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Abstract

The first part of this thesis explores the stability of non-supersymmetric constructions using
D-branes and M-branes. Guided mainly by intuition developed using the correspondence
between gauge theory and gravity, known as AdS/CFT, we propose a precise relationship
between thermodynamic and dynamical stability of non-extremal branes. We verify the
conjecture explicitly for non-extremal M2-branes with angular momentum in planes per-
pendicular to the world-volume, in the limit of many M2-branes where the supergravity
approximation is reliable. Next, we explore the stability of near-horizon geometries of ex-
tremal branes which are product geometries of anti-de Sitter space and paositively curved
Einstein spaces. Our main motivation is to answer the question: Do non-supersymmetric
stable vacua exist? We find that the answer is yes. But for Type IIA strings in the presence
of D8-branes and for a non-supersymmetric open string theory with gauge group USp(32)
we find that spherical compactifications are unstable.

The second part of this thesis explores AdS/CFT predictions beyond the classical level.
Such checks are usually hard to carry out, at least in the absence of supersymmetry. We find
an interesting test which yields a manifestly finite answer without using supersymmetry. [t
involves calculating the one-loop vacuum energy of a tachyon field in anti-de Sitter space
with boundary conditions corresponding to the presence of a double-trace operator in the
dual field theory. Such an operator can lead to a renormalization group flow between two
different conformal field theories related to each other by a Legendre transformation in
the large N limit. The calculation of the one-loop vacuum energy enables us to verify the

holographic c-theorem one step beyond the classical supergravity approximation.
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Chapter 1

Introduction

1.1 Why strings?

String theory proposes that the ultimate constituents of matter is not made up of point-like
particles, but very tiny strings. In this theory, all interactions are supposed to occur by
splitting and joining of strings. These strings are of two kinds — open or closed and are
roughly 10732 c¢m long. They live in ten spacetime dimensions; to make contact with our
more familiar four dimensional world, it is assumed that six of the dimensions are compact
and exceedingly tiny. The ordinary constituents of matter such as electrons, photons and
so on, are just different modes of oscillation of a string. Why was such a seemingly radical
theory needed?

In the 1960s, high energy experiments revealed the existence of a large number of hadrons
with large angular momenta. Traditionally particles are viewed as excitations of a quantum
field and are point-like. In four dimensions, if one demands that these quantum field theories
be consistent at all energies, one is forced to accept the fact that there cannot be any
particles with spin larger than one. In the jargon of particle physics, theories with large
spin are either “free” (there are no interactions) or “non-renormalizable” (which means
that such theories do not have any predictive power since the number of inputs needed are

infinite). Moreover, it was also observed, that the square of the mass of these particles



was proportional to the angular momentum - a property characteristic of rotating strings
rather than particles. So people asked, “Could it be, that these particles are actually tiny
strings?” And so string theory was born.

An attractive feature of string theory was that it had very nice ultra-violet properties
and in fact could explain reasonably well some features of experimental data for very high
energy scattering at small angles. Standard quantum field theories of particles normally
predict a very hard behavior at short distances. A hand-waving way of explaining this is
to say that because point particles have strictly zero size, there is a very definite observer
independent event associated with two such particles colliding; for strings, which are objects
having non-zero spatial extent, such an observer independent event simply does not exist.
And so, strings can have arbitrarily high spins in their spectrum and still collide with finite
cross-sections.

But this success was short-lived. It turned out that this new theory predicted a much
softer behavior for fixed angle scattering at very high energies than was experimentally
observed - if strings were getting scattered, the fall-off of scattering cross-section is predicted
to be exponential in energy, in reality it was observed to have a power-law fall-off.

At this point, a new candidate theory known as Quantum Chromodynamics (QCD)
was proposed which explained all that strings couldn’t. The classical Langragian of QCD
looks like a slightly more complicated version of electromagnetism - the gauge group here
is the non-abelian group SU(3) and the charges are carried by quarks which interact by
exchanging gluons instead of photons. But, as we shall discuss shortly, its dynamics is
very different from electromagnetism — at low energies QCD is a strongly coupled theory
whereas the opposite is true for electromagnetism. This theory of quarks has been successful
in explaining all known experimental observations to date.

So one might wonder, why strings? Well, the biggest stumbling block for any quantum
field theory (of point particles) is in explaining nature at arbitrarily small length scales (or
equivalently, arbitrarily high energies) is gravity. It is a well-known fact that a quantum field

theory of gravity is highly non-renormalizable in four spacetime dimensions. At low energies



this is not a problem because gravity is weak and so can be neglected, but at energies close to
the Planck energy of 10'® GeV, gravitational interactions become comparable to the strong
interactions and can no longer be ignored. Clearly then, a quantum field theory, such as
QCD for instance, cannot explain physics all the way upto Planck energies. String theory is
the only known quantum theory of gravity in four and higher spacetime dimensions. As we
stated at the very beginning, the spectrum of a string corresponds to its different oscillation
modes. It is a fact that all string theories have a massless, spin two particle in its spectrum.
This can only be the graviton (the mediator of gravitational interactions). Although this
belief that strings might be able to explain what gravity looks like at extremely high energies
was a motivation which kept string theory alive, we’ll shortly see that we've come full circle
and in modern times string theory is believed to capture all the physics of certain gauge
theories.

There is another problem. Even if we expect QCD to explain only strong interactions
(and forget about gravity), we run into practical difficulties as we try to use the theory to
explain phenomenon (like quark confinement) seen at the low energies of our present day
accelerators. The reason for this is the fact that QCD is an “asymptotically free” theory
which means that as one cranks up the energy, the coupling constant of QCD decreasing and
asymptotes to zero at infinite energies. Conversely, at low energies this theory is strongly
coupled and this makes traditional perturbative computations impossible. The only way
out is by putting the theory on a lattice and then taking the continuum limit - a subject
known as Lattice QCD. The drawback of such a route of investigation is that the physics
is masked behind humongous numerical computations and even if we can explain all the
observed properties of the strong force at low energies, we cannot claim to have understood
the physics. Very recently, it was discovered that string theory just might be able to
make analytic predictions of strongly coupled QCD-like theories amenable. Actually, it can
achieve this for gauge theories with an infinite number of colors (SU(V) gauge theories
with N — oc). The hope then is to make pertubative corrections of order 1/N to this

theory thereby making predictions for theories with NV = 3. The idea that string theory, in



some limit, might be dual to large N gauge theories was originally proposed by 't Hooft [1].
He theorized that the flux tubes of the gauge theory which stretch between quarks might
actually be the dynamical strings of string theory. As we shall describe in the next section,
the gravity/gauge theory duality or the AdS/CFT correspondence is the closest realization
of that hope. In the next section we try to motivate this conjecture and explain what it

means.

1.2 The AdS/CFT correspondence

't Hooft noticed [1] that the perturbative expansion of the Feynman diagrams of an SU(N)
gauge theory could be organized in terms of the dimensionless number 1/N, so that in the
large N limit computations simplify considerably. This is a slightly subtle business, because
we need to know how to scale the coupling constant gy s as we send N — oc. To figure
that out, we make the assumption that the cutoff scale of the gauge theory is kept constant

as we take the limit of large V. The beta-function equation for SU (V) gauge theory is

dgy 1L gy 5
—=—-—=N== 40 . 1.1
4 3 Nie2 T Olvn) (1.1)

Clearly, to keep the leading terms of the same order when we send N — 20, we have to
send gy ar — 0 such that the combination A = g',z/MN is kept constant. The parameter A is
called the 't Hooft parameter.

The nice feature of a perturbative expansion in 1/N is that if the theory is written in
double-line notation (this is just a trick where an adjoint field is replaced by a fundamen-
tal and an anti-fundamental field), the Feynman diagrams organize topologically with the
dominant contribution being from the planar diagram, the next order contribution being
from a diagram of genus one and so on. Each diagram can be shown to have a coefficient
proportional to NX where x is the Euler character of the surface and for closed oriented
surfaces is equal to 2—2g where g is the number of handles of the surface. (For a particularly
lucid derivation, see [2].) Clearly the planar diagram will contribute at an order N? more

than a diagram with one hole, and in the large N limit we see that the planar diagram will



dominate.

The link with string theory is that the perturbative expansion described above is exactly
the same as one gets for closed oriented string theory with the string coupling constant
taking the place of 1/N and the expansion is organized in terms of the topology of the string
world-sheet. At this point one might object that the gauge theory expansion has surfaces
which look more like fish-nets, while the string world-sheets are smooth and continuous.
t’Hooft conjectured that in the large N limit, non-perturbative effects fill in the holes of the
fish-net diagrams ezactly, so the resemblance with string world-sheets became perfect. The
requirement for demanding large N stems from the fact that the above string picture would
be more accurate for weakly coupled (i.e. large N) string theory. So we have a heuristic
argument of why one could expect any gauge theory to be dual to some weakly coupled
string theory. ! Exactly which string theory is a much harder question to answer and
requires making educated guesses as we shall see below.

Depending on how bold one is, there are different forms of this gauge/string theory
duality. In its strongest form it states that both these theories are equivalent for all values
of gyar and N. A weaker version of this conjecture says that the duality of the two theories
holds only at fixed A and infinite N. Since this is the same as sending the string coupling to
zero, it means that we are dealing with classical string theory (no string loops). Finally the
weakest version is to say that the theories become equivalent only in the limit A — oo, which
we’'ll see shortly corresponds on the string theory side to taking the low energy supergravity
limit of string theory. It is this final limit that has been most tested, since it is the one
where one faces the most manageable computations.

Let us next turn to the problem: Given a certain gauge theory, how does one go about
guessing which string theory would be dual to it? For concreteness, we shall take the
most famous example considered by Maldacena in {3]. Let us suppose we are asked to find
the string theory dual to pure super Yang-Mills SU(N) theory in four dimensions. The

most suggestive route (and one which was taken historically) is a path that leads through

'Furthermore, since the string spectrum always contains the graviton, the string theory side of the
correspondence must be a gravitational theory.



D-branes. D-branes are described as surfaces (for our purposes these surfaces are flat)
on which open strings can end [4]. They have masses proportional to 1/g,, so at weak
string coupling they become very heavy objects. In addition, they carry Ramond-Ramond
charge. Just as a particle couples to a one form potential with a two form field strength,
a p-dimensional brane called a Dp-brane, will couple to a (p + 2) form field strength. The
low-energy limit of the theory describing a single D-brane is ordinary electromagnetism, i.e.
a U(1) gauge theory. If we have V separated D-branes however. the open strings can end
on any one of them and we have a (U(1))" gauge theory. If we place all of these D-branes
on top of each other, the gauge group gets enhanced and the theory is described by SU(N)
gauge theory. The supersymmetrized version of this is commonly called super Yang-Mills
(SYM) theory. There is another picture of D-branes. Since they are heavy objects which
carry charge, they curve space-time around them. For small curvatures (compared to the
length of a typical string) we can ignore stringy effects and the theory is well approximated
by classical supergravity (SUGRA). The equations one gets are just the classical Einstein-
Maxwell equations and so the geometries look like charged, extended black holes. If these
two pictures of D-branes are really equivalent, one is tempted to conjecture that SU(N)
SYM theory is dual to string theory in the background of these D-branes. The gauge theory
lives is one less spacetime dimension than the dual string theory. This can be understood as
follows: For a stack of N Dp-branes living in D dimensional spacetime (D is actually equal
to 10, but we shall keep it arbitrary here), the gauge theory lives on the p + 1 dimensional
worldvolume of the branes. On the supergravity side, we have already mentioned that
Dp-branes source a p + 2 form field strength F, p+2- The flux of this Ramond-Ramond field
spreads in the D — p — 1 dimensional space around the Dp-branes. This space which is
conformal to flat space, can be thought of as a cone over an SP~P-2 s that the flux lines

pierce this sphere with Gauss’ law telling us how many branes there are:

/s b s tDFp2 =N (1.2)

The bottomline is that our D dimensional space has been split into a p + 1 dimensional

part (on which the D-branes live), a radial coordinate (which measures how far we are



from the D-branes) and a D — p — 2 part which is a compact space (a sphere). One can
dimensionally reduce this D dimensional theory in the Kaluza-Klein sense on the compact
space to end up with an effective theory in p + 2 dimensions. So in the end, as advertised,
we have a p + 1 dimensional gauge theory dual to a p + 2 dimensional gravity theory. The
fact that all of the dynamics of a p + 2 dimensional quantum theory including gravity is
encoded in a p+1 dimensional theory is reminiscent of a two dimensional hologram encoding
information about three dimensions. It is for this reason that the equivalence of these two
theories is often termed as “Holography”, and is a concrete realization of a fact which had
been proposed earlier by 't Hooft and Susskind for all quantum gravity theories. Having
determined the dimension in which the dual quantum gravity theory lives, the next clue one
uses in pinning down exactly which string theory is dual to a given gauge theory is global
symmetries. Surely if two theories are dual to one another, both of them should have the
same global symmetries.

For concreteness, we consider the most famous example first considered by Maldacena
in {3] and made precise by Gubser, Klebanov, Polyakov in [5] and Witten in [6]. Suppose
we are asked to find the string theory dual to super Yang-Mills SU(N) theory in four
dimensions. Here, the maximum number of supercharges that can be present is 23 =4
The maximally supersymmetric theory is therefore known as N' = 4 SYM theory. A quick
guess for its string dual would be strings propagating in AdSs x S°, since N = 4 SYM is
the low-energy effective field theory description of coincident D3-branes, and AdSs x S®
is the near-horizon limit of the supergravity background of the stack of branes. But it is
instructive to do a more systematic analysis which we sketch now.

The fields present in the A’ = 4 theory are the gauge fields, 6 scalars and 4 fermions.
There is a global SU(4) R-symmetry which rotates the scalars and the fermions among
themselves. Finally, this is an example of a theory whose coupling constant does not change
with energy (even quantum mechanically). Such theories are known as conformally invariant
theories. The conformal symmetry group in four dimensions is SO(4,2). As we have just

discussed above, the dual gravity theory would be a string theory effectively living as gravity



in 5 dimensions. We have also argued that any purported dual must have the same global
symmetries as the field theory which in this case is SO(4,2) x SU(4). For us this means
that the background geometry in which strings propagate must have SO(4,2) and SU(4)
as isometries. Anti-de Sitter space in d-dimensions (commonly known as AdS, possesses
SO(d - 1.2) symmetry. This is a negatively curved space and can be embedded in d + 1
dimensional flat space as the hyperboloid

X4 X - X =R w3

i=l
Since SU(4) ~ SO(6), one is led to believe that the dual string theory lives in AdS5 x S3.
This led Maldacena to conjecture [3] that maximally supersymmetric SU(N) SYM theory
in four dimensions is dual to string theory (more precisely Type IIB string theory) on
AdSs x S3. The strongest form of the conjecture proposes equivalence of the two theories
for arbitrary values of the number of colors of the gauge theory and 't Hooft coupling g¥yN.
Testing this duality in this strong form is an extremely tall order: for large gy ;s the gauge
theory is strongly coupled and for small N the contribution of non-planar diagrams cannot
be neglected. On the dual string theory side computations are equally hard to perform - the
spectrum of strings propagating on AdS;5 x S® is still an unsolved problem mainly because
of the presence of Ramond-Ramond fields (although more recently, this problem has been
solved in the plane-wave limit of this geometry). Thus, with the present machinery, we are
forced to settle for less, and perform checks in certain limits.
To understand what such limits mean on both sides of the duality, the conjecture needs
to be made more precise. Immediately after the appearance of [3], the authors in [5, 6]
developed a dictionary to translate questions/results in one theory to meaningful ques-
tions/predictions in its dual theory. The statement that two theories are “equivalent”
means that there exists a precise map between the states and fields on the string theory
side and local, gauge invariant operators (which are the building blocks of any gauge theory)
on the field theory side. Furthermore, there is also a well-defined correspondence between
correlation functions of the two theories.

In order to present the dictionary, we need to set notation and discuss a little bit about



the classical supergravity solution. The metric and the other non-zero field of Type IIB
supergravity — the self-dual five form field strength (the dilaton is constant in this particular
example) satisfy the classical Maxwell-Einstein equations. This approximation is valid in
regions where the curvature of spacetime is much smaller than the string scale va’. For a

stack of N D3-branes, these equations tell us that the metric is

-1 1
ds® = (1 + %4) i (—dt? + dz? + dx3 + dz2) + (1 + %‘) ’ (dr® + r2dQ?), (1.4)
and the flux of the 5-form field strength is proportional to the volume form on the S5.

As one gets closer and closer to the horizon r = 0, energies get more and more red-
shifted and since we have been talking about low energy limits, we should zoom on the
metric near r = 0. It is comforting that this metric is precisely AdS5 x S® (just as we had
expected from symmetry considerations) and changing the radial coordinates to = = %2 we

recognize the familiar form in Poincaré coordinates:
ds® = e (—dt2 +d® + d~‘-’) + L%d0? (1.5)
— z2 - 5 - .

Note that the five sphere and the AdS space have the same radius of curvature L, which is

related to the number of D3-branes N, by the relation:
L' = 4ng,N(a')?. (1.6)

This can be derived by demanding that the ADM tension of N extremal D3-branes is N
times the tension of a single brane. Finally, since g, = g%,,, we have the most celebrated
piece of the dictionary relating the radius of curvature of AdS; to the 't Hooft coupling of
the gauge theory:

IR

a—'2 = 2g¥’AIN' (1.7)

Let us find out the regions of validity of the two theories. The gravitational description
is reliable when L >> v/, so using (1.7) we find that this description is valid for large
't Hooft coupling. The open string description, which is SU(N) gauge theory, can be

perturbatively handled when g","-MN << 1, which is exactly the opposite limit (for a single
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D-brane the gauge coupling is g&,,, but for N of them it is g%,,N). This fact that the
dual descriptions cover non-overlapping regions of parameter space is the cause of most
of the excitement. It allows us to answer questions about strongly coupled gauge theories
(recall that for asymptotically free theories like QCD, the low energy regime of the theory is
usually inaccessible to perturbative calculations because it is strongly coupled) by mapping
the problem to a weakly coupled gravity problem which can be solved by the usual methods.

While the fact that the regions of validity of the dual theories are non-overlapping
is very powerful in making predictions, it makes tests of this conjecture quite hard. For
example, let us suppose we know the dimension of a gauge theory operator at small 't Hooft
coupling. Next, we do a gravity calculation and compute the mass of the mode which we’ve
identified to be dual to this operator, and use the dictionary to translate this mass into
the dimension of the operator. In general, this dimension will not agree with the value at
weak coupling because the dimension of operators are generically expected to change under
a renormalization group flow. In exceptional cases certain quantities might be protected by
non-renormalization theorems and it is only in such instances that exact checks can be made.
An example are field theory operators whose dimensions are protected either because of
some conservation law (like current conservation) or because supersymmetry protects them
from being renormalized. The dimensions of these operators can be converted using the
dictionary to masses of modes arising from a Kaluza-Klein compactification of supergravity
on compact spaces (for our case at hand this is the five sphere) and the two should agree.
Ever since the conjecture was proposed, there has amassed an impressive body of evidence
in its support (at least the weakest version). For a comprehensive review see [2] or for a
shorter, more recent one [7].

The predictions made by classical supergravity calculations about the strong coupling
behavior of gauge theories is valid only for both N — o0 and infinite 't Hooft coupling. To
probe the region where N is still kept infinite, but the 't Hooft coupling is slowly dialed
to finite values would mean from (1.7) that %} can no longer be ignored which means that

we now have to consider (classical) strings moving in AdS5 x S°. Finally, if we want to
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decrease N to finite values, we have to consider string loops which we've seen earlier to
generate corrections of order le This is why the strongest form of the conjecture, which
is supposed to hold for all values of the 't Hooft coupling and N, is so difficult to verify.

The remainder of this thesis consists of the next three chapters each of which deals with
aspects of AdS/CFT. Chapter 2 is based on the papers [8, 9] and deals with the connection
between dynamical and thermodynamical stability of black holes and was inspired by the
AdS/CFT duality. Chapter 3 is based on the papers [10, 11] and deals with ihe stability.
of different supergravity compactifications on positively curved Einstein manifolds with the
non-compact space being anti-de Sitter. Chapter 4 is a non-trivial check of the AdS/CFT
duality at an order beyond the classical level and is based on the paper [12].

Let us now briefly summarize the motivations and results of each of these chapters.

Thermodynamic stability vs. dynamical stability

The gravity /gauge theory correspondence is supposed to hold not only between the
vacuum state of the gauge theory (the N’ = 4 theory for example) and the undisturbed
gravity background (AdSs x S® in this case), but for arbitrary disturbances which leave the
asymptotics of the AdS background intact. Indeed, since we are dealing with a quantum
theory of gravity, in the path-integral we are integrating over all metrics which asymptote
to AdS. In particular, this would include black hole excitations and from the point of
the AdS/CFT correspondence indicates that the duality holds even when the two theories
are heated up. For example, the Hawking-Page transition in gravity has been shown to
correspond to the confinement-deconfinement transition in the field theory. In Chapter 2
we shall be guided by this duality to propose a precise relation between thermodynamic
and dynamical stability of black branes. It is a familiar fact from general relativity in flat
space that for black holes, these two types of stability do not agree. A well known example
is the four dimensional Schwarzchild black hole in asymptatically flat space. It is stable
against small metric perturbations and so in our terminology, is dynamically stable. On the

other hand, it has negative specific heat for all values of mass and so is thermodynamically
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unstable. That the two types of stability do not agree may not seem very surprising —
dynamical instability, when it exists, is a purely classical effect, while the thermodynamics
of black holes is a quantum phenomenon (sending /i — 0 causes the black hole to have zero
temperature for instance).

The fact that the gravity /gauge duality should hold at non-zero temperatures would,
however, seem to indicate that there should be a relation between the two types of instability
we discussed above. The argument goes as follows: Consider a stack of black branes and .
suppose that the specific heat of the system becomes negative for some range of values of a
conserved quantity, say charge, of the branes. This thermodynamic instability in the gravity
theory should show up in the dual gauge theory possibly in the form of a phase transition.
That should imply the existence of an exponentially growing mode which nucleates the
new phase. Using the duality again, this should be mirrored in gravity by the existence
of an exponentially growing mode in real time - which is the signature of a dynamical
instability. Based on this line of reasoning, we conjecture that a black brane would be
dynamically unstable precisely when it is thermodynamically unstable. We shall treat a
particular example in detail; we find that the AdS/CFT intuition is indeed borne out
(within limits of numerical accuracy). Later, a semi-classical proof was forwarded by Reall
[13] and his method enabled an extension of the above conjecture to black holes with finite
horizon size [14]. We shall outline both of these developments in the chapter. Why then
are the thermodynamically unstable point black holes that we encounter in asymptotically
flat space dynamically stable? We would like to argue that these have compact horizons
(unlike black branes whose horizon areas are infinite) and so thermodynamic arguments are

invalid.

Stability of AdS compactifications

We move on in the next chapter to discuss the stability of near-horizon geometries
of extremal black p-branes. These are geometries of the form AdSpi2 x M9 with M7 a

positively curved q dimensional Einstein manifold (Einstein spaces have the property that
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the Ricci tensor is proportional to the metric tensor - anti-de Sitter space and the sphere
are common examples). We do our analysis for arbitrary values of ¢ = D — (p+2): the full
theory lives in D spacetime dimensions so for string theory D = 10, for M-theory D = 11,
for the more esoteric bosonic M-theory [15] D = 27. In the first part of chapter 3 we shall
consider gravity coupled to only a form field. In the second part, we shall add a scalar
potential to our Langrangian so that we have a cosmological term at the classical level. We
shall view these theories as D dimensional theories compactified down to p + 2 dimensions
on the compact space M9 in the sense of Kaluza and Klein. The resulting p+ 2 dimensional
effective theory lives in anti-de Sitter space. We compute the mass spectrum of the various
scalar modes of the Kaluza-Klein tower of states. As a bonus, using the AdS/CFT duality
we compute the dimensions of gauge theory operators which are dual to these modes in the
gravity theory.

From the gravity/gauge theory duality perspective, the exercise of determining which
compactifications are stable is important. Unstable ones will have pathologies associated
with their field theory duals (they might not have any duals). We have mentioned how
a theory of gravity in AdS is dual to a gauge theory living on the “boundary” of AdS.
Which particular gauge theory depends on the compact space M9. In the example that we
considered in detail above, this space was S°. That allowed 4 supercharges to be preserved.
Field theories with less supersymmetry are interesting from a phenomenological perspective.
This can be achieved by choosing less symmetric compact spaces. For instance, replacing
S5 by the coset space (SU(2) x SU(2))/U(1) (which is commonly known as T'!!) leads to
a dual gauge theory that has only N = 1 susy.

The common examples of maximally supersymmetric solutions like AdS5 x S® or AdS7 x
S*4 are known to be stable. These solutions have coupled scalar modes which are very close
to the stability bound (we’ll have an opportunity to discuss the precise criterion for stability
in Chapter 3) and so one might wonder if choosing nonsupersymmetric vacua always makes
them unstable. However, we find something quite different. We find that all but one of these

modes are stable for any space M, and this result is in fact independent of which Einstein
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space one chooses. The only potentially dangerous mode is one which locally conserves
volume but changes the shape of the space. For product spaces, this is a balloon mode in
which the volume of one part increases while the volume of the other decreases in a manner
such that the total volume is locally conserved. For which spaces M9 this mode is unstable
depends on the particular space. For a sphere of any dimension, this mode is stable. For
M, = S™ x S9~" this mode is always unstable for ¢ < 9, while if M, = T?7 then this mode is
stable only for the supersymmetric case T!! and its smooth susy breaking Z; quotient T*.
We briefly comment on what this means for dual field theories in terms of the existence of
infra-red fixed points close to the N’ = 1 theory.

The results for the more general theories with a scalar potential added on is less rosy.
We study in detail two such examples relevant to string theory: the massive IIA theory and
Sugimoto’s USp(32) open string theory. In both of these cases, we find that compactifica-
tions on a sphere of the appropriate dimension are unstable. It remains to find stable non

supersymmetric vacua of these theories.

