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Abstract

Warped compactifications with significant warping provide one of the few known
mechanisms for naturally generating large hierarchies of physical scales. We demon-
strate that this mechanism is realizable in string theory, and give examples involving
orientifold compactifications of IIB string theory and F-theory compactifications on
Calabi-Yau four-folds. In each case, the hierarchy of scales is fixed by a choice of RR
and NS fluxes in the compact manifold. Our solutions involve compactifications of the
Klebanov-Strassler gravity dual to a confining AV = 1 supersymmetric gauge theory,
and the hierarchy reflects the small scale of chiral symmetry breaking in the dual gauge
theory.
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1 Introduction

The origin of the small ratio Meax/Mplanck 1S a great puzzle. There are several known
mechanisms for producing an exponentially small ratio of scales. One is dimensional trans-
mutation, which Nature employs in many contexts. Another is nonperturbative effects, such
as instantons, which are exponentially small in the inverse coupling. A third possibility has
recently come to the fore. In a warped spacetime — one where the normalization of the
four-dimensional metric varies in the transverse dimensions — a given invariant energy scale
can give rise to many four-dimensional scales, depending on the position-dependent gravi-
tational redshift in the transverse space. This mechanism has in particular played a role in
the Randall-Sundrum (RS) models [[l, B

Such generation of a hierarchy via redshift has a number of interesting potential conse-
quences. For example, one may reach thresholds to produce Kaluza-Klein modes at low ener-
gies, perhaps in the TeV range, with interesting phenomenological consequences. Moreover,
in such scenarios, scattering at apparently low energies can actually reach the fundamental
Planck scale, due to the relative redshift, raising the prospect of experimental probes of
Planck- or string-scale physics at energies far below the apparent four-dimensional Planck
scale; an example is the possibility of producing black holes at relatively low energy scales [fj].

Warped metrics are quite natural in string theory, where D-branes generically provide
sources for the warping. Within the context of string compactifications, a particularly simple
realization was described by H. Verlinde [fl]: simply take N D3-branes to be coincident on
a Calabi-Yau (CY) space. As is familiar from the AdS/CFT duality [f], the spacetime near
the D3-branes is of the form AdSs x S°. It is well known that AdS5 can be represented as a
Poincaré-invariant four-dimensional space plus a radial direction, with a varying warp factor
that vanishes at the horizon of its Poincaré parameterization.

The RS models, and the warped compactifications of Verlinde, allow a large hierarchy
but do not explain it. There is a moduli space of solutions, and the size of the hierarchy is a
function of the moduli. These moduli correspond, for example, to the separations of various
branes. Goldberger and Wise [f] have shown that additional dynamics can fix the moduli
and produce a calculable large hierarchy. Their analysis was phenomenological; the goal of
our paper is to examine this issue in string theory, in the framework suggested by Verlinde.
In particular, as has been exhibited in the work of [[] (see also [, []), a natural mechanism
to generate such a hierarchy is to consider warped compactifications with both RR and NS
fluxes present.

One way to understand this arises from a picture where branes are placed at a singularity.



The low energy physics of D3-branes on a CY manifold is conformally invariant and N = 4
supersymmetric. In order to fix the moduli it is necessary to break the conformal invariance
and most of the supersymmetry. Precisely this same issue arises in the context of Maldacena
duality. String theory on AdSs x S® is dual to N/ = 4 supersymmetric Yang-Mills theory.
To find string duals of gauge theories with confinement and chiral symmetry breaking one
must reduce the symmetry; in the supergravity context this generates potentials which can
fix some of the moduli and stabilize a hierarchy.

A simple means of reducing the symmetry is to place the D3-branes not at a smooth point
of the transverse space but at a singularity [[0, [[1}, [, [3]. Indeed, placing them at a generic
CY singularity, a conifold point [[4], reduces the supersymmetry to N' = 1. This does not
break the conformal invariance, so it is also necessary to add additional ‘fractional’ branes
localized at the conifold singularity [[5, [[@, [q]. In the final analysis these branes dissolve
into flux, and result in a nonsingular solution that has recently been found by Klebanov and
Strassler (KS) [[4. So while the picture of branes and fractional branes at a conifold is used
to motivate the construction, the net result is that one ends up with a string background
with RR and NS fluxes, which lead to a smooth string solution with a large hierarchy.

The KS solution is, however, noncompact and therefore not suitable as a means of re-
ducing string theory to four dimensions; in particular it would produce an infinite 4d Planck
scale. Thus, our goal is to find true string compactifications, with a finite 4d Planck scale
and a local region of the KS form which generates a large but finite hierarchy. This hierarchy
will be determined by the quantized values of the fluxes on the compact manifold.

The outline of our paper is as follows. In section 2 we consider global constraints on
warped IIB solutions. Such constraints have been used in the past to exclude warped so-
lutions of IIB supergravity, but in the context of string theory their effect is to require the
presence of objects of negative tension such as O3 planes and wrapped D7-branes. Further,
when the localized sources satisfy a certain BPS-like bound, we are able from the global con-
straints to find the general solution. We find that, in the classical approximation in which
we work, the radial modulus is a flat direction with zero cosmological constant. This is the
case even though supersymmetry is generically broken at a scale that depends on the radial
modulus. Thus, these are no-scale models [[§.

In section 3 we focus on the local structure of the compactifications, beginning with a
review of the Verlinde solution and its generalizations. In particular, in the presence of certain
fluxes on a compact manifold, together with the required O3 planes or D7-branes, we show
that compact smooth string solutions exist with the hierarchy fixed by the fluxes, in a limit of
large fluxes. However, as noted above, the overall radius of the compact dimensions is always



left unfixed. This reflects the familiar feature of string compactifications, that it is very
difficult to stabilize all moduli, though we should note that in classical IIB compactifications
with fluxes the dilaton generically is stabilized.[] In fact the effective theories that we find
are very similar to those which arise in heterotic string compactifications [0, P1J. We
also outline the dual, gauge theory, description of these solutions. Section 4 is devoted to
constructing explicit examples, first as orientifolds of CY compactifications, and then as
F-theory compactifications (which allow larger fluxes and hierarchies).

2 Warped compactifications: global constraints

We begin by working in the approximation of low energy IIB supergravity, with such localized
sources as arise in string theory. In pure supergravity, the integrated field equations rule
out warped compactifications under broad conditions [BZ, B3]. In section 2.1 we revisit
this argument with localized sources included, and show that a warped compactification is
possible if sources with negative tension are present; such objects do exist in string theory.

With the constraint thus weakened, it does not appear possible to give a simple descrip-
tion of the general warped solution. In section 2.2 we show that when the localized sources
satisfy a certain BPS-like bound involving their energy-momentum tensor and their D3-brane
charge, then the global constraints do determine the general solution. The localized sources
that we consider — D3-branes, wrapped D7-branes, and O3-planes — all satisfy this bound.
We discuss various special properties of these solutions, in particular the effective action for
their moduli, and we relate them to solutions recently considered in the literature.

2.1 Action, equations of motion, and constraints

Our starting point is the effective actionfj
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'More general compactifications with fluxes will be discussed in ref. [E] In particular, some of these
have no moduli, and are reliably studied in a regime where low-energy supergravity is valid.
2We use the conventions of [R4].



Here gs denotes the string metric. We have also defined the combined three-flux, G3) =
F(3) — TH(3), where as usual 7 = C(g) + ie™%, and

- 1 1
Fs) = Fi5) = 5C0@) N + 5B A - (2:2)

The term Sy, is the action of localized objects, such as branes, which will become important
shortly. The condition F(g,) = *F(g,) must as usual be imposed by hand on the equations of
motion.

