the ZML
mass estimate as the reliable one, the LG estimate fails by a factor ~ 3 in our
case.

In order to estimate roughly the effect of the ZMM on the fermion correlator for
various (3 and lattice size, we consider the zero-momentum mode approximation as
follows. According to equations (4.13), (4.14) we compute the fermion correlator

only within the constant background modes extracted from the quantum gauge
fields in the LG case with the distribution P(¢):

s s

Mo = [ GrpPOr@)/ [ 5P (4.16)

—Tr —T

The results of this calculation for the vector part of the fermion correlator in

the LG case are presented in Figure 4.5 together with the corresponding free, i.e.
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Figure 4.7: Fermion mass as a function of inverse x obtained within the ZML
gauge for 3 = 2.0 on a 6> x 12 lattice. The solid line represents a linear fit
providing k.(5) = 0.1307(1) .

¢, = 0, correlator (dashed lines). One can see that the effect of the ZMM does
not weaken with increasing 3 and lattice size, respectively. Having the estimate
(4.2) for (|¢,|) one finds from (4.13), (4.14) and (4.16) that the ZMM effect does

not disappear even in the limit N, — oo.

The computations of the fermion correlator (4.11) within the full gauge field

background confirm these observations.

We can take the pure zero-momentum mode approximation described above in
order to check, how the corresponding effective fermion mass would behave. This
result is shown in Figure 4.6. We clearly see, that for the LG case providing the
ZMM background field configurations we do not find a plateau (full lines). The
effective mass values strongly differ from the real ones, i.e. my of the free correlator
(dashed lines).

And at the end, in Figure 4.7 we present the renormalized fermion mass my
extracted from the vector fermion correlator by use of (4.15) within the ZML
gauge for f = 2.0 and various k values. We see a nice linear behaviour m; o

mg where m, defined in (2.34), from which by extrapolating (solid line) to zero
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mass m; = 0 (dashed line) one estimates the critical hopping-parameter value
ke = 0.1307(1). This value coincides with k. obtained by studying of the gauge
invariant observables: the pion norm variance [33] and the PCAC-like fermion

mass [98].

4.4 Gauge invariant fermion observables

Now we consider the influence of the zero-momentum modes on gauge invariant
fermion observable. For this investigation we choose the scalar condensate (2.27)
and the pion norm (2.28) values. We are not interested at the moment in the pure
gauge observables like mean gauge energy (2.26) since their operators are invariant
under the constant gauge transformations (2.12).

Remember the definition of the scalar condensate and pion norm average values:

(B0 = (5 M) = (5 30, (4.17)
(I) = <41/ TrysM ™M™ = <% Z %% (4.18)

where the averaging (.. .) is performed according to the equation (2.24), and p;, A,
are the eigenvalues of M and 75 M matrices, respectively. We remind that these
values (4.17) and (4.18) are independent of the choice of the boundary conditions
for fermion fields. One expects () and (II) values (especially the latter one) to
be good indicators of the chiral limit at kK — k.(3) as some of the p; and \; are
expected to become very small [33].

However, the numerical study of fermionic observables like (II) near the chiral
limit does not reveal the critical properties as expected from lowest order and
finite lattice size perturbation theory. This can be seen from the k-dependence of
the pion norm numerically computed at low (-values within the Coulomb phase
[70] (see Figure 4.8). Its behaviour is very smooth and no sign of any critical
behaviour is observed. The volume dependence of (IT) is rather weak, and there is
no significant difference between the quenched and the dynamical case.

It is interesting to compare these results for (IT) with the standard perturbative

free fermion case given by the expression:

Jo = VZ{ZL/@ Zsm (1—2&2005 2]7:[1)”) }_ : (4.19)

I
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Figure 4.8: Pion norm as function of x for full (and quenched) compact QED

with Wilson action at § = 1.1 for various lattice sizes (data taken from [70]).

where the p,, p = 1,...,4 are integers except for time-antiperiodic b.c. causing
p4 to take half-integer values. In Figure 4.9 one can see the x-dependence of (II)
calculated on a symmetric lattice (N, = Ny = 6) for periodic and time-antiperiodic
b.c. For periodic b.c. (II)g obviously becomes singular at x = 1/8, whereas for
time-antiperiodic b.c. the k-dependence of (IT); becomes smooth for symmetric
lattices. However, note that in the latter b.c. case (IT)y develops a peak for strongly
elongated lattices (N — oo with Ny=fixed), too.

This behaviour can be explained by a rough analytical estimation of the free
pion norm value from equation (4.19) near the critical point x. = 1/8. For periodic
b.c. owing to the contribution of the p = 0 term one has:

1

(IT)o o m,

K — k.= 1/8. (4.20)

But in case of time-antiperiodic boundary conditions, (IT)q oc N2/V, and there is
no critical behaviour for the symmetric lattice N, = N,. However if N, > N, the
critical effect is restored that is confirmed by our numerical observations.

We are going to demonstrate that this drastic difference between (II) in the

finite B (Figure 4.8) and free (Figure 4.9) cases is due to influence of constant or
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Figure 4.9: Pion norm in the free fermion case without zero-momentum
modes and in the zero-momentum mode approximation, lattice size 64, periodic

(p.b.c.), as well as time-antiperiodic (t-a.b.c.) boundary conditions.

zero-momentum modes of the gauge fields ¢,[U] as defined in equation (4.1).
Within the zero-momentum mode approximation this can be easily demon-
strated by averaging (II) over constant modes with uniform distribution. It yields

the following expression independent of the b.c.:

() = /ﬂ {4,@2 Y sin g, + (1 ~ 2%} cos %)2}_ , (4.21)

-
which is completely smooth in x and agrees with the former time-antiperiodic, free

d*¢
(2m)

result for symmetric lattices (see Figure 4.9).

Now let us consider the gauge interacting case, i.e. the finite (-values. We
compute the pion norm in the ZML gauge according to the integral (4.8) when the
zero-momentum modes in the observable become eliminated. Since the fermion
operator (2.18) is not invariant under constant gauge transformations (2.12), the
new average (II) differs from the ordinary one averaged according to (2.24). In the
following we choose periodic boundary conditions, because owing to (4.20) in the

free case we expect that they lead to a more pronounced chiral behaviour than the
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time-antiperiodic ones.

In Figure 4.10a we show the dependence of the pion norm (II) on k. One can see
that for dynamical fermions (full circles) as well as for quenched fermions (boxes)
the ZML observable (II) has a sharp singularity near the point k. = 0.1307(1)
for § = 2.0 (compare with Figure 4.7). In contrast, the standard definition of
the pion norm demonstrates a completely smooth behaviour (open circles). We
checked these results for (IT) also on larger lattices. For k approaching k. the same
critical behaviour is observed, whereas very close to and slightly above . the influ-
ence of an increasing number of very small fermionic eigenmodes leads to stronger
fluctuations (’exceptional configurations’). The dynamical and quenched results
resemble each other. This can be interpreted as the zero-momentum modes which
are removed from the observable (II) evaluated by (4.8), continue to dominate the
fermion determinant.

What about the scalar condensate (1)) (4.17)? It also demonstrates the crit-
ical behaviour in the ZML gauge for both quenched and dynamical cases (see
Figure 4.10b). As expected from (4.17), (4.18), its peak near the chiral limit line
is not so pronounced as for the pion norm.

We have also studied the gauge invariant fermion observables in the Polyakov
gauge (4.6). Our results have shown that this nonperiodic gauge fixing — without
the necessity to employ the Lorentz gauge — leads to the singular chiral behaviour
for both pion norm and scalar condensate values similar to the ZML gauge case.

At the end let us discuss the width of the critical behaviour in case of the
periodic b.c. for fermions. As it follows from the asymptotic behaviour (4.20) for
the free pion norm, the gap of the singularity shrinks to zero in the thermodynamic
limit V' — oo. Our numerical results confirm this statement. However, the singular
behaviour of gauge invariant fermion observables without ZMM can serve in the

finite lattice case for an evaluation of the critical hopping-parameter k().

4.5 Discussion

Within the physically interesting Coulomb phase we have studied the effect of dif-
ferent gauge copies of the gauge field on gauge dependent correlators, in particular
on the fermion one, and also on the gauge invariant fermion observables.

We have convinced ourselves that the standard Lorentz gauge fixing prescrip-

tion to maximize the functional (3.4) provides gauge copies with DDS and ZMM.
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These modes disturb the photon and the fermion correlator behaviour in compar-
ison with standard perturbation theory and consequently spoil the naive effective
mass estimate. A Lorentz gauge employing non-periodic gauge transformations
(2.12) in order to suppress the ZMM (4.1) (the ZML gauge) — additionally to
DDS — allows us to reach the global maximum of the Lorentz gauge functional
(3.4). Furthermore, it provides a reliable fermion mass determination, at least, if
Kk is chosen not too close to the chiral critical line k.(3). A computation of the
fermion correlator with constant background gauge fields taken from the ZMM of
the quantum fields demonstrates the disturbing effect of these modes very clearly.
Moreover, it shows the effect to be independent of the bare coupling and not to
disappear for large volumes.

The ZMM configurations smooth out also the critical chiral behaviour expected
from lowest order perturbation theory for gauge invariant fermion observables like
the pion norm and the scalar condensate. This was proven in the free fermion
case and confirmed in the finite § theory. But the elimination of ZMM by the
use of ZML gauge fixing (3.4), (4.5) or the Polyakov line one (4.6) restores the
critical behaviour in case of the periodic b.c for fermions. And the position of the
chiral limit line x.(/3) appears to be coincident with that obtained from the gauge
dependent fermion mass estimates. Although there is no singular behaviour in case
of the time-antiperiodic b.c. for symmetric lattices, it becomes again visible for the
pion norm if Ns > N,. And the width of the peak shrinks in the thermodynamic
limit V' — oo.

So far we have studied the gauge dependent observables in the framework of
the quenched approximation of U(1) lattice gauge theory. The gauge action (2.11)
is invariant under constant gauge transformations (2.12). Thus, we are allowed to
use the ZML gauge for the evaluation of gauge dependent objects. Contrary to
the gauge action, the fermion action (2.15) does depend on the ZMM. And these
constant modes lead as shown (see Figure 4.10) to the smoothing of the fermion
determinant in the integral (2.24) for lattice observables. In this case another way
of dealing with the Gribov problem has to be searched for.

