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Abstract. The hull of a linear code is the intersection of the code and its dual

code, which is effective for determining parameters of entanglement-assisted

quantum error-correcting codes (EAQECCs). There are few constructions of
linear codes with various Hermitian hull dimensions, aside from Hermitian LCD

and self-orthogonal codes. The object of this paper is to introduce a building-
up construction for constructing linear [n + 2, k + 1] codes with ` or (` + 1)-

dimensional Hermitian hull from a given linear [n, k] code with `-dimension

Hermitian hull of a smaller length. This construction includes the converse
of the famous shortening technique as a special case. Using this method, we

construct optimal quaternary linear codes of lengths up to 13 with Hermitian

hull dimensions 2-5. As an application, we construct many EAQECCs, which
improve the parameters of EAQECCs of Grassl’s code table.

1. Introduction. In 1990, Assmus and Key [1] introduced the concept of the hull,
which is helpful for classifying finite projective planes. The hull determined the
complexity of certain algorithms, such as computing the automorphism group of
a linear code and checking permutation equivalence of two linear codes [28, 39,
40]. Furthermore, they also have applications in quantum communication [17].
Therefore, characterizing and classifying optimal linear codes with various hulls is
interesting and necessary.

Linear complementary dual (LCD) codes are linear codes with the smallest hull.
Massey [37] introduced LCD codes in order to give a solution in information theory.
LCD codes drew much attention recently due to their use in cryptography [11].
Further, they are helpful in constructing maximal-entanglement EAQECCs [27, 34].
LCD codes were extensively studied due to these applications. A non-exhaustive
list is [12, 15, 18, 21, 31, 43, 45].

On the other hand, a code C is self-orthogonal if the hull of C is the code C.
Since the beginning of coding theory, studying self-orthogonal codes has been an
active research problem [38]. They are used in many fields, such as t-design theory,
group theory, lattice theory and modular forms [2, 3, 17, 19, 41]. Besides interesting
combinatorial structures, they were also used to construct quantum error-correcting
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codes (QECCs) [9, 10, 32, 33], where QECCs have important applications in entan-
glement distillation protocols [4]. For more research on self-orthogonal codes, one
can refer to [23, 24, 26, 42, 44].

However, self-orthogonal codes are usually not readily available. To solve this
problem, Brun, Devetak and Hsieh [8] proposed the concept of EAQECCs, which
include QECCs as a special case and can be obtained from linear codes without self-
orthogonality. Recently, there has been increasing interest in exploring linear codes
with different hull dimensions. Particularly, Chen [13, 14] and Luo [35] studied the
variation of the hull of linear codes up to monomial equivalence and constructed
EAQECCs from known QECCs. Their results indicated that it is non-trivial to
study binary linear codes with various Euclidean hulls and quaternary linear codes
with various Hermitian hulls. Kim [22] proposed a method to construct binary
linear codes with various Euclidean hulls. Therefore, the study of quaternary linear
codes is open.

In fact, the Hermitian inner product has greater potential than the Euclidean
inner product in constructing EAQECCs [17]. There are few constructions of lin-
ear codes with various Hermitian hull dimensions except for Hermitian LCD and
self-orthogonal codes [25]. Therefore, a topic is to find an efficient method for con-
structing linear codes with different Hermitian hull dimensions. In this work, a
systematic method is introduced to construct linear codes with various Hermitian
hull dimensions. As a result, many optimal linear codes are obtained. As an ap-
plication, we construct many binary EAQECCs, which improve the parameters of
EAQECCs of Grassl’s code table [16].

The paper is arranged as follows. Section 2 gives some preliminaries. Section 3
gives a building-up construction for linear codes with various Hermitian hull dimen-
sions. Section 4 gives some numerical examples. As an application, some optimal
or new EAQECCs are constructed. Section 5 concludes the paper.

2. Preliminaries.

2.1. Linear codes. Let Fq denote the finite field with q elements. The (Hamming)
weight wt(x) of x ∈ Fn

q is defined by the number of nonzero components of x. A
linear [n, k, d]q code C is a k-dimensional subspace of Fn

q with minimum distance
d, where d is the minimum weight of all nonzero codewords of C. For any k × n
matrix G, we call G a generator matrix of a linear code C if rows of G form a
basis of C. We define the Hermitian dual code of a linear [n, k]q2 code C as C⊥H =
{y ∈ Fn

q2 | 〈x,y〉H = 0 for all x ∈ C}, 〈x,y〉H =
∑n

i=1 xiyi =
∑n

i=1 xiy
q
i for

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Fn
q2 If H is a generator matrix of the

dual code C⊥H , then we call H a parity-check matrix of C. The Hermitian hull of
a linear [n, k]q2 code C is defined by HullH(C) = C ∩C⊥H . A linear [n, k]`q2 code is

a linear [n, k]q2 code with `-dimensional Hermitian hull. A linear code C is called

Hermitian self-orthogonal if C ⊆ C⊥H , and Hermitian linear complementary dual
(LCD) if C ∩ C⊥H = {0}.

Definition 2.1. Suppose that n, k and ` are three integers. Let

Dq2(n, k) := max{d | there is a linear [n, k, d]q2 code},

DH
q2(n, k, `) := max{d | there is a linear [n, k, d]`q2 code}.

A linear [n, k]`q2 code C is called h`-optimal if C has the minimum distance

DH
q2(n, k, `).
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It is well-known that the Griesmer bound [20] on a linear [n, k, d]q code is given

by n ≥
∑k−1

i=0

⌈
d
qi

⌉
, where dae is the least integer greater than or equal to a real

number a. It is clear that DH
q2(n, k, `) ≤ Dq2(n, k). Hence their minimum distances

are bounded by the Griesmer bound for any `.