Testing AdS/CFT beyond the classical level

In Chapter 4 we change gears and with the help of an example, set out to perform
a check of the AdS/CFT duality beyond the leading order. Such an exercise is valuable
because most checks of the correspondence has been at the level of classical supergravity.
On the gauge theory side, computations beyond leading order, i.e. at order 1/N?2, means
that we are doing a loop computation in AdS. In general, such a loop computation is beset
with problems. Since the gravity theory is highly non-renormalizable, loop computations
would in general be very divergent. Even with the assumption that the underlying theory
(here string theory) is a consistent theory of quantum gravity, one usually has to know
how the full theory cancels divergences to propose a renormalization scheme to extract
finite answers out of apparent infinities. There is also the difficulty of performing loop
computations in string theory in the presence of Ramond-Ramond fields. However, we shall

present an example where an answer that is manifestly finite can be extracted out of a loop
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computation in which a single scalar field closes in on itself. 2 With the assumption of
an underlying consistent theory of quantum gravity, we can be assured that our answer is
meaningful.

We start with the N’ = 4 theory and deform it by adding a relevant double-trace
operator. This leads to a renormalization group flow and we shall argue that the theory
flows to a non-trivial infra-red fixed point which, in the large N limit, is related to the theory
in the ultra-violet by a Legendre transformation. In four dimensions, there is a conjectured
c-theorem due to Cardy [16] which states that the central charge of a theory decreases as
one looks at lower and lower energy scales. This result has been proven for two dimensional
theories by Zamolodchikov {17], but a direct proof in higher dimensions has resisted proof
so far. Intuitively, such a result seems obvious because the central charge is a measure of
the number of degrees of freedom of a field theory and therefore it should decrease in the
infra-red as one integrates out massive degrees of freedom. The gravity/gauge duality allows
one to map this statement into a well-defined problem in AdS. The central charge is closely
related to the Weyl anomaly and the resulting c-theorem is often called the Holographic
c-theorem. This theorem can be proved at tree-level on the gravity side if one uses the
null-energy condition [18]. But at the quantum level it is not clear that one can talk
meaningfully about the null energy condition, and indeed we'll use a method which does
not rely on this condition at all. To our satisfaction, we shall find that at the level of the
one-loop computation that we do - the c-theorem is obeyed in all dimensions. As a bonus,
we shall make a prediction of the central charge of the CFT in the infra-red. Recently this
prediction has been verified by an explicit field theory computation [19).

In the final chapter we conclude with some brief comments and outlook.

2This calculation is therefore done in quantum field theory and not string theory.



Chapter 2

Two Types of Black Hole Stability

2.1 Introduction

In the study of black hole physics, one is taught at the very outset that there are two distinct
types of stability ~ thermodynamic and dynamical. Black holes which are not stable against
small perturbations of the metric are said to be dynamically unstable. Such an instability
causes the horizon to start to clump in real time. The most familiar black holes known from
astrophysical contexts such as the four dimensional Schwarzschild and Kerr black holes in
asymptotic flat space are known to be stable against such perturbations (20, 21]. However,
if one adds an extra compact dimension, say a circle, and smears the black hole uniformly on
this circle (so that its horizon has the topology 52 x S'), then dynamical instability in the
sense described above does set in, provided the radius of the circle is made sufficiently large
compared to the horizon radius. This was found by Gregory and Laflamme [22] and we shall
use the terms “dynamical instability” and “Gregory-Laflamme instability” interchangeably.
Thermodynamic instability, on the other hand, would mean that a black hole has negative
specific heat. Typically most black holes are unstable in this sense (at least for some range
of values of conserved quantities like charge or mass). The ordinary Schwarzschild black
hole is thermodynamically unstable for all values of mass. This feature that dynamical and

thermodynamical stabilities do not agree is in fact typical for point black holes in asymptotic

16
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flat space.

One might think that indeed it is not very surprising that there is no relation between
the two, since thermodynamical properties of black holes are quantum mechanical in nature
(in the hmit & — 0 black holes have infinite entropy, zero temperatures and so on) and it
is not clear that any thermodynamic feature should be reflected in the classical Lorentzian
time evolution.

The aim of the present chapter is to provide evidence that, contrary to expectations,
there is in fact a precise relationship between the two. It is based on the papers 8, 9].
We shall argue that the thermodynamic prediction would agree with the dynamical one
when the horizon is infinite in size. These are translationally invariant generalizations of
point black holes called black branes. The rationale for considering infinite horizon size
is that, thermodynamic quantities like entropy and free energy contain information about
long-wavelength physics. We shall claim that in this limit both types of instabilities shall
always set in precisely for the same critical values of charge. We shall support our claim
with an explicit example - that of spinning M2-branes which are described by N = 8 gauged
supergravity. Within limits of numerical accuracy, the correspondence is impressive in that
not only does thermodynamics correctly predict the value of the angular momentum (or
equivalently the charge of the N’ = 8 theory) at which dynamical instability sets in, but
it also accurately predicts which mode would be unstable in a classical linearized analysis.
For this example, the geometry of the spacetime is AdS; x S7, but the S” part of the metric
does not participate. So for our purposes, it is just a point black hole in four dimensional
anti-de Sitter space. To take the infinite volume limit, we shall consider the case when the
radius of the black hole (or equivalently the mass) is much larger than the AdS radius. Our
results cannot be applied to point black holes in asymptotically flat space, because there
is no other length scale with which one can compare the horizon radius. Our black hole
will also be charged (in the 11-d language of M-theory, these charges would represent the
values of angular momentum of the stack of M2-branes) and our solution would be just the

Reissner-Nordstrom black hole in anti-de Sitter space.
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In Section 2.2 we shall first try to argue why it is plausible that there should be a relation
between thermodynamic and dynamical instabilities. Section 2.3 contains a summary of
the AdSs-RN solution and some generalizations of it in A’ = 8 gauged supergravity and
in higher dimensions. Section 2.4 discusses the thermodynamic instability which occurs for
large charge and explores via thermodynamic arguments the likely paths for time-evolution
of the unstable solutions. In section 2.5, a linear perturbation analysis is carried out around
the AdSs-RN solution. Finally, we conclude with a short discussion which includes the

present state of knowledge about the ultimate fate of unstable black strings.

2.2 Dynamical versus Thermodynamical Instability

The Gregory-Laflamme instability [22] is a classical instability of black brane solutions in
which the mass tends to clump together non-uniformly. The intuitive explanation for this
instability is that the entropy of an array of black holes is higher for a given mass than the
entropy of the uniform black brane. The intuitive explanation leaves something to be de-
sired. since it applies equally to near-extremal Dp-branes: scaling arguments establish that
a sparse array of large black holes threaded by an extremal Dp-brane will be entropically fa-
vored over a uniform non-extremal Dp-brane; however it is not expected that near-extremal
Dp-branes exhibit the type of instability found in [22]. It was checked in [23] that a Dp-
brane which is far from extremality (that is, one whose tension is many times the extremal
tension) does have an instability. It was also shown that the instability persists for charged
black strings in five dimensions fairly close to extremality.! Less is known about the case
of near-extremal D3-branes, M2-branes, and M5-branes, but one may take the absence of
tachyons in the extensive AdS-glueball calculations ([24, 25| and subsequent works—see [2]

for a review) as provisional evidence that these near-extremal branes are (locally) stable.2

"The charged black string studied in [23] happens to be thermodynamically unstable all the way down
to extremality: the specific heat is negative. Thus (2.1) would lead us to believe that this non-extremal
black string is always unstable. The extremal solution should be stable since it can be embedded in a
supersymmetric theory as a BPS object.

2More properly, we should say that the near-extremal black brane solutions with many units of D3-brane,
M2-brane, or M5-brane charge appear to be stable. A single brane has Planck scale curvatures near the
horizon, so classical two-derivative gravity does not provide a reliable description. We will concern ourselves
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In the AdS/CFT correspondence (3, 5, 6|, one might at first think that the existence
of a unitary field theory dual forbids an instability. But suppose we are at finite temper-
ature, and that there is a thermodynamic instability in the field theory—like the onset of
a phase transition. Then it is quite natural for some fluctuation mode (or modes) to grow
exponentially in time, at least in a linearized analysis, as one nucleates the new phase.
Exciting an unstable mode is a change in the state of the field theory, not its lagrangian;
thus according to AdS/CFT there should be a normalizable mode in AdS which likewise
grows exponentially with time {26]. This might be referred to as a “boundary tachyon,” or
a “tachyonic glueball,” since in the gauge theory it corresponds to some bound state with
negative mass-squared. We will prefer the term “dynamical instability,” which is meant to
convey that there is an instability in the Lorentzian time evolution of the black brane, in
both its supergravity and dual field theory descriptions.

To sum up, the existence of a field theory dual makes plausible the following adaptation

of the entropic justification for the Gregory-Laflamme instability:

For a black brane solution to be free of dynamical instabilities, it is necessary
(2.1)

and sufficient for it to be locally thermodynemically stable.

Here, local thermodynamic stability is defined as having an entropy which is concave down
as a function of the mass and the conserved charges. This criterion was first used in a black
brane context in [27], where it was found that spinning D3-branes could be made locally
thermodynamically unstable if the ratio of the spin to the entropy was high enough. Further
work in this direction, relevant to the current chapter, has appeared in [28, 29, 30, 31|. For a
somewhat complementary point of view on the nature of the unstable solutions, see (32, 33].

The conjecture (2.1) is meant to be a local version of the argument about whether
the array of black holes or the black brane has higher entropy; however it seems on more
precarious ground since one may not be able to write down a non-uniform stationary solution

that competes with the black brane entropically. Nonetheless, it was shown in [8] that (2.1)

exclusively with solutions which have a discrete parameter (M2-brane charge, for the most part) which can
be dialed to infinity to suppress all corrections to classical gravity.
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predicts with good accuracy the value of the charge where the four-dimensional anti-de
Sitter Reissner-Nordstrom solution (AdS;-RN) develops an instability.

In the large black hole limit, a dynamical instability appears when local thermodynamic
stability is lost. The existence of a dynamical instability was the main result of [8]. It
disproves the claim of {34, 35] that charged black holes in AdS are classically stable. As
we explain in section 2.5, the instability persists some ways away from the large black
hole limit, providing the first proven example of a black hole with a compact horizon and
a pointlike singularity which exhibits a dynamical Gregory-Laflamme instability.> Such
solutions are interesting from the point of view of Cosmic Censorship, and we discuss the
possibility of forming a naked singularity, or at least regions of arbitrarily large curvatures.
Our main result here is that adiabatic evolution toward maximum entropy does not lead to
solutions which arise from making the mass smaller than some appropriate combination of
the charges. Because entropic arguments appear to give good information not only on the
existence of dynamical instabilities but also on the direction they point, it is reasonable to
predict from our results that no perturbative analysis of a smooth black hole in AdS will
demonstrate a violation of Cosmic Censorship.

The unstable mode of the AdS;-RN solution does not involve fluctuations of metric at
linear order. Rather, it involves the gauge fields and scalars of N' = 8 gauged supergravity.
Because the metric is not fluctuating, it may seem odd to describe the process as a Gregory-
Laflamme instability. But we claim that the instability we see is in the same “universality
class” as instabilities where the horizon does fluctuate: to be more precise, if the charges
of the black hole are made slightly unequal, then generically the instability will involve
the metric. In fact, the metric does fluctuate in the equal charge case as well—only at
a subleading order that is beyond the scope of our linearized perturbation analysis. We
would in fact make the case that any dynamical instability of a black hole which leads to

non-uniformities in charge or mass densities should be considered in the same category as

3Here we are referring to the existence of a local instability visible in a classical analysis. It has been ob-
served (36] that the AdS-Schwarzschild solution times a sphere can have a lower entropy than a Schwarzschild
black hole of the same mass which is localized on the sphere. This demonstraties global but not local insta-
bility, and suggests the possibility of tunneling from one configuration to the other.
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the Gregory-Laflamme instability of uncharged black branes.

We emphasize that this chapter is concerned with the relation between local thermo-
dynamic stability of stationary solutions and the stability of their classical evolution in
Lorentzian time. It is known [37, 38, 39, 40, 41, 42| that black holes which are thermody-
namically unstable have an unstable mode in the Euclidean time formalism. For spherically
symmetric black holes this mode is an s-wave. The interpretation is that, for instance, an
AdS-Schwarzschild black hole in contact with a thermal bath of radiation will not equilibrate
with the bath if the specific heat of the black hole is negative. This beautiful story does not
fall under the rubric of problems we are considering, because the processes by which equi-
libration takes place in Lorentzian time include Hawking radiation, which is non-classical.
Rather, we are contemplating black holes or branes in isolation from other matter, in a
classical limit where Hawking radiation is suppressed, and inquiring whether a stationary,
uniform black object wants to stay uniform or get lumpy as Lorentzian time passes. It is
less clear that there should be any relation between this dynamical question and local ther-
modynamic stability: for instance, a Schwarzschild black hole in asymptotically flat space
is stable.* Yet we conjecture that (2.1) gives a precise relation when the black object has
a non-compact translational symmetry.

After the conjecture was made by Gubser and this author, Reall [13] constructed a semi-
classical proof of why thermodynamic instability for a black brane would necessarily imply
that it would have a Gregory-Laflamme instability. Let us summarize his main arguments.

The first thing to notice is that if a black hole has negative specific heat, it must have a
negative mode since it cannot be a local minimum of the Euclidean action. In the Euclidean
path integral formalism, fluctuations of the metric contribute to the path integral for gravity
(whose existence in the semi-classical limit can be justified). On explicitly performing this

gaussian integral one pulls out a factor of 71&7 where Ay is the Euclidean Lichnerowitz

‘This stability is implied by classical no-hair theorems, see for example [43]. A more extensive list of
references on no-hair theorems can be found in {44]. A consequence of the present work is that these theorems
cannot be extended to charged black holes in AdS.



operator. Therefore, if one has a negative eigenvalue for Ay, i.e. for the equation

if there is a solution with A < 0, then the path-integral becomes ill-defined and signals the
, presence of a thermodynamic instability. So we see that if a system has negative specific
heat, it means that the Euclidean Lichnerowitz operator has a negative eigenvalue.

To tie this to the issue of dynamical stability, one considers a p-brane in p+ d spacetime

dimensions with the metric
ds? = g, dr*dz” + 6;jdz'dz’ . (2.3)

where gmu, is the metric of the spacetime transverse to the brane (in Lorentzian signature)
and z* are the flat spatial worldvolume directions of the brane. For an uncharged brane,

the metric perturbations in the transverse traceless gauge reduce to
Aprhy, =0. (2.4)
Using the ansatz h,, = e'*'H,(z) this reduces to
ApHmu, = —k*H,, . (2.5)

where A is the d dimensional Lorentzian Lichnerowitz operator. The crucial point now is
that, at the point where instability just sets in, the energy of that mode is zero. Recall that
an unstable mode grows exponentially with time, so the square of its energy is negative;
a stable mode is oscillatory in nature, so the square of its energy is greater than zero.
Therefore the onset of instability occurs at zero energy. But this means that this mode is
independent of time! So, for such a mode, Wick-rotation simply gives back the same mode
(with a negative sign) and (2.5) becomes (2.2) with A = —kZ2. In this way, Reall showed that
the presence of a negative specific heat would imply a negative value of A which through
A = —k? could be used to get the threshold value of the wavelength of the dynamically
unstable mode. An important point to note is that if the brane is compact, then for there

to be an instability, its size must be larger than the wavelength of the threshold mode. So,
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for the compact case, the range of values of conserved quantities like charge, etc. for which
the brane is thermodynamically unstable will always be larger than the range of values for
which it is dynamically unstable. In the non-compact case however, it is obvious from the
above discussion that the two regions of parameter space will always agree. Using this idea
the link between the two types of stability for the compact case has been explored in [14].

Although we shall mainly focus on black holes in AdS and their black brane limits; the
conjecture (2.1) is intended to apply equally to any black brane. The conjecture might
even apply beyond the regime of validity of classical gravity. Any “sensible” gravitational
dynamics should satisfy the Second Law of Thermodynamics, and (2.1) is motivated solely
by intuition that Lorentzian time evolution should proceed so as to increase the entropy.
(The stipulation of translational invariance prevents finite volume effects from vitiating
simple thermodynamic arguments). For instance, it has recently been shown [45] that the
near-extremal NS3-brane has a negative specific heat arising from genus one contributions on
the string worldsheet (see also [46, 47}, and [48] for related phenomena in 1+1-dimensional
string theory).® This is not classical gravity, but (2.1) leads us to expect an instability in
the Lorentzian time evolution of near-extremal NS5-branes.® The instability would drive
the NS5-brane to a state in which the energy density is non-uniformly distributed over the

world-volume.

2.3 The AdS;-RN solution and its cousins

The bosonic part of the lagrangian for N = 8 gauged supergravity [49, 30 in four dimen-
sions involves the graviton, 28 gauge bosons in the adjoint of SO(8), and 70 real scalars.
Because of the scalar potential introduced by the gauging procedure, flat Minkowski space
is not a vacuum solution of the theory; rather, AdS; is. It is known [51] that the maximally
supersymmetric AdS; vacuum of N’ = 8 gauged supergravity represents a consistent trun-

cation of 11-dimensional supergravity compactified on S7. The AdS; x S7 solution can be

*We thank D. Kutasov for bringing [45, 48] to our attention.
SWe thank M. Rangamani for a number of discussions on this point.
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obtained as the analytic completion of the near-horizon limit of a large number of coinci-
dent M2-branes.” Making the M2-branes near-extremal corresponds to changing AdS; to
the AdS;-Schwarzschild solution. Near-extremal M2-branes can also be given angular mo-
mentum in the eight transverse dimensions. There are four independent angular momenta,
corresponding to the U(1)* Cartan subgroup of SO(8): these reduce to electric charges in
the AdS, description. The electrically charged black hole solutions can be obtained most
efficiently by first making a consistent truncation of the full N = 8 gauged supergravity
theory to the U(1)* gauge fields plus three real scalars. Consistent truncation means that
any solution of the reduced theory can be embedded in the full theory, with no approx-
imations. For our purposes, it can be viewed as a sophisticated technique for generating

solutions. The truncated bosonic lagrangian is

=52 [R Z ( ~(8¢i)* + — cosh%) -2 Z €A% F("‘))

A=1
1 1 -1 -1 (2.6)
where ay=]1 -1 1 -1
1 -1 -1 1

We use the conventions of [52], in particular, the metric signature is —+-++ and Gy = L.

In [52] the electrically charged solutions were found to be

ds? = _%dﬁ + gdﬁ + VH:2d0?

o2 = hih; 207 = hihs 205 — hyhy
hshy hahy hahj
1 Qa
O 27
Vah?, 22 (2.7)

4
H=}Ih,\ F=1-E+Z§H h,‘=1+"?”‘
=1

Q4 = pcoshBasinh B4 qa = psinh? B4

where the signs on the gauge fields can be chosen independently. We will lose nothing by

choosing them all to be +. The quantities Q 4 are the physical conserved charges, and they

7 As stated in the introduction, taking the number of M2-branes large makes the geometry smooth on the
Planck/string scale and thus suppresses corrections to classical two-derivative gravity.
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correspond to the four independent angular momenta of M2-branes in eleven dimensions.

The mass is (28]

M=—-+

NIw
| -

4
Z qA, (2.8)
A=1

and the entropy is
S= wz?,‘/H(z”) (2.9)

where zy is the largest root of F(zg) = 0. Only for sufficiently large p do roots to this
equation exist at all. When they don’t, the solution is nakedly singular.

We will be most interested in the case where all four charges are equal, g4 = ¢q. Then
the solution can be written more conveniently in terms of a new radial variable. r = = +q.

and it takes the form

2
ds? = —fdt? + 1}— + r2do?
Q
Fpp = —%— 2.10
Or \/§1‘2 ( )
oM Q@ 2

f=l-—+5+13
with the scalars set to 0. In (2.10), For is the common value of all four gauge field strengths
Fé:‘ ). The geometry (2.10) is a solution of pure Einstein-Maxwell theory with a cosmological
constant: it is the AdS;-RN solution.

There are related solutions to maximally supersymmetric gauged supergravity in five
and seven dimensions. corresponding respectively to spinning D3-branes and spinning M5-
branes. In the case of D3-branes, there are six transverse dimensions, the rotation group is
SO(6). the Cartan subalgebra is U (1)3, and as a result there are three independent angular
momenta (or charges in the Kaluza-Klein reduced description). In the case of M5-branes.
there are five transverse dimensions, the rotation group is SO(5). the Cartan subalgebra is
U(1)2, and there are two independent angular momenta/charges. We will record here only

the Einstein frame metric in the Kaluza-Klein reduced description. in conventions where

Gn =1 and L is the radius of the asymptotic AdS space. For further information on these



26

solutions, the reader is referred to (28, 32]. The metrics are

2
AdSs: ds* = —H 3Fdt® + H% (%’,—w?dna)
° p qa
H=}-[lh.4 F=l—'r—2+Z§H hA=l+:2—
2
AdS;: ds® = —H 3Fdt® + H3 (d%w?dns) (2.11)
2 2
T q9A
H=plh"‘ F=1-5+5H ha=1+3.

2.4 Thermodynamics

2.4.1 Generalities

Given the solutions (2.7) and (2.11), we may read off the entropy, the mass, and the con-
served electric charges. Typically it is most straightforward to express these quantities in
terms of the non-extremality parameter p and the boost parameters 34. However it is
possible to eliminate  and 34 and find a polynomial equation relating M, S, and the Q 1.
This equation can be solved straightforwardly for M, but not in general for S. We will
quote explicit results for M = M(S.Q\,....Qy) in the next section. In this section we will
discuss thermodynamic stability assuming that M(S,Q1,...,Qn) is known.

The microcanonical ensemble is usually specified by a function S = S(M,Q\,....Qx).
Assuming positive temperature (which is safe for regular black holes since the Hawking tem-
perature can never be negative), one may always invert M = M(S,Q,) to S = S(M,Qa).
where now we abbreviate Q1,...,Qn to Q4. A standard claim in classical thermodynamics
is that the entropy for “sensible” matter must be concave down as a function of the other

extensive variables as in figure 2.1. Locally this means that the Hessian matrix,

5 i
S = oM B
Hirq. —( 25 o ) . (2.12)
Q.M 3Q.3Qs

satisfies H‘R',‘QA < 0, i.e. it has no positive eigenvalues. To understand what this re-

quirement means, consider the simplest case where n = 0 and 9%S/oM? > 0. This is
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inflection point

Figure 2.1: An example of a mass function whose convex hull is flat. The region we interpret
as stable is from A to B.
the statement that the specific heat is negative. A substance with this property (in a non-
gravitational setting, but equating mass with energy) is unstable: if we start at temperature
T, then it is possible to raise the entropy without changing the total energy by having some
regions at temperature T + T and others at T — 8T. Since we are implicitly assuming a
thermodynamic limit, it is irrelevant how big the domains of high and low temperature are.
In a more refined description (e.g. Landau-Ginzburg theory), these domains might have a
preferred size, or at least a minimal size.

In the more general setting of many independent thermodynamic variables, let us define
intensive quantities

(W0, yts--- 2 ym) = (M/V.QL/V......Qn/V), (2.13)

where V' is the volume. Suppose that Hf,_QA has a positive eigenvector: H;f,_QAU = AU
with A > 0. Through a variation

yj — yj +evj, (2.14)

where ¢ is a function of position which integrates to 0, we can raise the entropy without
changing the total energy or the conserved charges. Thus positive eigenvectors of Hi’,Q.-\

indicate the way in which mass density and charge density tend to clump. Presumably the
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eigenvector with the most positive eigenvalue gives the dominant effect.

The stability requirement Hf,'Q . < 0 may be rephrased as Hg_’Q 4 2 0, where Hg"Q L 08
the Hessian of M with respect to S and Q4. This is easy to understand from a geometrical
point of view. H‘;,‘Q . < 0 says that all the principle curvatures of S(M,Q 4) point toward
negative S, or, equivalently, away from the point (S, M,Q4) = (00,0,0). Now, the point
(S, M,Q4) = (0,00,0) is on the opposite side of the co-dimension hypersurface defined by
S = S(M,Q4,) from (S,M,Q4) = (0,00,0). Thus all principle curvatures should point
toward (0,00,0), which means that Hg{QA > 0. To determine the region of thermody-
namic stability we may thus require det Hg-’Q 4 > 0, and then take the smallest connected
components around points which are known to be stable.

While regions of stability are conveniently calculated from Hg"Q 4+ it is not clear that
the eigenvector of Hf,,_Q , With the largest positive eigenvalue can be read off easily from

HY, - So it is useful to express H3y g, directly in terms of derivatives of M(S,Qa4):

#Ps 1 M
aM2 ~ " (OM]@S)} 08
&S 1 oM &M oM &M
QA0 ~ (OM]ISY [‘EsTaQAas T 3Q. 05 ] ]
#2s 1 OM\2 &M M M M 215)
8Q+9Qs  (AM/3S) [‘ (5§) 8Q40Qs 5% 3Q.9Qs

+aM oM &M N M a2M)
0S \80QA0QB8S  8QpdQAIS ) |’

A prescription for dealing with energy functions which violate the convexity condition
H3/,, <0 is the Maxwell construction, where one replaces M(S,Q.) with its convex hull
(or S(M.Q4) by its convex hull—it’s the same thing). This formal procedure is equivalent
to allowing mixed phases where some domains have higher mass density or charge density
than others. The energy functions resulting from charged black holes in AdS have the
curious property that the convex hull is completely flat in some directions, so that chemical
potentials (after taking the convex hull) are everywhere zero. This arises because, in certain
directions, M rises slower than any nontrivial linear function of the other extensive variables.

