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The short-range correlation of the asymmetric nucleonic matter (ASM) is perused at finite temperature
in the lowest order constrained variational (LOCV) method. It is observed that, by increasing the
temperature, the LOCV ASM static non-central distribution functions become weak. For small inter-
particle distances, a universal behavior is found for the LOCV ASM state-dependent density distributions.
Using the expectation value of the one-pion exchange part of the AV 18 interaction, the scaling factor

of the pion absorption cross section (the number of quasideuterons), for the different proton to neutron

Keywords: ratios R, is also estimated in the LOCV formalism. It is shown that, by increasing (decreasing) the ratio
ASM R (the temperature), the number of quasideuterons grows. Considering the scaling factor, the Bethe-
Locv Levinger (BL) factor for the ASM is also investigated. It is demonstrated that, at the saturation density
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and temperature 20 MeV, the BL factor for the ASM with R =1(0.5) becomes 4.3 (4.5).
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The study of the short-range structure of nuclei is an important
topic in nuclear physics. The nuclei structure at the short inter-
particle distances (high values of momentum) can be investigated,
using the two-body state-dependent density (one-body momen-
tum) distributions. At these mentioned limits, the nuclei density
and momentum distributions show a universal behavior. The uni-
versality results from the short-range central and tensor correla-
tions. Therefore, the nuclei state-dependent density distributions
differ only by the scaling factor R,4 at short distances [1]. The
R a4 factor, which represents the number of quasideuterons, is de-
termined in terms of the Bethe-Levinger (BL) factor [1,2]. At high
momentum transfer values, the cross sections of the scattering of
photons, nucleons, and leptons off nuclei are also scaled. The scal-
ing factors are proportional to the probability of the nuclei short-
range two- and three-body correlations. Previously, the short-range
structures of light nuclei and symmetric nuclear (pure neutron)
matter were studied using the (Green’s Function) Monte Carlo
((GF)MC), the Fermi Hypernetted chain (FHNC) and the Correlated
Gaussian Basis (CGB) approaches, respectively [1-6]. The nuclei
photo-disintegration cross section was also investigated by ana-
lyzing the corresponding experimental data and the quasideuteron
model [7-9]. The scaling of the inclusive electron scattering cross
sections of different nuclei and the probability of short-range two-
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and three-body correlations were also discussed in the references
[10,11]. The thermal and isospin asymmetry effects on the behav-
ior of nuclei one-body momentum distribution above the Fermi
momentum were reported in the references [12,13]. Moreover, the
scaling (and the BL) factor(s) for the momentum distributions of
the symmetric nuclear matter and the heavy nuclei were evalu-
ated, using the (correlated basis function approach [14,15]) convo-
lution model [16]. The short-range structure and the scaling (BL)
factor for the asymmetric nucleonic matter (ASM) at finite temper-
ature, have not been reported yet.

Due to the importance of the microscopic study of the nuclei
structure; in this research, the state-(in)dependent density dis-
tributions (distribution functions) and the estimations of the BL
(scaling) factor for the ASM at finite temperature are found in
the Lowest Order Constrained Variational (LOCV) formalism. In the
present study, we employ the two-body AV 18 [17] potential and
the three-body interaction of the references [18,19]. In the LOCV
calculations, the cluster expansion of the energy is truncated at the
lowest order, i.e. at the two-body cluster term [20,21]. This approx-
imation is justified by imposing the normalization constraint [22].
The LOCV framework was previously applied to different nucleonic
matter problems at zero and finite temperatures [23-43]. The ap-
proximated LOCV predictions were in agreement with those of so-
phisticated FHNC, MC and Brueckner-Hartree-Fock (BHF) [5,44-52].

So, the outline of the present paper is as follows: (i) In sec-
tion 2, the LOCV asymmetric nucleonic matter formalism at finite
temperature and the corresponding state-(in)dependent density
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distributions (distribution functions) formulas are given. (ii) In sec-
tion 3, the LOCV asymmetric nucleonic matter data for zero, 10 and
20 MeV at 0.16 and 0.24 fm~> are shown versus those of MC, BHF
and FHNC. The LOCV estimations of the number of quasideuterons
are also presented in the mentioned section.

