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The nonlinear effects on the dynamical systems with emphasis on nonlinear resonances are
investigated using second-order perturbation theory in two dimensions. We have solved the equations
of motion and derived expressions that yield information about nonlinear contributions to the
dynamics of particles in an accelerator, including the perturbation of tune; emittance growth,
Hamiltonian resonance strength, generating function resonance strength, fixed points, Chirikov
criteria, island width, etc. Furthermore, we have derived symplectic expressions for calculating the
emittance and phase which can be used as a faster alternative to tracking. This formalism was
implemented in a code, NONLIN, that can be used to study nonlinear effects in accelerators.

1. INTRODUCTION

We investigate the nonlinear effects on dynamical systems with emphasis on
nonlinear resonances. We begin with the equations of motion, from which we find
the Hamiltonian for a particle in an accelerator as we introduce the concept of the
invariant of the motion. Defining the Frenet-Serret coordinates (for a particle in
an orbit), we develop the general expression for the vector potential. Using
action-angle variables and canonical perturbation theory for accelerators (similar
to but more general than Ref. 1), we simulate the nonlinear resonances by
inclusion of sextupoles and octupoles in two dimensions. Thereby, we have solved
the equations of motion and derived expressions that yield information about
nonlinear contributions to the dynamics of particles in an accelerator, including
the perturbation of tune, emittance growth, Hamiltonian resonance strength,
generating function resonance strength, fixed points, Chirikov criteria, island
width, etc.

We have implemented some of our results in an algorithm (a preliminary
version of NONLIN), which can be used to study nonlinear effects in ac-
celerators, e.g., resonances.

T Work performed under the auspices of the U.S. Department of Energy.
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2. EQUATIONS OF MOTION AND THE HAMILTONIAN FOR A
PARTICLE IN AN ACCELERATOR

The trajectory for a particle in an accelerator can be found from the Lorentz
force, i.e.,

d v
d_tp=q|:E+EXBj|’ (1)

where p is the momentum, E and B are the electric and magnetic field, v is the
velocity, g is the charge, ¢ is the speed of light, and ¢ is the time (all in the
laboratory frame of reference).

It is convenient to express the electric and magnetic fields in terms of the vector
(A) and scalar (¢) potentials:

120
E=-V¢--2 A, @
B=VXxA. 3)

Since the equations of motion can be obtained from the Hamiltonian H using
Hamilton’s equations,

dp; oH
b o Sl 4
dt ox;’ )
with o
H=3 pit;— L(x;, pi, t) (6)
[where L is the Lagrangian given by Lagrange’s equations, i.e.,
d
—V,L-VL=0, 7
Az ™
v, =X —ﬂi
i M dt )

and V, is the gradient in v space, with (v,x,¢) as the independent variables
(basis)], the Hamiltonian that produces Eq. (1) as the equations of motion can be
found by first substituting Egs. (3) into Eq. (1):

d 10

1
Ep:q[—Vd)—;gtA‘i’EVX(VXA)] (8)

Then, after some manipulation, we get

2 (p+2a)+qv-(o-1v-a)=0. ©)
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Comparing this [Eq. (9)] and Lagrange’s equations [Eq. (7)], we obtain the
following Lagrangian:
L=T—q¢+%A-v, (10)

where V, T = p [since p=mvy, then T = —mc?/y, where y =1/(1 — v*/c*)"?.

The Hamiltonian can be found from the Lagrangian by changing the base
variables from (v,x,¢) to (P,x,t), where P=(p+ (q/c)A) is the canonical
momentum; using Eq. (6) and the above Lagrangian [Eq. (10)]:

H=c\/<P~%A)2+m§c2+q¢. (11)

Furthermore, through this Hamiltonian formulation, the concept of an invariant
of the motion can be introduced. We first express the total differential of the
Lagrangian and the Hamiltonian:

oL
dL=(V,L)-dv+ (VL) -dx+ m dt (12)
and
oH
dH = (VpH) - dP + (VH) - dx+5dt. (13)
Defining the independent canonical variable P to be
. P=V,L (14)
and, since
P:-dv=d(P-v)—v-dP, (15)
V(P-v)=0, (16)

then Egs. (12) and (13) become equivalent expressions (leading to the Hamil-
tonian formulation Egs. (4)—(6), if

H=P-v—1L, 17)
v= VPH, (18)
d
Zp=_vL=VH.
" H (19)

Thus, if H is independent of time (i.e., dH/dt = 0), then H is called an invariant
of the motion. Other invariants may also exist, e.g., emittance.’

It is useful for accelerators to express the Hamiltonian [Eq. (11)] in terms of
the Frenet-Serret coordinate system (x, s, z), (for particles in an orbit) shown in
Fig. 1, such that

A

if =.i_, (21)
js p(s)
5= -, (22)
s p(s)

d,
52—0, (23)
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x>

FIGURE 1 Coordinate system.

where ~ defines a unit vector and p(s) is the radius of curvature (e.g., in a
bending magnet), which may vary along the curve. In this coordinate system, a
particle that is x units along the £ direction will have a radius of curvature equal
to x + p(s). Thus, the Hamiltonian becomes

2
O
H=c|—+(p-2a) +(n-24) +Mi+q9, (29

2
x
(1+3)
o
where the length / (as well as the momentum) the particle travels along the orbit
varies with the radius of curvature, i.e.,

l=x:;ps=s<1+%), (25)
P=(P -§)<1 +f), (26)

and g
A=A -§)<1 +i—). @7)

P, and P, are projections of momentum along the x and z directions.

