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Abstract

The formulas for coherent instabilities are summarized with the emphasis on
realistic fill patterns.

1 Introduction

The analytic formulas for the traditional coherent instabilities in the high-energy storage
rings are summarized to be used to study the proposed PEP-II upgrade. Most of the
formulas are known and given with small modifications which may be useful to describe the
beam stability for the realistic fill patterns. Some recent results are added. The formulas
are given for the most important instabilities. That let us to simplify the formulas rather
than to write them in the most general form.

2 Steady-state RF conditions

Here we follow P. Wilson [1] and G. Kraft [2].

Consider an rf cavity with the frequency of the fundamental mode w,., Qo-factor, and
shunt impedance Rj.

A cavity is excited by the wave coming from a klystron by some wave guide with the
(real ) wave impedance Z,,. The incoming wave is described by the current I;, and voltage
‘/in7 Iy, = ‘/;n/Zw

Let us assume that the wave guide is coupled to the cavity through a transformer with
the transformer ratio n. If there is no perfect matching, there is a reflected wave in the
wave-guide with the amplitudes I, and V,, I, = V,./Z,,.

*Work supported by Department of Energy contract DE-AC03-76SF00515.



The excitation current I, and the cavity voltage V. are given by the transformer ratio

1 1
I Iin_[r :7‘/;71_‘/;“
= ) n%( )
V., = n(Vin + V,.). (1)

Excluding V.,

Ve 1 Ve
== Vi, L= Wi — —5). 2
V; - Viny  lex nZw(Vin n) (2)

The cavity is considered as an oscillator driven by the external current /., and the
beam current Ig. Using the superposition principal, the variation of the cavity voltage
Ve(t) is described by the following equation:

d? we d WCRO . .
g [ Fe 2 Vi(t) = I, —Ig]. 3
(G + o D Velt) = “5 s — ) g
Using Eq. (2), this can be written as
d2 We d WCRO r
— V.(t) = I, — Ig]. 4
(dt2+QLdt+w) () QO[Q B] ()
where the loaded Q-factor
Qo
QL - 1+ 57 (5)
is defined in terms of the rf coupling 3,
Ry
b= (
and the generator current
2n
Let us denote the complex amplitudes with hats as in
P —iw
,(t) = S (Ie ! + c.c). (5)

Here w,/2m is the rf (klystron) frequency. For a point-like bunch, the amplitude
I = 2% where I is dc component of the beam current.

The average incoming power P;, reflected power P,., and power transferred to the
cavity P, are



~

P = "ZnP _ R0|jg’2 P = HA/T‘Q _ |‘A/c‘26|1 - R()Ig|2
27, 8 T " 27, 2R, 28V,
1, e Iy BV
P, = —Re[l..V]] = 9] — , 9
tr 2Re[ Ex‘/c] Re[ 2 ] 2R0 ( )

It is easy to check that P, = P, + P,,.
As it follows from Eq. (4), the voltage in the resonance (w, = w,) is related to I,

V. = (I, — Ig) Ry, where the loaded shunt impedance Ry, = Ry/(1 + 3). Then,
PtT:PC+PB’ (10)
where the power lost to the cavity walls P. and power transferred to the beam Pp are
_ P
2Ry’

. Velp

PB:RG[

] (11)

Let us choose the phases in respect to real I 4 and define the rf phase ¢, of the beam

1 - ) A aA .
Ip(t) = 5([3672%’15 +c.c), Ip=|Ig|el?—%) = o[dei(ds=9c), (12)

The phase ¢; is the rf phase defined by the energy loss per turn. With such definition,
the voltage on a cavity and the beam current vary in time as

Vo (t) = |V cos(wgt + ¢c), Ip(t) = 2I% cos(wyt + ¢o — Bs). (13)

A particle crossing the cavity sees the voltage V.. = ]170] cos(¢s). If particles shift toward
the head of the beam train by z > 0, then ¢, is replaced in I5(t) by ¢s —wyz/co and the
synchrotron tune v? o sin(¢s). For stability, sin ¢, > 0.

Solution of Eq. (4) is

Ve = Ze(wy)(y — Ip) (14)
where the cavity impedance
(R
Z.(w) = — gl @e) (15)
w we QL
Defining the detuning angle v,
w w
t =QL(—2—-—= 16
() = Qa2 = %), (16)

the cavity impedance can be written as



Z.(wy) = Ry cosppe™. (17)
Note that |¢]| < 7/2.
Eq. (15) takes the form
V, = |Vile™ = Ry, cosyp eV (I, — 20! (#:=9)), (18)

where the phase ¢, of the cavity voltage in respect to the generator current is introduced.
The accelerating voltage V. is related to the average power Pg = I%CVM transferred
to the beam. Eq. (11) gives

1 ~ 4
Py = 31Vl sl cos(on) = I8Vae (19)
Then, V,. = |V;| cos(¢,), and

Vie = Ry costp €'VF0) ([, — 21 deei(:=)) cos( ). (20)

V,c is real. Hence,

P o pacSin(Y + )

The cavity voltage and the power from klystron are

Sin(¢s - ch) COS(¢>

V= 2R )
_ Rogevosin(v + ¢s) 5

For the beam stability, the accelerating voltage has to have negative slope, dV,../d¢,s <
0 so that a particle having larger energy and, therefore, shifted above the transition energy
to the tail dz/dt = —adcy, sees the accelerating voltage Ve = ]VC\ cos(ps — wyz/cp) less
than that for the equilibrium particle.

Let us define

2Ry 1%
y =2%8 (23)
Ve

Here Ry and \‘7@! are shunt impedance and the amplitude of the voltage per cavity.
The voltage Eq. (22) can be written as

1+38  sin(¢s — )
Ycosv  sin(y 4 é.)

(24)
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Taking the derivative over ¢, we keep I&, v, 3, and I, constant. Determining the
derivative d¢./d¢s from Eq. (21), we get

dp. _ tan(y + @)

dps  tan(vy + ¢s)’ (25)
. d 1 v (¥ + )
cos cos s
M(?> - (14 G)sin(¢) + ¢.) [cos($s = de) - cos(¢) + (bc)]' (26)
Here, the phase ¢. can be determined from Eq. (24),
oy (1+f)sin(y + ¢s)
tan(gs = ¢c) = Y costp + (1 + 8) cos(vp + ¢s) (27)
Using this, Eq. (26) can be simplified,
d 1, sin(¢) + ¢5) cos Y
dgbs(?) 1+ B+ Ycosy cos(v+ o) (28)
The stability requires (cos¢s/Y)" < 0, what can be written as
Y sin(2¢) — 2(1 + () sin ¢ — o (20)

14+ B+ Y cost cos(v) + ¢,)

The denominator is usually positive and Eq. (29) gives the Robinson criteria of stability

Y sin(20))

/2> ¢s > 0; 20+ )

< sin ¢s. (30)

2.1 Optimum conditions

The "optimum conditions” correspond to cancellation of the reflected wave from the
cavity, V, = 0. In this case, Egs. (2), (7) give

Vae = | Vel cos(¢s),
.~ Ry-
V.=—1,. 31
2/8 g ( )
Hence, the cavity phase ¢. = 0. Separating the real and imaginary parts of Eq. (20)
gives two equations. They give the following relations:

tany = g; ] tan ¢,
B =14+Y cos gps. (32)



In this case, V,. = |‘A/C| cos ¢, and

2(1)2 R, V.2
P=—="—(14+Y 1+Y ..
= T Yeos ) = DE-(14 Y cosg).) (33

2.2 Parked cavities

An idle cavity is excited only by the beam at the rf frequency w, and I, = 0. Then,

Ry
=501 s

and PC—FPT—FPB:O.
The impedance of the cavity is given by Eq. (15). Eq. (20) for the idle cavity takes the
form

BRy

‘Ib|2COS 7% Pc (1+ﬁ)

|Ib|2COS 7% P?” = ’[b‘QCOS w:

(34)

R
2(1 + )

= |Vi|e™e = 21 R, costp ! VH9s), (35)
To be consistent, the phases have to satisfy sin(¢. + ¢ + ¢5) =0, or ¢, =7 — ¥ — ¢
The parked cavity contributes to acceleration V. = —|V.|cos® which can be minimized

with large 1 ~ /2.

