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Abstract

This thesis examines relativistic fluids. We have used the variational approach to develop

tools for studying the dynamics of relativistic fluids to apply this to cosmological modelling.

Studies like these go beyond the standard model in cosmology. Researchers believe that

such extensions to the standard cosmological model are pivotal to resolving some of the

long-standing cosmological problems. An example of such problems is the origin, growth

(from quantum electromagnetic fluctuations to large-scale magnetic fields during inflation)

and evolution of cosmological magnetic fields that exhibit as large-scale (cosmological)

magnetic fields in late time. One other example is the coincidence problem. The standard

approach in such studies is to use modelling in the form of the single-fluid formalism. As

an alternative one can consider the single-fluid and multi-fluid formalisms that incorporate

aspects of electrodynamics and thermodynamics, respectively in the context of the variational

approach. This might help us make progress in trying to either resolve some of these

problems or at least open up new ways of addressing them. In this regard, we have

extended the well-known Müeller-Israel-Stewart (hereafter MIS) formalism to allow us

to examine the effect on fluid flow in which the components of the multi-species fluids

interact thermodynamically. We use the extension to the MIS theory in the context of

interacting species to study the growth of dark matter and dark energy, and find that either

interaction or entrainment involving dark energy and dark matter suggests a mutual relative

modulation of the growth behaviour of the two densities. This may aid in resolving the

coincidence problem. Our examination of inflation-generated, large-scale magnetic fields

reveals a super-adiabatically evolving mode from the beginning of the radiation-dominated

epoch to either much later during the epoch or probably extending far into the era of matter

domination which may account for late time, large-scale magnetic fields.

Keywords: Cosmology; relativistic fluids; variational approach; single-fluid; multi-fluid;

dark energy; dark-matter; thermodynamics; interaction; entrainment; inflation; magnetic

3



fields.

4



Contents

Declaration 1

Acknowledgements 2

Abstract 3

List of Figures 8

Conventions and assumptions 10

1 Thesis introduction: Cosmology 11

1.1 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Cosmological principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 FLRW metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 The stress-energy-momentum tensor . . . . . . . . . . . . . . . . . . 15

1.3 The first Friedmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Dark-sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 The early universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Cosmological horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Cosmology and fluid theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.8 Cosmological magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.9 Thesis plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Relativistic fluids and the Mueller-Israel-Stewart (MIS) theories 31

2.1 Relativistic fluids theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Material and covariant derivatives . . . . . . . . . . . . . . . . . . . . 35

2.1.2 Stress-momentum tensor interms of internal energy density per unit mass 36

2.1.3 Relativistic Euler equations . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.4 Thermodynamics and a single-fluid model . . . . . . . . . . . . . . . 37

5



2.2 The (Standard) MIS theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 The extended MIS formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Variational formalisms for relativistic fluids 50

3.1 Variational principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 The pull-back approach for a single-fluid model . . . . . . . . . . . . . . . . 54

3.3 The convective variational approach . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Convective variational formalism to interacting multi-fluid systems 69

4.1 Prelude to convective variational formalism to interacting multi-fluid systems 69

4.2 Thermodynamics and a multi-fluid model . . . . . . . . . . . . . . . . . . . . 70

4.3 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Thermodynamics of relativistic and dissipative multi-fluid systems 78

5.1 Prelude to thermodynamics of multi-fluid systems . . . . . . . . . . . . . . . 78

5.2 Extended MIS formalism to a multi-fluid system . . . . . . . . . . . . . . . . 80

5.3 Explanation of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Multi-fluid formalism application to the interacting dark-sector model . . . . 88

5.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Evolutionary history of cosmological magnetic fields 93

6.1 Prelude to history of magnetic fields . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Inflationary magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Single non-conducting fluid formalism action principles . . . . . . . . . . . . 103

6.4 Evolution of magnetic fields on length scales well above the Hubble radius . 107

6.5 Single-conducting fluid formalism action principles . . . . . . . . . . . . . . . 112

6.6 Evolution of magnetic fields after second horizon crossing . . . . . . . . . . . 117

6.7 Approximate evaluation of left-over magnetic field strength in current time . 119

6.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Thesis summary 122

A A few detailed concepts, calculations or derivations 128

A.1 Brief notes on the Eckart theory . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.2 Detailed variation of the actions (6.84) and (6.85) . . . . . . . . . . . . . . . 130

A.3 Alternative way of showing conservation of quantities for Lagrangian systems

in chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6



Bibliography 139

7



List of Figures

1.1 Figure showing a large-scale structure of the universe from a 2dF galaxy

redshift survey [19, 21]. This is proof of the large-scale homogeneity of the

universe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 3-dimensional map of figure 1.1 [22]. . . . . . . . . . . . . . . . . . . . . . . 14

1.3 This figure shows the temperature difference in the CMBR ranging from

-200µK to +200µK. The figure confirms the large-scale isotropy of the

universe due to uniformity of radiation distribution as shown [23]. . . . . . . 15

1.4 The figure above shows the swift expansion of the universe due to a driving

force provided by dark energy [24]. Image courtesy of NASA/STSci/AnnFeild. 20

1.5 This figure shows the evolution of inflation-produced, large-scale magnetic

fields. RD, MD and a represent the radiation-dominated epoch,

matter-dominated epoch and scale factor, respectively. λ represent the

magnetic modes. cH−1 represents the Hubble horizon. Now, as magnetic

fields cross the horizon or evolve below the horizon during the inflationary

phase, they evolve in an oscillatory pattern while well above the horizon they

evolve in a power-law form pattern. λ1 and λ2 are two modes that cross

the Hubble horizon at different times during inflation, evolve above horizon

scales and re-enter inside the Hubble radius at different times as shown in the

figure. The modes are both generated during inflation. However, we are not

examining the hypothesis represented by the figure. We introduce the figure

to aid the reader see the contradiction as discussed in the paragraphs. That

is the contradiction of magnetic fields evolving in either power law form below

the Hubble horizon or from the beginning of de Sitter phase and instead of

evolving in an oscillatory form until well above the horizon. The figure clearly

shows the evolution of magnetic modes both below and well above the Hubble

horizon [56,57] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8



1.6 This figure shows the evolution of inflation-produced, large-scale magnetic

fields. RH, RD, MD, ρTOT , λ, ρ0(λ), TRH , QM and ρB represent

the reheating, radiation-dominated epoch, matter-dominated epoch, total

density, magnetic mode, density at the beginning of the inflationary epoch,

temperature of the reheating epoch, quantum mechanics and magnetic field

density, respectively. H−1 represents the Hubble horizon. The first cross

between the path of the magnetic mode λ and the horizon is the first

horizon crossing of magnetic field perturbations while the second cross is

the second horizon crossing of the fields. The mode shown crosses the

Hubble horizon during inflation, evolves above horizon scales and re-enters

the Hubble radius much later (probably during either radiation-domination or

matter-domination) as the universe expands. However, as before in figure 1.6,

we are not examining the hypothesis represented by the figure. We introduce

the figure in support of figure 1.6. That is, we introduce it to aid the reader see

the contradiction as discussed in the paragraphs. That is the contradiction of

magnetic fields evolving in either power law form below the Hubble horizon or

from the beginning of de Sitter phase and instead of evolving in an oscillatory

form until well above the horizon. The figure clearly shows the evolution of

magnetic modes both below and well above the Hubble horizon [54,56] . . . 28

6.1 This schematic figure shows the evolution of magnetic fields from the beginning

of the radiation-dominated epoch on super-horizon scales well above the

horizon. B represents magnetic field strength while η represents time. Bk0

represents super-adiabatic evolution of magnetic fields, while Bk represents

adiabatic evolution of magnetic fields. This figure shows that super-adiabatic

decay of magnetic fields is significantly slower than adiabatic decay of magnetic

fields. The super-adiabatic decay corresponds to the scenario when magnetic

fields are evolving at scales that are well above the Hubble horizon . . . . . . 108

9



Conventions and assumptions

The following conventions, abbreviations and assumptions are used throughout the thesis,

unless otherwise specified. We adopt the units c = κ = ~ = 8πG = 8πG
c4

= 1. The

Latin indices a, b, c, ...... run from 0 to 3, whereas the symbols I,J , ..... run from 1 to 3.

The symbols ∇a and ; represent the usual covariant derivative, whereas ∂a and , represent

partial derivatives, and ∇̃ represents the spatial covariant derivative. Overdots represent

differentiation with respect to cosmic time. We use the (−+++) to represent the space-time

signature unless otherwise specified. The terms multi-species fluid system, multiple species

multi-fluid system or multi-fluid system are used interchangeably in the thesis as they all

refer to the same system.
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Chapter 1

Thesis introduction: Cosmology

1.1 General relativity

Cosmology can be defined as a study of the universe as a whole. This involves the

investigation of its origin, evolution and final fate. Cosmology is probably as old as human

civilisation. It was of philosophical interest until the 20th century when reliable cosmological

observations became available and thus it became an exact science. Einstein’s theory of

general relativity, which was published in the fall of 1915 [1, 2], led to the development of

modern physical cosmology. General relativity can be formulated from the variation of the

Einstein Hilbert action

SEH =
1

2

∫
All space−time

d4x
√
−g(R + 2Lm), (1.1)

where R represents the Ricci scalar, Lm represents the Lagrangian of the matter field and

g represents the determinant of the space-time metric denoted by gab. One can show after

varying the action (1.1) that the gravity side of the Einstein field equations takes the form

Gab = Rab −
1

2
gabR. (1.2)

Rab represents the Ricci tensor and the complete Einstein equations are of the form

Gab = Tab, (1.3)

where the right-hand side is the matter side. Tab represents the stress-momentum tensor

that is sourced by matter in space-time [3]. In equations (1.1) and (1.3) we have set 8πG
c4

= 1.

In his formulation, Einstein was able to show the connection between matter and gravity.

He described gravity to be the effect of the bending of space-time around a massive object.

11



CHAPTER 1. THESIS INTRODUCTION: COSMOLOGY

Einstein’s formulation of gravity for curved space-time replaces Newtonian gravity for flat

space-time. With this explanation of gravity, a test particle moving with four-vector velocity

denoted by ua, moves along the geometry of space with a geodesic path expressed as

ua∇au
b = 0, (1.4)

where ∇a represents a covariant derivative. The four-vector velocity ua can be expressed as

ua =
dxa

dτ
, (1.5)

where τ represents proper time along a geodesic path [4]. An explanation that the geometry

of space-time should be curved due to matter on it, proved to be a novel perception of space

and time. The explanation is that the space-time dynamical continuum evolves in the form

of energy and momentum. This (general relativity) has been thoroughly investigated to the

extent that it has become part of the conceptual foundations which has led to developments

and advancements of (modern) physical cosmology.

In 1917 [5], Einstein provided a promising model solution to equation (1.3). To obtain this

solution, Einstein assumed that the universe was neither expanding nor contracting [6]. This

assumption was based on a theoretical simplification rather than on firm observational data.

Einstein aimed to balance the self-attraction of matter in the known universe at the time by

adding a term denoted by Λ0 (which has become known as the cosmological constant) in the

equations. This leads to equation (1.2) being expressed as

Gab + Λ0gab = Tab, (1.6)

and therefore keeping the universe static [7,8]. This formulation was modified by Friedmann

in the year 1922 [9]. Friedmann did not try to balance the self-attraction of matter in the

known universe at the time. Instead, he allowed a possibility of either a contracting or an

expanding universe. This meant a non-static universe. Building on this idea, Lemâitre’s

1927 [10, 11] prediction of the redshift of receding galaxies meant an expanding universe.

This was later confirmed by observations done by Hubble in 1929 [12]. The work that was

done by Friedmann and Lemâitre was further developed in the 1920s and the 1930s [13–17].

The development led to the formulation that describes the late universe. The formulation was

developed by Friedmann [9], Lemâitre [10], Robertson [13] and Walker [17] and it is called

the Friedmann, Lemâitre, Robertson and Walker cosmological model (denoted by FLRW

model). The FLRW model starts with the assumption of homogeneity1 and isotropy2 of

1Defined in the next section.
2Defined in the next section.
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CHAPTER 1. THESIS INTRODUCTION: COSMOLOGY

space-time also referred to as the cosmological principle.

1.2 Cosmological principle

The evolutionary history of the universe is rooted in the FLRW [13–18] cosmological model

previously discussed. The model is very successful in explaining the evolving universe as

revealed by observations and is the foundation of the standard model of cosmology3. The

model is succesful in describing how the universe evolved from the beginning to current

time.

Isotropy and homogeneity are important features of the large-scale structure of the

universe [18]. Isotropy refers to uniformity in all orientations of the large-scale structure

of the universe while homogeneity implies that the large-scale structure of the universe

appears the same at every point. Isotropy ensures that observations made from a single

point of view can be representative of the whole universe and can therefore be used to

test models on all cosmological scales. An isotropic and homogeneous view of the universe

was only an assumption for most of the 20th century until later confirmed via cosmological

observations. It is known as the cosmological principle. It dates to one of the earlier

works of Einstein [9–11, 13–17]. His use of the cosmological principle was not based on

observations [5,6]. This assumption allows one to simplify the mathematical analysis that is

used to develop cosmological models.

In the 20th century, observational data from the cosmic microwave background radiation

(hereafter CMBR)4 confirmed the large-scale homogeneity [as demonstrated in figure 1.1

which shows the 2 degree field (2dF ) galaxy redshift survey [19] and the 3 dimensional (3-D)

rendering of the 2dF survey is given in figure 1.2] and isotropy5 of the observable universe.

Uniformity of the temperature of the CMBR still remains the best evidence for the isotropy

of the observed universe (as seen in figure 1.3). The description based on the cosmological

principle represents the simplest possible interpretation of the universe’s large-scale structure

[18]. The expansion anisotropy of the universe has also been revealed as a temperature

anisotropy in the CMBR. Similarly, density inhomogeneities6 of the universe also led to

anisotropies in temperature implying that the CMBR should be a very sensitive probe, that

3This model also called the ΛCDM model assumes that the universe was created in the big-bang from
pure energy, and is now composed of 5% baryonic matter (denoted by Y ′′ in this thesis), 27% dark matter
(denoted by Y ′ in this thesis), and 68% dark energy (denoted by Z in this thesis).

4CMBR in standard cosmology is the remnant of electromagnetic radiation from the early stage of the
universe.

5A picture of the CMBR observation of the Wilkinson Microwave Anisotropy Probe (denoted by WMAP )
is presented in figure 1.3. The picture shows to a large extent that the universe is isotropic.

6This means that the mass of the universe is not homogeneously distributed [20].
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CHAPTER 1. THESIS INTRODUCTION: COSMOLOGY

Figure 1.1: Figure showing a large-scale structure of the universe from a 2dF galaxy redshift
survey [19,21]. This is proof of the large-scale homogeneity of the universe.

Figure 1.2: 3-dimensional map of figure 1.1 [22].

is sensitive to density inhomogeneities up to scales that are beyond the present time Hubble

volume. The uniformity of the CMBR shows that at the epoch of last scattering7, the

universe was to a very precise degree both homogeneous and isotropic. This shows that the

cosmological principle holds provided that the universe is observed at sufficiently large scales.

1.2.1 FLRW metric

The large-scale structure of the universe is assumed to be homogeneous and isotropic. This

enables one to describe our local Hubble volume. The metric for the spatial sections of such

7This period occurred 380000 years after the big-bang. Recombination took place at this time.
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CHAPTER 1. THESIS INTRODUCTION: COSMOLOGY

Figure 1.3: This figure shows the temperature difference in the CMBR ranging from -200µK
to +200µK. The figure confirms the large-scale isotropy of the universe due to uniformity of
radiation distribution as shown [23].

a universe is given by

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (1.7)

where the co-moving coordinates t represents proper time measured by an observer at rest in

a co-moving frame, r represents distance from the observer (in a spherical polar coordinate

system), θ represents the angle from the polar direction, φ represents the azimuthal angle, and

the variable a(t) represents the cosmic scale factor and κ represents spatial curvature. The

co-moving coordinates can be set in such a way that κ = +1 represents constant (spatial)

positive curvature, κ = −1 represents constant (spatial) negative curvature and κ = 0

represents zero spatial curvature. The r is dimensionless. This means that the scale factor

a(t) has dimensions of length implying that relative ratios to it should be physical. The range

of the r is 0 ≤ r ≤ 1 for κ = +1. Given t which represents proper time measured by an

observer at rest in a co-moving frame, implies that the coordinates (r, θ, φ) are constants.

Observers initially moving relatively to a co-moving frame will eventually come to rest in it.

Therefore, an introduction of an isotropic and homogeneous fluid that is initially at rest in a

co-moving frame will result in constant t hypersurfaces being orthogonal to the flow of the

fluid. This will always coincide with hypersurfaces that are of both constant fluid density

and spatial homogeneity.

1.2.2 The stress-energy-momentum tensor

To be consistent with symmetries of the metric tensor gab, spatial components must be equal

by isotropy and the stress-energy-momentum tensor denoted by T ab must be diagonal [18].

T ab of a perfect fluid is the simplest one can consider. It is characterised by a time-dependent

15



CHAPTER 1. THESIS INTRODUCTION: COSMOLOGY

energy density and pressure denoted by ρ(t) and p(t), respectively such that

T ab = (ρ+ p)uaub + pδab = diag(−ρ, p, p, p), (1.8)

and ua = (1, 0, 0, 0) for a co-moving coordinate system. ua represents the 4-vector velocity

field of a fluid. Relative to the co-moving coordinates, the fluid remains at rest. In general,

the matter content is supplemented by an equation of state. For this, a barotropic fluid is

often assumed. This fluid has pressure that is dependent only on its density, i.e., p = p(ρ).

If one considers a relationship that is linear between density ρ and pressure p of the form

w =
p

ρ
, (1.9)

such that w represents an equation of state parameter, one can build toy models of

cosmological fluids. Occasionally, more exotic equations of state are examined. For example,

either radiation (or relativistic particles) has a T ab that is traceless, which implies an equation

of state of the form

pX
ρX

=
1

3
, (1.10)

where X represents radiation. Therefore, wX = 1
3
. For physical (gravitating) matter, one

will often require ρ > 0 and p > 0, thus implying w > 0. At the very least, that is for

w 6= −1
3

and w > −1
3
, we have w = p

ρ
> −1

3
, thus implying (ρ+ 3p) > 0. On the other hand,

a cosmological constant denoted by Λ0, corresponds to the distribution of matter which is

of wΛ0 = −1. However, this is not in agreement with either ρ > 0 or (ρ+ 3p) > 0 as w > −1

for such cases.

Equation (1.7) can be expressed as

ds2 = −dt2 + a2(t)g̃IJ dx
IdxJ , (1.11)

such that I and J = 1, 2, 3, and g̃IJ = gIJ
a2

[18]. Note that objects with a tilde will represent

3-dimensional quantities which are calculated using g̃IJ in this subsection and the next

section.

The law of conservation of T ab [18] is

∇aT
ab = 0, (1.12)

where a and b run from 0 to 3. Spatial components of this conservation law can be expressed
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CHAPTER 1. THESIS INTRODUCTION: COSMOLOGY

as

∇aT
aI = 0, (1.13)

where I = 1, 2, 3.

Christoffel symbols are denoted by

Γabc =
1

2
gad

(
∂gdb
∂xc

+
∂gdc
∂xb
− ∂gbc
∂xd

)
=

1

2
gad(gdb,c + gdc,b − gbc,d). (1.14)

It is assumed (along with the connection to be torsion free) that ∇agab = 0 for the Riemann

manifold. This leads to the definition of the connection coefficients (1.14). Based on the

metric (1.11) the symbols can be calculated in terms of the a(t) and Γ̃IJK; the non-vanishing

components are

ΓIJK = Γ̃IJK, ΓIJ 0 =
ȧ

a
δIJ , Γ0

IJ =
ȧ

a
gIJ = ȧag̃IJ . (1.15)

A conservation law for the time-component of equation (1.12) is

∇aT
a0 = ∂aT

a0 + ΓaabT
b0 + Γ0

abT
ab = 0, (1.16)

which for a perfect fluid yields

ρ̇+ Γaa0ρ+ Γ0
00ρ+ Γ0

IJT
IJ = 0, (1.17)

Based on the metric (1.7), Γ0
00 = 0 and Γaa0 = 3H. Then based on the same metric and

equation (1.11), equation (1.17) can be recast into

ρ̇+ 3H(ρ+ p) = 0. (1.18)

1.3 The first Friedmann equation

When one allows for the presence of Λ0, equation (1.3) is modified to

Gab + Λ0gab = Tab. (1.19)
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[18]. One can then re-write the equation in a more convenient form, as below:

Rab =

(
Tab −

1

2
gabT

c
c

)
+ Λ0gab. (1.20)

Due to isotropy, there are only two equations that are independent. These are time and any

of the spatial components. Therefore, the relevant components of the Riemann tensor

Rc
eab = ∂aΓ

c
eb − ∂bΓcea + ΓcadΓ

d
be − ΓcbdΓ

d
ae, (1.21)

for the metric (1.11) are

RI0J 0 = − ä
a
δIJ , R

0
I0J = äag̃IJ , R

K
IKJ = R̃IJ + 2ȧ2g̃IJ . (1.22)

Due to the maximal symmetry of g̃IJ , one can use R̃IJ = 2κg̃IJ to calculate Rab [18] where

Rab = gcdRcadb and R = gabRab = Ra
a. As a result, the non-zero components are

R00 = −3
ä

a
,

RIJ = (aä+ 2ȧ2 + 2κ)g̃IJ =

(
ä

a
+ 2

ȧ2

a2
+

2κ

a2

)
gIJ . (1.23)

The Einstein equations reduce to

−3
ä

a
=

1

2
(ρ+ 3p)− Λ0,

ä

a
+ 2

ȧ2

a2
+

2κ

a2
=

1

2
(ρ− p) + Λ0. (1.24)

ä from the 2nd equation of (1.24) can be replaced using the 1st equation of (1.24), which

yields

H2 +
κ

a2
=

ρ

3
+

Λ0

3
. (1.25)

This is the first Friedmann equation [18]. It is supplemented by the conservation equation

(1.16). As stated in subsection (1.2.2) a cosmological constant denoted by Λ0 which

corresponds to matter distribution of w = −1, violates the energy conditions, i.e., ρ > 0

or ρ+ 3p > 0. This hints at the existence of either exotic type of matter or energy.
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1.4 Dark-sector

In the early 1990s, it was argued that the universe could have enough energy density to

cease its expansion and then collapse again [24]. In this case gravity would slow down the

expansion with the passage of time. The force due to gravity pulls together all matter in the

universe. On the other hand, the universe might have very little energy density to the extent

that it would never cease expanding. In 1998, observations of (very) distant supernovae by

the Hubble space telescope showed that the universe is expanding faster than it was in the

(distant) past. This implies the universe to be accelerating and is a puzzle.

Three types of explanations seem plausible [24]. These are:

1. The late time universe acceleration is due to the Λ0 in the long-discarded version of

gravity theory by Einstein.

2. An assumption that a strange kind of energy-fluid filled space and,

3. Probably Einstein’s theory of gravity is somehow incorrect and a new theory should

include a type of scalar field8 that creates the late time universe acceleration.

Researchers still have not come up with a definitive explanation [24]. However, they have a

name for the unknown source of late time acceleration. It is coined dark energy.

1.4.1 Dark energy

Despite significant advances in cosmology, knowledge of the whole observable universe is

very scanty [24]. Owing to knowledge of how dark energy affects expansion of the universe

(as illustrated by figure 1.4), it is possible to estimate its amount. It is estimated that about

68% and 27% of the universe is made up of dark energy and dark matter, respectively.

Everything else constitutes just less than 5% of the universe. That is, all ordinary matter is

quite insignificant compared to dark energy and dark matter.

A possible explanation for the mysterious dark energy is that it could be one of space-time

properties [24]. Einstein was the first person to indicate that properties of space-time could

be quantified. The analysis of his equations showed the possibility of space-time expansion.

This is the first property. One version of his theory predicts that space-time can possess its

own energy. This version has Λ0. Since energy is inherent to the fabric of space-time itself, it

would not diminish even if space-time increased in size. As the universe expands, its energy

density remains constant. As a result, the expansion rate of the universe (filled with energy

inherent to the fabric of space-time itself), remains constant. This energy (which is inherent

8A scalar field is a field that associates a scalar value to every point in space-time. This field is invariant
under any Lorentz transformation.
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Figure 1.4: The figure above shows the swift expansion of the universe due to a driving force
provided by dark energy [24]. Image courtesy of NASA/STSci/AnnFeild.

to the fabric of space-time itself) is thought to cause the universe to accelerate. However,

cosmologists are puzzled as to why Λ0 is in equation (1.6) or (1.19). It is even more puzzling

as to why it is just the right value needed to account for the observed late time acceleration

of the universe. Quantum mechanics tries to provide an explanation as to how energy is

acquired by space-time. In the theory, it is assumed that space-time is full of temporary (or

virtual) particles that continually disappear and appear. Physicists calculated the amount

of energy space could acquire using quantum mechanics and they found a value which is

10120 times larger than that in the classical theory of general relativity [24,25].

A further assumption for this mysterious dark energy is that it is a new kind of dynamical

energy fluid or field; something that fills space-time. It is called quintessence. Most forms

of energy such as matter or radiation slow down the expansion of the universe due to

the attractive force of gravity [26]. For quintessence, however, the gravitational force is

repulsive, and this causes the expansion of the universe to accelerate [26] . We do not know

what it is or how it interacts with ordinary matter or energy.

There is one possibility. It is the idea that the gravity theory by Einstein might not be

correct [24]. Researchers are trying to find out if the solution to the dark energy problem

can be found via a new theory of gravity [27]. Further refined observations on how galaxies

come together to form clusters could be used to test the new theory. If it does turn out that

a new gravity theory is needed, then this merits the question regarding the type of theory

proposed. Such a theory would have to correctly describe the motion of objects in our solar

system, just like Einstein’s gravity theory does and still make different predictions of the

universe. A number of such theories have been formulated [27]. However, some of them seem

to be quite compelling.
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1.4.2 Dark matter

Fitting a theoretical model to the composition of the universe has led researchers to estimate

that the universe is comprised of 27% dark matter [24]. Very little is known about dark

matter. However, researchers are certain of what it is not. One view is that dark matter is

not matter that is made up of either particles or baryons. This view comes from the knowledge

that radiation passing through clouds of baryonic matter is absorbed, allowing the detection

of baryons. The view that dark matter is not baryonic at all is more popular. In this case it is

thought that dark matter is made up of some unusual axions9, that are either particle-like or

simply, weakly interacting massive particles (hereafter WIMPS). It is not anti-matter10 as

the unique gamma rays that are produced when anti-matter annihilates with matter aren’t

observed. From the results of gravitational lensing experiments, one can conclude through

observations that large-galaxy-sized black holes should also be ruled out. Light from objects

that are far away (or extra-terrestrial objects) is bent by high concentrations of matter and

this light passes close to the large-galaxy-sized black holes. However, one cannot observe

sufficient lensing events to propose that such objects make up the needed 27% contribution

from dark matter. Another view is that baryonic matter could make up dark matter if it were

all tied up in either brown dwarfs or in small dense chunks of heavy elements [28]. These are

called massive compact halo objects (hereafter MACHOS) [28].

1.5 The early universe

The early, adolescent and adult universe are radiation-dominated, matter-dominated and Λ0

dominated, respectively [18]. Inflation occurred in the very early period of the expansion

of the universe. Vacuum energy is the main contributor to the T ab during this brief period

of inflation. It can be modelled using a de Sitter space (a solution of the Einstein’s static

model). In the model, the universe expands exponentially and accelerates. The de Sitter

space-time is devoid of ordinary matter and is spatially flat. The de Sitter universe applies

to a time (denoted by t) of about t = 10−35s after the big-bang. In this model, the dynamics

of the universe are dominated by Λ0 which is believed to correspond to an inflaton field11

in the very early universe. This is thought to be preceded by a big-bang singularity12 [29–31].

Λ0 affects the expansion rate of the universe. The expansion rate, denoted by H, is

9An axion is an hypothetical particle that includes the so-called Peccei-Quinn mechanism and has a mass
of 10−5 to 10−3eV/c2, decay width of 109 to 1012eV/c2, zero spin and no electric charge.

10Anti-matter is matter that is composed of anti-particles of the corresponding particles of ordinary matter.
11This field is a scalar field whose evolution leads to an inflationary expansion of the universe. The field is

characterised by a negative pressure that yields a tremendous repulsive gravity during a brief lapse of time.
12A singularity is a region of space-time where the density of matter, or the curvature of space-time,

becomes infinite.
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proportional to Λ0 (cosmological constant) via

H ∝
√

Λ0. (1.26)

The larger the Λ0 the higher the expansion rate H. In order to model the complete

evolutionary history of the universe, the de Sitter model which describes the very early

universe needs to be either augmented or patched by a model which describes the later part

of the universe.

As shown by observations on the distance scales for which the cosmological principle applies,

the FLRW metric is quite a good approximation for space-time within the Hubble volume

on large-scales. Such an approximation allows one to investigate a number of early universe

phenomena.

