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The short-range correlation of the asymmetric nucleonic matter (ASM) is perused at finite temperature 
in the lowest order constrained variational (LOCV) method. It is observed that, by increasing the 
temperature, the LOCV ASM static non-central distribution functions become weak. For small inter-
particle distances, a universal behavior is found for the LOCV ASM state-dependent density distributions. 
Using the expectation value of the one-pion exchange part of the AV 18 interaction, the scaling factor 
of the pion absorption cross section (the number of quasideuterons), for the different proton to neutron 
ratios R , is also estimated in the LOCV formalism. It is shown that, by increasing (decreasing) the ratio 
R (the temperature), the number of quasideuterons grows. Considering the scaling factor, the Bethe-
Levinger (BL) factor for the ASM is also investigated. It is demonstrated that, at the saturation density 
and temperature 20 MeV, the BL factor for the ASM with R = 1(0.5) becomes 4.3 (4.5).

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The study of the short-range structure of nuclei is an important 
topic in nuclear physics. The nuclei structure at the short inter-
particle distances (high values of momentum) can be investigated, 
using the two-body state-dependent density (one-body momen-
tum) distributions. At these mentioned limits, the nuclei density 
and momentum distributions show a universal behavior. The uni-
versality results from the short-range central and tensor correla-
tions. Therefore, the nuclei state-dependent density distributions 
differ only by the scaling factor R Ad at short distances [1]. The 
R Ad factor, which represents the number of quasideuterons, is de-
termined in terms of the Bethe-Levinger (BL) factor [1,2]. At high 
momentum transfer values, the cross sections of the scattering of 
photons, nucleons, and leptons off nuclei are also scaled. The scal-
ing factors are proportional to the probability of the nuclei short-
range two- and three-body correlations. Previously, the short-range 
structures of light nuclei and symmetric nuclear (pure neutron) 
matter were studied using the (Green’s Function) Monte Carlo 
((G F )MC ), the Fermi Hypernetted chain (FHNC) and the Correlated 
Gaussian Basis (CGB) approaches, respectively [1–6]. The nuclei 
photo-disintegration cross section was also investigated by ana-
lyzing the corresponding experimental data and the quasideuteron
model [7–9]. The scaling of the inclusive electron scattering cross 
sections of different nuclei and the probability of short-range two-
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and three-body correlations were also discussed in the references 
[10,11]. The thermal and isospin asymmetry effects on the behav-
ior of nuclei one-body momentum distribution above the Fermi 
momentum were reported in the references [12,13]. Moreover, the 
scaling (and the BL) factor(s) for the momentum distributions of 
the symmetric nuclear matter and the heavy nuclei were evalu-
ated, using the (correlated basis function approach [14,15]) convo-
lution model [16]. The short-range structure and the scaling (BL) 
factor for the asymmetric nucleonic matter (ASM) at finite temper-
ature, have not been reported yet.

Due to the importance of the microscopic study of the nuclei 
structure; in this research, the state-(in)dependent density dis-
tributions (distribution functions) and the estimations of the BL
(scaling) factor for the ASM at finite temperature are found in 
the Lowest Order Constrained Variational (LOCV) formalism. In the 
present study, we employ the two-body AV 18 [17] potential and 
the three-body interaction of the references [18,19]. In the LOCV
calculations, the cluster expansion of the energy is truncated at the 
lowest order, i.e. at the two-body cluster term [20,21]. This approx-
imation is justified by imposing the normalization constraint [22]. 
The LOCV framework was previously applied to different nucleonic
matter problems at zero and finite temperatures [23–43]. The ap-
proximated LOCV predictions were in agreement with those of so-
phisticated FHNC, MC and Brueckner-Hartree-Fock (BHF) [5,44–52].