Rigorously speaking, the consistent study of the compact U(1) theory without
zero-momentum modes requires also their elimination from the fermion determi-
nant. However on the one hand, it strongly complicates the numerical calculations.
And on the other hand, the ZMM suppression (4.5) owing to the gauge covari-

ance (4.3) must be accompanied by the maximization of the Lorentz functional
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(3.4), and gauge invariant observables will depend on the gauge fixing. Here, the
Polyakov gauge (4.6) could be a good candidate of the gauge invariant constant
modes suppression.

However, there is an important objection to use the elimination of the zero-
momentum modes. As one sees from the Figure 4.10, the critical behaviour of
gauge invariant fermion observables without ZMM near the chiral limit line seems
to indicate a first order phase transition. But it is spurious because of its vanishing
in the thermodynamic limit V' — oo. At the same time, it could disturb the correct
study of lattice observables in the continuum limit and the precise determination
of critical points (5*, k*), if they exist. Hence, one should try to find alternatives to
the ZMM suppression. One of such ways is to employ the C*-boundary conditions
[99] to both gauge and fermion fields, which implicitly suppress the ZMM and also
Gribov copies like double Dirac sheets.

Another way nevertheless, could be considering standard Lorentz gauge with
additional DDS suppression and taking the constant background modes properly
into account in describing the perturbative finite volume fermion correlator (4.13),
(4.14) and then identifying correspondingly the renormalized fermion mass [14].
And moreover, it is enough to use only LG in case of objects independent of the
zero-momentum modes as the photon correlator (4.9) at 7 # 0 [83, 90, 91].

The basic material of the chapter 4 was published in papers [34, 35].
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Chapter 5

Algorithms for the lattice

5.1 Monte Carlo method

In practical numerical studies of average observables on the lattice one has to eval-
uate the integral (2.24). However computations of this integral by usual numerical
methods are impossible because they require an exponentially large number of
computer operations. For instance even in case of the simplest discrete group

24V which can never

Zy = {+1,—1} for 4d gauge theory, such number is equal to
be reached by present computing devices.

It means that one has to use qualitatively different, statistical way for the
evaluation of the lattice integral (2.24) — Monte Carlo method (see e.g. [9, 10]).
The idea of this technique is that one generates a series of gauge configurations
UM, U®P | ete. distributed with a weight m[U]. The integral (2.24) for average
observable O = OJU] is then evaluated as follows:

N

2 (’)[U(j)] exp(—SG[U(j)Ddeth./\/l[U(j)]/m[U(j)]

7j=1

(O) = lim

N—o0

< (5.1)
Z exp(—Sg[UD])det™ M[UOD] /m[U0)]

It is obvious from this equation that in order to suppress strong fluctuations
of the integral measure in (2.24), one should generate the gauge configurations

distributed as:
m([U] o exp(—S¢[U]) |det™ M[U]]| . (5.2)

Then the expression (5.1) with the assumption det™ M > 0 is just the arithmetic
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mean value for sampled observables O[U)]:

(0) = lim — Z (5.3)

But usually the direct generation of the weight (5.2) is impossible. One may
only perform a Markov process U — U’ to get a new configuration U’ from the
previous one U, described by some transition probability p[U’, U]. However if the

weight m[U] satisfies the equilibrium relation:
m([U] = ﬁdU/]p[U, U'lm[U’], (5.4)

then the transition process p[U’, U] will converge to the distribution proportional
to the function m[U].

A sufficient condition for the equilibrium equation (5.4) is the detailed balance
relation:

plU", Ulm[U] = p[U, U'|m[U"]. (5.5)
Indeed, integrating out the U’ field in this relation and taking into account the
normalization condition
/[dU'}p[U’, Ul=1

one comes to the equation (5.4). Below we describe various methods generating

the weight (5.2) for different fermion flavour Ny cases.

5.2 Quenched approximation: Metropolis and

heatbath methods

Let us start with the quenched approximation case (2.29) when the weight has the

following pure gauge distribution:
m[U] o exp(—5¢[U]), (5.6)

Note that in contrast to the fermion determinant, the compact action S¢[U] (2.11)
can be computed almost immediately.

One of the well-known transition processes U — U’ used in the lattice field
theory is the Metropolis one [100]. In this process the new configuration U’ is

obtained by a uniform random distribution and accepted with probability
Wace[U', U] = min(1, exp(—Sg[U'] + Sc[U])). (5.7)
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It is obvious that the transition probability of this process p[U’, U] & waec[U’, U]
satisfies the detailed balance relation (5.5) with (5.6). However in case of large
[ values, the acceptance rate of new configurations is very low. That is why one
uses another transition dynamics algorithm called as heatbath method [101].

In this method, one performs successive updates known as sweeps of the gauge
links U,, for each site  and direction p keeping remaining links fixed. The
updating algorithm follows from the expression for the U(1) gauge action (2.11)

which can be rewritten as follows:
Sc[U] = —Re (Ux#Féi)) + (terms, independent of U, ,,), (5.8)
with the so-called complex gauge force

G) _ T T T
F) = 83 (VasiaUl o, Uk + Ul Ul Uso) (5.9)
viu
Then the heatbath sweep U, — U, , for certain z and p link point looks as

1 .
Upy = (FSFSN) ™ expline.,), (5.10)

NV

where the 7, , is real random number in the interval (—, 7] distributed as
Py X €Xp (|F£C;)| cos nx,u) ) (5.11)

Using the equations (5.8) — (5.11), one can convince himself that the heatbath
transition probability function p[U’, U] is proportional to the pure gauge weight
(5.6) for the new configuration U’: p[U’, U] o« m[U’]. And therefore, it fulfills the
detailed balance relation (5.5) with the pure gauge measure (5.6).

Since the heatbath method (5.10), (5.11) performs the sequential updates of
gauge links without total rejection of the new gauge configuration, it usually con-
verges faster than the Metropolis (5.7) one [9].

But now we must generate the random numbers ¢ € (—m, 7] distributed as:
p() = N exp(|F| cos ). (5.12)

There is no a fast direct way to obtain such a distribution. Hence one uses the
following method known as filtering [10]. We generate the random numbers ¢ with
another distribution density pg () (called as filter) that can be done ezactly, and
this ¢ is accepted or rejected with the probability:

o) = P2/ pinle)

mgx(p/pﬁlt) . (5.13)
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For an appropriate choice of the filter function pg, the filtering method controlled
by probability (5.13) converges rapidly to the function (5.12) (see [10]). Indeed, the
transition dynamics for such process of generating the p(¢) function is described

by the equation [10]:

p(¢' ) = ap(¢’) + (1 —a)d(¢', »),

where the ¢ is the delta-function and the a is the average acceptance rate:

™

— /dgpwacc(¢)pﬁ1t(90)~

—T

From these equations it follows that the filtering method converges to p(p) as fast
as the acceptance probability (5.13) is close to 1 [10].
At the end let us present the filtering function pg;; which is used in our simu-

lations [102]. It is equal to:

paie(y) = Ny exp (—|F| - |]/). (5.14)

This function due to the concavity of cosp leads to the target distribution (5.12)
much faster than the uniform filter pg, = const. However, if |F| > 1, one has to
improve the filter (5.14). Moreover, in order to accelerate the covergence of the
heatbath method (5.10), (5.11), it is worth in these cases to employ the overrelax-
ation procedure [84] U — U":

Ua//:u ( xu/|FG)) xu? (515)

which leaves the gauge action (5.8) unchanged. Such overrelaxation is used in the

case of the dynamical fermion two-step multiboson algorithm (see section 5.5).

5.3 Evaluation of fermion observables

5.3.1 Noisy estimator and point-like source methods

As we know from the chapter 2, fermion observables can be expressed via matrix
elements of the inverse fermion operator M~!. To calculate all these elements, one

needs to perform at least O(V3) operations which occupies much computer time.
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However, one can simplify the treatment of the inverse fermion matrix by em-
ploying a statistical method — Gaussian noisy estimator [60, 103]. In this method,

we generate the random complex spinor vector n distributed with probability
Pn X €Xp (—nTn) . (5.16)
Then we compute the vector &:
&= My, (5.17)

assuming that the matrix inversion can be done exactly. And denoting for conve-
nience by letters a, b, etc. the common indices (x,r) where r (and also s) stand

for spinor labels, one estimates the following expression:

T NI
(Eay - Eanm, o0} Yy = lim Zéal- o) (5.18)

N—oo

Here the n™, n® etc. are statistically independent Gaussian vectors with distri-
bution (5.16) and the average value (O), of an operator O = O[n', 7] is computed

according to the equation:

[ [dntdn] Olnt, n)exp (—n'n)
[ldntdnlexp (—ntn)

To evaluate the l.h.s. of equation (5.18), we use the fictitious sources method as

(0), = (5.19)

in the case of integral (2.24) for fermionic observables. And finally we obtain:

(& - .{anngl .. .ngn>n = Z M;llbg(l) .. .M;}ba(n), (5.20)

g

where ¢ is a permutation of 1, ..., n numbers and summation is done over all such
permutations. Equations (5.16) — (5.20) constitute the noisy estimator method
and allow us to compute fermion values in the integral (2.24).

The simulation of the vectors n with Gaussian distribution (5.16) is realized as
follows (see also [10]). Consider the simplest one-dimensional case where one has
to produce the complex numbers z distributed as exp(—C|z|?). Their generation

is based on the relation for an arbitrary function O[z1, z|:
[ 14214z O s exp(~ClP?) o« [dg [dppexp(=Cit)Ofpe 7, pe),
0
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From this expression follows that the complex values z = \/Tllné’ e'? are indeed
distributed with the probability exp(—C|z|?), if the real values £ and ¢ are random
numbers distributed uniformly on the intervals [0, 1] and [—, 7], respectively. Now
the generalization to the multidimensional case of 1 vectors is trivial.

An alternative to the noisy estimator method for the calculation of fermion
values is the so-called point-like source method [104]. Here instead of random
Gaussian vectors, in the case of U(1) lattice theory one has to compute the &)

vectors (5.17) for the following 4 n'®) sources:
N = 61000rs a=(z,r), s=1,...,4, (5.21)

where x( is an arbitrary lattice point. Then the matrix elements of the M~}

operator are expressed as follows:

Mg =¢9,  a=(z,r), b= (z05), (5.22)

a )

and in the evaluation of average fermion observables one uses the translational
invariance of the lattice theory (2.21).