1.6 Cosmological horizons

A cosmological horizon can be defined as a measure of the distance from which one could

possibly retrieve information. It sets the size and scale of the observable universe. Now, a

fundamental question in cosmology that one may need to consider is, what proportion of

the universe is in causal contact? A more precise question would be, what values of the

coordinates (r, θ, φ) would a light signal emitted at time t = 0 reach the co-moving observer

with coordinates (r1, θ1, φ1) either before or at t? It can be shown that this can be evaluated

in terms of the FLRW metric [18]. Consider the null geodesic equation ds2 = 0 satisfied

by a light signal, due to space-time homogeneity, one may choose r1 = 0 without loss of

generality. The geodesics via r = 0 are lines that are of constant φ and θ. They are like

great circles that pass through the poles of a 2-sphere and are also of unchanging θ (implying

longitudinal circles), dθ = 0 and dφ = 0. The choice of direction (θ1, φ1) is irrelevant due

to space isotropy. If rH is a coordinate, then a signal of light emitted from the coordinate

position of (rH, θ1, φ1) at t = 0 will arrive at r1 = 0 at time t deduced by∫ t

0

dt′

a(t′)
=

∫ rH

0

dr′√
1− κr′2

. (1.27)

The proper distance to the horizon denoted by RH and measured at t is

RH(t) = a(t)

∫ t

0

dt′

a(t′)
= a(t)

∫ a

0

da′

a′
1

a′H(a′)
= a(t)

∫ rH

0

dr′√
1− κr′2

, (1.28)

where H represents the Hubble parameter. If RH is finite, the particle horizon is the

boundary between the visible universe and the part of the universe from which light signals
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have not reached us.

In the theories of special and general relativity, a light cone is the path that a flash of

light, emanating from a single event and travelling in all directions, would take through

space-time. If one were to imagine that the light is confined to a two-dimensional plane, the

light from the flash spreads out in a circle after the event (a point at the exact position and

time) denoted by E0. If we graph the growing circle where the vertical axis of the graph

represents time, the result is a cone (called a future light cone). The past light cone behaves

like the future light cone in reverse, that is, a circle which contracts in radius at the speed

of light until it converges to E0. Our past light cone is then limited if RH is finite [18].

Now, the behaviour of the a(t) near a singularity determines whether the particle horizon

is finite or not. For RH ≈ t in the model of standard cosmology, the horizon is finite. The

Hubble horizon expressed as

1

H
=

a

ȧ
, (1.29)

is not the particle horizon. The Hubble horizon represents the distance over which particles

can travel in the course of one expansion time. This time is the period in which the a(t)

doubles. The distance can be expressed in the form

dt ∼

(
da

a

)
H−1. (1.30)

Hence, the Hubble horizon represents an alternative approach to measuring whether or not

particles are causally connected. Two particles that are separated by distances which are

beyond the Hubble horizon cannot currently communicate.

One can define the distance of the co-moving particle horizon in the form [18]

τH =

∫ t

0

dt′

a(t′)
=

∫ a

0

da′

H(a′)a′2
=

∫ a

0

d ln a′

(
1

Ha′

)
. (1.31)

The co-moving horizon is then the logarithmic integral of co-moving (aH)−1. There is a

conceptual difference between τH and (aH)−1. If two objects were separated by co-moving

distances and are greater than τH, then it is impossible that the objects could have

communicated with each other. In contrast, the event horizon is the largest distance one
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can explore in the infinite future. Its expression is given as

RE(t) = a(t)

∫ ∞
t

dt′

a(t′)
. (1.32)

If the expansion of the universe is in the form of the a such that a ∼ tN where N < 1, then

equation (1.32) will be infinite.

The idea of an event horizon is very useful in mathematical relativity. However, it is not

directly useful in a number of physical contexts ranging from theories of quantum gravity

to cosmology13. This was recognised early on [32]. There are other types of horizons in

cosmology, for example, the apparent horizon found in the study of black-holes. An apparent

horizon is a surface that is the boundary between light rays that are directed outwards and

moving outwards, and those directed outwards but moving inward. Apparent horizons are

trapped regions [32,33].

Hawking’s idea of an outer trapped surface is simply a compact and space-like 2-dimensional

sub-manifold in space-time such that the expansion of the outgoing null normal to the surface

is non-positive [34]. Hence, a trapped region in the space-like 3-surface is then the set of all

points in the surface through which there passes the outer trapped surface, lying entirely in

the space-like 3-surface.

1.7 Cosmology and fluid theory

Cosmology is usually examined using a single-fluid model [35]. For this approximation,

modelling of the universe is based on a world-line of a single observer. Studies of

inflation [36, 37], the radiation-dominated epoch [23], the matter-dominated epoch [38]

and dark energy [39] are carried out using the single-fluid approximation. Combining the

different epochs allows one to build a model of an evolving universe. Predictions made

by this so-called standard cosmological model agree with observations to a large extent.

However, the analyses of the CMBR and the discovery of its anisotropy [40] implies

that not all predictions of cosmological theories are confirmed. The interplay between

observations and theories have not always been smooth. This has resulted in a number

of theoretical questions not being answered. Some findings of cosmological observations

have led to questions that demand a re-examination of underlying theories. Some examples

of these cosmological observations are the so-called axis of evil in the cosmic microwave

background [41] and the late time acceleration [42,43].

13The idea is useful for black-holes though not entirely (physical) as space-time black-holes are embedded
in FLRW .
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Modelling of transitions between epochs is uncommon in literature. This kind of modelling

could be a way of easing the tension between observation and theory. This approach is

proposed as various attempts which involve tweaking of either a current theory or improving

technology to provide an explanation of an anomalous observation, have resulted in limited

success. This has forced several researchers to infer that there is need for a complete

overhaul of underlying theories, either of gravity or of material content in the universe. The

modelling of transition between epochs can be applied to studies of cosmological eras. An

era can be defined as an event that signifies when a change has taken place to an extent

that it marks the beginning of a new epoch. The dynamics of the universe is dominated

by material of one kind in a given era. There is a transition from one domination to the

next. Note that dynamics of the flow is still impacted if the transition does not involve a

switch in the material that is dominant, but a freeze-out14. Assuming that transitions occur

gradually allows a transient period not to be fully dominated by one of the fluid species.

This could lead to the resolution of some of the disparities between theory and observation.

Considering the above statements, modelling a transition between the different epochs and

analysing such periods is important.

Under a suitable continuum hypothesis, any non-rigid multi-bodied state can be described

as a fluid which follows certain equations of motion. This could be said of the dark matter

particles. Motion of a many-body system is modelled using fluid dynamics. Now, considering

the well-known assumption that dark energy is a new kind of energy fluid, examination of

multi-fluid and (a possible) entrainment15(or tilted momenta) effect that involve interaction

of dark matter and dark energy is a possibility.

Now, although the single-fluid approximation16 has successfully played a significant role in

cosmological modelling, it is our contention that a multi-fluid formalism is more suitable for

modelling. A single-fluid approximation is the limit of the multi-fluid approximation [44].

The success of the single-fluid approach lies in the fact that different species making up the

cosmological fluid may start off evolving differently. Eventually, all species become locked-in,

hence, rendering one species dominant at a given epoch. Therefore, the fundamental observer

world-line is defined by the world-line of the dominant species. The mechanism that allows

this to happen is yet to be formulated. Therefore, a re-examination of relativistic, multi-fluid

theory in particular, and its application to cosmology in general is needed.

14Freeze-out represents a scenario when interaction rate of a particle is smaller than the Hubble rate. This
means that reactions stop and population of these particles as a whole changes only due to space expansion.

15This can be defined as the transport of fluid across an interface between either two or more bodies of
fluid by a shear-induced turbulent flux.

16An approximation that will be utilised to examine magnetic fields later in this work.
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A generic model of dark energy that interacts with dark matter for illustrative purposes can

be assumed. Since the interactions between dark matter and dark energy can fit well with the

observational data, and could potentially provide new physics, they have been a subject of

much inquiry. The observational fact that the present values of the densities of dark matter

and dark energy are of the same order of magnitude, seems to indicate that we are currently

living in a very special period of the cosmic history. Within the standard cosmological model,

a density ratio of the order of one just at the present epoch can be seen as coincidental since

it requires very special initial conditions in the early universe. The corresponding why now

question constitutes the coincidence problem [45]. The interactions between dark matter

and dark energy might help resolve the coincidence problem. They might provide a possible

explanation as to why the present values of the densities of dark energy and dark matter are of

the same order of magnitude, something that would require very special initial conditions in

the early universe. Unlike the well-behaved, non-interacting models with constant w (given a

barotropic equation of state, where w is the proportionality parameter), an interacting model

can manifest instabilities in the perturbations of the dark-sector at early times, resulting in

new physics (or new phenomena). Examples of this are in interacting dark-sector models

that have been studied in [46–52].

1.8 Cosmological magnetic fields

Magnetic fields are found everywhere in the universe [53]. Different objects and structures

such as planets, stars, galaxies and clusters of galaxies are known to carry magnetic fields

that are large and extensive. The fields are all-pervasive, they play a vital role in controlling

how celestial sources form, evolve and die out. They could have played a significant role in

structure formation [53]. They may have affected a number of relevant processes which took

place in the early universe, as well as the formation of the universe geometry itself. One

can now see that understanding the universe is impossible without understanding magnetic

fields. They fill interstellar space, affect the evolution of galaxies and galaxy clusters,

contribute significantly to the total pressure of interstellar gas, are essential for the onset

of star formation, and control the density and distribution of cosmic rays in the interstellar

medium.

The origin and evolution of primordial magnetic fields are tied to the evolution of the

universe. Therefore, searching for their origin and evolution is tantamount to searching for

information about the universe in its infant or early state. Success in this could provide us

with a snapshot of the early universe. However, their origin, growth and evolution is a

mystery.
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Figure 1.5: This figure shows the evolution of inflation-produced, large-scale magnetic fields.
RD, MD and a represent the radiation-dominated epoch, matter-dominated epoch and scale
factor, respectively. λ represent the magnetic modes. cH−1 represents the Hubble horizon.
Now, as magnetic fields cross the horizon or evolve below the horizon during the inflationary
phase, they evolve in an oscillatory pattern while well above the horizon they evolve in a
power-law form pattern. λ1 and λ2 are two modes that cross the Hubble horizon at different
times during inflation, evolve above horizon scales and re-enter inside the Hubble radius
at different times as shown in the figure. The modes are both generated during inflation.
However, we are not examining the hypothesis represented by the figure. We introduce the
figure to aid the reader see the contradiction as discussed in the paragraphs. That is the
contradiction of magnetic fields evolving in either power law form below the Hubble horizon
or from the beginning of de Sitter phase and instead of evolving in an oscillatory form until
well above the horizon. The figure clearly shows the evolution of magnetic modes both below
and well above the Hubble horizon [56,57]

Several cosmological and astrophysical theories for generating the galactic magnetic fields

have been devised. Mechanisms for primordial magnetic fields generation, growth and

evolution have been widely studied. The proposed mechanisms include magnetogenesis and

growth of magnetic fields during the inflationary or de Sitter phase [54, 55], and magnetic

amplification after the inflationary epoch. However, these proposed mechanisms are not

without challenges. One example is a mechanism known as the galactic dynamo which is

based on the conversion of kinetic energy of turbulence motion of the conductive interstellar

medium into magnetic energy. The efficiency of such a kind of magneto-hydro-dynamic

(hereafter MHD) engine has led to it being questioned due to both improved theoretical

modelling and new (or latest) observations of cosmic magnetic fields in high redshift galaxies.

It is also understood that magnetic fields in the inter-cluster medium cannot form from
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Figure 1.6: This figure shows the evolution of inflation-produced, large-scale magnetic
fields. RH, RD, MD, ρTOT , λ, ρ0(λ), TRH , QM and ρB represent the reheating,
radiation-dominated epoch, matter-dominated epoch, total density, magnetic mode, density
at the beginning of the inflationary epoch, temperature of the reheating epoch, quantum
mechanics and magnetic field density, respectively. H−1 represents the Hubble horizon.
The first cross between the path of the magnetic mode λ and the horizon is the first
horizon crossing of magnetic field perturbations while the second cross is the second horizon
crossing of the fields. The mode shown crosses the Hubble horizon during inflation, evolves
above horizon scales and re-enters the Hubble radius much later (probably during either
radiation-domination or matter-domination) as the universe expands. However, as before in
figure 1.6, we are not examining the hypothesis represented by the figure. We introduce the
figure in support of figure 1.6. That is, we introduce it to aid the reader see the contradiction
as discussed in the paragraphs. That is the contradiction of magnetic fields evolving in either
power law form below the Hubble horizon or from the beginning of de Sitter phase and instead
of evolving in an oscillatory form until well above the horizon. The figure clearly shows the
evolution of magnetic modes both below and well above the Hubble horizon [54,56]

ejection of the galactic fields [53]. Therefore, a continued effort in searching for a mechanism

responsible for the origin, growth and evolution of cosmological (or large-scale) magnetic

fields has to be carried out by looking back into the remote past (of the inflationary phase

and more reasons follow in the next paragraph) and devising a more realistic mechanism.

We will examine the growth and evolution of magnetic fields which are generated during

inflation. Note that gravitational waves are also generated during inflation [58] as a

counterpart. The energy transfer between the two is of interest and has been considered

elsewhere [59–61]. In this work, gravitational waves will be ignored. Inflation can generate

and grow magnetic fields (naturally) up to either cosmological horizon or super-horizon

scales. This implies that inflation can easily generate primordial magnetic fields. Magnetic

fields generated after inflation are either far too small in scale (or of sub-horizon scales) [56].
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In order to examine if there is a link between the magnetic fields generated during inflation

and those which are observed in the current universe, it is crucial to understand how they

evolved either after de Sitter phase or the inflationary epoch until present time. Here, we

will examine their evolution on a flat FLRW universe.

In most literature on the evolution of magnetic fields, it is found that they evolve

adiabatically for the flat FLRW model [56]. This leads to rapid decay and is considered

as the main obstacle of magnetic fields generated during either a de Sitter phase or the

inflationary epoch to survive to be either the seeds for fields observed now or hence seeding

the galactic dynamo. Magnetic fields that are generated during inflation are believed to

begin their adiabatic evolution from the moment they cross the Hubble horizon (for the

first time) and thereby lead to astrophysically irrelevant magnetic field strength at current

time [56]. Surprisingly, the strengths detected in inter-galactic fields are around 10−16G,

which is much stronger than expected.

One way to understand this is through super-adiabatic amplification of magnetic fields.

It means slower magnetic decay rates than the adiabatic decay rate. In this work, we will

use the variational approach to develop a single-fluid model and with that we will derive

equations that will enable us to examine the evolution of magnetic fields in the single-fluid

model(s) (of radiation-dominated or/ and matter-dominated epochs), and hence show that

super-adiabatic amplification of magnetic fields is possible. In other words we will use

the variational formalism to derive equations of motion that will enable us to examine

the evolution of inflation-generated, cosmological magnetic fields in single-fluid models of

either the radiation-dominated or matter-dominated epochs (or both). With this, we study

relativistic fluids with applications to cosmology in that we analyse the behaviour of evolution

of inflation-generated, cosmological magnetic fields in single-fluid models of either the

radiation-dominated or matter-dominated epochs. That is, we investigate how the behaviour

of evolution of the large-scale magnetic fields is either influenced or affected as they evolve

in the single-fluid models of either the radiation-dominated or matter-dominated epochs.

Considering the above statements, it seems that the current time amplitude of magnetic

fields, arising from inflationary magnetogenesis can actually be much larger than what has

been claimed in most previous studies. With this model, we will also be able to resolve a

contradiction in [56] where an equation that represents the evolution of inflation-generated,

cosmological magnetic fields well above the Hubble radius or horizon also represents the

evolution of the magnetic fields from the beginning of the inflationary phase [56]. Before

magnetic fields evolve on scales well above the horizon, they follow an oscillatory pattern form

of evolution (actually from the beginning of the inflationary phase). On scales well above the

horizon they follow a power law form pattern of evolution. This is clearly problematic. This
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can be seen more clearly in figures (1.5) and (1.6), and will be addressed again in chapter 6.

1.9 Thesis plan

The thesis plan is as follows:

1. In chapter 2, relativistic fluids and the Müeller-Israel-Stewart (hereafter MIS)

formalisms of both standard, and extended MIS theories are examined.

2. In chapter 3, the variational formalisms for relativistic fluids is investigated. The

formalism of a point particle is illustrated, and the pull-back formalism for a single-fluid

approximation and then finally a convective variational approach are examined.

3. In chapter 4, the application of a modified convective variational formalism to

interacting multi-fluid models is investigated.

4. In chapter 5, the thermodynamics of relativistic, dissipative and interacting multi-fluid

systems is examined, thus enabling an examination of the entrainment effect of the

interacting dark-sector, using the (slightly) modified convective variational formalism.

5. In chapter 6, the generation (or origin), growth and evolution of inflation-generated

magnetic fields are investigated in single-fluid models. We use equations that are

derived using the variational formalism to examine the evolution of inflation-generated,

cosmological magnetic fields in single-fluid models of the radiation-dominated epoch

and the matter-dominated epoch.

6. Finally, in chapter 7, the thesis is summarised and recommendations for future

investigations are stated.
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Chapter 2

Relativistic fluids and the

Mueller-Israel-Stewart (MIS) theories

2.1 Relativistic fluids theory

Understanding the evolution of a many-bodied system such as the evolving or expanding

universe is a very important problem in modern physics [62]. Relativistic fluid mechanics

provides a mechanism to determine the macroscopic motion of the system. Before we

proceed further, we will first define a fluid. Traditionally, it is defined as a substance that

flows to fill space and does not support shear1 stress. This definition though somewhat

lacking presents the idea that fluids flow and distort. Under a suitable continuum hypothesis,

any non-rigid multi-bodied state can be described as a fluid which follows certain equations

of motion and can be constructed in such a way that they incorporate special relativity as

well as curved space-time effects.

The motion of a many-body system is approximated using fluid dynamics [62]. In principle,

a true description of the evolution of a fluid would need to account for the motion of

each individual particle. This description however, is impractical and of no substantial

worth when modelling sufficiently large systems such as the expanding or evolving universe.

Hence, provided that the desired level of accuracy is much higher than the continuum

approximation, it is acceptable to consider the system as a fluid. Such an approximation has

been applied to relativistic fluids and such applications are varied. They have been applied

to many different domains from plasma physics, astrophysics and cosmology [63].

Relativistic fluids are relevant to physics in that many-particle astrophysical and cosmological

systems are the best sources of detectable effects which are associated with general relativity.

1This seems to be a secondary consideration. It distinguishes fluids from solids.
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The theory of relativistic fluids has continued to receive considerable attention since the

seminal work of Landau and Lifschitz2 who set the foundation for the present day study

of relativistic fluids in [64]. Interest in the theory of relativistic fluids is largely driven

by its potential use in studies of astrophysics and cosmology. The theory is explored by

using mathematical models. Though mathematical modelling processes present several

challenges, these processes are carried out in the studies of relativistic fluids in the context

of astrophysics and cosmology where approximations and assumptions are made hence

alleviating mathematical modelling challenges. They take into account physically, plausible

scenarios.

The challenges presented by mathematical modelling processes are either theoretical or

conceptual [44]. Problems classified under conceptual category involve difficulty in identifying

specific and measurable variables that give rise to a framework for characterising relativistic

fluids. The theoretical-related problems involve the foundational theories, which include

the theories of fluids, general relativity and thermodynamics, as applied to multi-species

environments. The problems can be resolved by considering a unified framework of

how single-species and multi-species fluids are treated. A study of multi-species fluids

requires a way of approximating aggregated fluid properties. For example, one may use the

multi-fluid approach. Multi-fluid models allow species to interact; entrainment is an example.

Assuming the components interact thermodynamically, ways of examining thermodynamics

may be required. Carrying out such a study requires the linking of theories which are

constructed by using dynamics of single-fluids [65–68] to those which are constructed by

using either multi-fluids or multi-species fluids that are relativistic [69–71]. One may also

need to go beyond perfect fluids; consider fluids that exhibit dissipation. For example, those

in which bulk viscosity plays a role can be considered [72]. Dissipation manifests in the

lab environment, in astrophysics and predictably in cosmology. Particularly, it manifests in

flows involving heat flow in the presence of thermal resistance, in fluid flows with viscosity,

diffusion, chemical reactions and electric current that flow in resistive media. Dissipation

has been incorporated and examined in the modelling of both non-relativistic [65, 73, 74]

and relativistic fluids. However, there are open questions regarding the incorporation and

examination of dissipation in the modelling of relativistic fluids [65,73,74].

Dissipation is usually largely ignored in cosmology [75, 76]. One would ask why dissipation

should be incorporated in relativistic fluids, and how would it be done? The authors

of [77] are motivated by the need to develop a formalism that could be used to study

gravitational radiations which emanate from compact objects, particularly neutron stars.

2They also defined super-fluidity and established the theory of super-fluidity.
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In some of these astrophysical objects, radiative processes are known to be influenced by

dissipation. Additionally, there are processes that occur during structure formation and

during reheating epochs in the early universe that suggest that dissipation could have played

a role. Therefore, ideally dissipation should be taken into account. The same can be said

of the dynamics of dark matter [78, 79] and of heat flow in general [80–82]. To account for

these, one is supposed to formulate a formalism that incorporates dissipation.

The most interesting development in classical relativistic fluid dynamics is the consideration

of multi-fluid systems that are composed of elements whose collective dynamics can involve

a super fluid/superconductor, heat flow or the treatment of electromagnetic charge as a

dynamical variable [73, 80, 83]. This is pointed out in [84]. Such systems are being used

to study a wider range of relevant phenomena. For example, the nature of interactions

between the different species which may affect how the mixture flows, effects that may only

be captured in the multi-fluid treatment, and not in the single-fluid theory. These include

dissipation and entrainment, of which the latter is much less known or studied, particularly

in the sub-class of relativistic fluids. However, the developments have been patchy, and a

general theory remains incomplete in at least two different respects. On one hand, they

require the coupling of dissipation to electromagnetism, while on the other hand they require

the inclusion of dissipation. These developments need examination. They hold the key to

the greater applicability of the fluid theory in both astrophysics and cosmology.

In fluid dynamics one may need to build fluid dynamics theories in which components of the

fluids are assumed to interact thermodynamically with each other, and manifest dissipation

and bulk viscosity. This would need one to consider fluids that are not perfect. Therefore,

to examine such theories, the MIS formalism is used. This formalism will be reviewed in

the next section. Additionally, in order to understand relativistic fluids, it is important to

develop the mathematical tools that can look at curves in a curved space-time [62]. One can

start with a line-interval denoted by ds2. This can be used to find length of an infinitesimally

small line-element in four-space and is given as

ds2 = gabdx
adxb, (2.1)

where space-time indices denoted by a and b run as (0, 1, 2, 3). This is equivalent to

(t, x, y, z) in Cartesian space-time where t represents cosmic time. The line element in

equation (2.1) is invariant of the chosen coordinate system. This implies that it is a scalar.

The metric of space-time geometry gab serves the role of a weighting function, used in

defining the length of a path.
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Placement of indices is very important in curved space-time. The metric gab is used to lower

and raise indices. That is

Va = gabVb, (2.2)

or

Va = gabVb. (2.3)

Furthermore

Va = gabgbcVc, (2.4)

implying that

gabgbc = δac. (2.5)

δac represents the Kronecker delta function.

The infinitesimal length of the ds2 divides up into three regimes that are different from each

other [62]. These are:

1. Time-like. The curve ds2 is said to be time-like if ds2 < 0. Events which occur at the

same location at different times on a rest frame are said to be time-like separate.

2. Null. The curve ds2 is said to be null if there does not exist a rest frame. This implies

that ds2 = 0.

3. Space-like. The curve ds2 is said to be space-like if ds2 > 0. Events which occur at

the same time at different locations on a rest frame are said to be space-like separated.

It turns out that light moves along null paths and that all matter travels along time-like

curves [62]. Therefore, for time-like curves, the proper time denoted as τ represents time

measured in an observer’s rest-frame and it can be expressed as

dτ 2 = −ds2. (2.6)

Hence, using this definition, the 4-vector velocity is defined as in equation (1.5). This tensor

calculus is introduced in order to allow for the derivation of physical laws, independent

of a particular coordinate system. This means that a tensor will inevitably obey certain

transformation laws. The tranformation relation for a vector, with higher-order tensors
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transforming in a consistent manner is

Va =
∂xb

∂xa
Vb, (2.7)

or

Va =
∂xa

∂xb
Vb. (2.8)

2.1.1 Material and covariant derivatives

Knowledge of how to find the derivative at a given point of a vector field is important [62]. The

rate of change of a vector field denoted by Vb in a particular direction xa can be found simply

by taking the partial derivative in a flat space-time. In curved space-time, the derivative

is not so easy to define. Illustrating this, we consider a vector denoted by ~V such that
~V = Va~ea where ~ea represents a basis vector at a point. The basis vectors are constant in

flat space-time when Minkowski coordinates are used while in curved space-time, they are

not. An example are spherical polar coordinates where basis vectors are not constant, and

can change point-to-point. Then

∂a(Vb~eb) = (∂aVb)~eb, (2.9)

for flat space-time where Minkowski coordinates are used and

∂a(Vb~eb) = (∂aVb)~eb + Vb∂a~eb, (2.10)

for curved space-time.

This example shows that there are two main issues to resolve when defining the derivative

in curved space-time [62]. The first one is, how does one find a limit in curved space-time?

The second is, how does one ensure that the derivative transforms correctly? These issues

can be resolved by defining the covariant differential operator as

∇aVb = ∂aVb + ΓbacVc, (2.11)

or

∇aVb = ∂aVb − ΓcbaVc. (2.12)
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For a rank-2 tensor, the expression is

∇cT
ab = ∂cT

ab + ΓadcT
db + ΓbdcT

ad, (2.13)

or

∇cTab = ∂cTab − ΓdcaTdb − ΓdcbTad. (2.14)

The material derivative is expressed as

D

Dτ
Va[xa(τ)] =

dxa

dτ
∇aVb, (2.15)

leading to

D

Dτ
Va[xa(τ)] = ua∇aVb. (2.16)

Note that either Va or Vb is meant to represent a tangent vector along a curve. For time-like

curves, and after using equation (2.6)

uaua = −1, (2.17)

implying equation (1.4).

2.1.2 Stress-momentum tensor interms of internal energy density

per unit mass

Different systems have different stress-energy-momentum tensors T abs [62]. Hence,

considering the perfect fluid T ab is necessary. In a general frame of an observer it can be

written as

T ab = (e+ p)uaub + pgab, (2.18)

where p represents pressure, e represents the total energy density and ua represents the local

four-velocity of the fluid. The e can be expressed as

e = ρ(ε+ 1), (2.19)

with ρ representing the rest frame mass energy density and ε representing the internal energy

density per unit mass. The continuity equation can be written out as

∇a(ρu
a) = 0, (2.20)
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which ensures conservation of mass. A more general conservation energy equation for this

system can be derived. This is done by projecting (1.12) onto ua. Using the identities of

equations (2.17) and (1.4) yields

ua∇ae = −(e+ p)∇au
a, (2.21)

Projecting equation (1.12) into its space-like components using

hab = gab + uaub, (2.22)

and utilising the identities in equations (2.17) and (1.4) [62], yields

(e+ p)ua∇au
b = −hba∇ap. (2.23)

2.1.3 Relativistic Euler equations

The aim here is to write a system of equations which can be used to solve for the flow of a

fluid [62]. At this point, equations (2.21) and (2.23) which are the conservation of energy and

conservation of momentum equations are given. To help understand what these equations

mean, it is insightful to compare the equations with their classical counterparts. This is done

by expanding equation (2.23). Then

(e+ p)ua∇aub = −∇bp− ubua∇ap, (2.24)

from which one can write out the spatial components as

(e+ p)
D~u

Dτ
= −∇p− ~uDp

Dτ
, (2.25)

and

ua∇ae = −(e+ p)∇au
a, (2.26)

where D
Dτ

= ua∇a and ~u represents three-velocity. Equations (2.25) and (2.26) are the

momentum and continuity equations, respectively.

2.1.4 Thermodynamics and a single-fluid model

Although there are several ways to derive the fundamental equations that form the basis

for single-fluid modelling, a particularly instructive approach is where the classical Einstein
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equations are derived from thermodynamical considerations. This is given in reference [85].

In the derivation of Einstein equations, this approach uses the heat relation δQ = TdS,

where T represents temperature and S represents entropy [44]. It can be shown that the heat

equation is analogous to the equation of state, provided that the local equilibrium conditions

exists. A length scale for which the conditions are assumed to hold with no threat of the

emergence of transient thermodynamics does exist [86]. Entropy is connected to the causal

horizon which holds information [87] that could potentially be decoded, but the tools for

doing this are yet to be developed. The link between the equation of state and entropy can

be shown. As an example, assuming that the entropy function is known and that it is given in

terms of total internal energy denoted by E, volume denoted by V , number density denoted

by N , temperature denoted by T , pressure denoted by p and chemical potential denoted by

µ, from the first law of thermodynamics, it follows that

dQ = dE + pdV − µdN, (2.27)

where δQ = TdS. From this equation, one can conclude that

∂S

∂E
= T−1, T

∂S

∂N
= µ, T

∂S

∂V
= p. (2.28)

The equation of state is denoted by the function S = S(E,N, V ). T in reference [88]

represents the Unruh temperature as measured by a uniformly accelerated observer (across

a causal horizon), while heat is energy flux across a causal horizon that can be felt via the

gravitational field it generates. There exists a limit where the ratio of Unruh temperature

and energy flux both remain finite, although acceleration diverges as the observer world-line

approaches the horizon. Thermodynamics is examined in this limit in [88]. Their analysis

is done for a single observer world-line which corresponds to single-fluid modelling of fluid

flow. We would like to construct a complementary argument for multi-observer world-lines.

In references [35,89], initial examination of thermodynamics in multi-fluid theory is provided

where it is shown that entropy always increases as expected. An essential starting point

that will hopefully provide a far greater understanding of thermodynamics in a multi-fluid

environment is provided later in these studies.

The Lagrangian density of the form

Λ(ρ, ~u) =
1

2
ρ~u2 − E(ρ), (2.29)

with ρ representing density, ~u representing velocity and E representing internal energy density

of fluid, can be used as a starting point in studies of single-fluid hydrodynamics [44]. An

equation of state which is barotropic is assumed in the above equation (2.29). Therefore, Λ
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can be connected to the pressure p and chemical potential µ in the usual way. Information

that is related to the underlying flow lines, the local geometry and physics of the fluid is

concealed by the formulation above of equation (2.29). Assuming that entropy is conserved,

a more nuanced formulation given in terms of mass m and number density denoted by n,

takes the form

Λ(m,n) = −mnn − E(n2
n). (2.30)

One can then write the T ab in the usual form

T ab = ψδab + naµb, (2.31)

where

ψ = Λ− ncµc, µb = gbaβn
a, β = −2

∂Λ

∂n2
n

, (2.32)

and ψ represents pressure. The usefulness of presenting the Lagrangian in terms of the n

and m will become clear in the multi-fluid model.

