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Abstract: In this paper, we consider the application of quantum reservoir engineering in quantum

metrology. More precisely, we are concerned with a system setup where a sequence of atoms

constructing the “time-varying” quantum reservoir interact, in turn, with the trapped field in a cavity

through the Jaynes–Cummings Hamiltonian. In particular, we were able to manipulate the initial

states of reservoir atoms in order to enhance estimation precision regarding the coupling strength

between each atom and the cavity (the coupling strength between each atom and the cavity was

assumed to be identical). The novelty of this work lies in alternately preparing the atoms at two

different states in a pairwise manner, such that the cavity could converge into a squeezed state with

photonic loss to the environment taken into account. The control scheme proposed here thus leads

to higher precision compared to the previous work where reservoir atoms were initialized at the

same state, which drove the cavity to a coherent state. Detailed theoretical analysis and numerical

simulations are also provided. In addition, this system setup and the associated control scheme are

easily implemented for quantum metrology, since no entanglement is required for the preparation of

atom states, and the final cavity state can stay steady.

Keywords: quantum reservoir engineering; quantum metrology; squeezed states

1. Introduction

During the past few decades, quantum metrology has been playing an important role
in quantum science and technology. The procedure of quantum parameter estimation in
general consists of three steps: preparing the probe state, letting the prepared probe state in-
teract with the system (parameterization process), and measuring the final state [1,2]. These
three parts all influence the estimation precision. There is established work concerning the
preparation of the probe state and the selection of the measurement for the final state. The
standard approach is to prepare the optimal probe state with the utilization of appropriate
positive-operator-valued measurement (POVM) after the parameterization process [3–9].
In terms of optimizing the quantum state possessing the information of the parameter
to be estimated, Carlton Morris Caves proposed that the squeezed vacuum state could
help in improving the estimation precision in 1981 [10]. Since then, quantum properties
in nonclassical states began to attract the attention of more researchers, leading to a boom
in the development of quantum metrology. For example, it was proven both theoretically
and experimentally that entangled coherent states [3,4], spin squeezed states [5,6] and
two-mode squeezed vacuum states [7] can contribute to better estimation precision. On
the other hand, in order to further improve estimation precision, control was introduced
in the parameterization process, such as the gradient ascent pulse engineering (GRAPE)
and the asynchronous advantage actor–critic algorithms aimed at optimally adjusting the
parameterization process [11–13]. The Heisenberg limit can also not be surpassed by merely
adding control terms to the Hamiltonian [14–16]. However, most of the above-mentioned
works that involve adding control need coherent signals to be directly fed to the target
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system, and entangled states are usually desired to enhance the estimation, which is indeed
not simple to prepare in practice.

By contrast, quantum reservoir engineering provides an alternative way that can
avoid adding real-time control directly to the target system. Rather, the target system is
controlled indirectly by manipulating the reservoir. In this paper, the reservoir is composed
of a sequence of atoms (qubits) that interact with the trapped field in a cavity (quantum
harmonic oscillator) one after another through the Jaynes–Cummings Hamiltonian. The
experimental background of this paper was first developed in [17]. Then, on the basis of
this setup, it was proven that nonclassical states of the quantum harmonic oscillator could
be stabilized through the interaction between the oscillator and the reservoir qubits [18,19],
where it was demonstrated that the cavity could be stabilized at a coherent state with the
atoms initialized at the same state, as shown in Figure 1. In particular, control signals do
not need to be added to the oscillator, but the initial states of the reservoir qubits can be
altered, such that the final state of the oscillator can be manipulated with the purpose of
estimating the coupling strength between each qubit and the oscillator. This setting was
used for quantum metrology in [20] where the qubits were initialized at an identical state;
thus, the harmonic oscillator converged towards a coherent state with the averaged photon
counting calculated to quantify the variance in coupling strength. Estimation precision was
also proven to reach the Heisenberg limit in [20], where the root-mean-square fluctuation
of the atom–cavity coupling strength was proportional to the square of the number of
effective coupling atoms. Other reservoir engineering schemes are utilized to estimate
qubit–oscillator coupling strength. For example, in [21], a quantum reservoir composed
of N quantum harmonic oscillators interacting with the qubit was applied to estimate the
coupling strength by calculating the quantum Fisher information (QFI) to quantify the
precision. However, preparing the state of a qubit in [20] tended to be easier than preparing
the joint state of N harmonic oscillators.

Figure 1. Framework of the quantum reservoir consisting of a sequence of qubits initialized at the

same state.