2. The LOCV formalism at finite temperature

At finite temperature 7, the ASM Helmholtz free energy F per
nucleon is obtained as follows [28]:

F=E—ST, (1)

where the ASM energy E per nucleon at the two-body cluster ap-
proximation and the entropy S per nucleon are respectively writ-
ten as [28]:

2
E=E;+E;= 'Z‘ Ty /dkn,-(k)k“
i=P,N
1 A
+ﬂizj<ij|veff(12>|ij >a, )
K
S= _X, ;N{(l —ni(k)) In(1 —n;(k)) +n;(k) In(n; (k))}, (3)

where a means that the two-body state |ij > is normalized and
anti-symmetric, P (N) refers to the protons (neutrons), mpy) is
the mass of a proton (neutron) and A is the number of nucle-
ons. Also, pp n is the density of protons (neutrons) and k (K) is
the momentum of a nucleon (the Boltzmann constant). The Fermi-
Dirac distribution function for protons (neutrons) np)(k) and the
effective interaction v.sr(12) are respectively given by [21,28]:

npany (k) = {1+ explBe, ™ — wpany)) ™, (4)

hZ
Verf(12) = —ﬁ[f(lz), [V, F(12)]]

+ fl12)v(12) f(12), (5)

with g = (K771, upNy, m and v(12) being the protons (neu-
trons) chemical potential, the average mass of nucleons and the
two-body potential AV18 [17] with the three-body interaction
of the reference [19], respectively. Note that, in our calculations,
K =1 and 7 is given in MeV. The protons (neutrons) single-
particle energy elf(N) has the following form [28]:

2
P(N) _ h k2
k

= , 6

Zm}’;(N) (6)
and the protons (neutrons) effective mass m’[,(N) is treated as
a variational parameter [28]. The two-body correlation function
f(12) is also defined in terms of the correlations fsrr,(12) in the
nucleon-nucleon state JSTT, (total angular momentum J, spin S,
isospin T, isospin projection T), i.e. [39]:

F(12) =) USTT, > fistr, (12) <JSTT,|, (7)
JSTT,

where in the decoupled (coupled) states, the central (the central as
well as the tensor-dependent) correlation functions are included
[39]. The LOCV ASM correlation functions fisrr,(12) are obtained
by minimization of the free energy F with respect to the normal-
ization constraint, i.e. [22]:
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e=p [ Pradi - g ~1=0, (8)

=p/d3r12{ Z

a=]LSTT,T; Ty,
— fmr, )] 1, (r2)} = 1=0, (9)

and variation of m’;(N) [31]. Note that the ASM density p =
pp + pn and the long-range part of fsrr,(r12), i.e. the Pauli func-
tions fZTZ(rlz), Cy and IZTZ(rn) are given in the references
[26,28,29,39]. Considering the above constraint, we arrive at a se-
ries of Euler-Lagrange differential equations [26,29,34]. For a given
density, temperature and proton to neutron ratio, the LOCV ASM
free energy F, energy E and entropy S are computed with the
solutions of the mentioned Euler-Lagrange differential equations.
Moreover, we can find the LOCV ASM operator-dependent nucleon-
nucleon distribution functions (NNDF) at finite temperature as fol-
lows [39]:

Cal(f]7,(r12))°

gp(r2) =Y _ Ca(f1(12)0,(12) f(12) jusrr, 1] 1, (r12).  (10)

o
where O p—c s ¢st.1,Te,b,bt(12) are the first eight operators of the
AV 18 interaction [17]. Multiplying g,(r12) by density p, we ob-
tain the corresponding operator-dependent density distributions
pp. Using pp, the state-dependent density distributions prss, (r12)
(S; is the spin projection) become [2,39]:

1
P100(r12) = EBPC(TQ) + pe(r12) — 3ps(r12) — pse(r12)}, (11)

1
0000 (r12) = E{Pc(rlz) — pe(r12) — ps(ri2) + pse(r12)}, (12)

pr10(ri2) = Co(r12) — 2C2(r12) P2(cos0), (13)
pr1+1(r12) = Co(r12) + C2(r12) P2(cosh), (14)
where for T =0 [2,39],

1

Co(ri) = E{?’pc(rlz) —30:(r12) + ps(r12) — pst(r12)}, (15)

1
Co(ri) = @{PT (r12) — pre(ri2)}, (16)

and for T =1 [2,39],
1
Co(ri2) = E{gpc(rlz) +30:(r12) +30s(r12) + pse(r12)},  (17)

1
Co(rip) = EBPT(“Z) + pre(r12)}- (18)

Note that P;(cos6) = %(3 cos26 — 1) and 6 is the polar angle of
r12 with respect to the spin-quantization axis z [1,39]. In section 3,
using the expressions (1) to (3) and (10) to (14), we present the
corresponding LOCV ASM data at finite temperature 7.

3. Results, discussions and conclusions

In this section, the LOCV ASM equation of state, the nucleon-
nucleon distribution functions (NNDF), the state-dependent density
distributions, the scaling and the Bethe-Levinger factors at zero and
finite temperatures (7)) 10 and 20 MeV, using the AV 18 potential
[17] and the TBI of the reference [19], are investigated.