2.2 The (Standard) MIS theory

Early theories on single-fluid irreversible thermodynamics [90] predicted instantaneous

propagation of viscous and thermal effects due to the parabolic nature of the resultant

differential equations. One example of the early theories on single-fluid irreversible

thermodynamics is the Eckart theory. This theory is unstable in the sense that small

spatially bounded departures of fluids from equilibrium at one instant of time will diverge

exponentially with time. The time scales for the instabilities are very minute. These results

provide overwhelming motivation for abandoning the Eckart theory in favour of the MIS

theories which are free of these problems [91]. After analysis of dynamics of small departures

of the fluids (in Eckart theory) from their equilibrium states, it is shown that the Eckart

theory predicts rapid evolution away from equilibrium. This makes the theory very unstable

and consequently unacceptable as a reasonable physical theory. In a series of papers, the

Eckart theory was contrasted with the relativistic kinetic theory [88,92, 93]. Following early

work on the theories and connecting with Grad’s 14-moment kinetic theory description,

it was concluded that a satisfactory formalism had to be second order in the various

fields [94, 95]. This approach is known to admit stable equilibrium states, and fluctuations

about equilibrium are known to propagate causally via hyperbolic differential equations [96].

Hence, the formalism is an attractive alternative to the simpler but pathological Eckart
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theory3.

The consequence of the early theories is that they were predictive only for slowly varying

systems. The problem was traced to the non-perturbative [97] truncation procedure which

led to the dropping of quadratic terms from the heat and viscous stresses in the expression

for the entropy four-vector. This was unsuitable for fast varying systems and therefore, a new

theory was required. Furthermore, to analyse the dynamics of fluids in the Eckart theory,

linearised equations which govern the evolution of small perturbations about equilibrium are

derived. The Eckart theory is then studied. The equations which govern the evolution of the

perturbations are shown to be non-hyperbolic [91]. This led to the development of the MIS

theory. In this section, we will consider the theory. It is based on the single-fluid formalism.

The properties of the fluids can be described by a number flux denoted by Na, an

energy-momentum tensor denoted by T ab and an entropy flux denoted by Sa. Given an

arbitrary reference velocity denoted by ua, which satifies the condition in (2.17) and the

projection tensor denoted by hab = gab+uaub, the state tensors (or non-arbitrary parameters)

denoted by Na, Sa and T ab, can be decomposed as

Na = nua + na, (2.33)

Sa = sua + sa, (2.34)

and

T ab = ρuaub + Phab + 2u(aqb) + πab. (2.35)

Here n = −Naua represents particle equilibrium density, na represents diffusion current

(where naua = 0), s represents entropy density, sa represents entropy flux relative to ua

(such that sau
a = 0), ρ represents energy density, πba = πab represents anisotropic pressure,

qa represents heat flux vector and P represents aggregate pressure of equilibrium (hereafter

p) and bulk viscosity (hereafter Π) pressures. The ρ is given by

ρ = uaubT
ab. (2.36)

The quantities, qa, πab and Π are dissipative quantities.

3Please also check the appendix A.1 for a brief description of the Eckart theory (and why it violates
causality) under the heading, Brief notes on the Eckart theory.
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A vector denoted by V̇a is defined as

V̇a = ub∇bVa. (2.37)

The gradient of ua is decomposed as

∇bua = ωab + σab +
1

3
θhab − u̇aub, (2.38)

where ωab = ω[ab] (representing vorticity tensor such that ωabu
b = 0) can be expressed as

ωab ≡ 2∇[aµb] = ∇aµb −∇bµa, (2.39)

σab = σ(ab) (representing trace-free shear tensor such that σabu
b = σ a

a = 0) can be expressed

as

σab =
1

2
(⊥cb ∇cua+ ⊥ca ∇cub)−

1

3
⊥ab θ. (2.40)

θ = ∇au
a represents expansion scalar, µb = µub of which µ represents chemical potential,

⊥ab= δab + uaub (note that uaua = −1), δab represents the Kronecker delta function and u̇a

represents the acceleration vector. Using these definitions, the laws of conservation of Na,

T ab, the second law of thermodynamics, and the law of conservation of Sa can be deduced

as follows [93]

∇aN
a = ṅ + nθ +∇an

a = 0, (2.41)

−ua∇bT
ab = ρ̇+ (ρ+ P )θ + u̇aq

a +∇aq
a + σabπ

ab = 0, (2.42)

hab∇cT
bc = (ρ+ P )u̇a + h b

a (∇bP + q̇b +∇cπ
c
b ) +

(
ωab + σab +

4

3
θhab

)
qb = 0,(2.43)

and

∇aS
a = ṡ+ sθ +∇as

a > 0. (2.44)

Equations (2.42) and (2.43) imply that the state parameter T ab is subject to the conservation

law (1.12). In an equilibrium state, the entropy flux Sa is subject to the conservation law

∇aS
a = 0. (2.45)
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By allowing key parameters such as entropy and T ab to be functions of a broader number

of properties, over and above the standard volume and internal energy [90] leads to an

appropriate starting point in the formulation of a theory of irreversible thermodynamics.

Such an extension can be formalised by giving the properties a generic scalar denoted by

f , vector denoted by fa and tensor denoted by fab, in which case the entropy flux density

denoted by s is s = s(f, fa, fab). The tensors can be clearly defined as to have the physical

meaning discussed in [35,98,99]. They represent both bulk and surface terms. The extended

description will then include surface entropy. This is of great significance. A total derivative

can then be derived and this leads to

ds ≡ ∂s

∂f
df +

∂s

∂fa
dfa +

∂s

∂fab
dfab. (2.46)

Here the rank two tensor is an extension and leads to a generalised Gibbs relation. More

than one of the intrinsic properties can be characterised by a scalar, a vector or a tensor. An

example is where heat is a vector, and both internal energy and volume are scalars. Given

that ∂s
∂E

= 1
T

for T = T (f, fa, fab) representing a non-linear temperature and E representing

internal energy, the coefficients in equation (2.46) can be treated normally. By restricting

equation (2.46) to scalars denoted by µ and ν, P (µ, ν) can represent a thermodynamical

potential with

νdP = ndµ− (ρ+ P )dν, (2.47)

and

s = (ρ+ P )ν − nµ. (2.48)

These equations imply the Gibbs relation

ds = νdρ− µdn. (2.49)

Here T = ν−1 represents the temperature and κ = µ
ν

represents the relativistic chemical

potential. It can then be postulated that

Sa = sua +
1

T
qa −Qa, (2.50)

for the standard set of properties. Here Qa represents a collection of second-order terms and

is expressed explicitly as

Qa =
ua

2T
(β0Π2 + β1qaq

a + β2π
abπab)−

1

T
(α0Πqa + α1π

abqb + F). (2.51)
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Here F represents a function of energy density, isotropic pressure, energy flux and the

symmetric shear tensor. β0, β1, β2, α0 and α1 represent coefficients. Note that β0, β1 and

β2 are dependent on T while α0 and α1 are dependent on n, T, s, ρ and p. It follows that the

T ab for such non-perfect fluids takes the form in equation (2.35). The possible particle drift

leading to the particle flux takes the form Na in equation (2.33).

2.3 The extended MIS formalism

In this section we consider a formalism for the thermodynamics of relativistic and dissipative

systems of multi-fluids [90]. In this regard, we examine the extended MIS theory with

the assumption that the MIS formalism is the standard model and its extension must

necessarily recover it when subjected to physically motivated constraints or conditions

that impact the nature of fluid approximation. It’s extension to the multi-fluid theory is

considered in [90]. After examining the single-fluid formalism, one can see that several

properties that are established in the model suddenly lose clarity [90]. The definitions

of a universal temperature [100, 101], entropy and heat are some of the properties when

considering thermodynamics. Then this lack of clarity affects the thermodynamic laws.

Therefore, this will require scrutiny.

The problem of the definition of the universal temperature was first encountered in the

non-equilibrium thermodynamics models in the single-fluid formalism [90]. At the centre of

this problem is the seemingly non-existence of a Lorentzian type of transformation between

reference frames that readily recover the black-body temperature, provided the necessary

constraints [100]. Although some progress has been made regarding this issue [101], a

common agreement has not yet been reached. It is known that when solving gravitational

field equations, the standard method takes into account the bulk effects and does not

consider the surface effects when the definition of entropy is being considered. However,

when surface terms are evaluated at the horizon they give the entropy of the horizon [102].

This implies that the body and surface terms are to be included when considering entropy.

The characterisation of work and heat are also not straightforward [103]. Heat can be

defined as a property which is endowed with a certain microscopic degree of freedom and

is capable of manifesting phenomena that is thermal, and this creates what is known

as a micro-structure [90]. One can consider the converse of this and hence ask how

the microstructures affect the microproperties in space-time dynamics. It is this idea of

micro-structure that motivates the development of the extended MIS theory.

Furthermore, the standard concepts of heat and work are often frame dependent [90]. This
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implies that the chosen frame of reference will determine the notion of the two concepts.

It has been shown that the concept of volume is always4 frame dependent. This leads to

disparities in the estimation of fundamental quantities. This lack of clarity becomes worse

when one considers the multi-fluid system. However, one can develop global parameters

that are linked to the local frame and allow for ease of physical interpretation. This can be

shown in the extended MIS formalism.

In this extension, the species number flux current denoted by Na
(I), the entropy flux vector

denoted by Sa(I) and the stress-energy-momentum tensor denoted by T ab(I) are taken to

be the primary extensive parameters where I = Y ′,Z, Y ′Z, and I = Y ′Z represents

non-standard interactions resulting from Y ′ interacting with Z [35]. Note that Y ′ and Z
represent dark matter and dark energy, respectively.

We now discuss briefly the conservation properties in a multi-fluid environment.

Understanding the conservation properties in a multi-fluid environment requires

distinguishing between species interactions with dissipative properties:

1. Without chemical reactions (or interactions) and other non-standard reactions (or

interactions) and,

2. With chemical reactions (or interactions) [35].

One can now consider generic rank 2 tensors denoted by fabY ′ and fabZ as tensor properties

for the two species Y ′ and Z, respectively. For case 1, individual species obey their own

cumulative conservation laws. This means that for fabY ′ and fabZ , ∇af
ab
Y ′ = 0 and ∇af

ab
Z = 0,

respectively. Note that ∇a represents a covariant derivative. Then

∇a(f
ab
Y ′ + fabZ) = ∇af

ab
Y ′ +∇af

ab
Z , (2.52)

which leads to

∇a(f
ab
Y ′ + fabZ) = 0, (2.53)

for case 1. For case 2, which involves interaction of Y ′ and Z (like entrainment)

∇a(f
ab
Y ′ + fabZ + fabY ′Z) = 0, (2.54)

where

∇a(f
ab
Y ′ + fabZ) 6= 0, (2.55)

4There is no unique definition of time and consequently no unique definition of space.
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and the last term in equation (2.54) encodes chemical reactions and other non-standard

interaction properties (like entrainment) [35].

Considering the interaction components [Na
Y ′Z (representing number flux of interacting

components), T abY ′Z (representing energy-momentum tensor of interacting components) and

SaY ′Z (representing entropy flux of interacting components)] in the multi-fluid formulation

leads to

∇a

∑
I

Na
I = 0 = ∇a

∑
I

T abI , ∇a

∑
I

SaI > 0, (2.56)

such that I = Y ′,Z,Y ′Z where I = Y ′Z represent non-standard interaction resulting from

Y ′ interacting with Z. Note that in the equilibrium state

∇a

∑
I

SaI = 0. (2.57)

When two observers move with 4-velocities denoted by uaY ′ and uaZ , there will be

non-identical (different) rest-frames and different projections on their respective frames [90].

The projections are represented by

habY ′ = gabY ′ + uaY ′u
b
Y ′ , (2.58)

and

habZ = gabZ + uaZu
b
Z , (2.59)

with the case5

gabY ′ ≡ gabZ , (2.60)

where Y ′ and Z represent dark matter and dark energy, respectively. Note that either gabY ′ or

gabZ represents a metric that is of space-time geometry. One can then consider (or examine)

one of the fluids (which is identical to examining the other fluid). We will consider the fluid

of dark matter flowing with 4-velocity denoted by uaY ′ . The condition (2.17) implies the

existence of the projection tensor

Uab(Y ′) = −ua(Y ′)ub(Y ′), (2.61)

5This is reminiscent of the particle frame and energy frame occupying space with the same geometry.
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where Y ′ represents dark matter. This obeys the condition

Uac(Y ′)U cb(Y ′) = Uab(Y ′), (2.62)

which projects onto the tangent space of the dark matter Y ′ worldline. Given that ûa and ûaE
represent 4-velocity of a particle frame and an energy frame, respectively, then demanding

that an energy and particle frame of the unified approach satisfy

|ûa − ûaE| � 1, (2.63)

one can define a resultant four-velocity as

ûa = fa(uaY ′ , u
a
Z), (2.64)

and the corresponding projection tensor as

ĥab = ĝab + ûaûb. (2.65)

This projects onto the rest frame of the fluid mixture such that

ĥbaûb = 0. (2.66)

In a non-relativistic case, we choose the four-velocity ûa as ξ-vector densities denoted by ~ρ

where ξ ∈(1, 2, 3, 4,......). Then the requirement of concavity demands that energy density

denoted by ρ̂, be a concave function of the variables ~ρ, meaning ∂2ρ̂
∂~ρ∂~ρ
∼negative definite. In

the relativistic case we choose the four-velocity ûa as the densities denoted by ρξ = ρaξa in

a generic Lorentz frame that moves with the four-velocity denoted by cξa (c represents the

speed of light) with respect to the observer. Note that ξaξa = 1, ξ0 > 0 and ρa represent

ξ four-fluxes. We cannot be certain that in all these frames energy density is concave as

a function of ρξ. Hence, we assume that there is at least one ξa denoted by ξ′a such that

ρ̂ξ′ is concave with respect to ρξ′ = ρaξa, meaning
∂2ρ̂ξ′

∂ρξ′∂ρξ′
∼negative definite. The co-vector

denoted by ξ′a can then be chosen in such a way that the concavity of ρ̂ξ′ implies symmetric

hyperbolicity of the field equations denoted by ρξ′ [104].

Now, assuming that the observer with ûa is not accelerating, the velocity fields are chosen

in such a way that they satisfy the concavity requirement [104]. Given the 4-velocity ûa, the
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observer with this velocity will record the ρ̂ and the particle flux denoted by

Nd = fd(Nd
Y ′ , N

d
Z). (2.67)

It follows that the T ab can be expressed as

T ab =
∑
I

T abI . (2.68)

Then, the decompositions below are possible

Na
(I) = n(I)u

a + na(I),

T ab(I) = ρ(I)u
aub + p(I)h

ab + 2u
(a
(I)q

b)
(I) + πab(I). (2.69)

In the decomposition of Na
I , one will have n(I) and naI which represent species number

density and diffusion current, respectively while in the decomposition of T abI , one will have

hab = gab + uaub, ρ(I) = uaubT
ba, p(I), π

ba
I and qa(I) which represent projection tensor,

energy density, isotropic pressure, anisotropic pressure and heat flux vector, respectively.

hab represents a projection tensor to a rest-frame of the various fluid species. It can only

be used when species separate as shown in equations (2.58) and (2.59). In comparisons

of either energy and particle frames in either reference [70] or rest and boosted frames in

reference [105] of the single-fluid formalism, different velocities have been considered.

Thermodynamics and statistical mechanics offer two formal definitions for entropy [90]. As

we are interested in fluid dynamics theories in which components of the fluids are assumed

to interact thermodynamically, we will consider the thermodynamic viewpoint. Then for a

system that is composed of constituents, in classical thermodynamics theory, the state of the

system is found by taking the averages of thermodynamic properties of the constituents.

This would mean observing the cumulative behaviour. The initial development of the

concept considered such averages for a system that was in thermodynamical equilibrium

via statistical mechanics. The latter development of the theory considered extending the

theory by incorporating aspects that allowed for non-equilibrium thermodynamics via the

kinetic theory. The treatment of statistical thermodynamics [106] is based on assumptions

that are given in terms of the behaviour of simple systems. The systems are microscopically

homogeneous, isotropic and devoid of electric charge, chemical reactions and electric force

fields or surface effects. In a multi-fluid system where some of the properties just mentioned

before cannot be ignored, it is essential that one goes beyond the simple system assumptions.

Therefore, quadratic terms are incorporated [70,93,104] in the heat flux and viscous stresses

in the expression for the entropy four-vector, thus yielding a generalised theory that is able

to describe brief non-equilibrium thermodynamics and satisfies the causality condition. Then
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the entropy vector Sa(I) can take the form

Sa(I) = s(I)u
a + sa(I), (2.70)

where s(I) and sa(I) represent entropy density and entropy flux, respectively. Equation (2.70)

in an explicit form can be expressed as

Sa(I) = s(I)u
a
(I) +

qa

T
− (β(I)Π

2 + β1(I)q(I)bq
b
(I) + β2(I)π(I)cdπ

cd
(I))

ua

2T

+ (α0(I)Πq
a
(I) + α1(I)π

ab
(I)q(I)b)

1

T
, (2.71)

where s(I) represents entropy density and saI represents entropy flux with respect to ua

where sa(I)u
a = 0 (Note that I = Y ′,Z,Y ′Z where I = Y ′Z represents non-standard

interaction resulting from Y ′ interacting with Z). Π(I) represents bulk viscosity and

β(I), β1(I), β2(I), α0(I), and α1(I) are coefficients that are simply the generalised case of the

counterparts in the standard MIS formalism. Though complex detailed interactions are

very difficult to measure, they are tractable as shown in [90].

The total entropy vector Sa can then take the phenomenological form [35]

Sa = Sa(I) + S̄a. (2.72)

The last term with a bar in the above equation (2.72) represents interaction effect. It is of

importance to reflect on the dynamics and changes that take place in this approximation.

One can assume that there is a gradual change that sees the terms with the bars being

important at time tqe [where q and e each represent a (different) species] to having no effect

at time t > tqe. This means that transiting to truly separate fluids requires a full multi-fluid

approximation.

2.4 Chapter summary

We have reviewed relativistic fluids, the (standard) MIS and the extended MIS theories.

We have examined the reasons why the theory of relativistic fluids was developed. We

have examined the mathematical details of the theory. We have looked at the material and

covariant derivatives where one has to find a derivative of a given point for a vector field. We

have examined the relativistic Euler equations which is a system of equations used to solve for

fluid flow. We have examined thermodynamics and the single-fluid model. Its Lagrangian

is presented in terms of n and m. We have examined both standard and extended MIS

theories. For the (standard) MIS formalism, a relation for the entropy flux Sa is postulated.
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Similarly, for the extended MIS theory, a relation for the entropy vector SaI is postulated.
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Chapter 3

Variational formalisms for relativistic

fluids

3.1 Variational principle

The principles of the variational formalism have a long and distinguished history in

physics. Apart from global derivations of physical principles, equivalent to local differential

equations, they are useful for approximating problems too difficult for analytical solutions.

In recent years, there has been some progress in using classical variational action principles

to approximate the motion of classical systems. This demands for a review of the recent

developments in this area of classical mechanics. In classical mechanics, variational principles

are usually referred to as least action principles [107]. This is because the quantity subject

to variations is the action. We will consider the calculus of variations as it underlies the

variational principle.

The integral of the variational principle was first championed by Gottfried Leibniz. During

the 18th century, Bernoulli, a student of Leibniz at the time, formulated the field of variational

calculus [107]. It underlies the integral variational formalism to mechanics. Bernoulli

solved the brachistochrone puzzle which involves finding the path for which the transit

time between two points is the shortest. Later on during the 18th century, the pre-eminent

Swiss mathematician and a student of Bernoulli, developed the calculus of variations with

full mathematical rigor. A student of Euler by the name of Lagrange (1736 − 1813)

culminated the development of the Lagrangian variational approach to classical mechanics.

The Euler-Lagrange formalism to classical mechanics stems from a deep philosophical belief

that the laws of nature are based on a principle of economy. This implies that the physical

universe follows paths through space and time that are based on extrema principles. This

brings one to the Hamilton’s least action principle which states that, for a true trajectory of

a system, Hamilton’s action denoted by A is stationary for trajectories which run from the

50



CHAPTER 3. VARIATIONAL FORMALISMS FOR RELATIVISTIC FLUIDS

fixed initial space-time point denoted by qi point to the fixed final space-time point denoted

by qf such that

(δA)4t = 0, (3.1)

where 4t = t2 − t1 and t1 represents initial time while t2 represents final time.

One can illustrate this by considering motion in one direction. The illustration involves

a simple physics problem of a point particle which has always served as a guide to deep

principles used in much more complex problems in physics [73]. An action most suitable for

the free point particle can be expressed as [73]

A =

∫ t2

t1

T dt, (3.2)

where T represents kinetic energy, t represents time, t1 and t2 represent initial and final time,

respectively. Kinetic energy can be expressed as

T =
m[ẋ(t)]2

2
, (3.3)

where m represents mass, x(t) represents path taken by the point particle and ẋ represents

speed of the point particle. Hamilton’s principle states that the actual path taken by the

point particle is the one for which the action in equation (3.2) is stationary. Then the

Euler-Lagrange equations given by

d

dt

∂T
∂ẋ
− ∂T
∂x

= 0, (3.4)

lead to

d

dt
(mẋ) = mẍ = 0. (3.5)

Alternatively, a variation of A with respect to x(t) leads to

δA = −
∫ t2

t1

dt(mẍ)δx+ (mẋδx)|t2t1 . (3.6)

In the absence of forces on the particle, d’Alembert’s principle of least action can be applied

[73,108]. This principle states that the paths that make the A stationary (implying δA = 0)

are those that yield the true motion. One can see from the varied action that the x(t) that
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satisfy the boundary conditions

δx(t1) = 0 = δx(t2), (3.7)

and the equation of motion (3.5) lead to

δA = 0. (3.8)

This same principle (or reasoning) can be applied to much more complex problems in physics.

The standard Lagrangian denoted by L is defined as the difference between the T and

potential energy. This means that

L(x, ẋ; t) = T − V(x, t), (3.9)

where V(x, t) represents potential energy. The laws of classical mechanics can be expressed

in terms of the Hamiltonian variational principle. This principle states that the motion of

the system between the t1 and the t2 follows a path that minimises the A, and defined as

the time integral of the Lagrangian. This is expressed as

A(x) =

∫ t2

t1

L(x, ẋ; t)dt. (3.10)

This variational formalism is both elegant and beautiful. It provides the mathematics

required to determine the path that minimises the action integral. It has withstood the

rigors of experimental confirmation. It is an exceedingly powerful alternative formalism

to the intuitive Newtonian formalism to mechanics, and it is also recognised to be more

fundamental than Newton’s laws of motion. The variational formalism to mechanics is

the only formalism that can handle the theory of relativity. One can use the principle to

derive equations of motion and stress-energy-momentum tensors denoted by T abs. This

formalism differs from the usual text-book derivation of the equations of motion from

the divergence of the T ab, in that one clearly obtains the relativistic Euler equation as an

integrability condition on the relativistic vorticity [73]. This means that the results obtained

depend on the whole path, and not just the initial and final points. That is, it is different

from a total derivative which can be integrated, and thus depends on only the lower and

upper limits of the integration. This implies that results obtained using the variational

formalism should be more accurate than those that depend on the initial and final points only.

We consider equation (3.10). Hamilton’s principle states that the actual path taken by a

point particle which is subjected to the conservative forces V(x, t) is the one for which the
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action in equation (3.10) is stationary [107]. Therefore, the Euler-Lagrange equations for the

action given by

d

dt

∂L
∂ẋ

=
∂L
∂x

, (3.11)

yields

d

dt
(mẋ) +

∂V
∂x

= 0. (3.12)

This can be rewritten as

mẍ+
∂V
∂x

= 0, (3.13)

or

mẍ−Fx = 0, (3.14)

where Fx = −∂V
∂x

. In other words, for boundary conditions that make the boundary term in

δA zero, Hamilton’s principle suggests Newton’s second law

Fx = mẍ, (3.15)

where

Fx = −∂V(x, t)

∂x
. (3.16)

Notice that the potential energy is allowed to be time-dependent. However, if the potential

energy is time-dependent, then the Lagrangian will have no explicit dependence on time t.

This means that there is a first-integral of the Euler-Lagrange equations.

One can work on a system that requires the incorporation of all other forces (non-conservative

and/or external forces) other than the conservative ones. Note that these forces (to be

incorporated) cannot be put in action principles. However, from Newton’s second law, it is

possible to have the expression

mẍ+
∂V
∂x

= FT , (3.17)

where FT represents all other forces, and both conservative and all other forces act. Analysis

of equation (3.17) shows that the kinetic and conservative forces which enter the left-hand

side of equation (3.17) follow from the Euler-Lagrange equations for the action in equation
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(3.10). This implies that

δA
δx

= −

(
mẍ+

∂V
∂x

)
. (3.18)

Then in the absence of all other forces FT , the action principle leads to equations of motion.

In the presence of all other forces FT , the action defines the kinetic and conservative force

terms that are to be balanced by all other forces FT . This also defines momentum. Note that

the main effect of all other forces FT can be to draw away kinetic energy from the system [73].

One can now discuss the more complex variational formalisms which are relevant to our work.

3.2 The pull-back approach for a single-fluid model

We consider an embedding

Φ : Σ→M, (3.19)

where Σ represents a hyper-surface andM represents an ambient space or manifold. Then a

pull-back refers to the operation of restricting (or pulling back) tensors on a manifold denoted

byM to those on Σ [109]. The simplest of this kind of formalism is the pull-back of a scalar

function denoted by f on M such that

f :M→R, (3.20)

and M to a function on Σ where R represents a set of real numbers. The restriction to Σ

defines a scalar on Σ such that

f |Σ : Σ→ R. (3.21)

When one is considering the embedding Φ, this can be phrased as the statement that the

embedding map Φ can be used to pull-back the function f on M to a function Φ∗f on Σ

defined by

Φ∗f : Σ→ R, (3.22)

and

(Φ∗f)(y) = f [Φ(y)], (3.23)
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where y represents a scalar.

One can now consider vectors and co-vectors. When one considers co-vectors as linear

functions on vectors, then upon restriction of a co-vector field on M to Σ, one obtains a

co-vector field on Σ [109]. This is possible because its action on any vector at x ∈ Σ ⊂ M
where x represents a scalar, is well-defined. Particularly, its the action on vectors tangent

to Σ and this is all that is required to make the action a well-defined co-vector on Σ. For

equations this implies that if Ua is a co-vector field on M, then it can be pulled-back to a

co-vector field ub on Σ via

ub = (Φ∗U)b =
∂xa

∂yb
Ua, (3.24)

where a and b represent space-time indices. This can be expressed as

ub = EabUa, (3.25)

where

Eab =
∂xa

∂yb
. (3.26)

One can see that this is a co-vector field on Σ. This formulation can also be understood in

terms of the differentials denoted by dxa and the pull-back of the generally covariant object

Uadxa. One can pull-back dxa to Σ leading to

Uadxa|Σ = UaEabdyb = ubdy
b. (3.27)

In the same way one can restrict higher-rank covariant tensor fields denoted by Ua.....c onM
to Σ such that

(Φ∗U)d.....f = Ead.....EcfUa.....c. (3.28)

This restriction formalism [110–112] is used to construct a Lagrangian displacement of the

number density flux current denoted by naX where a represents a space-time index and

X represents the single-fluid approximation being considered, that is X represents the

radiation-dominated epoch or the matter-dominated epoch. Let nXbcd represent a three-form

that is dual to the naX such that

nXbcd = εbcdan
a
X , n

a
X =

1

3!
εabcdnXbcd, (3.29)
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and

n2
X =

1

3!
nXbcdn

bcd
X . (3.30)

If the convention for transforming between the two dual forms is

εabcdεeabc = 3!δde, (3.31)

then one can use a well defined restriction; CAX . It pulls nXbcd into the matter space where it

takes the identity nXBCD (B,C,D, etc = 1, 2, 3). This implies that

nXbcd =
∂C[B

X

∂xb
∂CCX
∂xc

∂CD]
X

∂xd
nXBCD. (3.32)

Similarly, this can be done for the chemical potential denoted by µbcdX , where in this case CAX
represents a push-forward. CAX is Lie-dragged along individual fluid world-lines leading to

its conservation. Particularly

dCAX
dτX

= uaX∇aCAX = 0, (3.33)

where τX represents proper time. CAX is an unconstrained scalar. It can be subjected to

the variational principle with the hope of obtaining field equations for the fluxes. One can

then use the Lagrangian displacement denoted by ξaX [73] to link variations of matter space

variables to space-time variables. A relativistic Lagrangian variation which is associated with

the ξaX can be defined as

4X ≡ δ + LξX , (3.34)

where the first term on the right-hand side of this (3.34) represents Euler’s variation and the

second term is the Lie derivative. In terms of this variation

4XCAX = δCAX + LξXCAX = 0. (3.35)

This means that

δCAX = −(∇aCAX)ξaX . (3.36)

Using this, one can show that

4Xn
X
bcd = 0. (3.37)
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This implies that

δnaX = −LξXnaX − naX

(
∇eξ

e
X +

1

2
gefδgef

)
. (3.38)

This constraint guarantees that flux naX is conserved in the equations of motion. This is

because the variations of the matter Lagrangians are (or can be) expressed in terms of the

ξaX .

