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Abstract

We carry out a computation of chiral conductivities at strong coupling using holographic
methods in Part II. To that end we implement chiral and mixed anomalies in the bulk
by the use of suitable Chern-Simons terms. Then we study the cutoff flow of anomalous
conductivities by computing them at a hypersurface placed at certain radial position in
spacetime, which models the energy cutoff.

Furthermore, we construct and analyze the holographic version of a two-component su-
perfluid. A two-component superfluid has U(2) — U(1) as the pattern of spontaneously
broken symmetries and presents typically non-relativistic Goldstone bosons in its spec-
trum of excitations (the so-called type II Goldstone modes). We compute conductivities
and dispersion relations for the hydrodynamic modes of the theory, as well as the gap of
the so-called ”massive Goldstone”, a massive excitation that has been predicted to have a
universal gap. Moreover, motivated by the presence of type II Goldstone bosons, we per-
form an analysis of the well-known Landau Criterion in the framework of our holographic
models, showing that it holds. In addition, we construct a s+p-superfluid, which features
coexisting scalar and vector condensates. We also study its phase diagram after switching
on two chemical potentials.

Finally, we compute anomalous conductivities for U(1) holographic superfluids. Along
the way we also point out that there is charge density present whenever the superfluid
velocity is aligned with an external magnetic field. This effect absent if the theory is
non-anomalous. The outcome of our calculation is that all chiral conductivities seem to
approach universal values at zero temperature, even though they are not universal at fi-
nite temperature. Such a universal value depends only on the interplay between broken
symmetries and the anomaly.

Resumen

Llevamos a cabo un célculo de conductividades quirales en acoplamiento fuerte utilizando
métodos holograficos en la Parte II. Para ello implementamos las anomalias quiral y mixta
en el bulk utilizando los términos de Chern-Simons adecuados. A continuacién se estudia
el flujo de las conductividades anémalas en funciéon de una escala de energia, calculandolas
en una hipersuperficie colocada a cierto valor de la coordenada radial en el espacio-tiempo,
que modela dicho cutoff de energia.

Ademsds, construimos y analizamos la versién hologréfica de un superfluido de dos compo-
nentes. Un superfluido de dos componentes tiene U(2) — U(1) como patrén de simetrias
espontdneamente rotas y presenta bosones de Goldstone tipicamente no relativistas en su
espectro de excitaciones (los llamados modos de Goldstone de tipo II). Calculamos con-
ductividades y relaciones de dispersiéon para los modos de hidrodindmicos de la teoria, asi
como la masa del llamado ”Goldstone masivo”, una excitacién que se ha predicho que
posee una masa universal. Por otra parte, motivado por la presencia de bosones de Gold-
stone de tipo II, llevamos a cabo un estudio del conocido Criterio de Landau en el marco
de nuestros modelos holograficos, demostrando que se cumple. Ademads, se construye un
superfluido s+p, que se caracteriza por tener condensados escalar y vectorial coexistentes.
También estudiamos el diagrama de fase tras encender dos potenciales quimicos.

Por ltimo, calculamos conductividades anémalas para superfluidos hologréficas U(1). En
el proceso también enfatizamos la existencia de una densidad de carga presente siempre
que la supervelocidad esté alineada con un campo magnético externo. Este efecto esta
ausente si la teoria no es anémala. El resultado de nuestro calculo se resume en que todas



las conductividades quirales parecen aproximarse a valores universales a temperatura cero,
a pesar de que no son universales a temperatura finita. Dicho valor universal sélo depende
de la interaccién entre las simetrias rotas y la(s) anomalia(s).
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Preface

This thesis is about the application of the AdS/CFT correspondence to Condensed

Matter Physics (CMP). Concretely, it focuses mainly on the study of certain exotic strongly
coupled superfluids at strong coupling and their out-of-equilibrium properties, as well as
the understanding of the implications of the so-called anomalous conductivities from the
holographic point of view.
The AdS/CFT correspondence establishes an equivalence between string theory in a AdS
background and a quantum field theory living on the boundary of AdS, with the peculiarity
of being a strong/weak coupling duality. This appealing feature provides us with a power-
ful tool to understand strongly coupled field theories by means of perturbative calculations
in string theory or its classical low energy description, supergravity. The description of
the physics at strong coupling is one of the most important and unresolved problems in
High-Energy Physics. At finite temperature and/or density, the understanding of the
strong coupling regime has interesting applications to confinement, Quark-Gluon Plasma
(QGP), High-T, superconductors or non-Fermi liquids, among others. This is the reason
why the AdS/CFT correspondence has attracted so much attention in the last decade.

The first and more direct application of the AdS/CFT correspondence one could think
of concerns the study of the QGP. But several years ago it was also realized that an
even better motivated focus of the correspondence is the analysis of systems in the frame-
work of Condensed Matter Physics. There exist a broad number of strongly correlated
condensed matter systems that cannot be treated by means of usual techniques valid for
weakly coupled configurations. Examples of this include the dynamics close to a Quan-
tum Critical Point, the physics of non-Fermi liquids or the study of High-T,. superfluids
and superconductors. On the other hand, contrary to the case of the QGP, in CMP one
does not usually works with a one fundamental theory but with a large variety of effective
lagrangians. This opens the possibility of using experimental techniques in order to engi-
neer a condensed matter system whose effective theory has a gravity dual. To conclude,
the study of AdS/CMP correspondence appears as a very exciting and rich topic. In this
thesis we will apply the correspondence to model simplified condensed matter systems and
extract certain results valid in the strong coupling regime of the dual QFT.

One of the most striking and recent discoveries, for which the AdS/CFT correspondence
has played a mayor role, is that of the existence of transport properties intrinsically as-
sociated to the anomalies present in the dual quantum field theory. In particular, it is
now known that external magnetic field/vorticity generate a current parallel to them; the
coefficients of proportionality are called anomalous or chiral transport conductivities and
present very robust properties, like being non-dissipative (they are actually equilibrium
quantities) and being completely fixed by the anomaly coefficient of the theory (they
are universal). Chiral conductivities have been recently shown to have important conse-
quences in the response of QGP, Weyl semimetals or superfluids. In the latter case it is
known that anomalous conductivities are not anymore universal due to the presence of
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the condensate. Moreover, there arise new types of anomalous transport which induce a
current in the presence of an external electric field or a finite charge density when the
supervelocity is aligned with the magnetic field. Remarkably, at zero temperature these
superfluid chiral conductivities are expected to be universal again. In this thesis we will
present several holographic models that account for this new type of transport, both for
superfluids and non-superfluids.

On the other hand, one of the main recent applications of holography to CMP is the con-
struction of phases of matter at strong coupling. Transport properties and the spectrum
of quasiparticle excitations are crucial to understand the response of such phases to small
external perturbations. Probably the most famous example of this is the strongly coupled
superfluid, which can be thought of as a toy model for a High-T, superfluid. In this thesis
we present the dual of the strongly coupled two-component superfluid, which is known
to feature certain exotic Goldstone modes known as Type-II Goldstone bosons (TIIGB).
The existence of a TIIGB motivated us to study the Landau criterion at strong coupling
in our holographic setup. The Landau criterion is a classic result in superfluids which
establishes that there is a critical superfluid velocity above which the superfluid is not
stable anymore. Moreover, we also construct a p+s-wave holographic superfluid, in which
both a vector and scalar condensates coexist.

This thesis is divided in four parts. The first of them is an introduction devoted to
present the background ingredients and techniques that will be used later on throughout
the text. These include

Chapter 1 We elaborate on the gauge/gravity duality. We comment on the holographic
dictionary, the possibility of calculating correlators and analyze how global currents and
corresponding chemical potentials in the boundary theory are introduced. We also mention
several subtleties related to the computation of thermal Lorentz correlators and briefly
discuss the bottom-up methodology. We end up devoting some words to the holographic
superconductor. The point of view is very practical, trying to cover the material that will
be of use for the rest of the work.

Chapter 2 We discuss the well-established techniques that account for the response of
a thermalized, finite density system to external perturbations. When considered in full
generality, this is an unfeasible problem and hence some degree of approximation is needed.
The first one is Hydrodynamics, in which we assume that the external perturbations vary
very little in space and time. The second one is Linear Response Theory, which deals
with perturbations that have very small amplitude. In this chapter we present both
approximations, putting especial emphasis on the latter, and analyze how they can be
implemented in holography. We finish the chapter focusing on an overlapping region in
which booth Hydrodynamics and Linear Response Theory are good approximations to
describe out-of-equilibrium physics.

Chapter 3 We analyze anomalous or chiral transport phenomena, mostly at weak cou-
pling. After presenting the main effects, termed Chiral Magnetic and Chiral Vortical
Effects, we move to the presentation of the concept of anomaly, which we do very briefly.
We show later on the subtleties associated to the implementation of a chemical potential
for an anomalous symmetry, due to the fact that this it is not conserved anymore. Once
all this is done, we find ourselves in position of discussing anomalous Hydrodynamics (the
combination of usual Hydrodynamics and anomalous transport phenomena) and the Kubo
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formulae associated to chiral conductivities, which is to say, how to use Linear Response
Theory to describe anomalous transport.

