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Abstract

The formulas for coherent instabilities are summarized with the emphasis on
realistic fill patterns.

1 Introduction

The analytic formulas for the traditional coherent instabilities in the high-energy storage
rings are summarized to be used to study the proposed PEP-II upgrade. Most of the
formulas are known and given with small modifications which may be useful to describe the
beam stability for the realistic fill patterns. Some recent results are added. The formulas
are given for the most important instabilities. That let us to simplify the formulas rather
than to write them in the most general form.

2 Steady-state RF conditions

Here we follow P. Wilson [1] and G. Kraft [2].
Consider an rf cavity with the frequency of the fundamental mode ωc, Q0-factor, and

shunt impedance R0.
A cavity is excited by the wave coming from a klystron by some wave guide with the

(real ) wave impedance Zw. The incoming wave is described by the current Iin and voltage
Vin, Iin = Vin/Zw.

Let us assume that the wave guide is coupled to the cavity through a transformer with
the transformer ratio n. If there is no perfect matching, there is a reflected wave in the
wave-guide with the amplitudes Ir and Vr, Ir = Vr/Zw.
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The excitation current Iex and the cavity voltage Vc are given by the transformer ratio

Iex =
1

n
(Iin − Ir) =

1

nZw
(Vin − Vr)

Vc = n(Vin + Vr). (1)

Excluding Vr,

Vr =
Vc
n

− Vin, Iex =
1

nZw
(2Vin − Vc

n
). (2)

The cavity is considered as an oscillator driven by the external current Iex and the
beam current IB. Using the superposition principal, the variation of the cavity voltage
Vc(t) is described by the following equation:

(
d2

dt2
+
ωc
Q0

d

dt
+ ω2

c )Vc(t) =
ωcR0

Q0

[İex − İB]. (3)

Using Eq. (2), this can be written as

(
d2

dt2
+
ωc
QL

d

dt
+ ω2

c )Vc(t) =
ωcR0

Q0

[İg − İB]. (4)

where the loaded Q-factor

QL =
Q0

1 + β
, (5)

is defined in terms of the rf coupling β,

β =
R0

n2Zw
, (6)

and the generator current

Ig =
2nβ

R0

Vin. (7)

Let us denote the complex amplitudes with hats as in

Ig(t) =
1

2
(Îge

−iωgt + c.c.). (8)

Here ωg/2π is the rf (klystron) frequency. For a point-like bunch, the amplitude

ÎB = 2IdcB , where IdcB is dc component of the beam current.
The average incoming power Pi, reflected power Pr, and power transferred to the

cavity Ptr are
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Pi =
|V̂in|2
2Zw

=
R0|Îg|2

8β
, Pr =

|V̂r|2
2Zw

=
|V̂c|2β
2R0

|1 − R0Îg

2βV̂c
|2.

Ptr =
1

2
Re[ÎexV̂

∗
c ] = Re[

V̂cÎ
∗
g

2
] − β|V̂c|2

2R0

. (9)

It is easy to check that Pi = Pr + Ptr.
As it follows from Eq. (4), the voltage in the resonance (ωg = ωc) is related to Ig,

V̂c = (Îg − ÎB)RL where the loaded shunt impedance RL = R0/(1 + β). Then,

Ptr = Pc + PB, (10)

where the power lost to the cavity walls Pc and power transferred to the beam PB are

Pc =
|V̂c|2
2R0

, PB = Re[
V̂cÎ

∗
B

2
]. (11)

Let us choose the phases in respect to real Îg and define the rf phase φs of the beam

IB(t) =
1

2
(ÎBe

−iωgt + c.c), ÎB = |ÎB|ei(φs−φc) = 2IdcB e
i(φs−φc). (12)

The phase φs is the rf phase defined by the energy loss per turn. With such definition,
the voltage on a cavity and the beam current vary in time as

Vc(t) = |V̂c| cos(ωgt+ φc), IB(t) = 2IdcB cos(ωgt+ φc − φs). (13)

A particle crossing the cavity sees the voltage Vacc = |V̂c| cos(φs). If particles shift toward
the head of the beam train by z > 0, then φs is replaced in IB(t) by φs − ωgz/c0 and the
synchrotron tune ν2

s ∝ sin(φs). For stability, sinφs > 0.
Solution of Eq. (4) is

V̂c = Zc(ωg)(Îg − ÎB) (14)

where the cavity impedance

Zc(ω) = − i(RL/QL)
ωc

ω
− ω

ωc
− i

QL

. (15)

Defining the detuning angle ψ,

tan(ψ) = QL(
ωg
ωc

− ωc
ωg

), (16)

the cavity impedance can be written as
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Zc(ωg) = RL cosψ e
iψ. (17)

Note that |ψ| < π/2.
Eq. (15) takes the form

V̂c = |V̂c|e−iφc = RL cosψ e
iψ(Îg − 2IdcB e

i(φs−φc)), (18)

where the phase φc of the cavity voltage in respect to the generator current is introduced.
The accelerating voltage Vac is related to the average power PB = IdcB Vac transferred

to the beam. Eq. (11) gives

PB =
1

2
|V̂c||ÎB| cos(φs) = IdcB Vac. (19)

Then, Vac = |V̂c| cos(φs), and

Vac = RL cosψ e
i(ψ+φc) (Îg − 2IdcB e

i(φs−φc)) cos(φs). (20)

Vac is real. Hence,

Îg = 2IdcB
sin(ψ + φs)

sin(ψ + φc)
. (21)

The cavity voltage and the power from klystron are

|V̂c| = 2IdcB RL
sin(φs − φc) cos(ψ)

sin(ψ + φc)
,

Pi =
R0

2β
(IdcB )2[

sin(ψ + φs)

sin(ψ + φc)
]2. (22)

For the beam stability, the accelerating voltage has to have negative slope, dVacc/dφs <
0 so that a particle having larger energy and, therefore, shifted above the transition energy
to the tail dz/dt = −αδc0, sees the accelerating voltage Vacc = |V̂c| cos(φs − ωgz/c0) less
than that for the equilibrium particle.

Let us define

Y =
2R0I

dc
B

|V̂c|
. (23)

Here R0 and |V̂c| are shunt impedance and the amplitude of the voltage per cavity.
The voltage Eq. (22) can be written as

1 + β

Y cosψ
=

sin(φs − φc)

sin(ψ + φc)
. (24)
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Taking the derivative over φs, we keep IdcB , ψ, β, and Ig constant. Determining the
derivative dφc/dφs from Eq. (21), we get

dφc
dφs

=
tan(ψ + φc)

tan(ψ + φs)
, (25)

and
d

dφs
(
1

Y
) =

cosψ

(1 + β) sin(ψ + φc)
[cos(φs − φc) − cos(ψ + φs)

cos(ψ + φc)
]. (26)

Here, the phase φc can be determined from Eq. (24),

tan(φs − φc) =
(1 + β) sin(ψ + φs)

Y cosψ + (1 + β) cos(ψ + φs)
. (27)

Using this, Eq. (26) can be simplified,

d

dφs
(
1

Y
) =

sin(ψ + φs) cosψ

1 + β + Y cosψ cos(ψ + φs)
. (28)

The stability requires (cosφs/Y )′ < 0, what can be written as

Y sin(2ψ) − 2(1 + β) sinφs
1 + β + Y cosψ cos(ψ + φs)

< 0. (29)

The denominator is usually positive and Eq. (29) gives the Robinson criteria of stability

π/2 > φs > 0;
Y sin(2ψ)

2(1 + β)
< sinφs. (30)

2.1 Optimum conditions

The ”optimum conditions” correspond to cancellation of the reflected wave from the
cavity, Vr = 0. In this case, Eqs. (2), (7) give

Vac = |V̂c| cos(φs),

V̂c =
R0

2β
Îg. (31)

Hence, the cavity phase φc = 0. Separating the real and imaginary parts of Eq. (20)
gives two equations. They give the following relations:

tanψ =
β − 1

β + 1
tanφs,

β = 1 + Y cosφs. (32)
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In this case, Vac = |V̂c| cosφs, and

Pi =
2(IdcB )2R0

Y 2
(1 + Y cosφs) =

|V̂c|2
2R0

(1 + Y cosφs).). (33)

2.2 Parked cavities

An idle cavity is excited only by the beam at the rf frequency ωg and Ig = 0. Then,

PB = − R0

2(1 + β)
|Îb|2 cos2 ψ, Pc =

R0

2(1 + β)2
|Îb|2 cos2 ψ, Pr =

βR0

2(1 + β)2
|Îb|2 cos2 ψ,

(34)
and Pc + Pr + PB = 0.

The impedance of the cavity is given by Eq. (15). Eq. (20) for the idle cavity takes the
form

V̂c = |V̂c|e−iφc = −2IdcB RL cosψ e
i(ψ+φs). (35)

To be consistent, the phases have to satisfy sin(φc + ψ + φs) = 0, or φc = π − ψ − φs.
The parked cavity contributes to acceleration Vac = −|V̂c| cosψ which can be minimized
with large ψ � π/2.

2.3 Low-level rf feedback

The low-level feedback is described by the feedback open-loop transfer function

G(ω) = H(ω)ei(ω−ωg)τFB , (36)

where H is the gain factor and τFB(ω) is delay time.
The feedback detects a signal V̂c from the cavity generating the current ÎFB = V̂c/ZFB.

The generated current is applied to the cavity (in parallel with the beam and generator
currents) with the opposite polarity generating additional voltage

δV̂c = ZcIFB =
Zc
ZFB

V̂c. (37)

By definition, δV̂c = G(ω)V̂c, and

ZFB =
Zc
G(ω)

. (38)

The total voltage is the difference of the voltage cavity V̂c = Zc(Îg − ÎB) and δV̂c.