We will be considering compactifications arising from F-theory, so it is particularly useful
to reformulate the action in an SL(2,Z) invariant form by defining the Einstein metric

JMN = e ¢/ 29 vy, whence the action becomes
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Henceforth we use the Einstein metric throughout. Invariance under the SL(2,Z) transform

at +b
- — 2.4
[ (24)
together with the transformation
Gs)
Gz — 2.5
@ o+ d (2:5)

is readily checked.
Our interest is in warped metrics maintaining four-dimensional Poincaré symmetry, with

convenient parameterization
ds?, = "Wy datda” + e AW, dy™dy" (2.6)

in terms of four-dimensional coordinates z*# and coordinates y™ on the compact manifold

M. The axion/dilaton will be allowed to vary over the compact manifold,

T=1(y), (2.7)

and since we will consider D7-branes, monodromies of the form (P.4) will be allowed. To
maintain Poincaré invariance only compact components of G 3y are present, and furthermore,

with monodromies (£.3), these will transform in a non-trivial bundle over Mg:
Gp ea(eL), (2.8)
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where €2 denotes the canonical bundle, and £ is the line bundle defined by the transformation
law (2-3). Finally, Poincaré invariance and the Bianchi identity allows a five-form flux of the
form

Fsy = (1 +%)[da Ad2® A da' A da® A da®] (2.9)

with « a function on the compact space. Also, in accord with Poincaré invariance, we will
allow some number of D3-branes along the noncompact directions, as well as D7-branes
filling the noncompact directions and wrapping certain four-cycles in M.

Einstein’s equation, trace reversed, is
9 1
Run = k10 Tun — ggMNT ; (2.10)

where Ty = Tys + TS is the total stress tensor of the supergravity fields and the
localized objects. In particular, the latter contribution is
2 0Sic
Tloe, = ——=__2l¢ (2.11)

V=g ogMN

The noncompact components take the form

Gmn G em8A m oc 1 oc
R,uz/ = _g,uz/< 48ZI)II1T + 1 OO Oz) ‘l"%lO2 (T,Llw - _gHVTl ) : (2'12)
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From the metric Ansatz (£.q), one computes the Ricci components
. 1 N N
Ry = — e VA = — (V2 — e, eM0met ) (2.13)

(A tilde denotes use of the metric §,,.) Using this and tracing (P-I3) gives

~ GonG —6A 2
VZA =24 48Z1)m7' + & 1 Oma0™ o + %e_M(T;@” — T[j)loc . (2.14)
or
~ Gmn Gmnp _ m m /{102 m oc
V2 = e%m’I’T + e 00 a + e ome | + TezA(Tm — Ty (2.15)

These equations serve as stringent constraints on flux/brane configurations that can lead
to warped solutions on compact manifolds.] To see this, note that the integrals of their left

30ne reaches the same conclusions by considering V2e*4 for any positive k, but k = 4 is the value that
will be useful in the next subsection.



sides over a compact manifold Mg vanish, whereas the flux and warp terms on the right-
hand side are positive definite. Thus, in the absence of localized sources there is a no-go
theorem [P2, BJ: the fluxes must vanish and the warp factor must be constant. For a warped
solution the stress terms on the RHS must be negative, which can only be true under certain
circumstances.

For example, consider a p-brane wrapped on a (p — 3)-cycle X of the manifold Mg. To
leading order in «/ (and in the case of vanishing fluxes along the brane) this contributes a

source action

Sloc = —/ dp+1€Tpv -9+ Np/ Cpt1 ; (2.16)
Rix% RAXX
for positive tension objects the Einstein frame tension is
Ty = |uple®99/* (2.17)
Eq. (B.16) gives a stress tensor
T;IL?/C = _TpezAmwé(Z) ) Tfﬁfﬁ = _TpHrEnné(Z) ) (2.18)

where §(X) and II* denote the delta function and projector on the cycle 3, respectively.
From this we find
(T = Tp)°e = (T—p)T,0(2) . (2.19)

Eq. (B.19) tells us that for p < 7, in order to have the required negative stress on the RHS
of the constraint (2.17), the compactification must involve negative tension objects.

String theory does have such objects, and so evades the no-go theorem of 2, p3]. O3
planes are a simple example. The T%/Z, orientifold, which is T-dual to the type I theory, is
a compact Minkowski solution with 16 D3-branes and 64 O3-planes [P4]. This implies that
the O3 tension is —iT 3. This orientifold was discussed in ref. [ff] as an example of a warped
string solution.

Note that F-theory compactifications, despite having D7-branes, dilaton gradients, and
RR 1-form fluxes, satisfy the constraint (R.15) without negative tension. This is because
terms involving 7 gradients do not enter the constraint, and the D7 brane stress tensor
contributions vanish by eq. (B.19).

To be precise, this is true only to leading order in o'. It is necessary to include also
the first o’ corrections to the D7 action Sj,. (we will explain this expansion below). In the
Chern-Simons action the correction is [P

p(R)  pr na /
- = (2 T . 2.9
s /R4><2 Cen 1 48 96( ma) R4S Cen AT (Rep) A R@) (2.20)
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This Chern-Simons coupling captures the induced D3 charge on the wrapped D7-brane. In
the DBI action it is [P§]

— %(27’(@’)2 ‘/R4XE d4l’\/—ng"(R(2) A\ *R(g)) . (221)

This term computes the first o correction to the wrapped D7-brane tension.f] The Chern-
Simons coupling has the effect, for example, that a D7-brane wrapped on K3 has —1 unit of
D3 charge [BJ]. This state is still BPS, with the same supersymmetry as the D3-brane, so
the DBI coupling must contribute —T3 to the tension. In F-theory, this background charge
is given in terms of the Euler number of the corresponding fourfold by

5 = —% : (2.22)

and N/ = 1 supersymmetry implies the corresponding tension Q¥°T3. This can be thought of
as coming from the summed contribution of all 7-branes wrapping four-cycles in the base of
the elliptic fibration X. To directly derive this tension along the lines discussed above, one
should use the generalization of (R.21]) which is applicable to branes wrapping divisors in the
(non-CY) base of X; the result is guaranteed by the supersymmetry of the configuration,
and the direct calculation is beyond the scope of our work.

We have been discussing constraints from the integrated Einstein equation. The Bianchi
identity /equations of motion for the 5-form flux isf]

dﬁ’(g)) = H(g) A F(g) + 2/{102T3p130C (223)

where p¥° is the D3 charge density form from localized sources; this includes the contributions

of the D7-branes or O3 planes, and also of mobile D3-branes that may be present.] The
integrated Bianchi identity

1
2/4,102T3 Mg

4For simplicity we are considering in eqgs. (7 ) the case of a trivial normal bundle; the full form is
given in ref. [27]. The F-theory result (R.22) is general.

5 Recall that 2r19? = (2m)7a/4, p3 = (2m) 73’72, 7 = (2m) "o/ 7%, and, in Einstein frame, T3 = p3 [P4].

In deriving this field equation there is an annoying subtlety due to the self-dual flux. The electric
coupling of C(4) must actually be half of what we have written in eqgs. (, ), in order to obtain
eq. () However, any object carrying D3 charge also has a magnetic coupling to C(4); in a self-dual
background the action for a probe is then obtained by doubling the electric coupling as we have done.

An alternative approach to the self-dual flux is to use a Lorentz-noninvariant action: double the F (25) and

H(g) A F(g) + Qéoc =0 (2.24)

Chern-Simons terms in the actions (@, E) but restrict to terms in which F{5y or C(4) has a 1-component.
This action, derived by T-duality from the ITA action, is well-suited to the study of compactification of the
IIB theory.



states that the total D3 charge from supergravity backgrounds and localized sources vanishes.
In the next subsection, we will analyze the constraints (P.I7, P.24) further.