3.3 The convective variational approach

We consider the convective variational formalism (as it utilises as much as possible the tools

of the trade of relativistic fields). This formalism was constructed in order to incorporate

dissipative effects (reactivity for example) in a relativistic fluid description [73]. After

introduction of additional dynamical fields, the formalism respects causality and it does

not yield serious stability problems. Since it is based on making maximal use of variational

principle arguments, the construction of this formalism is less phenomenological. Owing to

its extreme generality, the construction is useful in more complicated cases like for example,

in multi-fluid dynamics. Its technical mathematical approach is very good and it draws

attention to the importance of new kinds of variables. Its mathematics is also convenient,

elegant and physically intuitive. It has no essential physical limitations relative to the

formalisms before it. It unites the physical adaptability of the formalisms before it with at

least some of the mathematical advantages of the divergence approach and other formalisms.

Additional parameters required for this formalism are in principle calculable. However, they

are quite difficult (in practise) to extract from arguments of micro-physics. Despite this, it

is still worth considering as discussed above.

As mentioned before, the convective variational formalism was developed to cater for

non-conservative media [113]. In this formalism, a single scalar function denoted by Λ say

of relevant variables plays a crucial role. This quantity is known as the master function. It

generalises the role of a Lagrangian for a conservative model, of the kind whose prototype is

a standard Taub mass density function for a perfect fluid [114,115]. The master function Λ in

explicit form is Λ = Λ(naI , gab) where naI represents flux, a and b represent space-time indices,

I represents a constituent index and gab represents the space-time metric. As mentioned

before, it is the key quantity in the convective variational framework. Its most fundamental

role is to determine a set of dynamically conjugate variables which implies a set of effective

variables. Then µIa represent momenta that are conjugate to the fluxes naI . Given that

the momenta µIa are related to the constituent I and naI = nIu
a
I where uaI represents
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four-velocity and a is a space-time index, then

δΛ =
∑
I

µIaδn
a
I +

∂Λ

∂gab
δgab. (3.39)

Then, according to the principle of least action, one will require that the action be extremal

for arbitrary variations. This leads to equations of motion and stress-energy-momentum

tensors T abs. Now, Einstein field equations are expressed as (stated before)

Gab = T ab, (3.40)

where (stated before)

Gab = Ra
b −

1

2
Rgab. (3.41)

The Einstein field equations’ or (or tensor’s) covariant divergence vanishes identically

meaning (stated before)

∇aGab = 0. (3.42)

This implies that

∇aT
a
b = 0, (3.43)

which is the conservation of the T ab (as stated before). We consider an Euler relation

E

V
= µ

N

V
− p+ T

S

V
, (3.44)

[44] where E represents internal energy, N represents number of particles, V represents

volume, S represents entropy, µ represents chemical potential, p represents pressure and T

represents temperature. One can let ρI = E
V

represent total energy density, s = S
V

represent

total entropy density and nI = N
V

represent total particle number density. The Euler relation

can then be written in the form

ρI + p =
∑
I

µInI + Ts. (3.45)

One can now consider

dρI =
∂ρI
∂nI

dnI . (3.46)
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Then from equation (3.45)

∂ρI
∂nI

= µI , (3.47)

which implies

dρI = µIdnI . (3.48)

Using the definitions naI = nIu
a
I and µIa = µIuIa with the condition uadu

a = 0 (because

uaIu
I
a = −1), leads to

−dρI = −µIdnI = uaIu
I
aµ
IdnI = µIadn

a
I . (3.49)

Then

dρI = −µIadnaI . (3.50)

A variationally defined T ab is given by

T ab = ψgab +
∑
I

naIµ
I
b, (3.51)

where

ψ = Λ +
∑
I

hI , (3.52)

and

hI = −µIanaI . (3.53)

The crucial Noether identity takes the form

∇aT
a
b =

∑
I

FIb, (3.54)

where FIb represents the generalised force density. ψ represents a generalised pressure

function (which is the dynamical conjugate of Λ) and hI represent simple contractions for

enthalpy contributions. The identity in equation (3.54) enables the condition for a fluid

medium to be free from external influence, as expressed by the covariant conservation (which

in a curved space-time background is strictly only a pseudo-conservation law), requiring the

vanishing of the ∇aT
a
b be re-formulated as a Newtonian-type force balance equation. FIb
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represents the generalised force density which needs to be worked out [including equation

(3.51)] in the following paragraphs. It is associated with the contribution in the momenta

µIa and it is also related to the divergence of the variationally defined T ab [as shown in

equation (3.54)] in equation (3.51).

The Noether identity in the preceding paragraph is based on the postulate that the algebraic

functional dependence of Λ be fully covariant [113]. This implies that apart from the

independent matter field variable naI , the Λ should depend only on the symmetric metric

gab that is used for raising and lowering space-time indices. A fully covariant formalism is

used as it is mathematically useful to consider the effect of arbitrary variations subject only

to the symmetry condition

gab = g(ab). (3.55)

Given the conditions above, the most general infinitesimal variation of the Λ that can be

conceived will have the form of equation (3.39). For this case, naI represents a set of vectors

which in turn represent diverse currents of entropy and whatever kinds of neutral or charged

(not necessarily conserved) particles with the specification of the partial derivatives completed

in view of equation (3.55) by the appropriate symmetry condition

δΛ

δgab
=

δΛ

δgba
. (3.56)

A variation of the master function Λ can be shown to be

δΛ = ξLΛ = LξΛ = ξa∇aΛ, (3.57)

where ξa represents an arbitrary infinitesimal displacement vector field. The infinitesimal

variations of the variables appearing in equation (3.39) are given by the corresponding Lie

derivatives and these are

δnaI = ξLnaI = LξnaI = ξb∇bn
a
I − nbI∇bξ

a, (3.58)

and

δgab = ξLgab = Lξgab = 2

[
1

2
(∇aξb +∇bξa)

]
= 2∇(aξb). (3.59)
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One can then substitute equations (3.57), (3.58) and (3.59) in equation (3.39). This leads to

ξa∇aΛ =
∑
I

µIa(ξ
b∇bn

a
I − nbI∇bξ

a) +
∂Λ

∂gba

{
2

[
1

2
(∇bξa +∇aξb)

]}
, (3.60)

where ∇a represents the operator of covariant differentiation with respect to the metric gab.

Note that equation (3.60) pulls out the symmetric pieces because the metric is symmetric.

Then equation (3.60) can be re-written as

ξa∇aΛ− ξb(∇bn
a
I)
∑
I

µIa = −
∑
I

µIan
b
I(∇bξ

a) + 2
∂Λ

∂gba
∇aξb. (3.61)

For the second term on the right-hand side of equation (3.61), the indices are swapped. The

first term on the right-hand side of (3.61) is also considered. a is raised and lowered on

µIa and ξa, respectively without losing generality. Using a symmetry condition denoted by

∇aξb = ∇bξa and multiplying throughout by -1 yields

(−∇aΛ +
∑
I

µIb∇an
b
I)ξ

a =

(∑
I

µIanbI − 2
∂Λ

∂gba

)
∇aξb, (3.62)

such that (∑
I

µaIn
b
I − 2

∂Λ

∂gba

)
∇aξb = (

∑
I

µIb∇an
b
I −∇aΛ)ξa. (3.63)

The coefficients of ∇aξb and ξa vanish if ∇aξb and ξa are abitrary. This yields the Noether

identities below

∇aΛ =
∑
I

µIb∇an
b
I , (3.64)

jointly with a less trivial relation

2∂Λ

∂gba
=

∑
I

µIanbI . (3.65)

For both equations (3.64) and (3.65), the symmetry on the left-hand side implies a

corresponding identical symmetry on the right-hand side. This means∑
I

µI[an
b]
I ≡ 0. (3.66)
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The construction of a covariant master function Λ(naI , gab) determines a set of canonically

associated generalised momentum tensors µIa [113]. It can also be used to specify a

corresponding set of generalised force density FIa jointly with a canonically associated T ab.

The ∇bT
b
a will be equal to the force

∑
I FIa in accordance with the Noether identity (3.54).

With fluid world-line variational principles, one can consider the restriction of the general

variation (3.39) of the Λ that is generated by a corresponding set of arbitrary displacement

vectors ξaI acting on the contravariant tensor densities that are metricly associated with the

corresponding independent variables. In this case, the variable is ||g|| 12naI . At the same time

the effect of an arbitrary Eulerian metric variation is

δgab = hab, δ||g||
1
2 =

1

2
||g||

1
2haa. (3.67)

Evaluation of the resulting variation of the corresponding purely tensorial quantities can be

expressed as

δnaI = ξILnaI + naI

(
∇bξ

b
I −

1

2
hbb

)
. (3.68)

The required force density FIa and the relevant T ab can be derived by writing the resulting

variation in the scalar density denoted by Λ||g|| 12 in the form

||g||−
1
2 δ(||g||

1
2 Λ) +∇aR

a ≡
∑
I

FIaξaI +
1

2
T abhab. (3.69)

The variation of the integral of Λ does not receive any contributions from the remainder

denoted by Ra. This is because δnaI = δgab = 0.

One can now examine equation (3.54) to see if it still holds as an identity in the general case

independently of any field equations that might be imposed [113]. The volume integral of the

variation given by equation (3.69) vanishes if all the displacement vector fields are taken to

have a common value ξa and if the metric variation is generated [according to equation (3.59)]

by the same displacement whose net result is then effectively just that of a mere coordinate

transformation in which case equation (3.69) reduces to an identity relation of the simple

form

∇a(Λξ
a − T abξb +Rb) = ξa(

∑
I

FIa −∇bT
b
a). (3.70)

We consider the integral on the left-hand side of equation (3.70) over a region of displacement

that is bounded. After applying Green’s theorem, the integral vanishes for an arbitrary ξa.

It follows that the force-balance equation (3.54) holds as an identity that is independent of
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whatever conservative or dissipative field equations that may be suggested.

On working out the terms in equation (3.69), one finds that the remainder Ra in the

divergence contribution will be expressed as [113]

Ra = 2
∑
I

µIbn
[a
Iξ

b]
I . (3.71)

The force density is given for the particle and entropy fluxes which can be expressed as

FIa = ∇b(n
b
Iµ
I
a)− nbI∇aµ

I
b. (3.72)

This expression can be re-expressed as

FIa = µIa∇bn
b
I + nbI∇bµ

I
a − nbI∇aµ

I
b, (3.73)

which in turn leads to

FIa = µIa∇bn
b
I + nbI(∇bµ

I
a −∇aµ

I
b). (3.74)

In a more compact form, equation (3.74) can be expressed as

FIa = µIa∇bn
b
I + nbI∇[bµ

I
a]. (3.75)

The formula of equation (3.51) for the corresponding canonically associated T ab can be

derived from equation (3.69) using equation (3.65). The symmetry of the canonically

constructed T ab is not manifest in equation (3.51). However, the symmetry property

T ab = T (ab) can be seen to follow directly from the Noether identity of equation (3.66).

One can now introduce a set of convection vectors denoted by βaI such that hIβ
a
I = naI

and µIaβ
a
I = −1 [113]. These vectors are proportional to the fluxes in the case where

they are associated with the currents themselves. Combining momenta µIa with flux current

denoted by naI leads to hIµ
I
aβ

a
I = naIµ

I
a. This implies that −hI = µIan

a
I meaning that

hI = −µIanaI . With these definitions in mind, a projection operator can be introduced as

follows

⊥abI = gab + µaIβ
b
I . (3.76)

Then combining the projection operator with the convection vectors yields

⊥aIb βbI = (gab + µaIβIb)β
b
I . (3.77)
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Expanding the right-hand side leads to

⊥aIb βbI = gabβ
b
I + µaIβ

b
IβIb. (3.78)

b is a dummy index on the second term on the right-hand side of (3.78). Hence, equation

(3.78) simplifies to

⊥aIb βbI = βaI − βaI = 0. (3.79)

Similarly, combining the projection operator and the momenta yields

⊥abI µIb = (gab + µaIβ
b
I)µ

I
b. (3.80)

Using βbIµ
I
b = −1 leads to

⊥abI µIb = µIa − µIa = 0. (3.81)

This then implies that

⊥aIb βaI = ⊥abI µIb. (3.82)

One can now consider the force density given by

FIa = µIa∇bn
b
I + nbI(∇bµa −∇aµb). (3.83)

Combining equation (3.83) with βaI yields

βaIFIa = βaIµ
I
a∇bn

b
I + βaIn

b
I(∇bµa −∇aµb). (3.84)

Then using the condition µIaβ
a
I = −1 in equation (3.84) leads to

βaIFIa = −∇bn
b
I + βaIn

b
I∇bµa − βaInbI∇aµb. (3.85)

The product rule demands the equation

βaIFIa = −∇bn
b
I + nbI∇b(β

a
Iµa)− nbI∇a(β

a
Iµb)− nbIµa∇bβ

a
I + nbIµb∇aβ

a
I .

(3.86)
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Using the metric gab yields

βaIFIa = −∇bn
b
I + nbI∇b(β

a
Iµa)− nbI∇b(β

a
Iµa)− nbIµa∇bβ

a
I + nbIµa∇bβ

a
I ,

(3.87)

which in turn clearly leads to

βaIFIa = −∇bn
b
I . (3.88)

Equation (3.88) can be expressed as

∇an
a
I = −βaIFIa. (3.89)

Proceeding further

LIµIa = βbI∇bµa + µb∇aβ
b
I . (3.90)

Combining equation (3.90) with hI = −µIanaI leads to

hILIµIa = −µIcncIβbI∇bµa − µIcncIµb∇aβ
b
I . (3.91)

Then using equations (3.74) and (3.76) lead to

⊥Ibe FIe = gbe[µeI∇fn
f
I + nfI(∇fµ

I
e −∇eµ

I
f )] + µIbβIe[µIe∇fn

f
I + nfI(∇fµ

I
e −∇eµ

I
f )].

(3.92)

Expanding further yields

⊥Ibe FIe = µbI∇fn
f
I + nfI(∇fµ

Ib −∇bµIf ) + µIbβIeµIe∇fn
f
I + µIbβIenfI(∇fµ

I
e −∇eµ

I
f ),

(3.93)

which in turn leads to

⊥Ibe FIe = µbI∇fn
f
I + nfI∇fµ

Ib − nfI∇
bµIf + µIbβIeµIe∇fn

f
I + µIbβIenfI∇fµ

I
e − µIbβIen

f
I∇eµ

I
f .

(3.94)

Using the condition µIaβ
a
I = −1 in equation (3.94) yields

⊥Ibe FIe = µbI∇fn
f
I + nfI∇fµ

Ib − nfI∇
bµIf − µbI∇fn

f
I + µIbβIenfI∇fµ

I
e − µIbβIen

f
I∇eµ

I
f .

(3.95)
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Simplifying equation (3.95) leads to

⊥Ibe FIe = nfI∇fµ
Ib − nfI∇

bµIf . (3.96)

Substituting in (or using) hIβ
a
I = naI leads to

⊥Ibe FIe = hIβ
f
I∇fµ

Ib − hIβfI∇
bµIf , (3.97)

which can be expressed as

⊥Ibe FIe = hIβ
f
I∇fµ

Ib − hI∇b(βfIµ
I
f ) + hIµ

I
f∇bβfI . (3.98)

Using µIaβ
a
I = −1 in equation (3.98) leads to

⊥Ibe FIe = hIβ
f
I∇fµ

Ib + hIµ
I
f∇bβfI . (3.99)

Substituting for hI and using hI = −µIanaI in equation (3.99) yields

⊥Ibe FIe = −µIcncIβ
f
I∇fµ

Ib − µIcncIµIf∇bβfI , (3.100)

which can be expressed as

⊥Ibe FIe = −µIcncIβ
f
I∇fµ

Ib − µIcncIµI∇bβfI . (3.101)

This can further be expressed as

⊥Ibe F eI = −µIcncI(β
f
I∇fµ

I
b + µIf∇bβ

f
I). (3.102)

Expanding out equation (3.102) leads to

⊥Iae F eI = −µIcncIβbI∇bµa − µIcncIµb∇aβ
b
I . (3.103)

Changing the index e to b (without loss of generality or change of meaning), using hI =

−µIanaI and then comparing with equation (3.91) leads to the conclusion that

⊥Iab F bI = hILIµIa. (3.104)

Suppose that one chose to work in a given frame that is moving at four velocity ua and

having unit normalisation with ⊥ab which represents an associated (symmetric) orthogonal
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projection tensor where uau
a = −1, then this implies that a natural convection vector can

be broken down into the form [73]

βaI = βI(u
a + vaI), (3.105)

such that the relative velocity vector is restricted in a manner that allows it to satisfy the

orthogonality condition

uav
a
I = 0. (3.106)

The scalar factor denoted by βI has an inverse that is represented by

µI = β−1
I , (3.107)

where µI are the effective chemical type potentials with respect to the chosen frame of

reference and vaI is a velocity vector.

One can now make contact with physics. The definitions in the preceding paragraphs have

been introduced in such a way that the reference frame component of the Noether identity

in equation (3.54) works out in the suggestive form given below [73]

ua∇bT
b
a +

∑
I

(µI∇an
a
I + vaIFIa) = 0. (3.108)

The exploitation of this equation is a guide to the appropriate form of the dynamic equations

that should be chosen in setting up specific phenomenological models for particular purposes.

To see how things work out in the convective variational approach, one can single out the

entropy fluid (with index s) by defining sa = nas and T = µs. One can then assume that the

remaining species are governed by conservation laws of the form given below

∇an
a
I = ΓI , (3.109)

subject to the constraint of total baryon conservation∑
I6=s

ΓI ≡ 0. (3.110)

This simplifies equation (3.108). With the just mentioned (above) conditions and the fact

that the ∇aT
a
b = 0 leads to

T∇as
a ≡ −

∑
I6=s

µIΓI −
∑
I

vaIFIa. (3.111)
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The first term on the right-hand side of equation (3.111) represents the entropy increase due

to chemical reactions. The simplest way to ensure that the second law of thermodynamics is

satisfied, is to make the term positive definite. To complete the formalism, one can assume

the term just mentioned to be linear. This would imply expansion of each ΓI according to

ΓI = −
∑
J 6=s

CIJµJ , (3.112)

where CIJ represents a positive definite (or indefinite) matrix composed of the various

reaction rates.

3.4 Chapter summary

We have reviewed a simple illustration of the variational principle, the pull-back approach for

single-fluid models and Carter’s canonical framework (or the convective variational approach)

for multi-fluids systems. We used the simple physics problem for a point particle to make

the variational principle more comprehensible. The simple physics problem for a point

particle has served as a guide to deep principles for problems which are much harder in

the field of physics. The application of the variational principle was then examined. In the

pull-back approach for single-fluid models, it is shown that naX is conserved for equations of

motion after using a variational proposition where X represents the radiation-dominated or

matter-dominated epochs. The convective variational approach is developed and shown to

be suitable for dissipative multi-fluid systems.
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Chapter 4

Convective variational formalism to

interacting multi-fluid systems

4.1 Prelude to convective variational formalism to

interacting multi-fluid systems

Under a suitable continuum hypothesis, any non-rigid multi-bodied state can be described

as a fluid which follows certain equations of motion. This could be said of the dark matter

particles. Motion of a many-body system is modelled using fluid dynamics. Now, considering

the well-known assumption that dark energy is a new kind of (dynamical) energy fluid, then

examination of multi-fluid and (a possible) entrainment effect that involve interaction of

dark matter and dark energy is a possibility. This implies the use of a multi-fluid approach

to examine (the entrainment effect of) the interaction of dark matter and dark energy. This

also means that the multi-fluid approach is applied to cosmology.

In this chapter, we examine the properties of a multi-fluid system that will be appropriate

to cosmology [44]. Before we proceed further, we first define the term multi-fluid. A

multi-fluid is a fluid mixture that is made up of many species where each species is physically

treated as separate, and which uniquely contributes to the continuum properties of the

mixture. One can consider an example where there is intra-species heat flow due to the

different species having different temperatures. When the equations of energy for the

individual species are included in the system of equations in the multi-fluid formalism, then

the ensuing artifact that became apparent in the treatment of such a fluid is captured.

The prospect of separate, mean velocities is also raised due to different temperatures. In

the multi-fluid environment, these velocities are obtained from their respective momentum

equations. It suffices to say that the system of fluid equations comprises both momentum
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equations for the whole multi-fluid system and transport equations for individual species1.

This implies that there are several fundamental observers, and as a consequence there are

anisotropic models such as the Bianchi type I model [116,117].

Current observations show that the universe is isotropic and homogeneous on large-scales.

This is against the anisotropic models [44]. The question of whether the universe

transitioned either into the state of homogeneity and isotropisation or started out as

isotropic and homogeneous is still a subject of intense scrutiny [118]. For any anisotropic

model (such as those resulting from a multi-fluid approximation) to connect with

observations the models become isotropic in late times. This suggests that a possible

extension to a general multi-fluid model is reasonable as the subject of isotropisation

has been considered [84, 119] where it was found that isotropisation occurs in a two-fluid

model. In fact, there exists a Bianchi type I epoch where the matter flux dominates and

eventually evolves to a FLRW model. This is effectively a single-fluid model as shown in [84].

Generally, the multi-fluid equations are developed on the basis of the intuitive concept of

mutually penetrating continuums [120]. The derivations of the multi-fluid equations is based

on the method of Chapman-Enskog which involves the Boltzmann equation and which

incorporates particle collisions in a gas mixture [44]. The development in [44] addresses

conservation of number, momentum and energy density of each species. It also addresses

fluid approximation.

The development in this chapter builds on the convective variational approach [77,84,113]. It

is different from the convective variational formalism [44] and it is a complementary formalism

to that in reference [120]. The multi-fluid formalism allows for the incorporation of convective

terms via the momentum equations and these terms are usually absent in the transport

equations. One can now consider the multi-fluid formalism and thermodynamics in the next

section.

4.2 Thermodynamics and a multi-fluid model

We consider two-fluid species of dark matter denoted by Y ′ and dark energy denoted by Z
(rather than one) that occupy a shared volume [44]. We have Λ that encodes contributions

from both fluid species rather than the individual Λ(Y ′) = Λ(m(Y ′), n
2
n(Y′)

, n2
S(Y′)

) and Λ(Z) =

1The formalism developed by Carter (the convective variational formalism) has a momentum equation for
each independent fluid. This means that the fluid four velocities are dynamically independent for each fluid
species. Nevertheless, one can logically assume that all the velocities can be added and an average velocity
found for the whole multi-fluid mixture. Hence, the system of fluid equations would include both momentum
equations for the whole multi-fluid system and the transport equations for the individual species.
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Λ(m(Z), n
2
n(Z)

, n2
S(Z)

), respectively. Let n(Y ′) and n(Z) represent the two number densities of

the two species, and ua(Y ′) and ub(Z) represent their corresponding velocities where a and b

represent space-time indices. Assuming that there are no chemical interactions or reactions

between the two species of dark matter and dark energy, the fluxes for the individual species

are given by naY ′ = nY ′u
a
Y ′ and nbZ = nZu

b
Z , respectively. The number density for each

species is separately conserved, that is

∇an
a
Y ′ = ∇an

a
Z = 0. (4.1)

One can derive associated co-moving densities associated with the given flux by taking the

flux naY ′ for each component as a fundamental field. Let naY ′ and nbY ′ be the two fluxes for

the fluid of type Y ′ (implying the same species) that are endowed with the space-time indices

a and b, respectively. It follows that one will have the product naY ′n
b
Y ′ = n2

Y ′u
a
Y ′u

b
Y ′ . The

co-moving density is then obtained as follows

gabn
a
Y ′n

b
Y ′ = gabn

2
Y ′u

a
Y ′u

b
Y ′ , (4.2)

which can be expressed as

gabn
a
Y ′n

b
Y ′ = n2

Y ′(gabu
a
Y ′u

b
Y ′), (4.3)

and then lowering the index b on the four velocity ubY ′ by using the metric gab and using

uY
′
au

a
Y ′ = −1 leads to

gabn
a
Y ′n

b
Y ′ = −n2

Y ′ . (4.4)

This can be extended to a two-fluid model such that

gabn
a
Y ′n

b
Z = gabnY ′u

a
Y ′nZu

b
Z , (4.5)

which can be expressed as

gabn
a
Y ′n

b
Z = n2

Y ′Z(gabu
a
Y ′u

b
Z), (4.6)

where nY ′nZ = n2
Y ′Z . Lowering the index b on ubZ by using the metric gab leads to

gabn
a
Y ′n

b
Z = n2

Y ′Z(uaY ′ua(Z)). (4.7)

Given that uaY ′ua(Z) = −1, (4.7) yields

gabn
a
Y ′n

b
Z = −n2

Y ′Z . (4.8)
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If there are no chemical interactions and taken in totality, the formulation just presented

suggests that the energy density denoted by Λ can be expressed as a function of energy

density scalars such that

Λ = Λ(mY ′ ,mZ , n
2
n(Y′)

, n2
SY′
, n2

nZ
, n2

SZ
). (4.9)

If a chemical interaction occurs, the expression below can be suggested

Λ = Λ(mY ′ ,mZ , n
2
nY′
, n2

nZ
, n2

SY′
, n2

SZ
, n2

nY′Z
, n2

SY′Z
). (4.10)

Varying (4.10) yields

δΛ =
∑
Y ′

∂Λ

∂n2
Y ′
δn2
Y ′ +

∑
Y ′Z

∂Λ

∂n2
Y ′Z

δn2
Y ′Z +

∂Λ

∂gab
δgab. (4.11)

Introducing uY
′
au

a
Y ′ = −1 on the first term on the right-hand side of equation (4.11) leads to

δΛ =
∑
Y ′
−2

∂Λ

∂n2
Y ′

uY
′

bu
b
Y ′

2
δn2
Y ′ +

∑
Y ′Z

∂Λ

∂n2
Y ′Z

δn2
Y ′Z +

∂Λ

∂gab
δgab. (4.12)

Introducing naY ′ = nY ′u
a
Y ′ on the first term of the right-hand side of equation (4.12) yields

δΛ =
∑
Y ′
−2

∂Λ

∂n2
Y ′

1

2
δ(nY

′

bn
b
Y ′) +

∑
Y ′Z

∂Λ

∂n2
Y ′Z

δn2
Y ′Z +

∂Λ

∂gab
δgab. (4.13)

Varying nY
′

bn
b
Y ′ in (4.13) leads to

δΛ =
∑
Y ′
−2

∂Λ

∂n2
Y ′
nbY ′δn

b
Y ′ +

∑
Y ′Z

∂Λ

∂n2
Y ′Z

δn2
Y ′Z +

∂Λ

∂gab
δgab. (4.14)

Introducing gab and uaZua(Y ′) = −1 on the first and second terms, respectively on the

right-hand side of equation (4.14) yields

δΛ = − 2∂Λ

∂n2
Y ′
gban

a
Y ′δn

b
Y ′ −

∂Λ

∂n2
Y ′Z

uaZua(Y ′)δn
2
Y ′Z +

∂Λ

∂gab
δgab. (4.15)

Introducing gab on the second term of the right-hand side of equation (4.15) leads to

δΛ = −2
∂Λ

∂n2
Y ′
gban

a
Y ′δn

b
Y ′ −

∂Λ

∂n2
Y ′Z

gabu
a
Zu

b
Y ′δn

2
Y ′Z +

∂Λ

∂gab
δgab. (4.16)
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Using the definition for flux current on the term yields

δΛ = −2gba
∂Λ

∂n2
Y ′
naY ′δn

b
Y ′ − gba

∂Λ

∂n2
Y ′Z

δ(nbY ′n
a
Z) +

∂Λ

∂gab
δgab. (4.17)

Varying one of the flux currents on the second term of the right-hand side of equation (4.17)

leads to

δΛ = −2gab
∂Λ

∂n2
Y ′
naY ′δn

b
Y ′ − gba

∂Λ

∂n2
Y ′Z

naZδn
b
Y ′ +

∂Λ

∂gab
δgab. (4.18)

Writing (4.18) in suitable form yields

δΛ = gba

(
− 2

∂Λ

∂n2
Y ′
naY ′ −

∂Λ

∂n2
Y ′Z

naZ

)
δnbY ′ +

∂Λ

∂gab
δgab. (4.19)

Similarly, for the case where the constituent indices are interchanged leads to

δΛ = −2gba
∂Λ

∂n2
Z
naZδn

b
Z − gba

∂Λ

∂n2
Y ′Z

naY ′δn
b
Z +

∂Λ

∂gab
δgab. (4.20)

Expressing this equation in suitable form yields

δΛ = gba

(
− 2

∂Λ

∂n2
Z
naZ −

∂Λ

∂n2
Y ′Z

naY ′

)
δnbZ +

∂Λ

∂gab
δgab. (4.21)

Then equation (4.19) leads to

δΛ = µY
′

b δn
b
Y ′ +

∂Λ

∂gab
δgab, (4.22)

and equation (4.21) yields

δΛ = µZbδn
b
Z +

∂Λ

∂gab
δgab. (4.23)

The momentum conjugates will then take the form

µY
′

b = gba(BY
′
naY ′ +AY

′ZnaZ), (4.24)

and

µZb = gba(BZnaZ +AZY ′naY ′), (4.25)
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where

AY ′Z = AZY ′ = − ∂Λ

∂n2
Y ′Z

, Y ′ 6= Z, (4.26)

and

BY ′ = −2
∂Λ

∂n2
Y ′
, BZ = −2

∂Λ

∂n2
Z
. (4.27)

The expressions in equation (4.27) remind us that these are bulk-fluid effects which are

present regardless of the number of fluids and constituents present. The last terms in

equations (4.24) and (4.25) encapsulates the entrainment effect. This raises serious questions

about how one might define local thermodynamics equilibrium. The local thermodynamic

energy is recovered in the limit when all fluxes are parallel. The terms n2
n(Y ′Z) and

n2
S(Y ′Z) become meaningful when dissipative fluids are considered. These terms will be

considered in a moment. First, one can consider the idea of the Λ that has more than

two species. Mathematically, this would mean that the Λ could easily have the product

n4
n(WY ′ZZ) = n2

n(WZ)n
2
n(Y ′Z) as one of its entries where W and Z each represent a different

fluid species. This comes from the mathematical fact gabn
a
Wn

b
Y ′gbcn

b
Zn

c
Z . This implies that

the product of entrainment involves four species of fluids. The physics of such products are

somewhat unclear. Some of the couplings that may make the modelling process difficult are:

1. Matter-matter (fluxes, flow-lines and entrainment),

2. Matter-space-time (fluxes and metric-stress-energy-momentum tensor),

3. Matter-electromagnetism (fluxes and current) and,

4. Electromagnetism-space-time (curvature and potential).

The last two couplings are closely associated with couplings in general relativity. This is

because space-time curvature is at the behest of matter distribution. The matter-matter

coupling is straight-forward. The state of matter involved in the couplings may be

determined thermodynamically, in principle [121] where only few parameters are monitored.