Hence, V̂c = Zc(Îg − ÎB) −GV̂c, i.e.
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V̂c = Ztot(Îg − ÎB),
1

Ztot
=

1

Zc
+

1

ZFB
, (39)

or

V̂c =
Zc

1 +G
(Îg − ÎB). (40)

The total impedance in Eq. (39) for small ∆ω = ω − ωc and for small delay time
ωgτFB/QL << 1 take the same form as the cavity impedance Eq. (15) but with RL

replaced by RH = RL/(1 +H), and QL by QH = QL − ωcτFB/[2(1 +H)],

Ztot =
i(RH/QH)(ωc/2)

ω − ωc + i(ωc/2QH)
. (41)

2.4 Noise of the klystron

The generator current Ig(t) = (1/2)Îge
−iωgt + c.c. induces the cavity voltage

Vc(t) = ÎgRL cosψ cos(ωgt− ψ). (42)

The noise of the klystron

∆Ig(t) =
∫ dω

2π
∆I(ω)e−iωt, (43)

induces fluctuations of the voltage on the cavity

∆Vc(t) =
∫ dω

2π
Zc(ω)∆I(ω)e−iωt. (44)

Additional averaged over time power ∆P =< ∆Ig(t)∆Vg(t) > can be written in terms
of the spectral density of the noise

< ∆I(ω)∆I(ω′) >= 2π < |∆I|2ω > δ(ω − ω′) (45)

as

∆P =
∫ dω

2π
Re[Zc(ω)] < |∆I|2ω > . (46)

For the broad spectral density,

∆P = ωc(
R0

Q0

) < |∆I|2ω > . (47)

The induced voltage ∆Vc(t) on a localized cavity drives the synchrotron motion of a
bunch
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d2z

dt2
+ γd

dz

dt
+ ω2

sz(t) = −αω0c

2πE
e∆Vc(t)

∑
n

einω0t, (48)

where ω0/2π is revolution frequency E is the particle energy, and γd is radiation
damping. The induced fluctuations are

z(t) = −αω0c

2πE

∑
n

∫ dω

2π

eZc(ω)∆I(ω)e−i(ω−nω0)t

ω2
s − iγd(ω − nω0) − (ω − nω0)2

. (49)

The average < z(t) >= 0. The rms < z2(t) > is given in terms of the spectral density.
If fluctuations are independent for nc cavities in the ring, then

< z2 >= nc(
αω0c

2πE
)2

∑
n

∫ dω

2π

e2|Zc(ω)|2 < |∆I|2ω >
[ω2
s − (ω − nω0)2]2 + γ2

d(ω − nω0)2]
. (50)

For the PEP-II, the radiation damping 1/γd � 18 ms, and the width of the impedance
∆ω = ωg/(2QL) > ωs >> γd. Therefore, the main contribution is given by n = ωg/ω0

and

< z2 >= nc(
αω0c

2πE
)2 e

2|Zc(ωg + ωs)|2 < |∆I|2ω >
2ω2

sγd
. (51)

In terms of the fluctuations ∆P per cavity, and neglecting the difference between
Zc(ωc + ωs) and Zc(ωc), we get

< z2 >= nc(
eαω0c

2πE
)2RLQL

2ωgω2
s

(
∆P

γd
) cos2 ψ. (52)

The estimate of the effect can be obtained from

< z2 >

σ2
B

=
1

nc
(
ω4
s

ω3
gγd

) (
Q0 cos2 ψ

4(1 + β)2 sin2 φs(αδ)2
) (

∆P

Pc
), (53)

where the power per cavity Pc is given by Eq. (11). The last factor in Eq (53) is the
relative power of fluctuations per cavity and can be measured experimentally.

3 Longitudinal beam stability

Here we start discussion of the coherent instabilities. Some definitions are given in Ap-
pendix I.
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3.1 Potential well distortion

The PWD bunch lengthening is the main effect below the threshold of the microwave
instability.

Let us use the dimensionless variables x = z/σB, p = −δ/δ0, where z > 0 is the shift in
respect to the bunch centroid to the head of a bunch, σB and δ0 are the zero-current rms
of the bunch length and relative energy spread, respectively. The Fokker-Plank equation
has the implicit steady-state Haisinskii (Boltzmann) solution for the distribution function

ρ(x, p) =
1

|N |e
−{p2/2+U0(x)+λ0

∫
dx′ρ(x′)S[σB(x′−x)]}. (54)

Here |N | is normalization constant defined by
∫
dpdxρ = 1,

U0(x) =
x2

2
− x3

6
(
ωgσB
c0

) cotφs − x4

24
(
ωgσB
c0

)2,

λ0 =
NBre

2πRγαδ2
0

,

S(z) =
∫ z

0
dz′W (z′), (55)

NB is bunch population, re is classical electron radius, α is momentum compaction,
W (z) is the longitudinal wake (dimension V/pC or 1/cm), W (z) = 0 for z < 0. In U0 the
rf nonlinearity of the lowest order are taken into account, the (zero current) synchrotron
tune, ν2

s ∝ sinφs, and the rf phase φs is defined to have sinφs > 0.
More convenient to rewrite the formulas in the following equivalent form minimizing

contribution of small distances where wake can be a sharp function of z:

ρ(x, p) =
1

|N |e
−{p2/2+U0(x)}+λ0

∫
dx′ρ(x′)Ŝ[x′−x]}. (56)

Ŝ(x) =
∫ ∞

σBx
dz′W (z′), (57)

3.2 Microwave instability

The single bunch microwave instability can be considered as extreme case of the mode-
coupling instability where there are many modes become unstable and interact with each
other. The onset of the instability can be expected when at least one of the modes
(azimuthal or radial) is unstable. The history of the SLC damping ring serves as an
example: the old vacuum chamber used to give the substantially inductive wake and the
microwave instability was related to the unstable azimuthal sextupole mode (”strong”
microwave instability). After installation of a new, smooth vacuum chamber, the wake
became mostly resistive and the instability was related to the unstable radial modes
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(”weak” microwave instability). Although the weak instability had lower threshold, the
violent saw-tooth bunch dynamics was eliminated.

The threshold of the stability is usually estimated using Keil-Schnell criterion:

Ipeakbunch

2παδ2
0(E/e)

|Z
n
|eff < 1, (58)

where the peak bunch current,

Ipeakbunch =
√

2π(R/σB)Iaverbunch, Iaverbunch = eNBf0, (59)

and the effective impedance

|Z
n
|eff =

1∑
ha(pω0)

∑
p

ha(pω0)
Zl(pω0)

p
(60)

is convolution of the longitudinal impedance with a-th momentum of the bunch spectrum

ha(ω) = (
ωσB
c0

)2ae
−(

ωσB
c0

)2
. (61)

For broad-band impedance, Eq. (60) can be written as

Z

n eff
=

2x2a+1

Γ(a+ 1/2)

∫ ∞

0
dpp2a−1e−p

2x2

Z(pω0), (62)

where x = ω0σB/c0.
The threshold is, usually, given by the momentum a = 1 because a = 0 corresponds

to perturbation of the bunch as a whole and terms a > 1 are small.
K. Oide has shown that the microwave instability is related to the anharmonicity of

particle trajectories in the distorted potential. The analytic formulas which we use in the
code for calculating the threshold of instability are given in Appendix 2.

3.3 Multibunch longitudinal stability

Results [3], [4] (F. Sacherer, J. M. Wang, B. Zotter) for the uniform fill of the ring are
well known and can be found in the textbooks. The derivation is given below to clarify
the implied approximations and to give formulas which can be used for arbitrary filling
pattern and for the sake of completeness.

Let us consider a train of nb bunches. In an equilibrium, the N -th bunch center is at
the distance sN > 0 from the head of the train which is at the location s = c0tmod(2πR)
around the ring. The distance sN may include the shift of the rf phase due to the gap in
the train. Position of the i-th particle in the N -th bunch is

si,N(t) = ct− sN + zi,N(t) (63)
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where z > 0 is displacement to the head of the bunch due to synchrotron motion,

zi,N(t) = z0
N + ai,N sin(ωst+ φi,N). (64)

The first constant in time term is related to the equilibrium rf phase, ωgz
0
N/c = φs,N

of the N -th bunch. In the last term, the amplitude ai,n may be itself a slow function of
time. The offset z0

N is included in sN .
The motion is described by the equation

d2zi,N(t)

dt2
+ [ω0

s(N)]2zi,N(t) = λ0
1

< NB >

∑
j,M

[W (t− tj,M) −W (0)], (65)

where < NB > is average bunch population,

λ0 =
αc0 < NB > reω0

2πγ
,

[ω0
s(N)]2 =

αωgc0e|V̂c|nc
2πRE

sinφs(N), (66)

and W (t) is longitudinal wake (with dimension V/pC or 1/cm), W (t < 0) = 0. Here
α is momentum compaction factor, NB is bunch population, ωg/2π is the rf frequency, nc
is number of cavities, and nc|V̂c| is the total maximum rf voltage per turn. The phases
φs(N) are defined by the losses U per turn/per particle and, due to the train gap, are
different for different bunches,

encVc cosφs(N) = U + e2
∑
M

Nb(M)W (
sN − sM

c0
). (67)

The synchrotron damping is implied in Eq. (65). The longitudinal wake in Eq. (65)
should not include the contribution of the fundamental mode which is already taken into
account defining the steady-state Vc and φs.