2.2. Characterization of Hermitian hull. For a matrix A = (aij), we define

the transpose AT and the conjugate matrix A of A as (aji) and (aij), respectively.

Proposition 2.2. [17, Proposition 3.2] Let C be a linear [n, k]q2 code with a gen-

erator matrix G. Then dim(HullH(C)) = dim(HullH(C⊥H)) = k − rank(GG
T

).

The puncturing and shortening techniques are two extremely vital means of
constructing new codes from old ones. For simplicity, we use the [n] for the set
{1, 2, . . . , n}, where n is a given positive integer. Let S ⊂ [n] and C be a linear
[n, k, d]q2 code. We delete the coordinates from S in each codeword in C to get

the punctured code CS . Consider the set C(S) of codewords which are 0 on S, and
shortened code CS can be obtained through puncturing C(S) on S.

Lemma 2.3. [36, Lemma 2] Assume that C is a linear [n, k, d]q2 code. Let S ⊂ [n]
be such that |S| = s. Then

(1) (C⊥H)S = (CS)⊥H , (C⊥H)S = (CS)⊥H .
(2) If s < d, then dim(CS) = k and dim((C⊥H)S) = n− s− k.

Theorem 2.4. [36, Theorem 4] Assume that C is a linear [n, k, d]`q2 code. Let

S ⊆ [n] be such that |S| = s. Then we have the following statements.

(1) (HullH(C))S ⊆ HullH(CS) and (HullH(C))S ⊆ HullH(CS)
(2) If S is a subset of information set of HullH(C), then

HullH(CS) = HullH(CS) = (HullH(C))S and dim(HullH(CS)) = `− s.

Proposition 2.5. Suppose that 0 ≤ s ≤ ` ≤ k ≤ n− 1. Then

(1) DH
q2(n, k, `) ≤ DH

q2(n− s, k − s, `− s).
(2) DH

q2(n, k, `) ≤ DH
q2(n− s, k, `− s) + s if DH

q2(n, k, `) ≥ s+ 1.

Proof. Let C be a linear [n, k, d]`q2 code.

(1) By Theorem 2.4, there is a set S such that the shortened code CS has param-

eters [n−s, k−s]`−sq2 . It turns out that d(CS) ≥ d by the definition of the shortened

code. Hence DH
q2(n, k, `) ≤ DH

q2(n− s, k − s, `− s).
(2) By Theorem 2.4 and Lemma 2.3, there is a set S such that the punctured

code CS has parameters [n − s, k]`−sq2 if DH
q2(n, k, `) ≥ s + 1. It turns out that

d(CS) ≥ d − s by the definition of the punctured code. Hence DH
q2(n, k, `) ≤

DH
q2(n− s, k, `− s) + s.

3. Building-up construction for linear codes with various Hermitian hull
dimensions.

In this section, we propose a method to obtain linear [n + 2, k + 1]`q2 and [n +

2, k + 1]`+1
q2 codes from a given linear [n, k]`q2 code.



LINEAR CODES AND RELATED EAQECCS 591

3.1. Construction I. First, we extend the building-up construction method [25]
for Hermitian self-dual codes to linear codes with prescribed Hermitian hull dimen-
sion.

Theorem 3.1. Let C be a linear [n, k]`q2 code with generator matrix G and parity-

check matrix H. Let x = (x1, x2, . . . , xn) ∈ Fn
q2 with 〈x,x〉H = −1 and c ∈ Fq2 with

cc = −1. Suppose that yi = 〈x, ri〉H and zi = 〈x, si〉H, where ri and si are the i-th
rows of G and H, respectively. Then

G1 =


1 0 x1 x2 · · · xn
−y1 cy1 r1
−y2 cy2 r2
...

...
...

−yk cyk rk

 .

generates a linear [n+ 2, k+ 1]`+1
q2 code C1. We call it Construction I. Moreover,

C1 has the following parity-check matrix

H1 =


1 0 x1 x2 · · · xn
−z1 cz1 s1
−z2 cz2 s2
...

...
...

−zn−k czn−k sn−k

 .

Proof. Let gi,j denote the element in the i-th row and j-th column of G1. If the
first row of G1 can be obtained by a linear combination of other rows, then g1,2 =
−cg1,1 6= 0, which contradicts the fact that g1,2 = 0. Therefore, rank(G1) = k + 1.
Similarly, rank(H1) = n− k + 1. It can be checked that

G1G1
T

=


0 0 0 · · · 0
0
... GG

T

0

 and G1H1
T

=


0 0 0 · · · 0
0
... GH

T

0

 = O,

where O is the suitable zero matrix. According to Proposition 2.2, we have

dim(HullH(C1)) = (k + 1)− rank(G1G1
T

)

= (k + 1)− rank(GG
T

)

= (k + 1)− (k − dim(HullH(C)))

= (k + 1)− (k − `)
= `+ 1.

Further, rank(H1) = n − k + 1 = dim(C⊥H
1 ). Hence C1 has a parity-check

matrix H1.

Example 1. Let F∗4 = 〈ω〉 and c = ω. We start from a linear [7, 4, 3]14 code. By
applying Construction I, we construct a linear [9, 5, 4]24 code C and the generator
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matrix

G =


1 0 0 0 0 0 ω2 ω 1
ω2 1 1 0 0 0 1 0 1
ω2 1 0 1 0 0 ω ω 1
1 ω 0 0 1 0 ω 1 1
0 0 0 0 0 1 1 1 1

 .
Moreover, C has the following parity-check matrix

H =


1 0 0 0 0 0 ω2 ω 1
ω2 1 1 0 0 1 ω2 0 ω
ω2 1 0 1 0 ω2 ω ω2 ω
1 ω 0 0 1 ω2 1 ω2 1

 .
Furthermore, the converse of Construction I has also been verified to be true, as

shown below.