The point-like source method (5.21), (5.22) appears to be more precise than
the noisy estimator one (5.16) — (5.20) [104]. The former method is widely used by
us for the investigation of the fermion observables such as the fermion correlator
(4.11), the scalar condensate (2.27) and the pion norm (2.28).

5.3.2 Conjugate gradient and Lanczos methods

For both the noisy estimator and the point-like source methods, we have to com-
pute the & vector (5.17). It means that one has to solve for a given vector y the

following linear equations system:
Ax =1y, (5.23)

where A > 0 is some Hermitean positively defined matrix. The expression (5.17)
can be transformed to this system by multiplying both sides with the positive
operator MTM. Note that such a multiplication requires the knowledge of only
the nearest neighbouring lattice sites to each vector point. In other words, we have
a large sparse system.

A very popular algorithm for the fast solution of such a system (5.23) is the
conjugate gradient (CG) method (see e.g. [10, 105]). In this method, one computes
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the series of vectors x,, approximate to x according to the following scheme:

Xpr1 = Xn + Op8n, r, =Y — AXn,
Iy =Ty — anAgna Qp = HrnH2 (524)
(8n, Agn)
_ _ lengall?
gnt+1 = T'nt1 + ﬁngm ﬁn -

[eal*

where the vectors g, and r, are called respectively gradient and residual, n =
0,1,.... Here, the initial residual vector ry is obtained from an initial approxima-

tion X (to x) and the initial gradient vector gy = ro. The stopping criterion for
the algorithm (5.24) is:

[Tl <6, (5.25)

for some small value 6. The CG algorithm is constructed in such a way that
the residual vectors r,, are mutually orthogonal. It means that this method must
converge for finite number of iterations restricted by the dimension of the matrix

A. However, for the residual vectors the following estimate is valid [105]:

IR/  Anax(A)
[ n”_1+ Qn” roll, p_\/z+17 (—m,

(5.26)

where the A\, and Ay, are the maximal and minimal eigenvalues of the positive
matrix A, respectively, and we note that the ( is called the condition number. In
case of ( ~ 1, the CG method (5.24) converges almost immediately. But if the
condition number ¢ > 1, the rough number of CG iterations N(©% required to
reach the terminating condition (5.25) according to the estimate (5.26) looks as

follows:

NS ~ \/72 In(2/6). (5.27)

Let us rewrite the updating scheme (5.24) in a more elegant form. Introducing

the unit vectors e, = r,/||r,||, we have:

Aen:(l &)en_\/ﬁn—l \/E

- _I._ en_ 1 —
Qp Q1 Qp—1 7%

en1, n=01,..., (528

e_; = 0, and other vectors e, are mutually orthogonal: (em,e,) =0, m#
n. It means that the A matrix in the orthonormal basis e is tridiagonal. Such

tridiagonal decomposition of Hermitean operator A is called Lanczos method (see

e.g. [106)).
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In the usual Hermitean case the Lanczos decomposition looks as follows [106]:
Ae, = Breni1 + ane, + Bo_1€n-1, n=0,1,..., (5.29)
where a and (3 coefficients are determined by the equations:
a, = (e,, Ae,), Bn = ||Ae, — ane, — Bun1en_ 1], n=0,1,...,

for some initial e, vector when e_; = 0. But contrary to the CG case, this
decomposition does not produce correctly all vectors e owing to finite computer
precision. One has either to use an additional reorthogonalization of the e vectors,
or employ some restarting procedure when the new starting Lanczos vector is a
linear combination of previous ones [106] — [109].

The Lanczos decomposition (5.29) can be used for the evaluation of the small-
est and largest eigenvalues of Hermitean matrices. Let us present the so-called

explicitely restarted Lanczos method [106, 108]:

1. Take for n = 1 an arbitrary vector e(()n):

les" | = 1. (5.30)
2. Construct a set of first M Lanczos vectors for n = 1,2, ... until convergence:
v = (eén), el .. ,eg\}l)_l) (5.31)

3. Construct the tridiagonal M x M matrix T:

T = v Av™., (5.32)

4. Compute the extremal (minimal or maximal) eigenvalue A™ and correspond-

ing eigenvector s of the matrix T™:

g — \(m)gn) (5.33)

5. Construct an approximate eigenvector x™ which is a new starting vector

e(()"H) for the Lanczos decomposition:

<M — e(gn+1> = v(Mg) (5.34)

6. Go to step 2 with:
n:=n+1. (5.35)
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In the case of M = 2, this method coincides with the Ritz algorithm [105] for the
evaluation of smallest and largest eigenvalues. The Ritz method can be also used
for fast evaluation of extremal eigenvalues A and eigenvectors s(™ of the tridiag-
onal (not very large) M x M matrix T(. The stopping criterion for prescription
(5.30) — (5.35) can be taken to be either:

|/\(n+1) — )\(n)| <4,
or (which is more accurate):
HAX(") — )\(”)x(”)H < 4.

Let us mention other restarting methods which are widely used for the investigation
of a small set of eigenvalues: the complex gradient method for Hermitean [107, 109]
and the implicitly restarted Arnoldi method (IRAM) for arbitrary large sparse

matrices [108].

5.3.3 Even-odd decomposition

We return to the problem of the fermion matrix inversion. One notes that for
the matrix M only nearest-neighbour coordinates to x, i.e. x & i are necessary
to perform the matrix-vector multiplication. Hence we can define for all x the

signature function ¢(z) = £1 with the following property:
clx +p) = —c(x), Y, .
The unique up to a sign solution of such an equation is:
olx) = (=1)%n®, (5.36)

On a finite lattice, with the identification of the points x and x = N, Vu, one
requires that all IV, must be even numbers. This explains why we take even lattice
sizes Ny and N,. After the definition of the function c¢(z) we will call x an even
point if ¢(x) = 1 and odd otherwise [110].

Using such a definition of even-odd sites, one can represent the Wilson matrix
M (2.18) in the following way:

M= [ e Mo ] : (5.37)



where 1. is unity in the even or odd subspace, and M., and M,. are even and
odd parts of (2.18) matrix, respectively. Note that from this decomposition and
vs-Hermiticity (2.20) of the Wilson fermion matrix it follows that:

Meo = ’75M(T)e75‘ (538)
And the linear equation for the & vector (5.17) can be written as follows:

{ge_l'Meofo = Te ' (539)
Moe£e+£o = To

where we decompose vectors ¢ and n onto even and odd parts. This means that

one can solve the equivalent system:

T — T _
{ QQG = Qfn— M) (5.40)
ge = Ne — Meofo
where we have denoted
Q = ]—e - MoeMeo- (541)

Let us note that for the even-odd represented matrix M (5.37)
det M = det Q. (5.42)

It turns out to be better to work with the QfQ matrix rather than with MM
[111]. Indeed, suppose that \ is an eigenvalue of M i.e. for some nonzero complex

spinor vector W:
MU = \U.

Then in terms of even-odd decomposition:

U, + M ¥, = AU,
\Ilo—i_Moe\De = )\\Do

or using the matrix Q:

QU, = 2\(1—)/2)7,
T = A=1)""M0,

Hence the matrix Q has the corresponding eigenvalue 2A(1 — A/2). Thus, if A
is the smallest eigenvalue (by magnitude) then the respective eigenvalue for Q is

approximately twice larger. In case of k ~ 1/8, the largest eigenvalue A ~ 1.
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Hence, the condition number ¢ for the Q'Q matrix is ~ 2 times smaller than that
for the MTM operator. And according to the estimate (5.27), the CG algorithm
for QTQ converges ~ /2 faster than for the MM matrix.

Thus, to obtain the inverse vector £ (5.17), we apply the CG method to get
the odd part &, of vector £ in the upper equation of the system (5.40). Then it is
not difficult to find the even part &.

5.4 Dynamical fermions: the hybrid Monte Carlo
method

5.4.1 Formulation of the method

In the dynamical fermion case with Ny = 2 fermion flavours, one has to generate

gauge configurations U distributed with weight
m(U] o exp(—Sg[U])det> M[U]. (5.43)

The most popular algorithm for simulations of this weight is the hybrid Monte
Carlo (HMC) method [39, 40]. Below we describe its main constituents.

First of all one notes, that due to the ~s-Hermiticity property (2.20) of the
Wilson fermion matrix M, the determinant det?> M can be factorized as follows
(60, 103]:

det? M = det (MTM) x /[dXde] exp {—XT (MTM)_l X} : (5.44)

where the auxiliary complex spinor variables x, y are called pseudofermions.

Plugging the Lh.s. of equation (5.44) into the integral (2.24) for average ob-
servables in case of Ny = 2 flavours, one can represent this integral in the following
form [112, 113]:

(©) =5 [UImAd OO ep(-HUIL A (5.85)
where the functional
HU,TL vfy] = 2112 4+ Sa[U] + T (MIUTMU]) ™ x (5.46)

2

is called the Hamiltonian and we denote
H2 pr— Z Hi”u’
T,
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where the auxiliary real field II = {Il, ,} is called the adjoint momentum to the
gauge field U.

The integral (5.45) is the core of the hybrid Monte Carlo algorithm. In this
algorithm, one generates the series of sampled gauge configurations UM, U®)| etc.
distributed with the weight exp(—H). Here a new configuration U’ is obtained
from previous U one according to the following prescription.

