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Abstract: In encryption technology, image scrambling is a common processing operation. This paper

proposes a quantum version of the 3D Mobius scrambling transform based on the QRCI model, which

changes not only the position of pixels but also the gray values. The corresponding quantum circuits

are devised. Furthermore, an encryption scheme combining the quantum 3D Mobius transform

with the 3D hyper-chaotic Henon map is suggested to protect the security of image information.

To facilitate subsequent processing, the RGB color image is first represented with QRCI. Then, to

achieve the pixel-level permutation effect, the quantum 3D Mobius transform is applied to scramble

bit-planes and pixel positions. Ultimately, to increase the diffusion effect, the scrambled image is

XORed with a key image created by the 3D hyper-chaotic Henon map to produce the encrypted

image. Numerical simulations and result analyses indicate that our designed encryption scheme is

secure and reliable. It offers better performance in the aspect of key space, histogram variance, and

correlation coefficient than some of the latest algorithms.

Keywords: quantum 3D Mobius scrambling; 3D hyper-chaotic Henon map; quantum circuits;

quantum image encryption

1. Introduction

Based on the principles of quantum mechanics, quantum computing, which pro-
vides massive parallel computation [1], and unconditional security [2] for the data have
been widely used in many information science fields. Quantum computing lays a solid
foundation for the emergence and development of quantum information processing tech-
nology [3,4]. Since images are an important information transmission medium [5,6], how
to process image information in quantum computers is a hotspot in research [7]. Quantum
image processing has great significance to the security of images.

To store images by using qubits in quantum computers, researchers developed a great
deal of representation models [8]. Qubit Lattice, as the first representation model, was put
forward in 2003 [9]. Afterward, Real Ket, which allows using n qubits to represent an image of
size 2n × 2n was proposed [10]. In 2011, FRQI representation was designed [11], in which the
image information was encoded as a superposition of quantum entangled states. Extending
from FRQI, Zhang et al. presented NEQR representation [12]. It uses an entangled qubit
sequence to encode grayscale information. After that, some other representation models were
successively raised, including QUALPI [13], NAQSS [14], NCQI [15], GNEQR [16], FTQR [17],
QIRHSI [18] and many more. Recently, Wang et al. devised the QRCI representation for storing
RGB color images, which has a lower quantum cost [19].

Since quantum computing has enormous information-carrying capacity and strong
computing power, many image encryption techniques making use of quantum computing
have been suggested. Zhou et al. achieved an encryption algorithm with geometric trans-
formations in 2013 [20]. In 2014, by means of restricted geometric and color transformations,
Song et al. presented an encryption method for FRQI images [21]. Subsequently, the quan-
tum realization circuit of the generalized Arnold transform was constructed and put to use
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in [22,23]. Gong et al. designed a novel encryption scheme by exploiting quantum XOR
operations [24]. To solve the problem that some spatial domain transforms are periodic, an
encryption algorithm by utilizing Fibonacci scrambling and geometric transform iteratively
was presented [25]. In addition, Li et al. achieved an encryption method by exploiting
phase-shift transform and Haar wavelet transform [26]. With the bit-level permutation
operation, a cryptosystem for the NEQR model was proposed [27]. By utilizing image
correlation decomposition, Zhang et al. proposed a quantum image encryption algorithm,
which has a large key space [28]. Song et al. encrypted the QIRHSI image by using geo-
metric transformation and intensity channel diffusion [29]. Lately, Liu et al. presented an
independent bit-plane permutation, which was used to create a novel algorithm to encrypt
quantum images [30]. Gao et al. developed an encryption technique based on quantum
DNA coding and Hilbert scrambling operation [31].

Quantum image encryption using scrambling transforms is a widely used technique.
Traditional algorithms like Arnold, Fibonacci, and Hilbert have been implemented using
quantum circuits for image scrambling, as described in [32,33]. However, these algorithms
have a limited range of scrambling and only disrupt the positions of pixels, leaving the
distribution of pixel grayscales unchanged [34]. Therefore, it is crucial to explore newer
and more efficient quantum scrambling algorithms that can be applied to quantum image
encryption to enhance the security of cryptosystems. In this paper, a quantum image
scrambling algorithm is designed based on the 3D Mobius transform to simultaneously
change pixel locations and gray values, effectively eliminating correlation between adjacent
pixels. To protect the security of quantum images, an encryption scheme is proposed
that combines quantum 3D Mobius scrambling with a 3D hyper-chaotic Henon map.
Firstly, the RGB color image is represented with QRCI. Then, to achieve the pixel-level
permutation effect, the quantum 3D Mobius transform is applied to scramble bit-planes
and pixel positions. Finally, to improve the security performance, quantum XOR operations
controlled by the 3D hyper-chaotic Henon map are adopted to modify the color information
of the scrambled image to obtain the ciphertext image. All of the quantum circuits utilized
in the encryption procedure are developed. The main work of this study is summarized
as below.

1. A quantum image-scrambling algorithm is created based on the 3D Mobius transform,
which has a pixel-level scrambling effect and performs better than the quantum
Arnold/Fibonacci transform.

2. A quantum image encryption scheme is suggested by combining quantum 3D Mobius
scrambling with XOR diffusion. The quantum circuits for encryption operation
are designed.

3. To obtain the desired encryption effect, the scrambling and diffusion operations are
controlled by sequences generated by the 3D hyper-chaotic Henon map. The security
of our encryption scheme is enhanced by the randomness and unpredictability of
chaotic sequences.

4. Simulation results and comparative analysis demonstrate that our designed encryp-
tion scheme exhibits significant reliability and security.

The remainder of this paper is structured as follows. In Section 2, we briefly review the
preliminary knowledge. Section 3 describes how to procure a quantum 3D Mobius scrambling
algorithm in detail. The process of encryption and decryption is given in Section 4. Section 5
presents simulation results and comparative analysis. Finally, Section 6 concludes this paper.

2. Preliminaries

2.1. QRCI Image Representation Model

QRCI can represent a RGB color image of size 2n × 2n by using only 2n + 6 qubits [19],
whose storage capacity is 218 times higher than that of NCQI.