Theorem 3.2. Suppose that ` ≥ 2. Then any linear [n, k, d > 2]`q2 code C can be

constructed from a linear [n− 2, k − 1]`−1q2 code C0 using Construction I.

Proof. Without loss of generality, we can assume that [I` A] is a generator matrix
of HullH(C). Then we can define a k × n generator matrix G of C as follows

G =

[
I` A
O B

]
=


1 0 0 · · · 0 a1

0 1 0 · · · 0 a2

O
I`−2
O

Ã
B

 ∼


1 −c 0 · · · 0 a1 − ca2

0 −c 0 · · · 0 −ca2

O
I`−2
O

Ã
B

 := G′,

where O is the suitable zero matrix. Consider the code C0 with the following
generator matrix

G0 =

 0 · · · 0 a1 − ca2

I`−2
O

Ã
B

 .
Obviously, C0 has parameters [n − 2, k − 1]q2 . Since the set {1, 2} is a subset of
an information set of HullH(C), it follows from (2) of Theorem 2.4 that the matrix[
I`−2 Ã
O B

]
generates a linear [n−2, k−2]`−2q2 code C2. Let y = (0, · · · , 0,a1−ca2).

Further, 〈y,y〉H = 0 and y ∈ C⊥H
2 . Hence C0 is a linear [n− 2, k − 1]`−1q2 code.

Assume that x = (0, · · · , 0,a1). It can be checked that 〈x,x〉H = −1. Using
the vector x and C0, we can construct a linear [n, k]q2 code C1 with the following
matrix G1 by theorem 3.1, where

G1 =


1 0 0 · · · 0 a1

1 −c 0 · · · 0 a1 − ca2

O
I`−2
O

Ã
B

 ,
and G1 is row equivalent to G. Thus, C is equivalent to C1. This completes the
proof.
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Corollary 3.3. Let C be a linear [n, k]`q2 code with generator matrix G and parity-

check matrix H. Let ri be the i-th row of G. If x = (x1, x2, . . . , xn) ∈ C⊥H and
〈x,x〉H = −1. For 1 ≤ j ≤ n − k, suppose that zj = 〈x, sj〉H where sj is the j-th
row of H. Then

G′1 =


1 x1 x2 · · · xn
0 r1
0 r2
...

...
0 rk


generates a linear [n+1, k+1]`+1

q2 code C ′1. We call it Construction I′. Moreover,

C ′1 has the following parity-check matrix

H ′1 =


−z1 s1
−z2 s2
...

...
−zn−k sn−k

 .
Proof. By Theorem 3.1, one can construct a linear [n+ 2, k + 1]`+1

q2 code C1. Since

x ∈ C⊥H , yi = 0 for 1 ≤ i ≤ k. Thus, by puncturing C1 on the second coordinate,
we know that the following matrix

1 x1 x2 · · · xn
0 r1
0 r2
...

...
0 rk


generates a linear [n + 1, k + 1]`+1

q2 code. The remaining proof is similar to that of

Theorem 3.1, we omit it.

Example 2. Let F∗4 = 〈ω〉. We start from a linear [9, 3, 6]34 code. By applying
Construction I′, one constructs a linear [10, 4, 4]44 code C with the generator matrix

G =


1 1 0 0 0 0 0 0 1 1
0 1 0 0 ω2 ω2 1 ω2 1 0
0 0 1 0 0 1 1 1 1 1
0 0 0 1 1 0 ω ω ω2 ω2

 .
Moreover, C has the following parity-check matrix

H =


1 1 0 0 0 0 0 0 1 1
ω2 0 1 0 0 0 0 ω ω2 0
1 0 0 1 0 0 0 1 ω ω2

1 0 0 0 1 0 0 1 0 1
ω2 0 0 0 0 1 0 ω 1 ω
0 0 0 0 0 0 1 1 ω2 ω2

 .

Furthermore, the converse of Construction I′ has also been verified to be true, as
shown below.

Theorem 3.4. Suppose that ` ≥ 1. Then any linear [n, k]`q2 code C can be obtained

from a linear [n− 1, k − 1]`−1q2 code C0 using Construction I′.
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Proof. We can assume that HullH(C) has a generator matrix [I` A].Then we can
define a k × n generator matrix G for C in the form of

G =

[
I` A
O B

]
,

where O is a suitable zero matrix. Consider S = {i} ⊂ [`]. Then CS with a generator
matrix

GS =

[
I`−1 Ai

O B

]
,

where Ai is a matrix that removes the i-th row from matrix A, is a linear [n−1, k−
1]`−1q2 code by (2) of Theorem 2.4.

Assume that x = (0, . . . , 0,ai), where ai is the i-th row of A. Using the vector x
and C0, we can construct a linear [n, k]q2 code C1 with the following matrix G1 by
Theorem 3.1, where

G1 =


1 0 · · · 0 ai

0
...
0

I`−1
O

Ai

B

 ∼
[
I` A
O B

]
= G.

This completes the proof.

3.2. Construction II. Recently, Harada [18] proposed an interesting construction
method for quaternary Hermitian LCD codes. By modifying Harada’s construction,
we give construction II as follows.