By preparing the reservoir qubits at different states, which may initially involve entan-
glement, the harmonic oscillator could be stabilized at a squeezed coherent state with the
squeezing strength determined by the initial qubit states [22,23]. Mainly inspired by [20,23],
we aim to take advantage of a “time-varying” reservoir to enhance the estimation precision
of qubit–oscillator coupling strength without entanglement involved in the reservoir qubits.
The term “time-varying” means that the reservoir qubits are alternately initialized at two
different states in a pairwise manner, as shown in Figure 2, but not initialized at the same
state as that shown in Figure 1. In more concrete terms, reservoir qubits are initialized at
|ψqred〉, |ψqblue〉, |ψqred〉, |ψqblue〉, · · · such that the harmonic oscillator can converge into a
squeezed coherent state, since squeezed states enable us to significantly improve the estima-
tion precision [24]. Furthermore, we took into account photonic loss to the environment in
this paper; in [23], only the ideal case was considered. Qubits initialized under the scheme
shown in Figure 2, steering the harmonic oscillator to a squeezed state, help in achieving
higher precision than that of qubits initialized under the scheme shown in Figure 1, steering
the harmonic oscillator to a coherent state in the absence of entanglement in the reservoir,
which is not difficult to be realized in experiments. It is, thus, promising that the squeezed
states stabilized by means of quantum reservoir engineering, as shown in Figure 2, can
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be used to provide benefits to related works in the field of quantum information, such
as [25–28].

The organization of this paper is as follows. In Section 2, we give the mathematical
description of the system setup, especially concerning the consecutive pairs of separable
“time-varying” reservoir qubits. In Section 3, we take into account photonic loss through the
oscillator to the environment, providing the form of steady states together with the stability
conditions. Furthermore, we prove that steering the oscillator to a squeezed state can give
rise to a larger QFI compared to that of previous work where the oscillator was steered to a
coherent state. This is also visualized and verified via simulation examples. Critical issues
regarding our theoretical analysis and numerical simulation, together with potential future
work are discussed in Section 4. Lastly, in Section 5, we conclude our present work.

Figure 2. Framework of a quantum reservoir consisting of a sequence of qubits initialized at a

different state in each pair.

2. Mathematical Model of the System Setup and Quantification of the
Estimation Precision

In the system setting shown in Figure 2, quantum reservoir R is composed of a
sequence of separable qubits that are alternately prepared at two different initial states.
From a control-theory point of view, the initial states of qubits play the role of control
variables, and the harmonic oscillator is considered the target system. In other words,
our aim was to control the final state of the harmonic oscillator with the parameter to be
estimated embedded, which could be used for quantum metrology. In this section, we recall
the detailed mathematical description of this reservoir engineering system. A stabilized
squeezed state with an associated QFI is also provided without taking into account photonic
loss through the oscillator to the environment (the ideal case) [22–24].

Specifically, as shown in Figure 2, since the reservoir qubits were initialized at states
|ψqred〉, |ψqblue〉, |ψqred〉, |ψqblue〉, · · · , we could regard one pair of qubits as a whole. In
particular, |ψqred〉 = cos u1 |g〉+ sin u1 |e〉 and |ψqblue〉 = cos u2 |g〉+ sin u2 |e〉, where the
parameters u1,2 ∈ [0, π

4 ). According to the results in [23], we know that when the initial
phases of the qubits are the same, it could benefit the precision; thus, the initial phases of
the qubits were set to zero. Equivalently, the initial state for one pair of qubits can also be
described by

|ψq2(0)〉 = cos u1 cos u2 |gg〉+ sin u1 sin u2 |ee〉
+ cos u1 sin u2 |ge〉+ sin u1 cos u2 |eg〉 .

(1)

Each qubit interacts with the harmonic oscillator for a short period of time tr according
to the following Jaynes–Cummings Hamiltonian:

H JC = i
Ω

2
(|g〉〈e|a† − |e〉〈g|a), (2)

where Ω the Rabi oscillation frequency, a is the oscillator mode’s annihilation operator, and
|g〉and|e〉 are the qubit’s ground and excited states, respectively. The unitary propagator
describing qubit–oscillator interaction is then

Ur = |g〉〈g| cos θN + |e〉〈e| cos θN+I − |e〉〈g|a sin θN√
N

+ |g〉〈e| sin θN√
N

a†, (3)
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where

θN = θ
√

N = 1
2 Ωtr ∑

n

√
n|n〉〈n|,

where N = a†a is the photon number operator, |n〉(n = 0, 1, 2, ...) are the Fock states of
the harmonic oscillator mode, and I is the identity operator. Qubit–oscillator interactions
operate in the weakly coupled regime; thus, θ = 1

2 Ωtr (the effective qubit–oscillator
coupling strength to be estimated) is sufficiently small.