In this situation the Maxwell construction does not make much sense, because the mixed
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phases that it calls for have charges and mass concentrated arbitrarily highly in a small
region, while the rest of the “sample” is at very low charge and mass density. A similar
example in the simpler context of no conserved charges would be a mass function M(S) like
the one in figure 2.1. Here the natural physical interpretation is that the region between
A and B represents a stable phase, while the region to the right of B is unstable toward
clumping most of its energy into small regions. This tendency would presumably be cut
off by some minimal length scale of domains. The mass functions obtained from charged
black holes in AdS look roughly like figure 2.1 along some slices of the space of possible
(S,Q4). The interpretation we will offer is that the black holes are stable in the regime
of parameters where convexity holds, and that they become dynamically unstable toward
clumping their charge and energy outside this region.3

The line of thought summarized in the previous paragraph was already advanced in
[29], but with only thermodynamic arguments to support it. A competing point of view
was suggested in [34]: the black holes in question have no ergosphere (more precisely, there is
a Killing vector field which is timelike everywhere outside the horizon), and this was argued
to imply that there could be no superradiant modes, and hence no classical instability in
the Lorentzian-time dynamics. The argument used the dominant energy condition, which
need not always be satisfied by matter in AdS: in fact, the scalars ¢; in (2.6) violate the
dominant energy condition because of their tachyonic potential (which however does satisfy
the Breitenlohner-Freedman bound).

In [8], an explicit numerical calculation demonstrated the existence of a dynamical
instability for certain AdSs-RN black holes (related to spinning M2-branes with all four
spins equal, as explained in the previous section). We will discuss this calculation at greater
length in section 2.5. For now let us only remark that in the limit of large black holes, where
the horizon area is infinite, the instability appears when thermodynamic stability is lost, up

to a discrepancy of 0.7% which we suspect is numerical error. Furthermore, the combination

SThere is a subtlety, discussed in [20], about the precise location of the boundary between stable and
unstable regions. As the system approaches the inflection point at B, finite fluctuations might allow it to
make small excursions into the unstable region. Working in a large N limit where classical supergravity
applies on the AdS side of the duality seems to suppress such fluctuations.



30

of supergravity fields which became unstable indicated a change in local charge densities
precisely in agreement with the analysis leading up to (2.14). Thus the conjecture (2.1)
was tested to reasonably good accuracy along a two-parameter subspace (entropy and the
common value of the four charges) of the five-parameter phase space. Further tests in AdSy
are significantly more difficult because the metric usually enters in to the perturbation
equations in a non-trivial way. However we will indicate in section 2.5 another case where
the metric decouples. Tests in AdSs and AdS; can also be performed most easily in the
equal charge case, but the analysis is somewhat more tedious because the spinor formalism
is not as well worked out in higher dimensions (and probably is more cumbersome in any
case).

Despite the absence of comprehensive tests, we will use (2.1) and the idea that black
hole perturbations should follow the most unstable eigenvector of Hf,‘Q , to propose in
section 2.4.3 a qualitative picture of the evolution of unstable black holes in AdS. In brief,
once the boundary of stability is passed, the independent charges tend to clump separately,
as if they repelled one another but attracted themselves. But this is only an approximate
tendency, with significant exceptions to be noted in section 2.4.3. The problem of finding
out what actually happens to such unstable black holes/branes by an honest dynamical
calculation is notoriously difficult. We shall have a little bit to say about this and what is

known till date towards the end of this chapter.

2.4.2 Explicit formulas

It is possible to eliminate all the auxiliary quantities from (2.7), (2.8), and (2.9). and express

M directly in terms of the entropy and the physical charges as

1 4 1
M=—f——— S? + 7L%S + w2 L%Q. 2)} . (2.16)
27Y%L2\/§ I:Al—zll( 1

We will often be interested in the limit of large black holes, M/L > 1. In this limit we have

LT t
M=—— 2+ 7202Q.a%)| . (2.17)
23 L2V§ LH (S+mLiQa )]

=1
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with corrections suppressed by powers of M/L. As M/L approaches infinity, one obtains
a black brane solution in the Poincare patch of AdS4. Formally this limit can be taken by
expanding (2.7) to leading order in small §;, dropping the 1 from F, and replacing S2 by
R? in the metric.

As remarked in the previous section, local thermodynamic instability can be expressed
as convexity of the function M(S,Q1,Q2,Qs.Q4). By setting the Hessian of (2.17) equal
to zero, we obtain the boundary separating the stable from the unstable region:

388 — 2221256 f: QA +7'L'S* Y (QaQp)* — L8 f[ Q4 =o0. (2.18)
A=1 A<B A=1
First let us consider the case where the charges are pairwise set equal: Q; = Q3 and

Q2 = Q4. The above equation then factorises, giving us three relevant factors:

n2L?
(s? - n2L2Q?) (S - 7°L°Q}) (52 - QI+ @3+ Qi+ Qb+ 14@%@%)) =0.
(2.19)
When at least one of these factors become negative, Hg’Q , develops a negative eigenvector
and the black hole becomes thermodynamically unstable. A more convenient form may
be obtained by eliminating S in favor of the mass M and introducing the dimensionless

variable x; = ﬁ'?{ The above three equations in the new variables become

2
[x? +xi+8dd+ 03DV +d + 14x?x3]

- 54 (xf g+t +xd+ l4x?x§) =0
(2.20)

G +2030G +3) -4=0
X5+ 203 0d +x3) -4 =0.
The region depicting thermodynamically stable black holes is the intersection of the areas
under the 3 curves as shown in figure 2.2(a).
The other relevant curve is the one separating nakedly singular solutions from regular
black holes. The mathematical criterion for having a regular black hole solution is that the

polynomial F in (2.7) should have a zero. In the large black hole limit, and in terms of x\
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Figure 2.2: Plots of the most unstable eigenvector of the Hessian matrix of
S(M,Q1,Q2,Q3,Q4). The inner curves are boundaries of stability. The outer curves (when
they are present) denote the boundary between regular black branes and naked singularities.

and y9, this criterion reduces to

xH30¢ +x3) - axbdd + @) + 1320304 + x3) — 40 +x8) +6xix3 — 432 =0.
(2.21)
To determine if a black hole with given values of mass and charges is unstable, one first
computes the values of x; and x2 and locates this point in figure 2.2(a). The black hole
is unstable if the point lies outside the shaded region depicting stable black holes but is
within the boundary which separates black holes with naked singularities from those with
a horizon. If the point lies in the unshaded (unstable) region of the plot without the vector
field shown, it means that within each pair one charge wants to increase while the other
decreases. The unstable eigenvector has no components along the hyperplane Q; = Q3 and
@2 = @, and is not shown.
Finally, let us collect the thermodynamic results for the special case of all charges equal.
We see that thermodynamic instability is present in the narrow region 1 < x < V3/2%3,
The associated eigenvector has the form (0, 1,—1.1,—1) where the components are along

the axes M,Qq,Q2,Q3, and Q4 respectively: it looks like one pair of charges wants to
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increase while the other decreases. This can happen only locally, with each of the four

charges conserved globally.
We’ll also consider the case in which only two of the charges, Q; and @5, are non-zero.

To get the region of thermodynamically stable black holes, we set Q3 = Q4 =0 in (2.18):
35% —2r2L28%(Q? + Q%) + ' LQ2Q2 = 0. (2:22)

Just as we did in the previous case, we first eliminate S in favor of the mass M and then

introduce the dimensionless variables x; = ;{—?—'L—g to get:

100¢ +x8) + 21303 + x3)

+ (10x} + 10x3 + 26x3x3) /i + xd — x3xg — 432 =0.

This is the boundary of the stable region, and is plotted in figure 2.2(b). Unlike the case of

(2.23)

charges set equal pair-wise, black holes with two charges set to zero always have a horizon.

This may be connected with the fact that there is a limit of rotating M2-branes with only

two independent angular momenta nonzero which is a well-defined multi-center M2-brane

solution, while with all angular momenta nonzero the corresponding limit is a singular
configuration in eleven dimensions [53, 54, 55].

For black holes in AdSs; and AdS;, we will simply record here the mass in terms of the

entropy and charges:
3 2 2 41202 e
AdSs: M= SLAES)R LI;[I(J.S +mlL QA)]
(2.24)

2/5
5 2 2, 65202
AdS;: M= m LI:II(IGS + 7 L°Q%) .

Stability analyses similar to the AdSys case can be carried out for AdSs and AdS7;. Some
work along these lines was presented in [29], but the explicit expressions in (2.24) make the

calculations much easier.

2.4.3 Adiabatic evolution

Tracking the evolution of unstable black holes in Lorentzian time is difficult. We have

succeeded in establishing perturbatively the existence of a dynamical instability for the very
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special case of all charges equal: this is explained in section 2.5. This simplest case required
the numerical solution of a fourth order ordinary differential equation with constraints at
the horizon of the black hole and the boundary of AdS4. Most other cases for black holes in
AdS, involve fluctuations of the metric, which makes the analysis significantly harder. To
investigate the instabilities beyond perturbation theory would require extensive numerical
investigation of the second order PDE'’s that comprise the equations of motion of N' = 8
gauged supergravity.

The aim of this section is to use thermodynamic arguments to guess the qualitative
features of the evolution of unstable black holes. Here we focus exclusively on the large
black hole limit; however the conclusions may remain valid to an extent for finite size black
holes with dynamical instabilities. The intuition is that knowing the entropy as a function of
the other extensive parameters amounts to knowing the zero-derivative terms in an effective
Landau-Ginzburg theory of the black hole (or of its dual field theory representation).

As explained in the paragraph around (2.13) and (2.14), an unstable eigenvector of
H3; o, (by which we mean one with positive eigenvalue) suggests a direction in which a
black hole solution can be perturbed in order to raise entropy while keeping its total mass
and conserved charges fixed; moreover it was shown in [8] (as we will explain in section 2.5)
that the black hole’s dynamical instability causes it to evolve in precisely the direction
that the eigenvector indicates. The physics has no infrared cutoff, as is typical in Gregory-
Laflamme setups, so we may hope that the charge and mass densities vary over long enough
distance scales that we may continue to use the most unstable eigenvector of Hf,'Q , locally
to determine the direction of the subsequent evolution. Following this line of thought to its
logical conclusion leads us to the claim that the mass density and charge densities will locally
evolve, subject to the constraints of conserving total energy and charge, from their initial
values to values along a characteristic curve of the unstable vector field of Hg,'Q .- This
can only be approximately correct: finite wavelength distortions will occur, and it is not
precisely right anyway to say that the time-evolution of Einstein’s equations proceeds so as

to maximize black hole entropy. Nevertheless it seems to us likely that a correct qualitative
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picture will emerge from tracking the flows generated by the most unstable eigenvector of
Hf,'Q +- At late times, or when charge and mass density are highly concentrated in small
regions, another description is needed.

The characteristic curves of the most unstable eigenvector of Hg M, May terminate
in a region of stability, or in a region of naked singularities. Cosmic Censorship plus the
conjectures of the previous paragraph suggest that the latter should never happen. This
can be checked explicitly for the examples that we have. To this end, one can choose a
generic value of charges and mass so that the black hole is almost naked, then determine
the most unstable eigenvector of Hi}_Q .- and then check that it is tangent to the surface
separating naked singularities from regular black holes. We carried this out numerically
for several cases and verified tangency; however we do not have a general argument. It
appears, in fact, that the normal vector to the surface separating naked singularities from
black holes is a stable eigenvector of HﬁLQ , (i-e. its eigenvalue is negative)—at least in
the three-dimensional subspace with @, = Q3 and Q2 = @Q4—so the obvious approach to
an analytic demonstration that Cosmic Censorship is not violated by adiabatic evolution
of black holes is to show that this normal vector is always a stable eigenvector of H‘R','QA.
For now we content ourselves with the observation that in all the cases we have checked
numerically. adiabatic evolution does stay in the region of regular black holes.

It is also possible that a characteristic curve becomes unstable at some point, in the
sense that nearby characteristic curves diverge from it. To refine our previous claim, we
may suppose that the black hole evolves along a bundle of nearby characteristic curves
emanating from the original mass and charge density. This bundle may remain nearly
one-dimensional, or it may split or become higher dimensional. We will not investigate
the stability properties of the characteristic curves in any detail. Note that we are not
attempting to specify any spatial or temporal properties of the evolution, only the range of
mass and charge densities which form.

We present in figure 2.2 plots of unstable eigenvectors of the Hessian matrix Hf,'Q "

projected onto a plane parametrized by two of the charges. From these vector fields, we may
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conclude that the different charges exhibit some tendency to separate from one another, but
that this does not always happen, as in the upper right part of figure 2.2(b). The crucial
point is that the unstable eigenvectors don’t have a component normal to the boundary
between naked singularities and regular black holes. Although this appears obvious from
figure 2.2(a), the plot is slightly misleading in that the eigenvectors have been projected
onto the plane of Q, = Q3 and Q2 = Q4. One must preserve the components of vectors in
the M direction to verify tangency.

When some angular momenta become large compared to the entropy for a spinning
M2-brane solution, the geometry in eleven dimensions is approximately given by a rotat-
ing multi-center brane solution [53]. If one angular momentum is large, this multi-center
solution is in the shape of a disk; if two are large and equal, it has the shape of a filled three-
sphere. It seems clear that solutions of this form in an asymptotically flat eleven-dimensional
spacetime are unstable toward fragmentation in the directions transverse to the M2-brane.
This would mean that anti-de Sitter space fragments. In terms of the SU(N) gauge the-
ory, the disk corresponds to a U{1)¥~! Higgsing, and in the fragmentation process some
groups of U(1)'s try to come together to partially restore gauge invariance. It is not certain
that such fragmentation occurs, particularly if the angular momentum density is large only

locally. We merely indicate it as a possibility in the complicated late-time evolution of

unstable black holes.

2.5 Existence of a dynamical instability

The existence of dynamical instabilities for thermodynamically unstable black branes should
be completely generic. However, as mentioned already. the stability analysis is technically
complicated for the general case of unequal charges: perturbations of the metric, four gauge
fields, and three scalars lead to difficult coupled partial differential equations. Here we focus
on the AdS;-RN example, where the metric decouples and the problem can be reduced to
a single gauge field and a single scalar. A formal argument relating thermodynamic and

dynamical instability was suggested in [8], using the identification of the free energy with the
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Euclidean supergravity action; however we have not yet succeeded in making this argument
rigorous.

Because the unstable eigenvectors of Hﬁ,'Q , (for all charges equal and sufficiently large)
do not involve any change in the mass density, it is natural to expect that the perturbations
that give rise to an unstable mode do not involve the metric. More precisely, because of

the form of the unstable eigenvectors, we expect that a relevant perturbation is
0F4 = a'\6F (2.25)

for some & F and fixed i, where the o, were defined in (2.6). In section 2.4 we saw explicitly
that 6Q, = 6Q3 = —8Q2 = —IQ4 gave an unstable eigenvector; now we make a trivial
alteration and focus on 6Q) = Q2 = —6Q3 = —8Qy. Correspondingly we set i = 1 in
(2.25).

The spectrum of linear perturbations to charged black holes in AdS has been considered
before [56], but for the most part the perturbations under study were minimally coupled
scalars. It is impractical to sift through the entire spectrum of supergravity looking for
unstable modes (or tachyonic glueballs, in the language of [36]). The point of the previ-
ous paragraphs is that thermodynamics provides guidance not only on when to expect an
instability, but also in which mode.

It is straightforward to start with the lagrangian in (2.6) and show that linearized

perturbations to the equations of motion result in the following coupled equations:

doF =0 d*86F +dépy A+F =0

2 (2.26)
[u +3 81-"3,,] 8oy — 16F*5F,, =0.

Here 0 = g#¥V,d, is the usual scalar laplacian. F in (2.26) is the background field strength
in (2.10): it is the common value of the four F4. §F is not the variation in F' itself: rather,
the variation of the F4 is expressed in terms of § F in (2.25), with i = 1. The variation of the

field strength is in a direction orthogonal to the background field strength of the AdS4-RN

?Indeed, we suspect that the decoupling of the metric is possible precisely when there is an eigenvalue of
Hf,'q , Which does not have a component in the M direction.
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solution. The graviton decouples from the linearized perturbation equations: 6T, vanishes
at linear order in 0F because §F4 - F4 = 0.10

For comparison, we write down the linearized equations for fluctuations of the other
scalars:

[n +—L2—2 —8F2 ] dp;i =0 (2.27)

for i = 2,3. It was shown in [34] that any perturbation involving only matter fields satisfying
the dominant energy condition could not result in a normalizable unstable mode (that is,
a normalizable mode which grows exponentially in Lorentzian time). It was conjectured
[34, 35] that in fact there was no classical instability at all. The scalars ¢; do not satisfy
the dominant energy condition because of the potential term in (2.6). Thus the outcome of
our calculations is not fore-ordained by general arguments, and we have a truly non-trivial
check on the classical stability of highly charged black holes in N = 8 gauged supergravity.
In fact, our results turn out to be in conflict with the claim of classical stability in [34, 35].

Decoupling the equations in (2.26) is a chore greatly facilitated by the use of the dyadic
index formalism introduced in [57]. For the reader interested in the details, we present
an outline of the derivation in section 2.5.1. The final result is the fourth order ordinary
differential equation (ODE)

(‘%2 +o.50, - 4% ”) & (“’72 vofo, - D By 4f?2) 6. (r) =

1Q? ( 7t ofor ) 851(r).

(2.28)

where we have assumed the separated form 9, = Ree "“!Yy,,65,(r), where Yy, is the
usual spherical harmonic on S2. This is to be compared with the separated equation for

the other scalars:

2 0 +1 4Q2
(“’7 voa, - 30 200, )r&,a,(r) (2.29)

fori=2,3.

'%Besides the all-charges-equal case, we know of one other case where the metric decouples at linear order:
Qi = @3 with Q2 = Q4 = 0. There may be other cases as well—presumably whenever Q, - §Q.4 = 0 and
8S =0 for an unstable eigenvector (§S,4Q.) of HY ar
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2.5.1 Dyadic index derivation of (2.28)

To derive (2.28) using the dyadic index formalism, it is convenient first to switch to +———
signature to avoid sign incompatibilities between the raising and lowering of dyadic and

vector indices. One introduces a null tetrad of vectors, (I#,n#, m#. m#*), defined so that

I#n, = —m#m, =1 and all other inner products vanish. Next define
» mt
o= 2.30
257 (0 ) (220

and set D = I#9,, A = n#d,, § = m#d,, § = m*d,. Vector indices are converted into dyadic
indices by setting v 5 = ag Aln- Dya.dic indices are raised and lowered using northwest

contraction rules with €g; = €% = ¢5; = €0 = 1. By demanding that o'\ 4 is covariantly

constant, one can obtain a unique covariant derivative D,, whose action on a spinor is
Dyvr = 8,4t — ¥s r - (2.31)

The so-called spin coefficients, Yy axr = =g AATRET: are conventionally written as

K € c 3
Yoosr = Yoizr = )

€ 7 8 n

p a T
Yogr = Tizr = ) .

a A Y v

A less compressed presentation of dyadic index formalism can be found in [57, 20|, and the

(2.32)

appendix to [38].
For AdSs-RN, a convenient choice of the null tetrad and the corresponding nonzero spin

coefficients are as follows:

= (l/f, 1,0,0) n* = l(1, —£,0,0)
(2.33)

in (2.33) and (2.34) we have not yet taken the black brane limit. Taking this limit replaces
csc@ by 1 in (2.33) and sets & = 3 = 0 in (2.34). Proceeding without the black brane limit,
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we trade the real antisymmetric tensor Fj,, for a complex symmetric tensor,

0) (0)
% 9
(0) -
¢(10) ¢g0)
through the formula
4\/51"’,,,,02 A”Fr" = <I>(A°}.e AF + (ig)[)-,eAr . (2.36)

The factor of 4y/2 in (2.35) is for convenience: the AdS;-RN background has ¢(10) = Q/r?
and all other components zero. In the same way we trade in 6 F),, for ®5r, whose components
are ¢y, ¢1, and ¢, with a similar factor of 4v/2. Finally, we write w in place of dyp, to avoid
the ambiguity in the meaning of 4.
The first order equations for the gauge field in (2.26) can now be cast in dyadic form as
follows:
DA dar + %aﬁ%wg"}w + 8 ear) = 0. (2.37)
In components, these equations read
(D —2p)o1 — (5 — 2a)do = —6{"' Dy
(A+p—27)¢0 -6 =0
(D = p)p2 — 81 =0
(6 +20)¢2 — (A +2u)pr = 01" Ap.

(2.38)

It is possible to combine these equations into three seccnd order equations in which only
a single ¢; appears. Together with the scalar equation, these equations are equivalent to
(2.26):

(D~ 3p)(A + 1~ 27) ~ (8 ~ 20)] 40 = —4{"8Dy

[(A +3u)(D — p) — 8(6 +28)] ¢ = —6V5A¢ o
.39
[(D - 20)(A +2u) = (6 + 8- a)3] 1 = —0{" DAy

2
[n +15 + 2(¢§°’)2] ¢ = —14{" Re gy
where we have made use of the fact that the spin coefficients are all real for AdS;-RN. The
equations (2.38) are a special case of (3.1)-(3.4) of [21]. The first and second equations of

(2.39) are (3.5) and (3.7) of [21], and the third is derived in a similar manner. The fourth
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is the scalar equation in (2.26), but to preserve the definition of O we write 0 = —9"V,d,
in +——— conventions. The differential operators in the third equation of (2.39) are purely
real (this takes a bit of checking for (6 + 8 — a)é), so we can take the real and imaginary
parts of this equation. The equation for Im ¢ decouples from all the others. The equations
for ¢o and ¢3 are sourced by ¢, but ¢y and &2 do not otherwise enter; thus one can solve
first for Re#, and ¢, and afterwards use the first and second equations in (2.39) to obtain
¢o and ¢2. Since qb(lo) is nowhere vanishing, the last equation in (2.39) cap be used to
eliminate Re ¢ algebraically. The final result is

[(D —20)(A +2u) - (6 + 8 - a)3] w% [n + + 2002 o =0®DAr-  (2:40)
1

Plugging in the separatéd ansatz ¢ = Re {e~"“tYymd31(r)}, one easily obtains (2-28).

2.5.2 Numerical results from the fourth order equation

A dynamical instability exists if there is a normalizable, unstable solution to (2.28) or to
(2.29). Neither of these equations admits a solution in closed form, so we have resorted to
numerics. Briefly, the conclusion is that, in the black brane limit and within the limits of
numerical accuracy, we find a single unstable mode for (2.28) precisely when y > 1, and no
instabilities for (2.29). This is completely in accord with the intuition from thermodynamics:
(2.29) represents a fluctuation that has nothing to do with the variation of charges that gave
the unstable eigenvector of the Hessian matrix of M(S, Q;,Qs, Q1,Q4). The upstable mode
in (2.28) persists to finite size AdS;-RN black holes, but eventually disappests for small
enough black holes.

To carry out a numerical study of (2.28), the first step is to cast the equation in terms
of a dimensionless radial variable u, a dimensionless charge parameter y. a dimensionless
mass parameter o, and a dimensionless frequency :

r _9Q __ L\ el (2.41)
“TwBEpE XTpRpm °F (_) ©= '




Then we have

-2 . 0e +1 72 - e+1) 2 4 .
(%-%6,,_{8,,—0 (u2 ))u3 (‘07+3.,f3.,—0%—§+u—§)u6¢1=

4x2 (? + aufau) 51 (2.42)

X, .
f=a—--—+—3+u2.
u u

Evidently, the dimensionless control parameters are ¢ (the partial wave number), o. and
x- Using Mathematica, we solved (2.42) numerically via a shooting method, and obtained
wavefunctions 63, (r) which fall off like 1/72 near the boundary of AdS; and at least as fast
as (r — rg)wl/f'(r#) pear the horizon.

To check that the wavefunction is well behaved near the horizon!! let us transform to

Kruskal coordinates. The metric near the horizon is

2
ds? ~ —f'(rg)(r — rg)dt* + dr 7+ r5dQ3, (2.43)

['ru)(r — 1
where 7y is the radius of the horizon. Dropping the S? piece and introducing a tortoise

coordinate r., null coordinates Py, and Kruskal coordinates (T, R) according to

Ei_r: _ 1
dr Fru)(r—ru) (2.44)

Py = a4 4
one finds that the near-horizon metric is indeed regular:

dr? _ 4
fira)(r —ru) — f'(h)

Having a radial wavefunction 8G,(r) = (r — rg)WV/f' ") p(r — rg), where p(r — ry) re-

(—dT? + dR?). (2.45)

ds? = —f'(ry)(r — rg)dt® +

mains bounded at the horizon, means that the time-dependent perturbation (with angular

dependence suppressed) is
dor(t,r) ~ (1 — r”)IUVf'(l"H)elwllp(.’. — 1) ~ Pf‘“l/!’('")p(P+P_) , (2.46)

which remains bounded as P_ — 0. The black hole horizon is at P_ = 0, P, > 0 (see

figure 2.3). Thus we see that the perturbation is small at the horizon in good coordinates,

''We thank G. Horowitz for suggesting that this check should be made.
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Figure 2.3: The Penrose diagram of a regular AdS black hole. We can take T = R= P, =
P_ =0 at the center of the diagram. The black hole horizon is the diagonal line going up
and right from the origin.

at least for small P,.. (As the perturbation grows, the horizon eventually starts to fluctuate,
but this is not an issue in the question of whether the instability exists).

A qualitative summary of our numerical results is displayed in figure 2.4(a). An example
of a normalizable wave-function with negative w? is shown in figure 2.4(b). Some points to

note are:

e The boundary of the region of dynamical stability comes from instability in the ¢ =1
mode. The ¢ = 0 mode is projected out by charge conservation. Higher ¢ modes
become unstable in the upper left part of the shaded triangle in figure 2.4(b). The

boundaries of dynamical instability for different ¢ all come together at o = 0.

e At 0 = 0, thermodynamic stability is lost at x = 1, whereas dynamical instability

sets in at x = 1.007. We believe that the 0.7% discrepancy is due to numerical error.

e We have drawn the regions of dynamical instability and thermodynamic stability as
disjoint in figure 2.4(a). In fact, our current numerics shows them overlapping by
about 0.1% around o = 0.1. We do not view this as significant because the numerical

errors seem to be around 1%.