So, the outline of the present paper is as follows: (i) In sec-
tion 2, the LOCV asymmetric nucleonic matter formalism at finite 
temperature and the corresponding state-(in)dependent density 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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distributions (distribution functions) formulas are given. (ii) In sec-
tion 3, the LOCV asymmetric nucleonic matter data for zero, 10 and 
20 MeV at 0.16 and 0.24 fm−3 are shown versus those of MC , BHF
and FHNC. The LOCV estimations of the number of quasideuterons 
are also presented in the mentioned section.

2. The LOCV formalism at finite temperature

At finite temperature T , the ASM Helmholtz free energy F per 
nucleon is obtained as follows [28]:

F = E − ST , (1)

where the ASM energy E per nucleon at the two-body cluster ap-
proximation and the entropy S per nucleon are respectively writ-
ten as [28]:

E = E1 + E2 =
∑

i=P ,N

h̄2

2miπ2ρi

∫
dkni(k)k4

+ 1

2A

A∑
i j

< i j|vef f (12)|i j >a, (2)

S = − K

A

∑
k,i=P ,N

{(1 − ni(k)) ln(1 − ni(k)) + ni(k) ln(ni(k))}, (3)

where a means that the two-body state |i j > is normalized and 
anti-symmetric, P (N) refers to the protons (neutrons), mP (N) is 
the mass of a proton (neutron) and A is the number of nucle-
ons. Also, ρP ,N is the density of protons (neutrons) and k (K ) is 
the momentum of a nucleon (the Boltzmann constant). The Fermi-
Dirac distribution function for protons (neutrons) nP (N)(k) and the 
effective interaction vef f (12) are respectively given by [21,28]:

nP (N)(k) = {1 + exp[β(ε
P (N)

k − μP (N))]}−1, (4)

vef f (12) = − h̄2

2m
[ f (12), [�2

12, f (12)]]
+ f †(12)v(12) f (12), (5)

with β = (KT )−1, μP (N) , m and v(12) being the protons (neu-
trons) chemical potential, the average mass of nucleons and the 
two-body potential AV 18 [17] with the three-body interaction 
of the reference [19], respectively. Note that, in our calculations, 
K = 1 and T is given in MeV. The protons (neutrons) single-
particle energy ε P (N)

k has the following form [28]:

ε
P (N)

k = h̄2k2

2m∗
P (N)

, (6)

and the protons (neutrons) effective mass m∗
P (N) is treated as 

a variational parameter [28]. The two-body correlation function 
f (12) is also defined in terms of the correlations f JSTTz (12) in the 
nucleon-nucleon state JSTTz (total angular momentum J , spin S , 
isospin T , isospin projection T z), i.e. [39]:

f (12) =
∑
JSTTz

|JSTTz > f JSTTz (12) < JSTTz|, (7)

where in the decoupled (coupled) states, the central (the central as 
well as the tensor-dependent) correlation functions are included 
[39]. The LOCV ASM correlation functions f JSTTz (12) are obtained 
by minimization of the free energy F with respect to the normal-
ization constraint, i.e. [22]:
2

ξ ≡ ρ

∫
d3r12(1 − g(r12)) − 1 = 0, (8)

= ρ

∫
d3r12{

∑
α≡ J L ST T z T z1 T z2

Cα[( f Tp,T z
(r12))

2

− f 2
JSTTz

(r12)]ITL,T z
(r12)} − 1 = 0, (9)

and variation of m∗
P (N) [31]. Note that the ASM density ρ =

ρP + ρN and the long-range part of f JSTTz (r12), i.e. the Pauli func-
tions f Tp,T z

(r12), Cα and ITL,T z
(r12) are given in the references 

[26,28,29,39]. Considering the above constraint, we arrive at a se-
ries of Euler-Lagrange differential equations [26,29,34]. For a given 
density, temperature and proton to neutron ratio, the LOCV ASM
free energy F , energy E and entropy S are computed with the 
solutions of the mentioned Euler-Lagrange differential equations. 
Moreover, we can find the LOCV ASM operator-dependent nucleon-
nucleon distribution functions (NNDF) at finite temperature as fol-
lows [39]:

gp(r12) =
∑
α

Cα( f †(12)O p(12) f (12)) J L ST T z ITL,T z
(r12), (10)

where O p=c,s,t,st,T ,T t,b,bt(12) are the first eight operators of the 
AV 18 interaction [17]. Multiplying gp(r12) by density ρ , we ob-
tain the corresponding operator-dependent density distributions 
ρp . Using ρp , the state-dependent density distributions ρTSSz (r12)

