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Abstract. Quantum computing is a new computing mode that follows the laws of quantum
mechanics to control quantum information units for computation. In terms of computational
efficiency, due to the existence of quantum mechanical superposition, some known quantum
algorithms can process problems faster than traditional general-purpose computers. HHL
algorithm is an algorithm for solving linear system problems. Compared with classical
algorithms in solving linear equations, it has an exponential acceleration effect in certain cases
and as a sub-module, it is widely used in some machine learning algorithms to form quantum
machines learning algorithms. However, there are some limiting factors in the use of this
algorithm, which affect the overall effect of the algorithm. How to improve it to make the
algorithm perform better has become an important issue in the field of quantum computing.
This paper summarizes the optimization and improvement of HHL algorithm since it was
proposed, and the application of HHL algorithm in machine learning, and discusses some
possible future improvements of some subroutines in HHL algorithm.
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1. Introduction

In recent years, quantum computing has developed very rapidly. Due to the unique superposition and
entanglement of quantum, quantum computing has parallel computing capabilities and information
carrying capacity that are unmatched by classical computing technology. The development bottleneck
of traditional computers has reached, due to the failure of Moore's Law. So the development of
guantum computing has become the mainstream today. In 1982, Benioff [1] proposed the quantum
mechanical model of Turing machine and Feynman [2] proposed the idea of using quantum system for
information processing. In 1985, Deutsch [3] first proposed the quantum Turing machine model, and
designed the first algorithm specially designed for quantum computers using quantum properties. In
1994, Shor [4] proposed a large number prime factorization algorithm based on Fourier transform,
which can quickly decompose the prime factors of large numbers by using the parallelism of quantum
computing. In 1996, Grover [5] proposed a quantum search algorithm, which can perform quadratic
acceleration on unstructured data. In 2009, Harrow et al. [6] proposed a quantum algorithm for solving
linear equations, often referred to as the HHL algorithm by researchers. These algorithms have made a
significant contribution to demonstrating the advantages of quantum over classical quantum, bringing
real attention to quantum computing in the scientific community. Linear systems are the core of many
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fields of science, engineering and optimization problems. Many fields today rely heavily on the
solution of linear equation problems. Compared with classical algorithms, HHL algorithm has
exponential performance in certain cases. The acceleration effect is of great significance in the fields
of weather forecasting, economics, biological engineering, and computational science. On the other
hand, in order to achieve computing advantages, quantum computing has been introduced into the
field of machine learning, replacing the more complex part of the machine learning algorithm with the
corresponding quantum version for calculation, thereby reducing the time and space complexity of the
algorithm. In the direction of quantum machine learning, the implementation of some quantum
machine learning algorithms is mainly to use the HHL algorithm to replace the computationally
complex part of traditional machine learning and the structure of the entire algorithm is mostly the
structure of traditional machine learning algorithms, but due to the algorithm Some of the
computationally complex parts of the system are solved by quantum algorithms, thereby improving the
overall efficiency. This paper will focus on the in-depth discussion of the HHL algorithm as the core
and introduce the improvement and application of the HHL algorithm since its proposal.

2. Simulation and Improvement of HHL Algorithm

2.1. Implementation of HHL Algorithm

Linear systems are the core of many scientific and engineering fields. Because the HHL algorithm
achieves the exponential acceleration effect of classical algorithms under certain conditions, it can be
widely used in data processing, machine learning, numerical computing and other scenarios in the
future. In 2009, Harrow, Hassidim and Lloyd first proposed a quantum algorithm for solving systems
of linear equations using techniques such as Hamiltonian simulation and phase estimation. In the
literature [7], Danial et al. introduced the HHL algorithm and its improved optimization in detail, such
as quantum phase estimation and amplitude amplification and error analysis. The three subroutines of
the HHL algorithm are: Phase estimation, Control rotation, Inverse phase estimation. The circuit
diagram is shown in figure 1. The general steps of the algorithm are:

6, ~ 2arcsin(C/A,)

i """ Phase estimation | i Control rotation 1
|0} i E : z2le) : X | 1>
0)° 1A e S L A s — ; i [0)?
i i E WFPE
Ly | e | | )
i N ! i
E 4=, 2 |ufu. b I ¢
| e | ' rle) l_ﬂf|0>+?_;|l>

Figure 1. HHL algorithm circuit diagram.