We first briefly present the scenario where all qubits are initialized at the same state,
i.e., |ψ〉 = cos u |g〉+ sin u |e〉 with u ∈ [0, π

4 ), as shown in Figure 1.
By assuming that θ is sufficiently small, the oscillator state can be stabilized at coherent

state |α〉 with α = tan 2u
θ (u is required to be sufficiently small in order to guarantee the

stabilization). The corresponding convergence rate is κc = θ2 cos 2u.
Without considering the dissipation to the environment, we now focus on the scenario

where the reservoir qubits are initialized at states |ψqred〉, |ψqblue〉, |ψqred〉, |ψqblue〉, · · · , as
shown in Figure 2. Following a similar procedure to that in [23], the Lindblad master
equation for oscillator state ρ by taking the continuous-time approximation is as follows:

d
dt ρ(t) = −i[H, ρ(t)] +

3

∑
j=1

L(Lj)ρ(t), (4)

Superoperator L(L) denotes the Lindbladian that is defined by

L(L)ρ(t) = Lρ(t)L† − 1

2
ρ(t)L†L − 1

2
L†Lρ(t),

with L being the coupling operator. The Hamiltonian and coupling operators in Equation (4)
are given by

H = −iθ(Q − Q†), Q = cos(u1 − u2) sin(u1 + u2)a,

L1 =
√

2θ cos u1 cos u2a −
√

2θ sin u1 sin u2a†,

L2 = θ sin(u1 + u2)a, L3 = θ sin(u1 + u2)a†.

In order to stabilize the oscillator state, we require

sin(u1 + u2) is sufficiently small, and cos(u1 + u2) > 0,

such that L1 dominates the dynamics. Then, reservoir qubits can drive the oscillator to a
squeezed state |α, r〉 with the parameters

α =
tan(u1 + u2)

θ
, (5a)

r =
1

2
ln

cos(u1 − u2)

cos(u1 + u2)
. (5b)

In general, α can be complex for a squeezed state of the |α, r〉 form. However, α in
Equation (5a) is real by initially preparing the qubits at |ψqred〉, |ψqblue〉, |ψqred〉, |ψqblue〉, · · · .

This can be proven by applying the displacement and squeezing transformation to
ρ(t) as follows:

ρ̃(t) = S†(r)D†(α)ρ(t)D(α)S(r), (6)

H̃ = S†(r)D†(α)HD(α)S(r), (7)

L̃1 = S†(r)D†(α)L1D(α)S(r), (8)
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which results in the following.

dρ̃(t)

dt
= θ2

(
cos3(u1 − u2)

2 cos(u1 + u2)
+

cos3(u1 + u2)

2 cos(u1 − u2)
+ cos(u1 − u2)(u1 + u2)

)
L(a)ρ̃(t), (9)

with α and r given in Equation (5). By defining the Lyapunov function:

V(t) = Tr(a†aS†(r)D†(α)ρ(t)D(α)S(r)),

we can further obtain that

d
dt V(t) = Tr(a†a ˙̃ρ(t)) = −2θ2(cos2 u1 cos2 u2 − sin2 u1 sin2 u2)V(t) = −κsV(t), (10)

Thus, κs denotes the convergence rate.
For a squeezed state |α, r〉, one can calculate the QFI FQ by using the following method

(see, e.g., [29]),

FQ = 2
dν†

dθ
σ−1 dν

dθ
,

where

ν = (α, α∗)T , σ =

[
cosh 2r sinh 2r
sinh 2r cosh 2r

]
.

This formula can be derived on the basis of the definition of the QFI associated with
the Bures distance between ρθ and ρθ+dθ as follows:

d2
Bures(ρθ , ρθ+dθ) =

1

4
FQdθ2.

In this stabilization scenario, we are dealing with the steady state; therefore, the time
cost is supposed to be included to evaluate estimation in a control protocol [30]. The
appropriate QFI for the steady state is, thus, given by

Fs = FQκ2
s (11)

by incorporating the convergence rate. The QFI associated with the squeezed state

| tan(u1+u2)
θ , 1

2 ln
cos(u1−u2)
cos(u1+u2)

〉 is (subscript s stands for “squeezed state”)

Fs =
16 sin2(u1 + u2) cos3(u1 − u2)

cos(u1 + u2)
. (12)

3. Quantification of the Estimation Precision in the Presence of Photonic Loss to
the Environment

In Section 2, we present the mathematical description of the system setup, and calculate
QFI on the basis of the results in [23] without considering dissipation to the environment.
However, in practice, it is inevitable that the qubit–oscillator quantum reservoir engineering
system undergoes photonic loss to the environment during the whole process. Therefore,
in this section, the associated QFI is amended due to the noisy dynamics of open quantum
systems [22,31]. We included the energy decay of the harmonic oscillator via the annihila-
tion operator in a zero-temperature bath. Over a short period of time tr compared to the
oscillator characteristic lifetime 1/γ, the corresponding effect could be modeled with the
Kraus map: ρ 7→ M0ρM†