Usually, the group velocity of the wakes excited in the ring is small and can be ne-
glected. This is true for localized components such as rf cavities and also for the resistive
wall provided the skin depth δ0 at the revolution frequency is small compared to the bunch
length σB, δ2

0 << σBR.
Then, the time tj,M when a particle j of the M -th bunch is at the same impedance

generating element of the ring as the test particle i, N is

tj,M = t− sN − sM
c0

+
1

c0
[zi,N(t) − zj,M(t− sN − sM

c0
)]. (68)

This formula is correct for bunches in front of the bunch N with sM < sN . Otherwise,
sN − sM has to be replaced by sN − sM + 2πRk, where k is the number of a preceding
turn. This rule is applicable also to the sum in Eqs. (67) and (65).
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In the last equation we subtracted term W (0) =
∑
M W ( sN−sM

c0
) already taken into

account in Eq. (67).
In the frequency domain, the wake is given in terms of the longitudinal impedance,

W (t) =
∫ dω

2π
Z(ω)e−iωt. (69)

Substituting t− tj,M and averaging over incoherent synchrotron oscillations with am-
plitude a, we get

d2zi,N(t)

dt2
+ [ω0

s(N)]2zi,N(t) =
λ0

< NB >

∑
j,M

∫ dω

2π
Z(ω)e−i(ω/c0)(sN−sM )e−(ωa/c0)2

{ei(ω/c0)[zi,N (t)−zj,M (t−(sN−sM )/c0)] − 1}. (70)

The sum can be split over all bunches at a given turn plus over all preceding turns
(neglecting the variation of the bunch populations with time),

∑
M

e−i(ω/c0)((sN−sM ) = {
N∑

M=1

e−i(ω/c0)((sN−sM ) +
nb∑

M=N+1

e−i(ω/c0)((2πR+sN−sM )}
∞∑
k=0

e2πRk

= {
N∑

M=1

e−i(ω/c0)((sN−sM ) +
nb∑

M=N+1

e−i(ω/c0)((2πR+sN−sM )}
∞∑
k=0

e−iω2π(R/c0)k. (71)

The last sum gives

∞∑
k=0

e−iω2π(R/c0)k = ω0

∑
k

δ(ω − kω0), (72)

what allows to join two terms in the first sum:

∑
M

e−i(ω/c0)((sN−sM ) = ω0

nb∑
M=1

e−i(ω/c0)((sN−sM )
∞∑
k=0

δ(ω − kω0). (73)

Eq. (70) takes the form

d2zi,N(t)

dt2
+ [ω0

s(N)]2zi,N(t) =
λ0ω0

2π < NB >

nb∑
j,M=1

∑
k

Z(kω0)e
−ik(ω0/c0)(sN−sM )

e−(kω0a/c0)2{ei(kω0/c0)[zi,N (t)−zj,M (t−(sN−sM )/c0)] − 1}. (74)

Dipole oscillations of bunches can be described considering bunches as a macroparticle,
zi,N = zN , and using the linear approximation over the amplitudes of coherent synchrotron
oscillations. That gives
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d2zN(t)

dt2
+ [ωs(N)]2zn(t) = −iλ0ω

2
0

2πc0

nb∑
M=1

NB(M)

< NB >

∑
k

kZ(kω0)e
−ik(ω0/c0)(sN−sM )

e−(kω0a/c0)2zj,M(t− (sN − sM)/c0), (75)

where the tune shift is included in ωs(N),

ωs(N) = ω0
s(N) − iλ0ω

2
0

4πω0
sc0

∑
M

(
NB(M)

< NB >
) kZ(kω0)e

−i(kω0/c0)(sN−sM )e−(kω0a/c0)2 . (76)

For the uniform distribution of equal bunches around the ring,

∑
M

e−i(kω0/c0)(sN−sM ) = nb
∑
p

δk,nbp. (77)

In this case, the coherent shift is the same for all bunches. Eq. (76) is simplified,

ωs = ω0
s −

inbλ0ω
2
0

4πω0
sc0

∑
p

(nbp)Z(nbpω0)e
−(nbpω0a/c0)2 . (78)

The solution of Eq. (75) can be found in the form

zN(t) =
∫ dΩ

2π
aN(Ω)e−iΩt + c.c. (79)

.
If the coherent Ω << ωs, aN(ω) satisfy the following equation

ΩaN(Ω) =
iλ0ω

2
0

4πωs(N)c0

nb∑
M=1

NB(M)

< NB >

∑
k

kZ(kω0)e
−i(kω0−ωs(N)−Ω)(sN−sM )/c0

e−(kω0a/c0)2aM(Ω + ωs(N) − ωs(M)). (80)

If variation of the tune shift is small, |ωs(N)− ωs(M)| << Ω, Eq. (80) is reduced to a
linear matrix equation

ΩaN(Ω) =
iλ0ω

2
0

4πωs(N)c0

nb∑
M=1

KΩ(N,M)aM(Ω), (81)

where the matrix

KΩ(N,M) =
NB(M)

< NB >

∑
k

kZ(kω0)e
(i/c0)(ωs(N)+Ω−kω0)(sN−sM )e−(kω0a/c0)2 . (82)

Then, aN(Ω) is given by the superposition of eigen-vectors Xµ
M(Ω), µ = 1, 2, .., nb of

KΩ(N,M),
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KΩ(N,M)Xµ
M(Ω) = κµX

µ
M(Ω). (83)

The spectrum of Ω is discrete, Ωµ, µ = 1, 2, .., nb has to be proportional one of the
eigen-values κµ,

Ωµ =
iλ0ω

2
0κµ

4πωs(N)c0
= i

αIbeamω
2
0

4π(E/e)ωs(N)

κµ
nb
. (84)

In the opposite case of |ωs(N)−ωs(M)| > Ω the instability is stabilized by the spread
of the bunch-to-bunch synchrotron frequencies.

For equal uniformly distributed bunches, the eigen-vectors are

Xµ
M(Ω) = (1/

√
nb)e

−2πiµM/nb , (85)

and the eigenvalues are

κµ = nb
∑
p

gpZ(gpω0)e
−g2p(a/R)2 , gp = nbp+ µ+ νs + Ωµ/ω0, µ = 1, 2.., nb. (86)

The general formula for the uniform fill and m = 1, 2.. is given by Wang. It cited in
ZAP manual [4] with some errors. The formula below is corrected version [3]:

Ωµ,m = i
αIbeamω

2
0

4π(E/e)ωs

(σB/2R)2(m−1)

m!(m− 1)!
∞∑

p=−∞
(pnb + µ+mνs)

2m−1e−(pnB+µ+mνs)2(σB/R)2 Z[(nbp+ µ+mνs)ω0]. (87)

The dipole oscillations considered above correspond to m = 1.

3.4 Robinson Instability

The Robinson instability usually is defined as corresponding to the dipole oscillations
m = 1 of the µ = 0 mode. It is defined by the contributions of the terms pω0 = ±ωg. Ω0,1

is proportional to the difference Z(ωg + ωs) − Z∗(ωg − ωs). The beam stability requires
Re[Z(ωg + ωs)] < Re[Z(ωg − ωs)]. For stability, the cavity has to be detuned down from
the rf frequency, ωc < ωg.

4 Transverse Instabilities

The transverse motion of the i-th particle in the N -th bunch
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yi,N(t) = Ai,N(t)e−iψi,N (t) + c.c. (88)

is coupled to the longitudinal motion through the energy dependence of the transverse
tune ωy(t) = dψ(t)/dt,

ψi,N(t) = ω0
yt− ωξzi,N(t)/c0, ωyi,N =

dψi,N(t)

dt
. (89)

Here

ωξ =
ξ

α
ω0
y, ξ = (1/ν0

y)(dν
0
y/dδ) (90)

are the chromatic frequency and the relative chromaticity, respectively. The complex
amplitude Ai,N = |Ai,N |eiψi,N (0) includes the initial betatron phase ψi,N(0) of a particle.

The equation of motion

d2yi,N(t)

dt2
+ [ωyi,N(t)]2yi,N(t) = RHS,

RHS =
rec

2
0

2πRγ

∑
j,M

Wy(t− tj,M) yj,M(tj,M), (91)

where Wy(t) is the transverse wake (dimension V/pC/m or 1/cm2), W (t) = 0 for
t < 0.

If the coherent tune shift is small compared to ωy, Eq. (91) can be averaged over fast
oscillations giving equation for the amplitudes

Ȧi,N(t) = iλy
∑
j

Wy(t− tj,N)yj,N(tj,N) eiψi,N (t)

−λy
∑
j,M

∫ dω

2π

∫ dΩ′

2π
Zy(ω)Aj,M(Ω′)e−iΩ

′t

ei(ω−Ω′−ω0
y)τN,M e(i/c0)(ω−Ω′−ω0

y+ωξ)[zi,N (t)−zj,M (t+τN,M )]. (92)

Here,

λy =
rec

2
0

4πRγω0
y

, τN,M =
sM − sN

c0
, (93)

A(Ω) are Fourier harmonics of the amplitude A(t),

AN(t) =
∫ dΩ

2π
AN(Ω) e−iΩt, (94)

and the transverse impedance is introduced

Wy(t) = i
∫ dω

2π
Zy(ω) e−iωt. (95)
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With this definition, Zy(ω) for ultra-relativistic case can have singularities only in the
lower half-plane of ω.

The first term in the RHS of Eq. (92) is due to interaction of particles in the same
bunch. Other terms describe interaction between bunches and, for bunch spacing large
compared with the bunch rms length σB, bunches can be considered as point-like, Aj,M =
AM .

The bunch-by-bunch transverse feedback system damps the bunch centroid oscillations
with the damping rate γFB adding to the right-hand-side of Eq. (92) the term

−γFB eiψi,N (t) 1

NB(N)

NB(N)∑
i=1

Ai,Ne
−iψi,N (t). (96)

4.1 Head-tail instability

For a single bunch, Eq. (92) gives

Ȧi(t) = iλy
∑
j

Wy(t− tj)yj(tj) e
iψi(t). (97)

For the same bunch, we can average fast oscillating term ∝ e−2iωyt, neglect the dif-
ference between tj and t and, for moderate chromaticity, drop the chromatic shift in the
bunch spectrum. That gives

Ȧi(t) = iλy
∑
j

Wy[zj(t) − zi(t)]Aj(t) e
−iωξ[zi(t)−zj(t)]/c0 . (98)

In two-particle model (A. Chao), all particles are grouped into two macro-particles oscil-
lating with the same frequency,

z1 = a sin(ωs + φ1), z2 = a sin(ωs + φ2) (99)

and phases φ1 = φ, and φ2 = φ+ π. The sum over j gives NB/2. Denoting

κ = 2(ξ/α)(ω0
y/c0)a, Λ =

λyNB

2ωs
, (100)

Eq. (98) is reduced to two coupled equations

Ȧ1(t) = iΛωsWy[−2a sin(ωst+ φ)]A2e
−iκ sin(ωst+φ),

Ȧ2(t) = iΛωsWy[2a sin(ωst+ φ)]A1e
iκ sin(ωst+φ). (101)

Solution is described in the A.Chao textbook [3]: it is given by a map, first, from initial
conditions at t = 0 to t = Ts/2, Ts = 2π/ωs, and then for the next half period of syn-
chrotron oscillation. The eigen-values of the matrix describing the one-period transform
are
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µ = 1 − 1

2
G2 ±

√
[1 − 1

2
G2]2 − 1, (102)

where

G = Λ
∫ π

0
dψWy(2a sinψ)e−iκ sinψ. (103)

Then, A(t) ∝ µt/Ts , and the growth rate A(t) = eΓt is

Γ = Re[
1

Ts
log µ]. (104)

The growth rate Eq. (104) includes the strong head-tail and chromatic head-tails ef-
fects.