1. A phase estimation subroutine is applied to the initial bits, which is a general step for
decomposing a quantum state on a particular basis. Initialize quantum state |b), The initial state of the
whole system is|0)®™|b). When the phase estimation subroutine ends, the state of the entire system is
2 B; [47)[mj)-

2. Perform a controlled rotation operation, which is intended to turn the|4;) to 2;*|4;).

3. Using inverse quantum phase estimation to restore|lj) to |0), the state of the entire system is:

5(1-510 + £10) 510 |u) @

The most important step in the process of solving linear equations is the quantum phase estimation
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algorithm that estimates the eigenvalues of Hermitian and unitary matrices. At this stage, an important
step is to perform a Hamiltonian simulation of some Hermitian matrix A to prepare it as unitary
operator U=e%t. Hamiltonian simulation is method of finding an efficient algorithm to realize the time
evolution of quantum states under given conditions, assuming that the input state is |E;>, after

Hamiltonian simulation, the state of this form is obtained (1/\/M) Z{";(}e”i’ |l > Ej, then perform
an inverse quantum Fourier transform on |l > to recover 4;[8].

Most of the current experiments are performed to solve 2 = 2 linear equations and 4 x4 linear
equations for various input vectors. The HHL algorithm experiments were realized in the nuclear
magnetic resonance system [9], the optical quantum system [10] and superconducting quantum
computing system [11]. These experiments demonstrate the solution of binary linear equations by
using 4 qubits and logic gate operations respectively and prove the feasibility of this algorithm.
Reference [12] takes the HHL quantum algorithm as an example and gives the quantum circuits of the
HHL quantum algorithm corresponding to 4 qubits and 7 qubits. The experimental results show that
when the input matrix is a second-order matrix, the fidelity is high, but when the input matrix is a
fourth-order matrix, the probability of the result being close to the true value is high only when the
matrix is sparse. Reference [13] uses four qubits and four controlled logic gates to implement each
required subroutine, demonstrating how the algorithm works. For different input vectors, the quantum
computer gave solutions to linear equations with fairly high accuracy, with fidelities ranging from
0.825 to 0.993. Figure 2 presents the fidelity of experimental results for different quantum systems:

Figure 2. Fidelity of experimental results in quantum system.

2.2. Improvement of HHL Algorithm
For the HHL algorithm to solve the linear equation system, when the coefficient matrix A is a sparse
well-conditioned matrix, the quantum algorithm achieves an exponential speedup in the dimension of
the matrix compared to the classical algorithm. However, the algorithm has some limitations that make
it difficult to achieve the ideal exponential speedup. The requirements for achieving exponential
acceleration are [14]:

1. Matrix A must be sparse or can be efficiently decomposed into sparse form.

2. The condition number of A must be scaled to polylog N, where N is the size of the linear system.

3. The elements of A can be efficiently computed by a black-box Oracle.

In response to these constraints, scholars have also proposed different improvements, and after
avoiding these constraints, the performance of the algorithm has also been improved. In 2010,
Ambainis [15] and others proposed an improved version of the algorithm using variable time
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amplitude amplification technology. The improved version reduces the dependence of the algorithm
complexity on the matrix condition number while keeping other factors in the algorithm unchanged. In
2017, Wossnig [16] used the quantum singular value estimation algorithm to reduce the dependence on
matrix sparsity in computational complexity and realized that the quantum linear system algorithm can
also achieve exponential speedup when dealing with dense matrices. The Hamiltonian is an operator
related to the total energy of a quantum system, which can be used to describe the evolution of a
quantum system over time, and the evolution of quantum states can be achieved by manipulating the
Hamiltonian. The process of processing A using Hamiltonian simulation in the HHL algorithm can be
called a black box. Literature [17] extensively studies the Hamiltonian simulation problem in quantum
circuits for solving linear equations, and how to simulate e’ in time. Sparse Hamiltonian
simulations play a big role in quantum algorithms [18, 19]. Reference [20] uses the group leader
optimization algorithm (GLOA) to process the Hamiltonian simulation steps: implementing controlled
unit U = e*4t, Through this algorithm, the U-gate is approximately decomposed into basic quantum
gates. When the U-gate is decomposed into a series of basic gates, its quantum circuit can be easily
constructed. In order to achieve relatively high accuracy of the HHL algorithm, in the Hamiltonian
simulation operation stage, low error is required to simulate the Hamiltonian and the rotation step is
controlled to obtain accurate results. The algorithm proposed in [21, 22] helps decomposing
Hamiltonian simulation unitary operators to arbitrary precision, Hamiltonian simulation is an
important method for dealing with matrices. In table 1 we summarize several different Hamiltonian
simulation methods and their complexity.