In an accelerator, the electric and magnetic fields are periodic with s (the length
the particle travels when on an equilibrium orbit); however, since the fields are
not in general simple functions of time ¢, it is useful to change the independent
variable from ¢ to s (as the new ‘“‘time” variable). Thus, the new Hamiltonian
should have the following equations of motion:

oH

dx_3P, 9P| _4H,

ds 8H 4P|y oP.’
oP,

(28)
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oH
dP, ox 3P, 0H,
=2 = - (29)
ds OH x|y Ox
oF;
3H
dz 08P, 3P, 8H,
@Z_Z=_ _ =— (30)
ds OH OP, |y OP,
oF;
ot
dP, 9z OP, 9H,
. _ oz _of| _ _co (31)
ds OH 0z |y oz
oF;
dt 9P, OH,
—=—= 0 (32)
ds OH J(—H)
oH
dH ot OP, 0H,
—=—= =—-—. (33)
ds OH ot |y ot
oF;
This implies the new Hamiltonian (H,) to be
HO = —Ps(x; Px: Zz, Pz; t; _H) S), (34)

with (¢, —H) forming a set of conjugate variables.

We further simplify the Hamiltonian by considering the case when there are no
electric fields and only transverse magnetic fields, i.e., ¢ = A, = A, =0; then H,
reduces to

Hy= —(1+f)\/P2—P§—P§—1As, (35)
P c
P=VH?*-m?c*/c (36)

(note, as long as there is no time dependence, H is a constant of the motion).
Since P > P,, P, and p > x, then

_ P: p?
H,= — P(l + %) + >p + T %AS + higher-order terms. 37

The form of the vector potential A,(x, z,s) is restricted since it must obey
Maxwell’s equations, i.e.,

VXB=VX(VXA)=0, (38)
V-B=V:-(VXA)=0, (39)
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with the vertical field B, (on the plane) given by the following Taylor expansion:

2 3

1
B,(x, z=0)= Bp( +Kx+Sx +0x +- ) (40)

which in turn defines the quadrupole strength K, sextupole strength S, octupole
strength O, etc.
Equations (39)-(40) implies (with A, = A, = 0) that

OA;
e 0 (41)
and
o x\7' o A,
a (1 +;> a (1 + p\)A + 37 =0. (42)

Hence, A, becomes

1 x2 X x* x2—=z2 x3 4x*-2z*
As=—B -( __+___+...> ( -4 +>
p[p * 20 20* 2p° +K 2 6p  24p*

x3—3xz% x*-z* x*—6x?z%+ 24
+S< - +---)+0(————+---)+~-~], 43
6 24p 2 “3)

where (assuming a separated-function accelerator) the contribution due to K/p,
K/p?, etc., (as well as the terms of the order of 1/p?) are negligible.
Thus, for illustration we will use the following potential:

2 2
A, = _fﬁ[£+(_1_2_,<))6_+,<z_
q lp \p 2 2

S
te (® —3xz%) + 294 (x*—6x?z22+z% + - - ] , (44)

where P, is the momentum of the beam on the equilibrium orbit. Then, Eq. (37)
becomes

x P2 P? 1 x? z?

- - “x ~K)E+pKZ

H, P—(P-P)— +2P+2P+P0<p2 K)z K=
(x —3x22)+P0—(x x2z% + z%).  (45)

The coefficients p, K, S, O, etc. (generally expressed as functions of s), in the
vector potential A, [Eq. (44)] must be constant in order to satisfy Maxwell’s
equations, Eqgs. (38)-(39). If these constants are made piecewise constant in
“time” s for each magnet, the Maxwell’s equations will still hold, except at the
ends of the magnets where the field changes, resulting in the addition of a
longitudinal component of the field. These edges are often modeled by
discontinuous functions, where a matching condition is used.
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Finally, we normalize the Hamiltonian with the following transformation:

Zt . (46)

H

H, P°
P,

Px= F ) (47)
P,

P: ; ’ (48)

and assume that the momentum of the particle P=PF, (i.e., the design
momentum). Note that the constant term P in Eq. (44) has been dropped, since it
does not affect the equations of motion, leaving

2

- K(s)) +K6) T

2 2
B2

H, =
)

p*(s)

S(s) ( )
e

(=3 +——=(x*—6x’z22+ z+- -+ (49)

The solutions to the equations of motion obtained from this Hamiltonian [Eq.
(49)] is sought but are nontrivial (due to the presence of nonlinear terms) and are
discussed in the following sections.

3. PERTURBATION THEORY

The Hamiltonian describing an accelerator with sextupoles and octupoles can be
represented (from Section 2):

2

K(s)> +KE) S
S(s)
e

HO_ 2(px+pz)+ <P ts)

o
(x*-3xz%) + —% (x*—6x%2%+z%), (50)
where x and z represent the transverse particle position (shown in Fig. 1) with
respect to the equilibrium orbit, and p, and p, are the conjugate momenta. S(s)
and O(s) are given by

1 d*B
S(s)=— —=
)= Bp @ |, 5D
and
1 &°B
O(s) =— 222
=305 | (52)

B, is the vertical component of the B field. Note that the field due to the dipole is
a predominantly vertical field and may have sextupole and octupole terms as
defined in Egs. (51) and (52).
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In order to study the effects of the nonlinear elements we use the canonical
transformations to action-angle variables® with the generating function F:

z? ﬁ_@)] x Bi(s )]
2B.(s) 2 1 28.(9) '

Where ¢, and ¢, are the angle variables, primes represent d/ds, and B,(s) and
B.(s) (the horizontal and vertical beta functions) are solutions to

F(x: Z, ¢x} ¢z: S) == [tan ¢z - [ta ¢x (53)

BB (B)? -
x5 ( O (54)
and ,
The action variables J, and J, are
3F x?
J.= ‘%:=2ﬁx(8) sec’ @y, (56)
oF z?
SRV T YRSl e &7
which implies that
= V2J,B.(s) cos ¢, (58)
z=V2J,B.(s) cos ¢,. (59)

The emittance E, , is an invariant of the motion in an accelerator without
sextupoles, octupoles, etc., and the conjugate momenta are proportional to the
beam emittances (2J, = E./x and 2J, = E,/x). Therefore, without the nonlinear
elements, J, and J, are invariants of the motion.