More accurate consideration of the head-tail instability was given by Satoh and Chin [5].
The result is formulated as a matrix equation

|δh,l + iKbh(λ)Mh,l(λ)| = 0, (105)

for the parameter λ = Ω/ωs where Ω is the coherent shift from the zero-current
betatron tune ν⊥, and the instability takes place when the growth rate Im[Ω] > 0. Here
Mh,l, h, l = 0, 1, 2, .. is matrix

Mh,l(λ) =
∞∑

p=−∞
Z⊥[(p+ ν⊥ + λνs)ω0]Ch[(p+ ν⊥ + λνs − ξ

α
)
σl
R

]Cl[(p+ ν⊥ + λνs − ξ

α
)
σl
R

],

Ch(x) =
1√
h!

(
x√
2
)h exp−x

2

2
,

K =
Ibunchβ⊥

4π(E/e)νs
, (106)

Z⊥(ω) is transverse impedance in Ohm/cm, ξ = dν⊥/dδ is the absolute chromaticity,
σl is the rms bunch length, R = c0/ω0 is the average machine radius, and α is the
momentum compaction. The function

bh(λ) =
[h/2]∑
k=0

(
h!

k!(h− k)!
)

λ

λ2 − (h− 2k)2
P [h, k], (107)

where the upper limit is given by the integer part of h/2 and P (h, k) = 1 if 2k = h and
P (h, k) = 1 otherwise. In calculations the matrix is truncated to a finite rank which is
approximately equal to the number of azimuthal modes taken into account. Usually, the
threshold of instability is given by the lowest modes. An example of calculations based
on the Satoh-Chin formalism is given below.

17



4.2 Transverse coupled-bunch instability

First, let us study the multi-bunch transverse dipole instability describing oscillations of
bunch centroids.

From Eq. (92), we get

ΩAi,N(Ω) = −iλy
∑

NB(M)
∫ dω

2π

∫ dΩ′

2π
Zy(ω)Aj,M(Ω′)∫

dtei(Ω−Ω′)te−(σB/c0)2(ω−Ω′−ω0
y+ωξ)2e(i/c0)(ω−ω0

y−Ω′)(sM−sN )

< e(i/c0)(ω−ω0
y−Ω′+ωξ)[zi,N (t)−zj,M (t+(sM−sN )/c0)] >, (108)

where < .. > mean averaging over longitudinal motion. The integral over dt can be
calculated substituting Eq. (64) for zN(t) and expanding

e
i

c0
(ω−ω0

y−Ω′+ωξ)[zi,N (t)−zj,M (t+(sM−sN )/c0)]
=

∑
m,m′

eim(ωst+φi,N )−im′[ωst+ωs(sM−sN )/c0+φj,M ]

Jm[
aN
c0

(ω − ω0
y − Ω′ + ωξ)]Jm′ [

aM
c0

(ω − ω0
y − Ω′ + ωξ)]. (109)

The sum over M can be reduced to the sum over one-turn as it was done in the
longitudinal case, Eq. (108) takes the form

ΩAi,N [Ω] =
∑
m,m′

nb∑
M=1

KΩ
m,m′(N,M)

nb∑
j=1

Aj,M [Ω + (m−m′)ωs], (110)

where

KΩ
m,m′(N,M) = −iλyω0

2π
NB(M)

∞∑
k=−∞

Zy(kω0 + ω0
y +mω0

s + Ω)

e
i

c0
kω0(sM−sN )+imφi,N−im′φj,M

Jm[
aN
c0

(kω0 + ωξ +m′ωs)] Jm′ [
aM
c0

(kω0 + ωξ +m′ωs)]. (111)

The argument of the Bessel functions for the long-range wakes is small. Therefore,
the series over m,m′ are series over a small parameter.

Averaging with the Gaussian distribution gives for ωσB/c0 << 1

∫
Jm[

aNω

c0
] Jm[

aMω

c0
]
ada

σ2
B

e
− a2

2σ2
b = Im[(

ωσB
c0

)2] e
−(

ωσB
c0

)2 � (ωσB

c0
)m

2mm!
e
−(

ωσB
c0

)2
. (112)

18



4.3 Transverse dipole coupled-bunch instability

In the lowest order, m = m′ = 0, what corresponds to the coupled bunch transverse dipole
oscillations of point-like bunches. In this case, we can drop the index numbering particles
within a bunch replacing Ai,N by AN . Eq. (110) takes the form of the matrix equation

ΩAN(Ω) =
nb∑
M=1

K0(N,M)AM(Ω), (113)

where K0(N,M) = NB(M)KΩ
0,0(N,M),

K0(N,M) = −iλyω0

2π
NB(M)

∞∑
k=−∞

Zy(kω0 + ω0
y + Ω)

e
i

c0
kω0(sM−sN )

e−(σB/c0)2(kω0+ωξ)2 J0[
σB,N
c0

(kω0 + ωξ)] J0[
σB,M
c0

(kω0 + ωξ)]. (114)

Coefficients AN(Ω) are given by superposition of the eigen-vectors of the matrix
K0(N,M). The spectrum of Ω is discrete, the coherent shift Ω has to be equal to one of
the eigen-values of K0(N,M).

For the uniform fill, the eigen-vectors of K0(N,M) are Xµ
M = (1/

√
nb)e

−2πiµM/nb . The
spectrum of coupled-bunch motion is

Ωµ = −iλyNbnb
ω0

2π

∑
p

Zy(pnbω0 + µω0 + ω0
y + Ωµ) e

−(σB/c0)2(pnbω0+µω0+ωξ)2

J2
0 [
σB
c0

(pnbω0 + µω0 + ωξ)], µ = 0, 1, ..., nb, (115)

where as is amplitude of the coherent synchrotron oscillations.
Eq. (115) is slightly different from the Wang’s result [4]: (pnbω0 + µω0 + ωξ) in the

exponent of Eq. (115) is replaced in his formula by (pnbω0 +µω0 +ωξ−ω0
y). The difference

appears to come from neglecting the time delay in yjM(tjM) in Wang’s formalism.

4.4 Transverse quadrupole coupled-bunch instability

For small amplitude of synchrotron oscillations asωHOM/c0 <, 1, the amplitude AN(Ω)
can be expanded over as. Neglecting terms ∝ z2 and reducing sum over all turns to the
sum over one turn, we get

ΩAi,N(Ω) =
nB∑
M

{G(0)
0,0(N,M) < AM(Ω) >

+G
(1)
1,0(N,M)ẑi,N < Aj,M(Ω + ωs) > −G(1)

0,−1(N,M) < ẑj,MAj,M(Ω + ωs) >

−G(1)
−1,0(N,M)ẑ∗i,N < Aj,M(Ω − ωs) > +G

(1)
0,1(N,M) < ẑ∗j,MAj,M(Ω − ωs) >

+G
(2)
1,1(N,M)ẑi,N < ẑ∗j,MAj,M(Ω) > +G

(2)
−1,−1(N,M)ẑ∗i,N < ẑj,MAj,M(Ω) >}. (116)
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Here ẑj,M = aj,Me
iφj,M , angular brackets mean averaging as in

< ẑj,MAj,M >=
1

NB(M)

∑
j

ẑj,MAj,M , (117)

where

G
(m)
l,l′ (N,M)[Ω] = −iλyω0

2π
NB(M)

∞∑
k=−∞

(
kω0 + ωξ + l′ωs)

2c0
)mZy(kω0+ω

0
y+Ω+lωs)e

i
c0
kω0(sM−sN )

.

(118)
The solution can be found in the form

Ai,N(Ω) = A
(0)
N (Ω) + ẑi,NA

(+)
N (Ω) + ẑ∗i,NA

(−)
i,N (Ω). (119)

The A(±) describe the y − z correlation. Then, neglecting again terms ∝< z2 >, we
get

A
(0)
N (Ω) =< Ai,N(Ω) >,

< ẑj,MAj,M(Ω) >= d̂NA
(0)
N (Ω)+ < |zj,M |2 > A

(−)
N (Ω),

< ẑ∗j,MAj,M(Ω) >= d̂∗NA
(0)
N (Ω)+ < |zj,M |2 > A

(+)
N (Ω), (120)

where dM =< ẑj,M > is coherent longitudinal shift of the N -th bunch centroid and,
for a Gaussian bunch, < |zj,M |2 >= 2σ2

M,B.