Finally, let us discuss the nature of the o/ expansion. The localized source in the Bianchi
identity (B-23) is of order Na/?, where N is the characteristic D3 charge. It is not possible to
take N to be parametrically large, because the negative contributions to the Bianchi identity
are determined by the topology of the manifold. However, the Euler number (P27) can be
quite large in a given example, and so we will treat N as an effective large parameter as in
ref. [f]. We will then treat Na/? as being of order one, but drop order o/ effects such as the
string corrections to the supergravity action. This is why we needed to keep the curvature
terms in the D7-brane action. The Bianchi identity then implies that G(3y = O(N'/2a/); the
factor of o/ is consistent with the quantization

1 1

and the number of 3-form flux units then scales as N/2,

2.2 Special solutions

2.2.1 A BPS-like condition

With general negative tension sources, the constraints from the integrated field equations
appear to be rather weak. However, in the special case that

1
(T = T > Tyl (2.26)

for all localized sources, the global constraints determine the form of the solution completely.
In fact, the inequality (R.26) holds for all of the localized sources considered in this
paper. For D3-branes and O3 planes, whose integrated ps is respectively +1 and —i, the

stress tensor is
=T =T; =T =-Tsp3, T"=0, (2.27)

and so the inequality is actually saturated. Anti-D3-branes satisfy the inequality but do
not saturate it. D5-branes wrapped on collapsed cycles also satisfy the inequality, as their
tension comes entirely from their induced D3 charge.

For D7-branes, the nonvanishing contributions to the two sides of the inequality come
from the curvature terms (R.20, B-21]). In the simple case of D7-branes wrapped on K3, the
property *R(2) = Ro) implies that the inequality is saturated. If a nontrivial gauge bundle
is introduced, the inequality is still respected as a consequence of F,, F'* > F,, (+F)*. For

9



the more general wrappings that arise in F-theory, we argue below that the inequality is
saturated.

There are objects that do violate the inequality (B.2G). Ob5 planes make a negative
contribution to the LHS and zero contribution to the RHS. Anti-O3 planes make a negative
contribution to the LHS and a positive contribution to the RHS.

The inequality (-24) resembles a BPS condition. Indeed, the underlying IIB supersym-
metry algebra implies that

0> T50Q; . (2.28)

If this holds locally, as might be expected classically, then by applying Lorentz invariance we
get =10 = —T} = —T§ = —T3 > T3p3. When the inequality (R:2§) is saturated, the pressure
T, should vanish by analogy to the no-force condition. Away from extremality T, — T
generally increases, by analogy to the weak energy condition, so the inequality (R.24) follows.
The O planes that do not satisfy the bound (B.2G) are able to evade it because the necessary
supercharges do not exist: they are projected out by the orientifold. The D7-branes that
arise in F-theory compactifications saturate the bound because they preserve an N = 1
supersymmetry that is also preserved by D3-branes.

2.2.2 Solution of the constraints

In terms of the potential a the Bianchi identity (B-23)) becomes

2 124 Gonnp26G™)
12Im T

where *g is the dual in the transverse directions. Subtracting this from the Einstein equation

constraint (B.I3) gives

~ 024

20 4A _ N _
Ve @) 6Imr

+ 2749, adm e + 2%10262AT3pé0C , (2.29)

"éG(g) —x6G(3) ’2 +e_6A|8(e4A —a)f? +2K19%e*4 i(Tg‘ —T[j)loc —Tgpg’c] )

(2.30)
The LHS integrates to zero, while under the assumption (R.26) the RHS is nonnegative.
Thus, if the inequality (R.26) holds, then

e The 3-form field strength is imaginary self-dual,

*6G3) = 1G(3) . (2.31)

e The warp-factor and 4-form potential are related,

M=o (2.32)

10



e The inequality (B.26)) is actually saturated.

Assuming this form, let use review the full set of field equations and Bianchi identities.
The 5-form field strength (R.9) is self-dual by construction. Its field strength/Bianchi iden-
tity (R.29) is consistent and determines o and A, provided that the total D3 charge (R.24)
vanishes. The 3-form Bianchi identities

must be imposed. Using these, the equation of motion then takes the form
dA+ ——dr AReA =0, A =Gy —iaGy | (2.34)
mT
and so is satisfied as a consequence of eqs. (R.31, 2.39). The R, equation also follows from
these conditions. Finally, the remaining field equations reduce to
0 OmTONT + O TO T
4(Im )2

Vr-Vr  Akf(Im 7)? 6Spr

ilmT V=g or

These are the equations determining a solution to F-theory in the supergravity approxima-

- - 1 -
Ron = K10 + K10 (ngg - ggmnTm) , (2.35)

Vir = (2.36)

tion.

In summary, assuming that the localized sources satisfy (B.26), the necessary and suffi-
cient conditions for a solution are an underlying manifold Mg = (jpn, 7) satistying (P35, B-30),
closed 3-form fluxes F{3) and H s such that (/3 is imaginary self-dual, and vanishing total
D3 charge.

2.2.3 Supersymmetry, and relation to previous solutions

The conditions for A/ = 1 supersymmetry of such a solution have recently been considered
in refs. [2§, for constant dilaton, and in ref. more generally. The underlying manifold
must be Kahler and the connection f)m — %Qm must lie in SU(3), where @, is constructed
from 7 as in [BI]. The flux Gy must be a (2,1) form and primitive, meaning that the
index structure is 7jk and the contraction with the Kéhler form J% vanishes. The condition
x6(G(3) = iG(3) allows a primitive (2,1) piece and a (0, 3) piece.] Thus our general solution
is supersymmetric if and only if the (0,3) part vanishes.

"It also allows a (1, 2) piece of the form K2y Aw(1) where K(3) is the Kahler form and w(;) is a nontrivial
closed (0,1)-form. A compact Calabi-Yau manifold has no such (0, 1)-form, and neither do the Calabi-Yau
orientifolds or F-theory compactifications we consider. Note that in our conventions for the complex basis,

11



In general, supersymmetric and nonsupersymmetric solutions are both possible, though
the latter are more generic. Consider for example the T%/Z, orientifold. This is somewhat
special because it has N' = 4 supersymmetry in the absence of G-flux, but it serves for
illustration. In terms of three complex coordinates, the primitive fluxes Gia3, G133, and Gio3
can be turned on consistent with the quantization conditions (£:25) (these fix 7 and some
of the Kéahler moduli), leaving N' = 1 supersymmetry. If the additional flux Giz3 is nonzero
then all supersymmetry is broken.

Noncompact solutions of this form have previously been described in ref. [R§] in the special
case of constant dilaton. The supersymmetric solutions are dual [§, B3] to the M theory
solutions of ref. [BJ]. As emphasized in ref. [B0] these solutions are special, in the sense that
the N = 1 supersymmetry lies in an N = 4 subgroup of the full A’ = 8 IIB supersymmetry.
In IIB form, this is the subgroup preserved by a space-filling D3-brane; in M theory form
it is the subgroup preserved by a space-filling M2-brane. F-theory compactifications on CY
fourfolds preserve NV = 1 supersymmetry in the presence of D3 branes (and in fact are limits
of the M theory solutions of [BJ]). Therefore, we can infer that they are solutions of this
special form, though we have not displayed this by computing and explicitly comparing the
contributions of (the fully generalized forms of) (B.21]) and (B.20]) for the wrapped 7-branes.

2.2.4 Moduli and effective actions

The necessary and sufficient conditions (P.24, P.31), P.33, P.39, .30) are all invariant under
rescaling Gmm — A2Gmn. Thus,

e All special solutions have a radial modulus.

Thus our goal of fixing the moduli in a warped compactification is limited in this class of
solutions to leaving at least this one. On the other hand, there is no dilaton modulus, because
the dilaton couples differently to the NS-NS and R-R 3-form fluxes and so has a nontrivial
potential. This suggests that it may be an interesting exercise to look for solutions having
no classical moduli by introducing sources not satisfying the inequality (B.26) [L9].