Table 1. Different Hamiltonian simulation methods.

Hamilton Simulation Complexity
Error containing simulation O (max||H;||* t?/¢e)
Trotter-Suzuki  simulation 0((t*max(Hy, H,)?)/€)

Based on quantum walk simulation O(S”Hmax” t/\e)

In the process of using the HHL algorithm to solve the linear equation problem, the subroutines in
the HHL algorithm will also affect the accuracy of the calculation results, so that the effect of the HHL
algorithm is limited. Among the three subroutines of the algorithm, the phase estimation stage is prone
to precision errors. Phase estimation is achieved in two stages: In the first stage, the phase of the
eigenvalue is extracted and placed in the probability radiation of the quantum state. In the second stage,
the phase in the probability amplitude is extracted and placed in the ground state of the quantum state.
The final output is the estimated phase, which can be used to further find the eigenvalues of the input
matrix. At this stage, for the input matrix, it is first converted to a unitary operator by Hamiltonian
simulation e?4t, then the phase information of the unitary operator is stored on the qubit. In this
process, the eigenvalue information of the unitary operator is represented by the qubit. The accuracy of
the solution depends on the eigenvalue represented by the qubit assigned to the phase estimation and
the higher the number of qubits, the higher the accuracy of the phase estimation. The accuracy of the
phase estimation algorithm is therefore limited by the number of qubits that represent the eigenvalues
of the matrix. Over the years, different scholars have accelerated and improved the accuracy of the
algorithm by improving subroutines in the HHL algorithm. In 2015, Childs et al. [23] improved the
HHL algorithm by using techniques such as unitary matrix linear combination. Compared with the
original HHL algorithm, the algorithm has an exponential acceleration effect for both dimension
parameters and precision parameters and reduces the computational cost, in dependence on precision
in complexity. Literature [24, 25] discussed some caveats proposed by scholars for the HHL algorithm:
the condition number k of matrix A , Hamiltonian simulation e4t, quantum state preparation |b),
the solution of the HHL algorithm is quantum state|x), However, the influence of these factors on the
calculation results of the HHL algorithm is also acceptable. The biggest problem is that the singular
value of matrix A needs to be located between 1/k and 1. Although this problem can be solved by
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scaling, it is often difficult to achieve the desired scaling. The problem arises in the eigenvalue stage of
the matrix that is processed by quantum phase estimation. Reference [26] analyzes the limiting factors
of the accuracy of the HHL algorithm solution, and then proposes an iterative improvement method for
HHL, and uses the iterative improvement method to verify the 4 <4 linear equation system. Through
the iterative improvement method, the optimal solution is obtained, and the accuracy of the improved
algorithm can exceed the accuracy limit brought by the number of qubits in the phase estimation stage
of the original algorithm. In 2018, Lee [27] proposed a hybrid quantum algorithm for solving linear
equations based on the HHL algorithm. The algorithm is mainly composed of phase estimation
algorithm, classical calculation and simplified HHL algorithm. In 2018, Lee [27] proposed a hybrid
guantum algorithm for solving linear equations based on the HHL algorithm. The algorithm is mainly
composed of a phase estimation algorithm, a classical calculation and a simplified HHL algorithm.
First, the phase estimation is repeated. Obtain the k-bit classical eigenvalue information and then use
the classical computer to analyze the measurement results of the first step. According to the analyzed
data, a simplified circuit of the controlled rotation part is realized [28] and finally the reduced
controlled rotation part is used to replace the original one. The controlled rotation section executes the
HHL algorithm. The paper summarizes the algorithm to calculate the probability distribution of
different eigenvalues, as shown in figure 3. It can be seen that the accuracy of the improved algorithm
in solving the linear equation problem is higher than the original algorithm.

Eigenvalue probability distribution
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Figure 3. Eigenvalue estimation probability distribution.