2.3 Low-level rf feedback

The low-level feedback is described by the feedback open-loop transfer function

G(w) = H(w)e'@wa)mrs, (36)

where H is the gain factor and 7rp(w) is delay time.

The feedback detects a signal V from the cavity generating the current I B = Ve / V./ZFrB.
The generated current is applied to the cavity (in parallel with the beam and generator
currents) with the opposite polarity generating additional voltage

Ze

oV, = Zdpp = —V.. (37)
Zpp
By definition, 6V, = G(w)V,, and
Z
Zpp = ——. 38
FB G(W) ( )

The total voltage is the difference of the voltage cavity V., = Zc(fg — fB) and OV,
Hence, V. = Z.(I, — Ig) — GV,, i.e.



Vo= Ziw(l, — Ip), =+ 39
wlly =18): = 7t s (39)
or
. Z. . .
V.= I, — Ip). 40
1+G(g B) (40)

The total impedance in Eq.(39) for small Aw = w — w,. and for small delay time
wyTrp/Qr << 1 take the same form as the cavity impedance Eq.(15) but with R,
replaced by Ry = R /(1+ H), and Qr by Qu = Qr — w.trp/[2(1 + H)],

(R /Qu)(we/2)

Lot = : . 41
T — we + i(we/2Qn) (41)
2.4 Noise of the klystron
The generator current I,(t) = (1/2)I,e*s* + c.c. induces the cavity voltage
V.(t) = I, Ry, cos 1) cos(wyt — ). (42)
The noise of the klystron
dw —iwt
Aly(t) = gA[(w)e : (43)
induces fluctuations of the voltage on the cavity
AV, (t) = / ;lec(w)A](w)e_M. (44)
T

Additional averaged over time power AP =< AI,(t)AV,(t) > can be written in terms
of the spectral density of the noise

< AI(W)AI(W) >= 27 < |AI]2 > §(w — ) (45)

as

AP :/Z:Re[Zc(w)] <|AI > . (46)

For the broad spectral density,

AP — w (B0 < |arp > | (47)
Qo

The induced voltage AV,(t) on a localized cavity drives the synchrotron motion of a
bunch



d*z n dz - wa(t) awyC
wiz(t) = —
ae " 2

eAV,(t) > et (48)

n

where wg/2m is revolution frequency FE is the particle energy, and 74 is radiation
damping. The induced fluctuations are

B awocz/ (w)AI(w)e wmwo)t
- 2nE 21 w? — Z”ydw—nwo) (w—nwp)?

The average < z(t) >= 0. The rms < z2(¢) > is given in terms of the spectral density.
If fluctuations are independent for n, cavities in the ring, then

o2 2 2
9 awoc / |Z( )|? < |AIZ >

< z° >=mn.( . 50

: " Z 21 [w? — (w — nwp)?]? + v3(w — nwo)?| (50)

For the PEP-II, the radiation damping 1/, ~ 18 ms, and the width of the impedance

Aw = w,/(2QL) > ws >> 4. Therefore, the main contribution is given by n = w,/wy
and

(49)

awoc)QeQ\Zc(wg +ws) 2 < |AT)2 >
2rE 2w2yy

In terms of the fluctuations AP per cavity, and neglecting the difference between
Ze(we + ws) and Z.(w..), we get

2

< zf >=mn.(

(51)

9 eawoc,, RpQr AP 9
- . 2
The estimate of the effect can be obtained from
<z2> 1, w Qo cos? AP
2 - ( 3 ) ( 2 12 2) ( )’ (53)
0% Ne WY 4(1 4 5)?sin® ¢ () P.

where the power per cavity P, is given by Eq. (11). The last factor in Eq(53) is the
relative power of fluctuations per cavity and can be measured experimentally.

3 Longitudinal beam stability

Here we start discussion of the coherent instabilities. Some definitions are given in Ap-
pendix I.



3.1 Potential well distortion

The PWD bunch lengthening is the main effect below the threshold of the microwave
instability.

Let us use the dimensionless variables x = z /o, p = —0/dp, where z > 0 is the shift in
respect to the bunch centroid to the head of a bunch, o and d,y are the zero-current rms
of the bunch length and relative energy spread, respectively. The Fokker-Plank equation
has the implicit steady-state Haisinskii (Boltzmann) solution for the distribution function

]_ ! ! !
plx,p) = W|6{P2/2+Uo(ff)+>\ofdl“ p(a')Slop (' —2)]} (54)

Here | N| is normalization constant defined by [ dpdzp = 1,

2?2 wyop 2t w.op
_ T We0By T (WeOB o
)\ o NBre
* " 2rRyad?’
S(z) = / AW, (55)
0

Np is bunch population, r, is classical electron radius, « is momentum compaction,
W (z) is the longitudinal wake (dimension V/pC or 1/em), W(z) = 0 for z < 0. In Uy the
rf nonlinearity of the lowest order are taken into account, the (zero current) synchrotron
tune, v2 o< sings, and the rf phase ¢, is defined to have sin ¢, > 0.

More convenient to rewrite the formulas in the following equivalent form minimizing
contribution of small distances where wake can be a sharp function of z:

1 / AP
,O(x,p) _ |N| 6—{p2/2+Uo(:n)}+/\o fdac p(x’)S[x —:v]}‘ (56)
S(x) = / d2'W (), (57)
oBT

3.2 Microwave instability

The single bunch microwave instability can be considered as extreme case of the mode-
coupling instability where there are many modes become unstable and interact with each
other. The onset of the instability can be expected when at least one of the modes
(azimuthal or radial) is unstable. The history of the SLC damping ring serves as an
example: the old vacuum chamber used to give the substantially inductive wake and the
microwave instability was related to the unstable azimuthal sextupole mode (”strong”
microwave instability). After installation of a new, smooth vacuum chamber, the wake
became mostly resistive and the instability was related to the unstable radial modes



("weak” microwave instability). Although the weak instability had lower threshold, the
violent saw-tooth bunch dynamics was eliminated.
The threshold of the stability is usually estimated using Keil-Schnell criterion:

peak
%rofgléréjg/e) |§’eff <1, (58)
where the peak bunch current,
Tpnen = V21 (R/og) liwety, T, = eNg fo, (59)
and the effective impedance
Z 1 Z(pwo)

Z ha (pw())

Zopr = —————— 60
|n‘ ff Eha(pwo) ~ ( )

is convolution of the longitudinal impedance with a-th momentum of the bunch spectrum

wop W73)2

ho(w) = (F2)%e o), (61)

Co

For broad-band impedance, Eq. (60) can be written as

VA 2$2a+1 00
T i by T L) @
where x = wyopg/co.

The threshold is, usually, given by the momentum a = 1 because a = 0 corresponds
to perturbation of the bunch as a whole and terms a > 1 are small.

K. Oide has shown that the microwave instability is related to the anharmonicity of
particle trajectories in the distorted potential. The analytic formulas which we use in the
code for calculating the threshold of instability are given in Appendix 2.

3.3 Multibunch longitudinal stability

Results [3], [4] (F. Sacherer, J. M. Wang, B. Zotter) for the uniform fill of the ring are
well known and can be found in the textbooks. The derivation is given below to clarify
the implied approximations and to give formulas which can be used for arbitrary filling
pattern and for the sake of completeness.