This happens because the fluid changes and other associated or dependent parameters are

recovered via the equation of state. Note that this does not suggest that space-time is a fluid2.

Then one needs to only monitor the truly independent variables where the equation of state

is known, but this raises the question of whether it is possible to determine or constrain the

equation of state if the relationships between primary variables are all known. The question is

not significant, given that we would like to apply the formalism to a multi-fluid environment

2Space-time curvature is at the behest of matter distribution and not dynamics of matter.
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that includes dark matter whose equation of state is not yet established. In light of the above

statements, one can choose to express the Λ for a two-fluid model involving two entrained

species as follows

Λ = Λ1(m(Y ′),m(Z), nn(Y′)
, nn(Z)

, nS(Y′)
, nS(Z)

)

+ Λ2(n2
n(Y′)

, n2
n(Z)

, n2
S(Y′)

, n2
S(Z)

, n2
n(Y′Z)

, n2
S(Y′Z)

). (4.28)

Since we are interested in entrainment, we will focus on Λ2 as it encodes entrainment. One

can generalise a Λ for two interacting fluid species whose variation leads to the multi-fluid

equations that obey conservation laws. This is

Λ =
1

2
gab
∑
I

(
mIn

a
In

b
I

nI

)
− E(nI , n

a
I), (4.29)

where I = Y ′, Z, Y ′Z. One can now examine how corresponding equations of motion are

derived in the next section.

4.3 Equations of motion

In this section we use the Newtonian context in our analysis. Nevertheless, in the end

we obtain the T ab which is composed of the conservative section denoted by T ab(Cons) (and

obtained by varying a Lagrangian density with respect to gab) and T ab(Disp) which is present

due to dissipative effects. This is all in the realm of relativistic fluids. Now, considering

commensurate conservation laws, one will be able to obtain equations of motion for the

multi-fluid environment [44]. We will then need mass, both linear and angular momentum,

and energy conservation laws. If we let mZ represent the particle mass of species Z where Z
represents dark energy, then the corresponding ρZ is given by the product ρZ = mZnZ . The

total (local) mass density, denoted by ρ, of the system is ρ =
∑
Z ρZ =

∑
Z m

ZnZ . The sum

ρIZ =
∑
Z m

ZnIZ is the total mass-density where I = 1, 2, 3. The mass m of a fluid can be

found by integrating ρ over the control volume denoted by V . This implies that

m =

∫
V

ρdV. (4.30)

ρIZ is integrated over ∂V representing an infinitesimal volume, where an amount of m leaves

or enters the volume. Overall conservation of m implies

d

dt

∫
V

ρdV = −
∫
∂V

ρIηIdA = −
∫
V

∇IρIdV, (4.31)
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where ηI represents a unit vector. This is after using the divergence theorem. For the local

condition, this equation will yield

∂tρ = −∇IρI . (4.32)

If ΓZ is the rate at which particle Z is created per unit of V , then it follows that

∂tnZ +∇InIZ = ΓZ , (4.33)

where
∑
Z mZΓZ = 0.

One can let the local linear momentum per particle and density of the Z be denoted by PZb
and πb, respectively such that they both conjugate the nZ [44]. Then it follows that the set

of total density, total local and global linear momentum for control V is given by

{πb, pb, Pb} =

{∑
Z

nZp
Z
b,
∑
Z

pZb,

∫
V

πbdV

}
. (4.34)

where pZb = mZuZb. In equation (4.34) the last entry in the set allows for the investigation of

conservation of linear momentum. For species Z, the time derivative of its linear momentum

is given by

dPZb
dt

=
d

dt

∫
V

πZbdV = −
∫
∂V

TZab ηadA+

∫
V

FZb =

∫
V

(FZb −∇aT
Za
b )dV. (4.35)

where TZab represents the bth component of the linear momentum of the Z in the direction

orthogonal to a, and FZb represents the total external force density of Z acting on the control

V . Note that ηa represents a unit vector. In equation (4.35), after the second equal to sign,

we used the divergence theorem on the first integral. We deduced the last term on the last

integral. Then, from the same equation (4.35)

d

dt
πZb +∇aT

Za
b = FZb, (4.36)

and hence, for all species

d

dt

∑
Z

πZb +∇a

∑
Z

TZab =
∑
Z

FZb. (4.37)

However, this equation (4.37) does not include internal forces. Given a control V and let E

represent total energy, let E represent total energy per unit V , and let Qb represent energy

transfer per unit time t and unit area, then using the same analogy as in equation (4.35)
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leads to

E =

∫
V

EdV, (4.38)

and its time derivative is

dE

dt
=

d

dt

∫
V

EdV = −
∫
∂V

QbηbdA+

∫
V

GdV =

∫
V

(G −∇bQb)dV, (4.39)

where G represents total external force. Note that we used the divergence theorem on the

first integral after the second equal to sign leading to the last term in the last integral. This

yields

dE
dt

+∇bQb = G, (4.40)

which is the expected energy conservation law. In this approach E = E(nZ , n
b
Z) and requires

the specification of the equation of state. Additionally, the extraction of the equations of

motion (4.36) will require the complete specification of E , Qb, F (Z)b, T
(Z)b
a and T ba. Note

that the T ab can be split into two. This means that

T ba = T ba(Con) + T ba(Disp), (4.41)

where T ba(Con) represents the conservative section of T ba which is obtained by varying the

Lagrangian density with respect to the metric gab while T ba(Disp) is present due to dissipative

effects. This can be considered in the interacting multi-fluid dark-sector. This could lead to

insights on the entrainment effect of the interacting dark-sector.

4.4 Chapter summary

In this chapter, we have examined:

1. Multi-fluid models for relativistic fluids from the flux point of view and,

2. The formulation of a modified convective variational approach for interacting multi-fluid

systems.

One will see that this can be applied to the interacting multi-fluid system of the dark-sector

after examining the following chapter which is chapter 5.
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Chapter 5

Thermodynamics of relativistic and

dissipative multi-fluid systems

5.1 Prelude to thermodynamics of multi-fluid systems

Our goal in this chapter is to use the multi-fluid approach to examine the entrainment effect

of the interaction between dark matter and dark energy. For this to be really possible,

we analyse the (generalised) second law of thermodynamics1 and determine if it holds in

interacting multi-fluid systems using either a more (or most) accurate approach for this task.

The attempt in [69] to match the convective variational model with the (standard) MIS

theory of dissipative fluids found that the two theories are not equivalent to all orders,

but are members of a set of related theories. It was found that the two formalisms lead

to the same causal connections when subjected to perturbations about a thermodynamic

equilibrium. It follows that in the thermal equilibrium limit, the two formalisms manifest

similar characteristic surfaces and causality properties. Due to these similarities, one

can choose to analyse the second law of thermodynamics (for multi-fluid systems) in the

extended MIS theory for multi-fluids. This means that one should examine ∇aS
a, where

∇a is defined with respect to a rest frame of an observer moving with a merged four-velocity

ua. This velocity is merged in the sense that there are three particle species being

considered with a single-observer world-line, and hence the cosmic time t ≡ ua∇a where ua

represents a common four-velocity. The velocity ua is the determinant of a world-line of a

fiducial frame of reference. This is single-fluid approximation and the metric is equation (1.7).

1The generalised second law of thermodynamics asserts that the sum of black-hole entropy, and the entropy
of the entity (that is dark matter and baryonic matter as one entity) of dark matter and baryonic matter, and
radiation fields in the black-hole exterior region never decreases. We use both terms of generalised second law
of thermodynamics and second law of thermodynamics interchangeably as they both establish the concept
of entropy as a physical property of a thermodynamic system. Furthermore, the generalised second law of
thermodynamics is a curious parallel of the second law of thermodynamics [122].
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In this chapter, we examine thermodynamics of relativistic and dissipative multi-fluid

systems. We let the fluid species of radiation, dark matter and baryonic matter as one

entity and dark energy be denoted by X , Y and Z, respectively [35]. Then energy density ρ

in the first Friedmann equation takes the form below

ρ = ρX + ρY + ρZ , (5.1)

where ρX represents energy density of radiation, Y represents energy density of dark matter

and baryonic matter as one entity, and ρZ represents energy density of dark energy. We

assume that 8πG = 1 = c2. Then the derivative of the first Friedmann equation is

d

dt

(
H2 +

κ

a2

)
=

ρ̇

3
=

1

3

(
ρ̇X + ρ̇Y + ρ̇Z

)
. (5.2)

This is formulated at a thermodynamical equilibrium state. It expresses the evolution

of material content of the universe in terms of either hydrodynamic or single-fluid

approximation. Our interest is in the transitions between epochs, where the content of the

universe could be described as being in thermal quasi-equilibrium, and where hydrodynamical

approximation begins to break down. Some transitions such as those which occured before

matter-radiation decoupling can be analysed using hydrodynamic approximation which

implies using a single-fluid approach in fluid thermal equilibrium. Other transitions

will require a multi-species single-fluid approximation, while others will require either

a multi-species multi-fluid approximation or simply a multi-fluid approximation. An

example of this is a transition that involves a species being frozen-out when timescales

become comparable to the timescale of the cosmic expansion, thus leading to the species

breaking from the equilibrium. For example, the radiation-dominated epoch, just before

matter-radiation decoupling, but after nucleosynthesis where the material content is made

up of plasma of nucleons, electrons and photons (all in thermal equilibrium in which some of

the content interact via radiative processes like Thomson scattering) and ends with baryons

and electrons becoming separate fluids after breaking away from the thermal equilibrium.

As a result, only photon gas is left as a remnant of the earlier cosmic plasma. The initial

nucleons, electrons and photon fluid can be treated as a single-fluid, while baryons and

electrons are best treated or modelled using the multi-species multi-fluid approximation.

The work we would like to embark on is to model the break-away behaviour (for example,

the break-away behaviour of baryons and electrons as mentioned before). For the individual
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species energy-densities, their conservation equations (from the fluid equation) are given by

ρ̇Z + 3H(ρZ + pZ) = −Q,

ρ̇Y + 3H(ρY + pY) = Q,

ρ̇X + 3H(ρX + pX ) = 0, (5.3)

where Q [89] represents an interaction term. For the above conservation equations, the

assumption considered is that the species are in thermal equilibrium. Therefore, the species

are evolving together and hence the single-fluid approximation applies. Now, what if one

of the species breaks away from the system? Particularly, let species Y be made of two

sub-species Y ′ which represents dark matter and Y ′′ which represents baryonic matter where

only Y ′ interacts with the species Z, and where the sub-species Y ′′ is able to break away

from equilibrium. This can be presented as follows

ρ̇Z + 3H(ρZ + pZ) = −Q,

ρ̇Y ′ + 3H(ρY ′ + pY ′) = Q,

ρ̇X + 3H(ρX + pX ) = 0, (5.4)

which are in an adjusted or new equilibrium and

ρ̇Y ′′ + 3H(ρY ′′ + pY ′′) = 0, (5.5)

which is out of equilibrium with the system in equation (5.4) or the first three. The

equilibrium experienced by the system in equation (5.4) is different to that experienced

by the system in equation (5.3). This change to a new equilibria is a process that is preceded

by a quasi-equilibrium period that requires an irreversible theory for the investigation of

the multi-fluid dynamics. As far as we are concerned, no complete version of such a theory

exists and this is what we will develop. The starting point for such a development is the

extended irreversible thermodynamics theory or the extended MIS formalism. However, this

is pursued elsewhere [90]. For this study, an approximation of such a development will be

adequate. We now apply the extended MIS formalism to a multi-fluid system in the next

section.

5.2 Extended MIS formalism to a multi-fluid system

We will examine fluid species of dark energy denoted by Z, baryonic matter and dark

matter as one entity denoted by Y and radiation denoted by X . This system of fluids is

made up of the three species as mentioned. This implies that I = X , Y , Z. Note that the
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interaction involves the dark-sector components only, and though the focus is on the fluids

mentioned, this study illustrates the application of the extended MIS formalism to either

multi-species multi-fluid systems or multi-fluid systems in general. Perfect fluids which are

in equilibrium state do not generate entropy or heat due to friction. This is because their

dynamics is devoid of dissipation and is irreversible. However, for most astrophysical and

cosmological processes, perfect fluid models are inadequate for modelling such processes.

More physically motivated realistic fluids which exhibit irreversible properties are the most

suitable environments for modelling most astrophysical and cosmological processes. A

relativistic theory of dissipative fluids [72] is required, as some processes in astrophysics and

cosmology can only be understood as dissipative processes. For single-fluid approximation, it

was shown that irreversible thermodynamics implies that the entropy is no longer conserved

but grows per the second law of thermodynamics. Our work here is to find out if this law

holds in a multi-fluid environment.

As the fluid evolves, we consider the limit where one or more of the species just begins to

freeze-out. Just before this process of freezing-out begins, a dynamical apparent horizon

might be a possibility [35]. Now, if the break-away species were to exhibit a uniform

acceleration or deceleration in comparison to the remaining species, then one might have a

Rindler horizon2.

We would like to apply the extended MIS formalism in the freeze-out transient period. The

MIS theory was initially developed for short-range interactions. It is a speculative theory

and it was applied to the holographic3 Rindler horizon [123]. Knowledge of this regime is

scanty. Therefore, it is open for speculation. In the context before the freeze-out, we have the

dynamical apparent horizon which evolves into the Rindler-like horizon after the freeze-out

period. Therefore, it is most logical to consider the dynamical apparent horizon first. Using

spherical symmetry, the metric [FLRW metric in (1.7)] in single-fluid approximation can be

written as

ds2 = γabdx
adxb + r̃2dΩ2

3, (5.6)

where r̃ = a(t)r, x0 = t (implying c = 1), x1 = r, γab = diag

(
− 1, a2

1−κr2

)
4 and dΩ2

3 =

dθ+ sin2 θdφ2. The relation γab∂ar̃∂br̃ = 0 determines the dynamical apparent horizon. This

2A Rindler coordinate chart has a coordinate singularity where a metric tensor that is expressed in the
Rindler coordinates has a vanishing determinant. In certain scenarios, the Rindler horizon can be considered
simply as the boundary of the Rindler coordinates.

3Holography is a concept that states that any quantum gravity theory should have a description in terms
of a quantum field theory which does not contain gravity in one dimension [124].

4Note that for this case a and b range over 0 and 1 only.
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implies that a vector denoted by ∇r̃ is null on the apparent horizon surface. In deriving an

apparent horizon radius for FLRW [125], the following steps are given

γab∂ar̃∂br̃ = 0, (5.7)

which leads to

γ00∂0r̃∂0r̃ + γ11∂1r̃∂1r̃ = 0, (5.8)

for a = 0, b = 0, a = 1 and b = 1. Using γab (which is the inverse of γab) and finding the

derivatives yields

−(ȧr + aṙ)2 +
(1− κr2)

a2
a2 = 0, (5.9)

which after simplifying leads to

κr2 + ȧ2r2 = 1. (5.10)

Factoring out r2 yields

r2

(
κ+ a2 ȧ

2

a2

)
= 1. (5.11)

a2 is factored out and then using H = ȧ
a

leads to

r2a2

(
κ

a2
+H2

)
= 1. (5.12)

Using r̃ = ar yields

r̃2
A

(
H2 +

κ

a2

)
= 1, (5.13)

which in turn leads to

r̃A =
1√

H2 + κ
a2

. (5.14)

In [126–128] the horizon just before is interpreted as a causal horizon.
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Following equations (5.1) and (5.14) yields

H2 +
κ

a2
=

1

r̃2
A

=
1

3
(ρX + ρY + ρZ). (5.15)

The evolution with respect to proper time denoted by t yields

d

dt

(
H2 +

κ

a2

)
= −2

˙̃rA
r̃3
A

=
1

3
(ρ̇Z + ρ̇X + ρ̇Y ′). (5.16)

where Y ′ represents the remnant of Y (this remnant is dark matter). This then yields

˙̃rA = − r̃
3
A

6
(ρ̇Z + ρ̇X + ρ̇Y ′), (5.17)

for species in the adjusted equilibrium just after the period of freeze-out. Using equation

(5.4) (or the fluid equation) in equation (5.17) leads to

˙̃rA = − r̃
3
A

6
[−3H(ρZ + pZ)− 3H(ρX + pX )− 3H(ρY ′ + pY ′)], (5.18)

which yields

˙̃rA =
Hr̃3

A

2

∑
I

(ρI + pI), (5.19)

where I = X , Y ′, Z. It follows that the individual entropy differential is

dSI =
1

T(I)

(pIdV + dEI − µIdNI), (5.20)

at almost thermal-equilibrium. The total entropy differential is

dS =
∑
I

1

TI
(pIdV + dEI − µIdNI), (5.21)

which can be expressed as

dS ' 1

T

∑
I

(pIdV + dEI − µIdNI), (5.22)

at almost thermal equilibrium where quasi-equilibrium is defined by demanding the species

temperature difference to be insignificant. Hence, T(I) = T . The analysis of the full system

can still be performed without considering the just mentioned assumption. The full detailed

analysis of the complete system is considered elsewhere. For a quasi-equilibrium description

that is mediated by the different species contributions, we investigate how total entropy
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evolves in time in the description of quasi-equilibrium. Given a volume denoted by V =
4πr̃3A

3
,

individual entropy evolution can be expressed as

ṠI =
1

T
(4πr̃2

ApI ˙̃rA + ĖI − µIṄI). (5.23)

Total entropy S expressed as S =
∑
I SI can be considered as

S = S(SX , SY , SZ). (5.24)

Horizon temperature denoted by Th is taken to be equal to a multi-fluid temperature that

is denoted by T . This is mediated by the geometry of the universe. Almost all theories of

gravity are known to have both bulk and surface expressions. In these theories, the surface

terms are usually ignored when determining a field equation, yet when these surface terms

are evaluated on the horizon, they yield entropy of the horizon. As shown in [129–133], there

exists a connection that is holographic between the surface and bulk terms. It exists indirectly

between thermodynamics of the horizon and space-time dynamics. One may now need time

evolution of volume. Let volume be denoted by V , internal energy be denoted by E and

number density be denoted by N . Now, given V such that V =
4πr̃3A

3
, then its time evolution

should be V̇ = 4πr̃2
A

˙̃rA. These are important in that they connect the thermodynamical

quantities such as energies denoted by E and pressures denoted by P with cosmological

quantities, energy densities denoted by ρ and pressures denoted by p. The internal energy

for the three species being considered (for illustrative purposes) are

EI =
4π

3
r̃3
AρI , (5.25)

where again I = X , Y , Z. Using Euler’s relation we have

pI = p(ρI , sI , nI), (5.26)

where ρI = EI
V
, sI = SI

V
and nI = NI

V
. One can assume an equation of state that is barotropic

and consistent with adiabatic pressure provided one was to ignore transfer of energy due to

internal degrees of freedom but one. However, our interest is in a much broader categorisation

of fluid species. The restriction will therefore not be implemented in our analysis. The horizon

temperature is related to its radius when thermodynamics of a black hole is extended to

cosmology [125,132–135]. This is such that

Th =
1

2πr̃A
, (5.27)

where Th represents horizon temperature. Horizon entropy is defined as Sh =
4πr̃2A
4G

= 8π2r̃2
A
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where 8πG = 1. Hence, the total entropy can be expressed as

STot '
∑
I

SI + Sh. (5.28)

Now, from equation (5.25) it follows that

ĖI =
4π

3
3r̃2

A
˙̃rAρI +

4π

3
r̃3
Aρ̇I . (5.29)

Substituting the fluid equation in equation (5.29) leads to

ĖI = 4πr̃2
A

˙̃rAρI +
4π

3
r̃3
A[−3H(ρI + pI)], (5.30)

of which after simplifying yields

ĖI = 4πr̃2
A

˙̃rAρI − 4πr̃3
AH(ρI + pI). (5.31)

Substituting this equation (5.31) in equation (5.23) leads to

ṠI =
1

T
[4πr̃2

ApI ˙̃rA + 4πr̃2
A

˙̃rAρI − 4πr̃3
AH(ρI + pI)− µIṄI ]. (5.32)

Expanding and then factoring out
4πr̃2A
T

in the 1st four terms on the right-hand side yields

ṠI =
4πr̃2

A

T
[pI ˙̃rA + ˙̃rAρI − r̃AH(ρI + pI)]−

1

T
µIṄI . (5.33)

Factoring out ˙̃rA on the 1st two terms of the right-hand side leads to

ṠI =
4πr̃2

A

T
[(ρI + pI) ˙̃rA − (ρI + pI)r̃AH]− 1

T
µIṄI . (5.34)

Factorising out (ρI + pI) leads to

ṠI =
4πr̃2

A

T
(ρI + pI)( ˙̃rA − r̃AH)− 1

T
µIṄI . (5.35)

Time evolution of total entropy takes the form

ṠTot ' ṠX + ṠY ′ + ṠZ + Ṡh, (5.36)

where an overdot represents a derivative with respect to cosmic time t and ṠX , ṠY ′ , ṠZ , Ṡh

represent the evolution of the radiation, dark matter, dark energy and horizon entropies,
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respectively. From both equations (5.35) and (5.36)

ṠZ =
4πr̃2

A

T

[
(ρZ + pZ)( ˙̃rA − r̃AH)− r̃A

3
Q

]
− 1

T
µZṄZ ,

ṠY ′ =
4πr̃2

A

T

[
(ρY ′ + pY ′)( ˙̃rA − r̃AH) +

r̃A
3
Q

]
− 1

T
µY ′ṄY ′ ,

ṠX =
4πr̃2

A

T
[(ρX + pX )( ˙̃rA − r̃AH)]− 1

T
µX ṄX , (5.37)

where Q represents the gravitational interaction. The horizon entropy Sh evolves as Ṡh =

16π2r̃A ˙̃rA. Hence, the total entropy obeys the evolution equation

ṠTot '
4πr̃2

A

T
[(ρI + pI)( ˙̃rA − r̃AH)]− 1

T

∑
I

µIṄI + 16π2r̃A ˙̃rA. (5.38)

Substituting the horizon temperature in T leads to

ṠTot ' 8π2r̃3
A

∑
I

[(ρI + pI)( ˙̃rA − r̃AH)]−
∑
I

2πr̃AµIṄI + 16π2r̃A ˙̃rA. (5.39)

Substituting equation (5.19) in equation (5.39) yields

ṠTot ' 8π2r̃3
A

∑
I

{
[ρI + pI ]

[
Hr̃3

A

2
(ρI + pI)− r̃AH

]}
+ 16π2r̃A

Hr̃3
A

2

∑
I

(ρI + pI)− 2πr̃A
∑
I

µIṄI .

(5.40)

Expanding out the terms in curly brackets and simplifying the terms on the second summation

sign of the right-hand side leads to

ṠTot ' 8π2r̃3
A

[
Hr̃3

A

2
(
∑
I

ρI + pI)
2 − r̃AH

∑
I

(ρI + pI)

]
+ 8π2r̃4

AH
∑
I

(ρI + pI)− 2πr̃A
∑
I

µIṄI .

(5.41)

Expanding out the terms in square brackets yields

ṠTot ' 4π2r̃6
AH[

∑
I

(ρI + pI)]
2 − 8π2r̃4

AH
∑
I

(ρI + pI) + 8π2r̃4
AH

∑
I

(ρI + pI)− 2πr̃A
∑
I

µIṄI .

(5.42)

Cancellation of the terms on the second and third summation signs leads to

ṠTot ' 4π2r̃6
AH[

∑
I

(ρI + pI)]
2 − 2πr̃A

∑
I

µIṄI . (5.43)
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It is comprehensible that the result holds regardless of the nature of Q. The finding amends

results found in [89] where a new equation of state for one of the species (e.g. dark energy)

emerges for a critical ṠTot = 0 thus implying that

[
∑
I

(ρI + pI)]
2 =

1

2πr̃5
AH

∑
I

µIṄI . (5.44)

Expanding the left-hand side leads to

pZ + ρZ + ρX + pX + ρY ′ + pY ′ =

√
1

2πr̃5
AH

∑
I

µIṄI . (5.45)

Dividing through by ρZ yields

pZ
ρZ

+ 1 +
1

ρZ
(ρX + pX ) +

1

ρZ
(ρY ′ + pY ′) =

1

ρZ

√
1

2πr̃5
AH

∑
I

µIṄI . (5.46)

Re-arranging this equation where pZ
ρZ

would be the only term left on the left-hand side leads

to

pZ
ρZ

= −1− (ρY ′ + pY ′)
1

ρZ
− (ρX + pX )

1

ρZ

+
1

ρZ

√
1

2πr̃5
AH

∑
I

µIṄI , (5.47)

such that ωZ = pZ
ρZ

. For a case that is extreme such that either dark energy or dark matter

or radiation was to freeze-out, a similar analysis can be carried out.

5.3 Explanation of findings

We examined equation (5.39). By definition r̃A, H, pI and ρI are positive definite. Equations

(5.17) and (5.19) ensure ˙̃rA > 0. A summation result is positive as the radius of the horizon

is greater than the Hubble parameter. One can confirm this by setting

(ρI + pI)( ˙̃rA − r̃AH) > 0, (5.48)

and this infers that

˙̃rA
r̃A

> H =
ȧ

a
. (5.49)
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This is expected for a case where a surface term is ignored. Given that
∑
I µIṄI < 0, then

definitely ṠTot > 0. This is expected for Gibbs free energy for negative chemical potentials.

One can label the Gibbs free energy as EG. Then, ĖG < 0 infers that ṠG > 0. This

establishes the generalised second law of thermodynamics for the interacting dark-sector.

This occurs at the onset of a freeze-out. When a chemical interaction is included in a

multi-fluid approximation, the second law of thermodynamics is conserved. Effects of a

non-zero chemical potential on the equation of state of dark energy in the single-fluid

approximation was investigated in reference [136]. It was found that the equation of state

depends heavily on the magnitude and sign of the chemical potential. Equation (5.47) amends

that result and has potential to lift ωZ into the non-phantom state. Providing an estimate

would be tricky as this would require an accurate estimation of r̃A and
∑
I µIṄI in the state

of quasi-equilibrium. In light of the above statements, we have examined a cosmological

scenario that involves three particle species. Two of these interact both gravitationally and

chemically upon using the multi-fluid approach.

5.4 Multi-fluid formalism application to the interacting

dark-sector model

Having established the conservation of the second law of thermodynamics for interacting

multi-fluid systems, specifically the interacting dark-sector, one can choose to apply the

slightly modified convective variational formalism to the sector. Predictions of existence

of dark energy denoted by Z and dark matter denoted by Y ′ come from cosmological

observations [44]. After fitting a model that is theoretical to the composition of the universe,

and given an amalgam of different observations of cosmological scales, the universe is shown

to comprise of 68% dark energy, 27% dark matter and 5% baryonic matter denoted by Y ′′.
However, model fitting apart from being predictive, does not give physics of constituent

particles. Surprisingly, two species that we know very little about are the very ones that

have profound effects on the dynamics or evolution of the universe hence leading to structure

formation in the early universe and an accelerated expansion in the late universe. On one

hand, knowledge scarcity of dark matter and dark energy begs the question whether the

single-fluid model is partly liable and on the other, could the multi-fluid formalism shed any

light on the puzzle? The very foundation of the Copernican principle and the more precise

cosmological principle are touched upon by these questions [137, 138]. From the single-fluid

model, it appears that there is a need for modification of the cosmological principle in a

given cosmological epoch. However, our main interest is not examination of the cosmological

principle.
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For dark matter, one can rule out a number of several possible candidates although we do

not know what it is made of. These include stars, planets, baryons, anti-matter and large

galaxy-sized black holes. There are a few viable dark matter possibilities. Baryonic matter

tied-up in brown dwarfs or heavy elements is thought to make up dark matter and they

are known as MACHOs. However, the most popular view is that dark matter is made

up of WIMPS. In other words, dark matter is not baryonic at all. This implies that

any analysis involving dark matter requires assumptions about its nature. At this stage,

one can ask, can any of these candidates allow for entrainment? In other words, can one

use entrainment to distinguish characteristics between the candidates? For example, one

can consider a case where dark energy should be modelled as scalar fields that are light

and is only gravitationally coupled to dark matter where other interactions are assumed to

be insignificant. Couplings that exhibit conformal and disconformal transformations of the

dark-sector geometry, particularly that of dark matter are considered. For such a theory, the

Lagrangian density is expressed as

dS =
√
−g

[
K(g)

2κ
+ L(SM) + L(Z) + L(Z−Y ′)

]
+
√
g̃L̃(Y ′), (5.50)

such that SM represents non dark-sector given by model particles that are standard, K(g)

represents a function of g where g is a determinant of gab, L(Z) represents a scalar field, e.g.

quintessence, field of the form

L(Z) =
∇cφ∇cφ

2
− V (φ), (5.51)

and

L̃(Y ′) = L̃(Y ′)(g̃cd, ϕ), (5.52)

where ϕ represents dark matter potential. Note that κ2 = 8πG. The gravitational coupling

is conciliated via

g̃ab = c1(φ)gab + c2(φ)φ,aφ,b, (5.53)

where c1 and c2 represent conformal and disconformal factors, respectively. Now, let

background space-time be FLRW such that

ds2 = gabdx
adxb = a2(η)(−dη2 + δIJ dx

IdxJ ). (5.54)
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Note that the disconformal metric arises from

ds̃2 = g̃abdx
adxb = c1(φ)a2(η)(−γ2dη2 + δIJ dx

IdxJ ), (5.55)

where the disconformal scalar is given by

γ2 = 1 +

(
c2

c1

)
gabφ,aφ,b. (5.56)

Then, in this theory, components that play a role are a massless relativistic component

or radiative component, a baryonic component, a dark matter component and a scalar

field component. An assumption is made that neutrinos have no mass. The illustration

is restricted to a case where the baryons and the relativistic components are not coupled to

the scalar field [139]. The fundamental relation below

ρX + pX = µXnX + fX(T, S), (5.57)

is obeyed by each species X. The form below∑
X

(ρX + pX) =
∑
X

µXnX + f(T, S), (5.58)

should be obeyed by the system as a whole such that f(T, S) is a function of T and S. This

expresses thermodynamical coupling of the components. This should not be muddled up

with either gravitational coupling or any other couplings that may exhibit in the system,

particularly entrainment. For one to examine the other couplings, one can express the

conservation equations in terms of parameters that would allow one to examine the couplings.