0 + M1ρM†
1, where the propagators

M0 = I − γtr

2
a†a, M1 =

√
γtra. (13)
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3.1. Convergence towards a Coherent State

We first consider the scenario where each qubit is prepared at the same state that
interacts with the harmonic oscillator, as shown in Figure 1, taking into account the energy
decay from the oscillator to the environment. The following Kraus map could then be used
to describe the evolution of the oscillator state:

ρ(t + 1) =M0(Mgρ(t)M†
g + Meρ(t)M†

e )M†
0

+ M1(Mgρ(t)M†
g + Meρ(t)M†

e )M†
1. (14)

Assuming that θ ≪ 1 and γtr ≪ 1, we expanded the Kraus map given in Equation (14)
to the second order in θ and the first order in γtr, and the following approximated Lindblad
master equation could be obtained:

dρ(t)

dt
=θ2 cos2 uL(a)ρ(t) + θ2 sin2 uL(a†)ρ(t) + θ cos u sin u[ρ(t), a − a†]

− γtr

2
a†aρ(t)− γtr

2
ρ(t)a†a + γtraρ(t)a†.

(15)

By imposing the displacement transformation onto ρ(t), we could obtain the corre-
sponding Lindblad master equation for the transformed ρ̃(t):

dρ̃(t)

dt
=(θ2 cos2 u + γtr)L(a)ρ̃(t) + θ2 sin2 uL(a†)ρ̃(t)

+ (
1

2
θ2 cos2 uα − θ sin u cos u − 1

2
θ2 sin2 uα +

αγtr

2
)[ρ̃(t), a†]

+ (
1

2
θ2 sin2 uα∗ + θ sin u cos u − 1

2
θ2 cos2 uα∗ − α∗γtr

2
)[ρ̃(t), a].

(16)

On the basis of the equation of motion above, the coherent state |α〉 with
α = θ sin 2u

θ2 cos 2u+γtr
of the oscillator could be stabilized, provided that sin u was sufficiently

small (e.g. sin u ≪ 1). Convergence was guaranteed by the θ2 cos 2u + γtr ≥ 0 condition,
which could be obtained by considering Lyapunov equation V(t) = Tr(a†aD†(α)ρ(t)D(α))
and its derivative

d
dt V(t) = 2(θ2 sin2 u − θ2 cos2 u − γtr)Tr(ρ̃(t)a†a)

= −2(θ2 cos 2u + γtr)V(t) = −κdcV(t).
(17)

In order to realize d
dt V(t) ≤ 0, κdc = 2

(
θ2 cos 2u + γtr

)
≥ 0 is required, with κdc as the

convergence rate.
In a similar way, to calculate the QFI, as presented in Section 2, we could obtain the

QFI regarding a coherent state when dissipation to the environment is taken into account
as follows (subscripts d and c stand for “dissipation” and “coherent”, respectively):

Fdc =
16 sin2 2u(γtr − θ2 cos 2u)2

(θ2 cos 2u + γtr)2
. (18)

3.2. Convergence towards a Squeezed State

In this part, we focus on the scenario where the reservoir qubits are initialized at the
states |ψqred〉, |ψqblue〉, |ψqred〉, |ψqblue〉, · · · , as shown in Figure 2. These qubits interact with
the harmonic oscillator in the presence of oscillator’s phton loss to the environment. The
evolution of the oscillator state after it interacted with one pair of qubits can be described
with the following Kraus map:

ρ(t + 1) =M0M0(Mggρ(t)M†
gg + Mgeρ(t)M†

ge + Megρ(t)M†
eg + Meeρ(t)M†

ee)M†
0 M†

0

+M0M1(Mggρ(t)M†
gg + Mgeρ(t)M†

ge + Megρ(t)M†
eg + Meeρ(t)M†

ee)M†
1 M†

0
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+M1M0(Mggρ(t)M†
gg + Mgeρ(t)M†

ge + Megρ(t)M†
eg + Meeρ(t)M†

ee)M†
0 M†

1

+M1M1(Mggρ(t)M†
gg + Mgeρ(t)M†

ge + Megρ(t)M†
eg + Meeρ(t)M†

ee)M†
1 M†

1.

where the propagators

Mgg = cos u1 cos u2 cos2 θN + cos u1 sin u2 cos θN
sin θN√

N
a†

+ sin u1 cos u2
sin θN√

N
a† cos θN + sin u1 sin u2

sin θN√
N

a† sin θN√
N

a†,

Mge =− cos u1 cos u2 cos θN a
sin θN√

N
+ cos u1 sin u2 cos θN cos θN+I

− sin u1 cos u2 sin2 θN + sin u1 sin u2
sin θN√

N
a† cos θN+I ,

Meg =− cos u1 cos u2a
sin θN√

N
cos θN − cos u1 sin u2 sin2 θN+I

+ sin u1 cos u2 cos θN+I cos θN + sin u1 sin u2 cos θN+I
sin θN√

N
a†,

Mee = cos u1 cos u2a
sin θN√

N
a

sin θN√
N

− cos u1 sin u2a
sin θN√

N
cos θN+I

− sin u1 cos u2 cos θN+I a
sin θN√

N
+ sin u1 sin u2 cos2 θN+I .