The transformed Hamiltonian becomes

OF _ J. , J.
55 Buls) B)

~31,B.(s) cos? p,] + 28 )[,2 2(s) cos* g — 61J,B(5)B.(s) cos” ¢, cos” g,
+ 2BYs) cos* ). (60)

Next, we search for a new generating function G that eliminates the ¢, and ¢,
dependencies in a new Hamiltonian H, so that new action variables (K, and K,)
including nonlinear effects are invariants of the motion. We used the following
generating function:

Hl = HO +— S(S) \' 2J ﬁx(s) Cos ¢x[‘]xﬁx(s) COS ¢x

G(KX’ KZ’ ¢x: ¢Z: S) = ¢xKx + ¢2Kz + Ki/2w1(¢x’ ¢z: S) + K,\lr/szWZ((Px) ¢zr S)
+ K.%Ul((Px) ¢z’ S) + KszUZ((px: ¢z» S) + K§v3(¢xr ¢z, S)‘ (61)
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Hence, H, transforms into

K, K
Hy =25+ 22+ a($)K: + b(5)K.K, +c(s)K: + O(K™?) 62)

where a(s), b(s), and c(s) are given in Appendix B [by Egs. (B-15), (B-22), and
(B-43)], and the functions wi(¢,, ¢., s), wa(P,, ¢, 5), vi(Ps, ¢., 5), etc., in the
generating function G [Eq. (57)] must satisfy the following equations:

N ﬁxts) 2:1 ﬁzl(s) j:;i + % + I S(s)BY*(s) cos’ ¢y, (63)
=L ow, + 1 8w2 o,
B:(s) 3¢,  B.(s) a¢z s
Lo, 1 v, dv V2

= V2B.(s) S(5)B.(s) cos ¢ cos* p,,  (64)

) =539, B39, 3 T2 € )ﬁ’s‘/z(s)acpx‘m -
— V2B.(5) 8(5)B. cos ¢, cos’ @ET;"; + 2 ) cos* ., (69)

L dv, 1 dv, dv, V2 s
P =5.65) 50, T B.5) 00, T a5 T 2 S (s) k2

ﬁx awl awZ 2 2

S SO (S5 aq,)cow»xcos b: = O(IBB(5) <O b, cO5* 6, (66)

8v3 1 OJv; OJv,

)= () et Brsis )B:(S)a(chosqﬁxcos 5.

O( )ﬁz(s) cos* ¢,. (67)

To eliminate the ¢, and ¢, dependent terms, we find the functions w;, w,, vy,
v,, and v; such that the coefficients of K2, K™ are either zero or functions of s
(where m and n are integers and (m + n) <4). This implies H, is no longer a
function of ¢, or ¢, to second order in K; K, and K, become (approximately)
invariants of the motion. That is,

dK,  dH,
5= 550 (68)
dK,  OH,
5" 5.0 (69)

Note that, for stable motion, K, and K, are of the order of emittance, therefore
they are small.

The method for solving Egs. (63) through (67) for wy, w,, vy, v,, and v; are
given in Appendices A and B. Note that these solutions can be expressed in a
Fourier series from which we can obtain information on resonances. The
generating function in Eq. (3.12) is linear in w;, w,, v, v,, and v; and can be
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expressed as a Fourier series:
G =K., +K.p, + 2, [giK,, K., 5) cos (n,§ + n,.)
k

+ gi(K,, K., s) sin (n,, ¢, +n,,¢.)]. (70)

From this G, we can define a generating function resonance strength R, as
follows:

Ri(K,, K., s) = V[giK,, K., )P + [gi(K,, K., s)I* - Isin w(n,, v, +n,v.)| (71)

such that, when on resonance, R, reduces to the Hamiltonian resonance strength.
These resonance strengths (R,) can be seen to be directly related to emittance
growth, since from the generating function G we have

%]
E.=2n],=2n G , (72a)
9.
oG
E,=2n],=2 . 72b
. 7 3. (72b)
From these we can estimate the maximum growth of the beam emittance as
R(K, K,
E, = Zn[Kx + > |1, — oKy, K, 5) ] (73a)
% sin w(n,, v, +n,v,)
R.(K,, K
EZEZn[KZ + |n, - Ky K., 5) ] (73b)
% sin w(n, v, +n,v,)

As long as the tunes are far from any resonances and K, and K, are small, Egs.
(73) give the upper limit of the emittance growth.

Furthermore, the betatron tune is perturbed due to these nonlinear terms. To
find the tune, we return to the transformed Hamiltonian H, [Eq. (62)]. The
equation of motion for the phase advance of H, is

d OH 1
a;l[}x—'a—Kt——x‘l‘za(S)Kx‘f-b(S)Kz, (743)
d oH 1
;i; Y, = a_KZ = ——z + b(S)Kx + 2C(S)KZ, (74b)

where vy, and v, are the transformed angle variables of Hamiltonian H, and the
coefficients a(s), b(s), c(s) are given in Appendix B. Since (as discussed before)
K, and K, are invariants of the motion, the perturbed betatron tune is found to
be

v, =v+ 20, K, +2a,,K,,

75
v, =v2+2a,,K, +2a,,K,, (75)

where

1 C dt

2-7[ 0 ﬁx(t) ’

vi=

(76)
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1 (¢ dt

Vi=r| —, 77
27 by B.0) L

and

g

= fo a(t) di, (78)
1 C

Ge=5n fo b(o) dt, (79)
1 C

e = fo c(t) dt, (80)

with C being the circumference of the accelerator.
The perturbative treatment given above works fine as long as we are far from
resonance.