Chapter 4 Here we present the concept of a superfluid. We describe how it is related
to the presence of a condensate and the limitations to superfluidity imposed by the well-
known Landau Criterion. The ideal Hydrodynamics of a superfluid at zero temperature
is also commented on, as well as the Meissner effect, which states that a magnetic field
passing through a superconducting sample is exponentially suppressed. The spectrum of
excitations is also analyzed and several generalizations are remarked. Then we use a toy
model at zero temperature to derive the existence of a type II Goldstone boson. These
exotic modes will be on of our subjects of study at strong coupling, using holography.
Finally, we mention few properties of superfluid anomalous hydrodynamics for it will be
useful for future applications.

The second part of this thesis is focused on anomalous transport at strong coupling,
using the AdS/CFT. In essence, it contains the strong coupling generalization of the topics
discussed in Chapter 3. From here on, the thesis correspond to original work.

Chapter 5 We use a holographic bottom-up model to compute all the anomalous con-
ductivities in a system at finite temperature and finite density. In particular, we include
the mixed gravitational anomaly and show that it accounts for the temperature depen-
dence of the Chiral Vortical Conductivity. We also observe that strong and weak coupling
results for the conductivities coincide. This implies that its value does not get renormalized
as long as the gauge fields coupled to the anomaly are non dynamical.

Chapter 6 We analyze the cutoff flow of chiral conductivities by means of the botton-up
model used in Chapter 5. We present several equivalent methods to compute such a flow.
Due to complications induced by the mixed anomaly we stick to the most powerful method
when computing the flow induced by it. On top of that, it is necessary to introduce some
ad-hoc techniques in order to be able to compute two-point functions at finite cutoff in
the presence of the mixed anomaly because Diritchlet B.C. become problematic.

Chapter 7 It is devoted to pointing out conclusions that can be extracted from the
results of Chapters 5 and 6.

Part 3 of this thesis studies exotic holographic superfluids. In particular, we construct
the dual of a two-component superfluid and analyze its properties. We also present the
construction of a s+p- holographic superfluid, in which a scalar and vector condensates
coexist,.

Chapter 8 This extensive chapter serves to introduce a holographic superconductor in
which a U(2) symmetry is broken spontaneously to a remaining U(1) symmetry. The
consequence of that more complicated pattern of non-abelian broken symmetries is that
the spectrum of excitations contains a type II Goldstone boson, which is a massless mode
with a typically non-relativistic dispersion relation. Surprisingly enough, such a mode can
also be encountered for a model in which the U(2) symmetry does not have a operator
realization in the boundary (what we have termed the ungauged model). Along the way
we examine many properties of this superfluid, such as conductivities and diffusive modes,
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emphasizing the differences that arise when comparing them with the corresponding quan-
tities of the usual holographic superconductor. There is also a gapped mode in this system
whose mass has been shown to be protected against quantum corrections. We explicitly
perform a computation of that gapped mode in our holographic model.

Chapter 9 Type II goldstone boson should prevent the system to accommodate super-
velocity and hence to superfluid, according to the Landau criterion. The reason has to
do with its particular non-relativistic dispersion relation. This fact motivated us to study
the Landau Criterion at strong coupling to address the question of whether it holds and,
if yes, what is the mechanism that gives rise to it. To that end we considered the model
of Chapter 8 and study it in the presence of finite supervelocity. We observe that massless
excitations are the main characters because they are responsible for triggering the Landau
Criterion in holography.

Chapter 10 One of the main surprises we found when analyzing the model of Chapter
8 is that the two-component superfluid becomes unstable at some temperature. The
form of the instability suggests that the new phase will contain a vector condensate.
Chapter 10 is devoted to the construction of a phase with a scalar (s-wave) and vector
(p-wave) coexisting condensates, that we call s+p-superconductor. We show that this is
the thermodynamically preferred phase for the model of Chapter 8 at low temperatures.

Chapter 11 Here we summarize the results that have arisen in Part 2.

The last piece of this thesis, contained in Part 4, mixes somehow the work presented
in Parts 2 and 3. We compute the anomalous transport in a holographic U(1) superfluid,
making use of Kubo formulae.

Chapter 12 Firstly we present our main expectations and certain technical subtleties.
Then we construct the 5-dimensional s-wave holographic chiral superconductor and com-
pute the anomalous conductivities. Apart from Chiral Magnetic and Vortical effects
present in ordinary fluids, superfluids support two new types of chiral transport, namely
Chiral Electric and Chiral Charge Generation Effects. The existence of the latter effect
had not been emphasized before and we point out its importance in this chapter. Contrary
to the case of ordinary fluids, we observe that anomalous transport coefficients are not
universal in superfluids. However, all anomalous conductivities seem to recover univer-
sality at zero temperature. We point out that this universal value only depends on the
interplay between anomalous and broken symmetries. We finish providing some consider-
ations concerning the zero temperature picture suggested by our results.

The first part of this work is essentially a compendium of many papers and reviews.
The original work presented here corresponds to Parts 2, 3 and 4.
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Chapter 1

Remarks on gauge/gravity duality
and the Holographic Dictionary

The gauge/gravity duality, holography, or more specifically the AdS/CFT correspon-
dence, is one of the most remarkable and surprising developments in the last five teen
years in theoretical physics. Its formulation by Maldacena [5] and subsequent fomaliza-
tion [6,7] resulted in the culmination of previous advances in the relation between quantum
gravity and non-gravitational quantum field theories (QFT) (the so-called Holographic
principle [8,9]) and the connection of large N field theories with string theory [10]. In
retrospective, one can also identify several studies that anticipated the existence of the
AdS/CFT correspondence, such as the fact that Black-Holes have entropy and tempera-
ture [11] or the identification of the asymptotic symmetries of AdSs and the computation
of entropy from asymptotic data [12,/13].

For practical purposes, the weak version of the correspondence is the most interesting one,
because it is the one which is better understood. It states that a classical supergravity
theory on asymptotically Anti-de-Sitter (AdS) space is dual to a gauge theory with a UV
fixed point living on the (conformal) boundary of AdS (i.e. in onw dimension less), under
the assumption of certain limits affecting the parameters of the theory. The canonical for-
mulation of Maldacena concerned the duality between Type IIB supergravity in AdSs x Ss
and N = 4 Super Yang Mills, which is a Conformal Field Theory (CFT) even quantum
mechanically, in the limit of large ’t Hooft coupling A and large N. The gauge/gravity
duality can be extended to theories lacking a UV fixed point, but we will not be concerned
with that possibilities throughout this work. For very extensive reviews of the AdS/CFT
correspondence, we refer the reader to [14-19] and references therein.

What makes the duality extremely useful and powerful (and also very difficult to prove)
is that it is a weak/strong duality, meaning that it relates a weak coupling regime in
supergravity to a strongly coupled CFT and vice versa. This feature makes it specially
adequate to study strongly coupled field theories. Here we provide with an introduction
of the correspondence with very practical viewpoint and putting emphasis on applications
to out-of-equilibrium systems.

1.1 The dictionary

The main ingredients of a CFT are expectation values of possibly composite gauge-
invariant operators. On the contrary, supergravity is formulated in terms of fields. The
spectrum of operators of a CFT also changes from one CFT to another, which from the
supergravity side is reflected in the freedom of selecting a compact manifold on which one
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1.1. The dictionary 7

compactifies ten dimensional supergravity. It is thus important to have a prescription to
relate the quantities that are natural in each side of the duality. Here we will consider
a small set of fields that arise very frequently in these constructions, namely the metric
g (), a gauge field A,(x) (here we will take it to be associated to a U(1) symmetry
for simplicity) and also a scalar field ¢(x). According to the AdS/CFT dictionary, those
fields are mapped to operators of the boundary CFT: the energy-momentum tensor TH” ,
a current J* and a scalar operator O respectively.

In the classical supergravity approximation we will stick to henceforth, the so-called Wit-
ten’s prescription serves to connect the dynamics of both sides of the duality. It states
that the generating functional of the CFT is equal to the classical on-shell action

W[dg] = —S™82 (@], (1.1.1)

on-shell

where @, interpreted as a source on the left hand side, turns into a boundary condition of
the corresponding supergravity field ® on the r.h.s. In general, one finds that So 5" [®]
is has a infinite value, so strictly speaking it is necessary to consider the renormalized
version of the on-shell supergravity action. The procedure by which one obtains a fi-
nite on-shell action is called Holographic Renormalization [20-22]; we will not enter into
the details of the associated techniques here (we discuss briefly Hamiltonian Holographic
Renormalization in Appendix [7.1]).