Theorem 3.5. Let C be a linear [n, k]`q2 code with generator matrix G and parity-

check matrix H. Let x = (x1, x2, . . . , xn) ∈ Fn
q2 with 〈x,x〉H = 0 and c ∈ Fq2 with

cc = −1. Suppose that yi = 〈x, ri〉H and zi = 〈x, si〉H where ri and si are the i-th
rows of G and H, respectively. Then

G2 =


1 0 x1 x2 · · · xn
−y1 cy1 r1
−y2 cy2 r2
...

...
...

−yk cyk rk


generates a linear [n+ 2, k+ 1]`q2 code C2. We call it Construction II. Moreover,

C2 has the following parity-check matrix

H2 =


0 c x1 x2 · · · xn
−z1 cz1 s1
−z2 cz2 s2
...

...
...

−zn−k czn−k sn−k

 .
Proof. Similar to the proof of Theorem 3.1, it can be checked that rank(G2) = k+1,
rank(H2) = n− k + 1 and

G2G2
T

=


1 0 0 · · · 0
0
... GG

T

0

 and G1H1
T

=


0 0 0 · · · 0
0
... GH

T

0

 = O,
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where O is the appropriate zero matrix. According to Proposition 2.2, we have

dim(HullH(C2)) = (k + 1)− rank(G2G2
T

)

= (k + 1)− rank(GG
T

+ 1)

= (k + 1)− (k − dim(HullH(C)) + 1)

= (k + 1)− (k − `+ 1)

= `.

Further, rank(H2) = n − k + 1 = dim(C⊥H
2 ). Hence C2 has a parity-check

matrix H2.

Example 3. Let F∗4 = 〈ω〉 and c = w. We start from a linear [7, 4, 3]14 code.
By applying Construction II, we construct a linear [9, 5, 4]14 code generated by the
following matrix

G =


1 0 ω 0 ω2 1 ω 1 1
1 ω 1 0 0 0 1 0 1
ω ω2 0 1 0 0 ω ω 1
ω2 ω3 0 0 1 0 ω 1 1
ω ω2 0 0 0 1 1 1 1

 .
Moreover, C has the following parity-check matrix

H =


0 ω ω 0 ω2 1 ω 1 1
ω ω2 1 0 0 1 ω2 0 ω
ω2 1 0 1 0 ω2 ω ω2 ω
0 0 0 0 1 ω2 1 ω2 1

 .
Next, we give Construction II′, which contains [30, Theorem 3.5 (3)] as a

special case.

Corollary 3.6. Let C be a linear [n, k]`q2 code with generator matrix G and parity-

check matrix H. Let ri be the i-th row of G. If x = (x1, x2, . . . , xn) ∈ C⊥H and
〈x,x〉H 6= −1. For 1 ≤ j ≤ n − k, suppose that zj = 〈x, sj〉H where sj is the j-th
row of H. Then

G′2 =


1 x1 x2 · · · xn
0 r1
0 r2
...

...
0 rk


generates a linear [n+1, k+1]`q2 code C ′2. We call it Construction II′. Moreover,

C ′2 has the following parity-check matrix

H ′2 =


−z1 s1
−z2 s2
...

...
−zn−k sn−k

 .
Proof. This proof is similar to the proof of Corollary 3.3, and it is omitted here.
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Example 4. Let F∗4 = 〈ω〉. We start from a linear [6, 2, 4]24 code. By applying
Construction II′, we construct a linear [7, 3, 4]24 code C generated by the following
matrix

G =

 1 0 ω2 1 0 1 1
0 1 0 0 1 ω2 ω2

0 0 1 0 ω2 ω2 1

 .
Moreover, C has the following parity-check matrix

H =


ω2 1 0 0 0 1 ω
ω 0 1 0 0 ω ω
1 0 0 1 0 0 0
ω2 0 0 0 1 ω 1

 .
Remark 3.7. Assume that C is a linear [n, k, d]`q2 code. Let S ⊆ [n] be such that

|S| = s. Luo et al. [36, Theorem 4] showed that dim(HullH(CS)) = ` − s if S is
a subset of information set of HullH(C). Following this theorem, we proved that
the converses of Constructions I and I′ are valid. However, we do not determine
the dimension of HullH(CS) for other cases. Therefore, we do not prove that the
converses of Constructions II and II′ are valid.

4. Numerical examples and their application to EAQECCs.
The parameters [[n, k, d; γ]]q denote a q-ary EAQECC that encodes k information

qubits into n channel qubits with the help of γ pre-shared entanglement pairs. A
method to construct EAQECCs from linear codes is as follows.

Proposition 4.1. [17] If there is a linear [n, k, d]`q2 code, then there exists an [[n, k−
`, d;n− k − `]]q EAQECC.

Example 5. Let F∗9 = 〈ω〉 and c = ω. We begin with a Hermitian LCD [5, 2, 4]9 and
use Theorem 3.1 to construct a linear [7, 3, 5]19 code C generated by the following
matrix

G =

 1 0 ω7 ω7 1 ω3 1
ω2 ω7 1 0 ω ω ω2

1 ω5 0 1 ω5 ω3 ω5

 .
On the other hand, C⊥H is a linear [7, 4, 4]19 code, which is h1-optimal. As an appli-
cation, we construct [[7, 2, 5; 3]]3 and [[7, 3, 4; 2]]3 EAQECCs, where the [[7, 3, 4; 2]]3
EAQECC is optimal with respect to [16]. Additionally, the [[7, 2, 5; 3]]3 EAQECC
requires less entanglement than the best-known ternary [[7, 2, 5; 4]]3 EAQECC in
[16].

By [13, Corollary 2.1] and [35, Theorem 7], there are LCD [7, 3, 5]9 and [7, 4, 4]9
codes. As an application, we construct [[7, 3, 5; 4]]3 and [[7, 4, 4; 3]]3 EAQECCs,
both of which are optimal with respect to [16].