Eq. (116) takes the form (we drop Ω in the arguments G
(m)
l,l′ (N,M)[Ω]):

ΩA
(0)
N (Ω) =

nB∑
M

G
(0)
0,0(N,M)[A

(0)
M (Ω) + dMA

(+)
M (Ω) + d∗MA

(−)
M (Ω)]

−
nB∑
M

{G(1)
0,−1(N,M)[dMA

(0)
M (Ω + ωs) + 2σ2

M,BA
(−)
M (Ω + ωs)]

+
nB∑
M

{G(1)
0,1(N,M)[d∗MA

(0)
M (Ω − ωs) + 2σ2

M,BA
(+)
M (Ω − ωs)]. (121)

ΩA
(+)
N (Ω) =

nB∑
M

G
(1)
1,0(N,M)[A

(0)
M (Ω + ωs) + dMA

(+)
M (Ω + ωs) + d∗MA

(−)
M (Ω + ωs)]

+
nB∑
M

{G(2)
1,1(N,M)[d∗MA

(0)
M (Ω) + 2σ2

M,BA
(+)
M (Ω)]

−
nB∑
M

{G(2)
1,−1(N,M)[dMA

(0)
M (Ω + 2ωs) + 2σ2

M,BA
(−)
M (Ω + 2ωs)]. (122)
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ΩA
(−)
N (Ω) = −

nB∑
M

G
(1)
−1,0(N,M)[A

(0)
M (Ω − ωs) + dMA

(+)
M (Ω − ωs) + d∗MA

(−)
M (Ω − ωs)]

+
nB∑
M

{G(2)
−1,−1(N,M)[dMA

(0)
M (Ω) + 2σ2

M,BA
(−)
M (Ω)]

−
nB∑
M

{G(2)
−1,1(N,M)[d∗MA

(0)
M (Ω − 2ωs) + 2σ2

M,BA
(+)
M (Ω − 2ωs)]. (123)

The bunch-by-bunch feedback system adds damping to each bunch proportional to the
bunch centroid velocity < ẏN >= (1/NB)

∑
i dyi,n/dt. The FB can be described replacing

d2yi,N/dt
2 + ω2

byi,N in the equation of motion by d2yi,N/dt
2 + 2γFB < dyN/dt > +ω2

byi,N .
Eqs. 122)-(123) are then modified by adding

−iγFB
2π

NB(N)A
(0)
N (Ω) {1;

ωξ
2π

;−ωξ
2π

} (124)

to the right-hand-sides, respectively.
Let us consider the case where the longitudinal motion of the bunch centroid is initially

not excited, d± = 0.
The amplitude A± are excited in this case by the vertical motion of the bunch centroid.

Neglecting effect of these modes on the motion of the bunch centroid, we get from the
first Eq. (121) the dispersion equation for the transverse dipole coupled bunch oscillations

ΩA
(0)
N (Ω) =

nB∑
M

G
(0)
0,0(N,M)A

(0)
M (Ω) (125)

obtained already above, see Eq. (113).
Eqs. (122), (123) in the case d = 0 give

ΩA
(+)
N (Ω) =

nB∑
M

G
(1)
1,0(N,M)A

(0)
M (Ω + ωs)

+
nB∑
M

{2σ2
M,BG

(2)
1,1(N,M)A

(+)
M (Ω) − 2σ2

M,BG
(2)
1,−1(N,M)A

(−)
M (Ω + 2ωs)}. (126)

ΩA
(−)
N (Ω) = −

nB∑
M

G
(1)
−1,0(N,M)A

(0)
M (Ω − ωs)

+
nB∑
M

{2σ2
M,BG

(2)
−1,−1(N,M)A

(−)
M (Ω) − 2σ2

M,BG
(2)
−1,1(N,M)A

(+)
M (Ω − 2ωs)}. (127)

For the uniform fill, the vectors Eq. (85) are the eigen-vectors of the matricesG
(m)
l,l′ (N,M),
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∑
M

G
(m)
l,l′ (N,M)[Ω]Xµ

M = κ(m)
µ (l, l′)[Ω]Xµ

N , (128)

where

κ(m)
µ (l, l′)[Ω] = −iλyω0

2π
NBnb

∞∑
p=−∞

(
(pnb + µ)ω0 + ωξ + l′ωs

2c0
)mZy((pnb+µ)ω0+ω

0
y+Ω+lωs).

(129)

A
(±)
N is a superposition of Xµ

N ,

A
(0)
N [Ω] =

∑
µ

g(0)
µ Xµ

N , A
(±)
N [Ω ± ωs] =

∑
µ

g(±)
µ Xµ

N . (130)

Note that

∑
M

G
(m′)
l,l′ (N,M)[Ω′]A(m)

M [Ω] =
∑
µ

g(m)
µ Xµ

Nκ
(m′)
µ (l, l′)[Ω′] (131)

where m,m′ and Ω,Ω′ are not necessarily the same.
Hence, for the uniform bunch pattern, Eqs. (126), (127) give

[(Ω − ωs) − 2σ2κ
(2)
1,1(Ω − ωs)]g

(+)
µ + 2σ2κ

(2)
1,−1(Ω − ωs)g

(−)
µ = κ

(1)
1,0(Ω − ωs)g

(0)
µ ,

[(Ω + ωs) − 2σ2κ
(2)
−1,−1(Ω + ωs)]g

(−)
µ

+2σ2κ
(2)
−1,−1(Ω + ωs)g

(+)
µ = −κ(1)

−1,0(Ω + ωs)]g
(0)
µ . (132)

The response to the excitation by the bunch centroid is infinite at the eigen-frequencies
Ω of the matrix in the left-hand-side of Eqs. (132). The dispersion relations can be simpli-

fied using by the relations κ
(2)
1,1(Ω−ωs) = κ

(2)
−1,1(Ω+ωs), and κ

(2)
−1,−1(Ω+ωs) = κ

(2)
1,−1(Ω−ωs).

That gives the (complex) coherent frequency shift of the µ-th quadrupole coupled bunch
mode (correlated y − z motion), µ = 0, 1, .., nb,

Ωµ = ±ωs + 2σ2
Bκ

(2)
µ (±1,±1)[0]. (133)

Note

λyω0

2π
Nbnb =

c0 I
dc
beam

4π(E/e)νy
. (134)

More accurately would be to replace 1/νy in the last formula by βy/R at the location
of the impedance generating element and take into account the bunch density factor

e
−(

σB
c0

)2(pnbω0+µω0+ωξ)2
.
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4.5 Mode coupling in multibunch system (CBCM instability)

Now we can take into account effect of the quadrupole modes on the motion of the bunch
centroids retaining terms A(±)(Ω ± ωs) in Eq. (116).

The coupling terms in Eq. (121)

−2
nB∑
M

σ2
M,BG

(1)
0,−1(N,M)A

(−)
M (Ω + ωs) + 2

nB∑
M

2σ2
M,BG

(1)
0,1(N,M)A

(+)
M (Ω − ωs) (135)

according to Eqs. (132) are proportional to A(0). Generally speaking, they are small
and can be taken into account by iterations. The nontrivial situation arises when the
coherent tune shift is of the order of ωs. Then modes can not be considered separately
and coupling can lead to new Coupled-Bunch-Coupled-Mode (CBCM) instability in the
multibunch system [6].

The system of equations Eq. (121) and Eqs. (132) takes the form :

ΩA
(0)
N (Ω) −

nB∑
M

G
(0)
0,0(N,M)A

(0)
M (Ω) =

2
nB∑
M

σ2
M,B{−G(1)

0,−1(N,M)A
(−)
M (Ω + ωs) +G

(1)
0,1(N,M)A

(+)
M (Ω − ωs)}. (136)

(Ω − ωs)A
(+)
N (Ω − ωs) − 2

nB∑
M

σ2
M,BG

(2)
1,1(N,M)|Ω−>Ω−ωsA

(+)
M (Ω − ωs)

=
nB∑
M

{G(1)
1,0(N,M)A

(0)
M (Ω) − 2σ2

M,BG
(2)
1,−1(N,M)A

(−)
M (Ω + 2ωs)}|Ω−>Ω−ωs , (137)

(Ω + ωs)A
(−)
N (Ω + ωs) − 2

nB∑
M

σ2
M,BG

(2)
−1,−1(N,M)|Ω−>Ω+ωsA

(−)
M (Ω + ωs)

= −
nB∑
M

{G(1)
−1,0(N,M)A

(0)
M (Ω) + 2σ2

M,BG
(2)
−1,1(N,M)A

(+)
M (Ω − 2ωs)}|Ω−>Ω+ωs .(138)

For the uniform fill, the vectors Eq. (85) are the eigen-vectors of the matrixG
(m)
l,l′ (N,M).

Expanding
A

(0)
N [Ω] =

∑
µ

g(0)
µ Xµ

N , A
(±)
N [Ω ± ωs] =

∑
µ

g(±)
µ Xµ

N , (139)

we reduce Eqs. (136-138) to the system of algebraic equations for the amplitudes g(0)
µ

and g(±)
µ for each coupled-bunch mode:
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{Ω − κ(0)
µ (0, 0)[Ω]} g(0)

µ + 2σ2
B{κ(1)

µ (0,−1)[Ω] g(−)
µ − κ(1)

µ (0, 1)[Ω] g(+)
µ } = 0,

κ(1)
µ (1, 0)[Ω − ωs] g

(0)
µ − {Ω − ωs − 2σ2

Bκ
(2)
µ (1, 1)[Ω − ωs]} g(+)

µ

−2σ2
Bκ

(2)
µ (1,−1)[Ω − ωs]g

(−)
µ = 0,

κ(1)
µ (−1, 0)[Ω + ωs] g

(0)
µ + {Ω + ωs − 2σ2

Bκ
(2)
µ (−1,−1)[Ω + ωs]} g(−)

µ +

2σ2
Bκ

(2)
µ (−1, 1)[Ω + ωs]g

(+)
µ = 0. (140)

Eqs. (140) give the system of linear equations M(Ω)V = 0 where the vector V =
{g(0)

µ , g(+)
µ , g(−)

µ }. The system has a nontrivial solution at frequencies Ω given by the zeros
of the determinant of the matrix M(Ω).