(Sz is the spin projection) become [2,39]:

ρ100(r12) = 1

16
{3ρc(r12) + ρt(r12) − 3ρs(r12) − ρst(r12)}, (11)

ρ000(r12) = 1

16
{ρc(r12) − ρt(r12) − ρs(r12) + ρst(r12)}, (12)

ρT 10(r12) = C0(r12) − 2C2(r12)P2(cos θ), (13)

ρT 1±1(r12) = C0(r12) + C2(r12)P2(cos θ), (14)

where for T = 0 [2,39],

C0(r12) = 1

48
{3ρc(r12) − 3ρt(r12) + ρs(r12) − ρst(r12)}, (15)

C2(r12) = 1

48
{ρT (r12) − ρT t(r12)}, (16)

and for T = 1 [2,39],

C0(r12) = 1

48
{9ρc(r12) + 3ρt(r12) + 3ρs(r12) + ρst(r12)}, (17)

C2(r12) = 1

48
{3ρT (r12) + ρT t(r12)}. (18)

Note that P2(cos θ) = 1
2 (3 cos2 θ − 1) and θ is the polar angle of 

r12 with respect to the spin-quantization axis ẑ [1,39]. In section 3, 
using the expressions (1) to (3) and (10) to (14), we present the 
corresponding LOCV ASM data at finite temperature T .

3. Results, discussions and conclusions

In this section, the LOCV ASM equation of state, the nucleon-
nucleon distribution functions (NNDF), the state-dependent density 
distributions, the scaling and the Bethe-Levinger factors at zero and 
finite temperatures (T ) 10 and 20 MeV, using the AV 18 potential 
[17] and the TBI of the reference [19], are investigated.

The LOCV ASM free energies for R = 0(PNM), 0.5, 1(SNM) at 
T =10, 20 MeV are plotted versus the BHF [53] and the Varia-
tional Chain Summation (VCS) results [5] for R = 1 in the Fig. 1. 
In the BHF and VCS, the AV 18 with an effective TBI [54] and the 
AV 18 + Urbana I X TBI [55] were employed, respectively. The LOCV
SNM free energies at T =10 MeV lie near those of BHF and VCS. For 
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Fig. 1. (a) The LOCV ASM free energies at temperatures T =10, 20 MeV, using the 
AV 18 potential [17] and the TBI [19], for R = 0(PNM), 0.5, 1(SNM). The correspond-
ing SNM VCS (VCS) [5] and BHF (BHF) [53] calculations at T =10 MeV are also shown 
for comparison.

a given density, by increasing the temperature (ratio R), the ASM
free energies decrease.

In the Fig. 2, the LOCV ASM operator-dependent NNDF are plot-
ted at T =10,20 MeV, for ρ = 0.16 fm−3 and R = 0.5. Referring 
to the Fig. 2, one can see that the non-central NNDF are sensi-
tive to the temperature changes more than those of central. At 
large inter-particle distances, the (non-)central NNDF tends to 1 
(zero except that of isospin-dependent one). The non-central NNDF
are big enough to confirm that the short-range correlations dom-
inantly depend on the nucleon-nucleon (N N) spin and isospin [2]. 
The NNDF at T =20 MeV lies above that of T =10 MeV, except 
for the central and the tensor-dependent parts. This means that 
nucleons prefer to become tensor (spin-orbit) correlated at lower 
(higher) temperatures. The present LOCV SNM data differ from the 
corresponding VCS predictions of the reference [5], for which the 
two-body AV 18, the three-body Urbana I X and the leading order 
relativistic boost interactions were included [5].