Let us consider a train of n; bunches. In an equilibrium, the N-th bunch center is at
the distance sy > 0 from the head of the train which is at the location s = cotmod(27 R)
around the ring. The distance sy may include the shift of the rf phase due to the gap in
the train. Position of the i-th particle in the N-th bunch is

sin(t) =ct — sy + zin(t) (63)
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where z > 0 is displacement to the head of the bunch due to synchrotron motion,

zin(t) = z?\, + a; y sin(wst + ¢; ). (64)

The first constant in time term is related to the equilibrium rf phase, w,2%/c = ¢s n
of the N-th bunch. In the last term, the amplitude a;, may be itself a slow function of
time. The offset 2% is included in sy.

The motion is described by the equation

dQZLN(t)

0 2 _ 1
i P = do = SV =) ~ WO (69

where < Np > is average bunch population,

N acyg < Ng > rowg
0 — 271_’)/ ’

n
v = CaollVelre G 6, (), (66)
and W (t) is longitudinal wake (with dimension V/pC or 1/cm), W(t < 0) = 0. Here
a is momentum compaction factor, Np is bunch population, w,/27 is the rf frequency, n,
is number of cavities, and nc|f/6| is the total maximum rf voltage per turn. The phases
¢s(N) are defined by the losses U per turn/per particle and, due to the train gap, are
different for different bunches,

en.Vecos ¢s(N) = U + € Ny(M) W(SNcisM) (67)
M 0

The synchrotron damping is implied in Eq. (65). The longitudinal wake in Eq. (65)
should not include the contribution of the fundamental mode which is already taken into
account defining the steady-state V. and ¢,.

Usually, the group velocity of the wakes excited in the ring is small and can be ne-
glected. This is true for localized components such as rf cavities and also for the resistive
wall provided the skin depth dg at the revolution frequency is small compared to the bunch
length op, 62 << opR.

Then, the time ¢; 5 when a particle j of the M-th bunch is at the same impedance
generating element of the ring as the test particle 7, N is

SN — SMm 1 SN — SMm )]

tig =t — "+ —[zin(t) — 2zt —
iM o CO[ZZ,N() 2, ( o

(68)

This formula is correct for bunches in front of the bunch N with s;; < sy. Otherwise,
sy — sy has to be replaced by sy — sy + 2m Rk, where k is the number of a preceding
turn. This rule is applicable also to the sum in Egs. (67) and (65).
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In the last equation we subtracted term W (0) = 32, W (22 %1) already taken into
account in Eq. (67).
In the frequency domain, the wake is given in terms of the longitudinal impedance,
dw —iwt
o Z(w)e ™. (69)
Substituting ¢ — ¢, 5; and averaging over incoherent synchrotron oscillations with am-
plitude a, we get

W(t) =

Pan(® L LoV Pan() 5 [ e At
dt? s ‘ T < NB > ¢
(/i v (O=2iar(—(sx—sa)/eo)] _ 1}, (70)

The sum can be split over all bunches at a given turn plus over all preceding turns
(neglecting the variation of the bunch populations with time),

N
Ze—i(w/co)((sN—sM) _ { Z —i(w/co)((sn—snr) + Z —i(w/co)((2mR+sN—sn }Z e27rRk
M M=1 M=N+1 k=0

N 00
Z —i(w/co)((sN—sn) + Z z(w/co)((QwR—l-sN—sM)} Z e—iw27r(R/co)k. (71)
M=1 M=N+1 k=0

The last sum gives

Z —iw2m(R/co)k __ = wp Z 5 w — kjwo) (72)

what allows to join two terms in the first sum:

Ze—z (w/co)((snN—sar) = wo Z e —i(w/co)((sn—snr) Z 5(w _ ka). (73)

M=1 k=0

Eq. (70) takes the form

d?z; n(t) 0 C Awy
- LN N2 v (t k —ik(wo/co)(sSN—sMm)
) Pl = 52 3 S 2k
7,
e—(kWOa/Co)2{ei(kWO/Co)[Zz‘,N(t)—zj,M(t—(SN—SM)/CO)] 1}. (74)

Dipole oscillations of bunches can be described considering bunches as a macroparticle,
zi N = zn, and using the linear approximation over the amplitudes of coherent synchrotron
oscillations. That gives

12



d*zn(t) INws
X N 2 . _ 0 kZ k —ik(wo/co)(sSN—Snr)
gz TNz () 27TCOZ<NB>Z (kwo)e
e o/ 2 v (E — (5w — s) /o), (75)

where the tune shift is included in wg(N),

iAW _ _ 2
) N) = 0 i 0 k'Z k i(kwo/co)(sN—snr) ,—(kwoa/co) ) 76
) = (V) = 00 ST ke : (76)

For the uniform distribution of equal bunches around the ring,

Z e—i(kwo/co)(sN*sM) =Ny Z 516,711717' (77)
i p

In this case, the coherent shift is the same for all bunches. Eq. (76) is simplified,

mb)\owo

s = uf D (up) Z(p)e e/ (78)

* Arwlc

The solution of Eq. (75) can be found in the form

ds? ,
Zn(t) = gaN(Q)e_’m + c.c. (79)

If the coherent Q2 << wy, ay(w) satisfy the following equation

23

i)\owg —i(k . _

Qan(Q2) = kZ(k i(kwo—ws (N)—=Q)(sn—sar)/co
an() s (N MZI - NB > Z

e*(kwoa/co)zaM(Q + wS(N) — W5<M))- (80)

If variation of the tune shift is small, |ws(N) —ws(M)| << 2, Eq. (80) is reduced to a
linear matrix equation

z)\gwg
Qan(Q)) = ——F—F7F— Kqo(N, M Q 81
a(Q) = T le a(N. M)ay (%), (81)
where the matrix
KQ(N’ M) — M ZkZ(kw ) (i/co)(ws(N )+Q—kw0)(sN—SM)e—(kwoa/co)z‘ (82)
< Np > 7

Then, ay(€2) is given by the superposition of eigen-vectors X4;(Q), u = 1,2,..,ny of
Kq(N, M),

13



Ka(N, M)X () = r, X1(9). (83)

The spectrum of € is discrete, Q,, 1 = 1,2,..,n; has to be proportional one of the
eigen-values k,,
0 i)\ou)gﬁu . Oé]beamwg Ky
= =1 —.
Podnw,(N)ey  Am(E/e)ws(N) ny
In the opposite case of |ws(N) —ws(M)| > Q the instability is stabilized by the spread
of the bunch-to-bunch synchrotron frequencies.
For equal uniformly distributed bunches, the eigen-vectors are

(84)

X(Q) = (1/y/fmg)e2mtt/me, (85)

and the eigenvalues are

Ky =Ty ngz(gpw())eigg(a/R)Qa gp = TP + 2 + Vs + QM/WOJ n = 17 2"7 Np. (86)
p

The general formula for the uniform fill and m = 1,2.. is given by Wang. It cited in
ZAP manual [4] with some errors. The formula below is corrected version [3]:

e [ (op/2R)Hm=1)

Qum =

o Z47T(E/e)u)s ml(m — 1)!

S° oy + o4 )Pt Pret e KOs/ 7 (yp 4 muvg)wol. (87)
p=—00

The dipole oscillations considered above correspond to m = 1.

3.4 Robinson Instability

The Robinson instability usually is defined as corresponding to the dipole oscillations
m = 1 of the p = 0 mode. It is defined by the contributions of the terms pwy = £w,. 1
is proportional to the difference Z(w, + w;) — Z*(w,; — w;). The beam stability requires
Re[Z(wy + ws)] < Re[Z(wy — ws)]. For stability, the cavity has to be detuned down from
the rf frequency, w. < wy.

4 Transverse Instabilities

The transverse motion of the i-th particle in the N-th bunch

14



yin(t) = Ai,N@)@iiwi’N(t) + c.c. (88)

is coupled to the longitudinal motion through the energy dependence of the transverse
tune wy(t) = dip(t)/dt,

dib; N (1)
dt

Yin(t) = wgt — wezin(t)/co, sz = (89)

Here

we=Sub €= (/) v /as) (90)

are the chromatic frequency and the relative chromaticity, respectively. The complex
amplitude A4; v = |A; x|e™¥(©) includes the initial betatron phase 1; x(0) of a particle.
The equation of motion

d?y; N (1
W) | Lt (e (t) = RES,
reC?
RHS_QF 0 ZW jM)y]M(tj,M)7 (91)

where W,(t) is the transverse wake (dimension V/pC/m or 1/em?), W(t) = 0 for
t <O0.