It turns out that for asymptotically AdS spaces it is possible to perform the so-called

Fefferman-Graham expansion. A generic supergravity field then readsﬂ
B(z,7) = 22 (Bo(x) + 281 (x) + ...) + 22+ (éo(g;) 4 2dy () + ) : (1.1.2)

Generically, the expansion contains infinite terms (except for AdSs, for which the number
of terms is finite). The quantities Ay > A_ are the characteristic exponents of the
equation. In literature, ®o(z) is called the non-normalizable mode, whereas ®g is termed
normalizable. Throughout this work we will be imposing Dirichlet B.C. in all cases; ®o(z)
is thus usually interpreted as a source for the operator dual to the field ®, and @, (actually,
its renormalized counterpart) corresponds to the vacuum expectation value (VEV) of such
operatoxEl’lﬂ Furthermore, there is a relation between the conformal weight of the boundary
operator, A, and the mass of the supergravity fields, given by A = d — A_(m), being d
the dimensionality of the boundary. For instance, a scalar field with bulk mass m is dual

to an operator Oa with A = % + \/% +m2L? (L is the AdS radius). Plugging (1.1.2
into the equations of motion for @, it is possible to show that all modes with weight lower
than Ay can be expressed in terms of ®y by solving the equations asymptotically. The
normalizable mode is not determined by this asymptotic (UV) analysis; ® has either to
be given as an extra B.CE| or needs to be determined from a regularity condition provided

!The Fefferman-Graham expansion can include also terms of the form @logz that are related to the
Weyl anomaly. We will not take them into account here for they are not important to describe the main
features of the holographic dictionary.

2Strictly speaking, the 1-point function of the boundary operator is identified with the (renormalized)
canonical momentum 7 conjugate to ®o. The difference between 7 and @ is in general a local functional
of the non-normalizable mode [23]. We will not take into account this subtlety in what follows.

3There exist situations in which both ®¢(x) and ®; are normalizable. In those cases the role played by
the fluctuations can be chosen at will. This freedom can be potentially taken into account for the model
presented in Chapter El

“For two-derivative theories, it is clear that the Dirichlet B.C. that fixes ®¢ is not enough to solve the
problem. Provding ®y at the boundary accounts for the required extra condition. However, the resulting
solutions obtained by this procedure are typically non-regular in the interior and therefore meaningless. It
is much better to impose directly a regularity condition in the interior (IR), as mentioned in the text.
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1.2. Global currents and chemical potential in holography 8

in the interior (IR). Giving such a regularity condition and in addition solving the full
(non-asymptotic) EOMs amounts to determining the normalizable mode as a functional
of the non-normalizable one

Po[Po] (1.1.3)

which is to say, the VEV of the dual operator in terms of the source. The problem is
solved completely if one is capable of carrying this procedure out for all supergravity fields
in terms of all the non-normalizable modes; all the VEVSs of the dual field theory operators
would be then determined in terms of the sources.

Now, given (l.1.1), it is clear that one can obtain arbitrary boundary (euclidean)
correlators by taking variations of the on-shell supergravity action

6nS(S)?1—gsr}?ell; ren. (1 1 4)

(O(x1)O(x2)...0(x)) = 500 (21)0P0(22)...0P0 ()’

where we have indicated explicitly that the on-shell action must have been renormalized.
The above relation holds in euclidean signature. One encounters serious difficulties to
compute dynamical quantities at finite temperature, such as transport coefficients, from
a naive analytic continuation from euclidean path integral. This is due to the fact that
at thermal equilibrium we can compactify time and represent correlators as the sum of
partial contributions from the discrete Matsubara frequencies w = 2win, n > 1 € Z.
However, when computing hydrodynamic coefficients, we will need correlators evaluated
at arbitrary real values of the frequency. The transition from a discrete set of frequencies
to arbitrary real values of it turns out to be the main obstacle one has to face to compute
transport coefficients using lattice simulations, making the problem almost intractable to
date from the lattice perspective.

Since we will be interested in problems at finite temperature and Lorentzian signature,
it is important to ensure that the analytic continuation process is undertaken correctly.
We postpone the discussion to Section [2.3.1] and continue commenting on the inclusion of
global symmetries and chemical potential from the holographic perspective.

1.2 Global currents and chemical potential in holography

The first term in a low energy expansion in gravity is the Einstein-Hilbert contribution,
which can be considered as a kind of universal sector, common to any (possibly higher
derivative) supergravity theory. In order to accommodate a AdS background, we need
to include a negative cosmological constant. On top of that, one has to consider matter
fields. Instead of sticking to some consistent compactification of supergravity, we can sim-
ply add by hand the matter fields that one wants; this procedure is often referred to as
a bottom-up approach, because we do not care how the theory under consideration can
be derived from a stringy construction. This is similar in spirit to the phenomenological
models often worked out in condensed matter physics, in which one considers a certain
simplified Hamiltonian which features some of the properties one is intended to study,
without focusing so much on the microscopic realization of that Hamiltonian. After all, in
holography the asymptotic symmetries of AdS plus the application of a well defined holo-
graphic renomalization procedure allows us to define consistently certain finite correlators
and Ward identities at the boundary of spacetime at the formal level. The correspondence
comes into help only when one wants to interpret such correlators in terms of n-point func-
tions of a quantum CFT that lives on the boundary. We adopt this bottom-up approach
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1.2. Global currents and chemical potential in holography 9

in all of our models defined in subsequent chapters, so our holographic models will readﬂ

S = /dd“x\/—g (R — 2A) 4 Swatter - (1.2.5)

Typically, with Condensed Matter applications in mind, we are interested in introducing
a chemical potential associated to some global symmetry, that here we will take to be a
U(1) symmetry for simplicity. Of course, a theory at finite temperature will be even more
appealing. We will explain in Section that heating the theory up amounts to inserting
an asymptotically AdS black hole in spacetime. But for the moment let us elaborate on
the introduction of a U(1) chemical potential, assuming that the theory is already at finite
temperature.

If we wanted a conserved global current J* at the boundary, we would be forced to include
a dynamical gauge field Ays in the action . This is a particular example of the
general statement that establishes that gauge symmetries in the bulk are mapped to global
symmetries on the boundary. Since in our boundary lagrangian the corresponding coupling
is f dda:AMj # we notice that the non-normalizable mode of the temporal component of
the bulk gauge field is dual to the source for the charge density, that is, the chemical
potentia]lﬂ

Ap(z = 0,2) < Ag(z) = p(x) (1.2.6)

Usually one is interested in situations in which the background is homogeneous and thus
assumes that Ag(z — 0) is independent of the transverse coordinates. We conclude that
a bulk theory with a global U(1) symmetry on the boundary has to be of the form ((1.2.5])
with

1
Smatter — /dd+1$v —g <4FMNFMN) ; (127)

being F' = dA the field strength. A solution to the EOMs derived from action (|1.2.5)),
with Spmatter given by (1.2.7)), is a Reissner-Nordstrom black brane (see Chapter for an
explanation of why this is the adequate metric solution in the situation at hand) and a

background gauge field
2\ (@-3)/2
A=p(1- () dt, (1.2.8)
ZH

so that Ag(z — 0) = p as anticipated and the charge density n = u/2% = (Jy). Sticking
to the bottom-up approach, one can consider further extensions of Spatter. A possible
generalization consists in adding a complex massive scalar field ¥ dual to a scalar operator.
This has remarkable consequences: by tuning the mass of the scalar, it can be shown that

5Actually, in Chapters [5| and |§| we will consider a higher derivative model to implement the mixed-
gauge-gravitational anomaly.

5The gauge-invariant quantity that thereby acts as the source is actually Ao(z — 0,z) — A(z = zm, ),
where zp is the position of the horizon. Typically the gauge field is taken to vanish at the horizon and one
recovers ; the reason for assuming A(z = zg,x) = 0 is to make sure that the field will be well-behaved
when analytically continuing to euclidean space. However, in reality the gauge field is not gauge invariant
and therefore not observable (this is not true for superfluids/superconductors) and regularity of Ay at
the horizon, although appealing, is not necessarily a physical requirement. We point this out because
it has important implications when discussing the definition of the chemical potential in the presence of
anomalies.
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1.2. Global currents and chemical potential in holography 10

the system undergoes a phase transition, the U(1) symmetry becoming spontaneously
broken as a consequence of it. For obvious reasons, this set up has been called a (s-wave)
holographic superconductor (to be more precise, the system becomes a superfluid after the
phase transition due to the fact that the broken symmetry is global, i.e. there is no Higgs
mechanism taking place in the boundary theory). The corresponding action for matter
fields is

Smatter - /ddﬂﬂfv -9 <

1

4FMNFMN — D, VD'V + 2\\1/\2/L2) : (1.2.9)

In the introduction of Part [[TT] we elaborate on the features of a holographic superconduc-
tor. The discussion serves as an introduction to Chapters [§ and [9 in which we present
a holographic superconductor featuring a U(2) symmetry that gets spontanoeusly broken
to U(1). In that case Smatter is more complicated than for it features a U(2) gauge
symmetry and the complex scalar field transforms as a doublet of SU(2). We analyze the
interesting physical consequences of such a more complicated pattern of broken symmetries
in the aforementioned chapters.
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Chapter 2

Holographic approximations to
out-of-equilibrium physics

This section is devoted to presenting the most famous approximations to out-of-

equilibrium physics, meaning hydrodynamics and linear response theory. We will focus
mainly on the description at strong coupling, using holographic methods. For general
reviews on the application of holography to Condensed Matter Physics, see [24H27]
We start by giving a picture of the state of Global equilibrium. Then we move to the
description of hydrodynamic local equilibrium; even though the hydrodynamic approach
will not be the one adopted in the following chapters, for completeness we will give a brief
detour for the hydrodynamical description of weakly and strongly coupled theories. This
Section concludes with a more detailed description of Linear Response Theory in QFT
and Holography.

