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New rotating regular black hole solution
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We briefly present new rotating regular black hole solution by converting the static, spherically
symmetric Berej-Matyjasek-Tryniecki-Woronowicz spacetime which is ascociated with the general
relativity coupled to the nonlinear electrodynamics by using the Newman-Janis algorithm.

I. INTRODUCTION

It is well known that exact solutions of the Einstein equations have one of the ”mysterious” properties of the black
hole that is called singularity. Singularity has been considered one of defects of the general relativity because the
explanation of singularity cannot be made by can be created in order to eliminate singularity from the spacetime
metric.

We know that there are three types of regular black hole solutions: (i) solutions that are continuous throughout
spacetime; (ii) solutions with two simple regions, solutions that have boundary surfaces joining the two regions; and
(iii) solutions with two separated regions, the solutions that have a surface layer, thin shell, joining the two regions.

There are two kinds of singularity: the coordinate singularity (event horizon) and the curvature singularity. We know
that at the singularity the curvature of the manifold is becoming infinite. In the case of coordinate singularity, the grr
component of the metric tensor goes to infinity. One can eliminate coordinate singularity by making transformations
to the more fortunate coordinate system. Usually, by changing coordinates from the Boyer-Lindquist coordinates
to the Eddington-Finkelstein ones, one can remove coordinate singularity from the spacetime metric. Eddington-
Finkelstein coordinates are based on the freely falling photons. On the other hand, in the curvature singularity, the
Riemann tensor components of the spacetime metric diverge. It is impossible to eliminate curvature singularity from
the spacetime metric by coordinate transformations.

According to [1–4], the Kerr-like spacetime metrics can be derived from the Schwarzschild-like ones by using the
Newman-Janis algorithm. The derivation of the Kerr spacetime metric from the Schwarzschild one has been given
in several works [5–8]. Moreover, in the paper [8], the Kerr-Newman solution has been derived from the Reissner-
Nordström spacetime metric. The Newman-Janis algorithm has been used to derive the radiating Kerr-Newman black
hole in f(R) gravity [9]. The exact nonstatic charged BTZ (Baňados-Teitelboim-Zanelli)-like solutions, in (N+1)-
dimensional Einstein gravity, have been found in [10] in the presence of the negative cosmological constant. The
Lovelock gravity in the critical spacetime dimension has been studied in Ref. [11].

In order to convert the static, spherically symmetric black hole spacetime metric into a rotational one [if this
spacetime metric is given in the Boyer-Lindquist coordinates (t, r, θ, φ)] one has to proceed with the following
five steps of the Newman-Janis algorithm: (i) a transition from the Boyer-Lindquist coordinates into the advanced
Eddington-Filkenstein ones (u, r, θ, φ) has to be performed; (ii) a null tetrad (l, n, m, and m̄) (Newman-Penrose
tetrad) for a produced metric have to be found; (iii) a complex coordinate transformations has to be applied; (iv)
reverse coordinate transformations into the Boyer-Lindquist ones have to be done; and, (v) finally, unknown terms of
the transformations have to be found based on the reality condition.
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Here, we convert the static, spherically symmetric Berej-Matyjasek-Tryniecki-Woronowicz (BMTW) regular black
hole spacetime [12, 13] into the rotational one by using the Newman-Janis algorithm [1–3] and by studying some of
its basic properties.

II. NEW ROTATING REGULAR BLACK HOLE SOLUTION

In this section, we describe the Newman-Janis algorithm that is used for converting the spherically symmetric static
black hole spacetime metric into a rotational one. The Berej-Matyjasek-Trynieki-Woronowicz (BMTW) spacetime
metric of the regular spherically symmetric black hole is given as [12]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dθ2 + r2 sin2 θdφ2, (1)

where the lapse function f(r) reads

f(r) = 1− 2M

r
[1− tanh(

Q2

2Mr
)] , (2)