If the coherent tune shift is small compared to wy, Eq. (91) can be averaged over fast
oscillations giving equation for the amplitudes

)= i Wt = )ty

—A Z/ dQ/ Zy(w) Ay (2)e ™
eilw— Q=) N M e(l/@O)(W 94 wg+w§)[Zi,N(t)_Zj,M(t'i‘TN,M)}_ (92)
Here, )
Ay = 47;6%07%8’ TN.M = SMC_OSN7 (93)

A(Q) are Fourier harmonics of the amplitude A(t),

Axt) = [ S av(@)e ™, (94)

and the transverse impedance is introduced

W,(t) =i ;l:r’zy (w) e ™, (95)
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With this definition, Z,(w) for ultra-relativistic case can have singularities only in the
lower half-plane of w.

The first term in the RHS of Eq. (92) is due to interaction of particles in the same
bunch. Other terms describe interaction between bunches and, for bunch spacing large
compared with the bunch rms length o, bunches can be considered as point-like, A; )y =
AM.

The bunch-by-bunch transverse feedback system damps the bunch centroid oscillations
with the damping rate ypp adding to the right-hand-side of Eq. (92) the term

1 NB(N)

_ i, N (t) A ve Win(t) 96
4.1 Head-tail instability
For a single bunch, Eq. (92) gives
A(t) = Xy YWy (t = t)y;(t5) €. (97)
J

For the same bunch, we can average fast oscillating term oc e=?“v! neglect the dif-
ference between t; and t and, for moderate chromaticity, drop the chromatic shift in the
bunch spectrum. That gives

Ailt) = ixy DT W, [2(t) — zi(B)] A (1) e el 02O, (98)
J

In two-particle model (A. Chao), all particles are grouped into two macro-particles oscil-
lating with the same frequency,

21 = asin(ws + ¢1), 22 = asin(ws + @9) (99)
and phases ¢; = ¢, and ¢ = ¢ + 7. The sum over j gives Ng/2. Denoting
Ay N
k= 2(¢/a)(wy/co)a, A= ;wf, (100)
Eq. (98) is reduced to two coupled equations
Al(t) = iAw; W, [—2a sin(wst + ¢)] Ayemirsin(wst+e)
Ay(t) = ihw, W, [2a sin(w,t + ¢)] Ajelrsinlwste), (101)

Solution is described in the A.Chao textbook [3]: it is given by a map, first, from initial
conditions at t = 0 to t = Ty/2, Ty = 27 /ws, and then for the next half period of syn-
chrotron oscillation. The eigen-values of the matrix describing the one-period transform
are
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p=1- ;GQ + \/[1 — ;G2]2 -1, (102)

where
G=A /0 " W, (2asin ey, (103)
Then, A(t) o< p*/, and the growth rate A(t) = e is
r— Re[;s log /1. (104)

The growth rate Eq. (104) includes the strong head-tail and chromatic head-tails ef-
fects.

More accurate consideration of the head-tail instability was given by Satoh and Chin [5].
The result is formulated as a matrix equation

|01 + Kb (N) My (N)] = 0, (105)

for the parameter A = Q/w, where 2 is the coherent shift from the zero-current
betatron tune v, , and the instability takes place when the growth rate Im[] > 0. Here
My, h,l =0,1,2,.. is matrix

My (N) = pioo Z[(p+ v+ Mvg)wolCrl(p + v + Avs — i)g]@[(p +v + Ay — 2)2]7
1 2
Ci(e) = () e =,
o [bunchﬁj_
 4n(E/e)v,’ (106)

Z, (w) is transverse impedance in Ohm/cm, £ = dv, /dé is the absolute chromaticity,
o, is the rms bunch length, R = c0/wy is the average machine radius, and « is the
momentum compaction. The function

02
bu(A) = ,;)(ig!(hhi k;)!) A2 — (f:\— 2k;)2p[h’ £ (107)

where the upper limit is given by the integer part of h/2 and P(h,k) = 1 if 2k = h and
P(h,k) = 1 otherwise. In calculations the matrix is truncated to a finite rank which is
approximately equal to the number of azimuthal modes taken into account. Usually, the
threshold of instability is given by the lowest modes. An example of calculations based
on the Satoh-Chin formalism is given below.
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4.2 Transverse coupled-bunch instability

First, let us study the multi-bunch transverse dipole instability describing oscillations of
bunch centroids.
From Eq. (92), we get

, dw [ dSY
QAn(Q) = =id, S Ns(M) [ 55 [ S2,(@)A50(@)
/ At =t o —(05/c0)* (W= ~wtwe)? o (/o) (w—wl =) (snr—5n)

< eli/eo)(w—wy =0 +we) [z, n (8) =2, (t+(s1 =) /e0)] >, (108)

where < .. > mean averaging over longitudinal motion. The integral over dt can be
calculated substituting Eq. (64) for zy(t) and expanding

6%(w*‘*’g*Q/Ws)[Zz',N(t)*zj,M(tJr(SM*SN)/CO)] _ Z eim(wst+ai ) —im' [wst+ws(sp—sn)/cot¢;,m]
an 0 / am 0 /
Jm[c—(w—wy—ﬁ +wg)]Jm/[C (W —w, —Q +we)]. (109)
0 0

The sum over M can be reduced to the sum over one-turn as it was done in the
longitudinal case, Eq. (108) takes the form

QA; N[Q] = Z i Kﬁjm,(N, M) %Aj,M[Q + (m —m/)wy], (110)

m,m’ M=1 j=1

where

A
Kr?zm’(‘]\f?M):_i ol
' 2

Np(M) > Zy(kwo + w) + mwl + Q)
k=—00
%kwo(sM—sN)-&-imfbi,N—im'd’j,M

e
Tl "X (kwo + we + 1wy )] Ty [
Co Co

(kwo + we + m'wy)]. (111)

The argument of the Bessel functions for the long-range wakes is small. Therefore,
the series over m, m’ are series over a small parameter.
Averaging with the Gaussian distribution gives for wopg/cy << 1

/Jm[an] Jm[aMw]azae 207 _ Im[(wUB)Q]e ( COB)2 ~ ( co ) e ( COB)Q‘ (112)
Co Co 0p Co 2mm!



4.3 'Transverse dipole coupled-bunch instability

In the lowest order, m = m’ = 0, what corresponds to the coupled bunch transverse dipole
oscillations of point-like bunches. In this case, we can drop the index numbering particles
within a bunch replacing A; y by Ay. Eq. (110) takes the form of the matrix equation

QAN = 32 Ko(N, M)Ay (9), (13)

M=1
where Ko(N, M) = Ng(M)K§,(N, M),

/\ywo

Ko(N. M) = i

Np(M) > Z,(kwo + w) + Q)

k=—o00

e%kWO(SM—SN)ef(UB/CO)z(kUJOerE)Q Jo[O-BJV (ka _'_wé)] JOI:O-B,M (kwo + W£):| (114)
Co Co

Coefficients Ay (£2) are given by superposition of the eigen-vectors of the matrix
Ko(N, M). The spectrum of  is discrete, the coherent shift 2 has to be equal to one of
the eigen-values of Ko(N, M).

For the uniform fill, the eigen-vectors of Ko(N, M) are X}, = (1//ny)e” 2" #M/m_ The
spectrum of coupled-bunch motion is

Q, = —iAbenb;io N Z, (pruwo + puwo + wh + Q) e~ (78/e0) o tusotee)’
m
p

g
Jg[C—B(pnbwg + pwo +we)], p=0,1,...,n, (115)
0

where a, is amplitude of the coherent synchrotron oscillations.