Supposing a 2n × 2n RGB color image and each channel takes values within [0, 255],
the corresponding QRCI is expressed as:
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|I⟩ = 1√
22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

|CL(Y, X)⟩ ⊗ |LYX⟩

=
1√

22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

|RLYXGLYXBLYX⟩ ⊗ |LYX⟩
(1)

where RLYX, GLYX, BLYX ∈ {0, 1} represent the values of three channels on the L-th bit-
plane in position (Y, X), respectively. |L⟩ = |L2L1L0⟩ denotes the bit-plane order and

|YX⟩ = |Yn−1Yn−2 . . . Y0⟩|Xn−1Xn−2 . . . X0⟩ denotes the pixel position. The comparative
analysis in reference [19] shows that QRCI requires fewer qubits compared with the other
representation models.

2.2. Quantum Modules

Some basic quantum modules required in our algorithm are introduced in this subsection.
Quantum adder (ADDER) can calculate the sum of two numbers [35]. Its circuit is

exhibited in Figure 1a.
If the black bar is adjusted to the left, Figure 1a will become a quantum subtractor.

Figure 1b shows the corresponding circuit.
In addition, quantum double-output adder (D-ADDER) [36] and quantum multiplier

(MULER) [37] are also exploited in this paper, whose circuits are displayed in Figure 1c and
Figure 1d, respectively.

Quantum comparator (COMOR) is implemented to show the comparison result of
two numbers, i.e., c = 0, when b ≥ a; otherwise, c = 1 [38]. The corresponding circuit is
shown in Figure 1e.

a

b

a

a b

(a)

a

b

a

a b

(b)

a

b a b

a b

(c)

a

b

a

b

a b

(d)

a

b

a

b

c

(e)

Figure 1. Basic quantum modules: (a) adder, (b) subtractor, (c) double-output adder, (d) multiplier,

(e) comparator.

2.3. 3D Hyper-Chaotic Henon Map

The mathematical expression of 3D hyper-chaotic Henon map is:











ui+1 = σ − v2
i − ρwi

vi+1 = ui

wi+1 = vi

(2)

where u, v and w denote three variables, while σ and ρ are two control parameters. When
σ and ρ are 1.99, 0.001, respectively, map (2) exhibits a hyper-chaotic behavior [39]. The
initial values are set to u0 = 0, v0 = 0, and w0 = 0.1. Figures 2 and 3 display the bifurcation
diagram and phase diagram of the 3D hyper-chaotic Henon map, respectively.
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Figure 2. The bifurcation diagram of u-sequence.

Figure 3. The phase diagram of 3D hyper-chaotic Henon map.

As the hyper-chaotic maps have more complicated dynamic behaviors than 1D chaotic
maps, this paper adopts map (2) to create the sequences controlling the encryption op-
erations. The randomness and unpredictability of chaotic sequences will improve the
encryption effect.

3. Three-Dimensional (3D) Mobius Quantum Image-Scrambling Algorithm

3.1. Two-Dimensional (2D) Mobius Transform

The Mobius band is a topological transform in continuous space; that is, the rectangular
band is folded reversely and then the vertices are overlapped in pairs. To apply this
topological transform to image scrambling, the image can be regarded as a rectangular
Mobius band consisting of discrete dot arrays. Suppose the matrix of an image with size
M × N is represented as A =

[

aij

]

M×N
. When the image is folded reversely along the

horizontal direction, the i-th row and the (M + 1 − i)-th row (i = 1, 2, · · · , M) correspond
to each other. Likewise, when the image is folded reversely along the vertical direction,
the j-th column and the (N + 1 − j)-th column (j = 1, 2, · · · , N) correspond to each other.
Pairwise corresponding rows or columns form a circle. By performing shift operation on it,
the image-scrambling model based on the Mobius band can be deduced, where the count
of the cycle shift operation can be regarded as the image-scrambling parameters.

Assuming there are two sequences {r(1), r(2), . . . , r(M)}, {c(1), c(2), . . . , c(N)}, for
∀ i, j, they satisfy r(i) = r(M − i + 1) ∈ {1, 2, . . . , N}, c(j) = c(N − j + 1) ∈ {1, 2, . . . , M};
then, the discrete expression of spatial domain image scrambling based on the 2D Mobius
transform is as shown below.
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For the horizontal direction folding, Sx(i, j) is as:

Sx(i, j) =

{

(M − i + 1, N − r(i) + j), 1 ≤ j ≤ r(i)

(i, j − r(i)), r(i) < j ≤ N
(3)

where r(i) is the shift count of the i-th row.
For the vertical direction folding, Sy(i, j) is as:

Sy(i, j) =

{

(M − c(j) + i, N − j + 1), 1 ≤ i ≤ c(j)

(i − c(j), j), c(j) < i ≤ M
(4)

where c(j) is the shift count of the j-th column.
The scrambled image S(A) can be obatined after the original image A is successively

transformed once by (3) and (4). In order to obtain a better scrambling effect, the scrambling
operation can be performed many times.

The inverse 2D Mobius transform can be realized by executing the following equations:

S−1
y (i, j) =

{

(i + c(j)− M, N − j + 1), M − c(j) < i ≤ M

(i + c(j), j), 1 ≤ i ≤ M − c(j)
(5)

S−1
x (i, j) =

{

(M − i + 1, j + r(i)− N), N − r(i) < j ≤ N

(i, j + r(i)), 1 ≤ j ≤ N − r(i)
(6)

3.2. Three-Dimensional (3D) Mobius Scrambling Algorithm

Two-dimensional (2D) Mobius transform can be expanded to the 3D Mobius transform.

Suppose there is a three-dimensional cube A =
[

aijl

]

W×H×L
. Three matrices [r1(j, l)]H×L,

[r2(i, l)]W×L and [r3(i, j)]W×H are used to control the shift counts, and for ∀ i, j, l, they sat-
isfy r1(j, l) = r1(H − j + 1, L − l + 1) ∈ {1, 2, . . . , W}, r2(i, l) = r2(W − i + 1, L − l + 1) ∈
{1, 2, . . . , H}, r3(i, j) = r3(W − i + 1, H − j + 1) ∈ {1, 2, . . . , L}. The corresponding three
scrambling operations based on the 2D Mobius transform are as follows.