Evolution of number densities obey conservaton equations

µZ ṅZ + 3HµZnZ = −Q,

µY ′ṅY ′ + 3HµY ′nY ′ = Q′,

µX ṅX + 3HµXnX = Q′ −Q, (5.59)

such that Q and Q′ represent interaction terms. The negative sign represents an interchange

of energies between species. The case Q = Q′ is analogous to a model where dark energy

interacts only with dark matter. For e.g. in [139], X represents gravitationally uncoupled

radiative and baryonic components. Q is expressed as Q = ḟ + 3Hf and it represents

interaction between dark-sector constituents while H represents the Hubble parameter. It

is most advantageous to think of Q = Qgrav + Qchem where Qgrav represents gravitational

interaction and Qchem represents a chemical interaction. Interaction between the dark-sector
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and baryons is assumed to be insignificant. One can clearly determine the form of Qgrav as is

done in reference [139] for gravitational coupling if the scalar field follows the Klein-Gordon

equation and couples to dark matter in such a way that

φ̈+ 2φ̇H +
dV

dφ
a2 = Qgrava2. (5.60)

Particularly

Qgrav = −
a2c′ 1 − 2c2(3Hφ̇+ a2V ′) +

(
c′ 1
c1
− c′ 2

2c2

)
φ̇2

2[a2c1 + c2(a2ρY ′ − φ̇2)]
ρY ′ . (5.61)

It is of significance to note that in that study, exchange of energy is between dark energy and

dark matter which are only gravitationally coupled. Then, stress-energy-momentum tensor

T abs for either dark matter or dark energy are not conserved individually. A Friedmann

equation in the form

H2 =
κ2

3
a2

(∑
I

µInI + f

)
, (5.62)

can be suggested after considering all couplings that are of a gravitational and chemical

nature, and I represents either all species or constituents. Note also that f represents an

entropy temperature function. Now, by specifying the constants c1 and c2, potential and of

great significance an entropy temperature function f , one can proceed to analyse dynamics.

The interaction constant can then be established. This is phenomenology. It adds to the

repertoire of the dark-sector interactions, and it is over and above the traditional case(s) of

gravitation.

5.5 Chapter summary

The potential use of the multi-fluid approach to model flow of fluid where one or more

of the fluid species suffers freeze-out hence separating from the rest of the flow has been

investigated. We examined the cosmological case involving the interacting dark-sector and

radiation for illustrative purposes. The application is speculative. Such speculation is

justified as our knowledge of the dark-sector is scanty. Therefore, we assumed the universe

to be a thermodynamical system that is enclosed by the dynamical apparent horizon. We

then calculated the separate entropy variation for each of the fluid species. Total entropy in

the universe is given by the sum of the entropy variations together with that of the common

horizon. The generalised second law of thermodynamics is found to be valid. Take note
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that we used the dynamical apparent horizon(s) only. This means cases involving other

types of horizons were not considered. Though it has been shown that the second law of

thermodynamics holds for the interacting dark-sector in the presence of radiation, more

examination is needed to make the results applicable to either quantitative or numerical

analysis of a cosmological nature.

Now, the second law of thermodynamics holds in interacting multi-fluid environments. For

the interacting dark-sector specifically, we examined the entrainment effect of the interaction

between dark matter and dark energy, and we found that the entrainment effect of the

interaction of dark matter and dark energy suggests a mutual relative modulation of the

growth behaviour of the two densities. This might aid in resolving the coincidence problem.

Chemical coupling and gravitational coupling of the dark-sector were constructed, of which

we considered an example of conformal-disconformal coupling of a gravitational nature as a

contrasting example. The convective variational approach for interacting multi-fluid systems

could be useful in distinguishing cosmological features of the couplings. This is something

that can be probed by present time cosmological observations. One would then invoke

restrictions on the nature of the interaction examined. Extending the formalism developed

to a general formalism to examine the growth of dark matter perturbations in the presence

of interactions between dark matter and dark energy would be interesting. The study of

the signature of such interactions on the temperature anisotropies of the large-scale cosmic

microwave background would then be possible. It was found that [50] the effect of such

interactions has a significant signature on both the growth of dark matter structure and the

late integrated Sachs Wolfe effect in the single-fluid approximation. However, how would this

change, given the multi-fluid formalism that has been considered, should be a topic that can

(or will) be examined in the near future.
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Chapter 6

Evolutionary history of cosmological

magnetic fields

6.1 Prelude to history of magnetic fields

In this chapter we consider the evolution of inflation-generated, cosmological magnetic

fields. We use the single-fluid model in the context of the variational formalism to derive

equations that will enable us to examine the evolution of inflation-generated, cosmological

magnetic fields from around the beginning of the radiation-dominated epoch to current

time. The single-fluid models that will be used are the radiation-dominated epoch and the

matter-dominated epoch. These models are in the context of the variational formalism. In

other words we use the variational approach to derive equations of motion that will enable

us to examine the evolution of inflation-generated, cosmological magnetic fields during the

single-fluid models of the radiation-dominated and matter-dominated epochs. With this,

we study relativistic fluids with applications to cosmology in that we analyse the behaviour

of evolution of inflation-generated, cosmological magnetic fields in single-fluid models of

the radiation-dominated or matter-dominated epochs. That is, we investigate how the

behaviour of evolution of the cosmological magnetic fields is either influenced or affected

as they evolve in the single-fluid models of the radiation-dominated or matter-dominated

epochs. Before we begin our examination, we review the history on inflation-generated,

cosmological magnetic fields and we examine their evolution up to around the beginning of

the radiation-dominated epoch.

It is believed that inflation [54,140–143] is a prime candidate for the production of primeval

magnetic fields. Inflation provides the kinematic means of producing modes that would

result in very-long-wavelength effects at early times (such as at the beginning of the

radiation-dominated epoch) through micro-physical processes that operated on scales that

are less than the Hubble radius. An electromagnetic wave with physical wavelength denoted
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by λphys is such that λphys & H−1 has the appearance of static electric and magnetic

fields denoted as ~E and ~B, respectively (note that H represents the expansion rate of

the universe). This implies that the long-wavelength photons (λphys � H−1) can yield

large-scale magnetic fields (which evolve super-adiabatically on those scales). Inflation

provides the dynamical means of exciting electromagnetic waves: de Sitter-generated

quantum-mechanical fluctuations excite modes with λphys < H−1. The energy density

in the mode with λphys ' H−1 is dρ
dk
∼ H3 where ρ represents density and k represents

wavenumber. During inflation, the universe is devoid of plasma1 and is not a good conductor.

Therefore, the magnetic flux is not necessarily conserved (even though magnetic fields evolve

adiabatically throughout de Sitter phase [56]) and the primeval magnetic flux strength can

increase.

In this work, we will also consider the evolution of magnetic fields due to the direct coupling

of the gravitational and electromagnetic fields as magnetic fields evolve much later in the

expansion of the universe (that is much later during either the radiation-dominated epoch

or the matter-dominated epoch). We then review additional terms in the Lagrangian

either of the form RAaA
a or RA2 or RabA

aAb where R represents the curvature scalar, Rab

represents the Ricci tensor and Ab represents the electromagnetic four-vector potential. A

photon will have an effective, time-dependent mass because of the additional terms. At first

glance, this is quite undesired as charge conservation is broken [54]. However, the terms

do not lead to any effects which contradict either present-day observations or experiments.

Because of the terms, the photon mass that arises is mγ ∼ R
1
2 where R

1
2 ∼ H. Note that

charge non-conservation would only manifest itself on scales of either the horizon or larger

(anyway, conductivity is very low on those scales hence it would be reasonable to assume

that there is no charge). However, again, this has no observable consequences. Hence, they

would not affect the propagation of photons outside massive bodies. One might worry about

corrections the terms would introduce to the equation of state in the radiation-dominated

universe. The corrections are negligible for temperatures where the evolution of the universe

is relatively understood (e.g., during recombination) and they are of the order H2

T 2 ∼ T 2

m2
pl

where T represents temperature and mpl represents Planck mass. Hence, these terms cannot

spoil successful predictions which are made by using the standard Maxwell equations.

Furthermore, standard Maxwell’s equations cannot describe a homogeneous and isotropic

universe with a uniformly distributed net charge because the electromagnetic field tensor in

such a universe must be vanishing everywhere. One can call this the type I problem [144].

For a closed universe with non-zero net charge, standard Maxwell’s equations always fail

1Plasma is one of the four fundamental states of matter, and consists of a gas of ions and free electrons.
It is the most abundant form of ordinary matter in the universe [145].
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regardless of the space-time symmetry and charge distribution. One can call this a type II

problem. The simplest way to resolve the problems is by introducing either the term RAaA
a

or RA2 in the Lagrangian [144]. The electromagnetic field equations that arise as a result of

the introduction of the term RA2 can naturally arise from spontaneous symmetry breaking,

and the Higgs mechanism in quantum field theory where photons acquire a mass by devouring

massless Goldstone bosons. However, photons lose their mass again when the symmetry is

restored. Hence, the problems reappear. The other way of resolving the problems is by

introducing the term RabA
aAb in the Lagrangian. The electromagnetic field equations that

arise due to the term RabA
aAb do not introduce a new dimensional parameter and so return to

Maxwell’s equations in either a flat or Ricci-flat space-time. This implies that in a Ricci-flat

space-time, gauge invariance is restored.

6.2 Inflationary magnetic fields

Since electromagnetic fields permeate the inflationary universe [54], one can consider

equations [144]

∇bF
ab − φ1RA

a − φ2R
a
bA

b = Ja, (6.1)

and

∇aFbc +∇bFca +∇cFab = 0, (6.2)

during the inflationary phase where φ1 and φ2 represent coupling constants, Ja represents a

4-vector current, and Fab represents an electromagnetic field tensor. Symmetry of Christoffel

symbols denoted by Γdab = Γdba enables one to replace the conventional derivatives instead

of covariant ones. Then equation (6.2) implies that

∂aFbc − ΓdabFdc − ΓdacFbd + ∂bFca − ΓdbcFda − ΓdbaFcd + ∂cFab − ΓdcaFdb − ΓdcbFad = 0.

(6.3)

One can then write equation (6.3) in a more suitable form. The equation is given below

∂aFbc − ΓdabFdc − ΓdacFbd + ∂bFca − ΓdbcFda + ΓdbaFdc + ∂cFab + ΓdcaFbd + ΓdcbFda = 0.

(6.4)

This then yields

∂aFbc + ∂bFca + ∂cFab = 0. (6.5)
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All spatial derivatives are with respect to co-moving coordinates [64].

During inflation, the universe is free from plasma. Therefore, its electrical conductivity is

very poor. In other words, there is no net charge in the inflationary universe. Equation (6.1)

will then be reduced to

∇bF
ab = 0. (6.6)

This implies that for source-free fields, equation (6.6) is obtained [57,146]. To study equations

(6.5) and (6.6), one can write them in terms of ~E which represents an electric field and ~B

which represents a magnetic field, using [54]

Fab =


0 −a2Ex −a2Ey −a2Ez

a2Ex 0 a2Bz −a2By

a2Ey −a2Bz 0 a2Bx

a2Ez a2By −a2Bx 0

 (6.7)

One can then use Fab which is represented by the matrix (6.7). Equations (6.5) and (6.6)

can then be recast into the form

1

a2

∂(a2 ~B)

∂η
+∇× ~E = 0, (6.8)

and

1

a2

∂(a2 ~E)

∂η
−∇× ~B = 0. (6.9)

where η represents conformal time. Equations (6.8) and (6.9) are expressed as

∂(a2 ~E)

∂η
−∇× a2 ~B = 0, (6.10)

and

∂(a2 ~B)

∂η
+∇× a2 ~E = 0, (6.11)

respectively. Due to conformal invariance, the electric and magnetic fields can be re-scaled

as

Ẽ ≡ a2 ~E, (6.12)
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and

B̃ ≡ a2 ~B, (6.13)

respectively [147]. This implies that equations (6.10) and (6.11) can be written out as

∂(Ẽ)

∂η
−∇× B̃ ≡ 0, (6.14)

and

∂(B̃)

∂η
+∇× Ẽ ≡ 0. (6.15)

Note that

∇×∇× B̃ = ∇(∇ · B̃)−∇2B̃, (6.16)

and upon using ∇a2 = 0, yields

∇×∇× B̃ = a2∇(∇ · ~B)−∇2B̃. (6.17)

Given that ∇ · ~B = 0, equation (6.17) leads to

∇×∇× B̃ = 0−∇2B̃, (6.18)

which in turn yields

∇×∇× B̃ = −∇2B̃. (6.19)

Taking the curl of equation (6.14), using equation (6.19) and then making use of equation

(6.15) to eliminate Ẽ leads to

∂2B̃

∂η2
−∇2B̃ = 0. (6.20)

This can be expressed as

B̃′′ −∇2B̃ = 0, (6.21)

where primes represent derivatives with respect to conformal time. The evolution of

inflation-generated magnetic fields on scales that are not well-above the Hubble horizon and

in environments of poor conductivity are represented by equation (6.21).
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To solve equation (6.21), one can introduce the harmonic splitting of

B̃ =
∑
k

B̃kQ
k, (6.22)

where B̃k represents a kth inflation-generated magnetic mode [56,148,149]. This is also shown

in arXiv:1403.5505, an article by B. Osano. Qk represent vector harmonics that are pure and

satisfy the conditions

∇Qk = Q′k, (6.23)

and the Laplace-Beltrami equation of a particular version given by [149]

∇2Qk = −k2Qk. (6.24)

Applying the above decomposition (6.24) to (6.21), yields the decoupling of the harmonics

[149]. Either the wave formula or equation (6.21) of the kth inflation-generated magnetic

mode is expressed as

B̃′′k + k2B̃k = 0. (6.25)

The characteristic equation of (6.25) is

m2
o + k2 = 0. (6.26)

The roots of this equation are complex and they are represented by

mo1 = α1 + iα2, (6.27)

and

mo2 = α1 − iα2. (6.28)

Solving equation (6.26) leads to

mo1 = 0 + ik, (6.29)

and

mo2 = 0− ik, (6.30)
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implying that α1 = 0 and α2 = k. One arrives at the characteristic equation by assuming

that all solutions to the differential equation (6.25) is in the form

B̃k(η) = emη. (6.31)

Substituting mo1 and mo2 in equation (6.31) yields

B̃k1(η) = eikη, (6.32)

and

B̃k2(η) = e−ikη. (6.33)

Using Euler’s relation, equations (6.32) and (6.33) can be expressed as

B̃k1(η) = cos kη + i sin kη, (6.34)

and

B̃k2(η) = cos kη − i sin kη. (6.35)

One can let

B̃k(η) = ciB̃k1(η) + ciiB̃k2(η), (6.36)

be also a solution where ci and cii are constants. Writing equation (6.36) explicitly implies

B̃k(η) = cie
ikη + ciie

−ikη. (6.37)

This leads to

B̃k(η) = ci(cos kη + i sin kη) + cii(cos kη − i sin kη), (6.38)

and this in turn yields

B̃k(η) = (ci + cii) cos kη + i(ci − cii) sin kη. (6.39)

Taking ci + cii = C1 and i(ci − cii) = C2 leads to the solution

B̃k(η) = C1 cos kη + C2 sin kη, (6.40)
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where C1 and C2 are constants. This gives all solutions (either real or complex) of the

differential equation (6.25). The solutions are real when the constants C1 and C2 are real (in

this work, they are real). Equation (6.40) can then be expressed as an oscillatory solution

a2Bk = C1 cos kη + C2 sin kη. (6.41)

The equation for the actual magnetic field is Bk = B̃k
a2

without loss of generality. Note that

| ~Bk| ≡ Bk. One can use Bk for more economical writing and without loss of generality. Now,

we have that

kη =
λH
λk
, (6.42)

where λH = 1
H

and λk = a
k

[56]. Equation (6.41) applies to inflationary magnetic fields

as they cross the horizon at either the end of de Sitter phase or just before its end [56].

Note that for sub-horizon scales, the area around horizon scales and well above horizon

scales, |kη| � 1, |kη| ∼ 1 and |kη| � 1, respectively [150]. During de Sitter phase,

the Hubble horizon is constant. After de Sitter phase the Hubble horizon expands.

Since the background space-time is spatially flat, equation (6.41)

[
which can be recast

as Bk = (C1 cos kη + C2 sin kη)

(
a0
a

)2 ]
leads to adiabatic decay even though electrical

conductivity is very poor [57] on either super-horizon scales (or sub-horizon scales during

inflation). This implies that equation (6.41) can apply to the evolution of inflationary

magnetic fields that are above, but near the horizon after de Sitter. During this time,

magnetic fields are scale independent2 (hence there is no large growth of magnetic fields on

these scales). The equation also applies to the evolution of magnetic fields during inflation

on sub-horizon scales up to the time that they cross the horizon just before either the end

of de Sitter phase or at its end. They can evolve in this manner probably up to either just

or around the beginning of the radiation-dominated epoch when η � 1 where η represents

conformal time (Explanation in a moment). The ratio in equation (6.42) measures the

physical size of the magnetic field

(
λk = a

k

)
relative to the Hubble horizon

(
λH = 1

H

)
[56].

At the beginning of the radiation-dominated epoch, the universe is still in its early stages

and therefore again η � 1 at this time of expansion of the universe.

At the moment inflation-generated, large-scale magnetic fields cross the Hubble horizon at

2This means that the ratio of the energy density in the (quantum mechanical) fluctuation relative to the
(space-time) background density, is the same at the time when the mode reenters the Hubble horizon (radius)
as when it crossed outside the Hubble horizon at either the end of de Sitter phase or just before the end of
the phase.
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the end of de Sitter phase [56], they obey either the wavelike equation (6.21) or equation

(6.41). When electromagnetic fields permeate the universe from inflation to the era of the

radiation-dominated epoch including either up to the cosmological horizon or slightly beyond

horizon scales (implying super-horizon scales that are not well above the horizon), then what

would happen? Well, either equation (6.21) or equation (6.41) will represent a wave-like

equation that in turn will represent the evolution of inflation-generated, magnetic fields that

are near the horizon most probable up to the beginning of the radiation-dominated epoch.

This is possible because:

1. Magnetic fields are scale independent [57] after crossing the Hubble horizon for the first

time [hence, no large growths of (electro-)magnetic fields on super-horizon scales].

2. During de Sitter phase, the Hubble horizon is constant (does not either expand or grow

or contract). However, after the phase, the horizon expands or grows. Given that

the distance to the Hubble horizon denoted by rH is rH = cH−1 where c represents

speed of light, the recessional velocity of the Hubble horizon denoted as vr will be

vr = HrH = HcH−1 = c which represents the speed of light. Objects beyond the

Hubble horizon recede at speeds faster than the speed of light denoted as c [2,151–160]

(Uses of proper distance [2,154–160]). Therefore, it is possible that super-horizon-sized

perturbations of magnetic fields might have receded with a speed that would allow

the perturbations to be well above the Hubble horizon at around the beginning of the

radiation-dominated epoch and not before that.

3. Super-horizon-sized perturbations of magnetic fields still have oscillation periods

that are longer than the age of the universe by around the beginning of the

radiation-dominated epoch and this is probable since (conformal) time denoted by

η is η � 1 at this time of the universe expansion. This implies that the perturbations

have not yet started to oscillate properly by around the beginning of the epoch. Hence,

the magnetic-mode oscillation will not have reached its first wave-crest by either the

(or around the) beginning of the epoch (more details later). Note that before magnetic

field perturbations reach their first wave-crest, they will be evolving well above the

horizon by around the beginning of the radiation-dominated epoch, and not before

that time. Therefore, magnetic fields will evolve in the form of either equation (6.41)

or equation (6.21) either up to (or around) the beginning of the radiation-dominated

epoch and then in the form of equation (6.59) afterwards until they cross the horizon for

a second time. Note that a magnetic field mode reaches its maximum length (beyond

the Hubble horizon; actually well above the horizon) as an oscillating field at around the

beginning of the radiation-dominated epoch. After this, magnetic fields will be decaying

gradually until current time. Additionally, magnetic field strength (and length) at the

beginning of the inflationary epoch is approximately zero (0). Therefore, it is most
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logical to assume that (super-adiabatic) evolution of magnetic fields begins at around

the beginning of the radiation-dominated epoch (more reasons are mentioned later).

This is reasonable as η is still η � 1 at this time of the universe expansion.

Electromagnetic fields are evolving rapidly away from the Hubble horizon and not growing.

This implies that magnetic fields are evolving rapidly away from the Hubble horizon in

the form of equation (6.41) and not growing since magnetic fields are scale independent on

super-horizon scales. When electromagnetic fields permeate the whole universe to well above

horizon scales, then by around the beginning of the radiation-dominated epoch, magnetic

fields would be evolving well above the horizon and this can be shown to be probable since

(conformal) time denoted by η is either still much less than unity or η � 1 by this time of

the universe expansion (to be shown later).

One can derive equations of motion by using the variational formalism for a single-fluid

model. The variational approach enables one to develop equations of motion that will

allow one to examine the evolution of inflation-generated, large-scale magnetic fields in

more realistic fluids as opposed to the idealised fluids. In the context of the formalism, the

single-fluid model we will first consider for the derivation of the equations of motion is the

radiation-dominated epoch epoch. We will derive equations of motion up to cosmological

scales that are slightly above the Hubble horizon. Note that this approach of a single-fluid

model will account for the coupling of a fluid to dynamical space-time [84]. We will then use

the equations of motion to examine the evolution of inflation-generated, large-scale magnetic

fields. The evolution will also extend to the matter-dominated epoch until current time.

Therefore, in the context of the variational approach we will use the single-fluid formalism

to derive the equations of motion that will also be useful in the modelling of the evolution of

magnetic fields during either the radiation-dominated or matter-dominated epoch (or from

the time magnetic fields crossed the horizon for a second time) until current time.

To derive the first set of the equations of motion, a single-non conducting fluid action principle

is set up [84]. Using the pull-back approach to set up variations of Aa leads to equations

of motion being derived [84]. In the action, there is a piece of the anti-symmetric Faraday

tensor denoted by Fab [84] and defined as

Fab = ∇aAb −∇bAa. (6.43)

It satisfies the Bianchi identity (6.2). The action is composed of the fluid and Maxwell

actions, and a coupling term between the fluid and four-potential Aa. Varying the action

with respect to Aa yields pieces of action. An energy functional denoted by Λ [84] is the

Lagrangian of the fluid action denoted as SM . Λ can also be referred to as a master function.
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To derive the second set of the equations of motion, a single-conducting fluid action principle

is set up [84]. Using the pull-back approach to set up variations of Aa leads to equations of

motion being derived [84]. Aa couples charged fluids to the electromagnetic field and vice

versa. In the action, there will be a coupling term represented by JaXAa where JaX represents

flux current of the single-conducting fluid being considered. In this case, the single-conducting

fluid being considered is denoted by X where X represents either the radiation-dominated

epoch or matter-dominated epoch. All the pieces of the action in the preceding paragraph are

considered here. Additionally, one can consider the coupling of AaA
a to R and AaAb to Rab.

The couplings are of the form: Either φRA2 + φ0RabA
aAb or φRA2 or φ0RabA

aAb where φ

and φ0 represent coupling constants. These are included in the action. Then with all this one

can vary the action with respect to Aa, thus yielding pieces of an action. With this, one can

consider all the pieces of the (total) actions for both single non-conducting and conducting

fluid scenarios. We will now use the variational formalism to derive equations of motion that

will enable us to examine the evolution of inflation-generated, cosmological magnetic fields in

the single-fluid model of the radiation-dominated epoch. Here, we will examine the evolution

of magnetic fields from around the beginning of the radiation-dominated epoch to the time

these fields cross the Hubble horizon for a second time either during the radiation-dominated

epoch or the matter-dominated epoch.

6.3 Single non-conducting fluid formalism action

principles

To either prove or show the possibility of existence of inflation-generated, large-scale magnetic

fields during the radiation-dominated epoch represented by X (especially specifically at

or around the beginning of the radiation-dominated era though applicable throughout the

epoch), we use the single non-conducting fluid formalism in the context of the variational

approach to derive equation (6.41) while neglecting current. This will allow us to derive

equations that possibly represent the evolution of inflation-generated, cosmological magnetic

fields on scales slightly above the horizon (since conductivity is very poor on such scales). In

other words we use the variational approach to derive equations of motion [equation (6.6)]

that will enable us to examine the evolution of inflation-generated, cosmological magnetic

fields during the single-fluid model of the radiation-dominated epoch. Equation (6.6) will

be used to derive equation (6.41). On sub-horizon scales, during the radiation-dominated

epoch there is current. Magnetic fields generated after inflation are either too small in scale

or are of sub-horizon scales. Hence, the equations that will be derived either will or should

represent the evolution of inflation-generated, large-scale magnetic fields. Therefore, we
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consider the single non-conducting fluid action principle. Due to the variational formalism

context of the single-fluid model being considered, it is possible to extend it to account for

electromagnetism. Hence, we will consider the fluid and Maxwell actions in this section.

The fluid action denoted by SF has as Lagrangian, the master function denoted by Λ which

depends on n2
X = −nXanaX and the metric denoted as gab, and note that naX represents either

number density four current or flux. Also note that X represents the radiation-dominated

epoch. The magnitude of naX denoted by nX represents particle number density [73]. Varying

SF yields [84]

δSF = δ

(∫
M
d4x
√
−gΛ

)
=

∫
M
d4x
√
−g

[
µXaδn

a
X +

1

2
(Λgab + naXµ

b
X)δgab

]
,(6.44)

where M represents either a manifold or hypersurface, g represents the determinant of gab

and µXa represents the canonically conjugate momenta to naX . Then letting [84]

BX = −2
∂Λ

∂n2
X

, (6.45)

leads to [84]

µXa = gabBXnbX . (6.46)

The use of BX is to remind one that this is a bulk fluid effect which is present regardless of

the number of fluids and constituents.

We now consider the Maxwell action given by [84]

SMax =
1

16π

∫
M
d4x
√
−gFabF ab. (6.47)

Varying this action with respect to Aa and gab yields [84]

δSMax =
1

4π

∫
M
d4x
√
−g(∇aF

ab)δAb −
1

32π

∫
M
d4x
√
−g(FcdF

cdgab − 4F acF b
c)δgab.

(6.48)

Thus

δS = δSF + δSMax, (6.49)
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which leads to

δS =

∫
M
d4x
√
−g

{
µXaδn

a
X +

1

4π
∇bF

baδAa +
1

2

[
Λgab + naXµ

b
X −

1

16π
(FcdF

cdgab − 4F acF b
c)

]
δgab

}
.

(6.50)

If the variation of the four-current was left unconstrained, the equations of motion for the

fluid derived from the varied action (6.50) would require incorrectly that the momentum

denoted as µXa should vanish in all cases. This means that the variation of the conserved

four-current must be constrained. This implies that not all components of naX can be treated

as independent. In terms of the constrained Lagrangian displacement of equation (3.38), the

variation (6.49) leads to

δS =

∫
M
d4x
√
−g

{
1

4π
∇bF

baδAa +
1

2

[
(ψδac + naXµ

X
c)g

cb

− 1

16π
(FcdF

cdgab − 4F acF b
c)

]
δgab −FXb ξbX

}
, (6.51)

where

FXb = 2naXWX
ab = 0, (6.52)

ψ ≡ Λ− naXµXa, (6.53)

and [73]

WX
ab = 2∇[aµ

X
b]. (6.54)

This leads to the definition

WX
ab = ∇aµ

X
b −∇bµ

X
a, (6.55)

One can ignore the total divergence term since it does not contribute to either the field

equations or the stress-energy-momentum tensor T ab (the divergence theorem implies that

the total divergence term becomes a boundary term in the action). This is for the case

where the universe is permeated by electromagnetic fields in the absence of currents. One

can now derive the field equations and the corresponding T abs.