This is slightly subtle, because the solution itself does not scale simply. In the field
equation (B.19), the terms involving derivatives of A scale like A™2, and the flux source term
scales like A™6. Tt follows that at large radius e** = 1 + O(A™*) and so the warp factor
approaches a constant. At radii less than O(N'/4a/"/2?) the warping becomes significant.

The properties of the nonsupersymmetric solutions — vanishing four-dimensional cosmo-
logical constant and a radial modulus in spite of the absence of supersymmetry — identifies

12



them as no-scale models [[[§, B4, BJ]. The combination of broken supersymmetry with vanish-
ing cosmological constant is intriguing, but there is no known reason that it should survive
quantum corrections, from instantons and even perturbative loops. Even at string tree level,
o/ corrections to the supergravity field equations presumably spoil the no-scale structure.

Let us also consider the effective four-dimensional action. Before turning on fluxes, there
will be massless fields corresponding to the Kahler and complex structure moduli; we denote
the latter z®. Furthermore, for orientifold models, the dilaton field 7 is massless, whereas
in general F-theory models it is fixed in terms of the complex structure moduli by (R.30).
For the moment we consider the case of a single Kahler modulus, the radial modulus, in a
four-dimensional superfield p.

For a large-radius CY or orientifold, the Kahler potential follows by dimensionally reduc-
ing the 10d action.f] For the radius we find

K(p) = ~3In[—i(p— p)] . (2.37)

and for the dilaton and complex structure moduli

K(7,2%) = —In[i(r — 7)] — In (—z' /M QA Q) (2.38)

where 2 is the holomorphic (3, 0) form. The latter expression follows from the Weil-Petersson
metric, and is discussed in [B4]. An obvious conjecture for the F-theory generalization of

(B:39) is
K=—In (/X QA Q4> (2.39)

where X and €4 denote the CY fourfold and its holomorphic (4,0) form respectively.
The fluxes generate a superpotential, which takes the form [§

W = /M QAN G(g) . (2.40)

This is independent of p. The expected F-theory generalization of this formula takes the

form [§]

W = / Q4 A G(4) . (2.41)
X

In (R.41), G(4) denotes the four-form flux one would get in M-theory by compactifying the
F-theory on a circle; it can be expressed in terms of type IIB quantities in the F-theory

8For further discussion see the appendix.
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limit. If the one works with a local trivialization of the elliptic fibration, for example in the
vicinity of the conifold point, with fiber coordinate w, the four form G4 takes the form

B G(g)dﬂ}

T—T

G(4) = +h.c. . (2.42)

We will further discuss issues surrounding use of such a trivialization in section four.
Under these conditions the N' = 1 supergravity potential simplifies [[§,

_ 1 K ab YT V4 2
V= TR (G**D,W D,W — 3|W?)

. ﬁ%e’c(eiﬂ‘piij—w) , (2.43)
where D,2W = 0,W + WJ,K and G,; = 0,0;K, and the indices a,b are summed over
superfields, with 4,j labeling indices excluding p. In no-scale models the |D,W|? term
cancels the negative term, leaving a nonnegative potential. When D,WW = 0 the potential
vanishes; this condition is independent of p, so if there are n superfields besides p it represents
n equations on n moduli and leaves p undetermined. Generically at these solutions W # 0,
so D,W = —3W/(p — p) is nonzero and supersymmetry is broken.

A useful check on these expressions comes by comparing the 4d and 10d equations. In
the CY /orientifold case, one readily finds (see appendix)

0= DuW = 0, + (9,)W = /M Gz A X »

0= DWW = 0, W + (9 W = —

T—T

/ G(g) A (2.44)
M

where X, is a basis of (2,1) forms on M. These equations imply that G(s) is imaginary
self-dual, in correspondence to the 10d condition (B:31]). For F-theory, define a basis of (3, 1)
forms x4 on X; the expected generalization of (R.44)) is

0=D,W = / G(4) A XA - (2.45)
X

While our discussion so far has focused on the case where there is only one Kéahler
modulus, p, a general model may have several Kahler moduli p;. The required modification
of this discussion is quite simple. The superpotential is independent of all of the p;. It should
then follow that the Kahler metric for the Kéahler deformations produces an analog of the
simplification (P.43), where now the greek indices sum over moduli excluding the p;. One
way to see this is from the 10d picture — the condition (R.31]), whose correspondence with the
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4d potentials was just seen, is independent of the Kahler moduli. So the no-scale structure
survives, with each of the Kahler moduli persisting as a flat direction at this order. Because
it is not difficult to find models with only a single Kéhler modulus p, we will assume that
this is the case in the rest of the paper.

In the appendix we discuss further the derivation of the four-dimensional action by dimen-
sional reduction and the correspondence between the four-dimensional and ten-dimensional
pictures.

3 Warped solutions and hierarchies

In section 2 we discussed various global features of IIB compactifications with a nontrivial
warp factor. We now turn to the local structure of the warped region.

We begin by reviewing the solutions of Verlinde [[], corresponding to D3 branes on a
compact manifold. If NV D3-branes are coincident, the warp factor in their vicinity is

4m g, N
oA 9

~

e (3.1)
with 7 the distance from the D3-branes in the g,,, metric. Near the D3-branes the geometry
is thus AdSs x S°, producing a large warp factor [f]. At larger values of 7, the product
structure breaks down due to the curvature of Mg, and eventually 7 ceases to be a good
coordinate [BH]: Ms is not globally the product of a five-sphere and a one dimensional
space. This is similar to the RS2 model [P], though is a bona-fide compactification, with the
compact manifold playing a role roughly analogous to the so-called “Planck brane” of [[],
and yielding a finite four-dimensional Planck scale. The warp factor of course diverges as
7 — 0, which is at infinite spatial distance.

If such a model is realized on an orientifold, the dilaton is a constant, e? = g, but in the
more general context of an F-theory compactification it varies holomorphically as determined
by (B-3) or equivalently by the eight-dimensional construction. As we will discuss in section
4.2, the physics near the D3-branes is essentially the same, and the effective value of g5 is
determined by the value of 7 at the D3-branes.

To get a large but finite hierarchy, one or more D3-branes must be separated from the
rest by a small distance 7. These might be the branes on which the Standard Model fields
live, or they might be associated with some symmetry breaking that couples to the Standard
Model through the bulk. However, the D3-brane coordinates have no potential. Thus in the
present model there is nothing that fixes 7 and so the size of the hierarchy.
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In order to find a warped solution that produces a large but stable hierarchy, we now add
fluxes. Our motivation stems from the work of Klebanov-Strassler [[]]. The basic idea is that
locally in the vicinity of a conifold point, KS have found solutions with fluxes that generate
smooth supergravity solutions with large relative warpings. Here we will extend this work
to the compact context.

CY manifolds are generically nonsingular, but at special values of the parameters they
can develop singularities. The most generic singular space is a conifold [I4]. Locally this can
be described as the submanifold of C* defined by

w? + w3 +w; +wi=0. (3.2)

This submanifold is singular at (wy, we, w3, ws) = 0. The geometry of this space, including
its Calabi-Yau metric, is described in ref. [[4]. It is important that this is a good singularity,
meaning that string theory makes sense in such a space [Bg]. Although the compactification
space Mg we are using is either the base of a nontrivial elliptic fibration, or is an orientifold
of a Calabi-Yau, the local structure of a singularity like (B-9) will not be affected by these
global details, so we can use local facts about CY singularities in the ensuing discussion.

The conifold singularity can be regarded as a cone whose base has the topology S%x S2. At
the singular point, both the S® and the S? shrink to zero size. The conifold can be smoothed
into a nonsingular CY manifold in two ways. In the small resolution of the conifold, the
S? is blown up to finite size. In the deformed conifold, the S? is expanded to finite size; it
is this that will be relevant for us. The deformed conifold has a simple description as the
submanifold

w? 4+ ws +ws +wi =z . (3.3)

Here the complex parameter z is the modulus which controls the size of the S3.

