

Investigation of entrance channel effect on fusion-fission dynamics of ^{208}Rn

Phurba Sherpa¹, Shashi Verma^{1,*}, I. Mazumdar², Jhilam Sadhukhan^{3,4}, N. Madhavan⁵, S. Nath⁵, J. Gehlot⁵, Gonika⁵, Chandra Kumar⁵, A. Parihari⁶, K. Chakraborty¹, P. S. Rawat¹, P. Khandelwal¹, Nandini Patel¹, Renu Kumari¹, Amninderjeet Kaur⁷, Komal⁷, Taniya M. Sonowal⁸, Neeraj Kumar⁹, and S. Mandal¹

¹Department of Physics & Astrophysics, University of Delhi, 110007, India

²Tata Institute of Fundamental Research, Mumbai 400005, India

³Physics Group, Variable Energy Cyclotron Centre, Kolkata 700064, India

⁴HBNI, Training School Complex, Anushaktinagar, Mumbai 400094, India

⁵Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India

⁶Rajdhani College, University of Delhi, Raja Garden, New Delhi 110015, India

⁷Department of Physics, Panjab University, Chandigarh 160014, India

⁸Department of Physics, Gauhati University, Guwahati 781014, India and

⁹Institut Pluridisciplinaire Hubert Curien,

CNRS/IN2P3-UDS, 67037 Strasbourg Cedex 2, France

Introduction

Nuclear reaction serves as a tool to study the collective behaviour of atomic nucleus. Heavy ion fusion reaction is widely explored to produce Super Heavy Element (SHE). It is a two-step processes where the projectile and target fuses together to form highly excited compound nucleus. Depending on several factors, compound nucleus formed may either undergo fission or may emit light particles or gamma rays to form an evaporation residue (ER).

As one proceeds towards heavy mass region, it is observed that compound nucleus formation is hindered by the non-equilibrium mode of fission, known as quasifission. Entrance channel mass asymmetry has greater impact on deciding the post capture dynamical evolution of the nuclei. Past studies has shown that the quasifission process is more dominant for a symmetric entrance channel compared to an asymmetric one [1, 2]. Additionally, several studies have reported an enhancement in the formation of ERs due to dissipation [3]. To gain a deeper understanding of these effects

on the dynamics of fusion-fission process, N. Kumar *et al.* [2], measured pre scission neutron multiplicities. In their study, the compound nucleus, ^{208}Rn , was populated via two reactions: $^{30}\text{Si} + ^{178}\text{Hf}$ and $^{48}\text{Ti} + ^{160}\text{Gd}$. ERs are considered a definitive indicator of fusion, as their formation requires the nuclei to pass through the compound nucleus (CN) phase. Therefore, the ER and ER-gated spin distribution undoubtedly provides valuable information about the aforementioned effects on the dynamics of fusion-fission process [4, 5]. In this work, we aim to provide additional insights into the mechanisms governing the process and to address complete fusion-fission dynamics by measuring ER and ER-gated spin distributions for the same reactions as were used in the study by N. Kumar *et al.* [2]

Experimental Details

The experiment was performed using the heavy ions accelerated by 15UD Pelletron + Superconducting LINAC at Inter University Accelerator Centre, New Delhi. Beams of ^{48}Ti and ^{30}Si were pulsed to provide the width of ~ 1 ns with the separation of 250 ns and 2 μs respectively. Isotopically enriched thin targets of carbon ($\sim 25 \mu\text{g/cm}^2$) backed, ^{160}Gd ($\sim 220 \mu\text{g/cm}^2$) and ^{178}Hf ($\sim 130 \mu\text{g/cm}^2$) were bom-

*Electronic address: sverma@physics.du.ac.in

barded with ion beams at 9 different energies. The energies ranged from around the Coulomb barrier to 20% above the barrier.

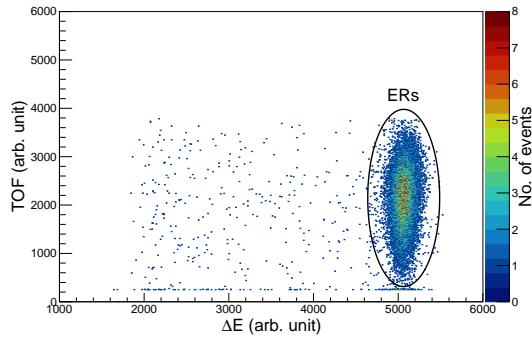


FIG. 1: 2-D plot showing ΔE vs TOF for $^{48}\text{Ti} + ^{160}\text{Gd}$ at beam energy 208 MeV .

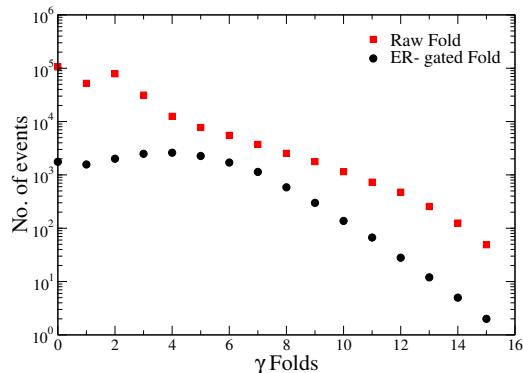


FIG. 2: γ folds for $^{48}\text{Ti} + ^{160}\text{Gd}$ at beam energy 208 MeV .

ERs were separated from other elements using the gas-filled separator, HYbrid Recoil mass Analyzer, HYRA [6]. Magnetic fields and the gas pressure of HYRA was optimised to attain the maximum transmission of ERs to the focal plane at each energy. The ERs were detected using position sensitive multiwire proportional counter (MWPC) located at the focal plane of HYRA. For spin distribution measurement, γ rays emitted by ERs were detected using the TIFR 4π spin spectrometer. It consists of

32 NaI(Tl) scintillation detectors arranged in soccer-ball geometry, surrounding the HYRA target chamber. Out of 32 detectors, 3 were taken out to accommodate beam entrance and exit ports and the target ladder. The total solid angle covered by the 4π multiplicity array was $\sim 86\%$ [7].

Discussions & Conclusion

A 2-D plot between the energy loss (ΔE) and time of flight (TOF) of ERs is shown in Figure 1. The plot shows the clear separation of ERs from other possible scattered particles reaching the focal plane. Figure 2 shows both raw γ folds and ER-gated folds. Initial analysis suggests that the outcome of fusion process depends on the specific choice of entrance channel. Detailed analysis is in progress and preliminary results will be presented during the symposium.

Acknowledgments

Authors acknowledge the Pelletron & LINAC group and the Target Laboratory of IUAC for their support during the experiments. We also thank Mr Sameer Patel for his contribution in setting up the electronics associated with the spin spectrometer. One of the authors (P. Sherpa) would like to thank the Council of Scientific & Industrial Research for providing the financial support via CSIR SRF (Sanction no.:09/045(1758)/2019-EMR-I).

References

- [1] A. C. Berriman *et al.*, Nature (London) **413**, 144 (2001).
- [2] N. Kumar *et al.*, Phys. Lett. B **814**, 136062 (2021).
- [3] P. Fröbrich and I. I. Gontchar *et al.*, Nucl. Phys. A **563**, 326 (1993).
- [4] W. Ye, Phys. Rev. C **101**, 014616 (2020).
- [5] G. Mohanto *et al.*, Phys. Rev. C **88**, 034606 (2013).
- [6] N. Madhavan *et al.*, Pramana **75**, 317 (2010)
- [7] M. M. Hosamani *et al.*, Phys. Rev. C **101**, 014616 (2020).