The change in δS in equation (6.51) must vanish for all δA if the action is at an extremum.
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For the photon field, this demands equation (6.6), and also including equation (6.2). This can

lead to equation (6.41) after using the matrix (6.7). Similarly, the change in δS in equation

(6.51) must also vanish for all δgab if the action is an extremum. This demands that

T ab =
1

2

[
(ψδac + naXµ

X
c)g

cb − 1

16π
(FcdF

cdgab − 4F acF b
c)

]
, (6.56)

where ψ represents equation (6.53). Note that the Lorentz gauge condition is represented as

∇aA
a = 0. (6.57)

Due to diffeomorphism invariance, the conservation of the stress-energy-momentum tensor

T ab can be established. This implies ∇aT
a
b = 0. It is a possibility that inflation-generated,

magnetic fields could be either well above or well outside the Hubble radius just at the

beginning of the radiation-dominated epoch. This means that

λH
λk
� 1, (6.58)

which implies that kη � 1 in conformal-time terms. Then a simple Taylor expansion of

equation (6.41) leads to [56]

a2Bk = C1 + C2kη, (6.59)

where a = a(η). Equations (6.41), (6.42), (6.58) and (6.59) can help one see the concept

of transition from oscillation to power-law growth at either the Hubble threshold or near

the threshold. This type of transition has been considered in cosmological perturbation

theory [56]. For example, during the radiation-dominated epoch, the type of transition just

being considered happens to linear density perturbations. The transition reflects the fact

that super-horizon-sized perturbations have not yet started to oscillate properly because

they have oscillation periods that are longer than the age of the universe by the beginning

of the radiation-dominated epoch. To illustrate, let [56]

λH ≡
1

H
' tU , (6.60)

and

λk ≡ tk, (6.61)

where tU and tk represent the age of the universe and the period of the magnetic-mode

oscillation, respectively. Note that dt = a(t)dη where t represents either cosmic or proper
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time and η represents conformal time. Then equation (6.58) suggests that tk � tU which

implies that the magnetic-mode oscillation has not yet reached its first wave-crest.

Once well above the Hubble horizon and as long as they stay there, the magnetic fields remain

causally disconnected and their evolution is only affected by the background expansion [56].

Currents exist by this time of the universe expansion, but due to causality they only

exist on sub-horizon scales. This implies that the ideal-MHD limit cannot be applied

to super-horizon scales [56]. Since causal physics can never affect super-Hubble length

perturbations, the process of magnetic flux freezing (which is causal physics) should be causal.

In other words, causality implies that the time required for the freezing in information

to travel the whole length of a super-horizon magnetic field is larger than the age of the

universe at the time [56]. Hence, the magnetic fields cannot readjust themselves to the

new environment and freeze in until they have crossed back inside the horizon. Instead,

as long as they are well above the Hubble radius, the magnetic fields are not affected by

causal physics and retain only the memory of their distant past [56]. This means that

the magnetic fields evolution is governed by equation (6.59) which is derived from equation

(6.21). Note that it is not the first time that the source free approach is applied to the

study of large-scale cosmological magnetic fields ( [56] and references therein). One can now

examine super-adiabatic magnetic amplification.

6.4 Evolution of magnetic fields on length scales well

above the Hubble radius

The presence of the second term on the right-hand side of equation (6.59) does not

necessarily guarantee the adiabatic decay of magnetic fields [56]. Therefore, one can focus

on this term. Note that it is not negligible even though kη is kη � 1 on well above horizon

scales. When the initial conditions at the beginning of the radiation-dominated epoch are

such that C2 � C1, then the second term on the right-hand side of equation (6.59) can lead

to super-adiabatic evolution of magnetic fields as shown in figure (6.1).

As the universe expands, the conformal time denoted as η increases and the product kη

becomes larger than unity. This means that magnetic fields have reentered the Hubble

radius and are obeying ρB ∝ a−4. This implies that equation (6.59) is no longer valid. Note

that inflation-generated, large-scale magnetic fields decayed adiabatically throughout de

Sitter phase [56] despite the absence of currents.
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Figure 6.1: This schematic figure shows the evolution of magnetic fields from the beginning of
the radiation-dominated epoch on super-horizon scales well above the horizon. B represents
magnetic field strength while η represents time. Bk0 represents super-adiabatic evolution of
magnetic fields, while Bk represents adiabatic evolution of magnetic fields. This figure shows
that super-adiabatic decay of magnetic fields is significantly slower than adiabatic decay of
magnetic fields. The super-adiabatic decay corresponds to the scenario when magnetic fields
are evolving at scales that are well above the Hubble horizon

One can examine the evolution of inflation-generated magnetic fields on scales that are well

above the Hubble radius. We consider equation (6.59). One can express it as

B = C1a
−2 + C2kηa

−2. (6.62)

This can be written as

B0 = C1a
−2
0 + C2kη0a

−2
0 , (6.63)

where the subscript 0 represents the beginning of the radiation-dominated era. Note that

this is a given initial time. In [56] the subcript 0 represents the beginning of de Sitter

phase. However, this is problematic as inflation-generated magnetic fields evolve as equation

(6.41) as they cross the cosmological Hubble horizon (for the first time) during de Sitter

phase [56] and evolve as equation (6.59) when the magnetic fields are either well above the

horizon or Hubble radius. In [56], magnetic fields are shown to evolve as equation (6.59)

from the beginning of exponential expansion of the inflationary epoch. When one considers

this carefully, one will see that it is problematic. Equation (6.59) does not represent the

evolution of magnetic fields either at/or from the beginning of exponential expansion of

de Sitter phase. Examining figures 1.5 and 1.6 might aid in illustrating this. Our work
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tries to resolve the problem. Furthermore, we assume instantaneous reheating [161]. This

refers to the ideal case where after the inflationary epoch the universe enters directly in the

radiation-dominated epoch [161]. In this case, the energy density at just the beginning of the

radiation-dominated epoch which is the same as that at the end of the reheating epoch, is

equal to the energy density at the end of the inflationary epoch [161]. Therefore, it is logical

that the subscript 0 either should (or can) represent the beginning of the radiation-dominated

epoch. Moreover, if the subscript 0 were to represent the beginning of inflation, then we

should expect astrophysically irrelevant magnetic field strength in current time as either

magnetic field strength or size at the beginning of inflation was approximately zero (0)G 3.

Now, differentiating equation (6.63) with respect to conformal time denoted as η yields

B′0 = −2C1a
−3
0 a
′
0 + (−2)C2kη0a

−3
0 a
′
0 + C2ka

−2
0 . (6.64)

Using the relation H = a′

a2
in equation (6.64) leads to

B′0 = −2C1H0

a0

− 2C2kη0H0

a0

+
C2k

a2
0

. (6.65)

Multiplying equation (6.63) throughout by 2H0B0 and then adding it to equation (6.65)

yields

2a0H0B0 +B′0 =
C2k

a2
0

, (6.66)

which in turn leads to

C2 =
η0(2a0H0B0 +B′0)a2

0

kη0

. (6.67)

Substituting equation (6.67) in equation (6.63) yields

C1a
−2
0 = B0 −

(2a0H0B0 +B′0)kη0a
−2
0 a

2
0

k
, (6.68)

which leads to [56]

C1 = [B0 − η0(2a0H0B0 +B′0)]a2
0. (6.69)

Substituting equations (6.67) and (6.69) in equation (6.62) yields

B = [B0 − η0(2a0H0B0 +B′0)]

(
a0

a

)2

+ η0(2a0H0B0 +B′0)

(
a0

a

)2(
η

η0

)
. (6.70)

3This can be shown to be true by equation (6.78) later. Note that η0B
′
0 = ξB0 where ξ ∈ R [56].
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a and η are related by

a = a0

(
η

η0

) 2
1+3w

, (6.71)

where w 6= −1
3

and w represents the barotropic index of matter. Then

a′ =
2a0

(1 + 3w)(η0)
2

1+3w

(η)
1−3w
1+3w . (6.72)

Using the relation H = a′

a2
leads to

H =

2a0(η)
1−3w
1+3w

(1+3w)(η0)
2

1+3w

a2
0

(
η
η0

) 4
1+3w

, (6.73)

which in turn yields

H =
2

a0(1 + 3w)
η−

3(1+w)
1+3w η

2
1+3w

0 . (6.74)

This simplifies to

H =
2

a0(1 + 3w)η

(
η

η0

) 2
1+3w

. (6.75)

Using the relation (6.71) in equation (6.75) leads to

H =
2

(1 + 3w)aη
. (6.76)

The relation (6.76) and (6.71) are used in (6.70), and this yields

B =

{
B0 − η0

[
2a0

2

(1 + 3w)a0η0

B0 +B′0

]}(
a0

a

)2

+ η0

[
2a0

2

(1 + 3w)a0η0

B0 +B′0

](
a0

a

)2(
a0

a

)− (1+3w)
2

, (6.77)
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which in turn leads to [56]

B = −

[(
4

1 + 3w
− 1

)
B0 + η0B

′
0

](
a0

a

)2

+

(
4B0

1 + 3w
+ η0B

′
0

)(
a0

a

) 3(1−w)
2

. (6.78)

Equation (6.78) monitors the linear evolution of super-horizon-sized magnetic fields on

spatially flat FLRW space-time backgrounds that are filled with a single barotropic

medium and permeated with electromagnetic fields. The barotropic index of the matter

denoted as w is treated as a constant. This equation applies only to the periods of the

radiation-dominated and matter-dominated epochs during which w is constant and w 6= −1
3
.

For the radiation-dominated epoch and matter-dominated epoch, w = 1
3

and w = 0,

respectively.

After examining equation (6.78), one will notice that the first of the two magnetic modes

on the right-hand side always either decay or evolve adiabatically [56]. However, the rate

of the second mode is not a priori fixed, but depends on the equation of state of the

cosmic medium. It also determines the relation between a(t) and η. Particularly, as long

as w =constant and w > −1
3
, the second mode on the right-hand side of equation (6.78)

decays at a rate slower than the adiabatic. Hence, when dealing with conventional matter,

super-horizon-sized magnetic fields on spatially flat FLRW space-time backgrounds are

super-adiabatically amplified. This is possible when the initial conditions allow the second

mode in equation (6.78) to survive and dominate.

One can now take a closer look at the post-inflationary magnetic evolution (particularly, after

the beginning of the radiation-dominated epoch). During the epoch of radiation-domination,

w = 1
3

which implies that a ∝ η and H = 1
aη

. Then, throughout the period of the epoch,

equation (6.78) takes the form [56]

B = −(B0 + η0B
′
0)

(
a0

a

)2

+ (2B0 + η0B
′
0)

(
a0

a

)
, (6.79)

ensuring that large-scale magnetic fields drop as B ∝ a−1 when radiation dominates the

energy density of the universe.

During either the matter-dominated or dust era, w = 0, a ∝ η2 and H = 2
aη

. Then equation

(6.78) reduces to [56]

B = −(3B0 + η0B
′
0)

(
a0

a

)2

+ (4B0 + η0B
′
0)

(
a0

a

) 3
2

. (6.80)
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This ensures that large-scale magnetic fields drop as B ∝ a−
3
2 when matter dominates the

energy density of the universe. One can see that after the reheating epoch, large-scale

magnetic fields on spatially flat FLRW space-time backgrounds obey solutions which

always contain modes with decay rates that are slower than the adiabatic [56]. These slowly

decaying magnetic modes depend on their associated coefficients. When the adiabatic

magnetic decaying modes are roughly the same order of magnitude as the slowly decaying

magnetic modes, the latter quickly takes over and dictates the subsequent evolution of the

magnetic fields. By examining equations (6.79) and (6.80), one can see that for whatever

value of η0B
′
0 the adiabatic magnetic decaying modes are always roughly the same order of

magnitude as the slowly decaying magnetic modes.

Therefore, (there is a possibility that) conventional large-scale magnetic fields are (or can

be) super-adiabatically amplified from (around) the beginning of the radiation-dominated

epoch of a flat FLRW universe until they cross the horizon for a second time much later,

as the universe expands probably during either the radiation-dominated epoch or during the

matter-dominated epoch. This means that the residual strength of magnetic fields could

be considerably larger than expected. The overall amplification depends on the scale of

the magnetic mode in question, and this determines the time of horizon entry [56]. Once

inside the horizon, the magnetic flux remains conserved, and the magnetic fields decay

adiabatically until current time. This happens because the ideal-MHD limit takes over

on sub-horizon scales where the electric currents take over, eliminate the electric fields

and freeze their magnetic counterparts into the highly conductive single-fluid medium. We

will now use the variational approach to derive equations of motion that will enable us to

examine the evolution of inflation-generated, cosmological magnetic fields after second Hubble

horizon crossing either during the single-fluid model of the radiation-dominated epoch or the

matter-dominated epoch.

6.5 Single-conducting fluid formalism action principles

We now consider the single-conducting fluid model. Due to the variational formalism context

of the single-fluid formalism, it is possible to extend it to account for electromagnetism, either

charged fluids (or components) and either coupling of R with AaAa or coupling of Rab with

AaAb or the sum of the couplings of R with AaAa and Rab with AaAb. For this fluid, the

minimal coupling of the Maxwell field to the charge current density is obtained from [84]

SC =

∫
M
d4x
√
−gJaXAa, (6.81)
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where JaX = eXn
a
X represents flux current and X represents the evening of the

radiation-dominated epoch or the matter-dominated epoch [54]. Varying this action with

respect to naX , Aa and gab yields [84]

δSC =

∫
M
d4x
√
−g

[
JaXδAa + eXAaδn

a
X +

1

2
JaXAag

bcδgbc

]
. (6.82)

Thus [84]

δSF + δSMax + δSC =

∫
M
d4x
√
−g

{
[µXa + eXAa]δn

a
X +

1

4π
[∇bF

ba + 4πJaX ]δAa +
1

2

[
Λgab

+ naXµ
b
X + J cXAcg

ab − 1

16π
(FcdF

cdgab − 4F acF b
c)

]
δgab

}
. (6.83)

One can now consider the coupling term actions

Sφ =

∫
M
d4x
√
−gφRA2, (6.84)

and

Sφ0 =

∫
M
d4x
√
−gφ0RabA

aAb, (6.85)

where SφT = Sφ + Sφ0 . Varying SφT yields

δSφT =

∫
M
d4x
√
−g(2φRAa + 2φ0R

a
bA

b)δAa −
∫
M
d4x
√
−gφghagfbRfhA

2δgab

+ 2

∫
M
d4x
√
−gφgabA2

{
1

2
∇c[g

cd(∇aδgdb +∇bδgad −∇dδgba)]

+
1

2
gfh∇b∇aδg

fh

}
+

1

2

∫
M
d4x
√
−ggab(φRA2 + φ0RcdA

cAd)δgab. (6.86)

The total action takes the form

δS = δSM + δSMax + δSC + δSφT . (6.87)
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Thus

δS =

∫
M
d4x
√
−g

{
[µXa + eXAa]δn

a
X +

1

4π
[∇bF

ba + 4πJaX + 8πφRAa + 8πφ0R
a
bA

b]δAa +
1

2

[
Λgab

+ naXµ
b
X + J cXAcg

ab)− 1

16π
(FcdF

cdgab − 4F acF b
c)− φghagfbRfhA

2

]
δgab

+ 2φgabA2

[
1

2
∇c(g

cd(∇aδgdb +∇bδgad −∇dδgba)) +
1

2
gfh∇b∇aδg

fh

]

+
1

2

∫
M
d4x
√
−ggab(φRA2 + φ0RcdA

cAd)δgab

}
. (6.88)

The minimal coupling of the Maxwell field to the charge current density of the single-fluid

model denoted as X yields a modification of the conjugate momentum. Thus [84]

µ̃Xa = µXa + eXAa. (6.89)

The term which is proportional to δnaX implies that the momentum denoted by µ̃Xa must

vanish [84]. Note that the fluid momenta changes from µXa to µ̃Xa [84]. This fact has to

be incorporated. This implies that a pull-back formalism for a single-fluid approximation

is required. For a general relativistic fluid, the field equations are obtained from an action

principle. This forms the foundation for the variations of the fundamental fluid variables in

the action principle. Then the field equations can be derived from the action principle after

using the pull-back formalism [84]. In terms of the constrained Lagrangian displacement of

equation (3.38), the variation (6.87) takes the form

δS =

∫
M
d4x
√
−g

{
1

4π
[∇bF

ba + 4πJaX + 8πφRAa + 8πφ0R
a
bA

b]δAa +
1

2

[
(ψδac

+ naXµ
X
c)g

cb − 1

16π
(FcdF

cdgab − 4F acF b
c)− φgahgfbRfhA

2

]
δgab + 2φgabA2

[
1

2
∇c(g

cd(∇aδgdb

+ ∇bδgad −∇dδgba)) +
1

2
gfh∇b∇aδg

fh

]
+

1

2
gab[φRA2 + φ0RcdA

cAd]δgab −FXb ξbX

}
, (6.90)

where FXb represents force density given by [73]

FXb = 2naXW̃X
ab + FX

b . (6.91)

W̃X
ab is defined as [73]

W̃X
ab = 2∇[aµ̃

X
b]. (6.92)
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This leads to the definition

W̃X
ab = ∇aµ̃

X
b −∇bµ̃

X
a, (6.93)

and ψ is defined as [73]

ψ ≡ Λ− naXµXa. (6.94)

FX
b represents the dissipative force due to entropy increase from conductivity. One can

ignore the total divergence term since it does not contribute to either the field equations

or T ab (the divergence theorem implies that the total divergence term becomes a boundary

term in the action).

The change δS in equation (6.90) must vanish for all δA if the action is at an extremum.

This demands that

∇bF
ab − 8πφRAa − 8πφ0R

a
bA

b = 4πJaX , (6.95)

also including equation (6.2) and one can assume the simple Ohm’s law for current [54].

Similarly, the change in δS in equation (6.90) must also vanish for all δgab if the action is an

extremum. This demands that

T ab =
1

2

[
(ψδac + naXµ

X
c)g

cb − 1

16π
(FcdF

cdgab − 4F acF b
c)− φgahgfbRfhA

2 +
1

2
gab(φRA2 + φ0RcdA

cAd)

]
.

(6.96)

Equation (6.95) can be expressed in the form

∇bF
ab − 8πφRAa = 4πJaX + 8πφ0R

a
bA

b, (6.97)

which in turn leads to

∇bF
ab − 8πφRAa = 4πJ a

eff , (6.98)

where

J a
eff = JaX + 2φ0R

a
bA

b. (6.99)

From the identity

∇a∇bF
ab = 0, (6.100)
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the field equation (6.98) implies that

∇aA
a =

1

2φR
∇aJ a

eff . (6.101)

When φR 6= 0, then

∇aJ a
eff = 0, (6.102)

if and only if

∇aA
a = 0, (6.103)

which is just the Lorentz gauge condition. For φ0 6= 0 equation (6.102) implies that the gauge

condition

∇a(R
a
bA

b) = 0, (6.104)

has to be satisfied and therefore

∇aJ
a
X = 0, (6.105)

which is the law of conservation of charge.

For the case where φ0 = 0, the identity (6.100) leads to [144]

∇aA
a =

1

2φR
∇aJ

a
X . (6.106)

When φR 6= 0, equation (6.105) is obtained if and only if equation (6.103) is obeyed.

For the case where φ = 0, the identity (6.100) yields equation (6.102) where J a
eff is equation

(6.99). Equation (6.102) implies the gauge condition (6.104) and hence, the conservation of

charge equation (6.105).

For T ab of equations (6.96), its conservation can be established by considering diffeomorphism

invariance. Then, ∇aT
a
b = 0. Note that an alternative way of showing conservation of

quantities for the Lagrangian systems in this work is shown in an upcoming article by me and

other authors. The title of the article is V ariational symmetries of tensor Lagrangians.

This is described briefly in the appendix A.3. One can now examine the evolution of magnetic

fields after crossing the Hubble horizon for a second time.
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6.6 Evolution of magnetic fields after second horizon

crossing

To study equations (6.2) and (6.95) together, one can write them in terms of the electric and

magnetic fields denoted as ~E and ~B, respectively where one can use the matrix represented

by Fab in (6.7). We consider spatially flat FLRW cosmologies where the line element is given

by

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (6.107)

This can be expressed as

ds2 = a2(η)(−dη2 + dx2 + dy2 + dz2), (6.108)

in conformal-time coordinates. Note that t(η) represents clock (conformal) time. One can

then derive R and RII leading to

RII ≡
ä

a3
+

(
ȧ

a2

)
, (6.109)

and

R ≡ 6
ä

a
. (6.110)

Using R and RII leads to equations (6.95) and (6.2) being re-cast into the forms

1

a2

∂(a2 ~E)

∂η
−∇× ~B − n

η

~A

a2
≡ σc ~E, (6.111)

and

1

a2

∂(a2 ~B)

∂η
+∇× ~E = 0, (6.112)

respectively, where

n ≡ η2

{
8π

[
6φ
ä

a
+ φ0

(
ä

a
+

(
ȧ

a

)2)]}
. (6.113)

σc represents conductivity of the single-conducting fluid denoted by X and under

consideration now. In equation (6.113) n represents a constant whenever a(η) varies as a

power of η. Taking the curl of equation (6.111) and using equation (6.112) to eliminate ~E
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yields

1

a2

∂2(a2 ~B)

∂η2
−∇2 ~B +

n

η2
~B ≡ −σc

1

a2

∂(a2 ~B)

∂η
. (6.114)

This equation can be expanded in terms of its Fourier components as it is linear in ~B. With

the definition

~Fk(η) ≡ a2

∫
d3xei

~k·~x ~B(~x, η), (6.115)

equation (6.114) can be recast into the form

~̈Fk + k2 ~Fk +
n

η2
~Fk ≡ −σca ~̇Fk, (6.116)

where k represents a wavenumber. Associated with the co-moving scale, λ ∼ k−1 and the

quantity ~Fk represents a measure of magnetic flux. Given

ρB(k) ≡ k
dρB
dk

, (6.117)

the energy density in the kth mode of the magnetic field is

ρB =
|~F |2

a4
, (6.118)

which means that for σc � 1
ηa
∼ H implies ∂ ~F

∂η
→ 0 hence, ~F ∼constant. This means that

ρB ∝ a−4 which implies conservation of magnetic flux in the evolution of magnetic fields

either much later during the radiation-dominated epoch or during the matter-dominated

epoch until current time on sub-horizon scales (due to causality [56]). This is applicable for

the case where either φ = 0 or φ0 = 0. This confirms adiabatic evolution of cosmological

magnetic fields from second horizon crossing until current time.

In other words, one can consider the simple Ohm’s law denoted by ~JX = σc ~E where ~JX

represents 3-current in the conducting fluid denoted by X, σc represents conductivity of X

and ~E represents electric field [162, 163]. At the ideal-MHD limit, the conductivity is very

high. That is σc → ∞. This implies that the electric field vanishes and the currents keep

the magnetic field frozen-in with X [164] on sub-horizon scales (due to causality [56]). This

implies that ρB ∝ a−4 which means conservation of magnetic flux. When σc → 0, the currents

vanish despite the presence of an electric field [164].
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6.7 Approximate evaluation of left-over magnetic field

strength in current time

Inflation-generated magnetic fields decay adiabatically up to the beginning of the

radiation-dominated epoch. This is from the beginning of inflation. They first cross the

horizon at either the end or just before the end of a de Sitter phase. They evolve adiabatically

on sub-horizon scales after crossing the Hubble horizon for the second time. Therefore,

super-adiabatic amplification should occur from the beginning of the radiation-dominated

epoch up to second horizon crossing. If ρB = B2 represents magnetic energy density and ρ

represents density of a dominant matter component, then this would mean that at the end

of de Sitter phase [56]

(
ρB
ρ

)
DS

' 10−94

(
M

1017

) 4
3
(
TRH
1010

)− 4
3

λ−4
B , (6.119)

where DS represents de Sitter phase, M represents scale of inflation, TRH represents reheating

epoch temperature (both measured in GeV ) and λB represents a current physical scale

(measured in Mpc) of the inflation-generated magnetic mode being considered. Assuming

instantaneous reheating we have ρB ∝ a−4 and ρ ' ρX ∝ a−4 in the epoch of reheating [161].

Hence, throughout the reheating epoch, the dimensionless ratio denoted by ρB
ρ

stays constant

and this infers (
ρB
ρ

)
DS

'

(
ρB
ρ

)
RH

'

(
ρB
ρXi

)
, (6.120)

where RH represents reheating and Xi represents at just the beginning of the

radiation-dominated epoch. Once into the radiation-dominated era, ρB ∝ a−2 and ρ '
ρX ∝ a−4 where ρX represents energy density of a radiative component. Therefore, for an

inflation-generated magnetic mode that crosses inside the Hubble horizon before equipartition

[56]

(
ρB
ρX

)
'

(
ρB
ρ

)
DS

(
TRH
THC

)2

' 10−94

(
M

1017

) 4
3
(
TRH
1010

)− 4
3
(
TRH
THC

)2

λ−4
B . (6.121)

THC represents temperature at the second horizon crossing where HC represents second

horizon crossing.

After the second horizon crossing, ρB ∝ a−4 and ρX ∝ a−4. This ensures that their ratio
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remains constant until current time. This means that [56]

(
ρB
ρX

)
†

' 10−94

(
M

1017

) 4
3
(
TRH
1010

)− 4
3
(
TRH
THC

)2

λ−4
B , (6.122)

in current time. The suffix † represents current time. Inflation-generated magnetic fields with

co-moving current size and close to 10kpc reenters the Hubble horizon at THC ' 3×10−6GeV

[56]. Now, (ρX)† ' 10−15GeV 4 [56]. Substituting this value and the value for THC in equation

(4.122) leads to [56]

B† ' 10−33

(
M

1017

) 2
3
(
TRH
1010

) 1
3

G. (6.123)

This implies that when M ' 1017GeV and TRH ' 1010GeV the magnitude of

inflation-generated cosmological magnetic fields with current physical size of approximately

10kpc should be roughly 10−33G which is quite higher than 10−53G [56]. Therefore, this means

that by appealing to causality, the final strength of conventional inflation-generated magnetic

seeds can be increased significantly. The work done here refines and adds to the repertoire of

existing theories on the generation, growth and evolutionary history of inflation-generated,

cosmological magnetic fields.

6.8 Chapter summary

Adiabatic decay of magnetic fields on flat FLRW space-time backgrounds translates into

magnetic strengths below 10−50G in current time [149] where the wavelength (denoted as

λB) of magnetic fields is set to λB ' 10Mpc. This is the minimum required for the

dynamo to work [56]. Such fields can never neither seed the galactic dynamo nor can

they affect the dynamics of the universe. In the context of the variational approach,

we used both the single-conducting and single non-conducting fluid formalisms to derive

both the modified Maxwell’s tensors and standard Maxwell’s tensors (for a photon field).

In other words we used the variational formalism to derive equations of motion that

enabled us to examine the evolution of inflation-generated, cosmological magnetic fields

during the single-fluid models of the radiation-dominated epoch and the matter-dominated

epoch. We then used the equations to examine the evolution of inflation-generated,

cosmological magnetic fields. Now, in single-fluid environments where BX = −2 ∂Λ
∂n2

X
and

X represents either the radiation-dominated epoch or matter-dominated epoch, we find

that the magnetic decay rate slows down as B ∝ a−1 during the radiation-dominated

epoch and B ∝ a−
3
2 during the matter-dominated epoch until their re-entry inside the
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horizon when the magnetic-decay rate would be adiabatic until current time. With this, we

studied relativistic fluids with applications to cosmology in that we analysed the behaviour

of evolution of inflation-generated, cosmological magnetic fields in single-fluid models of

either the radiation-dominated or matter-dominated epochs. That is, we investigated

how the behaviour of evolution of the cosmological magnetic fields is either influenced

or affected as they evolve in the single-fluid models of either the radiation-dominated or

matter-dominated epochs. With all this, the suggestion is that there is a possible existence

of a super-adiabatic evolving mode from either the beginning (or around the beginning) of the

radiation-dominated epoch to much later in the expansion history of the universe (much later

during the radiation-dominated epoch) or probably extending far into the matter-dominated

epoch. This may account for late time, large-scale magnetic fields (for example, inter-galactic

fields, with strengths of around 10−16G [56]). This work also tries to resolve the problem

in [56] where inflation-generated magnetic fields evolve as equation (6.59) [instead of either

equation (6.21) or (6.41)] either at (or from) the beginning of exponential expansion of de

Sitter phase or either at (or from) the beginning of the inflationary epoch. We approximately

evaluated the magnetic field strength for current time. We found that by appealing to

causality, the final strength of conventional inflationary magnetic seeds can be increased

significantly. Now, what would the magnetic field strength be if super-horizon-sized magnetic

fields crossed the horizon a second time after equipartition, that is, some time much later

during the matter-dominated epoch? This, we will pursue in the near future.
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Chapter 7

Thesis summary

In this thesis (or work), we set out to examine relativistic fluids in the context of

cosmology. Studies of this nature are usually done by using the formalism of single-fluids.

Examples of such studies that are examined using the single-fluid approximation are

studies concerned with the origin, growth and evolution of inflation-generated magnetic

fields, and the coincidence problem. The origin, growth and evolution of cosmological

magnetic fields remains an importantly open question despite the established widespread

presence of magnetic fields in the universe [165–168]. In such studies, it is usually found

that cosmological magnetic fields evolve adiabatically throughout their post-inflationary

evolutionary history until present time. As a result, this would lead to magnetic field

strength that will never seed the galactic dynamo and neither can they affect the dynamics

of the universe. It was also found that the current values of the densities of dark matter and

dark energy are of the identical order of magnitude. This would need very special initial

conditions in the early universe. This leads to the coincidence problem.

To resolve such issues, we used the variational formalism to develop tools for examining the

dynamics of relativistic fluids in the context of cosmology. Attempts have been made to

resolve the problems using the formalism of single-fluids. In [56], problems of generation,

growth and evolution of inflation-generated magnetic fields were investigated by utilising

the single-fluid formalism, and one of the findings was that inflation-generated magnetic

fields evolved in a super-adiabatic form from either the re-heating era (or the era of

inflation) until the second cosmological horizon crossing much later during either the epoch

of radiation-domination or the epoch of matter-domination.

More fitting mechanisms can be obtained by using the variational approach. The results

obtained using the variational formalism depend on the complete path taken, and not

only on initial and final points of a path. Particularly, in the context of the variational

approach, we used the single-fluid and multi-fluid formalisms that incorporate aspects
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of electrodynamics and thermodynamics, respectively. In the same context, we used the

single-fluid approach to derive equations of motion that allowed us to examine the evolution

of inflation-generated magnetic fields from the beginning of the radiation-dominated era to

the present time. We built the single-fluid model in the context of the variational formalism.