2.1 Global Equilibrium

In Quantum Mechanics the grand canonical ensemble is determined by a density matrix
defined on Fock space. We can write it in a covariant form

p= Zaleﬁ“Pmrﬁ“N; Zg = trePnl" AN (2.1.1)

where p* = put (u* = (v,77) is the four-velocity), P* and N being the momentum and
number operators respectively. In the rest frame u* = (1,0,0,0) and reduces to
a quantum-mechanical version of (?7?). Generically, Lorentz invariance (concretely, boost
invariance) and Supersymmetry will be broken by thermal states.

2.1.1 Global Equilibrium state as a geometric object in AdS/CFT

The intuition that Black holes correspond to global equilibrium states in the dual the-
ory could be natural even for physicists not aware of the AdS/CFT correspondence. This
is due to the laws of black hole mechanics, established by Bardeen, Carter and Hawk-
ing [11], that have a strong resemblance of the laws of Thermodynamics. Moreover, in
asymptotically flat spacetimes there are theorems, formulated in the 60s, that prove the
uniqueness of several solutions under the assumption of regularity of the horizon, depend-
ing on the theory under consideration and the isometries of the black-hole. These are the
Schwarzchild (Sch), Reissner-Nordstrom (RN) and Kerr (K) Black—Holesﬂ It turns out

IThere exist also a Kerr-Reissner-Nordstréom BH.
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2.2. Hydrodynamics 12

that these BHs can be described entirely by certain quantities measured at infinity, namely
the mass, the chemical potential or the angular momentum ( “BHs have no hair” |28]). This
fact already suggested the relation between BHs and thermodynamic states, in which the
whole system is described by a set of macroscopic variables.

Moving to asymptotically AdS spaces, one can basically map the conclusions of the pre-
vious paragrapkﬂ In holography, the Sch BH (actually, Black Brane (BB)) is dual to
a thermal state at finite temperature in the Canonical ensemble, whereas the RN BH
corresponds to the Grand-Canonical state . The Kerr BH corresponds to a state
in which we source the angular velocity of the system, and will not be considered here.
In fact, it can be shown that only asymptotically AdS-BHs reach equilibrium with their
radiation for temperatures higher that a critical value T, turning them in good candidates
for being associated to global equilibrium states. In addition to this, Hawking and Page
showed that BHs undergo a first order phase transition [29], from a thermodynamically
radiation-preferred phase (the thermal AdS background) for 7, < 7' < T} to a BH pre-
ferred phase (AdS-Sch BH) at temperatures 77 < T < Ty. If T > T5, all radiation collapse
into BHs.

To avoid these potential issues, in the following we will always assume that we sit in the
large-temperature regime of the theory, in which we basically have AdS Sch BH only.
More specifically, if the temperature in d dimensions reads

_dr} +(d—2)Rj,q

T 2
drry RY 49

: (2.1.2)

where r; is the position of the horizon and R 45 is the radius of AdS, thermal AdS and
AdS-Sch BH exchange dominance at r1 = Rags [1]. Going to the large r4 limit we get
the temperature of the theory

T = ET+ , (213)
Henceforth we will stick to large BHs and hence take the above definition of temperature
(the formula changes if we consider a large RN BH, due to the presence of a finite chemical
potential) . One could ask how to go beyond large Black Branes (i.e. global equilibrium
situations in AdS/CFT). Departing from global equilibrium in the dual field theory can
be seen as perturbing the BB in different ways in the bulk. In the next subsections we will
describe how this is achieved.

2.2 Hydrodynamics

Hydrodynamics is an old discipline [30,31]. It is and effective field theory that al-
lows us to describe out-of-equilibrium systems whenever the external perturbations fulfill
kEXmpp << 1, where k is the momentum and A, s, is the mean free path of the constituents
(kAmgp can be regarded as the expansion parameter). Physically, that condition means
that the distance at which the external sources vary is much larger than the mean free
path of the constituents. The above condition is equivalent to stating that there is an
analytic expansion in kA, s, of the correlators of our theory; hydrodynamic constitutive
relations are nothing but the formal representation of those expansions.

In theories in which we have a well-defined scale M (for instance, a mass gap), A p ~ 1/M

2The no-hair conjecture can be violated, however. We will see an example of this later on.
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2.2. Hydrodynamics 13

and thus it is always possible to apply hydrodynamics. However, in a Conformal Field
Theory (CFT) there is not such a scale. Therefore, there exist long-range correlations and
typically the correlators are not analytic functions of momentum. The way out consists in
heating up the theory; this would automatically imply that A, ¢, ~ 1/7" and then hydro-
dynamics can be fomulated as an effective field theory with an expansion parameter that
is the momentum of the external sources over the temperature of the system. Since in a
CFT one can always set T' = 1, hydrodynamics is valid iff & << 1.

Here we will focus on relativistic hydrodynamics, because all our forthcoming results ap-
ply to relativistic CFTs. We start out in a global equilibrium situation, in which it is
possible to define thermodynamic quantities, such as temperature 7', chemical potential
u, or velocity u#. The action of external sources will in general drive the system into
a complicated out-of-equilibrium state. However, if the perturbations vary very little in
space-time, one can argue that there will be still certain regions where the system will be
approximately in equilibrium, so we can divide our sample in patches, each of which is in
thermal equilibrium and thus has well-defined thermodynamic quantities. After coarse-
graining, each patch is associated to a point and our thermodynamic variables now depend
slightly on the position in space-time. Notice that the whole construction requires a com-
promise: regions which are not in equilibrium with respect to each other must be very
well sperated, such that objects like temperature can still be defined locally. This is the
reason why it is usually claimed that hydrodynamics describes systems that are in local
equilibrium.

Hydrodynamics requires two type of constituents: equations describing the dynamics
(which in the relativistic regime are just the conservation laws) and constitutive relations,
that, as aforementioned, are the expansion in momentum of the one point functions. To
be specific, consider a theory containing with a well-defined energy-momentum tensor 1T+
and a current associated to a conserved U(1) symmetry, J*; the conservation equations
read

D, (TH) =F" J° (2.2.4)
D, (J*) =0.

where D,, is the covariant derivative and F),, is the U(1) stress-tensor. The simplest
constitutive relations are the ideal ones

<T{5§> —Eutu? + PP, (2.2.6)

<J(“O)> =Nu . (2.2.7)

Here P, = 6", + utu,, is the induced metric on the hypersurface orthogonal to the time-
like vector u, (so that u,P"” = 0 and P", = 3 in four dimensions). In addition, & = ¢
is the energy density, P = p is the pressure and N’ = n the charge density. To obtain
those identifications, one has to take advantage of the fact that there is always a frame
in which the T(’g; is diagonal and J(‘f)) is a vector with only the first entry different from
zero; such a reference frame is often called the “fluid rest frame”, i.e. w* = (1,0,0,0)
in it. Ideal Hydrodynamics is equivalent to thermodynamics (this can be seen by going
to the rest frame); given the equations of state e(u,T),p(u,T),n(u,T), the system is
completely characterized by the chemical potential ;4 and the temperature. Furthermore,
the conservation equations are satisfied trivially.

Henceforth, for simplicity we will write the Hydrodynamic expressions, such as —

(2.2.7), without the brackets.
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2.2.1 The frame choice in non-ideal Hydrodynamics

Non-ideal hydrodynamics consists in terms containing powers of the four-momentum.
For instance, in the presence of an external electric field, there will be a term of the
form §(J) = oE in the constitutive relations. Coefficients like o are called “transport
coefficients” generically. As in generic effective field theories, they depend on the under-
lying microscopic theory. First order Hydrodynamics can be obtained by allowing the
thermodynamic coefficients to depend on the coordinates a little bit

(T p, ) = (T(x), ), (), (2.2.8)
so that

Amfp Ou(T(z), p(z), u’(x)) << 1. (2.2.9)
The first order constitutive relations thus read in general [32]

TH =Eulu’ + PPM + (¢hu” 4 ¢ u) + tH (2.2.10)
JH=Nut + jt. (2.2.11)

In the above formulae ¢* and j* are transverse and t*¥ is transverse and traceless. It
turns out that these properties ensure that ¢, j# and t*” can only be built up by at least
one-derivative terms in the hydrodynamic variables. This explains why the zeroth-order
expansion is prescribed just by equations -.