For the x-axis direction folding, the expression of discrete transform Sx(i, j, l) is
as follows:

Sx(i, j, l) =

{

(W − r1(j, l) + i, H − j + 1, L − l + 1), 1 ≤ i ≤ r1(j, l)

(i − r1(j, l), j, l), r1(j, l) < i ≤ W
(7)

where r1(j, l) is the shift count.
For the y-axis direction folding, the expression of discrete transform Sy(i, j, l) is

as follows:

Sy(i, j, l) =

{

(W − i + 1, H − r2(i, l) + j, L − l + 1), 1 ≤ j ≤ r2(i, l)

(i, j − r2(i, l), l), r2(i, l) < j ≤ H
(8)

where r2(i, l) is the shift count.
Likewise, for the z-axis direction folding, the expression of discrete transform Sz(i, j, l)

is as follows:

Sz(i, j, l) =

{

(W − i + 1, H − j + 1, L − r3(i, j) + l), 1 ≤ l ≤ r3(i, j)

(i, j, l − r3(i, j)), r3(i, j) < l ≤ L
(9)

where r3(i, j) is the shift count.
Calculating Equations (7)–(9) in order; then, the result of 3D Mobius scrambling can

be obtained. The scrambling algorithm can be performed as many times as needed.
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The inverse 3D Mobius transform can be realized by executing the following equations
in order:

S−1
z (i, j, l) =

{

(W − i + 1, H − j + 1, l + r3(i, j)− L), L − r3(i, j) < l ≤ L

(i, j, l + r3(i, j)), 1 ≤ l ≤ L − r3(i, j)
(10)

S−1
y (i, j, l) =

{

(W − i + 1, j + r2(i, l)− H, L − l + 1), H − r2(i, l) < j ≤ H

(i, j + r2(i, l), l), 1 ≤ j ≤ H − r2(i, l)
(11)

S−1
x (i, j, l) =

{

(i + r1(j, l)− W, H − j + 1, L − l + 1), W − r1(j, l) < i ≤ W

(i + r1(j, l), j, l), 1 ≤ i ≤ W − r1(j, l)
(12)

3.3. The Quantum Circuit of 3D Mobius Scrambling

In this paper, the QRCI model is adopted, which can be viewed as a 3D image model,
where the three dimensions are the X-axis, Y-axis, and L-axis, respectively. Therefore,
we consider scrambling a QRCI image shown in Equation (1) by using the 3D Mobius
transform. It should be noted that X, Y ∈ [0, 2n − 1] and L ∈

[

0, 23 − 1
]

. Assuming
S = SLSYSX , quantum 3D Mobius scrambling transform Mb can be constructed as follows:

Mb = I⊗3 ⊗ S = I⊗3 ⊗ (SLSYSX) (13)

By performing Mb on the QRCI image |I⟩ , the scrambled image
∣

∣IMb

〉

can be obtained:

∣

∣IMb

〉

= Mb|I⟩

=
(

I⊗3 ⊗ S
) 1√

22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

|CL(Y, X)⟩ ⊗ |LYX⟩

=
1√

22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

|CL(Y, X)⟩ ⊗ SLSYSX(|LYX⟩)

=
1√

22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

|CL(Y, X)⟩ ⊗ |L∗Y∗X∗⟩

(14)

where SX , SY and SL perform the following functions:

∣

∣L′Y′X′〉 = SX |LYX⟩

=







∣

∣

∣
23 − 1 − L

〉

|2n − 1 − Y⟩|2n − U(L, Y) + X⟩, 0 ≤ X < U(L, Y)

|L⟩|Y⟩|X − U(L, Y)⟩, U(L, Y) ≤ X ≤ 2n − 1

(15)

∣

∣L′Y′X′〉 = SY|LYX⟩

=







∣

∣

∣
23 − 1 − L

〉

|2n − V(L, X) + Y⟩|2n − 1 − X⟩, 0 ≤ Y < V(L, X)

|L⟩|Y − V(L, X)⟩|X⟩, V(L, X) ≤ Y ≤ 2n − 1

(16)

∣

∣L′Y′X′〉 = SL|LYX⟩

=







∣

∣

∣
23 − W(Y, X) + L

〉

|2n − 1 − Y⟩|2n − 1 − X⟩, 0 ≤ L < W(Y, X)

|L − W(Y, X)⟩|Y⟩|X⟩, W(Y, X) ≤ L ≤ 23 − 1

(17)

where U(L, Y), V(L, X) and W(Y, X) denote the shift counts of folding along the X-axis, Y-
axis and L-axis, respectively. For ∀X, Y, L, they satisfy U(L, Y) = U

(

23 − 1− L, 2n − 1−Y
)

∈
{0, 1, . . . , 2n − 1}, V(L, X) = V

(

23 − 1 − L, 2n − 1 − X
)

∈ {0, 1, . . . , 2n − 1}, W(Y, X) =
W(2n − 1 − Y, 2n − 1 − X) ∈

{

0, 1, . . . , 23 − 1
}

.
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According to Equation (13), the quantum 3D Mobius scrambling algorithm can be
implemented by three sub-operations, i.e., SX , SY and SL. For the sub-operation SX , it can
be implemented as follows. First, the subfunction, when 0 ≤ X < U(L, Y), is implemented:

P|LYX⟩ =
∣

∣

∣
23 − 1 − L

〉

|2n − 1 − Y⟩|2n − U(L, Y) + X⟩ (18)

After that, the result obtained from Equation (18) is transformed by the following
formula:

Q|LYX⟩ =
∣

∣

∣
23 − 1 − L

〉

|2n − 1 − Y⟩|X − 2n⟩ (19)

As a result, the composite of P and Q is equivalent to the subfunction when U(L, Y) ≤
X ≤ 2n − 1:

QP|LYX⟩ = |L⟩|Y⟩|X − U(L, Y)⟩ (20)

By using some basic quantum modules, Figure 4a shows the circuit of SX . Similarly,
Figure 4b,c shows the circuits of SY and SL, respectively.

L

n

Y

X
n

L

Y

X

L

Y

X
X
S Y

X

L

U L Y

U L Y

n

(a)

n

n

Y

X

L

Y
S

L

Y

X

V L X

L

Y

X

V L X

L

Y

X

n

(b)

n

L
S

n

W Y X

L

Y

X

L

Y

X

L

Y

X

W Y X

L

Y

X

(c)

Figure 4. Elementary quantum circuits: (a) SX . (b) SY . (c) SL.

Above all, the whole quantum circuit of 3D Mobius scrambling is shown in Figure 5.
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L

Y

X

L

Y

X
X
S

Y
S

L
S

L

Y

X

L

Y

X

U L Y

V L X

W Y X

U L Y

V L X

W Y X

Figure 5. Quantum circuit for 3D Mobius scrambling transform.