We used this formalism to derive equations of motion that allowed us to examine the

evolution of inflation-generated magnetic fields after crossing the cosmological horizon for a

second time. We extended the MIS theory to allow us to examine the effect on fluid flow

in which the components of the multi-species fluids interact thermodynamically. That is,

we used the variational multi-fluid formalism particularly, a slightly modified convective

variational approach to examine the entrainment effect of an interacting multi-fluid system

of the dark-sector.

In chapter 4, we examined the application of the multi-fluid formalism to interacting

multi-fluid systems. In particular, we used the slightly modified convective variational

approach. In this model, we considered two-fluid species (rather than one); that is dark

matter and dark energy that occupy a shared volume [44]. We considered the master

function Λ that encodes contributions from both species rather than a single species. We

examined the case where a chemical interaction occurs between the species. This suggests

equation (4.10). Varying the equation with respect to the individual species fluxes, the

interacting species flux and the metric led to equations (4.22) and (4.23). We then derived

the momentum conjugates (4.24) and (4.25). We expressed the master function Λ in the

form of equation (4.28) for a model of two fluids that involved the entrainment of two

species. However, since we are interested in entrainment, the focus was on Λ2 as it encodes

entrainment. We then generalised the Lagrangian density Λ for two interacting fluid species

whose variation leads to the multi-fluid equations that obey the laws of conservation.

Considering commensurate conservation laws, the equations of motion for the multi-fluids

environment are developed.

The multi-fluid approach can be used to examine the entrainment effect of the interaction

between dark matter and dark energy. For this to be really possible, we analyse the

(generalised) second law of thermodynamics and determine if it holds in interacting

multi-fluid systems using a more (or most) accurate approach for this task.

An attempt in reference [69] to match the convective variational formalism and the

(standard) MIS approach of dissipative fluids found that the two formalisms are not

equivalent to all orders, but are members of a set of related theories. It was found that

the two models led to the same causal connections when subjected to perturbations about

a thermodynamic equilibrium. It followed that in the thermal equilibrium limit, the two
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models manifested similar characteristic surfaces and causality properties. Due to these

similarities, we chose to analyse the second law of thermodynamics by utilising the extended

MIS formalism for multi-fluids. This implies that one should examine ∇aS
a, where ∇a

is defined relative to the frame of rest of an observer in motion with a merged ua. This

velocity is merged in the sense that there are three particle species being considered with a

single-observer world-line and hence the cosmic time expressed as t ≡ ua∇a is such that ua

represents the common four-velocity.

In chapter 5, we examined the thermodynamics of relativistic multi-fluid models that are

dissipative. The fluid species we considered were radiation, dark matter and baryonic matter

as one entity and dark energy. Our interest was in a transition between eras where the

content of the universe could be described as being in thermal quasi-equilibrium and where

single-fluid or hydrodynamical approximation began to break down. An example of this is

a transition involving species being frozen-out when timescales become (almost) equivalent

to the timescale of the cosmic expansion leading to the species disintegrating away from

the equilibrium. The task we pursued was to model the break-away behaviour. To that,

we used the extended MIS theory to examine the multi-species multi-fluid environments.

We examined dark energy, baryonic matter and non-baryonic dark matter as one entity

and radiation, thus implying that the system was made up of the three fluid species. The

interaction involved the dark-sector components only. Though the focus is on the species

which are mentioned, this study illustrates the application of the extended MIS formalism

to either multi-species multi-fluid or multi-species or multi-fluid environments, in general.

We examined if the second law of thermodynamics holds in such an environment.

Now, just before the process of freezing-out began one could have the dynamical apparent

horizon. If the break-away species were to manifest itself as either a uniform acceleration

or deceleration (almost) equivalent to the remaining species, then one might encounter the

Rindler horizon. Our task was to apply the extended MIS formalism in the freeze-out

transient period. Before the freeze-out, we had the dynamical apparent horizon which evolved

into the Rindler-like horizon after the freeze-out period. Hence, we considered the dynamical

apparent horizon first. We considered the radius of the apparent horizon for FLRW which is

expressed as in equation (5.14). Further analysis led to equation (5.47). We then examined

equation (5.39). Our examination of the equation led to the conclusion that the generalised

second law of thermodynamics holds for a multi-fluid system of an interacting dark-sector.

This is at the beginning of the freeze-out period. Including a chemical interaction in an

environment of multi-fluids (for example, the interacting dark-sector) leads to the second law

of thermodynamics being conserved. Having established the conservation of the second law

of thermodynamics for interacting multi-fluid environments, and specifically the interacting
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dark-sector, we applied the slightly modified convective variational approach to the sector.

Our examination of the entrainment effect for the interacting dark-sector suggests a mutual

relative modulation of the growth behaviour of the two densities of dark matter and dark

energy. With this, the coincidence problem might be resolved.

It is found that [50] the effect of the interactions of dark matter and dark energy have a

significant signature on the development of the dark matter structure along with the late

integrated Sachs Wolfe effect in a formalism of single-fluids. However, how would this change

given the model of multi-fluids considered, is an issue that is worth considering and will be

studied in the near future.

In chapter 6, we examined the evolution of inflation-generated magnetic fields until present

time. First, we considered the evolution of inflation-generated magnetic fields during either

the era of inflation or de Sitter phase. Magnetic fields could have crossed the Hubble

horizon at either the end of de Sitter phase or just before its end. The universe either

expanded exponentially or accelerated during de Sitter phase. After inflation-generated

magnetic fields crossed the cosmological Hubble horizon for the first time at either the end

or just before the end of de Sitter phase, they continued evolving adiabatically on scales

slightly above the horizon. Magnetic fields were scale independent by this time of the

universe expansion. This implies that there was no large-scale growth of magnetic fields

after inflation-generated magnetic fields crossed the cosmological horizon for the first time.

Magnetic fields then evolved adiabatically until the beginning of the radiation-dominated

era. We used the single non-conducting fluid approach in the context of the variational

formalism to derive equations of motion that led to either equations or expressions in terms

of magnetic field symbols (usually used in cosmological modelling of magnetic fields). This

was done for the radiation-dominated era. It was shown that there was a possibility of having

inflation-generated magnetic fields evolve adiabatically either at or around the beginning of

the radiation-dominated era (as shown by expressions of magnetic field symbols). We used

the expressions of magnetic field symbols to examine the evolution of inflation-generated

magnetic fields from the beginning of the radiation-dominated era until second horizon

crossing of magnetic fields. The single-conducting fluid formalism in the context of the

variational approach was then used to derive equations of motion that in turn would lead

to equations that represented the evolution of inflation-generated magnetic fields. This was

after magnetic fields had crossed the cosmological horizon for a second time and evolved

adiabatically until present time.

During de Sitter phase, conductivity was extremely low [54, 56]. Hence, there are no

currents [54,56]. This implies that the modified Maxwell equation (6.1) reduces to equation
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(6.6). Using the matrix (6.7), equations (6.5) and (6.6) are re-cast in the form of equation

(6.21). This equation represents the evolution of inflation-generated magnetic fields as

they cross the cosmological Hubble horizon just either before or at the end of de Sitter

phase. Equation (6.21) was then expressed in the form of equation (6.25). Solving

this equation yields equation (6.41). On slightly above horizon scales, the background

space-time is spatially flat. On sub-horizon scales, the background space-time is spatially

flat too. Equation (6.41) will then lead to an adiabatic decay of magnetic fields even

though conductivity is very poor [57] on scales slightly above the horizon. This means

that equation (6.41) represents evolution of the inflation-generated magnetic fields after

de Sitter phase on scales which are slightly above the horizon. After de Sitter phase, the

universe expands normally (not either expanding exponentially or accelerating). Given that

inflation-generated magnetic fields were scale independent [57] after crossing the Hubble

horizon for the first time, no large-scale growth of magnetic fields occurred. Instead, the

fields could have evolved as equation (6.41) up to the beginning of the radiation-dominated

epoch when conformal time denoted as η was still η � 1. By then magnetic fields could

have been evolving well above the horizon and this was shown to be possible since η � 1 at

that time of the universe expansion. This implies that equation (6.41) can be reduced to

equation (6.59).

To prove the existence of inflation-generated magnetic fields during the radiation-dominated

era (specifically either at or around the beginning of the radiation-dominated epoch), we

used the single non-conducting formalism in the context of the variational approach during

the epoch, which led to the derivation of equation (6.41). This equation was reduced

to equation (6.59) for scales that were well above the horizon, and this occurs either at

or around the beginning of the radiation-dominated epoch when conformal time denoted

by η is such that η � 1. We then used equation (6.59) to examine the evolution of

inflation-generated magnetic fields from the beginning of the radiation-dominated era to

the time they crossed the cosmological horizon for a second time. In other words we

used the variational formalism to derive equations of motion that enabled us to examine

the evolution of inflation-generated, cosmological magnetic fields in single-fluid models

of the radiation-dominated and matter-dominated epochs. Our examination suggests a

possible existence of the super-adiabatically evolving mode from the beginning of the

radiation-dominated era until second horizon crossing of magnetic fields much later during

either the radiation-dominated era or during the epoch of matter-domination. The

single-conducting fluid formalism in the context of the variational approach was then

used to derive equations of motion. We then derived equations describing the evolution

of inflation-generated magnetic fields on sub-horizon scales. The equations show that

magnetic fields decay adiabatically from second horizon crossing (probably far into either
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the radiation-dominated era or the epoch of matter-domination) until present time. In light

of the above statements, the residual strength of magnetic fields could be considerably larger

than expected. This may account for late time, large-scale magnetic fields detected in recent

times. For example, inter-galactic fields with strengths of around 10−16G [56]. In [56], it

was assumed that inflation-generated magnetic fields started evolving from the beginning of

either the epoch of inflation or at the very beginning of the exponential expansion of the

de Sitter phase. However, after careful analysis of the equations in [56], one will see that

magnetic fields do not start evolving at the beginning of the exponential expansion of the de

Sitter phase. Instead, they start evolving at the time when magnetic fields are well above

the Hubble horizon. This is a contradiction. This thesis tries to resolve the issue. We make

an ansatz that inflation-generated magnetic fields crossed the cosmological Hubble horizon

either just before or at the end of the de Sitter phase which is still during de Sitter phase [56].

Magnetic fields then evolved adiabatically on super-horizon scales which were slightly above

the horizon until the beginning of the epoch of radiation-domination. From the beginning

of the epoch of radiation-domination, magnetic fields evolved (super-adiabatically) on scales

well above the Hubble horizon until they crossed the cosmological Hubble horizon for a second

time. In light of (just) the above statements, the contradiction in [56] is resolved.
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Appendix A

A few detailed concepts, calculations

or derivations

A.1 Brief notes on the Eckart theory

In Eckart theory, the energy density denoted by ρ and the particle number density denoted

by n can in principle be measured by an observer moving along either the vector field or

four-velocity of a fluid denoted by ua [91]. The entropy per particle denoted by s can be

defined by the equilibrium equation of state for the fluid:

s = s(ρ, n). (A.1)

All other thermodynamic variables can then be defined by using the first law of

thermodynamics. Particularly, the temperature denoted by T and the pressure denoted

by p are expressed as:

T−1 = n

(
∂s

∂ρ

)
n

, (A.2)

and

p = −ρ− n2T

(
∂s

∂n

)
ρ

, (A.3)

respectively.

We examine the transverse perturbations of an Eckart fluid. The differential equations for

the perturbations in transverse variables can be decoupled into a single second-order equation
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for the transverse components of the perturbed velocity expressed as

κT∂2
tδu
I − (ρ+ p)∂tδu

I + η∂2
xδu

I = 0, (A.4)

where ρ represents density, p represents pressure, ua∂a = ∂t, κ represents the Boltzmann

constant, T represents temperature, uI represents temperature as a function of space and

time (such that I = x, y, z) and η represents conformal time [169]. This equation is elliptic

for δuI . One can clearly see that the solution to equation (A.4) violates any reasonable

definition of causality. To elaborate the non-causal behaviour, we integrate the equation to

determine the evolution of a perturbation which at t = 0 is a simple δ function; that is

δuI(x, 0) = δx. The evolution of these initial data can be determined by the usual Fourier

transform methods. The solution of equation (A.4) with the initial condition is expressed as

δuI(x, t) =
(ρ+ p)t

2πκt

(
ηt2

κT
+ x2

)− 1
2

K0(z)

[
ρ+ p

2
√

(κTη)

(
ηt2

κT
+ x2

) 1
2
]
exp

[
(ρ+ p)t

2κT

]
,

(A.5)

where K0(z) represents a modified Bessel function. In the limit that t2 � κTx2

η
and t� κT

ρ+p
,

equation (A.5) reduces to the standard classical expression for the diffusion of shear stresses

and the expression is

δuI(x, t) =

(
ρ+ p

4πηt

) 1
2

exp

[
− x2(ρ+ p)

4ηt

]
. (A.6)

This implies that the classical expression is valid inside a future cone that is determined by

the velocity given as

(
ηc4

κT

) 1
2

where c represents speed of light. For a normal laboratory

fluid, this velocity is very large. The characteristic time represented by κT
[(ρc2+p)c2]

is very short

for normal fluids. Hence, the classical expression for the diffusion of shear stresses is valid

in a region which includes and extends outside a future light cone of a plane (x, t) = (0, 0)

where the initial disturbance in δuI occurs. Therefore, equation (A.5), the Green’s function

for the evolution of transverse perturbations in the fully relativistic Eckart theory, violates

causality. Furthermore, information can be transmitted faster than c in this theory. This

means that the theory cannot be an acceptable relativistic theory.
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A.2 Detailed variation of the actions (6.84) and (6.85)

We consider the actions (6.84) and (6.85). Varying action (6.84) leads to

δS = δ

∫
M
d4x
√
−gφRA2. (A.7)

Introducing a metric yields

δS = δ

∫
M
d4x
√
−gφgabRabAcA

c, (A.8)

which in turn leads to

δS =

∫
M
d4x
√
−gδφgabRabA

cAc +

∫
M
d4x
√
−ggabδRabφA

cAc + 2

∫
M
d4x
√
−gφgabRabA

cδAc

+

∫
M
d4xδ
√
−gφgabRabA

cAc +

∫
M
d4x
√
−gφδgabRabAcA

c. (A.9)

Varying action (6.85) yields

δSφ0 = δ

∫
M
d4x
√
−gφRabA

aAb, (A.10)

which in turn leads to

δSφ0 =

∫
M
d4x
√
−gδφRabA

aAb +

∫
M
d4x
√
−gδRabφA

aAb +

∫
M
d4x
√
−gφRabδA

aAb

+

∫
M
d4x
√
−gφRabA

aδAb +

∫
M
d4xδ
√
−gφRabA

aAb. (A.11)

Varying with respect to φ and
√
−g yields 0 and

δ
√
−g =

1

2
gabδgab, (A.12)

respectively. Varying gab leads to

δgab = δgba, (A.13)

which in turn yields

δgab = −gbfgahδgfh, (A.14)

and finally leads to

δgab = −gbagabδgab. (A.15)

130



APPENDIX A. A FEW DETAILED CONCEPTS, CALCULATIONS OR DERIVATIONS

The Ricci tensor is defined by

Rab = Rc
acb = ∂cΓ

c
ab − ∂bΓcac + ΓccdΓ

d
ba − ΓcbdΓ

d
ac. (A.16)

Varying the Ricci tensor yields [144]

δRab = ∂cδΓ
c
ab − ∂bδΓcac + ΓdbaδΓ

c
cd + ΓccdδΓ

d
ba − ΓdacδΓ

c
bd − ΓcbdδΓ

d
ac, (A.17)

which in turn leads to

δRab = ∂cδΓ
c
ab + ΓccdδΓ

d
ba − ΓdacδΓ

c
bd − ΓdbcδΓ

c
ad

− (∂bδΓ
c
ac + ΓcbdδΓ

d
ac − ΓdbaδΓ

c
cd − ΓdbcδΓ

c
ad. (A.18)

We use the covariant derivative in the two pieces of (A.18) such that

∇cδΓ
c
ab = ∂cδΓ

c
ab + ΓccdδΓ

d
ba − ΓdacδΓ

c
bd − ΓdbcδΓ

c
ad, (A.19)

and

∇bδΓ
c
ac = ∂bδΓ

c
ac + ΓcbdδΓ

d
ac − ΓdbaδΓ

c
cd − ΓdbcδΓ

c
ad. (A.20)

One can then express (A.18) as

δRab = ∇cδΓ
c
ab −∇bδΓ

c
ac. (A.21)

Then

δΓcab =
1

2
δgcd(∂agdb + ∂bgda − ∂dgab) +

1

2
gcd(∂aδgdb + ∂bδgda − ∂dδgab). (A.22)

One can have the expression

∇dδgba = ∂dδgba − Γcdbδgca − Γcdaδgbc. (A.23)

Then using the symmetry of the Christoffel symbols denoted by Γcab = Γcba, one can re-write

(A.22) as

δΓcab =
1

2
δgcd(∂agdb + ∂bgda − ∂dgab) +

1

2
gcd(∇aδgdb + Γeadδgcb + Γeabδgdc +∇bδgad + Γebdδgca

+ Γebaδgdc −∇dδgba − Γedbδgca − Γedaδgbc). (A.24)
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Simplifying (A.24) yields

δΓcab =
1

2
δgcd(∂agdb + ∂bgda − ∂dgab) + gcdΓebaδgde

+
1

2
gcd(∇aδgdb +∇bδgad −∇dδgba). (A.25)

One can write the variation of the metric denoted by gde as

δgde = −gdfgehδgfh. (A.26)

Using this in (A.25) leads to

δΓcab =
1

2
δgcd(∂agdb + ∂bgda − ∂dgab)− δgfhgdfgehgcdΓeba

+
1

2
gcd(∇aδgdb +∇bδgad −∇dδgba). (A.27)

One can rewrite (A.27) as

δΓcab = δgchgehΓ
e
ab − δgfhδcfgehΓeba +

1

2
gcd(∇aδgdb +∇bδgad −∇dδgba), (A.28)

which yields

δΓcab = δgchgehΓ
e
ab − δgchgehΓeba +

1

2
gcd(∇aδgdb +∇bδgad −∇dδgba). (A.29)

Simplifying this as much as possible yields

δΓcab =
1

2
gcd(∇aδgdb +∇bδgad −∇dδgba). (A.30)

Similarly for δΓcac, one will obtain

δΓcac =
1

2
gcd∇aδgdc +

1

2
gdc∇dδgac −

1

2
gcd∇dδgca, (A.31)

and simplifying leads to

δΓcac =
1

2
gcd∇aδgdc. (A.32)

Using δgdb = −gbfgdhδgfh, δgad = −gafgdhδgfh and δgba = −gafgbhδgfh in (A.30) yields

δΓcab =
1

2
gcd[∇a(−gbfgdhδgfh) +∇b(−gafgdhδgfh)−∇d(−gafgbhδgfh)], (A.33)
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which leads to

δΓcab = −1

2
gcd[gbfgdh∇a(δg

fh) + gafgdh∇b(δg
fh)− gafgbh∇d(δg

fh)]. (A.34)

Simplifying yields

δΓcab = −1

2
[δchgbf∇a(δg

fh) + δchgaf∇b(δg
fh)− gafgbhgdc∇d(δg

fh)]. (A.35)

Relabelling indices on the first and second terms of (A.35), and then simplifying leads to

δΓcab = −1

2
[δccgbd∇a(δg

cd) + δccgad∇b(δg
dc)− gafgbh∇c(δgfh)], (A.36)

where ∇c = gdc∇d. Further simplification yields

δΓcab = −1

2
[gbd∇a(δg

cd) + gad∇b(δg
dc)− gafgbh∇c(δgfh)]. (A.37)

Using δgdc = −gdfgchδgfh in (A.32) leads to

δΓcac = −1

2
gcdgdfgch∇aδg

fh, (A.38)

which in turn yields

δΓcac = −1

2
δcfgch∇aδg

fh. (A.39)

Simplifying leads to

δΓcac = −1

2
gfh∇aδg

fh. (A.40)

One can have the expression

∇cδΓ
c
ab =

1

2
∇c[g

cd(∇aδgdb +∇bδgad −∇dδgba)], (A.41)

which can be simplified to

∇cδΓ
c
ab =

1

2
gcd∇c(∇aδgdb +∇bδgad −∇dδgba). (A.42)

The covariant derivative of (A.40) is

∇bδΓ
c
ac = −1

2
∇b(gfh∇aδg

fh), (A.43)
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which can be simplified to

∇bδΓ
c
ac = −1

2
gfh∇b∇aδg

fh. (A.44)

(A.42) and (A.44) can then be used in (A.21). This will lead to the evaluation of (A.9) and

(A.11). With this, one can derive action (6.86) which leads to action (6.88).

A.3 Alternative way of showing conservation of

quantities for Lagrangian systems in chapter 6

Given a physical system denoted by L, the conservation laws characterising L are intimately

related to the symmetry properties of L. A precise description of this relation is given by

Noether’s theorem [170–174]. It states that a physical property of L is conserved for one and

all continous symmetries of L. This means that there is a constant of motion denoted by Ia

and expressed as

Ia(xa, Aa, Aa,b) ≡ fa(xa, Aa)−

[
ξaL+ (ηa,bc − Ab,cξa)

∂L
∂Ab,c

]
, (A.45)

such that

∂Ia

∂xa
≡ 0, (A.46)

where fa ≈ 0 or negligible [175]. Space-time indices are denoted by a, b and c, Aa represents

an electromagnetic field potential vector, fa represents a gauge function, and ξa and ηa are

functions of xa and Aa. Our task is to show that the systems we are considering in chapter

6 obey equation (A.46). We will first consider the system that is composed of the fluid,

Maxwell, Coulomb and the coupling term actions. Then, L should be expressed in the form

L = Λ +
1

4
FabF

ab + JaXAa + φRA2 + φ0RabA
aAb, (A.47)

which can also be written as

L = Λ +
1

4
gcagdb(Ab,aAd,c − Ab,aAc,d − Aa,bAd,c + Aa,bAc,d) + JaXAa + φRAaA

a + φ0RabA
aAb.

(A.48)
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To make our work easier, we adopt the assumption 4π ∼ 1 without loss of generality. We

then work out

X [1]L+ LDaξ
a ≡ Daf

a, (A.49)

where

X [1] = ξa∂a + ηa∂Aa + ηa,b∂Aa,b , (A.50)

and

Da ≡ ∂a + Ab,a
∂

∂Ab
. (A.51)

We evaluate equation (A.49) in detail. We consider X [1]L. We then consider ξa∂aL first.

This leads to

ξe∂eL = ξeΛ,e + ξe(gcagdb),e(Ab,aAd,c − Ab,aAc,d − Aa,bAd,c + Aa,bAc,d) + ξegcagdb(Ab,aeAd,c

+ Ab,aAd,ce − Ab,aeAc,d − Ab,aAc,de − Aa,beAd,c − Aa,bAd,ce + Aa,beAc,d + Aa,bAc,de)

+ ξeJaX,eAa + JaXAa,eξ
e + ξe(φR),eAaA

a + ξeφRAa,eA
a + ξeφRAag

baAb,e + ξe(φ0Rab),eA
aAb

+ ξeφ0Rabg
caAc,eA

b + ξeφ0RabA
agcbAc,e. (A.52)

Evaluation of ηa∂AaL yields

ηe
∂L
∂Ae

=

[
JaX

∂Aa
∂Ae

+ φR

(
∂Aa
∂Ae

Aa + Aa
∂Aa

∂Ae

)
+ φ0Rab

(
∂Aa

∂Ae
Ab + Aa

∂Ab

∂Ae

)]
ηe,

(A.53)

which in turn leads to

ηe
∂L
∂Ae

= (JeX + 2φRAe + 2φ0R
e
aA

a)ηe. (A.54)

We then evaluate ηa,b∂Aa,bL. This yields

ηe,f
∂L
∂Ae,f

= ηe,f

{
gcagdb

[
∂(∂aAb)Ad,c
∂(∂fAe)

+ Ab,a
∂(∂cAd)

∂(∂fAe)
− ∂(∂aAb)Ac,d

∂(∂fAe)
− Ab,a

∂(∂dAc)

∂(∂fAe)

− ∂(∂bAa)Ad,c
∂(∂fAe)

− Aa,b
∂(∂cAd)

∂(∂fAe)
+
∂(∂bAa)Ac,d
∂(∂fAe)

+ Aa,b
∂(∂dAc)

∂(∂fAe)

]}
. (A.55)
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We consider the expression

ηa,b = Db(η
a)− Aa,cDb(ξ

c). (A.56)

When evaluated it leads to

ηa,b = ηa,b − Aa,cξc,b + Ac,b
∂ηa

∂Ac
− Aa,cAd,b

∂ξc

∂Ad
. (A.57)

Substituting this equation in equation (A.55) and then simplifying further yields

ηe, f
∂L
∂Ae,f

= 4Ae,fηe,f − 4Ae,fAe,gξ
g
,f + 4Ae,fAg,f

∂ηe

∂Ag
− 4Ae,fAe,gAh,f

ξg

∂Ah

− 4Af,eηe,f + 4Af,eAe,gξ
g
,f − 4Af,eAg,f

∂ηe

∂Ag
+ 4Af,eAe,gAh,f

∂ξg

∂Ah
. (A.58)

The evaluation of LDaξ
a leads to

LDeξ
e = Λ∂eξ

e + gcagdb(Ab,aAd,c∂eξ
e − Ab,aAc,d∂eξe − Aa,bAd,c∂eξe + Aa,bAc,d∂eξ

e) + JaXAa∂eξ
e

+ φRAaA
a∂eξ

e + φ0RabA
aAb∂eξ

e + ΛAe,f
∂ξe

∂Af
+ gcagdb

(
Ab,aAd,cAf,e

∂ξe

∂Af
− Ab,aAc,dAf,e

∂ξe

∂Af

− Aa,bAd,cAf,e
∂ξe

∂Af
+ Aa,bAc,dAf,e

∂ξe

∂Af

)
+ JaXAaAf,e

∂ξe

∂Af

+ φRAaA
aAf,e

∂ξe

∂Af
+ φ0RabA

aAbAf,e
∂ξe

∂Af
. (A.59)

We finally evaluate Daf
a which yields

Def
e ≡ ∂ef

e + Af,e
∂f e

∂Af
. (A.60)
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We then substitute everything evaluated in equation (A.49) and this leads to

∂ef
e + Af,e

∂f e

∂Af
= ξeΛ,e + ξe(gcagdb),e(Ab,aAd,c − Ab,cAc,d − Aa,bAd,c + Aa,bAc,d) + ξegcagdb(Ab,aeAd,c

+ Ab,aAd,ce − Ab,aeAc,d − Ab,aAc,de − Aa,beAd,c − Aa,bAd,ce + Aa,beAc,d + Aa,bAc,de)

+ ξe(JaX), eAa + JaXAa,eξ
e + ξe(φR),eAaA

a + ξeφRAa,eA
a + ξeφRAag

baAb,e

+ ξe(φ0Rab),eA
aAb + ξeφ0Rabg

caAc,eA
b + ξeφ0RabA

agcbAc,e + ηeJ
e
X + ηe2φRA

e

+ ηe2φR
e
aA

a + 4ηe,fg
cfgdeAd,c − 4Ae,gξ

g
,fg

cfgdeAd,c + 4Ag,f
∂ηe

∂Ag
gcfgdeAd,c

− 4Ae,gAh,f
∂ξg

∂Ah
gcfgdeAd,c − 4ηe,fg

cegdfAd,c + 4Ae,gξ
g
,fg

cegdfAd,c − 4Ag,f
∂ηe

∂Ag
gcegdfAd,c

+ 4Ae,gAh,f
∂ξg

∂Ah
gcegdfAd,c + Λ∂eξ

e + gcagdb(Ab,aAd,c∂eξ
e − Ab,aAc,d∂eξe − Aa,bAd,c∂eξe

+ Aa,bAc,d∂eξ
e) + JaXAa∂eξ

e + φRAaA
a∂eξ

e + φ0RabA
aAb∂eξ

e + ΛAe,f
∂ξe

∂Af

+ gcagdb

(
Ab,aAd,cAf,e

∂ξe

∂Af
− Ab,aAc,dAf,e

∂ξe

∂Af
− Aa,bAd,cAf,e

∂ξe

∂Af
+ Aa,bAc,dAf,e

∂ξe

∂Af

)
+ JaXAaAf,e

∂ξe

∂Af
+ φRAaA

aAf,e
∂ξe

∂Af
+ φ0RabA

aAbAf,e
∂ξe

∂Af
. (A.61)

Given ηa, ξa, and fa which depend on (xa, Aa) only, the only way in which equation (A.61)

can be identically satisfied is that either the coefficient of each of the products of Aa,b or

products of the derivatives of Aa on each side of the equation coincides (we are not using the

equations of motion; here xa, Aa and Aa,b are independent). We consider one such product.

Equating coefficients of Ab,aAd,cAf,e on both sides of equation (A.61) yields

gcagdb
∂ξe

∂Af
= 0. (A.62)

Solving for ξe, then

gcagcag
dbgdb

∂ξe

∂Af
= 0, (A.63)

which leads to

δaaδ
b
b

∂ξe

∂Af
= 0. (A.64)

This then yields

16
∂ξe

∂Af
= 0, (A.65)
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which leads to

ξe = ξe(xa). (A.66)

This shows that ξa 6= 0 which implies that Ia 6= 0 if either fa ≈ 0 (or a trivial constant).

This can lead to equation (A.46). This is applicable for the case where either φ = 0 or φ0 = 0

or φ = φ0 = 0 or/and JaX ∼ 0. One will arrive at the same conclusion when one considers a

system denoted by L(xa, na, na,b).
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[9] A. Friedmann, Über die krümmung des Raumes, Zeitschrift für Physik A Hadrons and

Nuclei, vol. 10, Number 1, pp. 377-386, 1922.
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