4. NEAR RESONANCE

The perturbative approach given in Section 3 breaks down when we approach a
resonance, i.e., 6 =0, where,

d=nyv,+n,v,—p (81)

and the integers n,, n,, and p classify the given resonance. The order of this
resonance is defined as N = |n,| + |n,| which depends on how far we can expand
the Hamiltonian. Equation (50) illustrates a Hamiltonian with sextupoles and
octupoles. The sextupoles produce third-order resonances whereas the octupoles
produce fourth-order resonances [see Eq. (60)]. The third-order sextupole
resonances in the Hamiltonian of Eq. (60) can be removed by using the
generating function given by Eq. (61) with v; =v,=v;=0, and w; and w, given
in Appendix B. In the new Hamiltonian, we see the second-order sextupole terms
contributing to the fourth-order resonances (as well as the octupole terms). We
can continue finding higher-order resonances by using higher-order transforma-
tions similar to those described above. The general form of the new Hamiltonian
is

I, I,
B=5© 5.6
+ B (L, L, 5)sin (ns + n.5,), (82)

where (., ¢,) and (I, ¢,) are the action-angle variables and assume we are near
a particular resonance and far enough away from other resonances so that their
effects are negligible.

Next, we solve the equations of motion obtained from the Hamiltonian in Eq.
(82) to find the behavior of the system near a resonance. We first remove some of
the “time” dependence using the following generating function F [and later

+ a(l,, L, s)+ h(L,, 1, s) cos (n,¢, + n,o,)
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another generating function G, given by Eq. (103), will remove the rest]:

F(Ly, L., ¢, $2,5) = L. [¢x +og s - f S ﬁj(tt)] L.+ 2_g v fo ﬁ:i(tt)]

C s
43 j a(L,, L., t)dt - [ (L, L,, O dt, (83)
C 0 0

where v? and v? are the unperturbed betatron tunes defined in Eq. (71) and
(L, ¥,) and (L,, y,) are the new action-angle variables. From this generating
function, the new variables are related to the old variables as

L=L,, (84)
L=L,, (85)
2m S dt 3 [s JC f ]
=@, +— - + —| oL, L, t)dt— | a(L,, L, t)dt|,
V=0 C o B:(t) 9L, LCJy ( ) 0 ( )
(86)
2 S dt 3 s (€ s
z = z+_' % — +__|:_j Lx’ zs dt—J Lx’Lz; d]
Y, =¢ c Vs L B0 aLzCoa( L,t) Oa( t) dt
(87)
Thus, the new Hamiltonian becomes
oF
+_
Hy=H+—, (86)
2r 2,
1=+ Zo L[ el L 0 @+ h Les)cos [l + £6)
e C C
F oy, +E.(5)] - E” (nv, + nzvz)s} +h*(L,, L,, s)sin {nx[wx +E.()]
27
.+ EO)] - (vt nev)s) (59
where
E(s) = f 9 fa(L L., f)dt (90)
X ﬁx(t) aLx o X Z )
a 'S
1
EZ(S) J’ ﬁz(t) aL Q’(Lx, Lz; t) dt’ (9 )
a L oz(Lx, L,,t)dt, (92)
a L w(Lx, L., 1t)dt (93)

Equation (89) still contains many resonance terms. Since &.(s) — (27/C)v,s
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and &,(s) — (2n/C)v,s are periodic in s, then the “time”-dependent term in Eq.
(89) can be expanded in a Fourier series about s. Defining the coefficients of two
Fourier series [one multiplying cos (n,y, +n,y.) and the other multiplying
sin (n, W, + n,¥,), where a bar is used to distinguish the coefficients of the latter

series] as

(Lo L) =2 [ {1 (L o D cos [150) + 8.0~ Z v, 4 nov

+h(L,, L., {)sin [nx§x(t) + & (1) - -Zg (nv, + nzvz)t” cos (F” kt) dr, (94)
and

(o 1) =2 [ {0 L cos [n80) + 120 - 2 v+ movy

+h’(L,, L,,t)sin [nxgx(t) +n,&,(t) — 2—g (nyv, + nzvz)t]} sin <%T kt) dt, (95)

it L) =2 [ {-net, L sin [ MED) + 1)~ (v, + vt

+h’(L,, L,, t)cos [ E () +nE () - (n v, + nkvz)t]} cos (gg kt) dt, (96)
(Lo L) =2 [ [t L, 0 si [nxgx(t) 10~ 2 v+ vt

+h*(L,, L,, t)cos [nxgx(t) +n,E.(t)—— (nxv +n vz)t]} sin (2—CJE kt) dat, (97)

the Hamiltonian of Eq. (99) can be written as

2n 27

C
Hy=—/vL, +—"VIL, +Cf a(L,, L,, t)dt
0

c C
27 . [2®
+ 2 {[hi(Lx, L,) cos (E ks) + hi(L,, L,) sin <F ks)] cos (n, Y, + n,y,)
k

+ [ﬁi(Lx, L,) cos (%t ks) + hi(L,, L,) - sin (%t ks)] sin (n,y, + nzlpz)} (98)

or
27 2 ¢
H=—vL,+—vIL,+— f
=7 viL, +C VoL, cl a(L,, L,,t)dt
% LX’ LZ +Es Lx’ LZ
+2[ it )2 it )~cos (nxwx+nz1pz—ggks)
k

i(Lx) Lz) - Ei(ny L )

z 2n
+ _
cos (nxtpx +n,y, + ks)
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i(Lx) Lz) - ﬁ;‘c(l‘x’ Lz)
2