M and Q are the total mass and charge of the black hole.
As can be seen from the lapse function (2), the spacetime metric (1) has only the coordinate singularity. This is why

in order to remove this singularity one has to write the spacetime metric (1) in the advanced Eddington-Finkelstein
coordinates. To do this, we make the following transformation for the incoming photon (or ray):

v = t− r∗, (3)

and for the outgoing photon (or ray),

u = t+ r∗, (4)

where

r∗ =

∫
dr

f(r)
. (5)

Hereafter, we consider only the outgoing photon (4) case. Then the spacetime metric (1) in the advanced Eddington-
Finkelstein coordinates takes the form

ds2 = −f(r)du2 − 2dudr + r2dθ2 + r2 sin2 θdφ2. (6)

The Newman-Penrose tetrad consists of four isotropic vectors l, n, m, and m̄. l and n are real vectors, and m and
m̄ are mutually complex conjugate vectors [8].

Newman-Penrose tetrads satisfy the orthogonality condition:

lµ ·mµ = lµ · m̄µ = nµ ·mµ = nµ · m̄µ = 0, (7)

and also the isotropic condition:

lµ · lµ = nµ · nµ = mµ ·mµ = m̄µ · m̄µ = 0. (8)

Moreover, the basis vectors usually impose the following normalization condition:

lµ · nµ = 1, mµ · m̄µ = −1, (9)

where m̄µ is the complex conjugate of mµ.
The contravariant components of the metric tensor of the spacetime metric (6) are

gµν =


0 −1 0 0
−1 f(r) 0 0
0 0 1/r2 0
0 0 0 1/r2 sin2 θ

 . (10)
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We can rewrite (10) with the help of the Newman-Penrose tetrad as

gµν = −lµ · nν − lν · nµ +mµ · m̄ν +mν · m̄µ, (11)

where the components of the null tetrad vectors are

lµ = [0, 1, 0, 0], nµ = [1,−1

2
f(r), 0, 0],

mµ =
1√
2r

[0, 0, 1,
i

sin θ
], m̄µ =

1√
2r

[0, 0, 1,− i

sin θ
]. (12)

As the next step, we make the following complex coordinate transformations:

r̃ = r + ia cos θ, ũ = u− ia cos θ,

θ̃ = θ, φ̃ = φ. (13)

As a result of these transformations, the components of the null tetrad vectors take the form [5]

l̃µ = [0, 1, 0, 0], ñµ = [1,−1

2
f̃(r), 0, 0],

m̃µ =
1√

2(r + ia cos θ)
[ia sin θ,−ia sin θ, 1,

i

sin θ
],

˜̄mµ =
1√

2(r − ia cos θ)
[−ia sin θ, ia sin θ, 1,− i

sin θ
], (14)

where the function

f̃(r) = 1− 2Mr

Σ
[1− tanh(

Q2r

2MΣ
)] (15)

is the new form of the lapse function (13) and
Σ = r2 + a2 cos2 θ.

Then the metric tensor gµν takes new g̃µν form,

g̃µν = −l̃µ · ñν − l̃ν · ñµ + m̃µ · ˜̄mν + m̃ν · ˜̄mµ, (16)

or

g̃µν =


a2 sin2 θ

Σ −1− a2 sin2 θ
Σ 0 a

Σ

−1− a2 sin2 θ
Σ f̃(r) + a2 sin2 θ

Σ 0 − a
Σ

0 0 1
Σ 0

a
Σ − a

Σ 0 1
Σ sin2 θ

 . (17)

The covariant components of the metric tensor (17) are

g̃µν =


−f̃(r) −1 0 a(f̃(r)− 1) sin2 θ
−1 0 0 a sin2 θ
0 0 Σ 0

a(f̃(r)− 1) sin2 θ a sin2 θ 0 sin2 θ[Σ− a2(f̃(r)− 2) sin2 θ]

 , (18)

and the spacetime element can be written as

ds̃2 = guudu
2 + 2gurdudr + 2guφdudφ+ 2grφdrdφ+ gθθdθ

2 + gφφdφ
2. (19)