Inverse 3D Mobius scrambling is needed to recover the original image. Suppos-
ing S−1 = S−1

X S−1
Y S−1

L , quantum inverse 3D Mobius scrambling transform M−1
b can be

constructed as:
M−1

b = I⊗3 ⊗ S−1 = I⊗3 ⊗
(

S−1
X S−1

Y S−1
L

)

(21)

Through applying the transform M−1
b to

∣

∣IMb

〉

, the original QRCI image can be gained:

|I⟩ = M−1
b

∣

∣IMb

〉

=
(

I⊗3 ⊗ S−1
) 1√

22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

|CL(Y, X)⟩ ⊗ |L∗Y∗X∗⟩

=
1√

22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

|CL(Y, X)⟩ ⊗ S−1
X S−1

Y S−1
L (|L∗Y∗X∗⟩)

=
1√

22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

|CL(Y, X)⟩ ⊗ |LYX⟩

(22)

where S−1
L , S−1

Y and S−1
X perform the following functions:

∣

∣L′Y′X′〉 = S−1
L |LYX⟩

=







∣

∣

∣
L + W(Y, X)− 23

〉

|2n − 1 − Y⟩|2n − 1 − X⟩, 23 − W(Y, X) ≤ L ≤ 23 − 1

|L + W(Y, X)⟩|Y⟩|X⟩, 0 ≤ L < 23 − W(Y, X)

(23)

∣

∣L′Y′X′〉 = S−1
Y |LYX⟩

=







∣

∣

∣
23 − 1 − L

〉

|Y + V(L, X)− 2n⟩|2n − 1 − X⟩, 2n − V(L, X) ≤ Y ≤ 2n − 1

|L⟩|Y + V(L, X)⟩|X⟩, 0 ≤ Y < 2n − V(L, X)

(24)

∣

∣L′Y′X′〉 = S−1
X |LYX⟩

=







∣

∣

∣
23 − 1 − L

〉

|2n − 1 − Y⟩|X + U(L, Y)− 2n⟩, 2n − U(L, Y) ≤ X ≤ 2n − 1

|L⟩|Y⟩|X + U(L, Y)⟩, 0 ≤ X < 2n − U(L, Y)

(25)

For the sub-operation S−1
L , it can be implemented in two steps. The first step is to

implement the subfunction when 0 ≤ L < 23 − W(Y, X):

P′|LYX⟩ = |L + W(Y, X)⟩|Y⟩|X⟩ (26)

The second step is to modify the produced result by utilizing the following formula:

Q′|LYX⟩ =
∣

∣

∣
L − 23

〉

|2n − 1 − Y⟩|2n − 1 − X⟩ (27)
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Therefore, when 23 −W(Y, X) ≤ L ≤ 23 − 1, the corresponding subfunction is equiva-
lent to the composite of P′ and Q′ as below:

Q′P′|LYX⟩ =
∣

∣

∣
L + W(Y, X)− 23

〉

|2n − 1 − Y⟩|2n − 1 − X⟩ (28)

The quantum circuit of sub-operation S−1
L is depicted in Figure 6a. In the same way,

the quantum circuits of S−1
Y and S−1

X are depicted in Figure 6b,c.
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Figure 6. Elementary quantum circuits: (a) S−1
L . (b) S−1

Y . (c) S−1
X .

The whole circuit for quantum inverse 3D Mobius scrambling transform is shown in
Figure 7.
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X
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Figure 7. Quantum circuit for inverse 3D Mobius transform.
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3.4. Scrambling Result and Anti-Attack Ability Analysis

To verify the scrambling result of the 3D Mobius transform, a 256 × 256 color image of
peppers shown in Figure 8a is used for testing. Three matrices that control the shift counts
are randomly selected. The scrambled image after applying the 3D Mobius transform one
time is shown in Figure 8b. It demonstrates that the 3D Mobius scrambling transform is
effective and can visually hide the information about the image.

(a) (b)

Figure 8. Scrambling results: (a) Peppers, (b) scrambled Peppers.

The histogram distributions are displayed in Figure 9. Figure 10a,b show the scram-
bled images after 100 iterations of the Arnold and Fibonacci transforms, respectively. The
corresponding RGB histograms are displayed in Figure 11. The 3D Mobius scrambling
transform differs from the Arnold/Fibonacci transform in that it changes both the position
of pixels and the distribution of gray values in the histogram. This is because it simulta-
neously scrambles bit-planes and pixel positions. As a result, the 3D Mobius scrambling
transform alters the statistical properties of the original image to a significant extent.
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(c)
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(f)

Figure 9. Histograms: (a) R channel of Peppers. (b) G channel of Peppers. (c) B channel of Peppers. (d) R

channel of scrambled Peppers. (e) G channel of scrambled Peppers. (f) B channel of scrambled Peppers.

(a) (b)

Figure 10. Scrambling results of Arnold/Fibonacci transform: (a) Arnold. (b) Fibonacci.
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Figure 11. Histograms of using Arnold/Fibonacci transform: (a) R channel. (b) G channel. (c) B channel.

To further estimate the scrambling performance of the 3D Mobius transform, the
correlation of adjacent pixels is considered. The formula for calculating the coefficient used
to evaluate this correlation is:

CC =

H

∑
i=1

(xi − x)(yi − y)

√

H

∑
i=1

(xi − x)2
H

∑
i=1

(yi − y)2

(29)

where xi and yi denote two neighboring pixel values. x = 1
H ∑

H
i=1 xi and y = 1

H ∑
H
i=1 yi

are the expectation values. The CC values of Peppers in horizontal, vertical, and diagonal
directions are listed in Table 1. It is shown that the correlation of adjacent pixels has been
significantly reduced.

Table 1. Adjacent pixel correlation coefficient.

Peppers
Original Scrambled

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

R 0.9704 0.9646 0.9400 0.0114 0.0103 0.0119
G 0.9740 0.9698 0.9470 −0.0091 0.0062 −0.0077
B 0.9645 0.9534 0.9261 0.0046 0.0065 0.0068

Hou et al. proposed a quantum image-scrambling algorithm based on a discrete Baker
map, which could be implemented by swapping qubits [34]. The CC values of scrambled
Peppers derived from the Baker map are compiled in Table 2. The results show that the
correlation between adjacent pixels decreases with the increase in scrambling times. After
16 times of scrambling, the adjacent pixels are almost no longer correlated. It can be seen
from Tables 1 and 2 that the 3D Mobius scrambling could weaken the correlation better
since it has more scrambling parameters.