In this hybrid algorithm, the quantum phase estimation part needs a classical information
feedforward to reduce the circuit depth of the HHL algorithm and the accurate performance in solving
a specific linear equation system is higher than that of the HHL algorithm. The controlled rotation
operation in the HHL algorithm realizes the proportional extraction of the reciprocal of the ground
state value to the probability amplitude of the corresponding ground state through an additional qubit,
that is, |4;) to 2;7%|4;), Based on quantum phase estimation, literature [29] proposes a modular
approach to implement an arbitrary controlled quantum rotation algorithm, and uses numerical
simulations to illustrate the effect of controlled rotation on the fidelity of the implementation, proving
that The controlled rotation method makes the quantum algorithm have high fidelity without affecting
the acceleration of the original algorithm. Its structure is shown in figure 4:
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Figure 4. Improved controlled rotation.

Gao et al. [30] systematically studied the performance of the HHL algorithm with different
precisions and different redundant qubits and proposed a new quantum-classical hybrid algorithm for
the case of incomplete phase estimation, which can be used without sacrificing Reduce the demand for
qubit resources under the premise of accuracy. n order to intuitively compare the improvement effect
brought by the improvement of the HHL algorithm by scholars, table 2 lists the improved results of
different scholars after improving the algorithm:

Table 2. HHL algorithm improvement comparison.

Algorithm Before After Improvement
Improvement

[15] 0(k?log N) 0(k(log3k) log N)

[16] 0(k?*nployn/e) 0(k*>vnployn/e)

[25] 0(ploy(1/e)) 0(ploy log(1/€))

[31] O(log(N)s*k?/e) 0(log(N) [n]s?k?/e)

3. Quantum Machine Learning

3.1. Quantum Regression Algorithm
Because many traditional machine learning problems are ultimately related to the solution of
optimization problems, which often involve the solution of linear equations, the HHL algorithm is
exponentially faster than the classical algorithm for solving linear equations with sparse Hermitian
matrices, so The HHL algorithm can help speed up the optimization steps in classical machine learning
and scholars apply quantum algorithms to traditional machine learning algorithms to improve the
algorithms, thus forming the research direction of quantum machine learning. Quantum machine
learning uses the high parallelism of quantum computing to further optimize traditional machine
learning and the proposal of the HHL algorithm directly promotes the development of the entire
guantum machine learning direction. Some quantum machine learning algorithms based on linear
system problems use some of the techniques in the HHL algorithm to a greater or lesser extent. For the
improvement of machine learning algorithms into quantum machine learning algorithms, it is not only
through quantum algorithms to deal with complex parts of classical algorithms, the main problem is
how to efficiently map the classical data in the original machine learning algorithm into quantum
states. The current mainstream method is based on the physical realization of QRAM and uses QRAM
to realize the preparation of any quantum state, and then perform subsequent quantum state
calculations. Reference [31] summarizes the quantum machine learning algorithms in the past ten
years, and at the same time, compares and analyzes the differences and connections between quantum
machine learning algorithms and traditional machine learning algorithms.

Linear regression is one of the most important tasks in data mining and machine learning. The
linear regression problem is equivalent to solving a linear system ATAx=ATb, where A is the data
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matrix, b is the given vector and the prediction of the new data w is equivalent to calculating the
inner product w-x. Therefore, through the HHL algorithm, we can effectively find |x) then when we
prepare the quantum state|w) of w, we can effectively calculate (w|x), linear regression is all about
finding the best fit parameters and using it to predict new data. Reference [32] reviewed the important
progress of quantum regression algorithms in recent years, including quantum linear regression and
guantum ridge regression algorithms, and proposed a quantum logistic regression algorithm based on
gradient descent. Compared with classical algorithms, these quantum algorithms have exponential
acceleration effect under reasonable assumptions, showing the unique advantages of quantum
computing. In 2012, Wiebe et al. first proposed a quantum linear regression algorithm based on the
HHL algorithm [33]. When the data matrix is sparse and has a very low condition number, the
algorithm has an exponential acceleration effect compared to the classical algorithm. The purpose of
the quantum linear regression algorithm is to use the quantum algorithm to solve the optimal fitting
parameter w:

w = XTy=(XX)'Xy (2)