Eq. (115) is slightly different from the Wang’s result [4]: (pnywo + pwo + we) in the
exponent of Eq. (115) is replaced in his formula by (prywo + pwo +we — wg). The difference
appears to come from neglecting the time delay in y;n/(¢;1) in Wang’s formalism.

4.4 Transverse quadrupole coupled-bunch instability

For small amplitude of synchrotron oscillations aswyon/co <,1, the amplitude Ay ()
can be expanded over a,. Neglecting terms o< 22 and reducing sum over all turns to the
sum over one turn, we get

QA N (Q) =S {GINN, M) < Ay (Q) >
M

FGUN, M)z N < Ay (Q + we) > —GSL (N, M) < 2500 A i (Q 4 w,) >
G o(N, M)z < Ajar(Q —wy) > G (N, M) < 250, A n(Q — w,) >
+GENN, M)2ix < 20 A500(Q) > +G8) (N, M2}y < 2500 Aj0(Q) >} (116)
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Here 2; 3 = a;pe'%M | angular brackets mean averaging as in

L

< 2j,MAj,M >= NB(M) %:ﬁijAj,M, (117)
where
m )\ = k v s L kwo(sp—s
Gl(’l/)(N’ M)[Q] = —3 ;:ONB(M) Z ( wWo +C;i +lw ))mZy(kWO+w2+Q+lw5)ecok 0( M N).
k=—o00 0

(118)

The solution can be found in the form

A n(Q) = ADQ) + 2 v AT (Q) + 27 v A0 119

in(Q) N () + ZivAN(Q) + 25y A N (). (119)

The A®) describe the y — z correlation. Then, neglecting again terms < 2% >, we
get

A Q) =< A n(Q) >,
< 20 (Q) >= dy AV Q)+ < |z > AL (),
< 2 A (Q) >= dy AV Q)+ < [zl > AV (9), (120)

where dy; =< Zjp > is coherent longitudinal shift of the N-th bunch centroid and,
for a Gaussian bunch, < |z ;[* >= 2073, 5.

Eq. (116) takes the form (we drop €2 in the arguments Gl(;'f)(N, M)[Q)):

nB

QAV(Q) = 3 GEMN, M)A (Q) + du A} () + di, AL, ()]

M
= > {GEL (N, M)[dur AR (Q + w,) + 203, 5 AR (Q + w,)

M
< () (0) > ()

+> {Go (N, M)[dy Ay, (2 — ws) + 200 AN (9 — wy)]. (121)
M

npB
QAT (Q) = 3 GO, M)A (Q + wy) + du ASP (Q + wy) + dip AL, (9 + wy)]
M
+ Y {GEHN, M) [dy AR (Q) + 202, 5 ASH ()]
M
=S H{GPLL(N, M) [dar ASD (2 + 20,) + 202, A (Q + 20,)]. (122)
M
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np
QA () = — 3 GY (N, MYAQQ — wy) + dy AT (Q — w,) + diy A (2 — wy)
M

+3{GP) (N, M) [y A () + 202, ;A ()
M

=S G (N, M) [dy, AT (Q — 2w,) + 203, pAS (Q — 2w,). (123)
M

The bunch-by-bunch feedback system adds damping to each bunch proportional to the
bunch centroid velocity < gy >= (1/Ng) >_; dy;»/dt. The FB can be described replacing
d?y; n/dt* + Wiy; v in the equation of motion by d*y; y/dt? + 2vrp < dyn/dt > +wWiy; N
Eqgs. 122)-(123) are then modified by adding

. w W,
—i D ENp(N)AV() {1 25 —25) (124)
s 2" 2w

to the right-hand-sides, respectively.

Let us consider the case where the longitudinal motion of the bunch centroid is initially
not excited, d* = 0.

The amplitude A* are excited in this case by the vertical motion of the bunch centroid.
Neglecting effect of these modes on the motion of the bunch centroid, we get from the
first Eq. (121) the dispersion equation for the transverse dipole coupled bunch oscillations

QAV(Q) =S GIR(N, M)A (Q) (125)
M

obtained already above, see Eq. (113).
Egs. (122), (123) in the case d = 0 give

nB

QAP Q) =GN, M)A (2 + w,)
M

np
+3 {202, sGYLN, M)A (Q) — 202, 5GP (N, M)AS (Q + 2w,)}. (126)
M

QAL (Q) = =3 GY (N, M)A (Q — w,)
M
+3 {202, 5GP (N, M)AS (Q) — 202, 5GP L (N, M)A (Q — 2w,)}. (127)
M

For the uniform fill, the vectors Eq. (85) are the eigen-vectors of the matrices Gl(fﬁ) (N, M),
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ST G (N, M)Q)XY, = s (1) [Q)XE, (128)
M

where

Ay s ny + p)wo + we + 'wy
“Lm)(l, Q] = —i yﬂ_ONBnb > ((p ) 200 < )mZy((pnb+u)wo+w2+9+lws).
p=—00 0
(129)
A%) is a superposition of X4,
AR =3 gOxk, APQ£w,] Z 9B Xk (130)
m
Note that
DG (N DAY 0] = 3 g Xigr (1 D[] (131)
M
where m, m’ and Q, ) are not necessarily the same.
Hence, for the uniform bunch pattern, Eqgs. (126), (127) give
(2 = ws) = 20"k Q= w)]glD + 207k (Q = w)gl”) = Rip(2 — wi)gl,
(2 +ws) —20%6% (2 +wi)lg”)
+20%k % _(Q +w,)gP = =)o (Q + w,)]g®. (132)

The response to the excitation by the bunch centroid is infinite at the eigen-frequencies
Q) of the matrix in the left-hand-side of Eqs (132) The dispersion relations can be simpli-
fied using by the relations /ﬁga(Q—ws) = k" 1(Q+ws) and Ii(_2% 1(Q4ws) = Iil H(Q—wy).
That gives the (complex) coherent frequency shift of the u-th quadrupole Coupled bunch
mode (correlated y — z motion), u = 0,1, ..,my

Q= Fw, + 20567 (£1, £1)[0]. (133)
Note
)\ywo [glc
—N, ﬂ. 134
o 0T An(E/e)v, (134)

More accurately would be to replace 1/, in the last formula by ,/R at the location

of the impedance generating element and take into account the bunch density factor
6—(%)2(Pnbwo+uw+ws)2
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4.5 Mode coupling in multibunch system (CBCM instability)

Now we can take into account effect of the quadrupole modes on the motion of the bunch
centroids retaining terms A (Q 4 w,) in Eq. (116).
The coupling terms in Eq. (121)

—QZJMBGO (N, M)A (Q + ws) +2220MBG01(N MADQ—w) (135

according to Egs. (132) are proportional to A®. Generally speaking, they are small
and can be taken into account by iterations. The nontrivial situation arises when the
coherent tune shift is of the order of w,. Then modes can not be considered separately
and coupling can lead to new Coupled-Bunch-Coupled-Mode (CBCM) instability in the
multibunch system [6].