We select the initial random momentum II according to the Gaussian distribu-
tion:

1
P X exp (—51_[2) , (5.47)
and choose the pseudofermion fields x', y randomly with respect to the weight:
plU] o det 2 Meexp { T (MIM) '}, M= MU, (5.48)

The latter fields are taken merely as y = MT[U]n, where 7 is the Gaussian vector
distributed as (5.16). Then one performs the discrete Hamilton (or molecular,
called also leapfrog) dynamics {U,11} — {U’,1I'} [112, 113, 40]. We solve for
the compact U(1) gauge field U = exp(iA) (2.7) and its adjoint momentum II
the following second order discrete equation of motion system with N, time steps
where the time step size A7 = At/N, for some auxiliary time period At. First,
one performs the initial step for the adjoint momentum:
AT
For the next time steps with number 5 = 1,..., N, — 1, the gauge and adjoint

momentum variables are updated via the following rule:
AJ = Ajfl + ATHj_l/g mod 271', Hj+1/2 = Hj—1/2 + ATF[AJ] (550)

And in the final step for the gauge and adjoint momentum:

A
ANT = ANT—I + ATHNT_]_/Z mod 27’(’, HNT = HNT_:[/Q + TTF[ANT], (551)

Here we omitted for convenience the link number (x, ) and denoted initial (at

j =0) and final (for j = N;) variables as follows:
Ao,HO :A,H7 AN.HHNT :A/,H,,

where the gauge force F[A] = —0H/0A is determined by the expression:

oM 8S¢
_ T _ ==
F[A] = 2Re {X Y} o1

—1 _
A X = (M) "y, Y = MX, (5.52)
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and the pseudofermion fields x', y are kept fixed during this dynamics.
The discrete molecular dynamics (5.49) — (5.51) violates the energy conserva-

tion law for Hamiltonian (5.46):
HU' TV, X", x] # H[U,TL ', ],

This Hamiltonian is conserved only in the limit A7 — 0. Then in order to maintain
the desired weight exp(—H), one has to introduce the last, Metropolis accept-
reject step for Hamiltonian. The new gauge configuration U’ is accepted with the
probability

WacolU',1T'; U, TI] = min (1,e"2), (5.53)

where AH = H[U' IU, X', x] — H[U, I, x', xJ.

The combination of successive steps (5.47) — (5.53) is called the hybrid Monte
Carlo method. Let us show that it indeed generates the gauge configurations
distributed according to weight (5.43) [10]. First of all, one notes that the forward
and backward transition probabilities for the gauge variables are proportional to

the corresponding adjoint momentum distribution weights (5.47):

oIl

det A

1 I
. plU,U'| o exp (——H’Q) ‘det 0 . (5.54)

2 0A

1
plU’, U] o exp (—51'[2)

Further, we must prove that the leapfrog scheme (5.49) — (5.51) satisfies the area

preserving law:

0A" 0A
det | 04 Oy (5.55)
ol o1l
JA oIl
from which follows the reversibility relation:
oIl oIr
det ik det 5| (5.56)

The definition of the adjoint momentum at the time step with number j:

1
II; = §{Hj+1/2 + Hj—1/2}a

where j = 1,..., N, — 1, allows us to rewrite the equations (5.49) — (5.51) in the

following compact form:
1
Aj+l = A] —+ ATH] + §(AT)2F[A]] mod 271',
1 .
Hj+1 = Hj + §AT (F[A]] + F[Aj+1]) s J = 07 ceey NT — 1. (557)
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Direct calculations based of the equations (5.57) show that for elementary discrete

steps the area preserving law is fulfilled:

0A; 11 0Aj1

o 1 (5.58)
(§ = 1. .
aH]’+1 aH]’+1
gA; oI

Multiplying the equations (5.58) for each time steps j = 0,..., N, — 1, one gets
the relation (5.55) for the total transition dynamics {U, 11} — {U’,1I'}.

Now using equations (5.48) for the pseudofermion distribution, (5.54) for the
molecular dynamics transition probabilities, (5.56) for reversibility relation and
(5.53) for the accept-reject step, we can convince ourselves that the total transi-
tion probability of the hybrid Monte Carlo algorithm, p = wac.pp, satisfies the
detailed balance relation (5.5) with Ny = 2 dynamical fermion weight (5.43). This
completes the proof.

So far in the description of the hybrid Monte Carlo algorithm we have tacitly
assumed that the inverse fermion matrix M ™! is known in advance. However since
the exact matrix inversion is time consuming, one uses fast but approximate inver-
sion methods e.g. conjugate gradient one (5.24) applied to even-odd decomposed
system (5.39) for the evaluation of the X and Y vectors in the HMC force (5.52)
and also for the (MT[U’])~1x vector in the updated Hamiltonian H[U’, 1T, xT, x]
in the accept-reject step (5.53). This means that the hybrid Monte Carlo method
is approzrimate owing to the lack of exactness in the inversion of the fermion ma-
trix. Nevertheless, the accuracy of the hybrid Monte Carlo algorithm using the
CG method can be controlled by an appropriate selection of the § parameters in
the stopping criteria (5.25): 0mq for molecular dynamics process (5.49) — (5.51)
and 0, for accept-reject step (5.53). Later on we present a recipe for choosing

such parameters [114, 115].

5.4.2 Acceptance rate

Let us now consider the problem of new configuration acceptance in the discrete
hybrid Monte Carlo dymamics [116]. For the leapfrog dynamics (5.49) — (5.51),

the variation of Hamiltonian AH in (5.53) satisfies the following relation:
(e7®M) =1, (5.59)
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where the averaging (...) is performed according to the equation (5.45). To prove
it, one uses the area preserving law (5.55). Then owing to the convexity of the

exponent function,
<e—AH> > o (AH),

The latter inequality together with (5.59) means that the average Hamiltonian vari-
ance (AH) in the hybrid Monte Carlo dynamics is always non-negative: (AH) > 0.
Equality can be achieved only in case of exact Hamilton dynamics.

For very small time step size A7 in the leapfrog dynamics, one may use the
Taylor expansion of the exponent in the equation (5.59). In the leading order one

gets:
(AH) = 2 ((AH — (AH)?) + O (|AH]Y) (5.60)

Hence in the A7 — 0 limit, the probability distribution of AH value can be well

approximated by the Gaussian function:

~ 1 —(x — (AH))?/4(AH
pAH<ZE)_me ( < >)/< >

And the average value of acceptance rate (5.53) (waec) is approximately equal to
[116]:

(Woee) = /dprH@)mm (1.e7) = exte (/IAH)/2) ~ 1~ BRI 7. (5.61)

At the same time, in the 2nd order discrete molecular dynamics scheme (5.49) —
(5.51) the sampling variance AH oc (A7)? [40]. Therefore, in order to keep the
acceptance rate (5.61) close to 1, one would require owing to (5.60) that V (A7)* o
1 [116]. But it is also necessary to take into account the magnitude of the gauge
force (5.52) which is not small in the case of large condition number ¢ (2.30).
We will return to this question at the investigation of performance of the HMC

algorithm.

5.4.3 Advantages and shortcomings

There are several merits of the HMC algorithm. First of all, it requires the knowl-
edge of only a few parameters. Namely, we must set A7, N,, and the conjugate
gradient stopping criteria (5.25) dyuq and d,c. for the fermion matrix inversions in
the leapfrog dynamics steps (5.49) — (5.51) and in the Metropolis accept-reject one

(5.53), respectively. It does not need to find all elements of the inverse fermion
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matrix M™! since the CG (5.24) performs this indirectly and fast enough. And
the convergence of the HMC, controlled mainly by acceptance rate (5.61), can be
tuned by plausible choice of the molecular dynamics parameters A, N, [114, 115].

However, the precision of the equation of motion in case of very large lattices
may get lost which leads to false generated gauge configurations [117, 118]. Fur-
ther, the CG method owing to the computer precision limitation does not work
properly in case of a large condition number ¢ (see e.g. [117, 118]). This happens
e.g. for the above mentioned confinement phase near the chiral limit line and for
the Aoki phase in case of compact QED theory [77]. The main disadvantage of
the HMC algorithm is that it can be used due to the pseudofermion factorization
(5.44) only for an even number of fermion flavours in spite of various proposals to
implement it for odd Ny values (see e.g. [40, 119, 120]).

That is why one requires an alternative to the hybrid Monte Carlo method,
which allows us to simulate the gauge configurations for odd (and possibly for

arbitrary) Ny fermion flavours.

5.5 Dynamical fermions: the two-step multibo-

son algorithm

5.5.1 First step: the multiboson method

One of the alternatives to the HMC method is the two-step multiboson (TSMB)
algorithm [36] — [38]. It consists of two basic parts. Its first part is the multiboson
method proposed by M. Liischer [121] (see also [122]). The idea of the method
is to approximate the fermion determinant by the inverse determinant of a local

positive polynomial operator which can be easily factorized by a set of complex

spinor fields called multibosons. To do this, one has to approximate the z=Ns/2
function by an appropriate polynomial P;(z) for x > 0:
ni/2
N2~ P(x) = ¢, H(m —rj)(x— r;), Imr; >0, ny is even. (5.62)
j=1

Using this starting approximation, one can evaluate the "7 function by the

following polynomial:

ni

N~ P (2?) = ¢, H(m — pj)(x — p}), x>0, (5.63)

i=1
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where  p2 =7, pitn2 = —p}, Imp; >0, j=1,...,n1/2.

We know from section 5.3 that in order to improve the efficiency of a simu-
lation method involving a fermion determinant it is worthwhile to work with a
preconditioned fermion matrix [110, 111]. Taking into account the equality (5.42)
for the determinant of even-odd decomposed matrix Q (5.41) and the polynomial
approximation (5.63), one approximates the modulus of the fermion determinant

power as follows [123]:

ni -1
|det™ M| o {det P1(Q'Q)} " o {H det (v5Q — p;)' det (1;Q — pj)} .
j=1

(5.64)

Remembering the equation for the block matrix determinant, one notes that
det (45Q — p;) = det M;, (5.65)

where the matrix M ; looks as:
~ 16 MGO
M; = [ ] . (5.66)
75Moe (75 - pj) 1.