We now consider adding fluxes to this geometry, and find the resulting potential for the
moduli. Consider a compact manifold with moduli z, p, and 7 (we explain at the end of
this subsection how additional complex structure moduli u; can be incorporated, without
substantially modifying the results).f] Dirac quantization implies that these fluxes, integrated
over all of the three-cycles of the CY, be integers as in (R.25)). In the vicinity of the conifold,
there are two relevant cycles. Examining the equation (B3), and taking z to be real and
positive for convenience, the three-cycle which vanishes as z — 0 (denoted A) can be taken
to be the S? on which all of the w; are real. In general compact examples, there also exists a
dual B-cycle which intersects A exactly once. An example of such a cycle in this noncompact

9More generally, in the case of an F-theory compactification, the following should be generalized using
sections as outlined in (P.§)), (R.49).
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case can be constructed by taking w23 to be imaginary and w, real and positive. The KS
solution corresponds to M units of F(3y on the A-cycle. The field equation in KS requires
that H sy be supported on the dual cycle to Fi3), so let there be —K units on the B-cycle:

1
%yAE”:%M’

1
%déH@:—%K. (3.4)

This can also be understood by requiring D3 charge conservation as in (R.24):

Hzy N F MK . 3.5
2/{10T3 / (3 (3) ( )

Thus, in the sense of Poincaré duality, we can write

Fa = (2m)’dM[B], Hg = (27)°d'K[A] . (3.6)

W= / Gy A = 2w2’( /sz KT/ ). (3.7)

The integrals appearing here are the periods defining the complex structure of the conifold.

This gives

In particular, the complex coordinate for the collapsing cycle A is defined by
z:AQ. (3.8)
It is a standard result that on the dual Cycle
/ Q=G(z) = — lnz + holomorphic . (3.9)
The superpotential is then
W = (27)%*d/ (MG(2) — K72) . (3.10)

Such a superpotential has been obtained previously by Vafa [J].
Let us consider first the D,W condition,

0=D,Wx M0,G— Kr+ 0,K(MG — Krz) . (3.11)

In order to obtain a large hierarchy we will take K/gs to be large: this will result in 2z being
exponentially small. This has a simple interpretation in the dual gauge theory, as we will
discuss later in this section. In this regime, the dominant terms in D,W are

M K
D.W & —1nz—i> +0(1), .
Wo<2m, nz zgS—I—O( ) (3.12)
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It follows that for K/Mgs > 1, z is indeed exponentially small,
z ~exp(—2rK/Mygs) . (3.13)

Thus, we obtain a large hierarchy of scales if, for example, M = 1 and K/gs is of order 5.
As things stand, the D, equation

0=D,W x (—Kz7+ MG) (3.14)

T—T

cannot be satisfied. The first term in parentheses is exponentially small, while the second is
not because the holomorphic part in (B.9) is generically nonvanishing, G(0) = O(1). Note
that this is a property of the compact case. In the noncompact case of interest in KS, the
bulk modulus 7 is frozen and there is no corresponding D.W equation to impose.

The problem arises because at z = 0 the superpotential (B.I(]) is independent of 7,
and the remedy is to consider a configuration with additional 7 dependence. With such
7 dependence, one can generically find a solution to (B:I4) with z ~ 0, though additional
structure may be required to ensure that this minimum is at weak coupling. To give one
example, 7 can be stabilized by turning on additional fluxes. Keeping for simplicity the case
of a single complex structure modulus z, there are 2 + 2b,; = 4 3-cycles, namely the pair
(A, B) and an additional pair (A’, B’). Turning on —K’ units of H(3) on the B’ cycle gives

W = (27)%d [MG(z) — 7(Kz + K'Z')] (3.15)

where 2’ is a function of z which is generically nonvanishing at z = 0, 2/(2) = O(1). Then if
we fix z =0, the D, W equation is

0=D,W x 77__7_[—K’z’(0)7"+MQ(O)] : (3.16)
thus fixing the dilaton at
__ Mg(0)
"= K 2(0) (3.17)
The hierarchy becomes
2rK
. exp( - Tm(G(0) /z’(O)]) (3.18)

Thus, by appropriate choices of K, K’, and M one obtains an exponential hierarchy with
the dilaton fixed at an interesting value.

The hierarchy is determined in terms of integer fluxes and the Calabi-Yau geometry. To
obtain the actual warp factor requires solving the differential equation (B.I4), but one can
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A 4

estimate it as follows. The D3-brane warp factor (B) is e** ~ 7*. The resolution of the

conifold cuts this off at w? ~ z. According to ref. [[4], the conic coordinate 7 (which is p in

3

the notation of that paper) is 7 oc w?® o< 2!/, and so the hierarchy of energy scales is

emin ~ 213 exp(—2n K /3Mgs) . (3.19)

In effect the fluxes produce a model similar to RS1 [[[], in which the warp factor does not go
to zero but to a small positive value.[]

The large hierarchy (B.1J) has a simple interpretation in terms of a dual gauge theory.
The KS solution is the supergravity dual to a nonconformal N' = 1 gauge theory, with
confinement and chiral symmetry breaking at a dynamically generated scale [[. In the
spirit of the Verlinde model [H], the low energy physics of our supergravity solutions is
equivalent to this gauge theory coupled to the massless bulk fields of the compactification.
The KS solution begins with N whole D3-branes and M fractional D3-branes at a conifold
singularity. In the end all of these branes are replaced by flux; their moduli disappear, which
is in accord with confinement in the dual gauge theory. In particular, with M units of Fis)
on the A cycle and K units of Hs) on the dual B cycle, the total D3 charge is N = MK [

The formula (B:I9) then corresponds precisely to the renormalization group analysis
of KS [[. Using the §-function in their eq. (23), one cascade takes place on a ratio of

scales e2™/3Mgs (

during which the LHS of that equation changes from —27/gs to +27/gs).
The total number of cascades is N/M = K, because M units of D3 charge disappear at
each cascade, giving the total hierarchy (B.19). Thus the four-dimensional effective action
correctly reproduces the physics of the KS gauge theory.

In the gauge theory, the parameter z is the scale of gluino condensation. The instability
noted in eq. (B.14) is the familiar fact that a gluino condensate generates a dilaton poten-
tial [RT]. The stabilization (B.1f) does not have a gauge theory origin; rather, it is a bulk
effect in the I1B theory.

There is an effect which might have been expected to destabilize the large hierarchy, but
does not do so. The dual gauge theory has various relevant perturbations; for example, the
N = 1 supersymmetry allows a superpotential. This would produce a mass gap which is of
order the perturbation, rather than exponentially small. This perturbation is absent in our

solution: in supergravity language it is a 3-form flux, but it is not of the form *¢G3) = iG3),

10We should note that, unlike RS1, there is no negative tension brane at the low energy end; rather, there
is a KS space. The negative tension objects that we require are elsewhere on the compact space, in the
region that replaces the RS Planck brane.

1Tn order to obtain an interesting low energy spectrum, one may need additional ‘mobile’ D3-branes in
the warped region, but this is beyond our present focus.
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as one sees from the explicit expressions in section III.C of ref. [B7]. The reason for its
absence appears to be holomorphy: the gauge theory perturbation corresponds to a growing
(nonnormalizable) mode as one move away from the origin, and evidently this cannot be
extended to the full compact space.

So far, we have assumed that there is a single complex structure parameter z. Suppose
there are other complex structure deformations, controlled by moduli u;. In such a case,
the w; enter in the regular terms in the period (B.9), so G(2) is really G(z,u;). Generically,
assuming that z has been successfully stabilized near the conifold point in moduli space as
above, the equations

DyWl.—0 =0 (3.20)

can be solved to yield fixed (order 1) values for the other moduli u;. So we see that the
presence of background RR and NS fluxes generically serves to fix all of the complex moduli
and the dilaton, while leaving the Kahler modulus p unfixed.