4.1. h`-optimal quaternary linear codes and related EAQECCs. We con-
struct several hi-optimal quaternary linear codes of lengths up to 13 by applying
Theorem 2.4, Constructions I, I′, II and II′. All computations were done by Magma
[5]. Tables 1, 3, 5 and 7 list the best minimum distances for quaternary linear
codes and Tables 2, 4, 6 and 8 display their related EAQECCs. The upper bounds
in the tables come from Proposition 2.5 and Grassl’s table [16]. Recently, Li, Shi
and Liu [29] characterized h1-optimal quaternary linear codes for n ≤ 12 using a
different method. There are some important classification in [6], which is helpful
to characterize h`-optimal quaternary linear codes. For example, there exists a
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unique linear [12, 6, 6]4 code, which is Hermitian LCD. Hence DH
4 (12, 6, `) ≤ 5 for

1 ≤ ` ≤ 6. Similarly, we have DH
4 (11, 5, `) ≤ 5 for 1 ≤ ` ≤ 5 and DH

4 (11, 6, `) ≤ 4
for 1 ≤ ` ≤ 6.

In the following, we use G`
n,k,d to denote a generator matrix of a linear [n, k, d]`4

code C`
n,k,d. To reduce redundancy, the codes in Tables 1, 3, 5 and 7 can be obtained

from https://coding-theory.github.io/code2/. In this paper, we list generator
matrices for k = 5, 6, 7, 8 and n = 13.

Example 6. The dimension of hull is fixed at 1. We construct some h1-optimal
quaternary linear codes by applying Theorem 2.4, Constructions I, I′, II and II′. By
BKLC database [5], there is a linear [16, 5, 9]44 code C4

16,5,9. By applying Theorem

2.4 to the code C4
16,5,9, puncturing the code C4

16,5,9 on the set {1, 2, 3}, a linear

[13, 5, 6]14 code is obtained.

• n = 13, k ∈ {3, 4, 5, 6, 7, 8} and h = 1

G1
13,3,9 =

1 0 0 ω̄ ω 1ω ω̄ 0ω ω̄ ω̄ 1
0 1 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 0 0 1 1ω ω ω̄ ω̄

 , G1
13,4,7 =


1 0 0 0 0 1 1 ω 0 ω ω̄ ω̄ 1
0 1 0 0 0 1 0 ω̄ ω ω̄ 1 0 ω̄
0 0 1 0 0 ω̄ ω 1 ω̄ 0 1 ω̄ ω
0 0 0 1 0 1 ω 0 1 ω̄ ω̄ ω 0

 ,

G1
13,5,6 =


1 0 0 0 0ω ω 1 1 1 ω 1 ω
0 1 0 0 0 ω̄ ω 1 0 ω ω̄ ω ω
0 0 1 0 0ω ω ω̄ ω ω 0 1 1
0 0 0 1 0 0 0 1 1 ω 1 1 1
0 0 0 0 1 0 ω 1 1 0 ω̄ ω ω̄

 , G1
13,6,6 =


1 0 0 0 0 0 ω̄ 0 0 1 ω̄ ω ω
0 1 0 0 0 0 0 ω ω̄ ω ω ω̄ ω
0 0 1 0 0 0 1 ω ω ω ω 1 ω̄
0 0 0 1 0 0ω 0 ω 0 1 ω ω̄
0 0 0 0 1 0 1 ω 0 ω̄ ω ω̄ 0
0 0 0 0 0 1 1 0 ω ω 0 ω ω

 ,

G1
13,7,5 =



1 0 0 0 0 0 0 1 0 0 1 1 ω
0 1 0 0 0 0 0 1 ω̄ 1 0 ω̄ 0
0 0 1 0 0 0 0 0 1 ω̄ 1 0 ω̄
0 0 0 1 0 0 0ω ω̄ ω̄ ω̄ ω ω
0 0 0 0 1 0 0 1 0 ω ω̄ 1 ω̄
0 0 0 0 0 1 0ω ω ω ω 0 ω̄
0 0 0 0 0 0 1ω 1 0 ω 1 ω


, G1

13,8,4 =



1 0 ω̄ 1 0 1 1 1 1 1 1 1 1
ω ω̄ 1 0 0 0 0 0 0 ω̄ 1 1 ω̄
ω̄ 1 0 1 0 0 0 0 0 ω̄ 0 ω̄ ω
ω̄ 1 0 0 1 0 0 0 0ω 1 1 1
1 ω 0 0 0 1 0 0 0 1 ω̄ ω 0
1 ω 0 0 0 0 1 0 0 0 1 ω̄ ω
0 0 0 0 0 0 0 1 0ω ω 0 1
ω̄ 1 0 0 0 0 0 0 1 1 ω̄ 1 1


.

Example 7. The dimension of hull is fixed at 2. We construct some h2-optimal
quaternary linear codes by applying Theorem 2.4, Constructions I, I′, II and II′. By
[29, Table 5], DH

4 (8, 2, 1) = 5. It follows from Proposition 2.5 that DH
4 (9, 3, 2) ≤

DH
4 (8, 2, 1) = 5. By adding the zero column to C2

8,3,5, we know that DH
4 (9, 3, 2) ≥

DH
4 (8, 3, 2) = 5. Hence we have DH

4 (9, 3, 2) = 5.