L L) ¢ Hillo L) o (nyy, +np. + ks ). 99)

The greatest perturbation to the motion is expected to come from the term that
has the slowest-varying argument of sin or cos. This is the term k£ = p, where p is
chosen such that n,v, + n,v, — p =0. For simplicity, let
hi(L,, L)+ h(L,, L,)

2

= joc {hc(L,,, L,, t) cos [nx§x(t) +n.E.() - %r Gt]

sin ( nY, +n,y, —— ks)

A(L,, L,)=C

+h°(L,, L,, t)sin [n,,gx(t) +n,&,(t) - %ﬂ 6[]} dt, (100)

L,)—hy(L., L,)
2

= ‘ -h°(L,, L,, t)sin nxgx(t)+nz.§z(t)—g]—t6t
I [ 2

0

B C P(LX)

2
+1(L,, L., ) cos [nxgx(t) +n,EL (1) — —g 6t]} dr, (101)
where d =n,v, + n,v, —p. Then the Hamiltonian becomes (approximately)
2 2 1 (€ 1
H, = Fﬂ VL, + Fﬂ VL, + f oLy, L., 1) di+ ALy, L)

o5 (metp + ntpe = 2 ps) + 2 B(L, L) sin (mah + oy, — 2 ps). - (102)

The equation of motion for the above Hamiltonian can be solved exactly in order
to find its stable and unstable motion. This is done using a second canonical
transformation (which eliminates the “time” variable) given by the generating
function

2
Dx(”xu}x +ny, — —C]_tps> + Dzilfz for n,# 0
G(Dy, D;, ¥, ¥.) = . , (103)
xwx +D (nZWZ _PS) for n,= 0

where (D,, &) and (D,, .) are the new action-angle variables, related to the old
variables as follows:

L= {nxDx for n,#0

104
D, for n,=0’ (104)
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n,D.,+ D, for n,#0

L ,
n,D, for n,=0 (105)
ns+ . —Zps for n,#0
xWx WY, ——=PS or n,
&= c? , (106)
wx for n, = 0
Y, for n,#0
.= (107)

ny, —ZC—”ps for n,=0"

Then the transformed Hamiltonian becomes

2
C

2

(nve+nv2—p)D, + C

C
viD, + 1 f a(n.D,, n,D,+ D,, t) dt
Clo
1 1 .
+ EA(nxDx’ nsz + Dz) COos Cx + EB(nxDxJ nsz + Dz) sin Cx
H, =< (for n, #0) (108)

2 2 1 (¢
Fﬂ voD, + —g (n,v2—-p)D, + —C—,fo a«(D,, n,D,, t) dt

1
+ %A(Dx, n,D,)cos §, + C B(D,, n.D,)sin §, (for n, =0)

This new Hamiltonian is an invariant of the motion, and since it only depends
on one angle (phase) variable, we have for
(i) n,#0:

(1) D, = constant,
27 0 0 1 (€
2) Vel (nvy+n,v,—p)D, + ° a(n,D,, n,D,+ D,, t) dt
0

1 .
+ %A(nxDx, n,D,+ D,)cos §, + C B(n.D,, n,D, + D,)sin , = constant.

(109a)
(i) n,=0:
(1) D, = constant,
2, 1 (¢
2) —n,v;—p)D, +— f a(D,, n,D,, t) dt
C CJy
+ %A(Dx, n,D,)cos &, + % B(Dy,, n,D,) sin {, = constant. (109b)

From the above equations, the motion can be found (analytically or via the phase
plots). Furthermore, we can study the motion through the analysis of the fixed
points given below.

Fixed Points: The points at which there is no motion are defined as fixed
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points. For
(i) n,#0:
EC OH, 1 3
ds 8D_C T Cap, AP
1
CaD » =0, (110a)

where 6 is the distance from the resonance to the fixed points and is a function of
the action variables, and

d oH, 1
& D<= ", = ¢A(RDo nD+ Dy sin,
1
— ¢ B(Do, n.D, + D.) cos &, =0. (110b)
(ii)) n,=0:
ic — aHZ 1 I}
ds = aD C&D X
1
+_ —
cap, ¥ :=0 (110c)
and
d oH, 1 1
—-D - — =_A . _ 1 i -0
2 D= 3. C (Dx, n.D;) sin &; = = B(Dy, n.D;) cos £, = 0. (110d)

Both of the above cases (n, #0, n, =0) will lead to the following solution for
fixed points, i.e., for all values of n,, we have [by first solving Eq. (110b) or
(110d) and substituting the solutions into Eq. (110a) or (110c)],

6(L,, L,)

o (AL, L)+ B(L, L))
= :t X z .
4'7t\/A2(LX’ LZ) + BZ(LXJ LZ) (111)

Equations (110b) and (110d) each has 2N unique solutions in action-angle
variables (L,, ¥,) [and in Eq. (110d), (L., ¥.)], leading to 2N fixed points
(which may be stable or unstable).

Each stable fixed point can have stable motion, described by a closed
trajectory, about it, except when the motion becomes so large that it can go
through an unstable fixed point. These stable regions are called islands. It is of
interest to estimate the size of these islands when on resonance, since this may
give clues as to the importance of the nearby resonances which were neglected.
To estimate the island width, we use the invariant given by Eq. (109a). The
action at the stable (D;) and unstable (D,) fixed points are defined such that when
the action D, = D, then we are on a stable fixed point; however, when D, = D,
we will be on an unstable fixed point.