Notice that there is not a unique definition of the spacetime-dependent hydrodynamic
variables. The only microscopic operators that we have in Hydrodynamics are J#(z) and
T (x) and thus we can consider definitions of (T'(x), u(x), u(x)) that differ by first order
derivative terms

(T' (), p/ (), u™ () = (T(x) + 6T (x), p(x) + op(x), u (2) + out(x)) , (2.2.12)

where 6T (x), dpu(z), out(x) are O(k). The choice of (T'(x), u(x), u*(x)) is often referred in
literature as a choice of fmmfﬂ. Working with the primed variables is consistent because
in the pure equilibrium situation (w, k) = (0,0) we recover the equilibrium quantities T', i
and u”. Moreover, both J#* and T remain the same. The transformation induced by

(2.2.12)) takes the following form

€ =0P = 0N =0, (2.2.13)
0y = — (€ + P)ouy, 6ju = —Nouy, (2.2.14)
St =0, (2.2.15)

where we have used the fact that u,du” = 0. Equations (2.2.14))-(2.2.15)) tell us that we
can use the arbitrariness of du* to go to a frame in which j, = 0 (Eckart frame) or ¢, = 0

(Landau frame). For the scalars, one parametrize the transformations enforced by (2.2.12])
as

& =e(T,p) + fe(OT, Op, Ou) (2.2.16)
P =p(T,p) + fp(0T,0p, Ou), (2.2.17)
N =n(T, p) + far (0T, Op, Ou), (2.2.18)

3We will adopt this terminology here, even though it is a bit misleading, because the choice of frame
that we refer to in the text is not a choice of an observer, i.e. a choice of reference frame.
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2.2. Hydrodynamics 15

where €, p and n are the energy density, pressure and charge density defined in equilibrium.
Relations imply that €(T, u) + fe(OT, 0p, 0u) = (1", i) + f(OT',0p/, 0u’), the
same applying to P and N. It turns out that we can use §7T,du to fix two of the fs to
zero. It is frequent to choose f¢ = fj, = 0, which implies £ = ¢ and N’ = n in —

@-2.11) [33].

One can also assume a generic frame, where all quantities are generically different from
zero. Being this so, one can realize that the vector [* and function f, defined as

n
€E+Dp

0 0
I=tp - <a]:>nfg - (aﬁ)ﬂ’ (2.2.20)

=t —

7", (2.2.19)

are frame-invariant [33].

We move now to discuss hydrodynamics in holography, leaving the construction of first
order Hydrodynamics to Section

2.2.2 Hydrodynamics and Holography

Even though we are not going to make use of the technics developed to study Hydro-
dynamcs of holographic fluids, for completeness we include here a very brief introduction
to the topic, together with some references where the interested reader can find extensive
information.

First of all, one could rise the question What is a holographic fluid? Typically, at large
enough temperatures we expect any weakly coupled system to be describable by hydro-
dynamics. At strong coupling this is not so obvious; however, it seems that the claim also
holds for certain class of theories with holographic duals. In the language of Effective Field
Theory, we can think of Hydrodynamics as the most extremely coarse-grained approxima-
tion compatible with locality. Only massless modes survive the procedure, the resulting
theory being valid at very small frequency and momentum. Thus we are left with a sector
of coupled massless modes whose dynamics is prescribed by a set of constitutive relations,
including some coefficients (transport coefficients) which depend on the underlying mi-
croscopic theory (the degrees of freedom that we have integrated out). The interaction
between the hydrodynamic degrees of freedom and the ones that we have integrated out
therefore provides the notion of dissipation in Hydrodynamics [34,35]. In holography the
microscopic theory is strongly coupled, but the interaction between massless modes or the
one between massless modes and the micrscopic theory can be weak in principle. In a
CFT the bulk viscosity vanishes due to conformal invariance, but the shear viscosity is
generically different from zero and is related to the diffusion of the microscopic degrees of
freedom. The believe that this diffusion is suppressed in strongly coupled theories lead us
to the conclusion that the shear viscosity must be very small. And indeed that is what is
found [36]

S

= — 2.2.21
=, (2.2.21)

n

where s is the entropy density of the fluid. The Quark Gluon Plasma (QGP) generated at
RHIC and the LHC is an example of a strongly coupled system that can be described by
Hydrodynamics. Remarkably enough, its correspondng shear viscosity to entropy density
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2.3. Linear response theory 16

is of the same order of magnitude than in (2.2.21)).

The relation between Black holes and Hydrodynamics (ecoded supposedly in its sketched
horizon) had been anticipated long time ago [37]. One can see the idea as a natural ex-
tension of the fact that BHs behave as Thermodynamic systems. With the development
of the AdS/CFT correspondence, the aforementoned relation become apparent and the
program was revisited with renewed interest. This ended up with the construction of the
so-called Fluid/Gravity correspondence [38]. Let us summarize its main features.

The idea beind the Fluid/Gravity correspondence is very natural (for a review, see
[39]). In the same way as one can construct first order Hydrodynmics by assuming that
the thermidynamical parameters pu, T and u* of ideal Hydrodynamics change slowly with
position and time, we can also deform the boosted- BH solution (we boost the BH to force
the explicit appearance of u#, in the same way that Ideal hydrodynamics can be seen
as a “boosted version” of thermodynamic@, in order for the parameters (u, M, ut) —
(u(x), M (x),ut(x)) to acquire an z-dependence, i.e. promoting them to Goldstone fields.
This means the parameters G* and =y, that enter the state (responsible for breaking
the Lorentz symmetry), are now promoted to fields; Hydrodynamics is about the dynamics
of these Goldstone modes. The arbitrary deformation of thermodynamic parameters made
by hand automatically implies that the new BH is not anymore a solution to the Einstein
equations of motion. But we can enforce our deformation to correspond to a solution; this
is obtained by solving the Einstein equations order by order in derivatives{ﬂ, i.e. solving the
dynamics of the Goldstone fields. The procedure generates the Hydrodynamic expansion
of the dual field theory, namely, one-point functions for the energy-momentum tensor
and the conserved currents (up to anomalies). Notice that the hole construction relies
on the pre-existing homogeneous BH solution; in other words, the dual CFT must be at
finite temperature (or at least at finite chemical potential), as expected from our previous
discussion.

2.3 Linear response theory

Linear response theory describes out-of-equilibrium processes in which the external
perturbations, that drag the system out of the global equilibrium regime, are small in
amplitude, so that, in certain sense, a perturbative expansion of the dynamical equations
is siutable. Note that, contrary to hydrodynamics, there is no restriction on the value of
the momentum of the external perturbations.

To be concrete, let us consider deformations of the Hamiltonian H — H +eHpert.(t) , being
€ << 1 a small expansion parameter. The initial Hamiltonian H is time independent
and the condition that the system is in global equilibrium implies [H,p|] = 0, with p
corresponding to the thermal density matrix. Since (O) = Tr(pO) (the brackets actually
correspond to a thermal expectation value), we conclude that all the temporal dependence
of (0) is encoded in Hper.(t). Writing (O) = (O)q,. + €6 (O), to first order in € we have
09 (O)
ot

=—1 <[O7Hpert.]> (2322)

equ.

“In gravity, one can see that dilatations and boosts are not isometries of the static AdS-RN Black
Brane. Hence, one can generate a family of solutions parametrized by (T, u*) [1].
5Actually, in momentum over temperature as aforementioned.
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Integrating this expression we arrive at

5(0) (74) = —i / 4E'Tr (0[O, Hyore (1)) (2.3.23)

to

In order to recast these expressions in terms of (retarded) Green’s functions, we consider
a QFT, whose Lagrangian is deformed by AL = —¢ [ d®zJ(x,t)S(z,t), being S(z,t) a
(possibly composite) operator which does not involve time-derivatives of the fundamental
fields. Then Hpert. = € [d3zJ(z,t)S(x,t). Moreover, we set g — —oo and impose
causality, i.e. the response cannot precede the excitation. With this in mind, we can
write

5(0) (2) = / P2/ G5 (z — ') (@), (2.3.24)

with G9°(z — 2') = —if(wo — 2{) Tr (p[O, S(2')]) being the retarded correlator. The above
formula establishes the change in the expected value of an operator O after turning on a
source J that couples to S in the Lagrangian. Typically, one is interested in case where
S is a conserved quantity, i.e. [H,S] = 0 for in that case we can study linear response
theory due to fluctuations in parameters such as the charge density, which are conserved
under time evolution.

Let us imagine that we have a QF T defined in Minkowski space, enjoying a U (1) symmetry.
It is very natural to consider Green’s functions of current and energy-momentum operators.
Throughout this work we will be mainly interested in the following correlators

Gil(x — ') = —ib(zo — 20) { [Ju(@), J.(2)]) , (2.3.25)
G (x —a) = —if(z0 — xf) ([T (2), Jal(a)]) . (2.3.26)

where the fact that the above correlators are retarded is understood and the expected
value can be a thermal one. Consider a 4-dimensional QFT at finite temperature. The
background is not sourced, so we can take the momentum to be k* = (w, 0,0, k) without
loss of generality. It is possible to show that in momentum space

k2
Gl (k) =G 2 (k) =TT (w, k); Glo(k) = an(w, k),
JJ _ —wk g . JJ _ w? L
Gx0x3 (k) _w2 — k2H (wy k), G$3$3 (k') = mn (w, k) . (2327)

The low energy limit w,k << T of the scalar functions IT*, TI7 is fully determined by
Hydrodynamics [40].