The system of equations Eq. (121) and Egs. (132) takes the form :

QAP(Q) =S GR(N, M)A (Q) =
M

2302, s {— G (N, M)A (Q + w,) + GELN, M)AS (Q —w,)}. (136)
M

(Q—w)A(Q = w,) — Za BGCLIN, M)o-s0-u, AT (Q — wy)
M

=S {GUN, M)AT) (Q) — 202, 5GP L (N, M)A (Q + 200 Yo 20w, (137)
M

np
(Q+w) AT (Q+w,) =23 0% 5sG% _L(N, M) o010, AN (Q +w,)
M
np
= > H{GY o (N, M)A () + 202, 5GP L (N, MYAS (Q = 20,) Yo s 4w, (138)
M

For the uniform fill, the vectors Eq. (85) are the eigen-vectors of the matrix Gl(jﬁ) (N, M).
Expanding
0 (+
AR =Y g0 XE, AP+ w] = 2095 (139)
o

we reduce Egs. (136-138) to the system of algebraic equations for the amplitudes g}(LO)
and g ) for each coupled-bunch mode:
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{2 —£(0,0)[2 ]}9,30)+20123{/‘6(1)(0 —1)[Q] g — D0, 1)[Q) g5 } =0,
( (1,0)[ — wy] gu {Q Wy — 203%(2 (1L, D[ — ws]}gu

—2035( )(1 -1)[Q — ws] -) =0,

KD(~1,0)[Q + w,] g +{Q+ws—20%43%—1,—1)[Q+ws]}gf;)+

20567 (=1, 1)[Q + w,]glH = 0. (140)

Egs. (140) give the system of linear equations M (Q2)V = 0 where the vector V =
{ng), g,(f), gfj)}. The system has a nontrivial solution at frequencies {2 given by the zeros
of the determinant of the matrix M (€2).

Let us apply these results to a single bunch putting n, = 1, © = 0. Neglecting terms
proportional to £{?, using identities

k5 (L,0)[Q — wy] = KV (—1,0)[Q + w,] = &”(0,0)[€2],

£P0, =) + £V (0, D[Q] = 26 (0,0)[0)] (141)
and notation kg,
767(0, =D = (0, D[ = (=)o, (142)

we can determine the coherent shift © from the equation |M| =0 or

(ko — Q)(w? — Q?) — 2(“’2“)21@0%5%, 0)[©] — 40°Q(x5"(0,0)[Q2))% = 0. (143)

The explicit form of the coefficients here is

)\ o0
on oo
AW O wo + w
,igl)(o,o)[g] - ;WONB > (]9026O 5)Zy(pwo +w) + Q). (144)

p=—00

The coefficients are proportional to the components of the matrix M}, ;(\) in the Satoh-
Chin formalism:

Y5 Mio(N), (145)

ko = iKwsMoo(N), k$7(0,0)[Q] = iK
0= AW 0,0() (0,0)[] = az\/§

where A = —Q/w;.
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Therefore, Eq. (141) can be written in the form

\/50'1(,()5

Co

(1= N)(iK Moy + A) — 2AK* M7, + ( VK2 My oM, = 0. (146)
The ratio of the last term to the second one is of the order of ws/wyon times where wyon
is the frequency where impedance 7 (w) start to roll off. Neglecting this term, we get the
same equation that is given by the Satoh-Chin formalism with the rank of the truncated
matrix equal two, see Fig. where we compare the Satoh-Chin formalism with the CBCM
formalism applied for one bunch. The single narrow-band impedance is taken as an
example with the shunt impedance Ry = 0.68 MOhm/m, Q = 1 and wyop /27 = 1.30
GHz. Other parameters[5] are: 3, = 160 m, w0/27 = 136 KHz, 0, = 2.0 cm, £ = 14.5
GeV, a = 1.31073, Q, = 0.044. The Satoh-Chin matrix is truncated to the rank two and
the formalism gives the growth rate for two modes (shown in red). The CBCM formalism
gives the growth rate only for the lowest mode (shown in blue). However, the thresholds
of the coupled-mode instability in both cases agree very well.

4.6 CBCM with dipole motion

So far considering CBCM instability we neglected in Egs. (121)-(123) terms proportional
to the dipole momentum. Now we want to take them into account. For simplicity, we
study here the uniform bunch pattern. Assuming that the longitudinal motion is
dominated by a single unstable mode o with the amplitude dy, we define

1 .
dy = Vrpdo XY, X4, = \/n_e%wM/"b. (147)
b

25



Note that with this definition the amplitude of oscillations z ~ o; corresponds to dy >~ ;.
For the uniform fill Egs. (121)-(123) take the form

Qg (92) = £00,0)[2{g () + dogl o () + dig ) ()}

~{xM(0,-1)[0)] {203% Q4 wy) + dogl e (2 +w )]}
]

17 Y

(
(0, 1)[0) {203950(2 — w0) + diglZy (2 — w)). (148)

Qg (Q) = k0(1,0)[Q] {gl(Q + w,) + dogly (2 + ws) + dig e (2 + wi)}
+rP (1, 1)[Q] {dgg e () + 205957 ()}
—k@ (1, 1) [ dogl 1y (2 + 2w,) + 20397 (Q + 2w} (149)

D (=1,0)[Q {g (2 = w,) + dogh T (2 = w,) + dygy e (2 — wi)}

Qg () = =k
A (—1, = 1)[Q) {dogl 1o () + 20397 ()}

0
/(=1 ) dgl L (2 — 20,) + 205910 (2 — 20,)}. (150)

In the case dy = 0 Eqs. (121)-(123) are identical with Eq. (140) where only g{”(£2) and
g(i)(Q F ws) are not equal to zero. If dy # 0, these terms induce components g(i)(Q),

{9 = 20552 (1, D[R]} 9£P(Q) = di {K2 (L, )[Q0g2 () + 5D (1,0)[ Qg1 (@ +wi)},  (151)
{Q = 20547 (=1, = 1)[Q} g 7(Q) = do {x7 (-1, - 1)[ ]gﬁo)w(ﬂ) R (=1, 0)[Qg (2 — w,)}-

Taking into account these terms transforms Eq. (140) for the components (
99 =gP(Q), ¢* = g3 (2 F wy)) to

{02 = £0(0,0)[2} g + 203 {x(1 (0, —1)[9] g7 = kD0, )[R g} =
<2
(1, 1)[2)g® + 2, (1,0)[Q)g)
do|?£9(0,0 Bu-so o
[do[22(0,0)[02] { @22 (@ D[]
it (=1 =09 = 1y (21,090 (152)
Q = 20%m0 0 (—1, ~ 1[0 |

{0 —ws — 20]23,%}82)(1, 1)[Q — ws]} gt =
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£ (1,0)[Q — w,] <>—2<TB/<;<>(1 —1)[Q — wig(—)
( ) 0 (1) —
2 (1 w ,U Mo(l 1)[9] g()—l—liu—uo(l?O)[Q] g( )
o (1, 0182 = il Q- 20262 (1,1)[0)]

p—po
At (L =D[A 90 — s, (-1.0)[0) )
Q—20%6%  (—1,-1)[Q)]

ptpo

(153)

{Q+ wy —20311( (=1, —1)[Q + w,]} g
— Ll)(—l,O)[Q—i-ws] g9 — 202 m( )(—1, 1)[Q+ws]g(+)
1

() 0) K )
—|do 260 (—1,0)[Q + w,] { F2= w1 [ g + ,0)[] ¢

2]

n— Ho(
Q0 —20%k u #0( ,1)
At (L =1)[9) g0 — (2, (-1,0)(2) )

Q0 — 20262 (—1,-1)[Q)]

o

(154)

5 Instability of the closed orbit

Recently [7] it was noticed that the resistive wall impedance Zgy may lead to the closed
orbit instability. At the low frequencies, where the skin depth ¢ is larger than the beam
pipe wall thickness d, §?(w) >= bd, the resistive wall transverse impedance per unit
length of a round beam pipe with the radius b is

. Zy 9
Z S A - 1

where L is the length of the beam pipe,

wd*(w
9=1/2 w="1 " (—0)
wo?(w
g=1 w.= Qb(d)7 (0 >>1). (156)

The impedance Eq. (156) is written in two cases: for the vacuum (p = 0) and a magnetic
material (4 >> 1) outside of the beam pipe.
For a uniform distribution of bunches in the ring, the coherent frequency €2 is given by
the standard formula. Let us consider a single bunch. Then

. Ibeamc2
Q=—I\Y Z Q A= ———. 1
t ; y(pwo + wpa + )7 4(E/6)(.U@ ( 57)
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As it will be clear later, only one term gives the main contribution providing the CB
coherent frequency shift is small compared with Dwg where  is the fractional part of the
tune. Neglecting all others terms, one get equation for €2,

Zog o

QO
joi T T Wy | (209 g (158)

We wh?