Substituting (5.65) into the r.h.s. of equation (5.64), one factorizes the determinant

power as follows [123]:
|det™ M[U]| o< {det Pl(QTQ)}_l o / [d®Td®] exp (—Sp[@, U]). (5.67)

Here Sp is the multiboson field action:
Spl®, U] =) ol (MIM)D;, M, = M,[U], (5.68)
j=1

and the fields ®; are complex spinor variables called as multibosons.
Using this representation one can define the integral for average observables in

the multiboson method:

(0), = % / [AU)[d3!d®] O[] exp(—S[®, U]), (5.69)

where the total action of multiboson and gauge fields [121, 122]:
S[®, U] = Sp[®,U] + Sc[U]. (5.70)

66



One has to reduce the matrix Mj in (5.68) to an analysable form. Let us

introduce first the even-odd subspace projectors:

H:leo H:OO (5.71)
T lo ol T lo 1| '

These projectors in the lattice coordinate representation according to (5.36) look
like

14 (—1)xZuen
f@y.
The projectors (5.71) have the following properties:

(L), = (5.72)

I3 = Il., .11 =0, I, +1I_ =1, Mme(1-M)=(1- M),
Using (5.71) we find a representation for M; defined by equation (5.66):
M; =TI M + Ty M — p,TT_. (5.73)

Taking into account expression (5.73), the coordinate representation (5.72) and
the properties of projectors (5.71), one can write down an algorithm of local scalar
and gauge fields updates. To do this, we must first extract terms related to the
element ®;,, for each j, x, r coordinate (r and also s denote spinor indices), then

to each U, , component of the U set. For the former case we have:

V'xr ?
P, + =2 + (terms, independent of ®;,,) . (5.74)

Sp[®,U] = Ajpr 7
Jar

Here we denote Aj,, and Vj,, as follows:
Vier = K Z{Ul_ﬂ,u ([pjm% (L4 7) = 2], Pjo—ps + [15 (L 4+ 7], Xj,w—ﬂw) +
S

+Us ([ﬂjx% (1 =) = 2], @joras + [v5 (1 — 7)), Xj,xm,us) }7

1— (=1)%usn
Ajer =1+ 4 X 46 + %{\W\Q =2, Repj},

where

Xj:E/J«T‘ =K Z {[75 (1 - ny)]rs UW»V(I)]'7$+I7,S + [75 (1 + ny)]rs U;_l;’l/(pj@,l}’s} )
viu

14 (=1)Zn®e L= (—1)>nmn

9 Py B Pj-

Pjxz =
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We use such a representation of Dirac matrices in which the 5 matrix is diagonal
i.e. it has the only nonzero components [y;],.. = £1.

For the latter case, one gets:
Sp[®,U] = —Re (U, F{2)) + (terms, independent of U, ), (5.75)

where we denoted the complex multiboson force by

Fggﬁ) =—2K Z{h/f) (1 - ’yﬂ)]m <pjm(1);‘m«q)j,x+ﬂ,s + (I);r'mer@Jrﬂzﬂs—i_

jrs
_'_XIZMT@]J?J’»[LS) - 25T‘S¢jxr(bj,2?+ﬂ,s } .

Remembering the expression for the gauge action (5.8) and for the gauge force
F;,gi) (5.9) in the pure gauge heatbath update (5.10), (5.11), one can present the

total multiboson action (5.70) as follows:
S[®,U] = —Re (U, Fy,u) + (terms, independent of U, ), (5.76)

where the total force F} , = Féﬁ) + Fgﬁ)
Equations (5.74) and (5.76) allow us to use the following updating algorithm
for scalar ® and for gauge U fields, respectively. We perform first the multiboson
field updates at the fixed U field configuration:
— Nppy multiboson field heatbath sweeps for each point (jzr):
o Vier

Jjxr AJIT

+ Ears (5.77)

where £, is a complex Gaussian random number distributed according to:

Pe X €Xp (_Ajmr ‘éj:prlQ) .

— Npo multiboson field overrelaxation sweeps:

‘/}IT

ol )
Aj:cr

Jar

= Dy — 2 (5.78)

Now perform for fixed multiboson fields ® the gauge field updates which resemble
to the pure gauge ones (5.10), (5.15):
— Ngp gauge field heatbath sweeps for each link (z, p):

Ua::,u = (Fx7u/|Fa:7u|)7l eXp(inx,u% (5.79)
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where 7, , is a real random number in the interval (—m, 7] distributed as

Pn X €Xp (|F:v,u| Cos m,u) )

and for the generating such numbers we use the filtering method (5.13) with the
filter (5.14).

— Ngo gauge field overrelaxation sweeps:

Upp = Ul (Foge/ | Fou) ™ (5.80)

€T,

Using arguments similar to the quenched heatbath case one can prove that
each of the steps (5.77) — (5.80) {®,U} — {®',U’} with a transition density
[P, U, @, U] satisfies the detailed balance relation:

p[@, U, @, Ulexp(—S[®,U]) = p1[®, U, @', U'] exp(—=S[®', U']). (5.81)

Hence, the updating algorithm (5.77) — (5.80) (called also multiboson method)
indeed generates both the gauge and the multiboson field configurations with the
weight exp(—Sg[®, U]) in integral (5.69).

All these steps require nearest-neighbouring indices to certain (jzr) or (xu)
point, hence the multiboson method belongs to a class of local algorithms. It allows
us to provide efficient vector or parallel simulation with the appropriate ordering of
the above indices. In our realization, each component of the coordinate indices x for
the multiboson updating steps (5.77), (5.78) is split into even and odd constituents.
One performs first even coordinate projection sweeps then odd ones, at certain
polynomial j and spinor r indices [124]. Such sweeps are independent, because due
to (5.74) the updated multiboson field ® at the certain index x depends only on the
fixed fields @ at coordinates z + i and x + i -, where u # v. Moreover, one can
perform independent polynomial index sweeps. For independent gauge updating
sweeps (5.79), (5.80) we widely use the even-odd decomposition (5.36) due to the
representation (5.76) with notations in (5.9), (5.74) and (5.75) and perform first

even then odd coordinate gauge updates at the fixed p direction.

5.5.2 Second step: noisy correction

The algorithm (5.77) — (5.80) assumes a very good approximation (5.62) of the
2~ Ns function. In practice however, this requires very large polynomial orders

ny which strongly increase the computational efforts [123, 125, 126]. In order to
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cure the problem, one uses a second step after the multiboson method — the noisy
correction accept-reject step [36, 127, 128].
To realize this idea, first of all, let us approximate the z~#/2 function by the

product of two polynomials but not one as earlier:
N2 = Py () Py(x), (5.82)

where the first polynomial Pj(z) appoximates the 2~"//2 function but with not
very high accuracy. However, the second polynomial P,(z) of order ny > ny
improves the approximation by the first polynomial of the ="/ function. At the
same time, it is assumed to take values which are not very different from 1.
Using the approximation (5.82) and adopting the multiboson realization (5.64),
(5.68) of the fermion determinant power with respect to the P; polynomial where
one takes into account the equality (5.42) for even-odd decomposed fermion matrix

Q. we can correct the measure in the integral (5.69) as follows [36, 127, 128]:

(O)1a = % / [dU][d®Td®] O[U] exp(—S[®, Ul)det * P(Q'Q[U]).  (5.83)

In order to generate the gauge configurations with the measure in the integral
(5.83), one performs first the multiboson updates {®,U} — {®’, U’} according
to the prescription (5.77) — (5.80), then the new gauge configuration U’ accepted
with some probability wae..[U’, U]. The total transition probability p1a = Waecp1,
where p; is a multiboson transition function, has to satisfy the detailed balance

condition:
p12[®, U, ®, Ul exp(—S[®, U])det ' P, (QTQ[U]) =
= p1o[®, U, ', U’ exp(—S[®, U'])det ™ P (QTQ[U']). (5.84)

Owing to the detailed balance equation (5.81) for the multiboson transition density

p1, the acceptance probability function w,.. must obey the relation:
Waee[U', Uldet ™ Py(QTQ[U]) = waee[U, U'ldet ™ Po(QTQ[U)). (5.85)

A usual choice for such a function is the Metropolis one [36, 127, 128]:
det P2,(QTQ[U])

"det R(QIQUY) /-

It is not difficult to check that the acceptance probability (5.86) fulfills the relation

(5.85) and therefore the total transition density p2 satisfies detailed balance (5.84),

indeed.

Wace[U', U] = min (1 (5.86)
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We have to compute the determinant ratio in the equation (5.86). For this
purpose, one can use the noisy estimator technique [60, 103] for the inverse deter-

minant of any positive matrix. Thus we can write [36, 127, 128§]

det P5(Q'Q[U]) / [dn'*dn] exp(—n' P(Q'Q[U"])n)

det P,(QfQ[U’]) /[dyffdn] exp(—Usz(QTQ[U])n)

)

where 7 is an arbitrary complex spinor vector in the even (odd) subspace. Making
the following substitution of integration variables for both numerator and denom-
inator integrals [36]:

n—&=FQIQU)n (5.87)
we get the final expression for the determinant ratio:

det P,(Q'Q[U]) _
det P(QTQ[U"])

where the noisy estimator averaging is defined according to equation (5.19).

(exp (~€"P(QTQIUE +n'n)), . (5.88)

For practical evaluations of £ vectors defined in (5.87), one can approximate

the P2_1/ ?(x) function by some polynomial Ps(z) with order ng [36]:
Py(z) ~ Py (). (5.89)

Then one can use the equation (5.88) presuming that the approximation (5.89) is
fulfilled with high accuracy.

The second, additional to multiboson updates (5.77) — (5.80) step described
by equations (5.86) — (5.89) is called noisy correction accept-reject step, and the
combination of both steps is called the (Hermitean) two-step multiboson (TSMB)
algorithm. Note that for the noisy correction step, the deviation of the Py(x) from
1 should not be very large.

In another (non-Hermitean) scheme proposed in [127, 128], the choice of the &
vectors for the estimate (5.88) differs from the (5.87), (5.89) one. Moreover, their
scheme together with multiboson method (5.77) — (5.80) was claimed [127, 128]
to be an exact algorithm. We will not describe this alternative approach. Let
us only note that the noisy correction step in the form (5.86) — (5.89) on the
one hand, can be implemented to arbitrary number of fermion flavours Ny and
on the other hand, the precision of this second step is tunable by an appropriate
choice of the approximating polynomials [36]. Another problem, related to the
approximation of z="//2 function by the first polynomial P;(x) in both approaches,

will be considered later (see also [37]).
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5.5.3 Reweighting

If the approximation (5.82) of 2="//2 function by a product of two polynomials is
still not very accurate, one can improve the approximation by means of a choice
of an auxiliary polynomial P,(z) with order ny > ns in a such way that the
approximation [38]:
N2 = P (x)Py(2) Py(). (5.90)
is much better than the (5.82) one. But the P, polynomial should deviate from 1
less than the P one.
As in the case of the second step, the use of the approximation (5.90) to
represent the fermion determinant power and also taking into account the sign of

the fermion determinant lead to an integral for average observables analogous to
(5.83) (see [38, 129, 130]):

(O)row = % / [AU][d®'d®] O[U] exp(—S[®, U]) x

det Q \
| det Q| ’

where we have employed the identity (5.42) for the determinant of the even-odd

x det™! P(Q'Q)det ™! P(QTQ) ( (5.91)

decomposed matrix Q. Here, in case of not very large deviation of det™ P,(QfQ)
from 1, one may use the two-step multiboson algorithm (5.77) — (5.80), (5.86) —
(5.89) for generating the weight function in the integral (5.83). Hence, the last two
multipliers related to P, polynomial determinant and to the determinant phase,
play the role of the reweighting factor.