Let us apply these results to a single bunch putting nb = 1, µ = 0. Neglecting terms
proportional to κ(2)

µ , using identities

κ
(1)
0 (1, 0)[Ω − ωs] = κ

(1)
0 (−1, 0)[Ω + ωs] = κ

(1)
0 (0, 0)[Ω],

κ
(1)
0 (0,−1)[Ω] + κ

(1)
0 (0, 1)[Ω] = 2κ

(1)
0 (0, 0)[Ω] (141)

and notation k0,

κ
(1)
0 (0,−1)[Ω] − κ

(1)
0 (0, 1)[Ω] = −(

ωs
c0

)k0, (142)

we can determine the coherent shift Ω from the equation |M | = 0 or

(k0 − Ω)(ω2
s − Ω2) − 2

(ωsσ)2

c0
k0κ

(1)
0 (0, 0)[Ω] − 4σ2Ω(κ

(1)
0 (0, 0)[Ω])2 = 0. (143)

The explicit form of the coefficients here is

k0 = −iλyω0

2π
NB

∞∑
p=−∞

Zy(pω0 + ω0
y + Ω),

κ
(1)
0 (0, 0)[Ω] = −iλyω0

2π
NB

∞∑
p=−∞

(
pω0 + ωξ

2c0
)Zy(pω0 + ω0

y + Ω). (144)

The coefficients are proportional to the components of the matrixMh,l(λ) in the Satoh-
Chin formalism:

k0 = iKωsM0,0(λ), κ
(1)
0 (0, 0)[Ω] = iK

ωs

σl
√

2
M1,0(λ), (145)

where λ = −Ω/ωs.
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Therefore, Eq. (141) can be written in the form

(1 − λ2)(iKM0,0 + λ) − 2λK2M2
1,0 + (

√
2σlωs
c0

)K2M0,0M1,0 = 0. (146)

The ratio of the last term to the second one is of the order of ωs/ωHOM times where ωHOM
is the frequency where impedance Z⊥(ω) start to roll off. Neglecting this term, we get the
same equation that is given by the Satoh-Chin formalism with the rank of the truncated
matrix equal two, see Fig. where we compare the Satoh-Chin formalism with the CBCM
formalism applied for one bunch. The single narrow-band impedance is taken as an
example with the shunt impedance Rs = 0.68 MOhm/m, Q = 1 and ωHOM/2π = 1.30
GHz. Other parameters[5] are: β⊥ = 160 m, ω0/2π = 136 KHz, σl = 2.0 cm, E = 14.5
GeV, α = 1.3 10−3, Qs = 0.044. The Satoh-Chin matrix is truncated to the rank two and
the formalism gives the growth rate for two modes (shown in red). The CBCM formalism
gives the growth rate only for the lowest mode (shown in blue). However, the thresholds
of the coupled-mode instability in both cases agree very well.

4.6 CBCM with dipole motion

So far considering CBCM instability we neglected in Eqs. (121)-(123) terms proportional
to the dipole momentum. Now we want to take them into account. For simplicity, we

study here the uniform bunch pattern. Assuming that the longitudinal motion is
dominated by a single unstable mode µ0 with the amplitude d0, we define

dM =
√
nbd0X

µ
M , Xµ

M =
1√
nb
e2πiµM/nb . (147)
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Note that with this definition the amplitude of oscillations z � σl corresponds to d0 � σl.
For the uniform fill Eqs. (121)-(123) take the form

Ωg(0)
µ (Ω) = κ(0)

µ (0, 0)[Ω]{g(0)
µ (Ω) + d0g

(+)
µ−µ0

(Ω) + d∗0g
(−)
µ+µ0

(Ω)}
−{κ(1)

µ (0,−1)[Ω] {2σ2
Bg

(−)
µ (Ω + ωs) + d0g

(0)
µ−µ0

(Ω + ωs)]}
+κ(1)

µ (0, 1)[Ω] {2σ2
Bg

(+)
µ (Ω − ωs) + d∗0g

(0)
µ+µ0

(Ω − ωs)}. (148)

Ωg(+)
µ (Ω) = κ(1)

µ (1, 0)[Ω] {g(0)
µ (Ω + ωs) + d0g

(+)
µ−µ0

(Ω + ωs) + d∗0g
(−)
µ+µ0

(Ω + ωs)}
+κ(2)

µ (1, 1)[Ω] {d∗0g(0)
µ+µ0

(Ω) + 2σ2
Bg

(+)
µ (Ω)}

−κ(2)
µ (1,−1)[Ω]{d0g

(0)
µ−µ0

(Ω + 2ωs) + 2σ2
Bg

(−)
µ (Ω + 2ωs)}. (149)

Ωg(−)
µ (Ω) = −κ(1)

µ (−1, 0)[Ω] {g(0)
µ (Ω − ωs) + d0g

(+)
µ−µ0

(Ω − ωs) + d∗0g
(−)
µ+µ0

(Ω − ωs)}
+κ(2)

µ (−1,−1)[Ω] {d0g
(0)
µ−µ0

(Ω) + 2σ2
Bg

(−)
µ (Ω)}

−κ(2)
µ (−1, 1)[Ω]{d∗0g(0)

µ+µ0
(Ω − 2ωs) + 2σ2

Bg
(+)
µ (Ω − 2ωs)}. (150)

In the case d0 = 0 Eqs. (121)-(123) are identical with Eq. (140) where only g(0)
µ (Ω) and

g(±)
µ (Ω ∓ ωs) are not equal to zero. If d0 �= 0, these terms induce components g(±)

µ (Ω),

{Ω − 2σ2
Bκ

(2)
µ (1, 1)[Ω]} g(+)

µ (Ω) = d∗0 {κ(2)
µ (1, 1)[Ω]g

(0)
µ+µ0

(Ω) + κ(1)
µ (1, 0)[Ω]g

(−)
µ+µ0

(Ω + ωs)}, (151)

{Ω − 2σ2
Bκ

(2)
µ (−1,−1)[Ω]} g(−)

µ (Ω) = d0 {κ(2)
µ (−1,−1)[Ω]g

(0)
µ−µ0

(Ω) − κ(1)
µ (−1, 0)[Ω]g

(+)
µ−µ0

(Ω − ωs)}.

Taking into account these terms transforms Eq. (140) for the components (
g(0) = g(0)

µ (Ω), g± = g(±)
µ (Ω ∓ ωs)) to

{Ω − κ(0)
µ (0, 0)[Ω]} g(0) + 2σ2

B{κ(1)
µ (0,−1)[Ω] g(−) − κ(1)

µ (0, 1)[Ω] g(+) } =

|d0|2κ(0)
µ (0, 0)[Ω] { κ

(2)
µ−µ0

(1, 1)[Ω]g(0) + κ
(1)
µ−µ0

(1, 0)[Ω]g(−)

Ω − 2σ2
Bκ

(2)
µ−µ0

(1, 1)[Ω]

+
κ

(2)
µ+µ0

(−1,−1)[Ω]g(0) − κ
(1)
µ+µ0

(−1, 0)[Ω]g(+)

Ω − 2σ2
Bκ

(2)
µ+µ0

(−1,−1)[Ω]
}. (152)

{Ω − ωs − 2σ2
Bκ

(2)
µ (1, 1)[Ω − ωs]} g(+) =
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κ(1)
µ (1, 0)[Ω − ωs] g

(0) − 2σ2
Bκ

(2)
µ (1,−1)[Ω − ωs]g(−)

+|d0|2κ(1)
µ (1, 0)[Ω − ωs] { κ

(2)
µ−µ0

(1, 1)[Ω] g(0) + κ
(1)
µ−µ0

(1, 0)[Ω] g(−)

Ω − 2σ2
Bκ

(2)
µ−µ0

(1, 1)[Ω]

+
κ

(2)
µ+µ0

(−1,−1)[Ω] g(0) − κ
(1)
µ+µ0

(−1, 0)[Ω] g(+)

Ω − 2σ2
Bκ

(2)
µ+µ0

(−1,−1)[Ω]
}. (153)

{Ω + ωs − 2σ2
Bκ

(2)
µ (−1,−1)[Ω + ωs]} g(−) =

−κ(1)
µ (−1, 0)[Ω + ωs] g

(0) − 2σ2
Bκ

(2)
µ (−1, 1)[Ω + ωs]g(+)

−|d0|2κ(1)
µ (−1, 0)[Ω + ωs] { κ

(2)
µ−µ0

(1, 1)[Ω] g(0) + κ
(1)
µ−µ0

(1, 0)[Ω] g(−)

Ω − 2σ2
Bκ

(2)
µ−µ0

(1, 1)[Ω]

+
κ

(2)
µ+µ0

(−1,−1)[Ω] g(0) − κ
(1)
µ+µ0

(−1, 0)[Ω] g(+)

Ω − 2σ2
Bκ

(2)
µ+µ0

(−1,−1)[Ω]
}. (154)

5 Instability of the closed orbit

Recently [7] it was noticed that the resistive wall impedance ZRW may lead to the closed
orbit instability. At the low frequencies, where the skin depth δ is larger than the beam

pipe wall thickness d, δ2(ω) >= bd, the resistive wall transverse impedance per unit
length of a round beam pipe with the radius b is

ZRW (ω) = −i Z0

πb2
g

1 − iω/ωc
, (155)

where L is the length of the beam pipe,

g = 1/2, ωc =
ωδ2(ω)

bd
, (µ = 0),

g = 1, ωc =
ωδ2(ω)

2bd
, (µ >> 1). (156)

The impedance Eq. (156) is written in two cases: for the vacuum (µ = 0) and a magnetic
material (µ >> 1) outside of the beam pipe.

For a uniform distribution of bunches in the ring, the coherent frequency Ω is given by
the standard formula. Let us consider a single bunch. Then

Ω = −iλ∑
p

Zy(pω0 + ωβ + Ω), λ =
Ibeamc

2

4(E/e)ωβ
. (157)
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As it will be clear later, only one term gives the main contribution providing the CB
coherent frequency shift is small compared with ν̃ω0 where ν̃ is the fractional part of the

tune. Neglecting all others terms, one get equation for Ω,

Ω[1 − i
Ω + nω0 + ωβ

ωc
] + λ

Z0g

πb2
= 0. (158)

The beam is unstable if Im[Ω] > 0. The threshold of instability is

Ith =
2πñuyνy
gZ0

(
b

R
)2 (E/e). (159)

Here ν̃ is fractional part of the betatron tune, Z0 = 120π Ohm. The most dangerous
mode is for n equal to the integer part of the tune.