To have a better sense about the nucleon-nucleon (N N) corre-
lations, one can study the N N density distributions in different 
TSSz states. So, the LOCV ASM N N density distributions in the 
TSSz = 100, 010 states, at T =10,20 MeV for ρ = 0.16 (0.24) fm−3, 
are displayed in the panels (a) to (b) ((c) to (d)) of the Fig. 3. The 
2 H (virtual bound state 1 S0 (VBS)) and the SNM N N density distri-
butions of the reference [2] (A P ) are also shown in the mentioned 
figure for comparison. In the panels (a) to (b) of the Fig. 3, the 
LOCV ASM ρ100(r) and the corresponding VBS and SNM data of 
the reference [2], are scaled to match the maximum value of the 
LOCV PNM ρ100(r) for T =10 MeV. Similarly, in the panels (c) to 
3

Fig. 2. The LOCV ASM central (c), spin- (s), isospin- (t), spin-isospin- (st), tensor- (T), 
tensor-isospin- (Tt), spin-orbit- (b) and spin-orbit-isospin-dependent (bt) nucleon-
nucleon distribution functions for T =10, 20 MeV and R = 0.5. The mentioned 
results are obtained at ρ = 0.16 fm−3, using the AV 18 potential [17] and the TBI
[19].

(d) of the Fig. 3, the LOCV ASM ρ010(r) and the corresponding 2 H
and SNM data of the reference [2], are scaled to match the maxi-
mum value of the LOCV SNM ρ010(r) at T =10 MeV. Regarding the 
relations (11) to (12) ((13) to (14)), the S = 0 (S = 1) N N den-
sity distributions are isotropic (anisotropic). As it is demonstrated 
in the Fig. 3, ρ100(010)(r) are symmetric (show a quadrupole de-
formation). The maximum points of the LOCV ASM ρ100(r) are 
located at r = 1 f m, where the nuclear force is most attractive. 
The short-range behavior of the scaled SNM, 2 H and VBS state-
dependent density distributions of the reference [2] is consistent 
with that of LOCV ASM. As it is obvious in the panels (a) to (d) of 
the Fig. 3, at small inter-particle distances r < 1 f m, the shape of 
the LOCV ρ100,010(r) is universal. So, one concludes that, at finite 
temperature, the universality of the ASM state-dependent N N den-
sity distributions behavior is valid for r < 1 f m. The LOCV ASM N N
density distributions at finite temperatures 10, 20 MeV were also 
computed in the TSSz = 110, 000 states. We found that by decreas-
ing the temperature, the probability of finding pairs of nucleons 
in the 110 and the 000 (the 100 and the 010) states diminishes 

(enhances). Also, one can study the ratio RT ≡ ρ010(r, θ = π/2)

ρ010(r, θ = 0)
to demonstrate the tensor correlation strength in the T = 0 states 
[2]. Due to the similarity of the LOCV ASM RT at finite tempera-
ture with that of zero temperature [39], in the present paper, we 
do not discuss it.

The scaling factor R Ad for the density distributions of light nu-
clei at short inter-particle distances is proportional to the Bethe-
Levinger (BL) factor F BL , i.e. R Ad = F BL

N Z
A (N(Z) is the number of 

neutrons (protons)). The ratio of the expectation value of the one-
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Fig. 3. (a) The LOCV ASM N N density distributions, with the AV 18 [17] interaction and the TBI [19], at ρ = 0.16 fm−3, in the TSSz = 100 state. The LOCV ASM data 
for R = 0(PNM), 0.5, 1(SNM) at T =10,20 MeV are plotted versus the VBS data as well as the SNM (A P ) calculations of the reference [2]. The LOCV ASM ρ100(r) and the 
corresponding VBS and SNM data of the reference [2], are scaled to match the maximum value of the LOCV PNM ρ100(r) at T =10 MeV. (b) The same as the panel (a) but for 
the TSSz = 010(θ = 0, π/2) state. The LOCV ASM ρ010(r) and the corresponding 2 H and SNM data of the reference [2], are scaled to match the maximum value of the LOCV
SNM ρ010(r) for T =10 MeV. (c(d)) Similar to the panel (a(b)) but at ρ = 0.24 fm−3.
pion exchange part of the AV 18 interaction of the ASM to that 