Finally, it is worth pointing out that the string theory program of computing black hole

entropy via a microscopic state count in a field theory dual (see for example [59], or [60] for
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Figure 2.4: (a) A topologically correct representation of dynamical and thermodynamic
stability in the whole x-o plane (but see the text regarding possible overlap of the two
shaded regions). (b) A sample normalizable wave-function with negative w?: here o = 0.3,
x = 0.96, and &% = —0.281.
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a review) has proved hard to extend past the boundaries of thermodynamic stability. For
instance, we have a good understanding of the entropy of near-extremal D3-branes [61, 62],
but not of small Schwarzschild black holes in AdS. It seems to us that this is no accident:
most sensible field theories have log-convex partition functions, and this translates into
Hessian matrices Hf,'q , Which have no negative eigenvalues. Pushing past the boundary
of thermodynamic stability in a field theory may be possible (particularly as one crosses
a phase boundary and begins to nucleate the new phase), but doing so seems likely to
produce dynamical instabilities in the Lorentzian time-evolution. This point of view has
indeed informed our entire investigation.

A dual field theory description of a small Schwarzschild black hole in AdS must involve
thermodynamic instability but no dynamical instabilities. We believe that finite volume
effects in the field theory are essential in this regard: if one imagines a Landau-Ginzburg
effective description of the field theory, then derivative terms must restore stability to a
system whose infrared tendencies are controlled by the thermodynamic instability. Various
properties of small AdS-Schwarzschild black holes have been explored (see for example
[63, 64]), but the basic problem of reconciling thermodynamic instability with dynamical
stability in the presence of a field theory dual remains to be addressed.

2.6 Conclusions

A common conception of the Gregory-Laflamme instability is that a uniform solution to Ein-
stein’s equations (plus matter) competes with a non-uniform solution, and the non-uniform
solution sometimes wins out entropically. In such a situation, the generic expectation is that
there is a first order tunneling transition from the uniform to the non-uniform state. which
may take place very slowly due to a large energetic barrier. In fact, the original papers
[22, 23] focused mainly on demonstrating the existence of unstable modes in a linearized
perturbation analysis of the uniform solution. The distinction is between global and local
stability. At the level of classical gravity/field theory, the latter concept is more meaning-

ful, because with quantum effects suppressed it is impossible to tunnel away from a locally
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stable solution. The aim of this chapter has been to study local dynamical stability of
black holes in anti-de Sitter space in relation to a particular notion of local thermodynamic
stability, namely downward concavity of the entropy as a function of the other extensive

variables. We reach two main conclusions:

1. In the limit of large black holes in AdS, dynamical and thermodynamic stability
coincide. This conclusion is supported by numerical evidence. The small discrepancy
between the observed onset of dynamical and thermodynamic instabilities is probably

numerical error.

2. Dynamical instabilities persist for finite size black holes in AdS, down to horizon radii
on the order of the AdS radius. The evidence is again only numerical, but we believe

the final answer is correct and robust.

We regard point 1 as a partial verification of a rather more general conjecture, namely
that black branes should have Gregory-Laflamme instabilities (in the local, dynamical sense
of the papers [22, 23]) precisely when thermodynamic stability is lost. There is by now a
lot of evidence that this conjecture is probably true. Also, as we sketched out briefly in
Section 2.2, there is something close to a proof of the conjecture by Reall.

Point 2 is surprising because it is the first known example of a stationary black hole
solution with a point-like singularity which exhibits a dynamical Gregory-Laflamme insta-
bility. Furthermore, it shows that no-hair theorems cannot always hold in anti-de Sitter
space.

Is Cosmic Censorship really threatened by our analysis?'2 It is too early to say. Using
the heuristic method of calculating the most unstable eigenvector of the Hessian of the
entropy function, we have argued that adiabatic evolution of unstable black holes does not

lead to nakedly singular solutions.

2If asymptotically flat spacetimes are part of the hypothesis of Cosmic Censorship, as is often the case,
then of course no demonstration in global anti-de Sitter space is relevant. We prefer a broader interpretation
of Cosmic Censorship—loosely speaking, that no observer who follows a timelike trajectory which never runs
into singularities can receive signals from a singularity.
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At the time of writing this chapter, the ultimate fate of these unstable black branes is
still an open question. What we do know is that the horizon starts off by becoming lumpy
and loses translational invariance. One might then think that since there is no natural scale
at which this process can stop, the non-uniform brane would continue to become more and
more non-uniform and finally the horizon would pinch off in some region. In a beautiful
paper, Horowitz and Maeda have shown in [65] that there is an immediate difficulty to this
line of reasoning. Their result is that the horizon cannot classically pinch off in finite affine
time if the weak energy condition is satisfied. In fact, given any spacelike curve on the event
horizon, if one evolves the curve along the null geodesic generators, its length cannot go
to zero in finite affine parameter. The basic idea is to use the fact that the divergence
of the nuil geodesic generators £ of the event horizon cannot become negative. This means
that if part of the horizon is contracting, the orthogonal directions must be expanding.
But this introduces a lot of shear gasn in the null geodesic congruence. One now uses the
Raychaudhuri equation

do 6?

d\~ D-2

—ouno™Y — Ry veMeN (2.47)

where ) is an affine parameter along the null geodesics and D is the total spacetime di-
mension. If the weak energy condition is satisfied, the right hand side is negative definite,
so when the shear becomes large, # decreases rapidly. One can show that if part of the
horizon shrinks to zero size in finite affine parameter, § must become negative which is a
contradiction. If the above argument is correct, one is led to believe that the solution must
settle down to a new static configuration without translational symmetry along the brane.

There are ways one could imagine bypassing the above argument; for instance if naked
singularities form outside the horizon. At the very least. current numerical evidence indi-
cates there might be problems associated with assuming that the end-point is a non-uniform
brane. Gubser in [66], and more recently Wiseman [67] have provided numerical evidence
that a more lumpy string is heavier than a less lumpy one, so that these non-uniform strings
cannot be formed as a result of the decay of an unstable uniform string. The fate of the

unstable black string is still not known and Kol has conjectured that the black string might
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undergo a topology changing transition and form a black hole (there has recently been some

numerical evidence for this in [68]). In short, the fate is not known with full confidence.



Chapter 3

Stability of AdS Compactifications

Without Supersymmetry

3.1 Introduction

The discovery of the AdS/CFT correspondence (3. 5, 6] (for a review see [2]) has led to
renewed interest in the stability of geometries of the form AdS, x M, where AdS, is anti-
de Sitter spacetime and M, is an Einstein space with positive Ricci tensor. Solutions of
this type with a ¢g-form field strength on M, were first considered in higher dimensional
supergravity theories by Freund and Rubin [69]. Due to the negative curvature of AdS,
perturbative stability does not require the absence of all tachyonic modes. Instead, as
Breitenlohner and Freedman (BF) first showed, scalars with m? < 0 may appear as long as
their masses do not fall below a bound set by the curvature scale of AdS [70]. The issue
of stability is important for understanding a possible dual conformal field theory (CFT)
description. For stable solutions, the spectrum of masses directly yields the dimensions of
certain operators in such a CFT. On the other hand, AdS vacua with some field(s) violating
the BF bound need not have a well-defined field theory dual. Indeed, if one attempts to
compute the two-point function of such a field, the result is highly cutoff-dependent. This is

like having a lattice theory without a well-defined continuum limit. By extension, solutions
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to string theory or supergravity which are asymptotic to AdS vacua violating the bound
may also be expected to have some pathology on the field theory side.

It is well known that for the standard ten and eleven dimensional maximally supersym-
metric supergravity theories, 11D SUGRA on AdS; x S7 or AdS7x S* and Type IIB SUGRA
on AdSs x S5 are all stable. However, these solutions are all supersymmetric (SUSY), and
simple nonsupersymmetric vacua like AdS; x My, x M;_, [71] and AdS; x S2 x S? [72] are
known to be unstable. Furthermore, the SUSY examples have modes which either saturate
the BF bound, or are very close to saturating it. This raises the question of the role that
SUSY plays in ensuring stability of vacua of this type. (For earlier discussions of this ques-
tion see e.g. [71], [72], [73].) This issue is of particular interest in light of the recent proposal
of bosonic M-theory (15], a 27-dimensional theory which was hypothesized to appear as the
strong-coupling limit of the bosonic string. Its low energy limit is assumed to be gravity
coupled to a four-form field strength, which admits solutions of the form AdS; x $% and
AdS»3 x S*. It was suggested that with these boundary conditions, bosonic M-theory might
be holographically described by a (2+1)- or (21+1)-dimensional CFT. Thus, it is important
to determine whether these solutions are stable.

One argument for the stability of AdSs x §% [15] and more generally AdS, x S7 is that
these backgrounds are the near-horizon geometries of extremal black branes. However this is
not completely satisfying for two reasons. First, although we expect extremal black branes
to be stable, the appropriate positive mass theorem (stating roughly M > Q) has never
been proven.! Second, as we will discuss later, one can construct extremal black brane
solutions with unstable near horizon geometry by placing branes at the apex of appropriate
cones. So, one needs to examine stability directly.

This chapter is based on the papers [10, 11]. In it we shall study the stability of
general solutions of the form AdS, x M, in a theory of gravity coupled to a q-form field
strength. When one expands the field equations to linear order, there are several types

of modes. Some immediately decouple from the others, while the rest mix and must be

!Interestingly enough, if one tries to adapt Witten’s spinorial approach, one succeeds only in the SUSY
cases [74].
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diagonalized. A priori, since the fundamental fields in p + ¢ dimensions are massless, and
adding dependence on M should increase the mass, one might expect that the modes
that don’t mix should always be stable. Masses violating the BF bound might be expected,
however, to arise in diagonalizing the coupled fluctuations — indeed, this is the origin of the
modes that saturate or come very near to saturating the BF bound in the SUSY examples,
so one might think that the absence of supersymmetry could push them over the edge.

Surprisingly, this is not what we find. It turns out that for any p and q and any Einstein
space M, the coupled modes are always stable. Moreover, for S? the lowest mass either
saturates (¢ odd) or almost saturates (g even) the BF bound. This is not to say, however,
that an arbitrary AdS, x M, background is stable. The dangerous mode turns out to be
an unmixed scalar coming from the transverse, traceless metric perturbation on M,. This
is the only mode which is sensitive to the choice of Einstein manifold M,. We shall study
a few types of compact Einstein manifolds, starting with the simplest one — a sphere, then
moving on to product spaces (so that M, is a product of two compact spaces which are
themselves Einstein manifolds) and finally we shall treat the important example in which
M, is the five dimensional coset space (SU(2) x SU(2))/(U(1)) commonly known as TP9.

If M, is the round sphere 59, it is easy to show that this mode is stable. In particular, the
spacetimes of interest for bosonic M-theory, AdS; xS and AdSq3 x S4, are stable. However.
if My = My, x My_, and q <9, there is a mass violating the BF bound, corresponding to a
mode which makes one factor grow while the other shrinks. This generalizes the instabilities
of AdSy x M, x M7_,, and AdS; x §2 x §2, but also shows that this instability is limited to
low dimensions. For ¢ > 9, AdS, x S™ x S97" can be shown to be stable. The significance of
the critical dimension g = 9 is not clear; it is sufficiently large that stable products cannot
be realized in superstring/M-theory.

While the results for a sphere and product spaces are curious, there is a much stronger
motivation for seriously investigating the question of stability of AdSs x TP compactifi-
cations. It is well-understood that the AdSs x T!! case is stable, since it is the super-

symmetric near-horizon limit of D3-branes on a conifold [75]. Also, AdS5 x T** must be
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stable (at least classically) since it is a smooth, supersymmetry-breaking Z; quotient of
T'!, as we shall review further below. On the other hand, T°! is a direct product space,
5% x S, and as we have already alluded, such product geometries are always unstable
toward inflating one factor while deflating the other, provided the total number of com-
pact dimensions is less than nine (71, 10]. The question then is whether T is stable
for some range of p/q close to 1, as occurs in the MP" case. For instance, there is an
infinite family of compactifications of M-theory, AdS4 x MPI". which are stable but non-
supersymmetric {76]. (MP¥" is a homogeneous Einstein 7-manifold describable as a coset
space (SU(3) x SU(2) xU(1))/(SU(2) xU(1) x U(1)). The integers p, q, and r describe the
embedding of SU(2) x U(1) x U(1) in SU(3) x SU(2) x U(1). In most cases the symmetry
group of these spaces is SU(3) x SU(2) x U(1).2 For a certain range of p, q, and r, there
is a BF-violating tachyon, and for the complementary range there is not.) In fact it is not:
we shall demonstrate that all 779 for p # q are unstable by constructing the unstable mode
explicitly. To a large extent this dashes the hope that renormalization group flows from
the simplest Z; orbifold of four-dimensional N = 4 gauge theory might include infinitely
many infrared fixed points.® (There is still the possibility that stable solutions exist with
topology S? x S* and with three-form field strengths and non-trivial dilaton: however these
seem much more difficult to find).

The theories that we just discussed involve only gravity and a form field. There are
physically interesting theories with an additional level of complexity — the presence of a
scalar potential present at the classical level in addition to the above fields. Because of this,
the results that we just stated above do not hold and a separate check has to be made. In
the string theory context, the scalar could be a dilaton and the presence of the potential
can be thought of as a cosmological term at the classical level. Two examples immediately
come to mind - massive IIA supergravity and Sugimoto’s USp(32) open string theory [77].

The massive type IIA supergravity has a nonsupersymmetric vacuum of the form AdS4x

*The two exceptions are M'®' = §5 x S? and M°'! = CP? x S3.
3The AP manifolds are topologically distinct from one another for different values of 5, so there is no
question of whether one could flow from one to another.
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S°® [78], whose stability, to our knowledge, had never been investigated before. We show that
the solution is unstable, with two modes violating the BF bound. To our knowledge, this is
the first example of a theory where the product of AdS and a round sphere is unstable. The
analysis is more involved here since there is a dilaton which mixes with some of the other
modes, further complicating the coupled sector. Instabilities for more general AdS4 x Mg
can arise in several ways, but we show in particular that they do occur for AdS x S™ x S6—".

Sugimoto’s USp(32) open string theory [77] also suffers the same fate. The obvious
Freund-Rubin compactification for this theory AdS3 x S7 is unstable. The reason to be
interested in this vacuum is that it is the near-horizon limit of many coincident D1-branes
in this theory. For the usual SO(32) open string, the D1-brane turns out to be a non-
perturbative construction of the SO(32) heterotic string {79, 80]. There is no perturbative
U Sp(32) heterotic string in ten dimensions: the USp(32) current algebra is too big to admit
unitary representations with ¢ < 16. Correspondingly, it is perhaps satisfying that we find
fields which violate the BF bound in the AdS3 x S7 vacuum of Sugimoto’s theory. One may
perhaps draw the general conclusion that string theories which are non-supersymmetric in
their perturbative construction can suffer non-perturbative instabilities which prevent them
from participating in weak-strong coupling dualities.

There is a vast literature on Kaluza-Klein theories, much of it in the context of higher
dimensional supergravity, including a comprehensive review [81]. Our treatment of the
harmonic analysis of fluctuations about AdS, x M, is most closely modeled on (82, 83, 84].
and we have also consulted [71] and [85]. In Section 3.2 we present the general AdS, x M,
background solution. The harmonic expansions for fluctuations and their linear equations
of motion are discussed in Section 3.3. The mass spectra of the various fluctuations are
analyzed in Sections 3.4-3.8. The more complicated case of massive type [IA supergravity
and Sugimoto’s theory is discussed in Section 3.9. The AdS, mass spectra determine the
dimensions of operators in hypothetical CFT,_; dual field theories, and this is discussed
in Section 3.10. In Section 3.11, we show that for some of the the unstable cases. the

total energy (in the full nonlinear theory) is unbounded from below. We also speculate on
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the implications of our results for the stability of certain extremal black brane solutions.

Conventions and properties of various differential operators are collected in an appendix.

3.2 Freund-Rubin Backgrounds

We start by considering classical D = p + q dimensional gravity theory coupled to a ¢-form

field strength. The action is given by:

5= [ @attyy=g(R- 2—;,&,2) , (3.1)
which leads to the equations of motion
—_ 1 PPy (- 1) 2
Ryy = g = 1)!FMP;---P,,FN 2AD = 2)q!gu‘qu . (3.2)
d«F; =0, (3.3)

This theory supports a Freund-Rubin solution with the product metric
ds? = ds%s +ds}y, (3.4)

describing a product of p-dimensional anti-de Sitter space with an Einstein manifold:

-1
Rpu = _(‘BLT)guu ' (3.5)

-1
Ros = a-b R ) Gad » (3.6)

and a background field strength on the compact space:
Fy =cvolyy, - (3.7)

We use M, N, ... for indices on the full D-dimensional spacetime, while g, v.... are indices
on AdS and a.g.... are indices on M,. The equations of motion (3.2). (3.3) relate the

length scales L and R and the constant c:

, 2AD-2)q-
= B (38)
L= ;’%:R. (3.9)
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In the following six sections we shall study fluctuations of gary and F; around this back-
ground. Among other things, we will conclude that the background is stable against these
fluctuations when M, = S9, for arbitrary p > 2 and q > 1. If one wishes to embed the
action (3.1) in a larger theory with additional fields, stability must be verified separately
for the new modes. However let us note that the most tachyonic modes in the well-studied
vacua of ten- and eleven-dimensional supergravities generally come from precisely the fields
which support the solution. Thus, when these most “dangerous” modes come out stable. it

suggests that the background is probably stable against all fluctuations.

3.3 Linearized equations of motion

3.3.1 Fluctuations

We are interested in studying the stability of linearized fluctuations around the background
(3.4), (3.7). As we have discussed, anti-de Sitter space is stable even in the presence of
tachyonic scalar fields, as long as their masses do not violate the Breitenlohner-Freedman
bound:

m2L? > -@. (3.1)
The possibility that some tachyons could be acceptable in AdS; was first pointed out by
Breitenlohner and Freedman [70], and extended to AdS, by [86]. See also [87. 88] for early
developments of this idea.

We consider the linearized fluctuations

1
(sgpu = h“u = H;w - mg;wh: ' (3'2)

69;!0 = hua . 0903 = hag, 6~4q—l =ag-1, 6Fq = fq = daq~l s (33)

where we have defined a standard linearized Weyl shift on h,,, in (3.2), and Fy =dA,_,. It

will be useful to decompose H,,, and h,g into trace and traceless parts:

1 1
H, =H,,+ ;yuuH,‘;v hag = hag) + ;906"3 ) (3.4)
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where g Hy,,,,) = g""h(ag) = 0. To (mostly* ) fix the internal diffeomorphisms and gauge

freedom, we impose the de Donder-type gauge conditions
V®hagy = Vo, =0, (3.3)
as well as the Lorentz-type conditions
V%o, 3,1 = V0, 5g2p = - = Vapy..yq_y =0. (3.6)

A generic gauge potential a4, anpu,,;..u,-;» Viewed as an n-form on M, with additional
AdS, indices, can be expanded as the sum of an exact, a co-exact and a harmonic form on
M, by the Hodge decomposition theorem. The Lorentz conditions (3.6), which state that
the form is co-exact, require the exact form in the decomposition to vanish. and hence the

potentials can be expanded as co-exact forms (curls) and harmonic forms:

— Ja2...0q-n arm
a8,..3npns1pg-1 — € 51...anﬁlba:---aq—nllnﬂ--‘#q—l + Bgl...Bnuanq—x : (3’7)

When the compact space is an S9 there are no nontrivial harmonic forms, but they can

appear for other M,. In a compact notation, we may write (3.6) and (3.7) as
dg*q@ =0 — a = +gdb + 8™, (3.8)

where d; and =, are the exterior derivative and Hodge dual with respect to the A/, space
only.

With these gauge choices, we may expand the fluctuations in spherical harmonics as

Hiu)(z,y) = z,‘,H{,w,(z)Y’(y), H;(:,,,):EI;H'@)Y'(,,), (3.9)
hp)(z.y) = z,:as'(sz.m(y), hg(x.y)=zl:7r’(z)Y'(y), (3.10)
hya(z,y) = ZI:BL(z)YJ(y), (3.11)
08,8, = leb’(z) €58, Va¥ ' (4), (3.12)

Besides unfixed p-dimensional diffecomorphisms and gauge transformations, extra conformal diffeomor-
phisms remain ou S?. These are related to the elimination of a k = | mode in the coupled scalar sector. as
in section 3.4; for a discussion, see [83].
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BuBs..31 = 21: bu(2) faﬂag...a.,_ IV[aYaI] W)+ Y Bh(=) fadu-.,...a,,_l Y. (3.13)
h
Cprpgr = X b (@Y (W), (3.14)
1

where I in each case is a generic label running over the possible spherical harmonics of
the appropriate tensor type, and h = 1...b"(M,) runs over the harmonic n-forms on M,
for the gauge field with (n—1) AdS, indices. We have not included a term 3(z) in (3.12)
since compact Riemannian Einstein spaces with positive curvature cannot possess harmonic
one-forms: this is proved in the appendix. We will also find it convenient to define

bz.y) = 6 @Y (Y),  bualzy) = T bL@YI(W). (3.15)
I I

3.3.2 Einstein equations and coupled form equations

We now consider the Einstein equations to linear order in fluctuations, as well as the form
equations that mix with the graviton; the uncoupled form equations will be treated in
section 3.7. We use the following notation: O = ¢"*V,V,, 0, = g°°V, V3. and Max B, =
Q: B, — V¥V, B, is the Maxwell operator acting on vectors on 4dS,. Additionally, A, =
—(d}d, +dqd}) is the Laplacian® acting on differential forms on Mj; for vectors, the explicit
form is A, Y, =0, Ya — R,PYj. Further, f-€ = fo,..a €% "29/q\.

For convenience, we present the linearized Ricci tensor in our conventions:

1
R\ = -5[(Dz +0,)hun + VauVahh = VaVPhpy — VnVPhpy (3.16)

—2RypenhP? — Ry\Thnp — RiPhatp.-
We employ Einstein's equations in their Ricci form, Rany = Tary with Ty = Tyw +

ﬁ gMN T,'; . For R,, we find

1 1 2
1 1 1
—V“VP(HP,, - p——_ 2gpyh-‘;) - V,,Vp(Hpu - ;—_—29‘,“'1;) - 2R“WV(HW d p—_2-g”"h10¥. 17)

1 1
—-RP(Hp — mgpvh-‘;) - R°(Hp, - ;‘_‘.‘2‘9;1#"3,)] ’

5The negative sign is standard in the Kaluza-Klein literature.



which must be equal to

2a-V, _ga-0e o ene e D )

T(l)=_ v = v
od 2(D-2)" 2(D-2)q I (D-2)

resulting in the equation

~ 3O +0) Hy + VW, HE = V.V Hp ~ VP Hp, — 2Ry H = Ry PHp — R,PHy)

1 (q 1)? (q - 1)? g—1
- T — g ‘I —
(3.19)
For linearized R,,, we find
R (l) = _—[DJ: pa Vuvvhua - R""h,,a +0y hﬂa - Raahﬂﬂ- (3’20)
Y 2
~Vihyy + V, Vo (HE - 2h2’,) -V, Vhya. (3.21)
which is sourced by
Py _ & BBy _ Cla—1)
uer 3(q — L)t/ uer-afa D —2) e (3:22)
c c Aq-1)
= 3VuVab+350ybua - R.%b,3) - AD=2) hua - (3.23)

For R,; we have

1
Rag) = "2-[(0:: +0y)has) — 2R0‘765h(76) L RB’h(W") (3-24)

1 2 2
+;I-g°3(DI +Dy)h.‘; - (a + ;_—2')V0V5h; + VQVBH;: - VQV"h,,g - VgV”h‘m] .

while on the right-hand side, we find

(g1
Taé” 2(q - l)"(fa‘rv wa€a "+ fomenq€a ™ 7°)+H(_h16)e°""3"'0q‘360 &
_2g-1) 1 c(g—1) 9= 1S W )erg e, 18.25)

~5D = 2)(h(aa)+agaah") (D —2)% a(f-€) - 2D = 2),03

p—1 (-
=53 2gaBDbe+ 72 h(aﬁ) W—yauh",

where we have used (f -€) =0y b and f4,..a, = (f - €)€a;-aq, = €ay-a, Oy b
We see that the modes of the graviton mix with the form modes b and b,,. To solve the

coupled systems, we must consider certain form equations as well. From the V¥ Fag,..0,



equation® , we find the expression
VM frpys, — c@*T7 Ve s,...0, — cy""f'%”eoaz---a., — e(q - 1)g"°T?eso5,..5, = 0.(3.26)
where we use the linearized Christoffel symbol,
il = % (Varhly + Ykl — VPhary) . (3.27)
Contracting with the epsilon tensor on Mg, (3.26) becomes
(g 1)! (vc.[(cn,r +0,)b+ SHY - “p”_;;)h;] + V40, b — REb,5 -ch,,,,]) ~0.(3.28)
Finally, from the V¥ F, MuBs...3, €quation,
VM faruss--8, — cg""fﬁ,(,”fawg---e., =0, (3.29)
which reduces to

2(q—1 ;
(g -2) [(Clz +0, —(Lm—)) V[abalu - V"V“V[abal,, - CV[aBgl“ + 2Ra7fvhb6!“ (3.30)

(g = 2)!Dg, D¥ s 5,605™ "™ + (q — 2)U0: By — V*V,8,) = 0.
We now expand these fields in spherical harmonics and collect like terms. Below we present
the results, collecting related equations and indicating the origin of each expression as
follows: (E1), (E2) and (E3) for the AdS, mixed and M, Einstein equations, and (F1) and

(F2) for the form equations (3.28) and (3.30), respectively.
Equations for the coupled scalars 7/, b/ and H':

112 AHD— —
(E3) [(0.+0,-20) ' +a, (B - 2227") + Hedo, o | ¥ =0, (331)

(E3) (H! - 2RV V4 Y' =0, (3.32)
(F1) Va (0:b' +0,b' + $H' - LUl ¥/ =0, (3.33)

Equations for coupled vectors b"‘, B,{:

_1n2
(E2) (Max Bf+A,BL+Aycb], - 2a5hbl) v =0, (3.34)

SOne may avoid explicit manipulation of Christoffel symbols by linearizing the equivalent equation
/=GP M NN = g,



(F2) Via (Max b, + AybL, — cB! 1) v = (3.35)
(F1) (vebla, - cV#BL) Y] =0, (3.36)
(E3) (V4BJ)V,oYy =0, (3.37)

Equations for symmetric tensors H, ‘f,,:

(E1) (Ru (HJ) - 40, Y, + (S50 HL, + (3:38)

Ap—2) pl—2)gl“’(D-t+D!l)7r[ - (%guu” + -(-5—2g,,.,c1,,cb’ )wi=o,
(E2) -VH! +V, H - &923q I L v bl )V, Y =0, (3.39)
(] » q(p-2) "8 "

Note that in (3.38), R,,f,” is the linearized Ricci tensor for AdS), only. evaluated on the field

Hy,. Finally, there remain a few decoupled equations:

(E3) [@c+0,)8285 - 2R, B] SY 5 =0. (3.40)
(F2) (Max B2)Yh 5 = (3.41)
(F2) (Vb )ViaVgY! = 0. (3.42)

Notice that in passing from (3.30) to (3.35), we commuted the O, through the covariant
derivative V,, which not only produced precisely the Laplacian A, acting on vectors, but
also canceled all terms in (3.30) involving the Riemann tensor.