As an application, we obtain the diffusive mode, which determines how charge fluctuations
propagate in the system until equlibrium is reached. To that end, we make use of conser-
vation equation plus the following expectation: to leading order in derivatives, the
spatial currents generated in the system are due to inhomogeneities of the charge density
J=-DVJ Oﬁ This automatically implies

8,J° — DV?J° =0 (2.3.28)

5Tn the presence of an anomaly and a background magnetic field, this relation has to be corrected, even
at first order in derivatives. This gives rise to the so-called Chiral Magnetic Wave [41]
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Assuming that our system is infinite, we only need to prescribe initial conditions. Per-
forming a Fourier transformation in space and a Laplace transformation in time

JO(k, z) = / B / dt e~ kTt J0(z 1) (2.3.29)
0

we get, rather straightforwardly
1

FR2) = ipm

JOk,t=0). (2.3.30)
Hence, we notice that there exists a diffusion-type mode with dispersion relation z =
—iDk?. Solutions of the form are compatible with diffusion of charge through
random walk-type processes [40], being D the so-called diffusion constant. The diffusive
mode belongs to the longitudinal sector, i.e. arises as a pole in IT1*(w, k) (II” (w, k) does
not contain any hydrodynamic pole). Remarkably enough, this conclusion can be reached
by means of holography, getting

w(k) = —iDk?* D =1/(2xT) (2.3.31)

2.3.1 Linear Response Theory in Holography

The strength of the gauge/gravity correspondence is that it allows to study the real
time dynamics of strongly coupled field theories rather easily. Linear response theory cap-
tures the behavior of a quantum system after an initial, small perturbation. It also applies
to the late time behavior when an initially large perturbation has already sufficiently died
out and enters the linear regime. The basic ingredient of linear response theory, as we have
seen, is the retarded Green’s function. As mentioned in Section at finite temperature
one has to be careful when defining retarded correlators [42,43]. From the point of view
of holography, there are also several differences that arise from passing from euclidean to
lorentzian time.

Let us consider a field (for simplicity, we can picture it as an scalar field) in the back-
ground of a AdS-Sch BH. In euclidean signature, the Fourier-transformed field at the
horizon behaves as

Dpuel, ~ (r — rgg) =/ (2.3.32)

so that imposing regularity at the BH orizon rp implies picking the minus sign solution.
Now, in lorentzian signature the possible solutions at the horizon read

(I)Lor. ~ (T - TH)iiw/(4TrT) . (2333)

The two solutions feature now a constant amplitude as we approach rg and hence are both
regular and physical. The freedom in choosing the + or — sign corresponds to the possibil-
ity of computing advanced or retarded correlators, respectively, from the boundary theory
point of view. This can be seen by adding the e~ part of the fourier transformation

6—iwt(1)£ ~ 6—iw(t+r*)
or. ’

e_iwt(bfor. ~ e_iw(t_r*) , (2334)
where we have defined r, = In(r — rg)/(47T) (the horizon now sits at r, = —o0). We

tus note that the mode e=™!®;_ corresponds to a wave moving towards the horizon (in-
falling), whereas e_i“’tq)iror_ represents a wave moving away from the horizon (outgoing). It
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is clear that the most natural condition from the point of view of causality is the infalling
one, and indeed this is the one that is associated to retarded correlators, which in turn
are the causal ones.

In [44,45] it was shown how to calculate retarded Green’s functions by imposing infalling
boundary conditions at the black hole horizon. For black holes with non-degenerate hori-
zons the retarded Green’s functions are analytic in the upper half of the complexified
frequency plane and have (an infinite series of) isolated poles in the lower half, yielding in
general

Rn(k) ~

Gr(wk) =) + G(w, k), (2.3.35)

— w — wy(k)

being G(w, k) a part which is analytic in w € C and R, (k) are the residues of the Green’s
function. The series expansion is convergent [46]. Poles w = wy, (k) are the holo-
graphic quasinormal modes (QNM) of the black hole [47-50]. Within the QNM spectrum,
the ungapped modes play a special role, since they give the dominant contribution to
the retarded Green’s functions at low frequency and small momentum. Therefore they
determine the hydrodynamic description of the system

l£in% wn (k) = 0 <+ Hydrodynamic modes (2.3.36)
—

QNMs are computed by solving a linear gravitational problem in General Relativity on top
of a Black Brane background (see for instance [49]). In essence, we are taking the geometry
corresponding to a global equilibrium situation and perturbing it slightly, meaning that
the perturbations have small amplitude and thus Linear Response Theory is applicable.
In general, however, this linear problem is not hermitean in nature and therefore the
eigenvalues have complex values, which is to say, the most general form of wy, (k) is

wn(k) = Qn(k) — Ty (k), (2.3.37)

being Q,(k), T';(k) € R. Imaginary parts arise very naturally because we are considering
the dynamics of a massless subsector interacting with a underlying thermalized soup and
therefore the resulting energies are not constrained to be real. A similar picture arises
when considering the quasiparticle spectrum in weakly interacting theorie{]7 the only
(and crucial) difference being that all the imaginary parts are small in the weakly-coupled
case. This is indeed a necessary condition for the mode to represent a quasiparticle

r,(k
Quasiparticle — 11<1£% Q:Ek; =0. (2.3.38)

To see why, it is instructive to consider the temporal dependence of the n—th massless
mode

b ~ e~ ()t — o=Tn()t =i ()t (2.3.39)

Clearly, Im(w, (k)) quantifies the damping of the mode, i.e., how fast it decays with timeﬂ
An estimate of the time that the system needs to return to thermal equilibrium after a

"Not every weakly-interacting system features quasiparticles. For instance, the Luttinger liquid does
not present quasiparticle-type peaks in the spectral function.

8Notice in passing that the amplitude of any massive mode Im(w,(k = 0)) = —M is exponentielly
supressed. That is why hydrodynamic modes drive the leading response at large enought times.
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small perturbation is applied is AT ~ m, with {T',} = {T'n(k)|n € Z}. Observe
now that if the limit appearing in is satisfied the QNM is able to oscilate many
times before decaying; for processes with a typical time scale of order At << 1/I'), the
mode then behaves essentially as a particle, hence the name “qusiparticle”. At strong
coupling the quasiparticle picture is seriously jopardized and in general is not
fulfilled in holography. However, for the examples that we will analyze in this work,
happen to hold.

It is shown in Appendix that poles of the retarded correlators of the form
come in pairs, as long as the theory enjoys P-invariance. If w,, is a pole in the complexified
frequency plane, then @, = —w;; is also a pole. The only possibility for the QNM no to
be unpaired in the above sense is that w, = @,, so that it lies on the imaginary axis. We
will see examples of this behaviour when studying diffusive modes in Chapter [8.2

It is also interesting to comment on the consequences of having I',,(k) > 0 for some n.
That would imply that the pole of the retarded Green’s function lies on the upper half
of the complex frequency plane. According to , the amplitude of such a mode
would grow exponentially with time, signaling the perturbative instability of the system
under consideration. This is the indication of a phase transition towards a stable phase
in which the would-be tachyonic mode remains massless but stable. For example, the RN
BH is unstable because the fluctuations of the scalar field in become tachyonic
at certain critical temperature T, and the QNM spectrum of the stable phase below T,
namely the holographic superfluid, contains a massless scalar pole. In general one can gain
insight on the properties of the stable phase that the system will reach after undergoing
the phase transition by looking at the properties of the mode that becomes tachyonic in
the unstable phase. Imagine for instance that the tachyon has I';, > 0 but independent of
the momentum k. This typically implies that the broken phase will be homogeneous. On
the contrary, I';,(k) > 0 only for finite values of k is suggesting that the broken phase will
be non-homogeneous, i.e., it will break spacetime symmetries spontaneously. We will run
into examples of this in Chapter [9]

The method we will be using to compute retarded correlators and the QNM spectrum is
based on the one developed in [51]. For the shake of completeness, below we review it very
briefly.