of deuteron, i.e. 
< V	 >A S M

< V	 >d
, can give us an estimate to the scal-

ing factor R Ad [1]. The scaling factor R Ad predicts the number of 
quasideuteron pairs in the ASM. In the panel (a) of the Fig. 4, the 

ratios 
1
A < V	 >A S M

< V	 >d= −21.3 MeV
for R = 0.5, 1(SNM) at T =0,20 MeV 

are plotted versus density. The R Ad per nucleon for the SNM (VCS-
4

SNM) [2] and 16 O (MC −16 O ) [1] at ρ = 0.16 fm−3 and 0.09 fm−3

are also given in the mentioned panel for comparison. By increas-
ing the temperature (R and density), the scaling factor (number 
of quasideuteron pairs) per nucleon becomes smaller (larger). At 
the saturation density ρ = 0.16 fm−3, the number of quasideuteron
pairs per nucleon for R = 1 (R = 0.5) at T =0,20 MeV are 1.17, 
1.07 (1.08, 1.00), respectively. Since the LOCV formalism is state-
dependent, one should expect that the LOCV predictions for the 
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Fig. 4. (a) The ratios 
1
A < V	 >A S M

< V	 >d
for R = 0.5, 1(SNM) at T =0,20 MeV. The R Ad

per nucleon for the SNM (VCS-SNM) [2] and 16 O (MC −16 O ) [1] at ρ = 0.16 fm−3

and 0.09 fm−3 are also given for comparison. (b) The LOCV ASM F BL at T =0,20 
MeV for R = 0.5, 1(SNM). The F BL for the SNM (VCS-SNM) [2] and 16 O (MC −16 O ) 
[1] at ρ = 0.16 fm−3 and 0.09 fm−3 are also shown for comparison.

R Ad per nucleon and the F BL lie below those of other many-body 
techniques.

Considering the scaling factor, we can find the BL factor F BL . 
In the panel (b) of the Fig. 4, the LOCV ASM BL factors are shown 
at T =0 and 20 MeV for R = 0.5, 1(SNM) versus density. The BL
factor, i.e. R Ad/4, for the SNM (VCS-SNM) [2] and 16 O (MC −16 O ) 
[1] at ρ = 0.16 fm−3 and 0.09 fm−3 are also given in the panel (b) 
of the Fig. 4. By decreasing the density (temperature and R), the 
BL factor becomes smaller (larger). The BL factors at the saturation 
density ρ = 0.16 fm−3, for R = 1 (R = 0.5) and T =0,20 MeV, are 
4.7, 4.3 (4.9, 4.5), respectively. As it is demonstrated in the panel 
(b) of Fig. 4, the approximated LOCV SNM F BL at zero temperature 
is smaller than those of VCS [2] and MC [1].

In conclusion, an estimate for the scaling factor (number of 
quasideuteron pairs) was given in the LOCV approximation with the 
use of the two-body AV 18 potential [17] and the TBI of the refer-
ence [19]. The dependence of the mentioned factor on the proton 
to neutron ratio, density, and temperature were also studied. We 
discussed that, for a given density, the number of quasideuterons 
increases by decreasing (increasing) the temperature (the proton 
to neutron ratio). Moreover, the probability of finding a pair of 
nucleons in the TSSz states was evaluated. It was demonstrated 
that, at a definite inter-particle distance, by lowering the tem-
5

perature (proton to neutron ratio), the N N density distribution in 
the TSSz = 010 state grows (diminishes). The present study of the 
short-range behavior of the ASM N N state-dependent density dis-
tributions at finite temperature confirms the expected short-range 
universality. The (non-)central N N distribution functions were also 
investigated. We found that, by increasing the temperature, the 
tensor-dependent N N distribution function becomes weak.
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