It is worth remarking that as a result, the properties of Al enter into almost all these
formulas only through the dimension ¢ and the radius R. Consequently we will be able to
treat these equations in a completely unified way, and prove that for generic AdS, x M,
backgrounds, all the corresponding modes satisfy the Breitenlohner-Freedman bound and
cannot destabilize the background. The sole exception is the equation (3.40) for the scalars
coming from graviton modes on the compact space. which explicitly involves the Riemann
tensor on M,. There is thus no guarantee that the modes ol will possess the uniform
stability properties for different choices of M,. Indeed, we will find that for M, = S7 these
modes are harmlessly positive mass for all ¢, while for any product M, = M, x My_n with

q < 9 they contain an instability.
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3.4 Coupled scalars

In this section, we consider the system of modes associated with the coupled scalars x/, b/
and H', equations (3.31), (3.32) and (3.33).

For certain low-lying scalar spherical harmonics Y/, some or all of their derivatives
appearing in the equations of section 3.3.2 may vanish. Let us first treat the generic case
where all derivatives of Y/ in (3.31), (3.32) and (3.33) are nonzero and hence the coefficients
must vanish. Equation (3.32) then gives us a constraint which may be used to eliminate

H' in favor of /. Substituting into equation (3.33), we find
((cx;+r:1,,)b’ —cgq;—l)n") Y/ =o, (3.1)

while the second term in parentheses vanishes in (3.31). We obtain from (3.31) and 3.1)

the coupled system

I Al R® I
2 b/ey 2 [ G-17 a(g-1) b /e
Co:| | |=e-1* o)l ) (3.2)
7" @R G-1?

where 0, Y/ = ~ATY//R?: that A/ > 0 is straightforward and is shown in the appendix.

On diagonalizing this matrix we obtain the mass spectrum

m2? = 8= 1)2[/\+(q )(g—1£/4x+ (¢ - 1)?)]. (3.3)

(¢—

We now wish to analyze the spectrum (3.3) to check stability. Extrema of (3.3) occur for
1+£2(g—1)(4r+ (g-1)%)"2 =0, (3.4)
To satisfy (3.4) we must choose the negative sign, and we find a minimum at

A=(g-1)>2. (3.5)

&IN

Substituting into (3.3), we find the elegant result that the minimum mass of the negative

branch exactly saturates the Breitenlohner-Freedman bound independent of p and g,

min

m2, L[*= —i-(p— 12 =m}pL2. (3.6)
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Since the positive branch leads to manifestly positive masses, we have proven there can be no
unstable modes in this sector, at least for modes associated to generic spherical harmonics.
We shall complete the proof by treating the special cases momentarily.

Although the spectrum (3.3) always saturates the BF bound as a smooth function of A.
there need not be physical states at the minimum, since only discrete values of A appear for
given M. If M, = S7, then the eigenvalues of the spherical harmcnics are A = k(k+q—-1),
for integer k > 0, and the mass formulas for the two branches take on the form
(p—1)°
(g—1)?

The minimum (3.5) occurs for S at k = (g — 1)/2 in the minus branch. We notice that

m3L2=uk(k—q+1), m2L? = (k+2(g-1)k+q-1). (3.7

1
(g-1)?

whenever ¢ is odd. there will be a mode with precisely the Breitenlohner-Freedman mass.
while for g even the lightest-mass states from this sector will appear just above the bound.
This is consistent with what is already known about AdS; x S7 and AdS7 x S* [85, 82, 84].

Let us now examine the special cases. For k = 1 on S9, V(QVB)Y’ = 0 and we cannot use
(3.32); this only occurs for maximally symmetric spaces. and hence is not a concern for other
M, where nonconstant Y/ can be treated as above. Following [84] we may deal with this in
one of two ways: either using a residual gauge invariance to impose the constraint anyway,
or explicitly evaluating the remaining equations and showing that one linear combination
drops out. We shall do the latter; for a discussion of the former, see [83].

We now consider equation (3.33) as a constraint to eliminate H I' in favor of #/ and b'.

The remaining equation (3.31) becomes

392 2q—1)%\ R*(p—1) 2q(q — 1) I _qo
(Dx+ p a, — R2 )Tl' —-(-l;_—l)(-m([:l;+ﬂy——R—2-)Dycb —0.(3.8)

In the case of the sphere, O, = —q/R? and we find an equation for a single mode,

which has the same mass as one would obtain from naively substituting k& = 1 into the

positive branch of (3.7).



63

For constant Y/ on any M,, all derivatives of Y/ vanish and the only nontrivial equation

is (3.31), which reduces to

(uz —&%l—)z) =0, (3.10)
where again the mass matches what one obtains by substituting k = A = 0 into the positive
branch of (3.3). Thus we learn that a proper treatment extends the positive branch of (3.3)
down to k = 0, while the negative branch truncates at k = 2 for S and k = 1 for other M,

The only remaining scalar fields associated to modes of the graviton are the ¢/, which
obey the uncoupled equation (3.40). These shall turn out to be the modes that can threaten

stability. We shall return to these in section 3.8.

3.5 Coupled vectors

We now consider the graviphoton B, and the form mode b,, with which it mixes. We expect
to find a massless vector for each Killing vector on M, as well as a tower of massive fields.
and indeed this is what we obtain. An additional b2(M,) massless vectors arise from the
gauge potential, where b2(M,,) is the second Betti number.

The relevant equations are (3.34), (3.33), (3.36), and (3.37). One readily sees that (3.36)
can be obtained from the divergence of (3.33). We obtain the following coupled system from

(3.34) and (3.35):

cb?, e A2 cbl,
L2 Max( I;) (1) ((q:,l) G DG-D )( ,) ' 3.0)
Bu @t/ \B
where A,Y = —x’Y/R?. The masses that result are
2[2 = (” _ ) 20 D-2 3.2

On a general Einstein space. we may derive the bound n’ > 2(q — 1), with equality when
Y/ is a Killing vector, by considering [ d%y 5,358 > 0 with Sa3 = VY5 + VY, (see
appendix). For these Killing modes, the masses on the negative branch of (3.2) vanish.
Hence we do indeed find a massless vector for each isometry of the compact space M,. For

Killing modes (3.37) is trivially satisfied and does not constrain the vector fields.
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The positive branch for kK = 2(¢ — 1) yields a positive mass, and one can show that
for both branches (3.2) monotonically increases with x for x > 2(q — 1). Thus all vector
modes are either massless or have positive mass. For the non-Killing modes (3.36) and
(3.37) provide the usual divergence-free condition for massive vectors, while for the massive
modes associated to the Killing vectors (3.36) accomplishes this by itself.

When the cohomology H?(M,) is nontrivial, harmonic 2-forms Y[:',B] give rise to b*(M,)

additional massless vectors /3"“, as we see from equation (3.41).

3.6 Graviton and tensor fields

We now establish the existence of the p-dimensional graviton and demonstrate the stability
of the tower of massive symmetric two-index tensors. The graviton comes from the constant

Y/ mode of equation (3.38). Using (3.10), this reduces to

p—1
R(HL) + 2 H, =0, @3.1)

which is the correct fluctuation equation for a linearized graviton in AdS,,.
For generic Y/, the trace and longitudinal parts of (3.38) are redundant given (3.31),
(3.32) (3.33), and (3.39), which express the trace and divergence of H, in terms of = and

b. One can use these equations to reduce (3.38) to
2. g1 1] y1 .
@:+0ay + 73 i) = 2V, V,)cb" | Y =0. (3.2)

A massive tensor field of mass m? is described by a field @ (uv) Which satisfies the wave

equation and transversality constraints

@z —-m*)p(u) =0, (3.3)

V“cp(,,,,) =0. (3.4)
To bring (3.2) to this form, we follow (84]. Define ¢,,) in terms of H,,, by

H(IW) = O(uv) + V(,,V,,)(ub +um), (3.3)
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where u and v are constants which can be determined by the following procedure, which we
outline without full detail. The first step is to substitute (3.5) into (3.2) and require that
®(uv) satisfy (3.3) with mass m? = A//R? —2/L2, where —A!/R? is as usual the eigenvalue
of O, on Y!. The remaining terms are required to cancel which gives one condition to
determine « and v. The second condition is obtained by applying V¥ to (3.5). The left
side is expressed in terms of b and 7 using (3.32) and (3.39), and one imposes (3.4). After
commuting covariant derivatives, one finds two scalar conditions. Both contain the term
Oz(ub + vm) which may be eliminated between them. The constants u and v may then be

obtained by requiring that coefficients of the independent fields b(z) and 7 (z) vanish. The

results are
2¢(D-2)(p—2) .
= 3.6
(a-UL* (25 -2F) (36)
D-2
v = —. 3.7
ap-1)(gr—-E7) (37)

Strictly speaking the argument above does not apply to the & = 1 graviton mode on $7
since it uses the constraint (3.32) which no longer follows from the Einstein equations.
The simplest way to extend the argument is to use the unfixed conformal diffeomorphisms
discussed in [84] to impose the constraint for £ = 1. The argument then goes through
unchanged.

The apparent tensor mass m? is not positive for all geometries AdS, x M,. However
[84] one can examine R,,S,” in (3.1) to see that the graviton itself has an apparent mass
—2/L?. When this is subtracted one sees that higher tensor modes have positive mass
AT/R?. These modes transform in unitary representations of the AdS, isometry group, and

we have stability.

3.7 Uncoupled form fluctuations

As we saw, the gauge potentials with zero and one indices on AdS, mix with the graviton
scalars and vectors. The remaining form fields are decoupled. It is easiest to treat them

using a differential form notation. Thanks to the gauge condition (3.8), these may be

oo



written
a(z,y) = leb’(z) *q Y (y) +Zh:ﬂ"(z)Y"(y)- (3.)
The linearized equation of motion is simply
d+da=0. (3.2)

Consider first the form Y/(y) with n > 2 indices on M; the field b/ then has n indices on
AdS,. Evaluating (3.2) and using the identities *(Am(z)Ba(y)) = ( -1)"""”"*,(Am)*.,(B,,)

and dg #, Y/ = 0, we arrive at the equations
(dp xp dpb’ )Y + (1) (#,6")d,A, Y =0, (3.3)
(dp +pb')A Y =0. (34)

Equation (3.4) already appeared for the form with 2 indices on AdS), as (3.42). It follows
from (3.4) that (3.3) reduces to

W)
(A, - "—) b =o0. (3.5)

where A, is the Laplacian on AdS, and A Y = —k'Y!/R? is the eigenvalue of the Lapla-
cian on M, as before. Thus these are standard positive-mass modes resuiting from the
dimensional reduction.

The harmonic modes are even simpler; we find
(dp xp 8*)Y* =0. (3.6)

Thus we have a massless form of appropriate rank for each cohomology class, as expected.

One potential modification of the action (3.1) is the addition of a Chern-Simons term
AS ~ / Agt A (F)", 3.7)

where the wedge product is understood. Naturally, this is only possible when ¢ is even,
and when an integer n satisfying ng = p+ 1 can be found. (For P = 23, ¢ = 4, one may

add a CS term with n = 6.) Notice that such a term breaks the duality symmetry between
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a theory with F,;, which we have used, and a dual F; results for the rest of this chapter
would be identical had we used Fp, but not in this instance. The modified action (3.7)

leaves Einstein's equations unchanged, and modifies the form equation to
dx* Fq = 7(Fq)n y (3‘8)

for some constant . In supersymmetric theories like 11-dimensional supergravity, the con-
stant 7 is fixed by supersymmetry. Absent supersymmetry or some other guiding principle,
there is no preferred choice of . For n > 2 our solution (3.4), (3.7) is still valid since FyA F,
vanishes. (For n = 1, on the other hand, the Freund-Rubin background is not a solution.)
Because Fy A F; vanishes, (3.8) will begin to differ from (3.3) only at the n — 1 order in
perturbations. Hence, our linearized analysis will only be affected if n = 2. Furthermore,
for fq A Fy to be nonzero, the fluctuation f, must be polarized entirely along AdS,. Hence,
the addition of the term (3.7) can affect our analysis for only the single mode (3.14). We

find the equation
(Ar + Ay —2cy #pdp) ' Y = 0. (3.9)

We notice that (*pd,)? = A, (for dimensions where (3.7) is possible). We can thus factorize

(3.9) into

(spdp + m1)(xpdp + ma) b'Y =0, (3.10)

m; + mg = -2c¢v, mymy = —&/R?,
with the solution

/ K [0 o, K
m =-cy+ 02‘72+Ez-, mz = —¢y — 02‘72'*'"”72- (3.11)

There will be two towers, one annihilated by each of the factors in (3.10). The second-order

equations are
Az —-m3)b' Y =0, (3.12)

for i = 1,2, and we see that m? are non-tachyonic masses regardless of ~.
t



3.8 Metric perturbations on M, and stability

All the modes we have considered thus far have masses within the bounds for stability;
moreover, we were able to show this for AdS, x M, where M is an arbitrary ¢-dimensional
Einstein manifold. The only fields we have not considered as yet come from the traceless

modes of the graviton on M, and satisfy (3.40), which we repeat here:

It is possible to rewrite equation (3.1) in terms of the Lichnerowicz operator A; and the

Ricci tensor:

2(g-1)

19 Yos = 0. (3.2)

O:+AL +

but since Ay does not obey a universal inequality as O, and A, do, this form is not as
useful. The presence of the Riemann tensor indicates that (3.1) can have different properties
depending on the particular choice of A,

One may wonder about other fluctuations obeying (3.1), and whether they may place
even more stringent constraints on the requirements for stability. The field (3.7) is the
lowest in a tower of modes that are traces on each individual space in the product, but
traceless overall. Higher excitations will have more positive masses from the 0O, term. The
remaining modes are traceless on each M, and M;_,, namely h(q,), h(;j) and hqi. For hg;

we find the universal result
(@ +0y)he: =0, (3.3)

which is obviously stable. while for either of the other two we have effectively a copy of

equation (3.1) but involving the Riemann tensor of just one of the spaces in the product:
[(@:+0,)6588 — 2R, heay = 0. (3.4)

and similar for h(;;). This obviously depends on the details of M,. One observation we can

make is that if M, itself is a product (and so the original compact space Mg is a product of
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three or more manifolds), a mode analogous to (3.7) will have a mass m? = 2(n — 1)/R? =
2(q — 1)/R?, where the last equality comes from (3.6), and thus will be unstable precisely
when (3.7) is; and hence no new instability automatically arises for products of three or
more spaces beyond that already generically present for a product of two.

After all these generalities, let us see what we find for the three examples that we
promised to treat — the round sphere, product spaces of Einstein manifolds (the resulting
space is also Einstein), and T79.

For M, = S7, the Riemann tensor has the maximally symmetric form Rog.5 = (gay98s —
9a598+)/ R?. Equation (3.1) reduces to

[E2+a) - 2] ¢ ¥ = 0. (35)

All these modes are manifestly positive-mass. We thus complete our demonstration of the
stability of the AdS, x S9 background for all p and q.

In [71] and [72] it was pointed out that AdS; x M, x Ms_, and AdS; x §% x §2,
respectively, were unstable to a perturbation in which one compact space becomes uniformly
larger and the other smaller keeping the total volume fixed. We now generalize this to an
arbitrary product of Einstein spaces My = M, x M,_, with n > 2. Let a.b denote indices
on M, and i, j denote indices on M,_,. If the radii of the spaces are R| and R», requiring

that the total compact space is also Einstein imposes the relation

n-1 gqg-n-1 gq-1
B- B R

(3.6)

Consider now the mode

1
hap = ;gab?b(-":) ' hij == gij(b(x) ’ (3.7)

q—n
which satisfies hZ = 0 as well as the gauge condition (3.5) and therefore obeys (3.1). This
perturbation increases the radius of one of the Einstein spaces and decreases the radius of

the other keeping the total volume constant (to first order). Evaluating (3.1), we find

[ux +2(qu l)] ' = 0. (3.8)



Thus this mode has the mass

2(p~1)2 8
2r2 _ _ = 2 12 :

Consequently the Breitenlohner-Freedman bound (3.1) is violated for ¢ < 9. This result is

independent of p, and depends on the internal space only in that it is a product of Einstein
spaces that is itself Einstein with total dimension ¢; in particular the relative dimension of
the spaces is irrelevant.

The case of AdS5 x TP is sufficiently rich to merit a separate subsection and we turn to
this next. We shall find that only the supersymmetric case and its smooth supersymmetry
breaking Zp quotient is stable. Thus it still remains to find a stable, non-supersymmetric
anti-de Sitter compactification of type IIB supergravity which is not locally isometric to a
supersymmetric one. Infinitely many such compactifications of eleven-dimensional super-
gravity to AdSy x M-; have long been known, as we remarked in the introduction. This
problem of non-supersymmetric AdSs vacua takes on a new interest in light of AdS/CFT, be-
cause it corresponds to discovering four-dimensional, non-supersymmetric, strong-coupling

fixed points of the renormalization group.

3.8.1 Stability Analysis for Compactifications on 7™

Let us now examine the issue of stability of Type IIB supergravity compactified on the
manifold commonly known as T™. This is a five-dimensional Einstein manifold which is
a coset of SU(2) x SU(2) by a U(1) whose generator can be written as pX3 + q33. where
£3 and %3 are generators of the two SU (2)’s. The integers p and q describe the winding
numbers of the U(1) fiber over the two spheres. The most general metric on TP? consistent

with SU(2) x SU(2) x U(1) isometry is:
ds® = a®(dy} +sin® y1dy3) +b*(dy3 +sin’ ysdy?) + ¢ (dys — p cos y1dyz — g cos yzdys)? . (3.10)

where a, b, and c are constants, y, and y; range from O to 7, y» and y4 range from 0 to 27,
and ys ranges from 0 to 4w. Conditions on a, b, and c for the metric (3.10) to be Einstein

were discussed in [89], and we will recap some of the relevant points as they will apply to
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our subsequent analysis. We will assume throughout that p and q are relatively prime, and
then in the last paragraph of this section address the case where they are not.

Let us choose the following basis of 1-forms:

E'=ady,., E?=asinydy,, E®=bdys, E*=bsinydy,.

(3.11)
E® = c(dys — pcosyidya — qcos yadys) -
The spin-coefficients in this basis are:
1
wi2 = ~—coty E% — ﬁ.li]5 v w=wy =0, ws= —%EZ, w5 = E.El '
a 2 2a 20 (3 12)
_ 1 5 _ — , — qc _ 3 )
w3y = bcoty;;E" 2b2E wi=wy =0, wy= 2b2E", d“°_2b25
The curvature components are calculated using the relation:
R, =du#, + e AW, . (3.13)

Only a few of them need to be actually computed. The remaining ones can be found
using the symmetry of the metric and the symmetric and anti-symmetric properties of the

Riemann tensor. However. for completeness we list all of the components of the curvature

2-form:

R'y = (012 - 3i8) E'E - ”"fzzi‘g‘ R'3= -5 ;;1325" Ry =& 2252152133
R% = (b% - 3be2) E’E* - ;"2:225 E, R%= %;:213153 R = B 262 E'E*,
R's = 625155 R% =2 CZEZE“ R = (Z—M—E"Es, Ry =1o T pigs, -

Finally, we have to demand that the metric above is Einstein. In the orthonormal basis
that we chose above, this condition is simply that R; = A4 j» where A is the constant
of proportionality between the Ricci tensor and the metric. This yields three equations

relating the constants A, a, b and ¢

22* —p’  2? - ¢ _ (a'q® +b'p?)?

A= 2a4 - 2h4 - 2aib4

(3.15)
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For convenience, let us work in units where the radius of one of the spheres is set equal to

unity, i.e. a = 1. In these units the other constants b and ¢ are:

__1 Uit )]
1;2_31\_l A= I (3.16)

It is also helpful to express the ratio % in terms of A:

q\? _ 20 — 1
(5) = =nEm - (3.17)

Looking at the last expression we see that A varies between % and 1. So, given any manifold
TP we first evaluate the ratio g and then using (3.17) compute A. For instance, the space
T'" has A = § All questions about stability can be answered in terms of values of A.

In [10] it was shown that for an arbitrary Einstein manifold, the masses of the scalar
modes resulting from a mixing of 3 scalars: the trace of the metric on AdSs, the trace on
Ms and another scalar which arises from the fluctuations of the five form field strength
never violate the stability bound - they can at most saturate it. The masses of the coupled

scalar modes are:

m?L? = A+ 16 £ 8V + 4, (3.18)

where O, Y = —~AY/R? and Y is a scalar harmonic on T™. By O, we will always mean
V@V4. Minimizing with respect to A we find that the least massive mode corresponds to
A = 12. Moreover, this mode just saturates the stability bound m2L? > —4. The isometry
group of T is SU(2) x SU(2) x Ug(1) so the eigenvalues of the scalar Laplacian on TP?
are expressed in terms of the eigenvalues ji, j2, r corresponding to the two SU(2)'s and the
U(1)g [90, 91, 92]:

2
—% =5+ aiz [iGe+1) - @) + biz [12G2 + 1) = (gr)?] - (3.19)

with j; > pr and j; > qr. Let us examine this for the special case of T'!!. Here we have
from (3.17) and (3.16) A=%,a=b=1. and ¢® = 2. Since A = 7z from (3.6) and from

(3.9) R = L, the expression for the eigenvalue of the scalar harmonic on T'!! simplifies to:

2
A=6 [jl(jl +1)+520G2+1) - %} - (3.20)



The value of A = 12 is thus satisfied for (j1,j2,r) = (1,0,0) and (0, 1,0).
None of these coupled scalar modes can violate the stability bound for any TP4. Indeed,
we have already shown in the first part of this chapter that the only mode which could

potentially violate the stability bound is the traceless graviton mode:
(@2 +0,)528% - 2R:"4] (6(z)Yab(y)) =0, (3.21)

where as usual, O, = V°V, and O; = V#V,,. This equation may be rewritten in terms of
the Ricci tensor and the Lichnerowicz operator A;. The action of the latter on symmetric

tensors Y, is defined as:
ALY =0y Yap — 2R Yed — 2R, Y - (3.22)

Here and below, (...) indicates symmetrization: (ab) = (ab + ba)/2. Using the definition

(3.22), the fluctuation equation for the symmetric traceless graviton modes (3.21) is simply:

2(g-1)
R2

O:+AL + ](¢Yas) = O. (3.23)

Since we're dealing with AdS5 x M5, p = ¢ = 5 and from (3.9) we have R = L. The
Breitenlohner-Freedman bound is m2L? > —4. Assembling all these facts together we
can translate the BF bound from a bound on the mass to one on the eigenvalue of the

Lichnerowicz operator acting on symmetric tensors Yg,:
ALYg =AYy (3.24)

For stability we must have:

AL < 4. (3.25)

It is somewhat painful to diagonalize the Lichnerowicz operator directly. Fortunately, a

trick employed in [76] works here as well.” The key is to use the identity:

/ dV YA, Y, = / dV [~4Y PR,y Y — dAY DY, — 3VOYRIV Y], (3.26)

"We thank C. Pope for a communication which brought this paper to our attention.
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which can easily be demonstrated by writing out explicitly Y*®A,Y,; and V(“Y"C)V(,,ch,,
simplifying, and integrating by parts. Let us diagonalize the Riemann tensor by solving the

eigenvalue equation:

R.*:Yse = kY4 (3.27)

This would involve diagonalizing a 15 x 15 matrix. One of the eigenvectors would be pure
trace, so that we’ll be left with 14 traceless eigenvectors. Using (3.25) and (3.26) our

stability bound now reads: The geometry would be stable if every K satisfies:

K> Liz-A. (3.28)

From (3.6) we have A = 7;7 and since R = L, the above bound can be expressed solely in

terms of A as:
Kmin 2 —-gt\. (3.29)

where Kp;n is the least of the 14 eigenvalues. Thus we have reduced the problem of solving
the complicated equation (3.21) into a simple one of diagonalizing the Riemann tensor. On
account of the simple metric and the symmetries involved, there is very little mixing of the
modes and the problem is sufficiently simple to be solved by hand. The eigenvectors and

eigenvalues are shown in table 3.1. In this table, a4, 3+ and 7+ are constants given by

az = 4(1 — 2A)(TA — 4 F V49A2 — 60A + 20),

B =2(1 = 2A)(-TA + 2 + V49A2 — 60A + 20), (3.30)

7+ = (2 — A £ V49A2 - 60A + 20)(—7A + 2 + V49AZ — 60A + 20),

and we have also defined
X5 = 66,09 - (3.31)

We have not written down the eigenvalues for the last two modes in the table in terms of
a, b, ¢, p and g because the expressions are quite lengthy. Remembering that % <AL
we find that there is only one mode (the last one in the table) which can violate the bound
(3.29). For this potentially dangerous mode we find that only A = % (which corresponds

to the manifold T!!) saturates the bound, while all other values of A lead to masses which
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Eigenvectors Eigenvalues | Eigenvalues in unitsa = 1
X122, x4 _ x2 L e 13A - 1)
X3 X3 - X8 LR :
X5 + X2, XY + X3 e s T—REA=T)
X5 - X3 x4 -x3 —% -3VOT-XN2A-T)
X1, X3 %20_6: 3(L—A)
X3, x5 % (A-3)
ar(Xgp + X2) + B(XH + XB) + 71+ X3 1(—=A + V49AZ = 60A + 20)
a_ (X3 + X22) +B-(X3 + X +4_X3 $(=A — V49A% — 60A + 20)

Table 3.1: Eigenvectors and eigenvalues of the Riemann tensor, as defined in (3.27).

violate the bound. This tells us that the only stable compactification on 777 manifolds with
p and q relatively prime turns out also to be the only one which preserves supersymmetry.
(Note that the modes X3 — X2} and X} — X2 saturate the bound for T'! while for all
other TP? have eigenvalues which are above the bound. This might lead us to suspect that
for T'! these modes have masses m2L? = —4. But on careful examination we find that they
do not satisfy the Killing tensor equation V(,Y,.) = 0. Therefore, according to (3.26) they
have masses m?L? > —4).

