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Mapping techniques appear to be attractive for the long-term prediction of particle motion in
accelerators. Here we apply such methods to an exactly solveable example, the simple pendulum, and
show that a numerical Interpolation map predicts the evolution more accurately than an analytically
derived differential map of the same order. Even so, in the presence of appreciable nonlinearity, the
impracticality of achieving accurate prediction beyond some hundreds of cycles of oscillation is shown.
These results may suggest that caution be used in claims of accuracy· for predictions of long-term
stability in the admittedly different situation in an accelerator.

1. INTRODUCTION

Linear maps have long been basic to accelerator theory. Accelerator lattice
descriptions may be complicated and special, and a linear map (Le., transfer
matrix) represents an elegant distillation of this complexity.

In an attempt to study the reliability of nonlinear mapping techniques, we
examined the case of a nonlinear mechanical system, the simple pendulum (for
which the exact solution is known), using various mapping techniques. This
system forms a rather faithful analog for longitudinal oscillation of particles in an
accelerator but is admittedly not a good model for transverse motion.

Investigated were differential maps, difference maps, and interpolated maps.
Differential maps are Taylor-series expansions of the exact map; the coefficients
are assumed to be obtainable exactly by analytic formulas. Difference maps are
the same, but the coefficients are obtained by numerical differentiation. Interpo­
lated maps are obtained by interpolating exact maps.

Sophisticated methods have been applied to the problem of finding differential
maps for complicated lattices, and elegant results have been obtained. Examples
are MARYLIE,l developed by Dragt and others, and the more-powerful
methods of Forest.2 Also, the differential algebra methods of Berz3 have been
used to obtain high-order maps that have been shown to be correct by
comparison with exact solutions evaluated to the same order. 4 With the
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accelerator tracking program TEAPOT5 (which uses exact analytical propagation
formulas and does not regularly use transfer matrices or any other kind of map
for particle tracking) difference maps can be obtained numerically for compli­
cated lattices.

In what follows the performance of these three types of map for long-term
prediction of pendulum motion was compared.

2. MATHEMATICAL FORMULATION AND EXACT SOLUTION

The system analysed is shown in the diagram. The maximum swing angle is a',

and the instantaneous angle is 8. The gravity constant g, pendulum length I, and
mass m are set equal to 1.

,/---,.,..".,

The kinetic energy is given by T = iJ2/2, and the potential energy is given by
V = 2 sin2 8/2. Using standard notation,6 the total energy E is expressed in terms
of a parameter k so that

(1)

After the change of variable sin 8/2 = k sin cj>, the equation of motion is
transformed to

(2)

(3)

The solution of this equation is

ItP dcj>
u = 0 VI - k 2 sin2 cj> ,

where the symbol u is used for time to conform to standard notation of elliptic
functions. 6 The particular elliptic functions used are sn u, cn u, and dn u. The
solution of Eq. (3) is

sn u = sin 4>,
or, in terms of the original variable,

8 = 2 sin-1 (k sn u).

In our units, the small amplitude motion is periodic in u with period 2n.

(4)

(5)
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To make the mapping as simple as possible, we use the variables:

x = VV1E = k -1 sin (J12
p =VTIE.

3

(6)

Combining the energy conservation equation

V + T = E or x2+ p2 = 1 (7)

with the identity sn2 u + cn2 u = 1, it follows that the system point (x, p) in phase
space is restricted to the unit circle. We take the pendulum to be swinging
through the origin at u = 0; with this initial condition,

x=snu

p =cnu.
(8)

(9)

To obtain the relationship of these coordinates to canonical coordinates, the
Lagrangean is written in terms of x and x,

2k2 •2
_ X -2k22

L -1- k 2x 2 x .

The momentum conjugate to x is

aL 4k2x
Px= ax =1-k2x 2 '

and the Hamiltonian is

(10)

H = 2k2x2+ p;(1 - k 2x2)/(8k2). (11)

Finally then, the relationship of the variable p to the canonical variable Px is

p =PxVI - k 2x21(4k2). (12)

3. THE EXACT TRANSFER MAP

When the time evolves from u to u + v, substitution into Eq. (8) shows that the
phase space point moves as

(;) = e::)-(;:) = e:~:: ~~). (13)

Using "addition formulas",' valid for elliptic functions, we can express evolution
by the exact nonlinear mapping

(X) ( en u dn v sn v(1 - k
2X2)1/2) (X) 1

P: = - so u do v(1 - k 2x2 )112 co V P 1 - ex2 S02 v (14)

To predict the long-term motion of the pendulum this map could be iterated,
but of course it is simpler just to use Eq. (8). When we attempt to track
accurately over, for example, 1010 cycles we seem to face the task of evaluating
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expressions such as sn 1010
• In fact, since whole cycles can be subtracted,

assuming that the period is known with sufficient accuracy, the exact motion can
be predicted with an accuracy millions of times better than can be obtained with
any of the approximate maps discussed.