At the last step of the Newman-Janis algorithm one has to perform the transition from the Eddington-Finkelstein
coordinates to the Boyer-Lindquist one. To do this we had chosen (20) coordinate transformations:

du = dt+ λ(r)dr + ξ(θ)dθ,

dφ = dφ+ χ(r)dr + ζ(θ)dθ. (20)
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By putting (20) into (19) we have the spacetime metric with several nondiagonal components. In reality the spacetime
metric of the rotational black hole has only g03 (and g30) nondiagonal component of the metric tensor. Based on the
this condition we equalize the all nondiagonal components except from g03 to zero

guφζ(θ) + guuξ(θ) = 0,

guφχ(r) + guuλ(r) + gur = 0,

grφ + gφφχ(r) + guφλ(r) = 0,

ζ(θ)[grφ + gφφχ(r) + guφλ(r)] + ξ(θ)[gur + guφχ(r) + guuλ(r)] = 0,

gφφζ(θ) + guφξ(θ) = 0. (21)

By solving equations (21) with respect to unknown transformation functions λ(r), χ(r), ξ(θ) and ζ(θ) and using (18)
we will have the expressions of the transformation functions as following:

λ(r) = − Σ + a2 sin2 θ

Σf̃(r) + a2 sin2 θ
= − r2 + a2

∆r + 2Mr tanh( Q
2r

2MΣ )
,

χ(r) = − a

Σf̃(r) + a2 sin2 θ
= − a

∆r + 2Mr tanh( Q
2r

2MΣ )
,

ξ(θ) = 0,

ζ(θ) = 0. (22)

where ∆r = r2 + a2 − 2Mr, Σ = r2 + a2 cos2 θ.
Finally, the spacetime metric (19) can be expressed in the Boyer-Lindquist coordinates as

ds̃2 = −[1− 2Mr

Σ
(1− tanh(

Q2r

2MΣ
))]dt2 +

Σ

r2 + a2 − 2Mr(1− tanh( Q
2r

2MΣ ))
dr2 (23)

−2
2Mr

Σ
a sin2 θ(1− tanh(

Q2r

2MΣ
))dφdt+ Σdθ2 + [r2 + a2 +

2Ma2r sin2 θ

Σ
(1− tanh(

Q2r

2MΣ
))] sin2 θdφ2,

or

ds̃2 = −
∆r + 2Mr tanh( Q

2r
2MΣ )

Σ
(dt− a sin2 θdφ)2 +

sin2 θ

Σ
[(r2 + a2)dφ− adt]2

+
Σ

∆r + 2Mr tanh( Q
2r

2MΣ )
dr2 + Σdθ2, (24)

where f̃(r) reads as

f̃(r) = 1− 2Mr

Σ
[1− tanh(

Q2r

2MΣ
)] (25)

If we do not take into account the charge of the black hole (Q = 0), the lapse function (2) takes the same form
with one of the Schwarzschild spacetime metric and new spacetime metric (22) and (24) converts into the Kerr one,
namely,

ds̃2 = −∆r

Σ
(dt− a sin2 θdφ)2 +

Σ

∆r
dr2 +

sin2 θ

Σ
[(r2 + a2)dφ− adt]2 + Σdθ2. (26)

The event horizon of the new rotating black hole is determined by solving the following equation:

∆r + 2Mr tanh(
Q2r

2MΣ
) = 0 , (27)

while the timelike static limit, so-called apparent horizon of the black hole is found by solving the following equation:

Σ− 2Mr(1− tanh(
Q2r

2MΣ
)) = 0 . (28)

Since both equations (27) and (28) cannot be solved analytically, we present the solution of these equations in Fig.
1 for different values of charge and rotation parameters of the black hole. Where the outer lines represent the static
limit radius, while the inner curves correspond to the event horizon of the black hole. One can see from Fig. 1 that
with increasing the value of the charge (rotation) parameter, radii of the event horizon and static limit decrease, but
the area of the ergoregion (the region between event horizon and static limit) increases. Further the properties of the
current new black hole solution will be analyzed in our future works.
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FIG. 1: Shape and size of the ergosphere for the different values of the rotation parameter a and charge Q. Dashed and
dot-dashed lines represent event horizon and static limit.
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