Computing Green’s functions and QNMs
Consider a general bilinear bulk action for M fields ®/, 1 =1, ..., M

ok
S = / @i / dz (@7, Ay (k, 2)®} + ®L, Bry(k,2)®} + &L, Cry(k,2)®]] , (2.3.40)

where we have Fourier transformed the transverse coordinates

d .
! (z,2) :/(g&l@é(l{,z)e—m; k= k* (2.3.41)

and matrices Ay, Bry,Cry depend only on the background and fulfill A7;(—k,,z2) =
Aj;(k,z) (and similarly for Bry and Cry). To avoid double counting of momenta, one
split the momentum integration into “positive” (ks = (w > 0,k)) and negative k. This
yields
5= [ LK% 0 [ az o Al el o B0 + 0L B0} + 207 O
= @) J, W z kA1 J®E —kP1I®E —kPri®k —k“1I%E | >
(2.3.42)
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being A#4 = (A 4+ A")/2 the hermitean (anti-hermitean) part of the matrix. Upon using
the EOM for 1,

[EOM]yr = ~2 (Al o) + 2By + (2CH - B’T>U o) =0, (2.3.43)

one can recast (2.3.42) as a boundary term

d™k [ 1 d I gl @)
S_/(%)d/o dw/dz {@_k[EOM]q)I + - [2A ol o +BU<I>_,€<I>,€H

rz:m/d‘“k

/ dw " Fry(k,z) o |2, (2.3.44)

where we have implicitly express the fields in terms of their boundary values, i.e.
(I)i(z) :FIJ(k7 Z)()Oi )
oLy (2) = FT, (K, 2) (2.3.45)

The quantity F! ;(k, 2) is a solution matrix (the so-called bulk-to-boundary propagator),
connecting the B.C. imposed at te boundary zp = 0, termed gpi, with the interior. Clearly
FI (k2 =z2p) = (5§. If one is interested in numerical solutions, usually the boundary is
placed at a cutoff z5. From the above relations, one obtains F(k,z) = 2FTAHF' + FTBTF.
From here, applying the Minkowskian prescription of [44], one ends up with the following
formula for the retarded Green’s function

Gfy(k) = = lim Fry(k,z) = — lim (2A 'K 4 B ) . (2.3.46)

zpa—0 ZA

If one needs to renormalize, the counterterms change the solution matrix F(k,zp) —
F(k,zp) — F(k, zA)count., where F(k, 2 )count. is the countribution of the counterterms to
the solution matrix, which are responsible for rendering the Green’s function finite.
Now, given a non-normalized matrix of solutions Hy;(k,z), one can compute F'(k,z) =
H(k,z)H~1(k, 25). Poles of G¥, can be found by imposing that relation is ac-
tually ill-possed; since the dynamics are encoded in F’(k,z), one can look directly for
inconsistencies associated with the bulk-to-boundary propagator. With this in mind, we
observe that F’(k, zp) cannot be defined if H~!(k, z5) does not exists, i.e. if

det [H(k,2zp)] =0; k= (w,k). (2.3.47)

Imposing (2.3.47)), one arrives at (typically infinitely-many) solutions wy (k). Condition
(2.3.47) can be seen to be enough to compute the dispersion relations of all the QNM
spectrum of the holographic theory [51]. Among them, those QNMs satisfying wy(k =
0) = 0 are identified with hydrodynamic modes and determine the late-time response of
the system.

We will make use of the above construction repeatedly in this work. Further subtleties
arise if the bulk action is gauge-invariant. The reason is that one then needs to come up
with a prescription that ensures that the holographic correlators encode the response of
the system to a gauge-invariant source, which is not a priori guaranteed. In Appendix[11.4]
we present the method that we will follow in this work to treat gauge-invariant systems.

2.4 Hydrodynamic Linear response

Let us consider equation (2.3.24)). We know that, whenever we have an scale in our

o

\r z|

physical system A, f,, the correlators at large distancies goes as G%S(CL‘ —a) ~ ermiv
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so the range of the correlator is esentially A.,r, and the limits of integration in equation
have an effective range which is the mean free path.

Now, consider the situation in which the external source J(Z, t) is very slowly varying, such
that it can be considered to be constant on distances of order A, r,. Then, to zeroth-order
in the spatial and temporal dependence of the source, we can write

5 (0) () = J(x) /d4x'GgS(aj — ') + (terms of order k) = o.J(x) + (terms of order k)
(2.4.48)

We have taken J(z') out of the integral with the form J(z) because J(z') takes the con-
stant value J(z) in the whole range |Z — Z'| < A fp-

We have turned the initial non-local expression for § (O) into a local formula. The result
looks like the first term in a hydrodynamic expansion, with the constant o playing
the role of the conductivity. Note that the existence of a scale A, r, > 0 is essential to the
argument.

The above construction establishes that there is a regime in which both Hydrodynam-
ics and Linear Response Theory are good approaches to the description of the out-of-
equilibrium physics of a given system, see Figure . As could have been anticipated,
the regime in which both approximations overlap is the one in which the external sources
have a very small amplitude and in addition they vary very little on scales of order A, p.
Hence, sticking to that region of the amplitude-momentum parameter space, we can make
use of Kubo formulae to compute hydrodynamic transport coefficients. Moreover, as afore-
mentioned, massless poles of retarded correlators computed using linear response give rise
to hydrodynamic modes, such as the diffusive mode

w(k) = —iDk?. (2.4.49)

This mode can be computed in holography using Linear Response Theory [52]. On the
other hand, linear-hydrodynamic techniques serve to calculate the first terms of the ex-
pansion in low energy and momentum of retarded correlators.
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Figure 2.1: The regimes of validity of the two main approaches to out of equilibrium phe-
nomena, in terms of the amplitude (A) and momentum (k) of the external perturbations.
The figure has been taken from
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Chapter 3

Anomalies and Chiral transport
phenomena at weak coupling

Anomalies appear in the context of relativistic quantum field theories. In four dimen-
sions chiral anomalies [53] involve triangle diagrams with either only vector currents or
vector currents and the energy momentum tensor, in which case one speaks of a (mixed
gauge-) gravitational anomaly [54]. They are responsible for the breakdown of a classi-
cal symmetry due to quantum effects. If the symmetry is local anomalies impose severe
restrictions on the structure and definition of gauge theories (for comprehensive reviews
on anomalies see [55H57]). In the case of a symmetry generated by T4, and considering
only right-handed fermions, the presence of a chiral anomaly in vacuum is encoded in a
non-vanishing dapc = %tr (Ta{TB,Tc}). The corresponding parameter in the case of the
gravitational anomaly is by = tr (T4).

The history of anomalous transport coefficients starts with the study of high-barion
density QCD, where it was shown that certain type of unusual effects may take place in
the presence of topological defects due to anomalies [58]B In particular, an axial current
would be generated in the direction of a magnetic field B that is contained in a magnetic
flux tube [63]. This was latter called the Chiral Separation Effect(CSE)

Js = ocseB, (3.0.1)

with oosg = SJ;% u. A similar effect was proposed when studying the Quark-Gluon Plasma
(QGP) generated in heavy-ion collisions [64-66]. This is called the Chiral Magnetic Ef-

fect(CME) [67,/68]

-

J=ocmeB, (3.0.2)
being coypp = 622 fr\éc w5, and leads to the appearance of a vector current in the direction of
the external magnetic field if an axial chemical potential ps is presentﬂ

There is another effect obtained firstly by holographic methods, which represents the
generation of an axial current due to an axial chemical potential and axial magnetic field

j’5 = 0'5555 (303)

"Remarkable enough, the existence of anomalous transport was actually predicted more than twenty
years before by Vilenkin [59-62]

2Tt has been argued in [64] that an imbalance between right- and left-handed quarks is generated locally
due to the existence of sphalerons. This imbalance could be modeled by an axial chemical potential after
equilibrium is reached.
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with o555 = QNT%;LE). Experimentally, this effect is less interesting, because axial magnetic
fields do not exist in nature. However, recent studies on Weyl semimetals indicate that
both ps and Bs could be effectively seen as features of the Dirac cones in these materials.
After these developments it was also shown that, in addition, a vortex can also generate
a current in the direction of vorticity

J5 = o,
J=oVa. (3.0.4)

Here O‘FA,V} is called Chiral Vortical Conductivity (CVC) generically and & is the vorticity
vector. Soon after a consistent holographic calculations of the CVC and CMC where
performed via Kubo formulae in holography [69], it was shown by direct calculation of the
CVC for a gas of free fermions at finite temperature that the existing literature had been
missing a term proportional to the temperature squared [70]

pE+p? | T
472 12°

o) = (3.0.5)

It was also conjectured in [70] that such a new term is actually related to the Mixed
Gauge-Gravitational anomaly [54]. For a exaustive discussion on chiral conductivities
see [71].

A few remarks on anomalies

Here we provide here a very short introduction to anomalies. Let us assume that we
have a QFT in the presence of a U(1) gauge field A, and a metric g,, background fields.
This serves to weakly gauge the theory. Our generating functional reads

WA, g] = —iln Z[A, ¢ (3.0.6)

being Z[A, g] the partition function. A generic variation of WA, g] is
| .
WA, g] = /d‘{m/g [5AMJ“ + 26g,U,T‘“’} , (3.0.7)

where J* is the current and 7" the energy momentum tensor. After weakly gauging the
theory, we have U(1) gauge and also diffeomorphisms. We call “s” a transformation of
this sort. After integrating by parts, we get

5 WA, g] = — / d'oy/=g [V, "+ & (VT = FAL+ AV (3.08)

where €(x) is the parameter associated to the gauge transformation of A, and da* = &£*
is a coordinate transformation.