4. THE DIFFERENTIAL MAP

The x-dependent factors appearing in Eq. (14) can be expanded easily. For
example, setting a = k 2x2 and b = k2x2sn2 v we have

(1- a)1/2(1- b)-1 = 1 + (b - a12) + (b 2- bal2 - a2/8) + · · · (15)

The last term exhibited is quartic in x, but the formula is easily extended. For
lattice calculations it is impractical7 to go m·uch beyond terms of order x 8

, and
that is how far we carried calculations in this paper.

This map exhibits especially simple features. For one thing it is independent of
p. This is not basic, since x2= 1-p2. Also, only even powers of x appear. To be
analogous in this regard an accelerator lattice would contain no sextupoles or
other magnets having an even number of poles. Clearly then, the pendulum is not
analogous to general nonlinear betatron motion. The leading qualitative manifes­
tation of this lack of analogy is probably that the pendulum frequency is
perturbed in the lowest nonvanishing order of perturbation; the tune of a lattice
containing only sextupoles is unperturbed in lowest order. The pendulum is,
however, closely analogous to longitudinal particle motion.

In practice differential maps are necessarily truncated at some order; this is
made manifest by nonsymplectic behavior in the following order. For the
pendulum description this corresponds to the wandering of the phase point off the
unit circle. In this case, the frequently employed practice of forcing symplecticity
artifically would be accomplished by normalizing the phase space point to unity
after each iteration. This was, however, not done. Rather, the deviation from the
known analytic solution was used as a measure of error.

5. INTERPOLATED MAPS

Anyone of the four matrix elements of Eq. (14) can be written as a functionf(x).
In preparation for calculating what will be called an interpolated map, this
function can be evaluated at points on a regular grid. Since the functions do not
depend on p we need only use points on the x-axis, and for simplicity we use
equally spaced values, 0, ±Xtyp , ±2xtyp , .••• Here we use the somewhat clumsy
notation of TEAPOT.5 The value Xtyp is a free parameter to be specified later. If
there were p-dependence there would be another parameter, Ptyp.

For writing difference formulas we introduce the notation fn = f(nxtyp). We
express x in units of Xtyp by introducing the variable r = x/xtyp . The function
f(x(r» can be expressed approximately in terms of the tabulated values fn by a
Lagrangian interpolation formula. Since our functions are all even in r, only
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values In with positive n are required. Thus,

1(0) = 10

1(2) = -(r2-1)10 + r~

(r2
- 1)(r2

- 4) r2(r2
- 4) r2(r2

- 1)
/(4) = 4 to - 3 It + 12 h

(r2
- 1)(r2

- 4)(r2
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(16)

By calculating each of the matrix elements of Eq. (14) using these formulas, we
obtain interpolated maps of successively higher order.

6. DIFFERENCE MAPS

For our problem, any particular differential map element can be expressed by a
series,

(17)

(18)

The vanishing of odd powers has been explained above. By comparison with Eq.
(16); approximate difference formulas can be written for the Taylor expansion
coefficients of the differential map. For example, from f(4) we obtain

R = R(4)(Xtyp) = fo

U = U(4)( ) = -1510 + 16A - f2
Xtyp 12x2typ

To obtain a rigorous connection between these newly introduced, xtyp-dependent
expressions with the corresponding coefficients of the differential map, it is clearly
necessary to take the limit Xtyp~O. That cannot be done numerically, but,
depending on the computer word length of the computer being used, a value of
Xtyp can be used that is sufficiently small to allow the leading coefficients to be
ac~urately evaluated. Used in Eq. (17) they express what I have called a
difference map. It can be seen that this particular interpolated map and the
difference map differ only in the value of Xtyp used.

7. NUMERICAL RESULTS

The various maps have been iterated for various swing amplitudes; the results are
plotted in the following figures. In every case the deviation, approximate minus
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FIGURE 1 Dependence of the number of accurate iterations on the approximation amplitude, for
various pendulum swing amplitudes.

exact, Y(Xap - Xex)2 + (Pap - Pex)2, is calculated. Since the exact phase point
remains on the unit circle, this is both the absolute .value and the fractional
absolute value of the vector-phase-space displacement of the approximate
solution from the exact solution; we take it as the latter, evaluating it as a percent
error. Rather than plotting this error as a function of iteration number one can
note the iteration number at which the error first exceeds some value, such as
10%.

Data of that sort are plotted in Fig. 1. For these data, and all other plots in this
paper, the map period v in Eq. (13) has been taken to be 1.6 x 1l; that
corresponds to an evolution time interval equal to 0.8 of the small amplitude
period. As a result, the number of iterations and the number of periods have
comparable magnitudes. If we define "accurate" iterations to be those for which
the error is less than 10%, Fig. 1 is a plot of number of accurate iterations versus
the approximation order for various pendulum swing amplitudes. Clearly
long-term accuracy degrades as the amplitude increases. For one amplitude, 30
degrees, the 1% error data are shown; it shows no striking qualitative difference
from the 10% data. What is striking is that the number of accurate iterations
varies linearly with the approximation order, at least over the range studied. The
data of Fig. 1 can be described semi-quantitatively by the following crude and
simple formula:

approximation order
number of accurate iterations = 10 r d 2' (19)

amp Itu e
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FIGURE 2 Comparison of results of iterating seventh- and ninth-order differential maps. As
explained in the text, this and all following figures have a similar format; comparison is facilitated by
the dashed-line over plotting, in the lower graph, of the upper-graph curves.

where "amplitude" is the maximum pendulum angle in radians and "order" is
one for linear transfer matrices and increases by one for each power of x or p.