Table 2. Adjacent pixel correlation coefficient of scrambled Peppers in [34].

Scrambled Peppers Horizontal Vertical Diagonal

1 time 0.9704 0.8369 0.7654
3 times 0.6275 0.2013 0.0708
16 times 0.0724 0.0724 0.0176
96 times 0.0285 0.0170 0.0129

If the scrambling algorithm is open, assume that the attackers do not know the key
matrices and make a brute-force attack. Since U(L, Y) ∈ [0, 2n − 1], V(L, X) ∈ [0, 2n − 1],
W(Y, X) ∈

[

0, 23 − 1
]

, in the 3D Mobius transform, for each row transform in the X-

axis direction, the probability of cracking success is 1
2n . Therefore, for the entire X-axis

direction; the probability of cracking success is 2n−2n×23
. The coupling of the X-axis, Y-axis,

and Z-axis makes it even more difficult to crack, the probability of cracking success is
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2n−2n×23
2n−2n×23

23−2n×2n

. Thus, the 3D Mobius transform has a relatively good resistance
to brute-force attacks.

Consequently, the quantum 3D Mobius scrambling is employed as an encryption
means in the encryption scheme to be raised below.

4. Encryption and Decryption Scheme

4.1. Encryption Scheme

Combining 3D Mobius scrambling with the 3D hyper-chaotic Henon map, our pro-
posed quantum image encryption scheme includes five steps. Figure 12 exhibits the
encryption procedure.

u ,v ,w , ,

I

E

E

u v w

Figure 12. The encryption procedure.

Input: A classical RGB color image with size 2n × 2n.
Keys: Two sets of initial values, u0, v0, w0, u′

0, v′0, w′
0 and two control parameters σ, ρ.

Output: The final ciphertext image |E⟩.
Step 1. The original RGB color image is represented with QRCI as follows:

|I⟩ = 1√
22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

|RLYXGLYXBLYX⟩ ⊗ |LYX⟩ (30)

Step 2. This step generates three matrices that control the quantum 3D Mobius
scrambling transform.

According to Equation (2), six computation modules are required for each iteration of
the 3D hyper-chaotic Henon map, and the circuit is presented in Figure 13.

i
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Figure 13. Quantum circuit for implementing one iteration.

By utilizing the complete circuit shown in Figure 14, Equation (2) is iterated 2n×2n

2 + k
times with the first set of initial values u0, v0, and w0, where k is a positive integer. In



Entropy 2023, 25, 1629 13 of 25

general, k = 2 × 104. The sequences are taken from the k + 1 iteration, since the ran-
domness of the beginning part may not be good enough. The constructed sequences
{

uk+1, uk+2, · · · , uk+22n−1

}

,
{

vk+1, vk+2, · · · , vk+22n−1

}

and
{

wk+1, wk+2, · · · , wk+22n−1

}

can-
not be used directly. They are transformed into integer sequences as shown below:























Ui = f loor
(

ui+k+1 × 1014
)

mod 2n

Vi = f loor
(

vi+k+1 × 1014
)

mod 2n

Wj = f loor
(

wj+k+1 × 1014
)

mod 23

(31)

where i = 0, 1, · · · , 23×2n

2 − 1, j = 0, 1, · · · , 2n×2n

2 − 1.
Then, the three integer sequences are extended to [U(L, Y)]23×2n , [V(L, X)]23×2n ,

[W(Y, X)]2n×2n , and for ∀ X, Y, L, they satisfy U(L, Y) = U
(

23 − 1 − L, 2n − 1 − Y
)

∈
{0, 1, . . . , 2n − 1}, V(L, X) = V

(

23 − 1 − L, 2n − 1 − X
)

∈ {0, 1, . . . , 2n − 1}, W(Y, X) =
W(2n − 1 − Y, 2n − 1 − X) ∈

{

0, 1, . . . , 23 − 1
}

. The obtained integer matrices will be used
to control the shift counts.

u

v

w

u

v

w

v

w

u

Figure 14. The complete quantum circuit for 3D hyper-chaotic Henon map.

Step 3. By using the obtained three matrices and the quantum 3D Mobius scrambling
transform Mb designed in Section 3.3, the scrambled image |E′⟩ will be produced after
carrying out the 3D Mobius transform on original image |I⟩:

∣

∣E′〉 = Mb|I⟩

=
(

I⊗3 ⊗ S
) 1√

22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

|RLYXGLYXBLYX⟩ ⊗ |LYX⟩

=
1√

22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

|RLYXGLYXBLYX⟩ ⊗ S(|LYX⟩)

=
1√

22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

|RLYXGLYXBLYX⟩ ⊗ |L∗Y∗X∗⟩

(32)

where |L∗⟩, |Y∗⟩, and |X∗⟩ can be obtained by calculating Equations (15)–(17) in order.
Different from some classical two-dimensional scrambling transforms, for instance,

Arnold/Fibonacci transform [32], 3D Mobius scrambling transform not only disrupts
the pixel positions but also disrupts the order of bit-planes. Hence, after the image is
transformed, the distribution of its pixel values will be changed, which can improve
the security of the cryptosystem. Moreover, the randomness and unpredictability of the
parameters in three matrices will make it much harder to decipher the 3D Mobius transform.

Step 4. In this step, we exploit the 3D hyper-chaotic Henon map to construct sequences
controlling quantum XOR operations. Similar to step 2, the map shown in Equation (2) is
iterated 2n × 2n + k times with the second set of initial values u′

0, v′0, and w′
0. Three chaotic se-
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quences
{

u′
k+1, u′

k+2, · · · , u′
k+22n

}

,
{

v′k+1, v′k+2, · · · , v′
k+22n

}

and
{

w′
k+1, w′

k+2, · · · , w′
k+22n

}

can be generated. Then, they are calculated as shown below:























U′
i = f loor

(

u′
i+k+1 × 1014

)

mod 28

V′
i = f loor

(

v′i+k+1 × 1014
)

mod 28

W ′
i = f loor

(

w′
i+k+1 × 1014

)

mod 28

(33)

where i = 0, 1, · · · , 22n − 1, U′
i , andV′

i , W ′
i ∈ {0, 1, · · · , 255}.