Q1 —

The beam is unstable if Im[Q2] > 0. The threshold of instability is

2mnuyvy, b

Iy, = W(E)z (E/e). (159)

Here v is fractional part of the betatron tune, Z; = 1200 Ohm. The most dangerous
mode is for n equal to the integer part of the tune.

6 Summary

6.1 Steady-state fundamental rf

=12, (160)
COS[¢S] = Uturn/ev;fot (161)
tan(y) = Qu(*2 - =), (162)
Z.(wy) = Ry cosppe'™. (163)
Y = 2][25['%6. (164)
1 s c

e ) =

_ Ro | gerorSIN(Y + ¢5)
P = %([B) [m] : (166)
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6.1.1 The Robinson criteria of stability

Y sin(2¢))
21+ )

sin ¢s > 0; < sin ¢s.

6.1.2 Optimum conditions

B
tan¢—6+1

B =1+Y cos¢s.

tan ¢y,

2(If)? Ry
Y2

7|2
(1+Y cosos) = Vel (1+Y cos ¢s).).
2R,

P =
6.2 Potential well distortion

1 o
plz,p) = We’(”Q/ 2+Uo ()Xo [ da'pla’)Slop (a'—2)]

|N| is normalization constant defined by [ dpdzp =1,

2 2 w,op t w.op
U, - - _ = g t g — — g 2
NBT’e
Ao = 5
21w Ryadg

6.3 Multibunch longitudinal stability

Notations:

N acyg < Np > rowg
0 — 2/](,_)/ )

ozwgcoe|‘7c|nc

Wi (N = =5 2F

S

sin ¢s(N),

Co

encVecos ps(N) = U +€* > Ny(M) W(M)
M
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6.3.1 The synchrotron tune including wake-field effect

_l wo / Ci S S —(Rwopa/c 2
ws(N) = w2< _ 471-&}000 Z = NB kZ(kw )e (kwo/co)(sn—sr) o= (kwoa/co)” (174)
For the uniform fill,
ws = w° _ mosg Z np) Z (nypug e~ (mopoaseo)” (175)
° * Arwlc

6.3.2 The coherent shift

is given by the eigen values of the system

Z/\gwg

Qan(Q)) = ———7—— Ko(N, M Q 176
) = i 8 oo ), oo

where

Np(M ;
Kq(N, M) = <l]3\§) Z ]gZ(kwo)e(l/CO)(Ws(N)JrQ*kWO)(SN*SM)e*(kWOa/CO)Z_ (177)
B> k
For the uniform fill,
_ i)\owg/iu _ OKIbeamWO "iu (178)
P drwo (N Am(Bfe)ws(N)

where

—nbzgp (gpwo)e gf,(a/R)2, gp =P+ p+vs+ Qufwo, p=1,2..m.  (179)

6.3.3 Quadrupole (m = 2) longitudinal coherent shifts

for the uniform fill are:

.Oé-[beamw(z) (UB/R>m_1

Qo =

" ZZ?T(E/@)(,US 2m(m — 1)!

i (pnb + M)Qme—(pnB-i—;L)Q(aB/RV Z[(nbp +p+ m:us)wo] ) (180)
p=—00 nyp + % + muvs
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6.4 Transverse Instabilities

Notations:

We = éwg

¢ = (1/v)(dv,/dd)

\ e
Y AmRywy’
SM — SN

TNM = P
0

6.4.1 Head-Tail

1 1
=1—-=-G*+/[1-=G?2 -1

where

G = A/7r dypW (2a sin1p)e sy,
0

The growth rate A(t) = e'*, where

1
I'= Re[i log .

6.4.2 Transverse dipole coupled-bunch instability:
The coherent shift is given by the eigen values of the system
np

QAN(Q) = D Ko(N, M)Ay (),

M=1

where

)\ywo

Ko(N, M) =i

Np(M) f: Zy(kwy — wy + Q)

d k=—o00

g P (=8N = (0 /o) (hwo-+e)? JO[UBVN (kwo + we)] JO[JBVM (kwo + we)].

Co Co
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(182)

(183)

(184)

(185)
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For the uniform fill,

Q, =1\ anb Z Z,(prpwo + piwo — w +Q ) —(oB/c0)?(Prpwo+pwotwe)?

JO[ (pnbw() + pwo + wf)] H = 07 ]-7 ceny Tp,s (188)

6.4.3 Quadrupole (m = 1) coupled-bunch coherent shift

Define
m >\ o k l/ S 2 kwo(spr—s
GI (N, M) = PN () Y (RO )7 2, (ko — 0+ QL e F5 0 (=)
T k=—00 Co
(189)
The coherent shift is given by the eigen-values €2 of the system:
np

QA(2) = 230 sCLAWN, M)A () = 0

QA (Q) -2 Z a3, 5GP (N, M)AS (Q) = 0. (190)
For the uniform fill,

Q, = 2036 (£1, £1)[Q,]. (191)

m Ayw 2 (pne + p)wo + we + U'ws
s (1L 1)) = 5= Npmy 3 (B )+ we + Hn)

5 )mZy((pnb+u)w0—w2~|—Q+lws).
0

p=—00

(192)

6.4.4 Coupled-bunch Mode coupling

For the uniform fill, the coherent shift is given by the eigen-values €2 of the system:

{2 £(0,0)[} g = 205{—#{" (0, =D)[2) g + £7(0,1)[Q g 3,

{2 —w, =20} (L DO — wil} oY = £ (1,0)[2 — wi] g

—20%/{9(1, —1)[Q — w4} gfL_),

{Q+w, — 20?9&(2)(—1 —1)[Q2 4 ws]} gl(:) = —Iiﬁ)<—1, 0)[Q + wy] gio)

—20553 (=1, 1)[Q + wy]} g\ (193)
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6.5 Instability of the closed orbit

The threshold beam current

2n(E/e)vy(vy —n) , b

I = —)? 194
th gZO <R) ) ( )

where n = integer part of the betatron tune v,, g =1 or g = 1/2, see Eq. (126).
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8 APPENDIX 1. Definitions of impedances and
wakes

We use impedance Z(w) analytic in the upper-half plane of w and the wake W (z) is zero
at z < 0. Positive longitudinal wake means energy loss, that is the change of energy of
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the trailing particle following at the distance z > 0 behind the leading particle, changes
by AE = —Nye2W,(2),

d )
Wi(z) = [ S27,(w) e /. (195)
2T
Similarly, the transverse wake W, defines coAp; = —i—NbeQWt(z). It is related to the
transverse impedance as

Wt(Z) =1 %Zt(W) e—iwz/co' (196)

The transverse impedance Z; is related to Z; by Panofsky-Wentzel theorem,

Z(w) = —— 22 (197)

a wrif/co Ory’

where r; and r; are offsets of the leading and trailing particles.
With these definitions,

D~ = Zw"),  Zi(—w)r = —Zylw). (198)

The narrow-band longitudinal impedance can be written as

_ RH
Zilw) = 1 —iQu(w/wy — wp/w)
Wy RH 1 1

~

joi . + . . 199
2 Qp w—wy+iw,/2Qp w+wH+zwh/2QH] (199)
Such impedance is inductive at small w << wy, Zj(w) — —iLlw/c*, L = Ry /(wy Q).
The standard form of the resistive wall impedance is
Z(n) 1—i, d0(w)
— =17 — 200
where n = w/wy, and §(w) is the skin depth.
The narrow-band transverse impedance is

Zy(w) = 2 lin
T w1 —iQu(wfwr — wh/w)
WH RH 1 1

~

—_— — . 201
! 2 QH w—wH—i-iwh/QQH w+wH+iwh/2QH] ( )

Dimensions of the wakes W, and W; (wakes per turn) are V/pC ~ 1/cm and V/pC/m,
respectively. Impedances Z; and Z; (per turn) have dimensions Ohm o 1/¢y and
Ohm/m, respectively.
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9 APPENDIX 2. The threshold of the microwave
instability