A word now about what the unstable mode (or in the case of T!! the marginally stable
mode) looks like. For T'!!, we can use (3.30) to evaluate the constantsa_ = -8, 3_ = §, and
v- = 0 so that the eigenvector which just saturates the bound is simply diag(-1,-1,1,1,0).
Geometrically this is a fluctuation in which one S? expands while the other shrinks with
the length of the U(1) fiber unchanged. For generic TP? however, such a simple picture is
not obtained. As an example, let us consider the unstable mode of T'2. For this manifold,

using (3.17) we find A = 0.9331, and using (3.30) we have a_ ~ —17.73, §_ = 12.33, and

v- == 10.80 so this fluctuation makes one S2 shrink and the other expand accompanied by



76

an elongation of the fiber.

To summarize, for T!! we have found a total of seven modes which saturate the stability
bound. Six of them come from the coupled scalar modes, and the remaining one is a
traceless graviton mode. All of these modes have masses m2L2 = —4. Using the relation

between the mass and the dimension of the corresponding operators in the dual field theory,

A = i{(p - 1) £ /(p—1)2 +4m?L? (here p is the dimension of AdS), we find that the
operators have scaling dimension 2. In the next section we shall examine in some detail
the issue of identifying these operators in the dual field theory according to the AdS/CFT
correspondence.

In the above analysis we have only shown that if the inequality (3.29) is satisfied, then
stability is guaranteed. Let us now prove that if the inequality is violated, then we nec-
essarily have instability in the traceless graviton sector. Looking at (3.26) we find that
we have to demonstrate that the putative unstable mode is also a Killing tensor obeying
V(aYsc) = 0. To prove this, we make the following observations. First, if we restrict all
three indices a, b, and ¢ to lie in the four manifold which are the two $2’s of TP (i.e. these

indices are allowed to run from 1 to 4), then a constant, diagonal tensor of the form:
Yo = diag(a, @, 3, 8.7) , (3.32)

with 2a + 23 + v = 0 is covariantly constant. Second, we notice that the spin-coefficients

of the metric written down in (3.12) can be split up in the following way:
why =wgp + cabB®  wis = caE®, (3.33)

where w® refers to the full spin connection, w*? refers to the part on the two S$%'s, and
Cqp is antisymmetric in a and b. Using this fact and the form of the constant diagonal
tensor, one can show that indeed this eigentensor satisfies the Killing condition. So we
have demonstrated that the only stable AdSs5 x TP? compactification with p and q relatively
prime is on T''!.

To extend the discussion to the case of p and ¢ not relatively prime, a topological point

should be made first: if ged(p.q) = k # 1, then TP? is topologically S? x S3/Zy, where the
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Z;. acts freely on the Hopf fiber of S3. The k = 1 case of this statement follows based on
arguments given in [93]; the k& > 1 statement follows as a corollary when one notes that
modding out by the U(1) generated by pE3 + q=3 can be accomplished by first modding
out by the U(1) generated by (pX3 + q¥3)/k and then dividing by Z;. Moreover, T is
metrically a quotient of T?/59/k by Z, acting on the U(1) fiber. Thus one can flow without
encountering a topological obstruction from any T™ to any other precisely when ged(p, q)
remains unchanged. In each class of manifolds T™ with ged(p, q) = k fixed, there is precisely
one which is classically stable, namely T**. Only for k = 1 is any supersymmetry preserved.
The perturbation analysis on TP could be carried out by considering Z;. invariant functions
on T?/k4/k_ The orbifolding by k also has a well-defined meaning on the gauge theory side,
resulting for T** in a theory with gauge group SU(N)%* and some complicated matter.
Details of counting and the operator map could be pursued for the case of general k, but

in Section 3.8.2 we will do so only for k£ = 1.

3.8.2 An Aside: The Operator Map for T'!

In the previous section we saw that the Freund-Rubin compactification of Type IIB on
AdSs x T'! have three modes which have masses which just saturate the stability bound.
Recall that two of these modes came from the coupled scalars and the remaining one is a
traceless graviton mode. According to the AdS/CFT correspondence, these modes should
correspond to operators whose dimension is protected and would therefore be either chiral
primaries or conserved currents. So let us try to find the dual operators.

The compactification of Type IIB SUGRA on T'! has SU(2, 2|1) symmetry. Let us try
to put these fluctuations into SU(2,2|1) supermultiplets. A unitary highest weight rep-
resentation of SU(2,2|1) can be decomposed into a direct sum of unitary highest weight
representations of the bosonic subalgebra SU(2,2) x Ug(1) whose maximal compact sub-
algebra is U(1) x SU(2) x SU(2) x Ur(1) [94, 95]. The first U(1) is the energy and the
last one is the R-charge. So the highest weight representations of SU(2.2|1) are labelled

by four quantum numbers D(Ej, s,.s2;r). In addition to these, there are of course, the
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quantum numbers associated with the symmetry of the isometry group of T!! which is
SU(2) x SU(2) x Ur(1). Note that this Ug(1) is the same Ugr(1) as the one associated to
the R-charge. We'll call the additional quantum numbers due to these last two SU(2)’s as
(71, J2)- So our first task is to find out all the six quantum numbers of the fluctuation mode
in question (Ejg, 81, $2; 7, j1, j2)-

From the 5d AdS point of view all of the modes in question, including Y, are scalars.
So, the spin quantum numbers s; = s2 = 0. To compute the AdS energy, we use the relation

between mass and energy for a scalar in 5d AdS space:

Eo=2+ v4+m2L2. (3.34)
We found above that these modes have masses m2L? = —4, so Eg = 2. Finally, to obtain

the value of r, we note that for a representation of SU(2,2|1) to be unitary, there are
inequalities among the four quantum numbers Ey, s;, 82, and r. The relevant one for our
purposes here is Eg > 289 + w-. + 2 which fixes »r = 0. We observe now that this set of
quantum numbers (2,0, 0,0) satisfies 3 multiplet shortening conditions [94] (which is what

is expected for a field saturating the unitarity bound):

3 -
m.olmm_+“m|w~.lw"c m.clwum.._lmﬁlmﬂo s9=0. (3.35)

So we get the following multiplet with only 4 fields present:

Eg/R{r=-1|r=0|r=1
2 (0,0)
(3,0) (0. 3)

NI

1)
~—
Nl

-
0|
N

where the quantities in the table refer to the quantum numbers (s, s3). For completeness,

we note that the masses of these fields can be calculated using the relations:

(@) memen-d

AW, Wv m? = (Eo — 1)(Eo ~3) = 0.
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Let us now turn to the field theory realization of this. The conformal field theory
dual to the supergravity theory has two doublets of chiral superfields A;, B; (i,j = 1,2)
transforming in the (N, N) and (N, N) representations of SU(N) x SU(N). These fields
both have R-charge 1. The global symmetry group SU(2) x SU(2) quantum numbers for
these fields are (%.0) and (0, %), respectively. According to the AdS/CFT correspondence,
each supergravity field with quantum numbers (Ey, s, s2: r) is mapped to a conformal field
with scaling dimension A = Eg, Lorentz quantum numbers of an SL(2,C) representation
(s1,82), and an R-symmetry charge r. Since we had multiplet shortening, we know that
the dimension of the corresponding superfield would be protected, and furthermore we also
determined its dimension to be 2. There are natural field theory candidates with the desired
properties to be dual to the scalars we have found.®> Namely, consider the real superfields:?

Ja=TrA;e? A5Vt Jp =Tr B;e"' B})e"?

(3.37)
Jba.l’yon =Tr A[lev"'AEICVl - ﬁB[leVl B;]evz .

The vector component of each of these is a conserved current, by Noether's theorem:
J4 is associated with the global SU(2) rotating A, and As; Jg is associated with the other
global SU(2); and Jyaryon is associated with the unbroken U(1)paryon. The scalar component
of each of these superfields, call them O,, Opg, and Oparyon. have protected dimension 2
and R-charge 0. The operator Oparyon Was discussed in [96] in the context of resolving the
conifold. Of the supergravity modes with masses m2L? = —4, we conjecture that the baryon
current is the one which is dual to the traceless graviton mode, while .J4 and Jg are dual
to the coupled scalar modes. The global SU(2) x SU(2) charges support this expectation.
Moreover, both the traceless graviton fluctuation that we examined in the previous section

and its proposed operator dual Jyaryon flip sign on interchanging the S 2's, i.e. they are both
22 odd.

8We thank M. Strassler for useful communications which helped us identify the field theory operators.

°In (3.37), Vi and V: are the real superfields that include the SU(N) x SU(N) gauge fields. There is a
notational subtlety: A; transforms as a doublet of SU(2), and we have omitted the ¢,, which would usually
be inserted to make the group action come out right.




3.9 AdS vacua of theories with a cosmological term

In this section we shall consider theories with a cosmological term in the action. The two

examples that we shall consider in detail are the AdS; vacua of massive IIA theory and the

Sugimoto theory.

3.9.1 AdS; vacua of massive ITA

Massive type [IA supergravity has AdSy x Ms vacua (78] which are non-supersymmetric and
whose stability, to our knowledge, had not been investigated before.! Even the existence
of these solutions is non-trivial, since there is a potential term for the dilaton which pushes
it toward weak coupling. What makes AdS; x Mg vacua possible is that a uniform RR field
strength, Fy or Fg according to taste, pushes the dilaton toward strong coupling, and there
is an extremum of this total potential where the dilaton can be constant.

The extremum is in fact a maximum. but it doesn’t make sense to ask whether second
derivative of the total dilaton potential alone satisfies the BF bound, because the dilaton
couples non-trivially to the form and to the graviton. This mixing means that the coupled
scalars sector requires a more intricate analysis than before. The result will be that the
apparent s-wave tachyon coming from a naive analysis of the dilaton potential is completely
erased (effectively, it is a gauge artifact), but for S® there is a d-wave and an f-wave mode
which violates the BF bound, rendering this vacuum unstable! To our knowledge. this is
the first time that a product of AdS and a round sphere is unstable. We also show that
for Mg = S™ x S~" the BF bound is violated within the coupled scalar sector, as well
as having the same purely gravitational instability found earlier, where one factor shrinks
while the other grows.

The remaining modes, outside the coupled scalar sector, satisfy the same equations as

in the generic AdS, x M, systems we already considered. Thus the traceless graviton on

%There is also a supersymmetric (and necessarily stable) vacuum which is a fibration of AdSs over S*
with a non-trivial dilaton. [t is the near-horizon geometry of the D4-D8 system [97]. It would be interesting
to explore the properties of this background as well as generalizations of it where S* is replaced by other
manifolds, but we will not do so here.
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Ms joins the coupled scalars as a possible source of instability. We do not analyze other

Einstein manifolds Mg explicitly, but we provide the tools needed for such an analysis. It
is still possible that there exist stable AdS, x Mg vacua.

To make the discussion similar to our previous analysis, let us express the action for

massive [IA in terms of a six-form field strength, which is essentially the Hodge dual of the
1 usual four-form:

_1 [0 _loe Lo m? g _ _-o/4
S_2n2/d zﬁ[ﬂ 2(3¢) 2€ Fg 85— where £ = e , (3.1)

and we include a 1/6! in the definition of FZ, as in [98]. We also include a factor of 1/q! in

the inner product of forms, wq - @4 The equations of motion are
Ryn = T—nif_logAtN + l3M¢31vd> + iFMP pypops EnP1E2PsPaPs _ 362
64 2 2.51 MPPPsPPs T 16

gunFe,
= 2
3 9,10, § 2
_2 S E2-9,
Q¢ wmf -+-4 6

d+€E*Fs =0,

(3.2)
and there is an AdS; x Mg background with ¢ = 0, Fs = cvolyy,. We readily derive the
relations

2 2 _ 9 2 _10 25

c=h=m=nm g (33)
where L is the radius of curvature of AdSj, such that R,, = —7%g,.. and R is the radius
of curvature of Mg, such that R,3 = ,—?!gmg.

Just as for AdS, x M,, we wish to linearize around the background to obtain the mass

spectrum. For the coupled scalar sector, we wish to focus on perturbations of the form

gGuN — gun +han with by, = %g,whi and hog = slgagh;. Also let 46 be the perturbation
in ¢ and let fg be the perturbation in Fg, where, as before, we write

h ==n, fe=das, where as = *gdb. (3.4)
The algebraic relation hf + hg =

1h3 follows from the symmetric traceless part of the
Einstein equations, as before. It is now possible to derive coupled second order equations

relating ¢, b, and = from the variations of the RS Einstein equation, the scalar equation,
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and the form equation, using the algebraic relation when needed to eliminate h% in favor of
hg. We use a form notation in this section for convenience.

The R3 equation is
Ra = 104 2622 4 Loo 3.5
a 4L2€ +38Fs +5 $0a9 . (3.5)

Using (3.16), (3.3), and (3.4), we find

1 1
SR® = _ﬁhg (n,+u,,)h° = 30u(hL +h3) + <Oy g 16
9 o @0

where we have used the fact that 00, = s¢d #¢ d acting on b. The algebraic relation allows
us to simplify this to

37
(D:+Dy)7r—m7r 2L26¢b+ cD b=0. 3.7

For the scalar, the equation of motion is

5 10, &2
D¢-2—L2'E +TF6 =0. (3.8)
Linear variation around the background gives
2. 1 s 1 1 1
(@2 +0y)80 — 17506 - §5¢Fg +5Fs fo— Zh‘"’FQ."_".,S Fy™= T2 =0, (3.9)

which upon simplification and use of Fs - f6 = cO, b becomes

1 5 )
@Q: +0y)ée — 2L26¢ + cl:lyb 3" = 0. (3.10)

The variation of the form equation is
d(5%)Fy — d + %&m +dsfs=0, (3.11)

where d+ indicates the variation in the Hodge dual. After some algebra this becomes
gd(h;; — h% — 6¢) A voly +d(@Qz +0,)b A voly =0, (3.12)
and so, using the algebraic relation, we obtain

@:+0,)b— %cn - §6¢ =0. (3.13)
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Gathering everything together, setting b = cL2B for convenience, and recalling that

& = 10/L?, one obtains the following system of equations:

(O:+0y)B - a2" 2LL26¢=0
@z +0y)7 — %n’ 2L25¢+4ac1,8 0 (3-14)
Oz +0y)é¢ — 2-2 2L26¢+au,,B 0.
This results in
B 3 3 B
Lo | = ]|=]182 2A+ET & = |, (3.15)
¢ 2) 5 I+ ) \éo
where as before —R?0, Y/ = AY/. We find the mass eigenvalues
m2L2=§,\+6. §,\+10+2\/2?Tm, and §A+10—2\/25+_4,\. (3.16)

The Breitenlohner-Freedman bound for p = 4 is m2L? > —9/4. We see that the first two
towers in (3.16) are harmless (in fact they're not even tachyonic), but the third tower will

violate the BF bound if some value of A falls in the interval

5
Aunstable € (l"D \/; 155 5\/;)z(11.47,27.28). (3.17)

For S®, we have A = k(k + 3), for which k = 2,3 gives values in the interval (3.17). Thus
for both d- and f-waves, the eigen-combinations of B.r, and d¢ corresponding to the third
eigenvalue in (3.16) are unstable modes of the AdS; x S° solution. They have the common
mass m2L? = -12/5.

It is interesting that in fact all values of m2L2 that occur for AdS; x S8 in the coupled

scalar sector are rational: upon substituting A = k(k + 5) into (3.16), we obtain

.2 k) .2
m2L2—£+2L+6 2—+6k+20 andﬂ—zk (3.18)

However the corresponding dimensions of operators in a hypothetical three-dimensional

CFT are not rational.
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Instabilities can occur in the coupled scalar sector of other M, as well. As an example,
consider Mg = S™ x S%". For product spherical harmonics on the two spheres labeled by
(k1,kz), we find several unstable modes in the interval (3.17): (1,1), (0,2) and (1,2) for
n =2, and (1,1), (2,0) and (0,2) for n = 3.

As in section 3.4, the constraint relating hﬁ and h$ no longer obtains for the k = 1
case on S% so a more careful analysis must be performed. Without imposing the alge-

braic constraint, the dilaton equation (3.10) is unmodified, while equations (3.6) and (3.12)

become
1 37 15 9 ,
O +ay)r+0,(H +7) - §Dy1r ~opz" m&d) + Ecuyb =0, (3.19)
@z +0,)b— gn + gH - §5¢ =0. (320

For k = 1, we have O, = —12/5L2. The dilaton equation (3.10) then becomes

99 5 6
@12 ~ 22" ~ 502 =
99 3
@)% -5 = 0 321

which defines 0 = n + ;—gcb. Next, using (3.20) we can show that

12 12 )
which allows us to write equation (3.19) as
249 99 .
Qo0 — l—o—ﬁa— W&(ﬁ—o (323)

As in the examples without a coupled dilaton, one linear combination of fields has dropped
out of the k = 1 system. We can now diagonalize the equations (3.21) and (3.23). We

discover the mass eigenvalues

mit=2 prpro 2
5 5

(3.24)

which coincide with the £ = 1 masses in the first two towers of (3.18).



85

The constant Y/ sector is straightforward for all Ms. The form equation no longer

obtains, and the b mode does not exist, leaving only the equations

37 15

Or7 = mﬂ+2L26¢, (3.25)
15 5
O:0¢ = ﬁ&ﬁ + 2Lz" (3.26)
with corresponding positive-mass eigenvalues
m2L[? =6, m2L% =20. (3.27)

These are exactly the masses obtained from the first two towers in (3.16) with £ = A = 0.
Thus the general “rule of thumb” (valid in all cases we have considered, as well as in the
familiar supersymmetric examples) is that one simply drops the most tachyonic mode from
the first two partial waves in the coupled scalar sector.

It is not hard to see that the remaining equations of motion are basically unmodified
from the analysis of previous sections. The dilaton fluctuation d¢ cannot appear in the
other polarizations of the form equation, where the background field strength vanishes.
Hence these are unchanged from before. In the Einstein equations, it is straightforward
that d¢ does not appear in the R,, equation or in parts of the R,3 equation other than
those treated already by considering the trace. Owing to the relations (3.3) arising from the
requirement that the compact space is Einstein, these equations are identical to those we
already studied once written in terms of L. The dilaton fluctuation and the other scalars do
appear in the R, equation, analogous to the appearance of 7, b and H in (3.38), but this
leads only to a scalar expression linearly dependent on the ones we have considered earlier.

Consequently, we can employ the work we have already done wholesale. In particular,
we again have the potential source of instability from the set of scalars ¢/. obeying equation
(3.1). Hence we learn that general product spaces are again unstable against having one

factor shrink while the other grows.



3.9.2 Sugimoto’s USp(32) open string theory

The next example of an unstable Freund-Rubin compactification that we shall consider
arises in the USp(32) open string theory considered in [77]. As we shall discover, the modes
which are unstable come from a mixing of the trace of the metric on AdS3, the trace on
57, and another scalar arising from the fluctuations of the form field. Thus, this instability
is of the same type as the one for the Freund-Rubin compactification of massive Type IIA
supergravity on AdS; x S® [10]. Since the computation is exactly the same as the one for
Type IIA that we discussed in the previous section, we shall be somewhat brief here.

The low-energy effective action of the Sugimoto theory in the string frame is [99]:
_ 1 10 ~26 AL -6
S=35 / 492VG [e (R+409)%) - 15F2 —ae™?] . (3.28)

where a for our purposes is just a constant. In our conventions, F# = FynpFMNP. To
bring the action (3.28) into Einstein frame, we rescale the metric as gpn = eTG smy- The

action then becomes:
1 10 L2 36 _ 1 opo .
S= 27/4 VG |R~ 5(06) - aed® - ZeoF}| . (3.29)
The scalar equation of motion which follows from this action is:

3 1, 1,
Oé— §ae%¢ - 5¢°F =0. (3.30)

For a constant ¢ background, this equation can have a solution if we use the Freund-Rubin
ansatz Fy,p = fe,y,, i.e. the three-form is along the AdS part. So we find that AdS3 x S7
is indeed a solution with ¢ = 0.

For convenience. let us dualize the three-form and use a seven-form instead. The action

(which is what we shall be using from now on) is:

1 1

S=— [d% /g7 |R- l(8(15)2 - ——e°F? _ ae2?| . (3.31)
2x2 2 2.7

The background geometry has ¢ = 0. The equations of motion are:

- 3 .. 1 1 3 )
Run = e ®Furp.p FNPVP — ——e ®F2gpn + —O0d0nd + —ae?®qyry , (3.32)
2-6! 8.7 2 8
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ds(e®F;) =0, (3.33)
O¢+ —l—e_¢’F2 - gae%" =0. (3.34)
2.7 T2

We want to express all the parameters in terms of the AdS radius L. For the background
F7 = cvolgr and ¢ = 0 so (3.34) gives ¢ = 4F? = 3a. The Einstein equation yields
a = 7 = 45. So, the ratio of the radii is R2 = 6L2. Let us now proceed to get the mass

spectrum of the scalars. Tracing over the indices on the sphere in (3.32) gives:

7 3 7 1
= 39 g
Ry = —e2® + g Fi + §8°¢6a¢. (3.35)

When expanded to linear order, the two sides of the above equation yield:

21

2L 2L
aL?

a2 . (3.36)

1 1 T
— a7~ 5@ +0y)T = — 86 + icuyb -

where 7 denotes the trace of the metric fluctuation on S”. and the fluctuation of the 7-form

field strength is expressed as F7 = dag with ag = *7db. On simplification this finally gives:

17 21
@z +0y)7 - 202" +210,B - i

60 =0, (3.37)
where we've introduced the notation b = cL2B. For the scalar fluctuations we expand (3.34)

to linear order:
15
2L2

The form equation (3.33) expanded to linear order yields after a little algebra:

3 x+60,B=0. (3.38)

56 - 13

Oz +0y)é0 —

1

~ 1300 =0. (3.39)

7L2
Assembling all the three equations, and assuming that B, 7, and §¢ are eigenvectors of O,

with eigenvalue —\/R2, we obtain the following mass matrix equation:

(BY (& & &\ (B
O:] | = ‘3,%5\- ﬁ’\;+% f—,}; T |. (3.40)

i) O A G AT,
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On diagonalizing the matrix, and using the relation R? = 6L2 to eliminate R2, we obtain
the eigenvalues (mass squared) m2L2 = ‘“{ii, M‘ and ’\L"’%@. Only states
in the last tower can be tachyonic. On S?, the spherical harmonics have eigenvalues A =
k(k + 6). The dangerous tower of states when expressed in terms of k become, m2L2 =
ﬂ%l. Remembering that the BF bound for this system is m2L2 > —1, we see that the
modes k = 2, 3, and 4 violate the bound. The presence of three unstable modes makes it
considerably more difficult to find a stable compactification where S7 is replaced by some
other seven-manifold M7: there is a fairly wide range of eigenvalues for the laplacian on M~

which would lead through (3.40) to an unstable mode.

3.10 Possible CFT duals

As discussed in the introduction, this investigation was motivated by the proposal [15] that
the case D = p+¢q = 27 with a 4-form field is the low-energy limit of a “bosonic M-theory,”
and that its AdS, x S compactification has a CFT3 dual in the framework of the AdS /CFT
correspondence. Since an AdS, x $? compactification has been shown to be stable, it is
interesting to speculate in general about possible CFT, duals (with d = p — 1). We give a
very heuristic discussion which emphasizes the pattern of operator dimensions.
For scalar operators the basic AdS/CFT relation A(A — d) = m2L? admits the two
roots
Ai=gi%m. (3.1)
If the mass satisfies the inequality m2L2 > —dTa + 1, then only the assignment A, obeys
the unitarity bound A > % — 1. (This bound is saturated for a free massless scalar field in
d dimensions). But for —% <m?L%< —g + 1, both A, and A_ are, a prior, consistent
choices for the scale dimension of the dual operator. On general grounds it seems most
natural to choose the larger of the two dimensions, A, as the dimension of the operator,
because only then can one compute correlators by straightforwardly imposing a boundary
condition on the larger of the two linearly independent solutions of the scalar. If A_ is

chosen as the dimension, then to obtain field theory correlators one must make a Legendre
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transform of the A, results. These points were discussed in [96], where also a particular
example was exhibited where the A_ dimension was needed. In this example, the field the-
ory was supersyminetric, and the operator was a chiral primary, so its anomalous dimension
could be worked out purely on field theory grounds as the sum of the the anomalous dimen-
sions of its factors. The computation is rigorous because all the dimensions are dictated by
a U(1) g current which is obviously additive.

The mass eigenvalues of coupled scalars of general AdS, x S? compactifications are
given in (3.7). Since m2 > 0, the operator duals of positive branch scalars have the unique

dimension assignments

_p—1 2 ( 3(q—l))]
A= 2 [l+q—l k+ 3 . (3.2)
For the negative branch of the scalar mass spectrum, there are the two possibilities
_p—1 2 I _q-1 ”
Ay = 2 [liq—l k 3 . (3.3)

In accord with the discussion in the previous paragraph the negative root is a possible choice

in the range

-1
S (3.4)

qg-1
S .
| <4

2

Recall that k indicates the SO(q + 1) representation formed from k factors of the vector,
then symmetrized with the trace removed.