In this scenario, we required the number of qubits to be even. Assuming that θ ≪ 1
and γtr ≪ 1 (in practice, γtr is supposed to be of the o(θ3) order), we expanded this
Kraus map to the second order in θ, and first order in γtr; then, the Kraus map can be
approximated with the following Lindblad master equation:

dρ(t)

dt
=− i[H, ρ(t)] +

3

∑
j=1

L(Lj)ρ(t)

+ 2γtrL(a)(Mggρ(t)M†
gg + Mgeρ(t)M†

ge

+ Megρ(t)M†
eg + Meeρ(t)M†

ee). (19)

Equation (19) stabilizes a squeezed state |α, r〉 with

α =
tan(u1 + u2)

θ + γtr
, (20a)

r =
1

4
ln

θ2 cos2(u1 − u2) + γtr

θ2 cos2(u1 + u2) + γtr
, (20b)

Provided that sin(u1 + u2) is sufficiently small. This can be proven by applying the
displacement and squeezing transformations to transform the original density operator
ρ(t) into ρ̃(t) as follows:

ρ̃(t) = S†(r)D†(α)ρ(t)D(α)S(r),

whose evolution can be described by

dρ̃(t)

dt
=[2θ2(cos u1 cos u2 cosh r + sin u1 sin u2 sinh r)2 + 2γtr cosh2 r]L(a)ρ̃(t)

+ [2θ2(cos u1 cos u2 cosh r + sin u1 sin u2 sinh r)2 + 2γtr sinh2 r]L(a†)ρ̃(t)

+ θl(sinh r + cosh r)[a†, ρ̃(t)] + θl(sinh r + cosh r)[ρ̃(t), a]

+ θ2(cos u1 cos u2α − sin u1 sin u2α∗)
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× (cos u1 cos u2 cosh r + sin u1 sin u2 sinh r)[ρ̃(t), a†]

+ θ2(sin u1 sin u2α − cos u1 cos u2α∗)

× (cos u1 cos u2 sinh r + sin u1 sin u2 cosh r)[a†, ρ̃(t)] (21)

+ θ2(cos u1 cos u2α∗ − sin u1 sin u2α)

× (cos u1 cos u2 cosh r + sin u1 sin u2 sinh r)[a, ρ̃(t)]

+ θ2(sin u1 sin u2α∗ − cos u1 cos u2α)

× (cos u1 cos u2 sinh r + sin u1 sin u2 cosh r)[ρ̃(t), a]

+ γtr(sinh rα∗ + cosh rα)[ρ̃(t), a†]− γtr(sinh rα + cosh rα∗)[ρ̃(t), a]

+ θ2(cos u1 cos u2 cosh r + sin u1 sin u2 sinh r)

× (cos u1 cos u2 sinh r + sin u1 sin u2 cosh r)([[ρ̃(t), a†], a] + [[ρ̃(t), a], a])

+ γtr sinh r cosh r([[ρ̃(t), a†], a] + [[ρ̃(t), a], a]).

Therefore, if we chose 4r = ln
θ2 cos2(u1−u2)+γtr

θ2 cos2(u1+u2)+γtr
and α = tan(u1+u2)

θ+γtr
, Equation (22) could

be equivalently written as follows:

dρ̃(t)

dt
= ǫdsL(a)ρ̃(t), (22)

where

ǫds =
1

2
(θ2cos2(u1 − u2) + γtr)

√
θ2 cos2(u1 − u2) + γtr

θ2 cos2(u1 + u2) + γtr

+
1

2
(θ2cos2(u1 + u2) + γtr)

√
θ2 cos2(u1 + u2) + γtr

θ2 cos2(u1 − u2) + γtr

+ θ2 cos(u1 − u2) cos(u1 + u2) + γtr.