X)) X
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From Eq. (109a) we have (at fixed points)

2 (n2+ nv2 = p)D, + I(D,, D) £ M(D,, D.)

=?(n ve+n,v?—p)D, + I(D,, D,) F M(D,, D,), (112)
where
1 C
I(D,, D,) =Z,f a(n.D,, n,D, + D,, t) dt (113)

0

1
M(D,, D,)= E\/Az(nxDx, n,D, + D,) + B*(n,D,, n,D, + D,) (114)

and the sign in Eq. (112) is chosen depending on whether the case is stable or
unstable; M is the “Hamiltonian resonance strength,” which is a positive quantity
and does not change sign with change in action. In some cases, the upper signs in
Eq. (112) determine the stability conditions, in which case D; is greater than D,.
Expanding the I(D,, D,) and M(D,D,) in a Taylor series about D,, Eq. (112)
becomes

2
—é—’ (1,v2+ n,v% = p)D, + I(D,, D,) £ M(D,, D.)

°I(D,, D)
oD,
181(D,, D,) aM(D, - D.)
+ —— W E —_ 2 —NTue Tz
5 aD? (Ds-D)*¥M(D,, D,) ¥ aD,
18°M(D,, D,)
2 aD?

2
= E” (V% + n,v% — p)D, + I(D,, D,) + (D, - D,)

(Ds - Du)

+ (Ds - Du)2 + O[(Ds - Du)B]' (115)

Since the bandwidth at the unstable fixed point is

€ 3I(D,, D)

d,=nv,+nyv,—p=nvi+nVvl—-p+ 2% oD,

(116)

or from Eq. (111) , can be written as

C
27 aD £ 2] Dx:Duy

(117)

then Egs. (115) through (117) lead to the following equations with (D, — D,)
small:

1/8 _*M
o= (
2

oD? 8D2>(D D.y

(118)

(78]
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Solving for D; — D,, we obtain

([ oM OM\? M 3 ]
) tp.t (aa,) _Mé'D_ﬁiMﬁx (1199)
Pl M
oL D2 ' aD? ]
s u — 2 2 271
| [y s 2t
u zu 2 u u (llgb)
ol oM
L D2 aD2 ]

The signs in the discriminants of the above equations (which determine stability
conditions and describe the stable and unstable fixed points) must be chosen such
that the discriminant

<8M>2 MaZMiM ol
aD, oD% oD?
in Egs. (119) is positive.

Given the island width [Eq. (119)] of two nearby resonances, a criterion
determining whether the resonances overlap (or may be treated separately) can
be obtained. If the island width (D, — D,) is large enough to cause the bandwidth
[6 given by Eq. (81)] to cross another resonance, then the resonances overlap.
The total change in bandwidth A due to change in action across the entire island
can be found from Taylor series expansion of 6(D,, D,) about D, = D, as

96

5=0,+ D, - D,
“ aD,,( > = Du)
C &4
= — ——(D,—D 120
Outo 3D (D;—-D,) (120)

or

\/(eﬂ)z_My_MiMa_zl
_2c | &1 V\ap, oD> D>
REREDY &M

aD;  aD;

AS (121)

If there exists a nearby resonance with bandwidth 8, which satisfies the following

criterion:
OM\? M I
~MI= A M=
20 | &1 \/(8Du) oDp2 ™ " 3D?

6, >»>— 122
" & | aD? &l _ M ’ (122)

3D ' 3D2

then the resonances do not overlap (are isolated) and can be treated separately.
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In the case where we can neglect the contribution of 3M /3D, and 3°M/3D?2 in
the above equation, Eq. (122) reduces to the Chirikov (overlap) criterion. There
are other variations of this criterion, e.g.,

OM\? *M 31
5 3| @ \/<ap,,) 02 =M 5Dz
" aD? 3l _*M ’
aD2 " 3D?
which leads to Green’s criterion when the contribution of dM /3D, and 8°M/3D?
are negligible.

An alternate method of determining the behavior near resonances is through
stop-band widths given elsewhere.’

(123)

5. CONCLUSION

In closing, we have described an algorithm to obtain information about nonlinear
contributions to the dynamics of particles in an accelerator. This information
includes the perturbation to the linear betatron tune and the growth in emittance,
and (when on resonance) resonance strength (both in the generating function and
Hamiltonian), stop-band width, fixed points, island width, and the resonance
overlap criteria (e.g., Chirikov criterion, Greene’s criterion, etc).

This algorithm was illustrated using two-dimensional systems (circular particle
accelerators) and was implemented in the code NONLIN.*’ The results obtained
from this program were compared with HARMON.>”’

Further extensions of this method have been successfully used to compute the
variation of action, smear (i.e., spread of phase points about nominally invariant
phase trajectory), and linear aperture.® The results agree quite well with the
results obtained from tracking programs (PATRICIA and ORBIT),’ thus pro-
viding an alternate method to tracking.
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APPENDIX A

In canonical transformation of the Hamiltonian, we often come across equations
of the following form:

ow
x(s) + 2(s )£+— +F(¢, ¢.,5)=0, (A-1)
with F(¢,, ¢., 5) expandable in a Fourier series in ¢, and ¢,; F(¢,, ¢,, 5), a.(s),
and a,(s) periodic in s with period L (e.g., L = circumference). [Note that we can
solve Eq. (A-1) with more than two dimensions in ¢].
We begin by expanding F(¢,, ¢,, s) in a Fourier series as:

F(¢x; ¢z; S) = z Z annz(s)ei(nx¢x+nz¢z), (A_,2)
where ) -
Fan@) = [ [ F@u guoeeomerdg g, (a)
and assume that w(¢,, ¢., s) can be written in a Fourier series as
w(Py, ¢, 5) = E 2 Wi (5)€ P 47:02), (A-4)