After that,
{

U′
i

}

,
{

V′
i

}

,
{

W ′
i

}

are stored as an RGB color key image |K⟩. The QRCI
representation of |K⟩ is as follows:

|K⟩ = 1√
22n+3

23−1

∑
L=0

2n−1

∑
Y=0

2n−1

∑
X=0

∣

∣U′
LYXV′

LYXW ′
LYX

〉

⊗ |LYX⟩ (34)

Step 5. To further prevent the extraction of original data by unauthorized persons,
quantum XOR operations are implemented between the scrambled image |E′⟩ and the key
image |K⟩ pixel by pixel, and the final encrypted image |E⟩ will be obtained.

Of course, in order to implement the XOR operation, it should be noted that the
positions and bit-planes of |E′⟩ must be equal to that of |K⟩. The quantum circuit to
synchronize the positions and bit-planes is given in Figure 15, and they are equal when
output |e⟩ = |1⟩.
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Y

Y
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X
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Y
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e

L

L

L
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Figure 15. Quantum circuit for synchronizing positions and bit-planes.

The circuit implementing quantum XOR operations is given in Figure 16, in which the
output is the final ciphertext image |E⟩.
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Figure 16. Quantum circuit to implement XOR operation.

4.2. Decryption Scheme

The specific decryption steps are described as below.
Step 1. Taking advantage of correct keys u′

0, v′0, andw′
0, three hyper-chaotic integer

sequences
{

U′
0, U′

1, · · · , U′
22n−1

}

,
{

V′
0, V′

1, · · · , V′
22n−1

}

and
{

W ′
0, W ′

1, · · · , W ′
22n−1

}

could

be obtained with Step 4 in the encryption process. They are stored in a key image |K⟩ based
on QRCI representation.

Step 2. The received ciphertext image |E⟩ is XORed with |K⟩ to obtain the scrambled
image |E′⟩.

Step 3. According to Step 2 in the encryption process, three hyper-chaotic integer
matrices [U(L, Y)]23×2n , [V(L, X)]23×2n and [W(Y, X)]2n×2n which control the shift counts
can be constructed.

Step 4. Using the produced three control matrices, the decrypted quantum image
represented with the QRCI model can be obtained by executing the inverse quantum 3D
Mobius scrambling transform on |E′⟩.

Step 5. The classical image is recovered with quantum measurements. Since QRCI
representation stores an image as the superposition of qubit basic states, the classical image
can be accurately recovered. In reference [40], the measurement of recovering classical
information from the QRCI quantum state was given exhaustively. No detailed explanation
of it will be given in this article.

5. Numerical Simulation and Comparative Analysis

The simulations are conducted on a classical computer due to the lack of quantum
devices. The selected test images are four 256 × 256 RGB color images, i.e., Lena, Baboon,
Splash, and House. According to Equation (2), the map will exhibit a hyper-chaotic behavior
when σ and ρ are 1.99 and 0.001, respectively. The initial values are set as u0 = 1, v0 = 0.1,
w0 = 0 and u′

0 = 1, v′0 = 1, w′
0 = 1.

5.1. Visual Effects

Figure 17 shows the simulation results of encryption and decryption. Therein, the
four subgraphs in the first row are original images, while the middle row and the last row
are encrypted images and decrypted images with correct keys, respectively. Obviously, no
meaningful information can be identified from the encrypted images. This verifies that our
encryption technique can provide visual protection for the original image.
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Figure 17. Simulation results.

5.2. Histogram Analysis

The information characteristics of an image can be intuitively reflected by histograms.
For a satisfactory ciphertext image, its pixel values must be uniformly distributed [41]. In
our proposed encryption scheme, the combination of scrambling and diffusion operations
enables a uniform distribution of pixel values from 0 to 255. Lena and Baboon are chosen
as test images, and the histogram distributions of RGB three channels are illustrated in
Figure 18 and Figure 19, respectively. It manifests that the original image has an uneven
histogram distribution, while the histogram of the encrypted image obtained by our scheme
becomes uniform.

Therefore, the attacker could not obtain the original image by analyzing the histogram
distribution.

Figure 18. Histograms of Lena.
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Figure 19. Histograms of Baboon.

The histogram variance [30] which can quantitatively measure the degree of change in
pixel distribution is defined as follows:

HV =

255

∑
i=0

255

∑
j=0

1
2

(

γi − γj

)2

2562
(35)

where γi and γj are the number of pixels with grayscale values of i and j, respectively.
Table 3 lists the computed variance values. Compared with the original images, the HV
values of encrypted images are much lower, which is observed in Table 3. Hence, our image
encryption method is resistant to statistical attacks based on histogram variance analysis.

Table 3. Results of HV values.

Image
Original Encrypted

R G B R G B

Lena 2.6138 × 104 6.4845 × 104 9.1647 × 104 238.2891 254.7422 261.3984

Baboon 2.8890 × 104 4.2994 × 104 2.6968 × 104 278.2109 241.6875 265.4297

Splash 1.5125 × 105 1.7515 × 105 3.9784 × 105 240.6875 266.0469 255.7109

House 4.8896 × 104 8.2361 × 104 6.2631 × 104 236.0391 228.6563 279.2969

5.3. Encryption Quality Analysis

(1) Uniform histogram deviation

Uniform histogram deviation (UHD) is commonly used to estimate image cryptosys-
tem encryption quality [42]. UHD is calculated as follows:

UHD =

255

∑
δ=0

|O − Oδ|

M × N
(36)

where M × N is the size of the image. The histogram of the ciphertext image under index
δ is represented by Oδ and O is a uniform histogram. A smaller UHD value indicates a
higher encryption quality. The UHD values of the ciphertext images are compiled in Table 4.
Apparently, the UHD values of four encrypted images are all close to 0. Therefore, our
proposed scheme exhibits acceptable encryption quality.



Entropy 2023, 25, 1629 18 of 25

(2) Irregular deviation

Irregular deviation (ID) is also frequently introduced to evaluate the quality of en-
crypted images [42].

ID =
255

∑
δ=0

∣

∣Rδ − R
∣

∣ (37)

where Rδ refers to the absolute histogram difference between the initial image and its
encrypted version, R = 1/256 ∑

255
δ=0 Rδ. The larger the ID value, the higher the quality of

the encrypted image. The ID values in Table 4 are all sufficiently large, indicating that our
scheme can produce high-quality encrypted images.

(3) Maximum deviation

The maximum deviation (MD) [42] is adopted for describing the extreme error between
the original image and its ciphertext. MD can be expressed as shown below:

MD = max|P(i, j)− C(i, j)| (38)

where P(i, j) and C(i, j) denote the pixel values in the original image and its correspond-
ing encrypted one, respectively. As the MD value increases, the encryption quality also
improves. From the results in Table 4, it can be seen that the MD values are very large.
Therefore, the encryption quality of our scheme is acceptable.