4 Examples

In order to make our discussion of warped compactifications with fluxes more explicit and
concrete, and in particular check our ability to build consistent solutions with both negative
D3 charge/tension and the above flux configurations, we now turn to the construction of some
explicit models. We briefly describe models based on O3-folds, and then discuss F-theory
compactifications in detail.

4.1 O3 models

Models in which the negative tension objects are O3 planes are easily described. Begin with
a CY manifold with a conifold singularity and a Z, symmetry that has isolated fixed points,
and orientifold on this symmetry. Since we assuming that the O3 planes are distant from the
singularity, the initial CY must actually have two conifold singularities which are images of
one another. The D3 charge of the O3 planes is then —i times the number of fixed points. In
order that the supergravity description be good, we need g;/N to be somewhat greater than
one. To work in perturbative string theory we should also assume that g; < 1. Therefore,
we need N, and hence the number of fixed points, to be large.

We will not present explicit examples, deferring an explicit example to the discussion of
F-theory, but we will present some details of the orientifold construction and the low energy

spectrum.
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Let us first determine which of the RR fields survive the orientifolding by RS2, where R
is the Z, with isolated fixed points, and Q is world-sheet parity. First, consider a T*/Z,
orientifold, where we can use 7T-duality to relate this to €2 in the IIB string [P4],

RQ =T7QT . (4.1)

Consider a Ramond field with r indices in the direction of the k-torus and s in the orthogonal

m+5=2 on RR potentials and 77+573

directions. In the IIB string, the operator €2 acts as @ on
RR fluxes; thus, for example, the RR two-form potential survives the projection to the type I
string. The T-duality takes r to k —r. Thus, QR acts as i " "*+tk=2 or ;7"+75=3 respectively.
We can also phrase this as the statement that the intrinsic Q2R of these fields is respectively

‘n+k—2 ‘n+k—3

1 or 1 , where n is the total number of indices. This intrinsic parity must be

combined with (—1)", from the explicit action of the R on the indices. For the value k = 6
relevant here, the intrinsic parities are respectively " and i"~!.
Thus, the Ramond scalar C' has even intrinsic parity, as expected because it is the

superpartner of the dilaton. Similarly a,,, the axionic part of p, has even intrinsic parity:

Cuvpg = @ dpq (4.2)

where J is the Kahler form.

The orientifolding requires that the Zy symmetry hold throughout the moduli space and
so only complex structure moduli that are even survive. The R-R flux F,,,,, has odd intrinsic
parity, as does the NS-NS flux H,,,, (from the action of ). Thus these must be proportional
to 3-forms of odd intrinsic parity to survive the projection. Note that the 3-form € (not to be
confused with the world-sheet parity operator) also has odd intrinsic parity. This is because
it is nowhere vanishing and so in particular is nonzero at the fixed points; at the fixed points
the Zs gives an explicit —1 from the indices and this must be offset by the intrinsic parity.

It follows that the superpotential
/Q N G3) (4.3)

is well-defined on the covering space. Also, the even complex structure deformations gener-
ate, by contraction with €, odd (2, 1) forms, so these are the appropriate fluxes to excite.
Models of this class can be analyzed exactly as in section 3. One can choose fluxes
through the A and B cycles of the conifold (with the D3 charge being canceled by the O3
planes), and obtain precisely the effective field theory for z, p and 7 described there.
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4.2 F theory models

Another general class of warped models arises from F-theory compactifications to four di-
mensions. In such models the possible configurations of branes and fluxes are constrained
by the topology of the elliptic Calabi-Yau fourfold X — M, via the equation

x(X) 1 /
- =N H;y A F5 . 4.4
o1 D3+ 2/—{%0T3 “ 3 3 (4.4)

The left-hand side of this equation arises from the induced D3 brane charge on the wrapped

D7 branes, and this charge must be compensated by introducing either wandering D3 branes
or appropriate fluxes in the base M of the elliptic fibration. In general one could also
introduce nontrivial gauge bundles in the wrapped D7 branes (which would yield another
term on the right-hand side of (f.4), corresponding to the instanton number in each D7-brane
gauge theory), but we will not need to use this freedom. Because x > 1 is attainable for
Calabi-Yau fourfolds, this class of models should allow a great deal of freedom in choosing
appropriate flux and brane configurations for model building. Earlier discussions of fourfold
compactifications with nontrivial fluxes can be found in [33, B, B2, BY.

Because of SL(2,Z) monodromies around the (p, ¢) 7-branes wrapping surfaces in M, the
fluxes should really be viewed as transforming as sections of a nontrivial bundle (as detailed
in section 2.1). However, we will focus our attention on a local region around a conifold
singularity in the base M, and will write our formulae in terms of a local trivialization of
this bundle. This is particularly simple in orientifold limits of F-theory vacua, and we will
be most explicit there. Since the most general F-theory model does have an orientifold locus
in its moduli space [[Q], this does not constitute a serious loss of generality.

4.2.1 The Fourfold

To embed the Klebanov-Strassler system into an F-theory compactification, we need to
exhibit an elliptically fibered Calabi-Yau fourfold X which admits a conifold singularity in
its base M. A simple example can be designed as follows (the generalization to construct
other examples is straightforward).

Consider for M the hypersurface given by a quartic equation in P*

4 4
P=20"z)—tz+> 2z =0 (4.5)
i=1 i=1

where z; are the homogeneous coordinates on P*, and ¢ is for convenience taken to be a real
parameter. One can construct a fourfold X over M by specifying a Weierstrass model

y =2+ af(z)+ 9(z) (4.6)
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where y € 3L, x € 2L, f € H°(4L) and g € H°(6L); here L is the line bundle given by
L = — K in terms of the canonical bundle of M. In practice for this model, we can think of
f and g as being polynomials of degree 4 and 6 in the homogeneous coordinates z; (restricted
to M).

In type IIB language, one should think of the model (f[.§) as corresponding to a compact-
ification of IIB string theory on the quartic in P*, with various (p, ¢) 7-branes appearing at
the loci where the elliptic fibration degenerates, i.e. where the discriminant

A = 4f° 4 27¢7 (4.7)

vanishes. The physics associated with such degenerations involves enhanced gauge symmetry
and more exotic phenomena, and is described for many cases which arise in compactification
on CY threefolds in [, i3, [3]. However, for our interests we want a degeneration of the
base which is unrelated to the physics of the 7 branes, and we will simply insure that the
loci in M of interest to us do not intersect the A = 0 discriminant locus. For later reference,
the value of the IIB axion-dilaton 7 is determined in terms of the Weierstrass data by the
equation 2Py
2
i) = 4f3( —I—f2)7g2
where j(7) is the modular invariant function of 7, normalized so that j(i) = (24)3.
Eqn. (:22) gives the background D3 charge for this configuration. For the model (L),
one can evaluate x by using the formula in [I4], with the result that
b= X 12+15/ a(M)P = 72 (4.9)
24 M
Inspection of ([L.J) reveals that M has a conifold singularity as t — 0 — one can solve
P=dP =0at (0,0,0,0,1). The collapsing three-cycle can in fact be exhibited explicitly, as
the fixed point locus of the involution z; — Z;. On this locus, the z; must be real. One can

(4.8)

see from ([L.H) that without loss of generality on the real locus z5 # 0, so we can take z5 = 1

and fix the projective symmetry. Denote the real part of z; by x;. The equation becomes
4
Y () +af) =1t (4.10)
i=1
and by defining u; = y/x} + 22, and choosing the branch of the square root where sgn(u;) =
sgn(x;), we get a 1-1 map onto the locus

>l =1t (4.11)

i=1

which describes an S? that collapses as t — 0. This is the A-cycle of the conifold.
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4.2.2 Orientifold Limit

Following the work of Sen [0 we can present X on a locus in its moduli space where it has
a particularly simple description, as a type IIB orientifold. Choose f and g so that they
satisfy

f=Cn(zi) = 3h(2:)?, g = h(z)[Cn(z) — 2h(2:)?] (4.12)

with h,n arbitrary functions of degrees 2 and 4. Since f is quartic this allows for a generic
choice of f, but is a specialization of the choice of g. Then from ([£§) it is clear that as
C — 0 with  and h fixed, j(7) — oo wherever the numerator does not vanish. This means
T — 100 almost everywhere on the base, i.e. we are at weak type II1B coupling.