Realizing this idea, we rewrite the expression (5.91) as follows:
(Odet™ PA(QIQ)(det Q/| det Q)" )

12
(det™ Py(QTQ)(det Q/|det Q)™ )

where the averaging (...)1o is performed according to equation (5.83).

<O>rew = (592)

12

For practical simulations of the inverse determinant in the expression (5.92),
one uses the noisy estimator representation like (5.88) in case of the noisy correction
step [38, 129, 130]:

det™ P,(Q'Q) o (exp (—1"P(Q'Q)n +1'n)), - (5.93)

This auxiliary step for improvement of measured observables described by equa-
tions (5.92), (5.93) is known as reweighting step. Its use assumes a small deviation

of P, polynomial from 1.
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5.5.4 Polynomials

All these polynomials Py(x), k = 1,...,4 approximating the =¥/ function are
obtained according to the following prescription [37]. First of all, one selects the
approximation interval [¢, \] in a such way that it contains the average minimal

(Amin) and maximal (\ay) eigenvalues of the preconditioned fermion matrix Q' Q:

[(Amin% <)‘maX>] - [67 )‘] (594)

The averaging of eigenvalues is done according to the equation (5.92).
Then one applies the least squares method for mean integral polynomial devia-

tion to the successive evaluation of 1st then 2nd and 4th (reweighting) polynomials:

Y
/dx |x’Nf/2P1(x) — 1|2 4, min,

€

Y
/dx |x’Nf/2P1(:c)P2(:c) — 1|2 L2 min, Py fixed, (5.95)

€
A

/dx ’J/’_Nf/2P1(I)P2(I)P4<CU) - 1|2 B min, Py, P, fixed,
where the minimization is performed with respect to the coefficients of a polyno-
mial Py (z) at the fized order ny.
For the 3rd polynomial P; we employ the Newton tangential method with the

appropriate least squares polynomial approximation of the (P»P3)~! function:

1 ‘ .
- (Pgﬁ(a;) n P§J><x>) =01, (5.96)

j+1
P @) = 5

Y
DN p@D (1] L ()
dz |Pe(z) Py () Py’ () — 1| —— min, P, P35 fixed.

€

and
Py(z) = lim PY(x).

j—00

Here the P:)fj ) and ]53(j ) are polynomials of order ns3, and the P, P?fj ) polynomials

are kept fixed during the least squares integral minimization with respect to the
coeflicients of 153(j ).

In this way we evaluate the coefficients of all these polynomials. To obtain the

complex roots of the first polynomial P;, one applies the Legendre method [105].
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All such calculations require very large computer precision. Therefore, for this
purpose we use codes for the MAPLE or Mathematica software. But in case of
ordinary (low precision) computations, to reconstruct the polynomials with reason-

able accuracy, one should employ the orthogonal polynomial basis decomposition:
ng
k) Ak k k)N A (k k) ~(k
Pu(z) =Y &0 @),  Ofi(@) = (e + 80 (2) + 112,012 (2), (5.97)
5=0

where k = 1,...,4, polynomials O;(x) have the order j, Op(z) = 1, y_; = 0 and

the orthogonality condition for polynomials looks as follows:

A

/ dep® ()0 ()0P (@) =0, i #] (5.98)

€

The integral weights p*)(z) are taken in the following way:

pD(@) =V, pO(x) = oV PY(a),
o (@) = P2a)PAx), () = 2™ P2(a) PE(x). (5.99)

Our numerical studies of the polynomials obtained according to the recipe (5.94) —
(5.99) have shown that they indeed can be reproduced with high enough accuracy
by usual (e.g. FORTRAN) codes.

5.5.5 Acceptance rate

Let us discuss now the acceptance rate of the two-step multiboson algorithm. From
the detailed balance relation (5.84) follows the equality [127, 128§]

(exp (_AE»W,{U,@},{U/,@/} =1, AE = fTPQ(QTQ[U/])f - 77T77~

Here the & vector is defined according to (5.87) and averaging over {U,®} and
{U’, @'} fields is peformed with respect to the weight po exp(—295):

1
Ohwarorer = 5 [lAUVavaBd e e
X Oexp(—S[®, Upal®, U, 0,0),  (5.100)

where pp is a transition probability of the TSMB algorithm. The same arguments
as for the acceptance rate of the HMC method lead to the expression (5.61) for
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(Wace), averaged according to (5.100). Where AFE substitutes the AH and satisfies
the relation (5.60). Hence, for the (AE) the following estimate [127, 128] is valid:

(AE) < V||Py — 1] (5.101)

Here the ||...]| is a norm in the polynomial space corresponding to a maximal

deviation absolute value.

5.5.6 Technical notes

In contrast to the hybrid Monte Carlo method, the two-step multiboson algorithm
is bulky in computer memory owing to the auxiliary multiboson fields. An ap-
proporiate choice of its technical parameters is complicate. Moreover, it needs
an information about the minimal and maximal average eigenvalues of the ma-
trix Q'Q. Their correct values can be obtained either by means of self-consistent
checks and correspondent tunings of approximation interval margins or from pre-
liminary HMC runs (in case of even flavours Ny and when the hybrid Monte Carlo
works normally). And at the end, the algorithm requires the polynomial roots and

coefficients data which can be found by use of separate high precision calculations.

However, one should mention the stability of the TSMB algorithm in case of
large lattices owing to use of local update cycles. It can work also in case of very
large condition numbers. And the most important advantage of the algorithm is
that it can be used for simulations with any number Ny of dynamical fermion
flavours (see [36] — [38]).

The two-step multiboson algorithm (5.77) — (5.80), (5.86) — (5.89) and also
the reweighting step (5.92), (5.93) which use the recursive polynomial evaluation
(5.97), were implemented by us for investigations of the U(1) lattice model with
an even number Ny of dynamical fermion flavours, where it is not necessary to
evaluate the sign of the determinant det Q. As far as the application of the TSMB
has been successful in the supersymmetric case [36] — [38], it is natural to ask the
question, how this algorithm is efficient in comparison with HMC in our case of
compact QED with Ny = 2 Wilson fermions. Next section will be devoted to the

answer to this question.
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5.6 Performance of the dynamical fermion algo-

rithms

5.6.1 Autocorrelation time

Let us now study the performance of both the HMC and TSMB methods. The
performance of an algorithm means the average number of total operations between
statistically independent measurements.

Statistically independent measurements can be identified as follows [10, 131].
Let us first consider the Markov chain of sampled observables: ~ O1,0,,... with
the mean average (O;) = (O) and the autocorrelation function which depends only

on the difference j — k:

((0;=1(0)) (O = (0))) =To(j ~ k) = Tolk - ).

Then the squared deviation for the sampled mean value:

N
My (O) = % > o, (5.102)
j=1
looks as follows:
2 in
<(1\/IN((9) - O)2> ~ ]Tvtr@(()), (5.103)

where 7y, is the so-called integrated autocorrelation time:
. 1 Lo(j — k)
Ty = MM o Z — = (5.104)

In case of an exponentially decreasing autocorrelation function T'o(j) o< exp(—|j|/7*)
(which is usually not realized), 7, ~ 7* holds. The 73, can be represented as fol-

lows:
N .
L. Lo(j)
Tt = — l . 5.105
Tint B + NEEOX; I‘O(()) ( )

J]=

For the mutually independent sampled observables I'n(j) = 0, j # 0, the
integrated autocorrelation time is 7y, = 1/2. Hence, the expression (5.103) means
that an effective number of statistically independent measurements is equal to
N/2Tn. And 7y can be treated as an effective distance between the nearest

independent measurements.
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The integrated autocorrelation time 7y, can be evaluated by means of the
equation (5.105), where the approximated autocorrelation functions are evaluated

as follows:
L N L N ) N
Fo(j)  —— O——>» O Oiyj — —— Ok | .
o) N_jg( Y )( e Y )
=1 k=1 k=j+1
The sum in (5.105) is taken (instead of the total number of measurements N) up

to some cut-off value W called the window [131]:
w ,

L1 L'o(5)

Tint ~ 9 + WJ;FO(O)

The relative accuracy of such method is the follows [131]:

V ((ATint)?) - 202W +1)

Tint N '
In an alternative method of evaluating 7y, called binning (see e.g. [10, 132])
the total set of N measurements is divided into N/B blocks with length B: N >

(5.106)

B > 1. For each block one computes the sampled mean value (5.102) denoted
as [O]g. Then, according to (5.103) and to the original definition (5.104) of the
autocorrelation time one evaluates i, as follows:
o B (0) - 01"

2l'0(0)
Errors of the binning method are estimated by the formula [133]:

VA{ATm)?) Tt | B
— /A max 5 \VN /-

In our simulations, we used mostly the binning method (5.107) since it can be

(5.107)

easily accustomized to the evaluation of errors for the functions of mean measured
values by the jack-knife method [134, 132]. However, the summation method
(5.106) appears to be more precise than the binning (5.107). The best window
size is W o< In N since the systematic error of the expression (5.106) decreases as
exp(—W/mn) [133].

5.6.2 Theoretical estimates

Summarizing, one can define the performance value P of an algorithm by the
equation:

P = NoperTint (5.108)
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where N, is a total number of operations per 1 update.
Before studying the values (5.108), one should also know how to choose the
technical parameters in an appropriate way. In case of HMC we use the arguments

[117, 118] of the harmonic oscillator Hamiltonian approximation:

1 1
Her) = 5112 + 5ATQA.