The LOCV ASM free energies for R = 0(PNM), 0.5, 1(SNM) at
7=10, 20 MeV are plotted versus the BHF [53] and the Varia-
tional Chain Summation (VCS) results [5] for R =1 in the Fig. 1.
In the BHF and VCS, the AV 18 with an effective TBI [54] and the
AV 18+ Urbana IX TBI [55] were employed, respectively. The LOCV
SNM free energies at 7=10 MeV lie near those of BHF and VCS. For
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Fig. 1. (a) The LOCV ASM free energies at temperatures 7 =10, 20 MeV, using the
AV 18 potential [17] and the TBI [19], for R = 0(PNM), 0.5, 1(SNM). The correspond-
ing SNM VCS (VCS) [5] and BHF (BHF) [53] calculations at 7=10 MeV are also shown
for comparison.

a given density, by increasing the temperature (ratio R), the ASM
free energies decrease.

In the Fig. 2, the LOCV ASM operator-dependent NNDF are plot-
ted at 7=10,20 MeV, for p = 0.16 fm~> and R = 0.5. Referring
to the Fig. 2, one can see that the non-central NNDF are sensi-
tive to the temperature changes more than those of central. At
large inter-particle distances, the (non-)central NNDF tends to 1
(zero except that of isospin-dependent one). The non-central NNDF
are big enough to confirm that the short-range correlations dom-
inantly depend on the nucleon-nucleon (NN) spin and isospin [2].
The NNDF at 7=20 MeV lies above that of 7=10 MeV, except
for the central and the tensor-dependent parts. This means that
nucleons prefer to become tensor (spin-orbit) correlated at lower
(higher) temperatures. The present LOCV SNM data differ from the
corresponding VCS predictions of the reference [5], for which the
two-body AV 18, the three-body Urbana IX and the leading order
relativistic boost interactions were included [5].

To have a better sense about the nucleon-nucleon (NN) corre-
lations, one can study the NN density distributions in different
TSS, states. So, the LOCV ASM NN density distributions in the
TSS, = 100, 010 states, at 7=10,20 MeV for p = 0.16 (0.24) fm~3,
are displayed in the panels (a) to (b) ((c) to (d)) of the Fig. 3. The
2H (virtual bound state 'Sy (VBS)) and the SNM NN density distri-
butions of the reference [2] (AP) are also shown in the mentioned
figure for comparison. In the panels (a) to (b) of the Fig. 3, the
LOCV ASM p100(r) and the corresponding VBS and SNM data of
the reference [2], are scaled to match the maximum value of the
LOCV PNM p1po(r) for 7=10 MeV. Similarly, in the panels (c) to
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Fig. 2. The LOCV ASM central (c), spin- (s), isospin- (t), spin-isospin- (st), tensor- (T),
tensor-isospin- (Tt), spin-orbit- (b) and spin-orbit-isospin-dependent (bt) nucleon-
nucleon distribution functions for 7=10, 20 MeV and R = 0.5. The mentioned
results are obtained at p = 0.16 fm™>, using the AV 18 potential [17] and the TBI
[19].

(d) of the Fig. 3, the LOCV ASM pg10(r) and the corresponding 2H
and SNM data of the reference [2], are scaled to match the maxi-
mum value of the LOCV SNM pg10(r) at 7=10 MeV. Regarding the
relations (11) to (12) ((13) to (14)), the S=0 (S=1) NN den-
sity distributions are isotropic (anisotropic). As it is demonstrated
in the Fig. 3, p100(010)(r) are symmetric (show a quadrupole de-
formation). The maximum points of the LOCV ASM pigo(r) are
located at r = 1fm, where the nuclear force is most attractive.
The short-range behavior of the scaled SNM, 2H and VBS state-
dependent density distributions of the reference [2] is consistent
with that of LOCV ASM. As it is obvious in the panels (a) to (d) of
the Fig. 3, at small inter-particle distances r < 1fm, the shape of
the LOCV p100,010(r) is universal. So, one concludes that, at finite
temperature, the universality of the ASM state-dependent NN den-
sity distributions behavior is valid for r < 1 fm. The LOCV ASM NN
density distributions at finite temperatures 10,20 MeV were also
computed in the TSS, = 110, 000 states. We found that by decreas-
ing the temperature, the probability of finding pairs of nucleons
in the 110 and the 000 (the 100 and the 010) states diminishes
(enhances). Also, one can study the ratio Rt = M
po1o(r, 0 =0)
to demonstrate the tensor correlation strength in the T =0 states
[2]. Due to the similarity of the LOCV ASM Ry at finite tempera-
ture with that of zero temperature [39], in the present paper, we
do not discuss it.