In fact in this limit, the model becomes an orientifold of type IIB on a Calabi-Yau
threefold M. M is a double cover of M, specified by the equation (f.5) together with

€ —nh(z) =0 (4.13)
where ¢ is a new coordinate (valued in the line bundle L). We orientifold M by the action
£ — =& (4.14)

composed with Q(—1)z which fixes the locus & = 0, yielding an O7 plane localized at

One must also introduce D7 branes to cancel the RR tadpole generated by the orientifold.
Inspecting the discriminant A, which is

A = C*n*(4Cn — 9h?) (4.15)
in the limit (fZIJ), one can see that there are a pair of D7 branes located at 7(z;) = 0 in M.

4.2.3 Embedding Klebanov-Strassler

We have now reduced F-theory on X to IIB string theory on the orientifold of M by ([ET3).
Recall that as ¢ — 0, there is a conifold singularity in M, which survives in the orientifold
of IIB on M. We can choose h and 71 to be of the form

h(z) = Z: aizt, n(z) = Z bz} (4.16)

with a; and b; real and positive. With such a choice, the loci A = 0 and n = 0 where the
O7 and DTs are located do not intersect the real slice of M. But the collapsing three-cycle
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in M as t2 — 0 lies on this real slice. Therefore, the D7 branes and O7 plane do not lie
near the conifold singularity, and we can work in a local neighborhood of the conifold in the
orientifold of M while ignoring these other branes.

At the conifold point there is a collapsing A cycle in M\, as well as a dual B cycle
in M which it intersects once. We expect to be able to put flux through both of these,
consistent with the orientifold projection. The background charge ([.9) is still in force in
the orientifold limit (the D3 charge comes from the induced charge on the wrapped branes);
and can be cancelled by choosing appropriate H3 and F3 fluxes through these cycles. If we
choose to put M units of RR three-form flux through A and K units of NS three-form flux
through B, with MK = N < 72, then ([£4)) can be satisfied (for N < 72, we should add
wandering D3 branes or turn on other fluxes to saturate ([4)). This allows us to reproduce
locally, in a neighborhood of the conifold point in (the orientifold of) M\, the solution of
Klebanov and Strassler [[f]. That is, the local geometry is the same as the gravity dual of
the SU(N + M) x SU(N) gauge theory considered there. Even with the values of M and K
which are possible in this model (much larger values of y, and thus larger values of K, are
possible in other examples), one can generate a large hierarchy from the RG cascade, as we
have demonstrated in section 3.

Stabilizing the dilaton in such an orientifold requires some other generic addition to the
low-energy superpotential. One way to accomplish this is to turn on additional fluxes, as
discussed in §3. An alternative is to work at generic points in the F-theory moduli space,
which we discuss below.

4.2.4 Deforming Away from the Orientifold Limit

To understand the low energy physics governing an orientifold model with a conifold sin-
gularity and appropriate fluxes, one should compute the effective field theory governing (at
least) three different moduli, as described in §3. These are the complex modulus z which
controls the volume of the collapsing three-cycle at the conifold, the dilaton 7, and the overall
volume of the space p.

In our F-theory situation, however, we could consider moving away from the limit of
84.2.2, so that the model is not a perturbative IIB orientifold. Working away from the orien-
tifold limit while keeping the F3 and Hs fluxes as before, one achieves some simplification.[
While p (the size of the base M) and z (here controlled by ¢? in (7)) remain moduli in the

12Note that fluxes which were projected in by the orientifold action are guaranteed to adiabatically deform
to consistent G'(4) fluxes in the full CY fourfold geometry.
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F-theory picture, the dilaton does not remain an independent modulus. It is fixed in terms
of the complex structure of X by the equation (B.36), with solution ([.g).

This means that the naive problem with solving the D,W = 0 equation in the vicinity
of the conmifold point, solved in §3 by for example turning on an additional flux, will not
occur here. 7 does not appear as an independent mode in the low-energy effective field
theory. The modes controlling the complex structure of X, which determine 7 via ([[.§), are
frozen on general grounds by just the Klebanov-Strassler fluxes, as described at the end of
§3. Although our discussion there was in terms of perturbative type IIB string theory, there
is an alternative derivation which goes through M-theory. One can view F-theory on X as
being defined by a limit of M-theory on X (where one shrinks the volume of the elliptic
fiber in going from M-theory to F-theory). The superpotential for complex structure moduli
in M-theory on X is given by the formula (.41]) where G4 is the M-theory four-form flux
and €y is the holomorphic (4,0) form on X. The formula (B.7]) for the IIB string theory
superpotential follows from (P.41]) in the F-theory limit, for suitable choices of G4 (those
which lift to G(3) flux in IIB language) and in the case that X is a Calabi-Yau threefold times
a two-torus. In the more general F-theory case, X is not such a product, but nevertheless
the A and B cycle in M that we have been using lift to 4-cycles in X and allow use of the
local decomposition (B-42). The statement that the complex moduli (and therefore the value
of 7 at the conifold point in M) are fixed then follows from the fact that the period of €4
over the lift of the B cycle will have generic dependence on the complex structure moduli.

We saw in §3 that fixing the dilaton, either by this mechanism or by turning on additional
fluxes, allows one to solve for z. The exponentially small value of z computed from the su-
perpotential of [f] independently confirms the existence of a hierarchy for reasonable choices

of M and N (and represents the small, dynamically generated scale of chiral symmetry
breaking in ).

5 Conclusion

There has been a great deal of interest in finding string theory constructions which produce
large hierarchies through warping, and in particular reproduce, at long wavelengths, features
of the RS1 model [[l]. Building on the ideas of Verlinde and collaborators [fl, BY|, we have
described orientifold and F-theory models which accomplish this. The role of the AdS throat
and the infrared brane is played by (a finite radial segment of) the gravity dual to a confining
gauge theory found by Klebanov and Strassler [[]], while the UV brane is replaced by the
bulk of the string theory compactification manifold.
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Our models are consistent, nonsingular string theory backgrounds. However, we expect
o/ and string loop corrections to generate a potential for the overall scale p of the compact-
ification manifold. An analogous problem also arises in familiar classical heterotic string
backgrounds [20, ], and in some ways our models are quite similar to those (with the
important difference that non-perturbative gauge theory effects have already been incorpo-
rated in the classical gravity solution). It would be very interesting to find mechanisms for
stabilizing p in these models; toy models where all of the moduli are stabilized by fluxes can
be constructed [[[9].

The duality between gauge theories and compactifications with flux extends beyond the
single example [[] we have used here. The results of [[] provide a more general construction
of dualities between fluxes and gauge theories, and quantum gauge theory effects are again
calculable using classical geometry. It would be interesting to use other examples of this
gauge theory/flux duality to construct N' = 1 string compactifications with moduli which
are calculably stabilized by non-perturbative gauge dynamics.