6 Summary

6.1 Steady-state fundamental rf

QL =
Q0

1 + β
, (160)

cos[φs] = Uturn/eVtot (161)

tan(ψ) = QL(
ωg
ωc

− ωc
ωg

), (162)

Zc(ωg) = RL cosψ e
iψ. (163)

Y =
2R0I

dc
B

|V̂c|
. (164)

1 + β

Y
=

tanφs − tanφc
tanψ + tanφc

cos(φs). (165)

Pi =
R0

2β
(IdcB )2[

sin(ψ + φs)

sin(ψ + φc)
]2. (166)
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6.1.1 The Robinson criteria of stability

sinφs > 0;
Y sin(2ψ)

2(1 + β)
< sinφs. (167)

6.1.2 Optimum conditions

tanψ =
β − 1

β + 1
tanφs,

β = 1 + Y cosφs. (168)

Pi =
2(IdcB )2R0

Y 2
(1 + Y cosφs) =

|V̂c|2
2R0

(1 + Y cosφs).). (169)

6.2 Potential well distortion

ρ(x, p) =
1

|N |e
−(p2/2+U0(x)+λ0

∫
dx′ρ(x′)S[σB(x′−x)]. (170)

|N | is normalization constant defined by
∫
dpdxρ = 1,

U0(x) =
x2

2
− x3

6
(
ωgσB
c0

) cotφs − x4

24
(
ωgσB
c0

)2,

λ0 =
NBre

2πRγαδ2
0

,

S(z) =
∫ z

0
dz′W (z′), (171)

6.3 Multibunch longitudinal stability

Notations:

λ0 =
αc0 < NB > reω0

2πγ
,

[ω0
s(N)]2 =

αωgc0e|V̂c|nc
2πRE

sinφs(N), (172)

encVc cosφs(N) = U + e2
∑
M

Nb(M)W (
sN − sM

c0
). (173)
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6.3.1 The synchrotron tune including wake-field effect

ωs(N) = ω0
s(N) − iλ0ω

2
0

4πω0
sc0

∑
M

(
NB(M)

< NB >
) kZ(kω0)e

−i(kω0/c0)(sN−sM )e−(kω0a/c0)2 . (174)

For the uniform fill,

ωs = ω0
s −

inbλ0ω
2
0

4πω0
sc0

∑
p

(nbp)Z(nbpω0)e
−(nbpω0a/c0)2 . (175)

6.3.2 The coherent shift

is given by the eigen values of the system

ΩaN(Ω) =
iλ0ω

2
0

4πωs(N)c0

nb∑
M=1

KΩ(N,M)aM(Ω), (176)

where

KΩ(N,M) =
NB(M)

< NB >

∑
k

kZ(kω0)e
(i/c0)(ωs(N)+Ω−kω0)(sN−sM )e−(kω0a/c0)2 . (177)

For the uniform fill,

Ωµ =
iλ0ω

2
0κµ

4πωs(N)c0
= i

αIbeamω
2
0

4π(E/e)ωs(N)

κµ
nb
. (178)

where

κµ = nb
∑
p

gpZ(gpω0)e
−g2p(a/R)2 , gp = nbp+ µ+ νs + Ωµ/ω0, µ = 1, 2.., nb. (179)

6.3.3 Quadrupole (m = 2) longitudinal coherent shifts

for the uniform fill are:

Ωµ,m = i
αIbeamω

2
0

2π(E/e)ωs

(σB/R)m−1

2m(m− 1)!
∞∑

p=−∞
(pnb + µ)2me−(pnB+µ)2(σB/R)2 Z[(nbp+ µ+mµs)ω0]

nbp+ µ+mνs
. (180)
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6.4 Transverse Instabilities

Notations:

ωξ =
ξ

α
ω0
y,

ξ = (1/ν0
y)(dν

0
y/dδ) (181)

λy =
rec

2
0

4πRγω0
y

,

τN,M =
sM − sN

c0
, (182)

6.4.1 Head-Tail

µ = 1 − 1

2
G2 ±

√
[1 − 1

2
G2]2 − 1, (183)

where

G = Λ
∫ π

0
dψW (2a sinψ)e−iκ sinψ. (184)

The growth rate A(t) = eΓt, where

Γ = Re[
1

Ts
log µ]. (185)

6.4.2 Transverse dipole coupled-bunch instability:

The coherent shift is given by the eigen values of the system

ΩAN(Ω) =
nb∑
M=1

K0(N,M)AM(Ω), (186)

where

K0(N,M) = i
λyω0

2π
NB(M)

∞∑
k=−∞

Zy(kω0 − ω0
y + Ω)

e
i

c0
kω0(sM−sN )

e−(σB/c0)2(kω0+ωξ)2 J0[
σB,N
c0

(kω0 + ωξ)] J0[
σB,M
c0

(kω0 + ωξ)]. (187)
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For the uniform fill,

Ωµ = iλyNbnb
ω0

2π

∑
p

Zy(pnbω0 + µω0 − ω0
y + Ωµ) e

−(σB/c0)2(pnbω0+µω0+ωξ)2

J2
0 [
σB
c0

(pnbω0 + µω0 + ωξ)], µ = 0, 1, ..., nb, (188)

6.4.3 Quadrupole (m = 1) coupled-bunch coherent shift

Define

G
(m)
l,l′ (N,M) = i

λyω0

2π
NB(M)

∞∑
k=−∞

(
kω0 + ωξ + l′ωs)

2c0
)mZy(kω0−ω0

y+Ω+lωs)e
i

c0
kω0(sM−sN )

.

(189)
The coherent shift is given by the eigen-values Ω of the system:

ΩA
(+)
N (Ω) − 2

nB∑
M

σ2
M,BG

(2)
1,1(N,M)A

(+)
M (Ω) = 0,

ΩA
(−)
N (Ω) − 2

nB∑
M

σ2
M,BG

(2)
−1,−1(N,M)A

(−)
M (Ω) = 0. (190)

For the uniform fill,

Ωµ = 2σ2
Bκ

(2)
µ (±1,±1)[Ωµ]. (191)

κ(m)
µ (l, l′)[Ω] = i

λyω0

2π
NBnb

∞∑
p=−∞

(
(pnb + µ)ω0 + ωξ + l′ωs)

2c0
)mZy((pnb+µ)ω0−ω0

y+Ω+lωs).

(192)

6.4.4 Coupled-bunch Mode coupling

For the uniform fill, the coherent shift is given by the eigen-values Ω of the system:

{Ω − κ(0)
µ (0, 0)[Ω]} g(0)

µ = 2σ2
B{−κ(1)

µ (0,−1)[Ω] g(−)
µ + κ(1)

µ (0, 1)[Ω] g(+)
µ },

{Ω − ωs − 2σ2
Bκ

(2)
µ (1, 1)[Ω − ωs]} g(+)

µ = κ(1)
µ (1, 0)[Ω − ωs] g

(0)
µ

−2σ2
Bκ

(2)
µ (1,−1)[Ω − ωs]} g(−)

µ ,

{Ω + ωs − 2σ2
Bκ

(2)
µ (−1,−1)[Ω + ωs]} g(−)

µ = −κ(1)
µ (−1, 0)[Ω + ωs] g

(0)
µ

−2σ2
Bκ

(2)
µ (−1, 1)[Ω + ωs]} g(+)

µ . (193)
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6.5 Instability of the closed orbit

The threshold beam current

Ith =
2π(E/e)νy(νy − n)

gZ0

(
b

R
)2, (194)

where n = integer part of the betatron tune νy, g = 1 or g = 1/2, see Eq. (126).
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8 APPENDIX 1. Definitions of impedances and

wakes

We use impedance Z(ω) analytic in the upper-half plane of ω and the wake W (z) is zero
at z < 0. Positive longitudinal wake means energy loss, that is the change of energy of
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the trailing particle following at the distance z > 0 behind the leading particle, changes
by ∆E = −Nbe

2Wl(z),

Wl(z) =
∫ dω

2π
Zl(ω) e−iωz/c0 . (195)

Similarly, the transverse wake Wt defines c0∆pt = +Nbe
2Wt(z). It is related to the

transverse impedance as

Wt(z) = i
∫ dω

2π
Zt(ω) e−iωz/c0 . (196)

The transverse impedance Zt is related to Zl by Panofsky-Wentzel theorem,

Zr(ω) =
1

ωrl/c0

∂Zl
∂rt

, (197)

where rl and rt are offsets of the leading and trailing particles.
With these definitions,

Zl(−ω)∗ = Zl(ω
∗), Zt(−ω)∗ = −Zt(ω∗). (198)

The narrow-band longitudinal impedance can be written as

Zl(ω) =
RH

1 − iQH(ω/ωH − ωh/ω)

� i
ωH
2

RH

QH

[
1

ω − ωH + iωh/2QH

+
1

ω + ωH + iωh/2QH

]. (199)

Such impedance is inductive at small ω << ωH , Zl(ω) → −iLω/c2, L = RH/(ωHQH).
The standard form of the resistive wall impedance is

Z(n)

n
= Z0(

1 − i

2
)
δ(ω)

b
, (200)

where n = ω/ω0, and δ(ω) is the skin depth.
The narrow-band transverse impedance is

Zt(ω) =
ωH
ω

RH

1 − iQH(ω/ωH − ωh/ω)

� i
ωH
2

RH

QH

[
1

ω − ωH + iωh/2QH

− 1

ω + ωH + iωh/2QH

]. (201)

Dimensions of the wakes Wl and Wt (wakes per turn) are V/pC � 1/cm and V/pC/m,
respectively. Impedances Zl and Zt (per turn) have dimensions Ohm ∝ 1/c0 and

Ohm/m, respectively.
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9 APPENDIX 2. The threshold of the microwave

instability

We also can use the following simple formalism. Consider the Hamiltonian H(x, p, s)
describing synchrotron motion in the linear rf potential,

H(x, p, s) =
p2 + x2

2
+ λ

∫
dx′dp′ρ(x′, p′, s)S(x′ − x), S(x) =

∫ σx

0
dzWl(z), (202)

where x = z/σ0, p = −δ/δ0 are dimensionless position of a particle (z > 0 is in the head
of a bunch) and energy off-set, s = ω0,st is time in synchrotron periods, and the

distribution function is normalized ρ(x, p, s)dpdx = 1. In this units, S(x) is
dimensionless, S(x) = 0 at x < 0. The zero-current synchrotron frequency is equal to

one and

λ =
Nbr0

2πRγαδ2
0

. (203)

Below the threshold of instability, the distribution function and the Hamiltonian are
time independent. It is always possible in this case to go to new angle-action variables
I, ψ to make the Hamiltonian H(I, ψ) = H0(I) and ρ(I, ψ) = ρ0(I) independent of

phases ψ. Above the threshold, there are unstable azimuthal harmonics and

H(I, ψ, s) = H0(I, s) + λ
∑
m�=0

Vm(I, s) eimψ,

ρ(I, ψ, s) = ρ0(I, s) + λ
∑
m�=0

ρm(I, s) eimψ. (204)

Actually, there is correction to the zero harmonics ρ0 but, as it is shown below, the
correction is small.