Here the matrix €2 is roughly estimated as:

where the HMC force F' is defined according to equation (5.52). In order to keep
the average acceptance rate (w,..) ~ 1, one chooses the time step size A7 and

number of time steps N, in such a way that:
VIQIP(AT)* o 1, VIIQINAT o 1. (5.109)

Here, owing to the pseudofermion distribution (5.48),

) . ) ) Mmax(Q'Q))
|]Q||o<<vTrW>o<<sz:W>oc\/z’ C:m'

Further, the CG precision ¢ in (5.25) should not spoil both the molecular dynamics
and the precise Hamiltonian accept-reject step. The d,,4 for molecular dynamics

and 0, for accept-reject step must obey the following estimates [114, 115]:

1 1
5md X 5&00 X

> T (5.110)

According to (5.27) this gives the estimate for the average number of corresponding

iterations of the CG method applied to even-odd decomposed systems (5.40):
(N9 o \/CIn V. (5.111)

The parameters for the TSMB in case of Ny = 2 should be choosen in the best

way as follows [135]. The interval margins e and A are selected as:
e=050mn), A= (1.2 —1.4) Aas)- (5.112)

Here one takes into account the statistical fluctuations of the minimal eigenvalue

Amin- But the value for the upper interval margin A can be selected closer to the
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average maximal eigenvalue (An.x) due to the possibility of finding an exact upper
limit ||Q'Q|| depending on the hopping-parameter k.

And again in order to keep the acceptance rate (wae) ~ 1 and to deal with the
reweighting determinant values det P (QTQ) ~ 1, the deviations of the second and
reweighting polynomials P»(x) and Py(x), respectively, should satisfy the following
conditions according to (5.101) and (5.93):

1 1
L L LR LS (5.113)

which give rough estimates for orders of the first and second polynomials:
ny o M4V, ny ~ (N9), (5.114)

Here we take into account the effective square root decreasing of the condition
number ¢ — +/C for the approximation of 1/z by the least squares first polynomial
Py (x) [37] which has been established by empirical observations.

Indeed, in an alternative to the least squares polynomial approach in the case

of Ny = 2, the Chebyshev polynomial approximation [121, 122]:

: (1 T (P55

Tn1+1(_%)

)> , T, (z) = cos (narccos z) ,

the choice of the same approximation interval leads to much worse interpolation of
1/x for the Chebyshev polynomial than for the least squares one (see Figure 5.1a).

But if one increases the lowest interval margin for the Chebyshev method as follows:

e—>\/Ze,

one reaches almost the same approximation of the 1/z function as in the case of
the least squares method (Figure 5.1b).

At the same time, the deviation of the least squares polynomial P;(z) from 1/x
function in the vicinity of the x = € margin is larger than for the Chebyshev one
(see Figure 5.2) [37]. This means that in order to reach a good approximation of
1/x in the whole interval x € [e, A], the correcting least squares polynomial Py (z)
must deviate large from 1 when z is close to ¢, and our numerical observations
confirm this statement. And the contribution of lowest eigenmodes of the operator
Q'Q, owing to such discrepancy decreases the acceptance rate (5.86) of TSMB

algorithm, especially when the condition number ( is very large. A reasonable
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TSMB acceptance is maintained, seems, due to a good closeness to 1 of the second
polynomial P,(z) for the remaining eigenmodes of the fermion operator.
The deviations for the approximate square root polynomial inversion as well
as a good enough approximation of the 1/z function:
1P B @) ~ 1 o g, eR@P@PE) ~ 1 x5, (5115)

require the following estimates of the orders of third and reweighting polynomials:
ng = (].2 —1.4)n2, Ty 2 2. (5116)

Before presenting numerical results, let us speculate about the theoretical per-
formance estimate according to the formula (5.108). In the case of HMC, the

number of operations per update is

NIMC o V(NCEOYN,.. (5.117)

oper

For the TSMB in case of very large order of the correcting polynomial P, the
number of operations per sweep is determined mostly by the number of operations

in the noisy correction step:

NISMB o 1/, Ng > ny. (5.118)

oper

The autocorrelation time in the HMC case for almost total acceptance for the
oscillator dynamics [117, 118, 136] is

MO o (A2, At = N.AT. (5.119)

int

In the case of TSMB for an acceptance rate near to 1, the autocorrelation time is
proportional to the inverse imaginary part of the polynomial roots Imr; in (5.62)
[137] (see also [125, 126]). Therefore by use of Chebyshev polynomial arguments

to the least squares polynomial case, this time is proportional to the expression:

TSMB
Tint

o ny L2, (5.120)

Taking into account the estimates (5.109), (5.111), (5.114) and (5.117) — (5.120),
one can find roughly the theoretical gain Grsyp/avc of TSMB over HMC algo-

rithm:
Puyc VYA

PTSMB x IDV )

Grsmp/uve = (5.121)
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n,=50, €=0.0001, A=4.00

25 R Chebyshev (@)
R least squares

X
1.03 g
n1:50, A=4.00 (b) 1
1.02 ;
—— Chebyshev, €=0.016 ]
,,,,,,,,,,,,,,, least squares, €=0.0001
1.01 1
3
D-H
X
1.00 ]
0.99 1
0 1 2 3 4
X

Figure 5.1: Approximation of 1/x function by Chebyshev and least squares
polynomials, ny = 50, A = 4.0: (a) ¢ = 0.0001 for both polynomials and (b)
e = 0.016 for Chebyshev and € = 0.0001 for least squares polynomials.
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n,=50, €=0.0001, A=4.00

15
. ——— Chebyshev ]
least squares

| xP,()-11]

0.0000 0.0005 0.0010 0.001¢

Figure 5.2: Deviation |zP;(x) — 1| for the 1/x approximation by Chebyshev
and least squares polynomials in the vicinity of # = €. Polynomial order

n1 = 50, interval margins ¢ = 0.0001 and A = 4.0.

5.6.3 Numerical studies

Now we turn to the numerical investigation of the performance of dynamical
fermion algorithms in the case of Ny = 2 for both Coulomb and confinement
phases. The lattice size in our case is 6 x 12 and time-antiperiodic boundary
conditions for Fermi-fields are employed. In the Coulomb phase, we choose the
parameters § = 2, kK = 0.130 but in the confinement phase § = 0, k = 0.238. The
k parameters lie quite near the critical chiral limit line x.(/3) (see section 2.5 and
chapter 4). Due to the prescription (5.109), (5.110), we took the parameters N,
AT, dmd, 0ace for HMC as in Table 5.1. Then we are able to evaluate numerically
an average number of CG iterations in leapfrog dynamics (NIﬁG)> (see this Table).
In the TSMB case, the corresponding polynomial parameters ny, no, ng, ny and
interval margins €, A selected according to (5.114), (5.116) and (5.112) are given
in the Table 5.2.

Almost all these parameters require a knowledge of the average lowest (Apin)

and largest (Apay) eigenvalues of even-odd decomposed fermion matrix Q'Q. They
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phase I} K N, A7  0pd  Oace <N§1%G) )
Coulomb |2 0.130] 40 1/40 10 107 36.0(2)
confinement | 0 0.238 | 10 0.01 107* 1077 500(2)

Table 5.1: Parameters for simulation by HMC algorithm in both Coulomb

and confinement phases on a 63 x 12 lattice.

phase 15} K ny Mg N3 Ny € A
Coulomb |2 0.130| 6 36 48 200  0.025 2.5
confinement | 0 0.238 | 50 360 450 500 0.000225 9

Table 5.2: Parameters for simulation by TSMB N; = 2 algorithm in both

Coulomb and confinement phases on a 63 x 12 lattice.

quenched dynamical
phase B R <>\min> <)\max> <>\min> <)\max>
Coulomb |2 0.130 | 0.065(1) 1.60(1) | 0.13(1) 1.63(1)

confinement | 0 0.238 | 0.0010(1) 6.78(1) | 0.0005(1) 6.59(1)

Table 5.3: Minimal (\,;,) and maximal (\,.x) average eigenvalues of even-
odd decomposed Wilson fermion matrix QfQ for both Coulomb and confine-
ment phases in quenched and dynamical N; = 2 fermion models on a 6* x 12

lattice.
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were evaluated by the explicitely restarted Lanczos method (5.30) — (5.35). Ini-
tially they were taken from the quenched gauge configurations and then tuned to
the dynamical Ny = 2 case (Table 5.3). It is worthwhile noting that if in the
Coulomb phase the condition number decreases by the factor ~ 2 with the in-
corporation of the fermion loops, in the confinement phase the situation is quite
different.

Our numerical results have shown that the choice of polynomial orders (5.114)
and (5.116) confirms the conditions (5.113) and (5.115). As an example, in Figure
5.3 we show the behaviour of the second Ps(z) (Figure 5.3a) and fourth Py(x) (Fig-
ure 5.3b) polynomials for the approximation of 1/x function (for the confinement
case). One sees that maximal deviation of these polynomials from 1 indeed satis-
fies the estimate (5.113) required for the lattice 63 x 12. Also measurements of the
reweighting factors det ™ Py(QfQ) according to (5.93) indicate for both Coulomb
and confinement phases (see Figure 5.4 for confinement phase) that such factors
are commensurable with 1.

Let us present the numerical results for comparison of the performance for both
the HMC and TSMB algorithms. We investigated the following mean gauge in-
variant observables (O): mean gauge energy (Eg) (2.26), scalar condensate (11))
(2.27) and pion norm (IT) (2.28). The statistics in our case (10000 measurements)
was enough to evaluate the integrated autocorrelation time 7;,; by use of the bin-
ning method (5.107). To compute observables in the case of the TSMB algorithm,
we used also the reweighting step (5.92), (5.93). At the end we measured the gain
of the TSMB algorithm over HMC method Grsmp/mmc according to the equations
(5.121) and (5.108), where instead of the measurement of the number of operations

Noper we took the measured CPU time for one update tcpy since, as one expects,

Noper X tCPU'

Results of the comparison for the Coulomb phase are presented in the Ta-
ble 5.4. The acceptance rate in case of HMC method was (w!IMC) = 0.94(1), in

acc

the case of TSMB algorithm (wISMB) = (0.48(1). Numbers of heatbath and overre-
laxation updating sweeps in the multiboson method (5.77) — (5.80) are the follows:
Npuy =1, Ngo =9, Nagug = 1, Ngo = 0. The observables obtained from simula-
tions of TSMB algorithm agrees with those from HMC runs. The autocorrelation

time for the pion norm is an order larger than that for mean gauge energy and
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Figure 5.3: Least squares polynomials P»(x) (a) and Py(z) (b) to the poly-
nomial approximation of the 1/x. Polynomial orders n; = 50, ny = 360,
ny = H00. Interval margins e = 0.0001, A = 4.0.
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Figure 5.4: Distribution of reweighting factors det™' Py(Q'Q) in the TSMB

simulations on a 63 x 12 lattice, confinement phase.

scalar condensate. CPU times per update for HMC and TSMB algorithms look as
tAMC = 15.1(2) sec and ;2B = 8.96(2) sec. One sees a little gain for plaquette
and scalar condensate, and no win of performance for the pion norm.