The calculation process is divided into two parts: y'= X'y and w= (X’X)"X*y=(X"X)'y, for y'=
Xy, First, the matrix y is loaded on the quantum state through probability amplitude encoding, and the
matrix X is converted into Hermitian matrix 1(X)= ()?T )é) y = Xy toly)=I1(X)|y),w=
(X’X)*X’y ,the problem can be transformed into solving |w)=1((X"X))|y’), when converted to
solving quantum states|w) and |y’), at this point, the HHL algorithm can be used to solve it, then the
guantum state |w) of the fitting parameters can be obtained. Reference [34] details the solution
process of quantum linear regression. In 2019, Zhao et al. used the HHL algorithm to design a
guantum Gaussian process regression algorithm for the prediction stage of Gaussian process
regression [35]. This algorithm has an exponential acceleration effect compared to the classical
algorithm. Reference [36] proposed the first quantum ridge regression algorithm, but the data matrix
processed by this algorithm needs to be a low-rank matrix. In 2017, Yu [37] et al. proposed a quantum
ridge regression algorithm whose data matrix is a low-rank matrix. The steps are similar to the HHL
algorithm, except that the dense low-rank matrix simulation technology is used in the quantum
simulation part [38]. In 2019, Yu [39] proposed an improved quantum ridge regression algorithm.
Compared with the previous algorithm, it can only be effective when the matrix is sparse. The
improved algorithm can handle non-sparse matrices well. These algorithms all cleverly use the HHL
algorithm skills to solve the problem. Reference [40] designed a quantum circuit for multiple linear
regression, and proposed to use the HHL algorithm to solve the multiple linear regression problem,
because any multiple regression problem can be transformed into an equivalent linear equation
problem or a quantum linear system problem. The result proves that the circuit of HHL algorithm can
be used for multiple linear regression problem after fine-tuning and preprocessing. The table 3 gives a
comparison of the complexity of each algorithm in the HHL-based quantum regression algorithm:

Table 3. Quantum regression algorithm based on HHL.

Algorithm Quantum Complexity

[33] 0(log(N)s3k®/e)

[35] 0(n)

[36] O(log(N + M) s? k3/€?)
[39] O(ploylog(N + M) k°/e*)
[41] 0(log(N)x2€?)

3.2. Quantum Classification Algorithms
Traditional machine learning can be mainly divided into three categories: supervised learning,
unsupervised learning and reinforcement learning. Quantum computing facilitates the study of
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supervised classification and unsupervised clustering problems. Reference [42] provides supervised
and unsupervised quantum machine learning algorithms. Classification problem is an important class
in machine learning. In 2014, Rebentrost et al. [43] used the HHL algorithm to design a quantum
support vector machine (QSVM), its core idea is to use the HHL algorithm to solve the inner product
operation problem of the training data, which has an exponential acceleration effect compared to the
classic SVM algorithm. The QSVM algorithm first encodes the eigenvectors into the quantum state by
means of probability amplitude encoding:

ENS D WREA) @)

where m is the feature dimension, |xl-|_1is the normalized vector and x;; , x;;is the jth feature of the
ith feature vector. Next, prepare the quantum state of the training set:

0=(JNg) ™ Ty (il [)1x,)) @

N, = Y™ 1x;2], x; is the ith training sample. The inner product operation K;j=x;-x; of the training
data can be obtained by solving the partial trace of the density matrix|y){x| to the normalized kernel
matrix:

try (DO = 5 Sleatall e )1} = o ©)