Convergence towards a squeezed state of the oscillator in such a scenario also requires
(1 − 2γtr) cos(u1 − u2) cos(u1 + u2) ≥ 0. This can be viewed by taking into consideration
Lyapunov equation V(t) = Tr(a†aS†(r)D†(α)ρ(t)D(α)S(r)). Then, it is not difficult to
find that

d
dt V(t) = −2θ2(1 − 2γtr) cos(u1 − u2) cos(u1 + u2)V(t) = −κdsV(t), (23)

which should make d
dt V(t) ≤ 0 hold; thus, κds = 2θ2(1 − 2γtr) cos(u1 − u2) cos(u1 + u2) is

the corresponding convergence rate.
In a similar way, to calculate the QFI as presented in Section 2, we could obtain the

QFI regarding a squeezed state when photonic loss from the oscillator to the environ-
ment is taken into account as follows (subscripts d and s stand for “dissipation” and
“squeezed”, respectively):

Fds =4κ2
ds|

dα

dθ
|2(cosh 2r + sinh 2r),

=16θ4 sin2 us

(θ + γtr)4

√
θ2 cos2 ud + γtr

θ2 cos2 us + γtr
(1 − 2γtr)

2 cos2 ud,

(24)

where ud = u1 − u2 and us = u1 + u2. Apparently, the QFI Fds given in Equation (24)
could degenerate into the QFI Fs given in Equation (12) when γ = 0. This, in turn, verified
the consistency and correctness of our derivation.
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3.3. Analysis of Enhanced Estimation Precision via the Time-Varying Reservoir

In this subsection, we show the significant increase in QFI in the presence of photonic
loss from the oscillator to the environment while the oscillator is converging into a squeezed
state instead of a coherent state.

Referring to the physical parameters in [22], we set dissipation rate γ = 20 Hz, and
the interaction time tr to 1.25 × 10−2 ms, with the coupling strength mostly chosen to be
θ = π

8 in simulations. For example, if u was set to u = 0.1 when all the reservoir qubits
were initialized at the same state |ψ〉 = cos 0.1 |g〉+ sin 0.1 |e〉, the final state of the oscillator
could be visualized through the Wigner distribution as depicted in Figure 3a. The state in
this case was coherent.

(a) (b)

Figure 3. Wigner distribution for the steady state of the harmonic oscillator in the presence of pho-

tonic loss with dissipation rate γ = 20 Hz and coupling strength θ = π
8 . (a) Wigner distribution for

the coherent state at which the oscillator is stabilized when all reservoir qubits are prepared at the

same state |ψ〉 = cos 0.1 |g〉+ sin 0.1 |e〉. (b) Wigner distribution for the squeezed state at which the os-

cillator is stabilized when reservoir qubits are prepared at states |ψqred〉 = cos 0.395 |g〉+ sin 0.395 |e〉,
|ψqblue〉 = cos 0.39 |g〉+ sin 0.39 |e〉, · · · .

By contrast, we chose u1 = 0.395 and u2 = 0.39, as shown in Figure 3b. Namely, the
reservoir qubits were initially prepared at states |ψqred〉 = cos 0.395 |g〉+ sin 0.395 |e〉 and
|ψqblue〉 = cos 0.39 |g〉+ sin 0.39 |e〉 pair by pair. Specifically, the Wigner distribution and
the corresponding x–p phase for the final state of the oscillator are shown in Figure 3b,
which shows that the state was squeezed. The Wigner distributions depicted in Figure 3
indicate that the form of steady states numerically obtained with the discrete-time Kraus
map was consistent with the form of steady states theoretically derived on the basis of the
approximated continuous-time Lindblad master equation.

In Figure 4, we plotted the values of QFI, as the initial states of qubits varied. For
example, the blue dotted line in Figure 4b corresponds to the scenario where the oscillator
was moving towards a coherent state in our simulation in the presence of photonic loss,
with dissipation rate γ = 20 Hz. It is obvious that Fdc ≤ 5.1.
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(a) (b)

(c) (d)

Figure 4. The values of QFI as the initial states of qubits vary when the harmonic oscillator is steered

towards a coherent (blue dotted line) or squeezed (green and red solid lines) state in the presence of

photonic loss, with interaction time tr = 1.25 × 10−2 ms and Rabi frequency Ω = 20π KHz. More

concretely, the red line corresponds to the case where the reservoir qubits were initialized in pairs

with u1 = 0.4, as u2 varied from 0 to 0.3, while the green line corresponds to the case where the

reservoir qubits were initialized in pairs with u1 = 0.3, as u2 varied from 0 to 0.3. By contrast, the

blue dotted line corresponds to the case where the oscillator was moving towards a coherent state

as u varied from 0 to 0.3, with dissipation rate (a) γ = 0 Hz, (b) γ = 20 Hz, (c) γ = 200 Hz, and

(d) γ = 2 KHz.