The remaining figures compare the abilities of different maps to predict the
motion over long times. The figures all have the same format; the solid curves in
the upper and lower plots are what is being compared; for convenience the upper
data are replotted in the lower graph, joined by broken curves. In every case the
solid curves in the lower graph come from a differential map. Figure 2 compares
seventh- and ninth-order differential maps. An example comparison is indicated.
For 30 degree amplitude, if 2% accuracy is required, then the number of accurate
iterations with a seventh-order map is loglcl2.29 = 195 turns. Going to ninth
order yields loglol 2.45 = 282 accurate iterations.

The pu·rpose of Fig. 3 is to compare an interpolated and a differential map of
the same (ninth) order. For interpolated maps the parameter Xtyp must be
specified. In this paper it is always chosen so that, in the particular order, the
largest grid point is x = 1.0; that is, Xtyp = 2/(order -1). Somewhat smaller values
in the range 0.9 to 1.0 gave greater precision, but they have not been used since
the improvement was not great and the optimum depends on pendulum
amplitude. Depending on how the comparison is made, the interpolated map can
be said to be either somewhat more accurate, or far more accurate, than the
differential map. Again working on the 30 degree case, and demanding 10%



8

10

1.5

R. TALMAN

9th Order Interpolated Map

2.5

Number of Accurate Iterations (loglo)

3.5

9th Order Differential And Interpolated Maps

1.5 2.5

Number of Accurate Iterations (loglo)

3.5

FIGURE 3 Comparison of results of iterating a differential map and an interpolated map, both of
ninth order.

accuracy, the differential map yields 335 accurate iterations. After this many
iterations the interpolated map is still yielding accuracy much better than 1%. On
the other hand, after 457 turns, the interpolated-map inaccuracy exceeds 10%;
this is not that significant an improvement over the 335 turns of accurate
differential-map tracking.

The remaining figures compare differential and difference maps. For the
difference maps, X typ was chosen according to the formula X typ = 0.2/(order - 1).
For seventh-order maps the agreement is very good, as shown in Fig. 4. The
overplotting in the lower graph of difference-map results is barely visible. (The
absence of a 10-degree difference curve is due to the occurrence of a computer
overflow during its evaluation.) Going to ninth order yields Fig. 5, which shows
that the difference map has broken down and is inferior to the seventh-order
map; that is presumably due to roundoff error in the numerical differentiation
employed in evaluating the difference map. To confirm this, Fig. 6 was generated,
using extended precision in the computer. The precision was "real*16", meaning
that a floating-point number is represented by a 128-bit binary number in the
computer; such numbers are accurate to about 33 decimal digits. For the previous
calculation, 64-bit numbers, accurate to about 16 decimal digits, were used. With
the extended precision the difference and differential maps are indistinguishable
graphically. Numerically the greatest deviation in the logarithm of the number of
accurate iterations is 2.5276 instead of 2.5302.
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FIGURE 4 Comparison of results of iterating a differential map and a difference map, both of
seventh order-"lower-precision" computation.
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FIGURE 5 Comparison of results of iterating a differential map and a difference map, both of ninth
order-"lower-precision" computation.
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FIGURE 6 Comparison of results of iterating a differential map and a difference map, both of ninth
order-"higher-precision" computation.

8. CONCLUSIONS

Quantitative results have been given for the accuracy achievable in predicting the
long-term motion of a pendulum by various procedures. For this particular simple
system, it is shown that, when the nonlinearity is "appreciable," iteration of
approximate maps yields accurate prediction for only some hundreds of periods
of oscillation. This depends on the approximation order and swing amplitude, as
has been explained in detail. The number of accurate iterations increases roughly
in proportion to the approximation order. This leads eventually to a diminishing
return, since the factor by which the number of map coefficients increases, as the
order is increased by one, is roughly equal to the number of degrees of freedom.

At least in the case of the simple pendulum, these results suggest that map
iteration is not promising for long-term prediction. It is, however, possible, for
another system such as an accelerator containing nonlinear elements, that maps
could be useful for long-term prediction. To be persuasive in that case, it would
be desirable to show ways in which the pendulum system is atypical and gives
misleading results and to show the characteristics of nonlinear systems that allow
useful application of map-prediction techniques.

It has also been shown that greater accuracy can be achieved using interpolated
maps than using differential maps. This is not at all surprising since the
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differential map amounts to extrapolation from the origin using Taylor series; this
should be expected to be less accurate than interpolation based on a grid of exact
values. By using interpolation formulas of sufficient sophistication, one supposes
that maps almost as accurate as the grid-point maps can be obtained, but that has
not been investigated here.
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