The dependence on ¢, and ¢, in Eq. (A-1) can be removed by substituting
Eqgs. (A-2) and (A-4) into (A-1) and collecting terms, leading to

d
0= s Wi () +i(nea, +n.a,)w,, (s)+ F,,(s). (A-5)
This can be solved by transforming w,_, (s) into Z, , (s) as

ann,(s) = e+i["xWx(s)+”sz(s)]wnan(s)’ (A-6)

where s
)= a(d )

0
v.(5)= [ a0 (a-9)

This leads to ?
ii_ Zn,n,(s) = _ ei(nx'Px+nsz)an"Z(s)_ (A-g)

ds
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Before solving Eq. (A-9), we first consider boundary conditions which are
periodic. Due to the periodicity in a,(s) and a.(s) we have

Yu(s + L) =y, (s) + 2nv,, (A-10a)
Y, (s + L) =y,(s) + 2nv,, (A-10b)
where
1 L
v, = Z;f a,(s) ds, (A-11a)
0
and
L
v, =i I a,(s) ds. (A-11b)
0

Since F,, (s) is periodic in s, then at (s + L) Eq. (A-9) becomes

d
—Z +L
ds nyn ,(s )

. : , d
S eZm(nxvz+nzvz)et(n,1p,+nzw1)annz(s) — e2m(n,vx+nzvz) ;1_s annz(s)' (A-12)

Integrating Eq. (A-12) and manipulating leaves
Zpn (s + L) = Z,,(s)=2isin x(nwv, + n,v,)e”=*DZ | (s). (A-13)
From Eq. (A-9)
s+ L .
Zun(s + D)= Zyp ()= = [ OO, (dr (A-14)
Thus,

i
2sin w(n,v, +n,v,)

s+ L
ann,(s) = f ei(nx[l;Ux(t)_”Vx]+nz[¢z(t)_nvz])annz(t) dt, (A-15)

or w, , (s) becomes
i
2 sin w(n,v, + n,v,)

Wi (5) =
s+ L .
x f O~ Y@ vl )=V =D () e (A-16)
5

Translating Eqgs. (A-2) and (A-3) from the exponential Fourier series to sin-cos
Fourier series (where superscript ¢, s implies coefficients of cosine and sine terms
respectively) and defining

Fft,n,(s) = annz(s) + F—n,—n,(s) (A-17)
and
Fiz,n,(s) = i[Fn,n,(s) - F—n,—nz(s)]) (A'lg)
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with similar definitions for wy, , (s) and w;, , (s), leads to
1 L

2 sin n(nxvx + nsz) A [Fn,n,(t) Ccos {nx[wx(t) - WX(S) - ﬂvx]

+ nz[Wz(t) - WZ(S) - ”Vz]} - Fflxnz(t) sin {nx[wx(t) - w,\:(s) - ﬂ'Vx]

+ nz[le(t) - wz(s) - Jl'Vz]}] dt (A'lg)

Whn(8) =

and
1 L
quxnz(s) == 2 sin ﬂ(vxnx + Vznz) . [Ffunz(t) cos {nx[Wx(t) - Wx(s) - JTVX]
+ nz[Wz(t) - %(S) - JTVZ]} + Fftxnl(t) sin {nx[Wx(t) - WX(S) - ﬂ'Vx]
+ nz[Wz(t) - %(S) - '”Vz]}] dt (A'ZO)
We note that w(¢,, ¢., s) is also periodic in s with period L.

APPENDIX B
In Section 3, from the second-order perturbation of the Hamiltonian, we arrived
at the following five equations [Eqgs. (63) through (67)]:
1 ow 1 ow ow V2 n s
=— + +——+——Ss BY3(s) cos® ¢, (B-1)
5.6) 39, B.65) 90 (©)B="6)
1 8w2 1 awz 8w2
B(s) 0 ﬁz(S) 6’¢z Os
1 ov, 1 3y dv V2

Vzﬁx(s S(S)ﬁZ(S) Cos ¢x COS ¢Z) (B-2)

=5 5)00. B 00, T a5 T2 SOETE) Sreos o
~V2B.() S(5)B.(s) cos ¢, cos? “%% O) gs(5) cos* ¢, (B-3)
L dv, 1 v, 8u, V2 n
Y0 =5 )a¢>x B.()o9. 3 T 2 SO )acpx“’s ¢
ow, ow, 2
S( )ﬁz( )(—+28¢2> Cos ¢x Cos ¢z
—O(S)ﬁx(S)ﬁz(S) cos® ¢, cos’ ¢, (B-4)
__1 ovs 1 dvus dus_ ﬁx(s)
‘=56 )a¢x+ﬁz(s) 59, ' o5 SEP: a¢x°°s 9+ c05* .
O(s )[32 cos* ¢, (B-5)

where af(s), b(s), and c(s) are given in Egs. (B-15), (B-22), and (B-43),
respectively.
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Appendix A shows how to solve these five equations once we expand
F(¢., ¢., s) of each equation in a Fourier series, to obtain their corresponding
Fourier coefficients. In this appendix, we list these coefficients.

First we solve Egs. (B-1) and (B-2). Using these solutions we solve the other
three equations.