To transform Eq. (202) to the form Eq. (204) let us expand S(x′ − x) in azimuthal
harmonics

S(x′ − x) =
∑
m

Sm,m′(I, I ′) eimψ−im
′ψ′
. (205)

Sm,m′ is given in terms of the longitudinal impedance Z(ω),

Sm,m′(I, I ′) = c0

∫ dω

2πi

Z(ω)

ω
[δm,0δm′,0 − Cm(ω, I)C∗

m′(ω, I ′)],

Cm(ω, I) =
∫ dψ

2π
e−imψ ei

ωσ
c0
x(I,ψ)

. (206)

35



Note, S∗
m,m′(I, I ′) = S−m,−m′(I, I ′). Therefore, S0,0(I, I

′) is real.
The term proportional to δm,0δm′,0 is a constant independent of I,and I ′. The

Hamiltonian Eq. (202) can be written as

H(I, ψ, s) = H0 + λ
∑
m′ �=0

∫
dI ′dψ′S0,m′(I, I ′)ρm′(I ′, s)

+λ
∑

(m,m′) �=0

eimψ
∫
dI ′dψ′Sm,m′(I, I ′)ρm′(I ′, s), (207)

H0 =
p2 + x2

2
+ λ

∫
dI ′dψ′S0,0(I, I

′)ρ0(I
′, s) + λ

∑
m�=0

eimψ
∫
dI ′dψ′Sm,0(I, I ′)ρ0(I

′, s).

Comparing Eq. (204) and Eq. (207), we define

Vm(I, s) =
∑
m′ �=0

∫
dI ′dψ′Sm,m′(I, I ′)ρm′(I ′, s), m �= 0. (208)

In the case where non-zero harmonics ρm = 0, m �= 0, the Hamiltonian has to be
independent of I, H0 = H0(I). That is enough to define the transform from x, p to I, ψ.

To find the transform, it is convenient, first, to introduce canonical variables J, φ
defining x =

√
2J sinφ, p =

√
2J cosφ, (p2 + x2)/2 = J . The transform from J, φ to I, ψ

has to be chosen to cancel all azimuthal harmonics in H0 of Eq. (207),

J = I − λ
∑
m�=0

eimψ
∫
dI ′dψ′Sm,0(I, I ′)ρ0(I

′, s). (209)

Then,

H0(I, s) = I + λ
∫
dI ′dψ′S0,0(I, I

′)ρ0(I
′, s)

+λ
∑
m�=0

∫
dI ′dψ′S0,m(I, I ′)ρm(I ′, s). (210)

The bunch stability can be, as usual, studied using the Vlasov equation for azimuthal
harmonics

∂ρm(I, s)

∂s
+imω(I, s) ρm(I, s)−iλ ∑

m′ �=0

[m′∂ρm−m′(I, s)

∂I
Vm′−(m−m′)ρm−m′

∂Vm′(I, s)

∂I
] = 0,

(211)
where ω(I, s) = ∂H0(I, s)/∂I.

The linearized Vlasov equation for azimuthal harmonics retains the non-zero harmonics
only linearly,
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∂ρm(I, s)

∂s
+ imω(I, s) ρm(I, s) − iλm

∂ρ0(I, s)

∂I
Vm(I, s) = 0, (212)

where in the linear approximation over non-zero azimuthal harmonics

ω(I, s) = 1 + λ
∂V0(I, s)

∂I
, V0(I, s) =

∫
dI ′dψ′S0,0(I, I

′)ρ0(I
′, s). (213)

Harmonics ρ0(I, s) satisfies

∂ρ0(I, s)

∂s
− iλ

∂

∂I

∑
m�=0

[mρ−mVm(I, s)]. (214)

Therefore, in the linear approximation over ρm, m �= 0, ρ0(I) and ω(I) are independent
of s .

Eq. (212) can be reduced to the linear eigenvalue problem by substituting
ρm(I, s) = Am(I)e−iµs with some amplitudes A(I). On a finite discrete mesh of I, I ′,
Eq. (212) gives the matrix equation

∑
I′ M(I, I ′)A(I ′) = µA(I) which can be solved

numerically. Then, the growth rate is equal to the imaginary part of the coherent shift µ
which is the eigenvalue of the matrix M(I, I ′),

M(I, I ′) = mω(I)δ(I − I ′) − 2πλm
∂ρ0(I)

∂I
Sm,m′(I, I ′), (m,m′) �= 0. (215)

The matrix M(I, I ′) can be symmetrized choosing new amplitudes a(I),

A(I) =
√

∂ρ0(I)
∂I

a(I) provided ρ(I) is monotonic in I. Then, as it was noticed by K.Oide,
the matrix becomes real and symmetric in the linear approximation in λ. The

eigenvalues in this case are real and there is no instability. Therefore, Vm has to be
defined taking into account terms of the order of λ. That can be done as follows.

To be canonical variables, the Poisson bracket of J, φ has to be equal to one,
{J, φ}I,ψ = 1. That and Eq. (209) defines φ. Neglecting terms of the order of λ2,

φ = ψ − iλ
∑
m�=0

eimψ

m

∂

∂I

∫
dI ′dψ′Sm,0(I, I ′)ρ0(I

′, s) + o(λ2). (216)

With the same accuracy, x = x(0) + ∆x,

x(0)(I, ψ) =
√

2I sinψ, ∆x(I, ψ) =
′∑
m

∆xm(I) eimψ,

∆xm(I) =
iλ

2
√

2I

∫
dI ′dψ′ρ0(I

′){Sm−1,0(I, I
′) − Sm+1,0(I, I

′)

−2I
∂

∂I
[
Sm−1,0(I, I

′)
m− 1

+
Sm+1,0(I, I

′)
m+ 1

]}. (217)
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The prime in the summation indicates that terms S0,0 has to be omitted.
We can now expand Sm,m′ in series over λ:

Sm,m′(I, I ′) = S
(0)
m,m′ + λS

(1)
m,m′ + ..., (218)

where

S
(0)
m,m′(I, I ′) = −c0

∫ dω

2πi

Z(ω)

ω
Jm(

ωσ

c0

√
2I) Jm′(

ωσ

c0

√
2I ′), (219)

S
(1)
m,m′(I, I ′) = σ

∑
k

∫ dω

2π
Z(ω)

∫ dψdψ′

(2π)2
ei(m

′ψ′−mψ)

e
iωσ

c0
[x(0)(I,ψ)−x(0)(I′,ψ′)]

[∆xk(I
′) eikψ

′ − ∆xk(I)e
ikψ]. (220)

To calculate Mm,m′ taking into account terms of the order of λ2, it suffices to neglect
terms of the order of λ2 in Sm,m′ . That can be done substituting S0

m,m′(I, I ′) instead of
Sm,m′(I, I ′) in ∆xm, Eq. (217). Using the properties of the Bessel functions

Jk−1(z) − Jk+1(z) − z
d

dz
[
Jk−1(z)

k − 1
+
Jk+1(z)

k + 1
] =

2z

k2 − 1
Jk(z), (221)

Eq. (217) can be simplified and takes the form

∆xm(I) = −λσ
2

(
2

m2 − 1
)
∫
dI ′dψ′ρ0(I

′)
∫ dω

2π
Z(ω)J0(

ωσ

c0

√
2I ′)Jm(

ωσ

c0

√
2I). (222)

Approximating ρ0(I) = (1/2π)e−I and carrying out the integration

∫
dI ′dψ′ρ0(I

′) J0(
ωσ

c0

√
2I ′) = e

− 1
2
((ωσ

c0
)2
, (223)

we get further

∆xm(I) = −λσ
2

(
2

m2 − 1
)

∫ dω

2π
Z(ω) Jm(

ωσ

c0

√
2I) e

− 1
2
(ωσ

c0
)2
. (224)

Eq. (220) takes the form
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S
(1)
m,m′(I, I ′) =

λ

2
σ2[

′∑
k

1

k − 1
−

′∑
k

1

k + 1
]
∫ dω

2π
Z(ω)

∫ dω′

2π
Z(ω′) e−

1
2
(ω′σ

c0
)2

{Jk(ω
′σ
c0

√
2I)Jm′(

ωσ

c0

√
2I ′)Jm−k(

ωσ

c0

√
2I)

−Jk(ω
′σ
c0

√
2I ′)Jm(

ωσ

c0

√
2I)Jm′+k(

ωσ

c0

√
2I ′)}. (225)

Here, in the first and the second sums terms k = 1 and k = −1 are excluded,
respectively. The frequency ω(I) is given by the derivative ∂S00∂I. Therefore, the term
proportional to δm0δm′0 in S0,0 can be omitted. After that, ω(I) can be defined using

Eqs. (219) and (225).
Finally, M(I, I ′) is defined taking into account terms of the order of λ2 by Eq. (215) and

Eqs. (218),(219), and (225).
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