In fact, according to Equation (18), the maximal Fdc could be obtained theoretically.
By calculating the derivative of Fdc with respect to cos 2u (u ∈ (0, umax), umax <

π
4 ), we

have that

∂Fdc

∂(cos 2u)
= −32

( γtr

θ2 − cos 2u)[2 γtr

θ2 (1 − cos 2u2) + cos 2u( γ2t2
r

θ4 − cos2 2u)]

( γtr

θ2 + cos 2u)3
.

The stability condition also requires u to be sufficiently small. According to both
numerical and theoretical analyses, umax ≈ π

10 . Then, due to γtr

θ2 ≪ 1 and 0 <
γtr

θ2 <

cos2 2u−1+
√

2 cos4 2u−2 cos2 2u+1
cos 2u , we have ∂Fdc

∂(cos 2u)
< 0 in this region, which indicates that Fdc

increased when u increased (cos 2u decreased). Therefore, max(Fdc) ≈ 16(1 − cos2(2 ×
π
10 )) = 5.53.
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The maximal Fds can be obtained in a similar way. By calculating the derivative of
Fds with respect to us, i.e.,

∂Fds

∂us
=16

θ4 cos2 ud

(θ + γtr)4
(1 − 2γtr)

2

[
2 sin us cos us

√
θ2 cos2 ud + γtr

θ2 cos2 us + γtr

+
sin2 us

2

√
θ2 cos2 ud+γtr

θ2 cos2 us+γtr

θ2 cos2 ud + γtr

(θ2 cos2 us + γtr)2


,

For γtr

θ2 ≪ 1 and us ∈ (0, π
4 ],

∂Fds
∂us

> 0 thus holds in this region. Additionally, ud

should be reduced in order to gain a larger value for Fds. Hence, for us ∈ (0, usmax ]
(usmax was around π

4 on the basis of our numerical and theoretical analysis), we have that
maxFdc ≈ 16 sin2(π

4 )/ cos(π
4 ) = 11.31.

In contrast to the blue dotted line in Figure 4b, the red and green solid lines show the
values of QFI concerning the steady state of the oscillator when the oscillator was stabilized
at a squeezed state. Specifically, the red line corresponds to the case where the reservoir
qubits were initialized in pairs with u1 = 0.4, as u2 varied from 0 to 0.3, while the green line
corresponds to the case where the reservoir qubits were initialized in pairs with u1 = 0.3,
as u2 varied from 0 to 0.3. In both cases, larger values of QFI were obtained compared
to the case where all the qubits had been initialized at the same state (u varied from 0 to
0.3). Therefore, steering the oscillator towards a squeezed state enabled us to obtain a
much larger value of QFI. If we chose u1 = 0.395, and u2 = 0.39, then Fds = 11.25 was
almost double maxFdc. In addition, the red line presents larger values of QFI than the
green line does. This is consistent with the theoretical analysis above that QFI increased as
us increased when the oscillator was converging towards a squeezed state.

We also took into account the cases of γ = 200 Hz and γ = 2 KHz for comparison, with
γ = 0 Hz included in Figure 4 in order to see the effect of dissipation. In particular, the cases
of γ = 0 Hz, γ = 200 Hz and γ = 2 KHz are demonstrated in Figure 4a,c,d, respectively.
Apparently, when γ grew, the value of QFI was reduced. It is not surprising that the values
of QFI were almost the same for the two cases of γ = 20 Hz and γ = 0 Hz because, in
principle, the steady state of the harmonic oscillator in the presence of photonic loss was
not very different from the steady state in the ideal case when γ was sufficiently small.

On the other hand, it is also very important to estimate the resources that we must
utilize. First, the convergence rates for the oscillator in the cases of stabilization at a coherent
state and a squeezed state were theoretically compared as follows. Bearing in mind the
assumption that γtr

θ2 ≪ 1, one has that

κds

κdc
=

(1 − 2γtr) cos(u1 − u2) cos(u1 + u2)

cos 2u + γtr

θ2

=
(1 − 2γtr) cos(u1 − u2) cos(u1 + u2)

2 cos2 u −
(

1 − γtr

θ2

) (25)

≈ cos2 u1 + cos2 u2 − 1

2 cos2 u − 1
.

Therefore, the convergence rates in these two cases are typically of the same speed
order. For example, if we chose u1 < u <

π
4 and u2 < u <

π
4 , κds was rendered to be larger

than κdc, which indicates that fewer reservoir qubits were needed to harvest a squeezed
state of the oscillator under such circumstances.