• n = 13, k ∈ {5, 6, 7, 8} and h = 2

G2
13,5,6 =


1 0 0 0 1 0 0ω 0 ω 1 1 0
0 1 0 0 1 0 0 0 1 ω̄ 1 0 ω̄
0 0 1 0ω 0 0 1 ω̄ 1 0 ω ω
0 0 0 1ω 0 0 ω̄ ω̄ ω ω 1 1
0 0 0 0 0 1 0 0 ω ω 1 ω̄ 1

 , G2
13,6,6 =


1 0 0 0 0ω 0ω ω̄ 1 0 0 ω
0 1 0 0 0 1 0 0 ω̄ ω̄ ω̄ 0 ω̄
0 0 1 0 0 ω̄ 0 0 ω ω̄ 0 ω ω̄
0 0 0 1 0 ω̄ 0ω ω̄ ω 0 ω̄ 0
0 0 0 0 1 1 0ω 0 ω̄ ω ω̄ ω̄
0 0 0 0 0 0 1 0 ω ω 1 ω̄ 1

 ,

https://coding-theory.github.io/code2/
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G2
13,7,5 =



1 0 0 0 0 0 0 0 0 1 ω̄ 1 ω̄
0 1 0 0 0 0ω 0 1 0 ω̄ 0 ω
0 0 1 0 0 0 0 0 1 0 1 1 ω
0 0 0 1 0 0 ω̄ 0 0 ω 1 ω̄ ω
0 0 0 0 1 0ω 0 ω̄ ω ω 0 ω
0 0 0 0 0 1 1 0 ω̄ ω 1 1 0
0 0 0 0 0 0 0 1ω 1 ω 1 ω


, G2

13,8,4 =



1 0 ω̄ ω̄ ω ω 1 1 1 1 1 1 1
ω ω̄ 1 0 0 0 0 0 0 ω̄ 1 1 ω̄
0 0 0 1 0 0 0 0 0 ω̄ 0 ω̄ ω
0 0 0 0 1 0 0 0 0ω 1 1 1
ω̄ 1 0 0 0 1 0 0 0 1 ω̄ ω 0
1 ω 0 0 0 0 1 0 0 0 1 ω̄ ω
0 0 0 0 0 0 0 1 0ω ω̄ 0 1
ω̄ 1 0 0 0 0 0 0 1 1 ω̄ 1 1


.

The EAQECCs related to Table 1 are displayed in Table 2, where “∗” denotes the
corresponding code is the best-known EAQECCs compared with [16]. The param-
eters in bold indicate that the corresponding code have new or better parameters
compared with the best-known EAQECCs [16]. For example, we can construct a
[9, 4, 5]24 code. As an application, one can obtain a [[9, 2, 5; 3]]2 EAQECC, which
requires less entanglement than the best-known [[9, 2, 5; 4]]2 EAQECC in [16].

Table 1: DH
4 (n, k, 2) for n ≤ 13

n\k 2 3 4 5 6 7 8 9 10 11

4 2
5 4 3
6 4 3 2
7 4 4 3 2
8 6 5 4 3 2
9 6 5 5 4 3 2
10 8 6 6 5 4 3 2
11 8 7 6 5 4 4 3 2
12 8 8 ≥ 6 6 5 4 4 3 2
13 10 9 8 ≥ 6 6 5 4 4 3 2

Table 2: The related [[n, k, d; γ]]2 EAQECCs with [d; γ] based on Table 1
n\k 0 1 2 3 4 5 6 7 8 9

4 [2; 0]∗

5 [4; 1]∗ [3; 0]∗

6 [4; 2] [3; 1] [2; 0]∗

7 [4; 3] [4; 2] [3; 1]∗ [2; 0]∗

8 [6; 4]∗ [5; 3] [4; 2]∗ [3; 1] [2; 0]∗

9 [6; 5] [5; 4] [5; 3] [4; 2] [3; 1]∗ [2; 0]∗

10 [8; 6] [6; 5] [6; 4] [5; 3] [4; 2]∗ [3; 1]∗ [2; 0]∗

11 [8; 7]∗ [7; 6] [6; 5]∗ [5; 4]∗ [4; 3] [4; 2] [3; 1]∗ [2; 0]
12 [8; 8] [8; 7] [6; 6] [6; 5]∗ [5; 4]∗ [4; 3] [4; 2]∗ [3; 1]∗ [2; 0]∗

13 [10; 9] [9; 8]∗ [8; 7]
∗

[6; 6] [6; 5]∗ [5; 4] [4; 3] [4; 2] [3; 1]∗ [2; 0]∗

Example 8. The hull dimension is fixed at 3. We construct some h3-optimal
quaternary linear codes by applying Theorem 2.4, Constructions I, I′, II and II′.
By Proposition 2.5, DH

4 (10, 4, 3) ≤ DH
4 (9, 3, 2) = 5. The EAQECCs related to Table

3 are displayed in Table 4.
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• n = 13, k ∈ {5, 6, 7, 8} and h = 3

G3
13,5,6 =


1 0 0 ω̄ 0ω 1 1 1 1 1 1 1
0 0 1 0 0 0 ω ω 1 ω ω ω̄ ω
ω̄ 1 0 1 0 0 ω ω̄ ω ω̄ ω ω 1
1 ω 0 0 1 0 ω ω̄ 1 0 ω̄ ω 0
ω ω̄ 0 0 0 1 0 1 ω̄ ω̄ ω̄ 0 ω̄

 , G3
13,6,6 =


1 0 0 0 0 ω̄ 0 1 0 ω̄ ω ω 0
0 1 0 0 0 1 0ω ω ω̄ 1 0 ω̄
0 0 1 0 0ω 0 0 1 ω ω ω ω
0 0 0 1 0ω 0ω ω̄ ω ω̄ 1 ω̄
0 0 0 0 1 ω̄ 0 ω̄ ω̄ 0 1 1 ω̄
0 0 0 0 0 0 1ω 1 ω 1 ω ω̄