For the purposes of orientation, let us recall a familiar result for AdS; x S®. Here
the chiral primary operators are tr X(I' ... X/¥) in A/ = 4 super-Yang-Mills theory, where
(Iy ... I) indicates the symmetric traceless combination. Their AdS duals are the coupled
fluctuations of the metric and the five-form on the negative branch that leads to (3.3).
The dimensions are A(k) = k = 2,3,4.5,..., and one always chooses A.. The anomalous
dimensions vanish: A(k) = k is the free-field result. A similar story holds for AdS;xS", with
A(k) = k/2, except that one must choose A_ for k = 2. Some of these operators are thought
of as coming from tr X{(/t... X&) on coincident D2-branes, and for the others one must

dualize the vector boson into an eighth scalar. Free field counting still applies, and it can
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be backed up by a supersymmetry argument as for the AdSs x S5 case. Lastly, for AdSy x S9,
the dimensions are A(k) = 2k, and one always chooses A. A free field understanding is
lacking in this mysterious (2,0) theory, but as before a link can be established between the
R-symmetry and the dimension which guarantees that A(k) is linear in k.

Let us begin the discussion of the spectra for general p and ¢ by observing that it is
doubly remarkable that both the quadratic equation for scalar masses and the equation
A(A — d) = m?L? have rational roots in the general case. This is an aesthetically pleasing
point for a putative CFT dual, but unfortunately it is the end of the good news.

Focusing on the negative branch (3.3) makes sense, since these were the simplest opera-
tors in cases which we understand. Starting with our free field prejudices, we might suspect
that the k’th operator would be expressible as tr X(/1 ... X&) and that its dimension A(k)
is linear in k. Then we arrive at A(k) = ‘;L'_%k. For example, A(k) = 3k for AdS; x SB.
This does not make sense because k = 2 gives A = f"—l < %, the free scalar dimension. That
is, we tried to choose A_ in a range where only A was possible. The general result is that

a linear spectrum of dimensions A(k) is permitted provided

ilp-1) -
g-1< 23 (3.5)

If this inequality fails, as in the case AdS, x S23, then some operators of low SO(q+ 1) charge
will have a larger dimension than operators of higher SO(q + 1) charge, which we may view
as a failure of the free-field intuition that singlet operators are built from fundamental fields
whose dimensions add. It does not mean, however, that there can’t be a CFT dual: for
instance, it is consistent with the unitarity bound to choose A uniformly, which produces
a spectrum A(k) with a kink about & = 9;—‘ More arcane choices may also be imagined. In
the absence of supersymmetry or some input from field theory, we have no way of deciding
between the alternatives.

Let us now discuss the spectra of coupled vectors for general AdS, xS compactifications.

Inserting the eigenvalue formula x = (k + 1)(k + q — 2) for vector spherical harmonics in
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(3.2), we find the masses

m2L? = -(El—)z(k+l)(k+q—2)+(p—l) (1 + ‘/ 1+ 2Ll(p +q-2)(k+1)(k+q- 2)) .

(¢-1)2 (g-1)°

(3.6)
These mass eigenvalues are generically irrational (although they are rational for the super-
symmetric compactifications AdSy x S7, AdS; x S* and AdSs x S°.) Irrationality persists
for vector scale dimensions (except for Killing vectors, where m2 = 0)

A= %[d-l- V@=2)2 +am3]. 3.7)

In particular, AdS; x S has irrational masses and dimensions for massive vectors.

It is certainly remarkable that the scalars dual to chiral primary operators in the well-
understood AdSs x S®, AdSy x S7, and AdS; x S* vacua still lead to rational dimensions
for general p and q. If (3.5) is violated and a linear spectrum of dimensions is impossible for
scalars, then it seems difficult to imagine a concise understanding based on a Lagrangian.
The fact that massive vector modes generically have irrational dimensions also makes it
seem less likely that a purely field theoretic formulation of the putative dual CFT will be
accessible in the near future.

The AdS4 x S® compactification presents an even less rosy picture, in that the BF bound
is violated. Obvious candidates for a brane realization of this vacua (involving D2-branes
and D8-branes) seem also to be unstable, only the instability is usually in the form of a
tadpole instead of a tachyon. It would be very interesting if a stable AdS4x Mg vacuum could
be found for appropriate Mg, corresponding to some analyzable type I’ brane configuration.
It would also be satisfying if one could start with some unstable D2-D8 construction and
show that in an appropriate near-horizon limit the brane instability reduces to the violations
of the BF bound that we have observed.!!

Finally, let us extend some remarks on thermodynamics made in [15] for the AdSy x $3
and AdS,3 x S* cases. An obvious measure of the number of degrees of freedom in a CFT

in p— 1 dimensions is the ratio cthermo = S/(VTP~!). In the p + g-dimensional theory, there

' We thank O. Bergman and A. Brandhuber for discussions on these and related points.

Tt et
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are solutions with both magnetic and electric charge under the field strength F, so there
is flux quantization, and we can ask how c¢permo Scales with N, the number of flux quanta
through the compact space. For AdS, x S7, we can reason out this scaling by recalling that
in an asymptotically flat solution, the number of branes enters the harmonic function in
the metric as H = 1 +¢;N(€py/r)9 !, where ¢, is some dimensionless constant. Thus L and
R scale as N1/(@-1)¢p). In a near-extremal solution, the Bekenstein-Hawking entropy scales
as (L/€p))P*9-2, whereas the Hawking temperature does not scale with €p at all. Putting

everything together, one finds

Cthermo ™~ N(p+q—2)/(q-—l) . (3.8)

This specializes to the odd results cipermo ~ N 25/22 for AdSy x S22 and Cipermo ~ N2%/3 for
AdSj3 x SY. These peculiar fractions do not bring any known CFT’s to mind, but at least

they represent something to shoot for in constructing putative duals of AdS, x M.

3.11 Implications for Extremal Black Branes and Negative

Energy

As mentioned above, the (nondilatonic) theories of gravity (3.1) all contain charged black
brane solutions, where the charge is obtained by integrating F, over an S surrounding the
brane. (For the general solution, see [74].) In particular, there are extremal black branes.
with metric
ds? = H 71 (=dt® + dy - dy) + H7T (dr? + r2dQ,) (3.1)
where H is the harmonic function H(r) = 14 ¢; N(€p1/r)?" . The near horizon limit is just
AdSj, x S9. So the stability we have found for AdS, x $? for all p and q is consistent with the
expected stability of extremal solutions. However, we have also seen that AdSp x Mpx Mg_n
is unstable, when ¢ < 9 and M,, M,_, are Einstein spaces. These can also arise as the
near horizon limit of a type of extremal black brane as follows. Consider the cone over
M, x My_,
ds® = dr? + r(do}y, +daiy, ) (3.2)
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This space is Ricci flat, and has a curvature singularity at the apex r = 0. (Even though
the curvature goes to zero for large r, this space is not asymptotically flat in the usual sense
since the curvature only falls off like r~2.) Suppose one places a stack of branes at the apex
of the cone, extended in the orthogonal directions. The resulting exact solution is obtained
by simply replacing the flat transverse metric in (3.1) with the cone metric (3.2).

One might have expected this new solution to be stable, since it is the extremal limit
of a family of black brane solutions. However it is easy to see that it is not (at least for
q < 9). The near horizon limit is now AdS, x My, x My_, which is unstable to a perturbation
(equation (3.7)) that goes to zero asymptotically in AdS,. So a similar perturbation with
support very close to the horizon of the extremal black brane will also grow exponentially.
This is independent of the change in boundary conditions at infinity since, in the Poincare
coordinates appropriate to the near horizon geometry of AdS,, a scalar field near the horizon
has a unique evolution inside a spacetime region that includes infinite Poincare time. One
might object that extremal black branes are always unstable in the sense that adding a
small amount of energy causes them to become nonextremal'? , and the horizon moves
from an infinite distance to a finite distance (in spacelike directions). However, as we will
see, our perturbation is very different in that it can actually decrease the mass.

A natural question to ask is what does this instability lead to? As we have seen, the
unstable mode causes one factor, say My, to shrink in size and the other to grow. So one
might expect that in the full nonlinear evolution, M, simply shrinks to zero size. A serious
difficulty with this picture was discussed by Horowitz and Maeda [65] - if the weak energy
condition is satisfied, event horizons cannot have collapsing cycles. We sketched their main
argument in Section 2.6 of chapter 2. The instability we are discussing can be viewed as an
extremal analog of the Gregory-Laflamme instability. Since our theory satisfies the weak
energy condition, and the result in [65] does not require that the horizon is nonextremal,

it can also be applied to our case. Thus, My, cannot shrink to zero size, and there must be

12This is true for branes of finite extent. For infinite branes, one needs nonzero energy density to become
nonextremal.



another static solution whose near horizon geometry is not AdS, x M, x M,_,. 13
Strictly speaking, the near horizon limit of the black brane solution includes only part of
AdS;, (the region covered by the Poincare coordinates). Suppose we now consider the global
solution AdS, x M, x M,_,, and ask what happens if we perturb it in the unstable direction.
As a first step toward answering this question, we show that there are solutions in the full
nonlinear theory which are asymptotically AdS, x M, x M,_, and have arbitrarily negative
energy (where, as usual, we measure energy relative to AdS,). Since the perturbation
violates the BF bound, it is clear we can lower the energy slightly by turning on this mede.
To show the energy can be arbitrarily negative, it suffices to construct suitable initial data.

Consider the spatial metric

2
2 _[r m(r)
ds® = [ﬁ-*-l- p—3

] Cats r?dQ, 5 + e dgy + e dgy, (3.3)
so m = 0,9 = 0 corresponds to the metric on a static surface (in global coordinates) for
AdS, x M, x M,_,. The total mass is proportional to m(oc). Notice that the volume of
the ¢g-dimensional internal space is independent of ¢. This is a nonlinear generalization of
the perturbation we considered in section 3.8. We again set Fy = c volyg,. If we set all time
derivatives to zero, the only constraint on this initial data is the Hamiltonian constraint of
general relativity which implies that the scalar curvature of (3.3) must be ¢2/2 where 2 is

given by (3.8). This yields a first order differential equation which can be used to solve for

m(r) in terms of ¢(r). If we assume ¢ is everywhere small, this equation becomes

12 2(P - 1)2 2 ,
](¢) - (q_—l)_L-2-¢ (3.4)

m’ r? +1 m(r)
2 |2 T re3

The right hand side resembles the energy density of the linearized unstable mode (3.7)
except that the ¢’ term involves the corrected spatial metric. Since the term involving m(r)
on the right hand side only decreases the energy density we can get an upper limit on the

mass by dropping it. One can now explicitly find ¢(r) so that m(oo) is arbitrarily negative.

3One might worry that there will be a problem applying the result in [65] since the unstable extremal
black brane is not asymptotically flat in the usual sense. However, even though null infinity is not well
defined, one can still define the event horizon as the boundary of the past of a surface at large r, and the
result will still apply.
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For example, if ¢ < 9 — (8/p). one can take ¢ = ¢oe~"/%. The total mass is negative for
large a, and goes to minus infinity as a — ooc.

If we start with AdS, x M, x M,_, and perturb it slightly, the energy will be only
slightly negative. As we have just seen, this is very far from the minimum energy solution.
A priori, one might expect M, to collapse down to zero size in finite time. This will produce
a curvature singularity. It is unlikely that this singularity is naked, since we don’t expect
cosmic censorship to be violated so easily in the higher dimensional theory of gravity we
are considering. It may form a black hole, or in light of the horizon results, M, may not
collapse down at all. In the latter case, since we are using reflecting boundary conditions at
infinity (appropriate for the AdS/CFT correspondence), the solution may not settle down
to any static configuration. It would be interesting to investigate this further.

We have not considered the massive IIA theory in this section. It would also be inter-
esting to investigate the implications of the instability of AdS4 x S5 for negative energies

and extremal black branes in this theory.



Chapter 4

A Test of AdS/CFT beyond the

classical level

4.1 Double-trace operators and One Loop Vacuum Energy

in AdS/CFT

We mentioned in the introduction that the AdS/CFT correspondence [3, 5, 6] relates a
d-dimensional quantum field theory to a (d + 1)-dimensional gravitational theory, the most
notable example being N = 4, d = 4 super-Yang-Mills theory and type IIB string theory on
AdSs5 x S5. Most of the checks and predictions of this duality have been at the level of clas-
sical supergravity. It is particularly difficult to carry out meaningful loop computations in
AdS, corresponding to 1/N corrections in the gauge theory, simply because the supergravity
theory is highly non-renormalizable, and the Ramond-Ramond fields make computations in
the string genus expansion unwieldy at best. The aim of this chapter, which is based on the
paper [12], is to obtain a simple one-loop result in AdS that is finite in any dimension. The
result is an expression for the difference of the vacuum energies that arises from changing
boundary conditions on a tachyonic scalar field with mass in a particular range.

The inspiration for this computation came from Witten's treatment [100] of multi-trace

deformations of the gauge theory lagrangian and their dual descriptions in asymptotically

96



97

anti-de Sitter space. Such a dual description was also discussed in [101]; however, our
treatment will follow [100] more closely. Earlier work describing the same gauge theory
deformations in terms of non-local terms in the string worldsheet action appeared in [102,
103]. To be definite, suppose one were to add to the gauge theory lagrangian a term -2[02
where O is a single trace operator with dimension 3/2, dual to a scalar field ¢ whose mass
satisfies m2L? = —15/4.! The coefficient f has dimensions of mass, so -2L02 is a relevant
deformation, and there is a renormalization group (RG) flow starting from a UV fixed point
where f = 0. The endpoint of this flow is, plausibly, an IR fixed point whose correlators
are related to those of the original f = O theory, in the large N limit, by a Legendre
transformation in a manner explained in [96].2 In particular, the scalar that was for f =0
related to the operator O of dimension 3/2, is at the IR fixed point related to an operator
O of dimension 5/2.

How is all this reflected in AdS? According to [100], the addition of £0? amounts to
specifying particular linear boundary conditions on the scalar ¢ at the boundary of AdS. At
the classical level, these boundary conditions are consistent with the original AdSs5 solution
with ¢ = 0. Superficially, this looks like a puzzle, since we were expecting an RG flow.
In fact, conformal invariance is violated by the @2 deformation, but at leading order in
N its effects are restricted to certain correlators that we will describe in section 4.2. The
crux of the matter is that it is impossible to satisfy the boundary conditions on ¢ with a
SO(4,2)-invariant bulk-to-bulk propagator, except when f = 0 or oc. This gives rise to one
loop effects that cause deviations from AdSs.

Although we will not obtain the full one-loop corrected solution corresponding to an
RG flow due to the 502 deformation, we will consider its endpoints and perform a one-loop
supergravity check of the c-theorem. This “theorem,” conjectured in four dimensions by
Cardy [16] as a generalization of Zamolodchikov’s celebrated two-dimensional c-theorem

[17], has been shown to follow from AdS/CFT at the level of classical supergravity provided

'Such a situation could arise in the theory dual to D3-branes at the tip of a conifold [75], where there

are indeed dimension 3/2 color singlet operators.
2We will discuss further in section 1.2 the reasoning behind the claim that the flow ends at an [R fixed

point, as well as some caveats.
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the null energy condition holds [104, 18] (see also [105] for earlier work in this direction).
The magnitude of the vacuum energy of AdSs, measured in five-dimensional Planck units,
is proportional to an appropriate central charge raised to the —2/3 power. So the vacuum
energy should be more negative in the infrared than in the ultraviolet, and at the classical
level, that is what is shown in [104, 18] (actually, the arguments on the AdS are dimension-
independent, though it is not entirely clear how to translate the “holographic” central charge
into field theory language in the case of odd-dimensional CFT’s). At the quantum level, the
arguments of {104, 18] have no force because it’s not clear that the null energy condition is
valid or even relevant. So an explicit loop calculation is appropriate. All that is needed is
the one-loop contribution of the scalar ¢ to the vacuum energy. This quantity is divergent.
but the difference between imposing the two simple boundary conditions (described above as
f — 0and f — o0) gives a finite result. The contributions of all other fields can be ignored
because they do not change at the one loop level as one changes the boundary conditions
on ¢. Also, because we only desire a one-loop vacuum amplitude, we may entirely ignore

interactions of the scalar with other fields, and work simply with the free action
S= /d‘:’:‘/g} (-%(aas)? - -;-m2d:2) . (4.1)

where we work in mostly plus signature, so that the metric of AdS; on the Poincaré patch
is
ds® = I:—j (—de? + dz® +d2?) . (1.2)
For definiteness, our discussion has focused on AdSs and a scalar with a particular mass;
however, the results we will obtain can be presented with considerable generality for AdSq., .
as we will describe. For odd d, the formulas for the vacuum energy are much more compli-
cated, and for the sake of efficiency we check the sign via numerics.
The organization of the chapter is as follows. In section 4.2 we briefly review the
prescription of [100] for treating multi-trace operators, and we demonstrate that general
boundary conditions are incompatible with SO(4, 2)-invariance of the scalar propagator. In

section 4.3 we compute the finite change in the one-loop vacuum energy discussed above,
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and make some remarks on the interpolating geometry connecting the two anti-de Sitter
endpoints. We conclude in section 4.4 by extracting the prediction for the central charge,

and observing that the c-theorem is obeyed.

4.2 Multi-trace operators and scalar propagators

The proposal of [100] is a natural generalization of the original prescription for computing
correlators [3, 6], and it should in principle be derivable from it: see [106] for a more precise
discussion. Suppose one starts with the complete set O, of independent, local, color-singlet,
normalized, single-trace operators: for N’ = 4 super-Yang-Mills theory these would include,
for example, § tr X, X2 and & tr F., VA1, The action can be written as I = N2W(0,)
for some functional W, which for N’ = 4 super-Yang-Mills would be the integral of a linear
function of those O, which are Lorentz scalars. The general belief is that the O, can be put
into one-to-one correspondence with the quantum states of type IIB string theory in AdSs.3

Restricting ourselves to scalars in AdSs, we have the standard relation Aq(A, —d) = m2L?
relating the dimension of O, to the mass of the field ¢,. Writing the metric for the Poincaré

patch of AdSs as
L? , 22, .
ds’ = = (—dtz +_drl + dr") : (4.3)

i=0

we have boundary asymptotics for ¢, as follows:
Pa ~ g(z)rt=3s + By(z)r3e for r — 0. (4.4)

The prescription of [100] is to replace W (O,) by W(03,) and impose the following boundary

conditions:
W

0Ba(z)

3There is considerable subtlety in this claim. It has been demonstrated that the Kaluza-Klein tower of
supergravity modes in AdSs x S° is in correspondence with the chiral primaries of N’ = 4 super-Yang-Mills
and their descendants; and the duals of certain non-perturbative states have been found, such as dibaryons
(see for example [107] and giant gravitons [108]. Evidence is growing that the operator-state map extends
faithfully to excited string states (see for example [109, 110]). Since the states in question can sometimes
be extended across most of AdSs (as in [110]), it is not entirely clear that a second quantized treatment
in terms of local fields is appropriate; but this is scarcely relevant to the situation at hand, since extended
states are very massive, and we're interested only in tachyons.

ag(zr) = (4.3)
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The partition function of the gravitational theory in AdS, subject to the boundary condi-
tions (4.5), is then supposed to equal the partition function of the gauge theory.

The simplest non-trivial example is double trace operators: most simply, O? where
the scalar operator O has dimension A between £ — 1 and d/2. The lower bound § -1
is the dimension of a free scalar field and is the minimum dimension required to satisfy
unitarity. The upper bound of % is chosen so that the double trace operator is relevant.
Then W includes a term £ [ d%z O2. This brings us back to the discussion initiated in the
introduction: nonzero f plausibly drives the field theory from a UV fixed point where the
boundary conditions are @ = 0 to an IR fixed point where the boundary conditions are
B = 0. Since these two fixed points will be the focus of section 4.3, let us introduce an
additional convenient notation: A, and A_ are the two solutions to A(A —d) = m2L3,
with A_ being the lesser of the two (and thus in the aforementioned range, from % —-1to
d/2). Clearly A, =d—-A_.

When A_ < d/2, the addition of a trace-squared operator 02, where O has dimension
A = A_, is a relevant deformation, so conformal invariance must be broken in the gauge
theory. The results of [100] for d = 4 and A_ = 2 suggests that even when A_ = d/2 there
is a logarithmic RG flow. The simplest indication of the breaking of conformal invariance
in supergravity is that the bulk-to-bulk propagator for the scalar ¢ dual to O cannot be
SO(4, 2)-invariant. We will now demonstrate this claim.

The propagator in question can be defined as
iG(2,2") = (0T {¢(2)8(z") }0) . (4.6)
and it satisfies the equation of motion
@ -m?)G(z. ') =8 (2 - 2), (4.7)
where 0 = ¢"*V,V,, and the delta function includes a 1//9 in its definition, so that
[ 125 £ - ) = £() (458)

for any continuous function f(z). If the propagator is to respect SO(4,2) invariance, it
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must be a function only of the geodesic distance a(z, z’), which is known to be

1+\/<1—<7) 2rr (49)

o(z.2) “"g( vhere (= A _G_rpsGE-FR

where L is the radius of AdS. The only solutions to (4.8) which are functions only of ¢ are
G(z,2') = pGa_ + (1 — p)Ga, where for any A (cf. [111, 112]),*

r(Aa)

G —
AT 2ardnLd-i2A — d)T(A - §)

¢AF (% %;A - ; + 1;(2) . (4.10)

where F is the hypergeometric function. By keeping 2’ fixed while z approaches the bound-
ary of AdS, it is straightforward to verify that for no choice of p € (0,1) and f € (0, 00)
does the propagator G(z,z') = pGa_ + (1 — p)Ga, satisfy the boundary conditions (4.5),
which in our case amount to @ = f3. For p = 0 and f = 0 the boundary conditions are
satisfied with SO(4,2) invariance preserved, corresponding to a fixed point of RG where ¢
is dual to an operator O with dimension A_. Let us call this the A_ theory. And forp=1
and f = oo (formally speaking). again the boundary conditions are satisfied with SO(4, 2)
invariance, and now ¢ corresponds to an operator @ with dimension A.: this we will call
the A theory.

It was already remarked in [100] that a renormalization group flow should interpolate
between the A_ theory in the UV and the A, theory in the IR. This is in fact a somewhat
subtle claim: why should we think that the RG flow initiated by adding 502 ends up
at a non-trivial IR fixed point? We can argue as follows: the Legendre transformation
prescription of [96] guarantees that the IR fixed point exists, at least in the large N limit.
The existence of a fixed point of RG is a generic phenomenon, so 1/N corrections should
not spoil the claim, nor should they greatly alter the location of the fixed point in the space
of possible couplings. Since a naive scaling argument (just looking at the dimension of f)
tells us that the RG flow should end up at the desired IR fixed point if we ignore all 1/N
corrections, it should be that some RG flow exists close to the approximate one we naively

identified, ending at the non-trivial IR fixed point. A significant caveat to this reasoning is

“The expression for G(z, z") above differs by a sign from that in {112, 11] because the latter define the
Green'’s function as —iG(z,2’) = (0| To(z)e(z')|0).
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that AdS/CFT exampiles often (in fact, nearly always in the literature so far) have exactly
marginal deformations. A line of fixed points of RG is not a generic phenomenon, and 1/N
effects in the absence of supersymmetry generically could destroy such a line. Only one
point could be left after 1/N effects are included; or, worse yet, only a point infinitely far
out in coupling space could be left. Translated into supergravity terms, these remarks mean
that the one-loop contribution to the potential could source the dilaton or other moduli,
possibly leaving no extrema at finite values of the fields. If there are no such moduli in the
first place (as perhaps one would expect for a truly generic non-supersymmetric quantum
field theory with an AdS dual), then this caveat is not a problem. In practice, however, it is
likely to interfere with constructing explicit string theory examples of the RG flow discussed
in this chapter. For the remainder of our discussion, we will ignore the caveat.

Since the renormalization group flow is non-trivial, it is natural to expect that the super-
gravity geometry deviates from AdS. The surprise is that this does not happen classically.
Roughly, this can be understood in field theory terms as a reflection of the fact that n-point
functions involving only the stress energy tensor do not receive corrections at leading order
in N.5 At subleading order in N, or at one-loop in supergravity, deviations from AdS must
occur, simply because a one-loop diagram where the SO(4, 2)-non-invariant scalar propa-
gator closes upon itself must give rise to an eflective potential that varies over spacetime.
Entertainingly, there is no classical scalar field which is varying; rather, the variation in the
potential arises on account of proximity to the boundary. This is in contrast to previously
studied examples of RG flow in AdSs (for instance [104, 18]) where the flow is described
in terms of scalars in the five-dimensional supermultiplet of the graviton with non-trivial
dependence on radius.

There should be a solution to the one-loop-corrected supergravity lagrangian interpo-
lating between one asymptotically AdS region near the boundary. corresponding to the A _

UV fixed point, and a different one in the interior, corresponding to the A, IR fixed point.

5Correlation functions which do receive corrections at leading order in N when éoz is added to the
lagrangian are precisely those which pick up contributions from factorized forms (O...)(O...), where the
dots indicate any arrangement of the operators involved in the original correlator.
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For instance, one could require that the symmetries of R3! be preserved in the solution,

which must then have the form
ds? = A0 (—dt? + di?) + dr?, (4.11)

where A(r) — r/Lx as r — +o00. (Another choice would be to require the symmetries of
S3 x R, which should lead to a solution with the conformal structure of global AdS). We
will not find the full interpolating solution, but we will explore some properties of its AdS
endpoints. We will be particularly interested in the central charge of the CFT’s dual to
the two endpoints. To the leading non-trivial order, these may be computed as a one-loop
saddle-point approximation to the supergravity “path integral” (supposing that such an

object exists), but without deforming the AdS background itself.