In Figure 5, we demonstrate the number of consumed reservoir qubits to reach the
steady state of the oscillator. Here, 2n equals the number of qubits, and fidelity represents



Photonics 2023, 10, 157 12 of 14

the similarity between the current and steady states of the oscillator. Fidelity F can be
calculated as follows [32]:

F(ρ(t), ρ(∞)) = Tr(

√√
ρ(t)ρ(∞)

√
ρ(t)). (26)

In more concrete terms, as shown in Figure 5a, with u1 = 0.18 and u2 = 0.12, for
θ = π

12 , θ = π
10 , and θ = π

8 , we plot how fidelity Fs varied as the number of qubits
increased when the oscillator was converging towards a squeezed state using the red
solid, blue dashed, and green dotted lines respectively. Additionally, Figure 5b shows,
with u = 0.2, the evolution of Fc when the oscillator was converging towards a coher-
ent state, where the red solid, blue dashed, and green dotted lines correspond to the
cases where θ = π

12 , θ = π
10 and θ = π

8 , respectively. Typically, fewer than 120 qubits
(60 pairs of qubits) were needed to reach the steady state. The smaller the θ was, the
more reservoir qubits were required to obtain the steady state, which could give increase
estimation precision.

(a) (b)

Figure 5. Convergence towards a steady state of the oscillator with respect to different values of

θ. Specifically, the red solid, blue dashed, and green dotted lines correspond to the case where the

oscillator was (a) converging towards a squeezed state and (b) converging towards a coherent state

with θ = π
12 , θ = π

10 and θ = π
8 respectively.

In our system setup, the oscillator could be stabilized at a squeezed state using the
“time-varying” reservoir as specified in Section 3. Since the final state was not temporarily
generated, it was easier and more convenient for us to impose or repeat the measurement
of such a steady squeezed state in practice.

4. Discussion

In Section 3, we allowed dissipation through the oscillator to the environment. Our
theoretical analysis shows that the steady state of the harmonic oscillator in the presence of
photonic loss should not be very different from the steady state in the ideal case under the
assumption of γtr

θ2 ≪ 1. This could also be observed by comparing the simulation results in
Figure 4a,b. From another point of view, our system setup that could stabilize the oscillator
state presented robustness to photonic loss.

On the other hand, the initial states of the reservoir qubits were chosen depending on
the problems that needed explaining in our numerical simulation. In Figure 4, we focus on
the comparative analysis regarding the values of QFI between different cases where the
oscillator was steered towards a coherent or squeezed state. Therefore, u2 varies from 0
to 0.3 in Figure 4 because u had to take values from 0 to 0.3 to ensure the convergence of
the oscillator state. Squeezed states led to larger values of QFI when u2 and u varied in the
same range. In Figure 3b, a steady squeezed state of the oscillator is depicted. Parameters
u1 = 0.395 and u2 = 0.39 were, thus, chosen in this case in order to render the squeezing
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obvious according to Equation (20). In Figure 5, we chose u1 = 0.18 and u2 = 0.12 (u = 0.2)
since the purpose was to show that, by appropriately preparing the initial states of qubits
(i.e. u1 < u = 0.2 <

π
4 and u2 < u = 0.2 <

π
4 ), convergence rate κds when the oscillator

was steered towards a squeezed state could be made larger than convergence rate κdc when
the oscillator was steered towards a coherent state according to Equation (26). There was,
indeed, a trade-off between fast convergence and strong squeezing strength (large value
of QFI).

In the future, we will consider variants in the system setup by adjusting the initial
states of reservoir qubits, and the interaction between each qubit and the oscillator with the
purpose of seeking other applications in quantum computation and quantum metrology. In
terms of other imperfections in practice, dephasing and relaxation errors playing the role of
noise to the preparation of qubits states, along with missing qubits, may also be considered.

5. Conclusions

Mainly inspired by [20] where the Serge Haroche experimental setting was utilized
to restore the Heisenberg limit regarding estimating the coupling strength between each
qubit and the harmonic oscillator, in this paper, we altered the setting by incorporating a
time-varying quantum reservoir that enabled us to obtain even higher estimation precision.
The contributions of this paper are threefold. First, in contrast to the results in [23], we
took into account photonic loss through the harmonic oscillator to the environment and
analytically provided the steady state of the oscillator under such circumstances. With
consecutive pairs of separable time-varying input qubits, we could stabilize the oscillator
at a squeezed state. The corresponding convergence condition and convergence rate were
given as well. Second, we proved that stabilizing the oscillator at a squeezed state could
improve the estimation precision of qubit–oscillator coupling strength by theoretically
calculating the QFI, which was demonstrated in and verified by simulation examples
in comparison with the case where all the qubits were prepared at an identical state, as
discussed in the previous work. Last but not least, we discuss the approximate number
of reservoir qubits that needs to be utilized for the oscillator to reach the final state. By
appropriately choosing the initial qubit states, the time-varying reservoir could help us
in achieving faster convergence. Since this final state of the oscillator could stay steady
by absorbing qubits from the reservoir, it is more convenient for implementing quantum
metrology experimentally.
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