We also can use the following simple formalism. Consider the Hamiltonian H (z,p, s)
describing synchrotron motion in the linear rf potential,

p2_’_$2

H(z,p,s) = 5

+ )\/dx’dp’p(x’,p’, s)S(a' —x), S(x)= /Om dzWi(z),  (202)

where x = z/0g, p = —d/dy are dimensionless position of a particle (z > 0 is in the head
of a bunch) and energy off-set, s = wy st is time in synchrotron periods, and the
distribution function is normalized p(z, p, s)dpdx = 1. In this units, S(x) is
dimensionless, S(z) = 0 at z < 0. The zero-current synchrotron frequency is equal to
one and

Nyro

=2 203
21 Ryadd (203)

Below the threshold of instability, the distribution function and the Hamiltonian are

time independent. It is always possible in this case to go to new angle-action variables
1,7 to make the Hamiltonian H(1,v) = Hy(I) and p(I,v) = po(I) independent of
phases 1. Above the threshold, there are unstable azimuthal harmonics and

H(I,,8) = Ho(I,s) + A > Viu(I,s) ™,
m##0
p(L, ), 8) = po(L,8) + XY pm(L,5) ™. (204)

m=0

Actually, there is correction to the zero harmonics py but, as it is shown below, the
correction is small.
To transform Eq. (202) to the form Eq. (204) let us expand S(z’ — z) in azimuthal
harmonics

S —x) =3 S (I, ') emo=m", (205)

S 18 given in terms of the longitudinal impedance Z(w),

AN dw Z(w) * !
Sm,m’(jy I ) = Cp o wi [5m,05m’,0 — C’m(w, ]) Cm’ (w, I )],
Cro(w, 1) = B mimy giszall) (206)
J 27
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Note, Sy, (I, I') = S_n (I, I'). Therefore, Soo(I,1") is real.
The term proportional to d,, 00, is a constant independent of I,and I'. The
Hamiltonian Eq. (202) can be written as

H(I,s) =Ho+A S / AT d' Sy (I, ') proe (I', )

m/#0
A e / AL A’ Sops (1, 1) proe (I', ), (207)
()40
_ p2 +SC2

Ho A [ A oo 5) + A S @ [ A1 Sl 1)1 5),

2 m#0

Comparing Eq. (204) and Eq. (207), we define

Vls) = 3 / AL Ay S (1, I') pre(I', 5), 0 2 0. (208)
m'#£0

In the case where non-zero harmonics p,, = 0, m # 0, the Hamiltonian has to be
independent of I, Hy = Hy(I). That is enough to define the transform from x,p to I,.
To find the transform, it is convenient, first, to introduce canonical variables J, ¢

defining x = v2Jsin ¢, p = v/2J cos ¢, (p? + 2%)/2 = J. The transform from J, ¢ to I,
has to be chosen to cancel all azimuthal harmonics in H, of Eq. (207),

J=T-AY ¢m / L' Ay S0 (1, I')po(I, 5). (209)
m#0

Then,

Ho(L ) = T+ [ dl'dw'Soo(1,I)pol1',5)

Ay / dI'dy’ Soum(1, ') pun (I, 5. (210)
m#0
The bunch stability can be, as usual, studied using the Vlasov equation for azimuthal
harmonics
Opm(I,s) , Opm—mr (1, OV (I,
pa(ss)—l-zmw(l, S) pm (L, s)—iA n%()[m/pa]w Vm/—(m—m/)pm_m,a(ls)] =0,
(211)

where w(I,s) = 0Hy(1,s)/01.
The linearized Vlasov equation for azimuthal harmonics retains the non-zero harmonics
only linearly,
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W +imw(I, s) pm(I,s) —z’)\ma/)();?s)‘/m(f, s) =0, (212)

where in the linear approximation over non-zero azimuthal harmonics

(L, s) = 1 +A8VO§§’S), Vill,s) = [draeSo (I, I)po(I'5). (213)

Harmonics po(1, s) satisfies

8/)0(]7 S) . a
— 0 — A= _m Vi (I, s)]. 214
5o~ g S lmo (1) (214)
Therefore, in the linear approximation over p,,, m # 0, po(I) and w([) are independent
of 5.
Eq. (212) can be reduced to the linear eigenvalue problem by substituting
pm(1L,8) = A (I)e™"** with some amplitudes A(I). On a finite discrete mesh of I, I’,
Eq. (212) gives the matrix equation Y-, M (I, I")A(I") = pA(I) which can be solved
numerically. Then, the growth rate is equal to the imaginary part of the coherent shift p
which is the eigenvalue of the matrix M (1, '),

dpo(1)
oI

The matrix M (I, 1I") can be symmetrized choosing new amplitudes a(7),

A(l) = 8f’g—fma(l) provided p([) is monotonic in I. Then, as it was noticed by K.Oide,
the matrix becomes real and symmetric in the linear approximation in A. The
eigenvalues in this case are real and there is no instability. Therefore, V,,, has to be
defined taking into account terms of the order of A. That can be done as follows.

To be canonical variables, the Poisson bracket of .J, ¢ has to be equal to one,

{J, ¢}y = 1. That and Eq. (209) defines ¢. Neglecting terms of the order of A\?,

M(IL,I') = mw()§(I — I') — 2xAm S (I T),  (m,m') # 0. (215)

eimw

6= —iA
EONT

B
= / AT A/ (I, ') po(I', ) + 0(A2). (216)

With the same accuracy, = = 2% + Az,

O, 4) = VaTsing,  Aa(l,$) = 3 Az(I) ™,

7’)\ ! / ! ! !
Azn(l) = o 7 [ Ad po (1) (S 101 1) = S, 1)
_QIg[Sm—l,O(Ivl) + Sm+170([7[)]}. (217)

ol m—1 m+1
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The prime in the summation indicates that terms Sy has to be omitted.
We can now expand S,/ in series over \:

S (L1 = 8O+ ASD L+ (218)

where

A
SO LT = —co [ 222 5 T gy (2O

2m w Co Co

Var), (219)

dipdi)’ /
SO (11 = / / )
UZ (2m)? ¢
O (1)~ x(o)(ﬁﬂl} N Az (') €™ — Ay (I)e*¥). (220)

To calculate M, , taking into account terms of the order of A2, it suffices to neglect
terms of the order of A* in S, v. That can be done substituting SY, ,..(I, ) instead of
Smm/ (I, 1) in Ax,,, Eq. (217). Using the properties of the Bessel functions

i[Jk—l(Z) i Jk+1(2)] . 2z
dzt k—1 E+1°' k2—-1

kal(Z) - Jk+1(2) —Z Jk(z), (221)

Eq. (217) can be simplified and takes the form

A(1) = =22 (2 [araspo(1)
;l“’Z( )Jo( 7R, (?\/ﬁ). (222)

Approximating po(I) = (1/27)e~! and carrying out the integration
/ Ar'dy po(1') Jo( == m) = 2, (223)

we get further

Az, (1) = —&(L) d—wZ(w) Tn(22\/2T) e 2 &), (224)

2 'm2—1 2m co

Eq. (220) takes the form
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1 dw dw’ 1

(1) _ AW,y R ()
St ( Z Zk;—i—l o Z(w) o ZWwe 0
{5(* @)Jm,( D) T (S2V2)
0 0 0
— T LI TN T (LT 2T ) T (22 /2T (225)
Co Co Co
Here, in the first and the second sums terms £ = 1 and k = —1 are excluded,

respectively. The frequency w(I) is given by the derivative 0Sy,01. Therefore, the term
proportional to 0,000 in Spp can be omitted. After that, w(I) can be defined using
Egs. (219) and (225).
Finally, M (I, 1) is defined taking into account terms of the order of A by Eq. (215) and
Egs. (218),(219), and (225).
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