 ,

G3
13,7,5 =



1 0 0 0 0 0 0 ω̄ ω̄ ω̄ 0 0 1
0 1 0 0 0 0 0 0 1 0 ω̄ 1 ω̄
0 0 1 0 0 0 0 1 0 1 1 ω 0
0 0 0 1 0 0 0 ω̄ ω̄ 0 0 ω ω̄
0 0 0 0 1 0 0 0 1 ω̄ 1 0 ω̄
0 0 0 0 0 1 0 1 ω ω̄ 1 ω̄ 0
0 0 0 0 0 0 1 1 ω̄ ω 0 1 1


, G3

13,8,4 =



1 0 0 0 0 0 0 0ω ω 0 ω 0
0 1 0 0 0 0 0 0ω 0 ω̄ ω 0
0 0 1 0 0 0 0 0 ω̄ ω ω̄ ω 0
0 0 0 1 0 0 0 0 0 ω̄ ω 1 0
0 0 0 0 1 0 0 0ω ω 1 1 0
0 0 0 0 0 1 0 0 1 1 ω ω 0
0 0 0 0 0 0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 ω ω ω̄ 0


.

Table 3: DH
4 (n, k, 3) for n ≤ 13

n\k 3 4 5 6 7 8 9 10

6 4
7 4 3
8 4 4 3
9 6 4 4 3
10 6 5 4 3 3
11 6 6 5 4 4 3
12 8 7 6 5 4 4 3
13 8 ≥ 7 ≥ 6 6 5 4 4 3

Table 4: The related [[n, k, d; γ]]2 EAQECCs with [d; γ] based on Table 3
n\k 0 1 2 3 4 5 6 7

6 [4; 0]∗

7 [4; 1]∗ [3; 0]∗

8 [4; 2] [4; 1] [3; 0]∗

9 [6; 3]∗ [4; 2] [4; 1]∗ [3; 0]∗

10 [6; 4] [5; 3] [4; 2] [3; 1] [3; 0]∗

11 [6; 5] [6; 4] [5; 3] [4; 2] [4; 1]∗ [3, 0]∗

12 [8; 6]∗ [7; 5] [6; 4] [5; 3]∗ [4; 2] [4; 1] [3; 0]∗

13 [8; 7] [7; 6] [6; 5] [6; 4] [5; 3]∗ [4; 2] [4; 1]∗ [3; 0]∗

Example 9. The dimension of hull is fixed at 4. We construct h4-optimal linear
codes by applying Theorem 2.4, Constructions I, I′, II and II′. By Proposition 2.5,
DH

4 (10, 5, 4) ≤ DH
4 (9, 4, 3) = 4. The EAQECCs related to Table 5 are displayed in

Table 6.
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• n = 13, k ∈ {5, 6, 7, 8} and h = 4

G4
13,5,7 =


1 0 1 ω̄ 1 0 ω̄ 0 1 1 1 1 1
1 ω 1 0 0 0 1 ω ω̄ ω 1 ω̄ 1
1 ω 0 1 0 0 1 1 1 1 ω ω̄ 0
ω̄ 1 0 0 1 0 1 ω̄ ω̄ 1 0 1 ω̄
1 ω 0 0 0 1 ω̄ ω̄ 1 0 1 ω̄ ω̄

 , G4
13,6,6 =


1 0 0 0 0 0 1 0 ω ω̄ 1 ω ω
0 1 0 0 0 0 ω̄ ω 0 1 1 ω̄ 0
0 0 1 0 0 0 ω̄ ω̄ ω̄ ω ω 0 ω
0 0 0 1 0 0 0 ω 0 1 ω̄ 1 ω
0 0 0 0 1 0 ω̄ ω ω̄ 0 ω̄ 1 0
0 0 0 0 0 1 ω̄ ω ω ω̄ ω̄ ω ω̄

 ,

G4
13,7,5 =



1 0 0 0 0 0ω 0 ω̄ 1 0 ω 1
0 1 0 0 0 0 ω̄ 0 0 0 ω ω ω
0 0 1 0 0 0ω 0 1 ω̄ 1 ω 0
0 0 0 1 0 0ω 0ω 1 ω̄ 0 ω
0 0 0 0 1 0ω 0 1 ω ω 0 ω̄
0 0 0 0 0 1 0 0 ω̄ 0 1 ω̄ ω
0 0 0 0 0 0 0 1 0 ω̄ ω ω̄ 1


, G4

13,8,4 =



1 0 0 0 0 0 0 0ω 0 1 ω 0
0 1 0 0 0 0 0 0ω 0 ω̄ ω̄ 1
0 0 1 0 0 0 0 0 1 1 ω ω̄ ω
0 0 0 1 0 0 0 0 1 ω ω̄ 1 1
0 0 0 0 1 0 0 0ω 1 ω̄ 0 1
0 0 0 0 0 1 0 0 0 ω 1 ω̄ 1
0 0 0 0 0 0 1 0ω ω̄ 1 0 0
0 0 0 0 0 0 0 1 1 ω 1 1 ω̄


.