x;xj = |x;||x;|{x;|x;), through this method, the quantum system is connected with the kernel matrix
of traditional machine learning and the parallelism of the evolution operation between quantum states
can be used to complete the acceleration of the corresponding kernel matrix calculation in traditional
machine learning and then a quantum version is proposed. The least squares support vector machine
can use the quantum HHL algorithm to realize the accelerated solution of the linear equation system in
the least squares support vector machine algorithm. Reference [44] uses 4 quantum bits to realize the
recognition of the most basic handwritten digits 6 and 9 on the nuclear magnetic platform and the
accuracy of the result is as high as 99%, which shows the feasibility of the QSVM algorithm. In the
same year, the literature [45] proposed the quantum principal component analysis algorithm (QPCA).
When the rank of the data covariance matrix is very low, the algorithm can generate principal
components in the form of quantum states in polynomial time. Compared with classical principal
component analysis, it has the advantages of Exponential acceleration effect. The algorithm uses
multiple copies of the unknown density matrix to construct the eigenvector corresponding to the
largest eigenvalue, which can be applied to the discrimination and assignment of quantum states.
Among many mathematical models of machine learning, there is a core module called singular value
threshold (SVT), which is widely used to solve problems based on multi-kernel norm minimization. In
order to speed up the processing speed of SVT, quantum singular value threshold (QSVT) Algorithms
are proposed that can execute SVT operators at exponential speed. In the literature [46], it was
discussed that the QSVT algorithm can be composed of two core subroutines based on the HHL
algorithm, namely phase estimation and controlled rotation and its circuit structure is similar to that of
the HHL algorithm. After that, Duan [47] designed the quantum the circuit provides the possibility to
realize the algorithm on a quantum computer. The design of the control rotation part of the circuit has
an inspirational effect on the circuit design of the HHL algorithm. In addition, there are many quantum
machine learning algorithms based on HHL, including quantum recommendation systems [48] and
guantum neural networks [49]. Most of these categories of algorithms use the HHL algorithm as a
sub-module to process raw. The computationally complex part of the algorithm greatly promotes the
acceleration of the algorithm. Table 4 shows the complexity comparison between quantum machine
learning algorithms and traditional machine learning algorithms:
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Table 4. Quantum machine learning algorithm complexity.

Algorithm  Quantum Complexity Classical Complexity
QSVM 0(log(MN)) O(MN)

QSVT O(log, MN) O(poly(MN))
QPCA Secondary to accelerate —

QRR 0(poly(k)polylog(MN)) 0O(MN)

4. Summary

This paper mainly summarizes some improvements made by scholars for the HHL algorithm since it
was proposed, which has improved the performance of the algorithm. However, when the HHL
algorithm is applied, we still have to consider some limiting factors in the algorithm, as in the text
What we propose, whether it is the preparation of quantum states or the simulation of matrices, these
factors are unavoidable and must be dealt with in our use. How to ensure that these factors can be
perfectly handled when using the HHL algorithm or use other Methods to replace some of these
subroutines will be the focus of future work.

In addition, in view of the influence of the number of qubits in the HHL algorithm on the accuracy
of the neutron program, such as the number of qubits in the phase estimation program, we mentioned
the structure of the quantum-classical hybrid algorithm. The ideal data from the next step is used as the
input to improve the accuracy of its results. In the future, our work can try to simulate the phase
estimation subroutine on a high-performance computing platform to obtain higher-precision
eigenvalue information, because the time and space required for quantum computing simulations on
traditional classical computers are limited. The overhead increases exponentially with the number of
simulated bits. Even if we obtain the result of the phase estimation in a classical way, the accuracy
cannot be higher and the high-performance computing platform has become a powerful tool for
guantum simulation. Its huge memory and data processing speed allow us to simulate algorithms with
a larger number of qubits, so that the calculation results can achieve higher precision. Therefore, it is
of great significance to establish a hybrid quantum-classical hybrid computing based on hybrid
architecture. Reference [50] uses a supercomputer to simulate large-scale quantum Fourier transform
and realizes the simulation and optimization of 46-qubit QFT algorithm. The author of Reference [51]
uses high-performance heterogeneous cluster technology to achieve multi-bit quantum computing
simulation. Therefore, simulation on a classical computer can not only provide a reliable verification
platform for quantum algorithms and quantum circuits [52-54] but also help us understand the
boundary between classical computing and quantum computing [55]. Hybrid computing models will
play a bigger role in the future.

On the other hand, some guantum machine learning algorithms based on the HHL algorithm are
based on the existing classical machine learning algorithms and replace the more complex parts with
guantum computing for calculation, thereby improving their computational efficiency. In this process,
we need to What is considered is not only how to use the HHL algorithm to solve some of them, but
also how to effectively prepare the data in the classical algorithm into a quantum state, that is, the
guantization of classical information. However, the time complexity of building QRAM in this process
is still high, which affects the acceleration brought by quantum algorithms. Therefore, the technology
for mapping classical data into quantum states still needs to be improved.

5. Conclusions

The improvement and application of HHL algorithm are reviewed in this paper. In terms of HHL
algorithm improvement and optimization, the limitations of the algorithm, phase estimation
subroutines, Hamiltonian simulation, controlled rotation and other improvements are introduced
respectively. In terms of application, the application of HHL algorithm in machine learning is mainly
introduced, which briefly describe the regression problem and the classification problem.
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