The scaling factor R4 for the density distributions of light nu-
clei at short inter-particle distances is proportional to the Bethe-
Levinger (BL) factor Fpj, i.e. Rag = FBL¥ (N(Z) is the number of
neutrons (protons)). The ratio of the expectation value of the one-
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Fig. 3. (a) The LOCV ASM NN density distributions, with the AV18 [17] interaction and the TBI [19], at p =0.16 fm~3, in the TSS, = 100 state. The LOCV ASM data
for R = 0(PNM), 0.5, 1(SNM) at 7=10,20 MeV are plotted versus the VBS data as well as the SNM (AP) calculations of the reference [2]. The LOCV ASM p10o(r) and the
corresponding VBS and SNM data of the reference [2], are scaled to match the maximum value of the LOCV PNM pjo0(r) at 7=10 MeV. (b) The same as the panel (a) but for
the TSS, = 010(9 = 0, 7w /2) state. The LOCV ASM po10(r) and the corresponding 2H and SNM data of the reference [2], are scaled to match the maximum value of the LOCV

SNM po10(r) for 7=10 MeV. (c(d)) Similar to the panel (a(b)) but at p =0.24 fm~3.

pion exchange part of the AV 18 interaction of the ASM to that
<Vn >asm
< V>4
ing factor Raqg [1]. The scaling factor Rg predicts the number of
quasideuteron pairs in the ASM. In the panel (a) of the Fig. 4, the
1
+<Vgo>
ASTHZAM ___ for R=0.5,1(SNM) at T=0,20 MeV
< Vp >q= —21.3 MeV

are plotted versus density. The R 44 per nucleon for the SNM (VCS-

of deuteron, i.e. , can give us an estimate to the scal-

ratios

SNM) [2] and 60 (MC—'60)[1] at p =0.16 fm~> and 0.09 fm >
are also given in the mentioned panel for comparison. By increas-
ing the temperature (R and density), the scaling factor (number
of quasideuteron pairs) per nucleon becomes smaller (larger). At
the saturation density p = 0.16 fm~>, the number of quasideuteron
pairs per nucleon for R=1 (R =0.5) at 7=0,20 MeV are 1.17,
1.07 (1.08, 1.00), respectively. Since the LOCV formalism is state-
dependent, one should expect that the LOCV predictions for the
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Fig. 4. (a) The ratios for R = 0.5, 1(SNM) at 7=0,20 MeV. The Ry

<Vn>q

per nucleon for the SNM (VCS-SNM) [2] and 160 (MC —'6 0) [1] at p =0.16 fm >
and 0.09 fm™> are also given for comparison. (b) The LOCV ASM Fp; at T=0,20
MeV for R = 0.5, 1(SNM). The Fp; for the SNM (VCS-SNM) [2] and 60 (MC -6 0)
[1] at p=0.16 fm~3 and 0.09 fm~3 are also shown for comparison.

R a4 per nucleon and the Fp; lie below those of other many-body
techniques.

Considering the scaling factor, we can find the BL factor Fpj.
In the panel (b) of the Fig. 4, the LOCV ASM BL factors are shown
at 7=0 and 20 MeV for R = 0.5, 1(SNM) versus density. The BL
factor, i.e. Raq/4, for the SNM (VCS-SNM) [2] and 60 (MC —16 0)
[1] at p=0.16 fm~> and 0.09 fm~3 are also given in the panel (b)
of the Fig. 4. By decreasing the density (temperature and R), the
BL factor becomes smaller (larger). The BL factors at the saturation
density p =0.16 fm~3, for R=1 (R =0.5) and 7=0,20 MeV, are
47, 43 (4.9, 4.5), respectively. As it is demonstrated in the panel
(b) of Fig. 4, the approximated LOCY SNM Fp; at zero temperature
is smaller than those of VCS [2] and MC [1].

In conclusion, an estimate for the scaling factor (number of
quasideuteron pairs) was given in the LOCV approximation with the
use of the two-body AV 18 potential [17] and the TBI of the refer-
ence [19]. The dependence of the mentioned factor on the proton
to neutron ratio, density, and temperature were also studied. We
discussed that, for a given density, the number of quasideuterons
increases by decreasing (increasing) the temperature (the proton
to neutron ratio). Moreover, the probability of finding a pair of
nucleons in the TSS, states was evaluated. It was demonstrated
that, at a definite inter-particle distance, by lowering the tem-
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perature (proton to neutron ratio), the NN density distribution in
the TSS, = 010 state grows (diminishes). The present study of the
short-range behavior of the ASM NN state-dependent density dis-
tributions at finite temperature confirms the expected short-range
universality. The (non-)central NN distribution functions were also
investigated. We found that, by increasing the temperature, the
tensor-dependent NN distribution function becomes weak.
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