4.3 One loop vacuum energy for the tachyon field
The full classical action that we wish to consider is
S= 2—::7 [d+tav5 (R~ ro) + / &+ /5 (-%(345)2 - %m2¢2) L 12)
Here Ay is a negative constant. The scalar is subject to the boundary conditions
&~ ar®d 4+ 9rd where a=f3. (4.13)

As remarked previously, AdSy,, with ¢ =0 and 1/L? = _ZZHA‘ET) is a classical solution to
the equations of motion from (4.13). but we expect that once one-loop effects are accounted
for, this solution is corrected to an interpolation between AdSg4.| spaces in the UV and IR
with slightly different radii. The one-loop scalar bubble diagram corrects the gravitational

lagrangian by an amount 8L, where
Vi =V= -% trlog(— 0 +m?). (4.14)

Our main computation will be to evaluate this correction in the unperturbed background.

In principle, one could go on to find the interpolating geometry perturbatively in the small



104

parameter nA((,d—l)/ 2. This would require separating §£ into contributions to the cosmo-
logical term and two- and four-derivative expression in the metric—a much more involved
computation than simply evaluating (4.14) in the unperturbed background. For brevity,
we will use the notation V' in preference to 4L for the scalar self-energy (4.14), despite the
fact that in the full background-independent form involves derivative terms as well as finite
non-local terms. V is divergent, but we assume that the action (4.12) is part of well-defined
theory of quantum gravity (presumably, a compactification of string theory or M-theory),
so that all loop divergences are canceled in some physical way, leaving only finite renormal-
ization effects. It may be that in the full theory, Aq is just the extremal value of a classical
potential function of several scalars; if so, then we are operating on the understanding that
the second derivative of this potential function with respect to ¢ vanishes at ¢ = 0 (that is,
we’ve soaked up any such second derivative into what we call m? in (4.12)).

In general, it is difficult to compute one-loop corrections in an effective theory without
knowing precisely how the full theory cancels divergences. Results obtained for a chiral
anomaly in supergravity [113] for AdSs x S can be used to show that the central charge
is corrected at one loop in supergravity, leading to ¢ o« N2 — 1, as appropriate for SU(N)
super-Yang-Mills, rather than ¢ oc N? (the leading order result). Thus in this case, the
difficulties were overcome. Our situation is more generic, in that we do not depend on
supersymmetry or a special spectrum of operators. What we are nevertheless able to do is
to determine the finite difference between V' in the case where f =0 in (4.13) and the case
where f = oo. This we will then translate into a change in the central charge as one flows
from the UV (the A_ theory) to the IR (the A, theory). What makes the computation
clean is that at one loop, we do not have to worry about interactions of the scalar with
other fields, and the only relevant diagram is the one where a single scalar propagator closes

on itself, with no vertices.
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4.3.1 Vacuum energy in limiting regions of AdS

The computation of the one-loop contribution to the vacuum energy by a scalar in curved
space, like in flat space, amounts to summing the logarithm of the eigenvalues of the Klein-
Gordon operator. A more easily computable expression is obtained by expressing the result
in terms of an integral of the Green’s function with respect to some parameter such as
proper time or mass.®  All of this is quite standard, so we just write down the result,
referring the reader to {115] pp. 156-158 for a derivation: if the propagator G(z, z';m?2, f)
is defined by

@.-m?)G(z,2";m?, f) = §%*1(z - 2'), (4.15)

(with the delta-function including a /g factor as in (4.8)) together with boundary conditions
(4-13), as discussed in section 4.2, then formally,

H o0
V(zm?. f) =~ lim, / dm? G(z, 2’2, f), (4.16)
2=z Jm2

and for the cases f = 0,00, the fact that we can make the scalar propagator SO(4, 2)
invariant means that V will be independent of the position z.” The formula (4.16) is
problematic because for large masses, G(z. z’. m2, 0) diverges at the boundary of AdS. This is
unusual: the typical situation for quantum field theory in curved spacetime is that quantities
become well-defined in the limit where masses are much larger that the inverse radius of
curvature. Thus, instead of using (4.16), a well-defined procedure is to integrate down to
the Breitenlohner-Freedman bound which is the smallest mass possible with normalizable

modes in AdS. Thus we obtain

. m?
V(zm® f) = Vizmpe, f) + 5 lim, [ d#?G(z, 2112, f). (4.17)
= Imp e
where m}L? = —d?/4 is the Breitenlohner-Freedman bound. (For a derivation see the

Appendix). It is possible to argue that V(z;m%, f) is the same for f = 0 and f = 0.

SFor a different method of computing the effective potential based on the technique of Zeta-function
regularization see [114].

"Actually, we have tucked an additional complication into our notation: V is, more properly, minus the
one-loop correction to the full gravitational lagrangian, and as such includes not just a scalar piece, but
also terms depending on curvatures. For the central charge computation, as we shall explain, the relevant
quantity is the sum of all these terms evaluated on AdS.
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Indeed, the eigenmodes for a tachyon of mass m? with boundary conditions specified by
f =0is given by w = A_ + €+ 2n and that specified by f =0 isgiven by w = A, +€+2n
[70], where € is the orbital angular momentum quantum number and n is the radial quantum
number. But for a scalar with mass saturating the BF bound, A, = A_ = %. So from a
viewpoint of canonical quantization it seems inevitable that V(z;m%,0)-V(z; m%p, 00) =
0. We can argue further that for general f the eigenfunctions would be a linear combination
of those with f = 0 and f = co. That would again imply that for A = g, the eigenvalues
are unchanged. So we conclude that the V(z: szFv ) = V(z:m%(,0) = 0 for all values of
f-
Thus we are led to the formula that we will really use for computation:

Vi-V L
-ve=3 [

2
BF

.

dm? Gy, (2,2) — G4_(2,2)] + V(z:mhp,00) — V(z:mp.0). (4.18)
where V. = V(2,m2.00) and V_ = V(2,m2.0). We have used the fact that Gj, (z.%). as
defined in (4.10), is precisely G(z,z’;m?,00), while G5 (2,2') = G(z,2,;m?,0). In light
of the argument of the previous paragraph, the terms outside the integral cancel. The
advantage of (4.18) is that Gj3,(z.2) =G4 _(z,2) is finite, so that the final answer is also
manifestly finite. We have confidence that no other finite renormalization effects can slip
in to the calculation, because the only thing that changes between the A_ and A, vacua
is the boundary condition on ¢.

As a warm-up let us first carry out the computation for AdS5. To get the value of
G A, (2,2) = G4 _(z,2) for coincident points one has to first express the Green's functions
in terms of the geodesic distance 0. From (4.9) we see that in terms of the variable ¢ the
geodesic separation is given by cosh(§) = % so we rewrite the propagator (4.10) in terms of
o and then expand i [G‘-3+ (2.2) -Gx (= ::)] in a power series in powers of 7. The answer
is finite and in the limit ¢ — 0, for AdSs5 we obtain the simple expression:

i[C4, (22~ Ga_(2.9)] = =i[Ga(22) = G,_g(22)] = =B l)(gr;;)(A =3

(4.19)
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The difference in the vacuum energies using (4.18) is therefore

V,-V_= % °2 din® [GA+ (2,2) — (z,-)]
_ 1 [4-dA (A-1)(A-2)(A-3)
=72, @ [2‘A‘2> 12+7L3 ]
1 A-2 . 1 (A- -2 (A_-2)
—121r2L5/ di [ 1] = 12x2L3 [ 3 5 ’

(4.20)
where in the second line we have used m2L2 = A(A — 4) and the fact that Agp = % =2.
Since A_ < 2 we find that V. — V_ <0, and therefore c_ > c, in agreement with the field
theory prediction.

It is straightforward to generalize this for any odd-dimensional anti de-Sitter spacetime
because for d even, the difference i[G 4, (22)-G3 (= z)] is quite simple in form. Before
writing this down, for convenience, let us define d = 2k so that the spacetime is AdSy;. ;.
In terms of k, i[G£\+(z.:) -G;3 (22 ] is:

2k-1

i [GA+(Z, 2)-G; (2 z)] =—i [Gé(z, 2) - G,_z(z z)] = nkwk Ld_l [I (A-i)
(4.21)
where ny = 28(2k — 1)
The difference in the vacuum energi& is therefore
i
Vi-V.= ° dm? [GA (2.2) ~G3 (= z)]
ae?
o (4.22)

/ [ k) nemk [A-1 Ld—l H (A=)
where in the second line we have used m2L? = A(A — d) and the fact that Agr = § = k.
Shifting the variable of integration by introducing a new variable # = A_ —k, the integrand

can be written down in a terms of the Pochhammer symbol (a), = r([,“(:;" :

2k-1 ( l)k k- i . )
28 ~ k) ——7 deH 1‘[(A —nkaLdH (u -i?) = AT (D). (4.23)

The factor (—1)* was nullified by an extra factor of (—1)* from the product. Assembling

all of this, we finally have
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Figure 4.1: {(G4-a — GAa) as a function of A, for AdSg, AdSs, and AdSyo (corresponding
tod =35,7,9), in units where L = 1.

1 0
Ve—-V_= W/u di [(P)(-)k] (4.24)

where we recall that ny = 25(2k—1)". The lower limit of integration v depends on the value
of A_. Since k < A_ < k-1, the range of v is —1 < v < 0. The function (v)(—v)x < 0 for
all k and —1 < v < 0. So for any odd-dimension anti de-Sitter spacetimes we have shown
that V., —V_ <0.

For even dimensional spacetimes, an analytic proof seems cumbersome, so we resorted to
numerics. As an explicit example, figure 4.1 shows a plot of i(G4_a —CAa) as a function of
A for several even-dimensional anti-de Sitter spacetimes. In each dimension, we've plotted
the integrand of (4.18) for d/2 — 1 < A < d/2. Since the integrand is always negative on
this range, we conclude that V, < V_ in accordance with the c-theorem intuition. This is

also true for d = 3, and we believe it is true generally.

4.3.2 Vacuum energy throughout AdS

The results of the previous section were stated in terms of V., — V_ = V(z:m?2,x) —
V(z: m2,0) (both terms were in fact independent of the position z in AdS). Here we would

like to investigate V(z;m?2, f) for finite f. This quantity diverges, but V(z:m2, f) — V_ is
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finite. We will be able to verify the formulas
Jim, [V(z; m?, f) - V_] =0,  lim [V(z; m2, f) - v_] =V,-V_, (4.25)

which we consider intuitively obvious since §o2 is a relevant operator in the CFT, and
therefore unimportant in the UV but important in the IR.

As a first step, one needs the Green'’s function for the scalar obeying mixed boundary
conditions for all values of f (not just the ones for f = 0 and f = co that we wrote down
earlier). This would be needed to compute the vacuum energy contribution due to the
bubble diagram. The one-loop corrected action would then induce corrections in the geom-
etry which can be computed from the Einstein equations. Let us work in Euclidean AdS
to get the Green's function Gg(z,y; f) which we shall Wick rotate to obtain G(z, y; f) in
Minkowski signature. We shall follow the canonical method of obtaining Green’s functions.

In Poincaré coordinates the scalar wave equation is
[x;-;(é’ +08) — zo(d — 1)d - m2] é(zo, %) = 0. (1.26)

where from now on we shall denote the radial direction by zg or yg and T is a vector with
components along the d remaining directions. The two linearly independent solutions to
this equation are: ¢, = z2e~* %I, (kzo) and ¢ = 23~ E[_ (ko) where v = ym2Lt+ <.

In the notation of our previous sections, the Green's function obeys the equation

@ -m*)Ge(z.y: f) = §+(z - ), (4.27)
where we remind ourselves that the delta function includes a % in its definition. The right
hand side is zero for zg # yg, so we have

Gel(z,y) = Aid1(z) + Axda(z) for To<uyo
(4.28)

= Bi¢1(z) + Baga(x) for 10> yo.

d
The boundary behavior of the scalar we'’re interested in is: ¢(zo, %) = fB(:i")a:gw +

d_
B(Z)x¢ “. We choose our ¢, and ¢, so that they have the right boundary behavior and
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also require that the Green’s function not diverge in the bulk (large values of the radial

coordinate zg) for two non-coincident points. One convenient choice of ¢; and ¢, is:

r(l+v)
r(l-v)

d -
I,,(kzo)) and ¢y = rie *¥K,(kzo),
(4.29)

d - .
o = afe®% (I, kao) + S

so that ¢; satisfies the boundary condition for small o and ¢, is finite in the bulk. From
the asymptotics of Bessel functions, we see that ¢, diverges as o — 0o and ¢, diverges
as zg — 0. This forces us to set A = By = 0 in (4.28). The remaining two constants
are determined by integrating (4.27) twice which gives us two conditions: (i) the Green'’s
function is continuous at x¢ = yo , and (ii) its radial derivative has a jump discontinuity of

;zlrr at g = yo. This yields
0

_ o2(%0) _ #1(yo)
A W) ool 2 Wi wo), o) (130
where W(®,(yo). #2(yo)] is the Wronskian. For our choice of ¢, and ¢2 the Wronskian is:
: oo T -+ FR*TA+v) (LN
W(é1(yo), d2(yo)] = - T —2) (y—o) . (4.31)

so combining (4.28). (4.30), and (4.31) we obtain the Green's function:

[ drpd®k e FED(2540) K, (kyo) r(l+v)
Goteuif) =~ [ T (1+(%>2"f55{—1’5§)u—1[ otk + S ) Btk

(4.32)
for 29 < yo and a similar expression for o > yo. In the above equation. kg is the temporal
component of momentum. Finally, we Wick rotate this component xg = ik to get the

Green'’s function in Minkowski signature:

&k e“';'(f'm(royo)% v(kyo)

(2m)d (l+( Zufr(:'*':;)Ldl

Fl+v) 2,,. ..
(- u)(E)z [v(kl'o)J

(4.33)

iG(z.y: f) =

[I_M(kxo) +

The integral for general values of f, d and v is hard. For f = 0 and f = oo it can be
evaluated and the result is an expression which is related to (4.10) by a quadratic hyper-
geometric transformation [116]. A little bit more can be said about the radial dependence

of the one-loop vacuum energy. This latter quantity depends on the Green's function for
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coincident points G(z,x; f). We saw before that this divergent quantity was best handled

by subtracting out G(z,z;0). The result is then finite:

. 1 © craaq :

i[C(z, ; f) - G(z,1;0)] = — . dick?d=" - -[K, (k)]?.

000 23) = Ol 00 = ~ g e ) e tadl
(4.34)

where f = 2% %%% f::%" and k = kzg. Note that the excess vacuum energy depends on
the radial coordinate o in the particular combination fr3”.

In order to make any further progress, one would need to first compute the momentum
integral and then integrate over v to obtain the vacuum energy. We argued earlier that
V(zimye, f) = V(z: m2BF,0) = 0 for all values of f, so using (4.18) and (4.34) we have:

i [ms
Vizim? f) - Vizim®,0) = 5 / " di? [G(z, z: f) - Gz, 2:0)

Mmge

= / AR ez f) - Glz.z:0)]

v 5 . pd-1 .2
- -2"‘211'%1“1(%)[}‘“ [ oramaa ks Rl
(4.35)
where we remind ourselves that f = 2% %% fz¥. The double integral is difficult to
perform explicitly. However, it is not hard to show from (4.35) that V(z:m2, f) decreases
monotonically as f increases from 0 to 0o. To see this we note that the integrand depends on
zo only through f and since the integrand is a monotonic function of £, clearly V'(z; m?2, f)

decreases monotonically with increasing f.

4.4 Conclusions

The upshot of section 4.3.1 was an evaluation of the change in the one-loop self-energy.
V, — V_, between the IR and UV endpoints of a holographic RG flow. We would now like
to convert this into a change in the central charge of the dual field theory.

In {117], the central charge was obtained by holographically computing the Weyl anomaly:

on the field theory side,
SWigu| = / 'z /G w(TV) (4.36)
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upon a conformal variation gy, — ez“'g,,,,, where W is the generating functional for con-
nected Green’s functions. At the one-loop level, the prescription of [5, 6] asserts that W
is the classical supergravity action. The exact statement is that the partition functions
of string theory and gauge theory coincide (subjected to boundary conditions and source
terms in the usual way). In the calculation of [117], the supergravity action integral is eval-
uated with a radial cutoff, where the choice of radius amounts to a choice of metric within
a conformal class. The supergravity lagrangian evaluates to a constant in AdS, and the
central charge is proportional to this constant.® All that we need to do in order to correct
the central charge computation at one loop is to ask by how much the one-loop-corrected
lagrangian differs from the tree-level lagrangian, when evaluated in AdS. The tree level and
one-loop lagrangians will stand in the same ratio as the leading large N central charge and

its 1/N-corrected counterpart.

The tree level lagrangian is
VI Liree = 'cilT(R —Ag) = —% . (4.37)

The calculation indicated by the discussion in the previous paragraph is

Ccorrected - Liree + 6L . (4.38)
Ctree Liree
where 6L = —,/gV is the one-loop correction to the lagrangian that we computed in sec-

tion 4.3. Because we are only able to compute V up to an additive constant that is inde-

pendent of boundary conditions, the only meaningful ratio that we can form is

& _ Luwee = vOVs V“_f Ve (4.39)
c- Ctree ~VIv- \/g- Ctree
so that
G W, -V ki L2 (4.40)
c. F - 2d ’ )

To check if c_ is indeed greater than c., all that we have to show is that V, < V_. But

that is exactly what we saw above.

8 A priori. one might worry that boundary terms in the supergravity action also contribute to the central
charge. That this does not happen depends on the circumstance, noted in [L17], that the only log-divergent
terms in the supergravity calculation arise from the integral of the bulk action.
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As an example, in AdSs5, we obtain from (4.22) and (4.40) the result

c- 192723 3 5 (4.41)

cr—c. K2 [(A- -2P% (A_-2)°

One can go further and translate the function V' (z;m2, f) — V_ into a correction to the
central charge whose scale dependence is monotonic. It is not clear how well-defined such
a function can be on the supergravity side: because the bulk theory includes gravity, it has
no local observables. Poetically, we would like to relate this to the fact that renormalization
group effects in field theory are scheme-dependent—but it is difficult to make this precise.

It would be interesting to see how the construction discussed in this chapter might
be realized as part of a compactification of string theory to four dimensions. along the
lines of [118, 119]. One of the most interesting questions in that context is one that we
glossed over here: before considering the loop effects in supergravity, one generally expects
a moduli space of vacua, and this statement probably translates into field theory terms as
the existence of a line of fixed points. Mapping the lifting of moduli into field theory terms
might at least gain us a restatement of the moduli problem in terms of the existence of

isolated fixed points of the renormalization group.



Chapter 5

Conclusions and Outlook

In this short chapter it might be useful to speculate on some future avenues of exploration
based on research detailed in the previous chapters.

The first part of the thesis contains the author’s contribution to the development of the
understanding of the instabilities of non-extremal black branes. At the time of writing this
thesis, a lot of key questions in this field remain unanswered. The most important of these
is the ultimate fate of unstable black branes.

The linearized equations indicate that the horizon initially starts out by becoming non-
uniform. There is a lot of debate in the community about whether the end-point of evolution
is a configuration which is not translationally invariant. The best numerical evidence at the
present time seems to indicate that non-uniform branes are probably not the end-products
of decay - this then would mean that some violent phenomenon takes place towards the
end. It would be curious to find out what exactly happens in the end. Does a naked
singularity form, which renders the proof of [63] inapplicable? Dynamical violations of
cosmic censorship would be a truly novel phenomenon from the point of classical general
relativity. It is to be warned though, that once curvatures in some region of spacetime get
very large and comparable to 1/,/a’, stringy corrections have to be taken into account.

From a particle physics point of view, there are some extensions to Chapter 4 which are

well worth undertaking. Let us discuss schematically some of these.

114
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It is rewarding to look for and study RG flows where supersymmetry is broken along
the flow. The attractive incentive is the ability to make quantitative predictions (like the
central charge in Chapter 4) about a non-supersymmetric theory if one can identify its
supersymmetric high-energy origin. Quantities in the non-supersymmetric theory would
then be obtained as corrections (hopefully finite) to their values in the susy theory.

An embarrassing problem in string theory is the moduli problem. Simply stated, one
finds that when one looks for supersymmetric vacua of string theory, one ends up with
an entire family of them, which are connected continuously. This means that there is no
preferred choice of a single vacua of the theory. It is expected that breaking supersymmetry
would result in “lifting the flat directions” and leaving behind a single point in moduli
space. This would be the true vacuum. It is also possible that multiple disconnected vacua
are left behind, but even then, on general grounds, one expects a single one to be the global
minimum in energy.

The RG flow that we considered in Chapter 4 might be viewed as a restatement of the
moduli problem. The known examples of flows which preserve supersymmetry result in
a line of fixed points. At leading non-trivial order in NV, there seems to be an RG flow
from any fixed point in the UV to one in the IR; but subleading 1 /N corrections should be
expected to make such non-supersymmetric IR fixed points unique, or to get rid of them
altogether. It is useful to investigate examples like the one we discussed and find out if
non-supersymmetric fixed points do indeed always occur in isolation. Learning how the
absence of supersymmetry causes the line to shrink to a single point (or isolated points)
might then shed some light on how string theory chooses its unique vacuum.

In any case, if one hopes to use the AdS/CFT correspondence to learn about QCD, one
has to learn how to do loop computations which would result in corrections of order 1/N?
to the answer for large N. This requires doing loop computations in AdS. Searching for
examples which can be calculated in a controlled fashion is therefore a fruitful exercise. It is
possible that in most of the cases some amount of supersymmetry would remain unbroken,

but one might take an optimistic viewpoint and hope that generic predictions would still



hold good for their non-supersymmetric cousins.
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Appendix A

Conventions and Notation

Here we collect conventions and a few properties of the differential operators we employ.
We work in a metric of signature (— + +---+) and define the Ricci tensor in terms of the

Riemann tensor by Rarv = RPypy-

The Hodge-de Rham Laplacian 4, = —(dd+dd") is negative-definite. but in the case of
a compact Riemannian Einstein space of positive curvature a more stringent bound can be
derived for the case of one-forms. We use —R2A,,Y' = k/Y!, and for the ordinary Laplacian
ay = ¢*¥V,V;s, —R20,Y! = ATY/!. For scalar spherical harmonics Y/, 0, = A,, and a
vanishing eigenvalue always exists corresponding to Y/ = const.! For one-forms, we may

consider
0 < / (VeY8 + VAYIe) (W, Y] + Vav]) =2 / VoYWl + VoY) (AL

=—2/Y"’c1+ 2a—1)

- Ly = 2/Y"’(A Iy,

proving k! > 2(q — 1): furthermore, equality occurs for (VGYJ + V3Y)) =0, which is the
condition for Y] to be a Killing vector. Additionally, the absence of harmonic one-forms Y.
on a compact Einstein space of positive curvature may be proved as follows. Any harmonic

one-form must satisfy VY =0 = VaYé‘ - VYt so

0= / VeYhS(V,YE - VaYh) = / (V"Y"BV v+ Y""YL,) : (A.2)

!One can derive the bound A’ > g for nonconstant Y [81].
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which is impossible as the right-hand side is a sum of a nonnegative and a positive quantity.
For the case of S9, the eigenvalues A of the ordinary Laplacian Oy for the various tensor

harmonics are

Tensor harmonic | A | Range of k
Y’ k(k+q— 1) k>0
Y/ k(k+q—-1)—-1 k>1
Vi an] k(k+g-1)—n| k>1
Y({,[,, k(k+q—-1)-2 k>2

while for the Hodge-de Rham Laplacian acting on vectors, we obtain

Kl =k+1)(k+q-2), k>1. (A.3)



Appendix B

Derivation of Modified Expression

for One Loop Vacuum Energy

In this appendix we shall sketch the derivation of (4.17). Our starting point is the familiar

field theory result that the one-loop effective potential is
Vizm?, f) = —%trlog(—cl +m?). (B.1)

We shall denote the Klein-Gordon operator (— 0 +m?) by K(m2. f) and as an operator,
it is related to our definition of the Green’s function (4.15) by G(m?, f) = —[K(m?, f)]~".
The representations of operators such as G(m?, f) in an orthonormal basis shall be denoted
by the obvious notation: (z|G(m?, f)|z) = G(z,z’; m?2, f). In terms of the Green's function.

the effective potential is then

V(zm?, f) = 3 lim log[~G(z, ="m?, f)]. (B2)
We shall use the Schwinger proper-time formalism to evaluate this. One needs two simple
operator relations both of which follow from the relation between G(m?, f) and K(m?2, f)

G(m?, f) = —i /we'i’k(mz'f)ds
0 (B.3)

00 e-—isf((mz.])
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where 7 is the Euler’s constant. For the effective potential, we see from (B.2) that we need
log[—G(m?, f)] which differs by a factor of is from the integral representation of G(m?2, f)
above.
To proceed any further we need the DeWitt-Schwinger representation of the Green'’s
function (the reader is referred to [115] pg. 75 for a derivation)
Gz, sm? f) = —iLEEE) [P igoemimt s 0P i) (Ba)
(41rzs)
where 7(z2, ) is one-half the proper distance between the points z and z’, and M(z,2') =
—det[0,8,7(2, 2’)]. For our purposes we shall just need to use the fact that the only place
where the mass appears is in the exponent and integrating with respect to m?2 will bring
down an extra factor of is that we need. So integrating both sides of (B.4) between two
arbitrary masses m? and m2 and using (B.3) we obtain
2 dmzf—G(a, 2302, f)] = ~log[-G(z, 2'sm3, f)] +log[-G(z,'1mi, f)].  (B.3)
In the usual treatment one chooses one of the masses to be infinite, but as we explained in
the main text, this cannot be done here. Instead of integrating toward heavier masses, we
integrate in the opposite direction down to the Breitenlohner-Freedman bound. Therefore,
we set m? = m3p and m3 = m? in (B.5) and use (B.2) to get
2

V(zm?, f) = - tim /"' dR?G(z, s m?, f) + V(2 mie, f). (B.6)

st 2
mgp
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