Finally, it has recently become clear that warped compactifications offer new mechanisms,
distinct from AdS redshifting, of producing large hierarchies [[f5]. The relevant warped mod-
els need to have two or more different brane throats, with fairly generic warping (so power-law
warping is sufficient). Large hierarchies can then be produced by the tunneling-suppressed
(and therefore weak) interactions between the IR modes localized down distinct throats. It
should be possible to design string theory examples of such multi-throat compactifications
by generalizing the construction in our paper.
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A Dimensional reduction

We now develop further the low energy effective action, discussed in section 2. Before
turning on fluxes, the underlying manifold M generically has a large number of moduli and
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corresponding massless supermultiplets in the four-dimensional low-energy effective theory.
Turning on fluxes deforms the geometry of the compactification, and in the four-dimensional
effective theory generates a potential for the massless moduli [§, Bg].

A.1 Kinetic terms and Kahler potential

The allowed moduli depend on the topology of the compactification, though one generically
has the universal Kahler modulus corresponding to overall rescaling of the six-dimensional

metric. This has partner a,,, arising from

Cluvpg = Qv Jpq (A1)

where J is the Kahler form. We work in the approximation of constant warp factor and
vanishing Fy; as discussed in section 2.2.4 this is valid in the large-radius limit (although
we expect our expressions to generalize beyond this). The effective action for this Kéhler
multiplet together with the 4d metric and dilaton can be found by computing the action

(R.3) with

ds* = g datdz” + e*®) g, dy™dy" (A.2)

where g, is the metric of the compactification. In doing so, we define the 4d Newton’s

constant k3 = K%,/ V where V is the volume of M, and the Weyl rescaled metric g5 = e~6%g,.

We also dualize, da(e) = e "**db, and define p = b/ V2 4 ie= 4 The result is

1 . . 0, TO*T 0,.p0*p
S =5 [de (=g Ry -2 — 67 A3
o J ) 2 O, —
The kinetic terms for 7 and p can thus be found from the Kahler potential
Ki=—ln[—i(r —7)] = 3In[—i(p— p)] . (A.4)

In the O3 case, both 7 and p survive the projection. In the case of an F-theory compact-
ification, the D7-brane monodromies generally remove 7 from the 4d spectrum, although 7
varies as other complex structure moduli, e.g. parameterizing the locations of the D7 branes,
vary.

The remaining moduli are the other Kahler and complex structure deformations of the 6d
compactification, or, in the F-theory context, of the eight-dimensional Calabi-Yau manifold.
In the following, we imagine for definiteness that M is a Calabi-Yau orientifold, and we
discuss the complex structure moduli space of Calabi-Yau threefolds, but the relevant parts
of the story carry over also to the F-theory examples.
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As shown by Candelas and de la Ossa [B4], the effective action for CY moduli is de-
termined by the Weil-Petersson metric on the moduli space, and one may derive a simple
expression for the corresponding Kahler potential. First note that on a general CY threefold
there are the following harmonic forms:

1. One (3,0) form €.

2. by primitive (2,1) forms xa,.
3. Their (1,2) conjugates Ya-
4. The (0,3) conjugate Q.

These satisfy
x60 = —i€) ,  *6Xa = IXa - (A.5)
As discussed in section 4.2, only forms of odd intrinsic parity under the Zs projection are
relevant. This includes €2 and a subset of the y,. In the subsequent analysis « is restricted
to this subset.
The metric for the complex structure deformations takes the form

(A.6)

To find the corresponding Kahler potential, let z* be coordinates on the complex structure
moduli space. Then it can be shown that 9€2/0z¢ is (3,0) + (2, 1), and more precisely that
there is a basis x, such that

Q
% =ka(2,2)Q + Xa - (A.7)
Defining
Ky = —ln(—z QA Q) , (A.8)
M
one may then show
0o = —kq (A.9)
and the equation
&ﬁglcg = Gaﬁ‘ (A.lO)

gives the above metric.
In the context of an F-theory compactification, an obvious generalization of (A.§) is

K = —ln(/X Q4/\Q4> . (A11)
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A.2 The potential and superpotential

We now turn to the problem of finding the potential determined by the fluxes. From (R.3),
the potential is determined by

1 Gy TP
Sy = /M doygt/22mm s (A.12)

24k3, Im7
Again, we are in a large-radius approximation where the warp factor is constant and F, 5y = 0.
We define the imaginary self-dual parts of G'(3) as
1
_ + .
G(g) - GEE) ‘I’ G(3) 5 G(g) - i(G(g) j: Z*GG(g)) 5

G5 = FiGG) - (A.13)

The action can then be written as

1 _ 7 _
So = _7/ d®x gY2GT  Gtmme 7/ Gy AG
¢ 1263, Im 7 Jm Ty mnp 4k3,Im 7 Jm ) )

17 —

where we define the potential

1 + A+
V= ARG Im T /M G NG (A.15)

The second term in ([A.14) is proportional to pu3Q§, where us is the D3 tension and QY is
the D3 charge carried by the three-form flux. This term is topological and does not involve
the moduli. It is canceled by the tension of the localized sources, because these have total
D3 charge Q¥° = —QY and saturate the inequality (P-20).

(A.3) implies that V' only depends on the coeflicients of € and ya when G/3) is expanded
in the basis of 3-forms. In terms of the metric (A.§), we find

/ G/\Q/CZ AQ G“B/G /\Q/CZ A X
:Z/M 3) @A O N X TN

V — (A.16)
Alm 7 K3, / QAQ
M
This can be derived from a superpotential of the form discussed in refs. [B, [ig, [,
W= /M Gy A Q. (A.17)
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Indeed, from ([A7],A-4) we find

DWW = 9. W + (0.K)W = /M Gs) A Xe

1 _
DW= 8, W + (8,0)W = — / Gy AQ (A.18)
M

T—T

where I = K1 + Ko, After a Weyl transformation to the four-dimensional Einstein frame,
the potential takes the standard N/ = 1 supergravity form [[7], as in eq. (243).

This potential has been discussed before [[I§], but in somewhat different contexts. In
the first place, these earlier systems had A/ = 2 low energy supersymmetry, even when
the potential was written in N/ = 1 form. Here, the orientifolding or the F-theory D7
configuration explicitly reduces the low energy supersymmetry to N’ = 1. Second, objects
with negative D3 charge were not included, so the fluxes were restricted to [y, Hsy A Fis) = 0.

The conditions D,W = D,W = 0 imply that G@) = (0. Thus the effective four-
dimensional action reproduces the ten-dimensional conditions (R.31) for a solution. Unbroken
supersymmetry requires also that D,WW = 0, implying that the (0,3) part of G 3y vanishes
and so this flux is (2, 1) and primitive, again as argued directly in ten dimensions. The latter
condition is equivalent to W = 0; this will generically not hold when D, W = D, W = 0.

The F-theory generalization of this discussion readily follows, with superpotential [§]

W= /X Gy A (A.19)

where G4 is the F-theory lift of the flux, locally given in eq. (£.47).

This dimensional reduction has been carried out in a limit that is rather orthogonal to
the main concerns of this paper, in that the warp factor is constant rather than strongly
varying, and F(g,) = 0. The detailed treatment of dimensional reduction in the warped case
is left for the future (see also ref. [BY]), but in the present case we can argue that the key
results are unaffected. In particular, the ten-dimensional analysis of section 2 shows that
the solutions found from the effective action derived here remain solutions even when the
warping is taken into account. The physical reason is that all localized sources as well as the
supergravity fields couple to the warp factor and the 5-form flux in the same ratio, so that
there is no net force.

The superpotential derived in the large-radius limit is exact in string perturbation theory.
This is because the real part of p is an axion, obtained from the tensor field (A1), and so
there is a Peccei-Quinn symmetry broken only by D-instanton effects. Thus p cannot appear
in the superpotential [9]; the same will be true of all other Kéhler moduli. Note that this
is not true of 7. The field C(g) appears in the classical action through the definition of G 3,
so there is no PQ symmetry and 7 does enter into the classical superpotential (R17)).
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