Table 5: DH
4 (n, k, 4) for n ≤ 13

n\k 4 5 6 7 8 9

8 4
9 4 3
10 4 4 3
11 6 5 4 3
12 6 ≥ 5 ≥ 4 4 4
13 8 7 6 5 4 3

Table 6: The related [[n, k, d; γ]]2 EAQECCs with [d; γ] based on Table 5
n\k 0 1 2 3 4 5

8 [4; 0]∗

9 [4; 1] [3; 0]∗

10 [4; 2] [4; 1] [3; 0]
11 [6; 3] [5; 2] [4; 1] [3; 0]∗

12 [6; 4] [5; 3] [4; 2] [4; 1] [4; 0]∗

13 [8; 5]∗ [7; 4] [6; 3] [5; 2]∗ [4; 1] [3; 0]∗

Example 10. The dimension of hull is fixed at 5. We construct some h5-optimal
linear [n, k]4 codes by applying Theorem 2.4, Constructions I, I′, II and II′. The
EAQECCs related to Table 7 are displayed in Table 8. For the optimality of k = 5,
one can refer to [7].

• n = 13, k ∈ {5, 6, 7, 8} and h = 5

G5
13,5,6 =


1 0 0 0 0 0 1 1 1 1 1 1 1
0 1 0 0 0 ω̄ ω ω 0 ω ω ω̄ ω̄
0 0 1 0 0 1 ω̄ 1 1 1 ω̄ 0 1
0 0 0 1 0 ω̄ 1 0 ω̄ ω ω̄ ω 1
0 0 0 0 1 ω̄ 1 ω 0 0 ω 1 0

 , G5
13,6,5 =


1 0 0 0 0 ω̄ 0ω 0 1 1 1 0
0 1 0 0 0 0 0 1 ω ω 0 1 0
0 0 1 0 0ω 0 ω̄ ω ω̄ 0 ω 1
0 0 0 1 0 ω̄ 0 ω̄ ω ω 1 0 ω̄
0 0 0 0 1 ω̄ 0ω 0 ω ω 0 0
0 0 0 0 0 0 1ω ω ω̄ ω 0 0

 ,
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G5
13,7,5 =



1 0 0 0 0 0 0 0 ω̄ 1 0 1 ω
0 1 0 0 0 0 0 1 ω ω̄ 1 ω 0
0 0 1 0 0 0 0 1 1 0 ω ω 1
0 0 0 1 0 0 0ω ω 1 ω ω 1
0 0 0 0 1 0 0 ω̄ 0 ω̄ 1 ω̄ 0
0 0 0 0 0 1 0ω ω̄ ω̄ 1 0 1
0 0 0 0 0 0 1ω ω̄ ω ω 1 ω


, G5

13,8,4 =



1 0 0 0 0 0 0 0 0 ω̄ ω ω̄ 1
0 1 0 0 0 0 0 0ω 1 ω ω̄ 0
0 0 1 0 0 0 0 0 ω̄ 0 ω̄ 0 1
0 0 0 1 0 0 0 0 1 0 ω ω̄ 0
0 0 0 0 1 0 0 0 ω̄ ω̄ 1 ω ω
0 0 0 0 0 1 0 0ω 0 ω̄ ω̄ ω̄
0 0 0 0 0 0 1 0ω 1 ω̄ ω̄ 1
0 0 0 0 0 0 0 1 ω̄ ω̄ 0 1 0


.

Table 7: DH
4 (n, k, 5) for n ≤ 13

n\k 5 6 7 8

10 4
11 4 3-4
12 6 5 4
13 6 5-6 5 4

Table 8: The related [[n, k, d; γ]]2 EAQECCs with [d; γ] based on Table 7
n\k 0 1 2 3

10 [4; 0]∗

11 [4; 1] [3; 0]
12 [6; 2] [5; 1] [4; 0]∗

13 [6; 3] [5; 2] [5; 1]∗ [4; 0]∗

5. Conclusion. This paper has introduced an efficient method for constructing
linear codes with various Hermitian hull dimensions. We have constructed optimal
quaternary linear codes of lengths up to 13 with Hermitian hull dimensions 2-5. As
an application, some new or improved EAQECCs have been constructed compared
with Grassl’s code table [16].

Acknowledgments. The authors thank Professor Jon-Lark Kim for helpful dis-
cussion. The authors would also like to thank the editor and the anonymous ref-
erees for helpful comments which have highly improved the quality of the paper.
This research is supported by the National Natural Science Foundation of China
(12071001).
Conflict of Interest: No competing interests.
Data Deposition Information: The data of this study is openly available at
https://coding-theory.github.io/code2/.

REFERENCES

[1] E. F. Assmus Jr. and J. D. Key, Affine and projective planes, Discrete Math., 83 (1990),
161-187.

[2] C. Bachoc and P. Gaborit, Designs and self-dual codes with long shadows, J. Combin. Theory
Ser. A, 105 (2004), 15-34.

[3] E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices,
and invariant rings, IEEE Trans. Inf. Theory, 45 (1999), 1194-1205.

[4] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin and W. K. Wootters, Mixed-state entanglement

and quantum error correction, Phys. Rev. A, 54 (1996), 3824-3851.
[5] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J.

Symbolic Comput., 24 (1997), 235-265.

https://coding-theory.github.io/code2/
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1065696&return=pdf
http://dx.doi.org/10.1016/0012-365X(90)90003-Z
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2030137&return=pdf
http://dx.doi.org/10.1016/j.jcta.2003.09.003
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1686252&return=pdf
http://dx.doi.org/10.1109/18.761269
http://dx.doi.org/10.1109/18.761269
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1418618&return=pdf
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1484478&return=pdf
http://dx.doi.org/10.1006/jsco.1996.0125


602 RUOWEN LIU, SHITAO LI AND MINJIA SHI

[6] I. Bouyukliev, M. Grassl and Z. Varbanov, New bounds for n4(k, d) and classification of some
optimal codes over GF(4), Discrete Math., 281 (2004), 43-66.
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