Table 4. Results of UHD, ID, and MD values.

Encrypted Image R G B

Lena
UHD 0.0508 0.0391 0.0859

ID 19843 22798 32022
MD 253 249 254

Baboon
UHD 0.0156 0.0547 0.0469

ID 17562 11876 18396
MD 250 233 249

Splash
UHD 0.0391 0.0547 0.0352

ID 35399 40164 66062
MD 240 255 240

House
UHD 0.0820 0.0742 0.0313

ID 25663 27041 32412
MD 233 243 246

5.4. Correlation Analysis

A good encryption technique should break the correlation between neighboring pix-
els [43]. In the suggested encryption scheme, the 3D Mobius scrambling transform possesses
the capacity to weaken the correlation coefficient among adjacent pixels. The R channel of
Lena is selected for testing, and 10,000 pairs of neighboring pixels are randomly chosen in
all three directions. Figure 20 represents the correlation distribution results. Therein, the
three subgraphs in the first row show the correlations of Lena horizontally, vertically, and di-
agonally, respectively, and those of the encrypted Lena are shown in the three subgraphs in
the second row. The ciphertext image has a uniform pixel distribution, which demonstrates
that the proposed encryption technique considerably decreases the correlation.

The data in Table 5 reflect the specific CC values. The CC values of encrypted images
are minimized to be close to 0, meaning attackers cannot crack our algorithm relying on
correlation analysis.
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Figure 20. The correlation distributions.

Table 5. Results of CC values.

Image
Horizontal Vertical Diagonal

Original Encrypted Original Encrypted Original Encrypted

Lena (R) 0.9718 0.0043 0.9668 −0.0026 0.9343 0.0017
Lena (G) 0.9644 0.0041 0.9534 0.0055 0.9139 0.0041
Lena (B) 0.9538 −0.0018 0.9490 −0.0025 0.9113 −0.0043
Baboon (R) 0.9270 −0.0031 0.9462 −0.0038 0.9117 0.0011
Baboon (G) 0.8450 −0.0036 0.8689 −0.0011 0.7952 0.0023
Baboon (B) 0.9113 0.0029 0.9207 0.0012 0.8709 0.0068
Splash (R) 0.9971 −0.0021 0.9861 0.0019 0.9857 −0.0051
Splash (G) 0.9805 0.0049 0.9690 0.0041 0.9516 0.0052
Splash (B) 0.9719 −0.0056 0.9675 −0.0036 0.9485 0.0012
House (R) 0.9354 0.0034 0.9369 −0.0040 0.8811 0.0033
House (G) 0.9300 0.0013 0.9164 −0.0019 0.8575 0.0018
House (B) 0.9586 0.0050 0.9608 0.0049 0.9138 0.0052

5.5. Information Entropy

A crucial metric for assessing the randomness of ciphertext images is information
entropy. Mathematically, it is calculated as shown below:

IE = −
255

∑
i=0

P(i)log2P(i) (39)

where P(i) denotes the appearance frequency of gray value i. In general, the perfect IE
value is 8. The utilization of 3D Mobius scrambling and XOR coding controlled by chaotic
sequences can significantly improve the randomness of encrypted images. The precise IE
values of original and encrypted images are provided in Table 6. From the results, the IE
values of encrypted images are all approximate to 8. Therefore, our encryption method can
effectively resist entropy attacks.

Table 6. Results of IE values.

Image
Original Encrypted

R G B R G B

Lena 7.6353 7.2778 7.0656 7.9974 7.9972 7.9971
Baboon 7.6058 7.3581 7.6665 7.9970 7.9973 7.9971
Splash 6.9417 6.9045 6.0601 7.9974 7.9971 7.9972
House 7.4025 7.2317 7.4280 7.9974 7.9975 7.9969
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5.6. Spectrum Analysis

The Fourier spectrums of Lena are visualized in Figure 21, in which the three subgraphs
in the first row show the spectral distributions of RGB channels of the original Lena, and
those of encrypted Lena are displayed in the three subgraphs in the second row. It is evident
that the spectrums of ciphertext images have a uniform distribution. In the meantime, the
spectrum of each channel is similar to each other. Thus, our proposed encryption technique
can stand up to spectrum attacks.

Figure 21. The spectrum distributions.

5.7. Key Sensitivity and Key Space

In this study, all of the scrambling and diffusion operations are controlled by sequences
generated by the 3D hyper-chaotic Henon map. Two control parameters and two sets of initial
values for this map, i.e., σ, ρ, u0, v0, w0, and u′

0, v′0, w′
0 are taken as encryption keys. Since

the chaotic systems are particularly sensitive to the initial values, the presented cryptosystem
achieves a strong key sensitivity. The Lena image is opted for testing the sensitivity of respective
keys. Figure 22 gives the results decrypted by using keys with a subtle change.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 22. Decrypted images with incorrect keys: (a) σ + 10−15. (b) ρ + 10−18. (c) u0 + 10−15.

(d) v0 + 10−15. (e) w0 + 10−12. (f) u′
0 + 10−15. (g) v′0 + 10−15. (h) w′

0 + 10−13.

Visibly, noise-like images would be obtained with incorrect keys. Therefore, the
decrypted image is available only if all the keys are correct, which indicates this scheme is
sensitive to the keys.
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In accordance with the sensitivity experiments described above, the total key space is
up to 10118, which is about equal to 2392. Therefore, the brute-force attack does not work on
deciphering our encryption scheme.

5.8. Noise Attack and Cutting Attack

Suppose a ciphertext image is contaminated with noise:

E′ = E + sG (40)

where E and E′ represent ciphertext images before and after contamination, respectively.
G is Gaussian noise with zero mean and standard deviation, and s is the noise strength.
The ciphertext image of Lena is used for testing, Figure 23 depicts the corresponding
decrypted results when s takes the value of 0.25, 0.5, 0.75, and 1. The results indicate that
our encryption algorithm is somewhat robust to noise attacks.

(a) (b) (c) (d)

Figure 23. Decrypted images with various noise intensities: (a) 0.25. (b) 0.5. (c) 0.75. (d) 1.

To test the performance of our scheme to combat cutting attacks, regions of different
sizes are cut from the encrypted Baboon. Figure 24 presents the corresponding decrypted
versions. As can be seen, although some details are broken, the primary information is still
available. The simulation results allow us to make clear that our proposed algorithm could
resist cutting attacks to some degree.