For Eq. (B-1) the Fourier coefficients are

io(s) = I S(s)B*(s), (B-6)

Fso<s)=—1‘§ SEB), (B-7)

and all others are zero. From Appendix A, we see that the solution will be of the
form
w1(¢x’ ¢z) S) = Al(s) cos ¢x + A3(S) cos 3¢x + Bl(s) sin ¢x + BB(S) sin 3¢m (B'S)

where

A0 =g [ FOsSn 0 pO - d B9

2 sin v,
with

0o =[ 55 (B-10)

and similar expressions for the other coefficients.
From Eq. (B-2), the Fourier coefficients become

i-2(8) = ——\?S(S)Vﬁx(S)ﬁz(S), (B-11)
1o(s) = —}/Q—QS(S)Vﬁx(S) B:(s), (B-12)
12(s) = ——\? S(s)VBx(s) B-(s), (B-13)

with a solution in the form

w2(¢m (Pz» S) = C-—Z(s) Cos (¢x - 2¢z) + CO(S) Ccos ¢x + C2 COos (¢x + 2¢z)
+ D _,(s) sin (¢, —2¢,) + Do(s) sin ¢, + D,(s) sin (¢, +2¢,). (B-14)

From these two solutions, we could find the Fourier coefficients for the latter
three equations.
To compute the v, function given by Eq. (B-3), the Fourier coefficients are

Fiols) = VEBLOSOIB6) + B + 2L ) =a(s), (B15)
50) = Y2 BRSO + 98]+ 22y, (B16)
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Fis) = —Iﬁy%s)smml(s)+9A3(s>1, (B-17)
Figls) = + ‘[ﬁzfz(s)S(s)[Bl(s)+9Ba<s)1+ W), ®1y)
Fio(s) = —}—f ()S(5)Ar(s) + 9A5(s)], (B-19)
Fiols) = + V2 B2(s)S()Br(s), (B-20)

Fio= — 5V B2%(5)S(s)Ax(s), (B-21)

where Aq(s), As(s), Bi(s), and Bs(s) are the coefficients from the solution of w,
[Eq. (B-8)].
To compute the v, function given by Eq. (B-4), the Fourier coefficients are

Fios) = L2 50 5.6 4D_o(5) - 4D1(5) ~ 2B,(9)] + 3B.(5) Do)}

-9 g (5)6.05) = b(s), (B-22)
o) =220 ) (5,9 4D —(5) ~ 4D1(5) ~ 6Bx(5) ~2B,0)]

+48,6)D0)) ~ 22 B.(5).05), (B-23)
Fius) = L2 505, 6)[64(5) + 241(5) + 4C.06) ~ 4C_5)] = 2B.6YC5),
(B-24)
Faus) =2 501, )0105) - 68.6)B(5), (B-25)
Fats) =22 )65, 6)6) ~ ALYl (B-26)

Fias) =YD 553 135.6) - 88.0)1DA() + [36.06) + 86.6)1D0)
~2B,6)B.(5)) ~ 22 B()B.(5), (B-27)
o) = Y2 563 [55.6) - 38.)1Cx) + 86.06) + 3B 0ICo(5)),  (B28)

Vﬁx()

Fu(s) ==, 5(5)B.(s)[D —o(s) — Da(s)], (B-29)
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Fiu(s) =2 551, 5)(C o) + €] (B-30)
Fia) =20 )18, )D_s) - 3. 0BOL, (B3
Fia©) =22 50036, 005(5) - BOYCo), (B
Fi2(6) =22 5(5) (B.)Dx) + 86.6) + 31D (6)
~ BB + BON -2 B.6)B.0) (B-33)
Fi+(6) =2 55),6) )
_[8B(5) + 3Bo()]Ca(s) + Bo()BANS) + A}, (B-34)
Fix(5) = Y22 ) 135.(5) — 88.6)1D105) + B5)D—o05)
BB + BED - A2 A6)8.0), (B39)
Fints) =22 5 185.6) — 36.6)1C:00)

+ Be(5)C—o(s) + B.(5)[BAs(s) + Ai(9)]},  (B-36)
\ ﬁx(S)

Fals) = S(s)[B.(s)Dx(s) — 3B.(s)Bs(s)], (B-37)
Fols) —\/ms( )[3B:(5)As(s) = Bx(s)Cals)), (B-38)
F3_4(s) —\/?_)S( )B=(s)D2(s), (B-39)
F3a(s) = —VQFS( )B:(s)C2(s), (B-40)
Fq(s) = —@S( )B:(s)Da(s), (B-41)
F24(5) —\/2_4@5( )B:(s)Ca(s), (B-42)

where the coefficient of the w; and w, functions were used.
Finally, we give the coefficients needed to compute the v; function given by
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Eq. (B-5) as
Fioo) = - V2O 505, )1D,6) + 2005)+ D91 + 22 t5) =),
(B-43)
Fa0) =~ 563, ) Ds5) 4 205) + D)), (B
Fa) =B 505, 0 C + 260+ Cal (B49)
o) = = Y22 5015, 0)Dst9)+ 2us) + D11+ 2 B, (B40)
Fi) = Y20 508, 0)c0) - €00, (B-47)
Fiuo) = ~ B0 55,0100+ 001+ 2 pxe), (B
Fiis) =22 50, )16 - €0 (B-49)
Fi-a)= - Y220 55, )(D,6) + 2D 5], (B-50)
Fi-16) = Y 500, )1Cut) + 20 00, (B-51)
Fa0) = ~ Y20 505, 0)20,65) + Do), (B-52)
P16 = Y22 50,2409 + Goo), (B-53)
F9 = — 220 505,00, (B-54)
P9 = Y2 535,670 0), (8-55)
Fau6)= Y22 535, )0,65, (B-56)
Fau) =L 5035, 0).0), (B-57)

where, we used the coefficient from w,. Some of these coefficients were obtained
using the program MACSYMA.' Note the F§, term that appears in each v,
i=1,2, 3 does not represent resonances but contributes to the perturbation of
the tune.