The situation is rather different in the confinement case (Table 5.5). The
autocorrelation time for the pion norm is smaller than for the mean gauge energy
and scalar condensate. In spite of agreement of the measured observables, there
is no visible win of TSMB performance over HMC one. The acceptance rates
(wIMCY = 0.72(1) and (wISMB) = 0.68(1) are comparable. CPU times in this
case are tEnS = 76(1) sec and ;M8 = 69(1) sec. The numbers of local update
sweeps in the multiboson algorithm were taken as follows: Nggy =2, Ngpo = 2,
Ney =2, Ngo = 2.

It is worth to note also that measured average reweighting factors:

(det ™' P4(Q'Q)) ~ 1

for both Coulomb and confinement phase cases. And therefore, the reweighting
step (5.92), (5.93) in our Ny = 2 case brings only subtle corrections to the observ-

ables evaluated according to the ordinary two-step multiboson averaging (5.83).
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(Ec) (¥y) (IT)
(OBMOY | 0.1332(1)  0.9381(1) 1.378(1)
(

( (

(OTSMBY - 10.1331(1) 0. 9379(1) 1.376(1)
Tt 3.2(3) 2.0(2) 25(4)

Tt o 3.0(3) 2.8(2) 50(8)

1.7(2) 1.2(2)  08(2)

int

7(2

GrsmB/HMC

Table 5.4: Performance of HMC and TSMB N; = 2 algorithms in the
Coulomb phase (8 =2, k = 0.130). Lattice size 63 x 12.

(Ea) () (IT)
(OHMCY 1:0.939(1)  0.95(1) 13.9(2)
(OTSMBY 10.938(1)  0.96(1) 13.7(2)
Tt 65(7)  60(7)  35(5)
7.ISMB 120(20) 125(15)  45(5)
Grevp/mve | 0.5(1)  0.5(1)  0.7(1)

Table 5.5: Performance of HMC and TSMB N; = 2 algorithms in the con-
finement phase (3 = 0, x = 0.238). Lattice size 6% x 12.
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5.6.4 Methods to improve TSMB performance

The numerical results for both Coulomb and confinement phases presented above
mean nevertheless, that the TSMB algorithm is competitive with the HMC one.
And moreover, the theoretical gain expected from the rough estimate (5.121) is

not very large for 63 x 12 lattice:

GTSMB/HMC = 090(1)

In order to improve the gain of TSMB algorithm over HMC one, it is necessary

to use more local update sweeps (5.77) — (5.80). Indeed, the autocorrelation time

7_TSMB

o ° can be decreased to values of order 1 by applying a number of gauge sweeps

commensurable with the initial autocorrelation time (5.120):

TSMB
Ngg + Ngo Tint -

where according to estimates (5.111) and (5.114), 7I3MB o n,. However, the
number of operations in the TSMB algorithm remains the same magnitude as
earlier in (5.118) due to the correspondent choice (5.114), (5.116) of polynomial

orders:

NTSMB

oper X Vg, ng > ny.

This increases the gain (5.121):

Grswn/mvc o (V)Y

Another way to improve the TSMB performance follows from the estimates
(5.120), (5.118) and also from the numerical observation that the TSMB measure-
ments required use only the first and the second steps of the algorithm (for Ny = 2)
without necessity to employ the reweighting procedure (5.92), (5.93). To enlarge
the TSMB gain, one should decrease the n; and ny polynomial orders. And then
the reweighting step will be very important for the correct evaluation of average

lattice observables.

5.7 Discussion

We have studied the performance of the two-step multiboson algorithm in the
I. Montvay version [36] — [38] and compared it with the well-established hybrid
Monte Carlo method [39, 40] for compact lattice QED with Ny = 2 dynamical
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Wilson fermions within both Coulomb and confinement phases. Results of our
investigation have shown that on the one hand, the TSMB algorithm is a robust
alternative to the HMC method and on the other hand, the former algorithm is
competitive with the latter one. It can be used for the investigation of the Aoki
phase in the compact Wilson fermion QED (see Figure 2.1b) without auxiliary
twisted mass term (2.35) and also for the study of the QED with odd fermion
flavours Ny.

Nevertheless, we can further improve the performance of the TSMB method
by increasing the number of local update sweeps e.g. for gauge fields. One should
take the number of operations commensurable with that for the noisy correction
accept-reject step.

The gain can be enlarged also by decreasing the orders of the first and the
second polynomials. It needs to revise the role of the reweighting step correcting for
the average observable values. One should note nevertheless, that this way requires
a very careful choice of the approximating polynomials especially the P;(z) one in
order to avoid the pathologically huge reweighting factors |det ™ Py(QfQ)| > 1.

Let us now discuss the application of the TSMB algorithm to a study of the U(1)
lattice theory with an odd number of dynamical Wilson fermions. In principle,
this algorithm is suitable for simulations with arbitrary N; number but in the
reweighting procedure (5.92), (5.93) one has to take into account the fermion
determinant phase (or sign, in case of integer odd Ny). Fortunately studying the
Coulomb phase, one may not think about the sign problem. It was shown (see e.g.

(62, 10]) that owing to reflection symmetry:
det M >0, |k| < 1/6.

And since the critical k* parameter lies on the chiral limit line k.(3) such as
Ke(00) = 1/8 (see Figure 2.1), for evaluation of a large critical 5* it is not necessary
to compute the sign of fermion determinant.

This sign might be taken into account only in case of confinement or Aoki
phase investigation. Unfortunately, the sign can not be found by means of pseu-
dofermion factorization (5.44) as in the squared fermion determinant case. The
straightforward method to obtain information about the determinant sign — direct
evaluation of the fermion determinant — is enormously slow for large lattice sizes
and is very expensive in computer memory. One can, however, bypass the problem

using the complex gradient method [107, 109] for evaluation of lowest eigenvalues
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of even-odd decomposed matrix Q'Q (5.41) at different x’ values: &' € [ko, k).
Here kg is such a hopping-parameter when exactly det M > 0 and & is the studied
value. Then corresponding eigenvectors of Q'Q will be eigenvectors of the operator
~v5Q which is Hermitean according to the property (5.38). If one of the lowest
eigenvalues of the latter matrix crosses 0 in the interval [kg, ], it means that
contribution of this eigenvalue to the target determinant is negative. And the
determinant sign will be equal to the —1 value in the power of the number of such
crosses.

Such a method of determinant sign evaluation is still not very fast. A possible
alternative to the lowest eigenvalue study could look as follows. Let us consider

the Hermitean unitary operator:

~1/2
U=Q(QQ) " (5.122)
One can write the following expressions:
det Q
=detU = (-1)" _=2V-TrU=2V - (n'U 5.123
detq] % (=)™, n r (n"Un),,  (5.123)

where n_ is the number of —1 eigenvalues of the U matrix and the 7 is the Gaussian
noise (5.16), (5.19). The unitary operator (5.122) requires the knowledge of the
(QTQ)_U ? matrix. To compute it, one can use the polynomial approximation
[138] of the x~1/2 function, e.g. (5.90), when N; = 1:

(Q'Q) "’ ~ P(QIQ)P,(QIQ)P(Q!Q). (5.124)

The equations (5.122) — (5.124) allow to evaluate the sign of the determinant
det Q in the equation (5.92) for reweighted average observables. The disadvantage
of this method is the low precision for the n_ value. Other ways to study the
fermion determinant sign are now under investigation (see e.g. [139]).

The basic content of the section 5.6 will be published in paper [41].
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Chapter 6

Summary and outlook

In this thesis, we investigated numerically and partly analytically the compact

lattice QED with Wilson fermions. We studied the particular tasks in compact

lattice QED: the problem of the zero-momentum modes in the Coulomb phase and

the performance of dynamical fermion algorithms for U(1) gauge theory. Results

of our inspection look as follows:

The influence of the constant or zero-momentum modes on the gauge depen-
dent lattice observables like photon and fermion zero-momentum correlators
within the Coulomb phase leads to a disagreement of these observables in

comparison with standard lattice perturbation theory.

These constant modes are responsible for the screening of the critical be-
haviour of the gauge invariant fermion values in the vicinity of the chiral
limit.

The elimination of these zero-momentum modes from gauge configurations

leads to the expected perturbative behaviour of gauge dependent observables

within the Coulomb phase.

The critical behaviour of gauge invariant fermion observables in the Coulomb
phase upon removing the zero-momentum modes is restored. The critical
hopping parameter .(3) then coincides with that obtained from gauge de-

pendent observables.

The two-step multiboson algorithm in the version of I. Montvay was im-
plemented for numerical investigations in the U(1) lattice model with even

dynamical Wilson fermion flavours.
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e A scheme of an appropriate choice of technical parameters for both the two-
step multiboson and the hybrid Monte Carlo algorithms is proposed. Theo-

retical estimates of the performance of such simulation methods are obtained.

e The two-step multiboson algorithm appears to be a good alternative and is
at least competitive with the hybrid Monte Carlo method. This was proven

by numerical results and explained by a theoretical analysis.

e Further improvement of the performance of the two-step multiboson algo-
rithm can be achieved by increasing the number of local update sweeps and
also by decreasing the orders of first and second polynomials and by com-

pensating the errors with a reweighting step.

Finally, let us give some recommendations to the future investigation of the

compact U(1) Wilson fermion model:

e For the study of the Aoki phase without an extra mass term as well as of
the phase structure of the model in case of odd Ny fermion flavours, it is
recommended to use the two-step multiboson algorithm. Its local update
cycles can be improved, the role of the reweighting step should be increased,
and an algorithm for the evaluation of the fermion determinant sign must
be implemented to U(1) theory. However, in the case of large 3 values the

problem of the determinant sign does not occur.

e The investigation of gauge dependent operators is necessary to determine the
constant physics lines, containing more physical information about QED. In
order to evaluate correctly the critical parameters * and «* in the Coulomb
phase for the resolution of the 'Landau pole’ problem (or problem of triviality
of U(1) theory), one can directly eliminate the disturbing zero-momentum
modes, or one has to take them properly into account. An alternative to be
investigated might be the use of C*-boundary conditions for the lattice fields

in order to get rid of the zero-momentum modes.
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