Figure 24. The cutting attack results.

5.9. Computational Complexity

The proposed quantum image encryption scheme’s computational complexity is
primarily related to the quantum 3D Mobius scrambling transform and quantum XOR
operation. The quantum 3D Mobius scrambling transform is made up of basic quantum
modules, including ADDER, D-ADDER, MULER, and COMOR. The complexity of each
module can be reduced to O(n), as stated by [36,38]. Therefore, the computational com-
plexity of the quantum 3D Mobius scrambling transform is O(n). In Figures 15 and 16,
there are (2n + 3) CNOT gates, one (2n + 3)-CNOT gate and three Toffoli gates. Since
one t-CNOT gate can be decomposed into 2(t − 1) Toffoli gates and one CNOT gate, one
Toffoli gate can be realized by six CNOT gates [44]. Thus, the quantum XOR operation
involves (26n + 46) CNOT gates. Consequently, the whole computational complexity of
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our proposed encryption scheme is O(n). While in the similar classical image encryption al-
gorithm, all operations are performed on each pixel, so that the complexity is up to O

(

22n
)

.
It is clear that the proposed quantum image encryption scheme has lower computational
complexity than its classical counterparts.

5.10. Performance Comparison

This subsection compares our encryption scheme with some latest quantum image
encryption algorithms [29,40,45,46]. The comparison contents include the key space, his-
togram variance, correlation coefficient, and information entropy. Tables 7–10 summarize
the comparison results.

Table 7. Key space comparison.

Algorithm Ours Ref. [29] Ref. [40] Ref. [45] Ref. [46]

Key space 10118 ≈ 2392 1083 2177 10112 1060

Table 8. Histogram variance comparison.

Image Red Green Blue

Baboon (512 × 512) 4.8324 × 105 7.0917 × 105 4.5314 × 105

Enc-Baboon 931.3 907.2 1175.6
Ref. [29] 1333.1
Ref. [45] 1130.8
Splash (512 × 512) 2.4061 × 106 2.7794 × 106 6.3912 × 106

Enc-Splash 1038.7 1048.6 1049.4
Ref. [29] 1164.3
Peppers (512 × 512) 9.1085 × 105 7.6877 × 105 1.6001 × 106

Enc-Peppers 1142.2 1031.8 950.3
Ref. [45] 4155.3

Lena (256 × 256) 2.6138 × 104 6.4845 × 104 9.1647 × 104

Enc-Lena 238.3 254.7 261.4
Ref. [40] 242.8 262.1 284.9
Ref. [45] 273.3

Table 9. Correlation coefficient comparison.

Image Horizontal Vertical Diagonal

Enc-Peppers (R) 0.0044 −0.0033 0.0026
Enc-Peppers (G) 0.0021 −0.0002 0.0036
Enc-Peppers (B) 0.0048 0.0022 −0.0019
Ref. [29] −0.0067 −0.0038 0.0063
Ref. [46] −0.0036 −0.0539 0.0455
Enc-Lena (R) 0.0043 −0.0026 0.0017
Enc-Lena (G) 0.0041 0.0055 0.0041
Enc-Lena (B) −0.0018 −0.0025 −0.0043
Ref. [40] (R) 0.0029 −0.0033 0.0019
Ref. [40] (G) −0.0025 −0.0059 0.0013
Ref. [40] (B) −0.0063 0.0046 −0.0036
Ref. [45] (R) −0.0006 −0.0049 0.0070
Ref. [45] (G) 0.0025 −0.0051 0.0020
Ref. [45] (B) 0.0046 0.0019 0.0047
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Table 10. Information entropy comparison.

Image Red Green Blue

Enc-Baboon 7.9970 7.9973 7.9971
Ref. [29] 7.9991
Ref. [40] 7.9993 7.9993 7.9993
Ref. [45] 7.9972 7.9969 7.9971
Enc-Peppers 7.9972 7.9972 7.9968
Ref. [45] 7.9970 7.9965 7.9962
Ref. [46] 7.9973

In Table 7, the key space of our scheme is much larger than those of [29,40,45,46] and
greatly exceeds the minimal limit of 2100. Thus, our proposed scheme has a significant
advantage. It is hard for attackers to decipher the encrypted images by brute-force attack
unless they have entirely correct keys. As can be observed from Table 8, the histogram
variance values of the encrypted images generated with our proposed scheme are smaller
than those in [29,40,45], which illustrates the superior performance of our image encryption
scheme. Table 9 presents the comparison concerning the correlation coefficient. Obviously,
the correlation coefficients of the encrypted images yielded by our proposed scheme reach
0 more tightly than those in [29,46], and they are close to the values in [40,45], which
implies that our encryption operations greatly weaken the correlation among adjacent
pixels. From Table 10, the information entropies with our encryption scheme are near to
the values in [45,46], while they are smaller than the values in [29,40]. Nonetheless, the
information entropy values obtained using our scheme are already very approximate to the
ideal value of 8 bits. Hence, the proposed image encryption scheme can effectively thwart
the information entropy attack. Overall, the above performance comparisons confirm the
effectiveness and merits of the proposed quantum image encryption scheme.

6. Conclusions

In this paper, a quantum image-scrambling algorithm based on the 3D Mobius trans-
form is investigated and its quantum realization circuit is developed, which changes not
only the position of pixels but also the gray values. After that, by combining 3D Mobius
scrambling with a 3D hyper-chaotic Henon map, an encryption scheme for a QRCI quan-
tum image is proposed. In the permutation stage, the 3D Mobius transform is adopted
to scramble bit-planes and pixel positions. In the diffusion stage, the 3D hyper-chaotic
Henon map is employed to further improve the scheme’s performance, and the generated
hyper-chaotic sequences are utilized to control quantum XOR operations. The 3D Mobius
transform has more parameters such as the shift counts for folding along different axes
than the Arnold/Fibonacci transform. The introduction of a 3D hyper-chaotic Henon map
improves our encryption scheme greatly in terms of randomness and unpredictability.
This ensures our scheme has good security. Additionally, the entire image encryption
process could be implemented in quantum computers, thereby breaking the limitations
of classical computers. Simulation results and comparative analysis show the validity
and reliability of our proposed encryption scheme. In the future, we hope to define a
scrambling operation with better results than the 3D Mobius transform and apply it to
quantum image encryption.
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