When an anomaly is present 6sW[A, g] # 0. The anomaly can be parametrized by the
anomaly polynomial P, that takes the form

P=aFANFAF+bFARYARY,. (3.0.9)

In other words, we have allowed for a U(1)% anomaly plus a Mixed Gauge Graviational
Anomaly. We will comment on parameters a and b later on. Due to Bianchi identities,
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it is easy to see that dP = 0, so there exists a five-form Iog such that P = dlog whose
explicit expression isE|

Ics=a ANFAF+bAANR, AR, (3.0.10)
satisfying ds1cg = dG, with
Gs=e¢(aFANF+bR' AR, . (3.0.11)
It turns out that one can relate the gauge transformation of W[A, g] to G5 as
SWIA, g] = — / G, (3.0.12)
which leads to the anomalous Ward identities
~ 1
V= e @ FuFor +b B, R, ] (3.0.13)
~ 1
VI =FJ, = LA [0 By +b R, R, (3.0.14)

Up to now, the discussion concerned consistent currents, which involve variations of the
generating functional and take their name due to the fact that they obey the Wess-Zumino
consistency condition [73]. Now, that condition states that —6 [ Gy = d6; WA, g] =
ds0W A, g]. Expanding this expression we get that

-0 / Gs = / d*z/—g [6AM58J“ + ;59W58TW] : (3.0.15)

By the form of (3.0.11)), it is clear that § [ G5 will be a non-vanishing and non-covariant
functional of the external fields (the Bardeen-Zumino polynomials [72]). This implies that
the consistent current and energy-momentum tensor do not transform covariantly. To fix
this, one can define new operators
JH =JH 4+ PH, (3.0.16)
TH =TH 4 KM (3.0.17)
such that the so-called covariant current and energy-momentum tensor J* and T trans-
form covariantly under ;. The Ward identities for the covariant objects are

1 vpA e B
VMJ'M :ZG'M P |:a F;,LVFp)\ +bR ﬂ)U/VR Oép>\:| ) (30]‘8)
b
vV, T =F* J, + QVV [EaﬁpAFaﬁRuypA} . (3019)

The covariant definition of the operators cannot be derived for a generating functional
(notice that the transformation is performed directly on the operators) and more-
over do not satisfy the Wess-Zumino consistency condition [55].

For future applications, it is important to remark here that the chiral transport coefficients
are related to the response of the covariant operators.

In the following we firstly address some subtleties related to the definition of the chemical
potential and then we move to the presentation of the computations of the anomalous
transport coefficients at weak coupling, following the works [67,70]. We leave the strong
coupling, large-N calculation for Chapter

3Notice that I¢g is defined up to an arbitrary total derivative. In models with axial and vector sym-
metries and a AVV anomaly, the total derivative can be used to move the anomaly from the axial sector
to the vector sector and vice versa. This corresponds to the implementation of the well-known Bardeen
counterterm [72]. In the case at hand such a counterterm cannot be defined (it vanishes trivially) for we
have simply a AAA anomaly.
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3.1 Chemical potential for anomalous symmetries

Let us start by pointing out some subtleties related to the definition of a chemical
potential for anomalous symmetries. In the grand canonical ensemble, the chemical po-
tential u enters frequently as a source of the conserved charge operator O, which generates
a (global) symmetry of the system. In QFT a thermal expectation value admits a path
integral representation

(0) = / D(p(a)|O(z)]e 5 (3.1.20)

where Sg is the euclidean action and the boundary conditions are supposed to be periodic/anti-
periodic in time ¢(t — i) = +e*P¢(t) (plus sign for bosons and minus sign for fermions).
To simplify the mentioned boundary conditions, one could instead redefine

d(x) = e ¢(x) (3.1.21)

and consider ¢(t — i8) = +¢(t). This transformation is equivalent to having the time-
derivatives shifted as i0y — i0y + p, or, in an operator form, to having the modified
Hamiltonian

H— H—puQ (3.1.22)

These two formalisms are equivalent as long as the charge generates a global symmetry,
ie. [H,Q] = 0. Indeed, we can think of transformation as introducing a fiducial
gauge field A, coupled to the current in the Lagrangian, namely AL ~ [ d4xA# J* and
then assume Ag = p. Notice that, after introducing A, the system enjoys full gauge
invariance and the relation between formalism (A) and (B) is just a gauge transformation

Ag — Ag+ Oox; x = —ut (3.1.23)

The above transformation induces the twist on the boundary conditions of ¢(x) (in imag-
inary time direction) and removes the coupling ;@ from the Hamiltonian.

However, in the case at hand we have to keep in mind that the symmetry is anomalous
and hence [H, Q] # 0 in general

H, Q] occl/Tr(F/\F)—i—Cg/Tr(R/\R), (3.1.24)

meaning that the charge decays due to instanton or sphaleron processes when subjected
to time evolution. In other words, a eigenstate of the charge at initial time t; will cease
to have a well-defined charge at times ¢; + At.

The above argument favoures formalism (B): we start with some prepared state at t; and
let it evolve with the microscopic Hamiltonian H. Let us start with (B) and try to recover
(A). To that end, we consider a gauge transformation, which is non-trivial now due to the
anomay

S[A + dy] = S[A] + / dia x> (ClprpA + CQR“BWR@M) . (3.1.25)

In order to “remove” the anomaly, we introduce an auxiliary non-dynamical axion field
O(z) that transforms as ©® — © — x, and the vertex

SelA,0] = / d*z ©erA (ClFWFp,\ + CQRQBWRﬁapQ . (3.1.26)
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With this ingredients, we see that the total action
Stor[A, ©] = S[A] + S[A, 6] (3.1.27)

is gauge invariant. Notice that the resulting consistent current 6Stot/0A, is still anoma-
lous, even though it should be possible to define an anomaly-free current from the action
(3-1.27). In fact, the introduction of the axion ©(z) is at the core of the methods used over
the years when attempting to defining consistently an anomalous theory. We observe now
that we recover formalism (B) by assuming Ap = 0. A gauge transformation with x = ut
implies © = —put, and formalism (A) can be obtained from the field configuration Ag = p.
The axion contribution to Stor induces a term in the current jg = 4Che*” p’\(?,,GFpA,
which evaluated for © = —put implie{7]

j& = 4C uB; (3.1.28)

At this point is it important to remark that this is not the Chiral Magnetic Effect, it is
only a contribution to the consistent current that arises when we try to go from formalism
(B) to (A) in a gauge-invariant way. As we will see, Chiral Magnetic and Vortical effects
are non-trivial results of dynamical one-loop calculations. We conclude that the actual
Hamiltonian in formalism (A) is not H — u@, but

H—p <Q +4 / A3 (CleoijkAiajAk + 02K0>> : (3.1.29)

where K© is the zeroth-component of the gravitational Chern-Simons current fulfilling
OuK" = e Rey RS\ mamely KW = et'PATS) (a,,rﬁA + %Fﬁgrgu).

3.2 Anomalous Hydrodynamics

We left the discussion on Hydrodynamics in Section Here we extend it up to first
order in momenta, including anomalous contributions. Let us generalize and reformulate

a little bit equations (3.0.18)), to arrive at the following form

D,T" = FI' JV +2),D, [ep"aﬂFmRﬂgg] , (3.2.30)
(D "), = e <3nachﬁyF§>\ + AaR%,,, Rﬁap)x) ’ (3.2.31)
where Rgp. = ggfrg and \, = &ﬁ; dape and b, being defined in the first paragraph of

Section [l

In order to construct the first order constitutive relations, we have to consider the most
general expansion in terms of one derivative of the velocity, temperature and chemical
potential, in the background of a gauge field A, and a metric g,,. First of all, we expand
the derivative of the fluid velocity

1 1
DYut = —gtu? 4+ o + iwli” + ggpwj’ (3232)

4,0ijk _ —e€i5% in Minkownski space.
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¢ | Dy | DT | at EY | BE | wH | o
C |+ — + + | - — + +
P |+ — — - | = + + +

Table 3.1: Properties of first order quantities under CP.

where a*, ", w"” and 0 are called acceleration, shear tensor, vorticity tensor and expan-
sion respectively. Their definition is the following

0 =D, u" = P""D,u, ,
a* =u"D,u"
o' =DWy?) 4 gy — 1GP‘”’ = D<Hr”

w =2DWy + ultal = 2PP PYP Dy ug . (3.2.33)

The above definition implies that the acceleration is transverse and the shear and vorticity
tensors are both transverse and traceless. Moreover, from the vorticity tensor one can also
construct the vorticity vector

1
wh = 56“”9’\%,0.2,))\. (3.2.34)

From the metric and the gauge field we can define
Ff, =0,A% — 0, A% + g f** AL AL
B =Fju”,

1
B zie“l’p’\u,, o (3.2.35)

which correspond to field-strenght, electric and magnetic fields, respectively. By means of
thermodynamic charge and energy conservation, it turns out that we can define just one
independent scalar and five independent vectors, that are usually taken to be

0 ; PY¥ D0 ; P DT ; wh L B, (3.2.36)

where 1 =

NH=

3.2.1 Transformations under Charge Conjugation(C) and Parity(P)

In this section we will follow closely the analysis of [74]. We find that under (C, P) the
different quantities behave as

(C, Pyt = (+,-), (C,P)gu = (+,4), (C,P)e""* = (+,-),
(CaP)DM: (+7_)7 (C,P)J‘u:(—,—), (C7P)AZ:(_7_)7 (C7P)SM: (+7_)'
(3.2.37)

which implies (C, P)n, = (—,—), (C, P)pg = (—,—), (C,P)s = (+,+) and (C,P)T =
(4+,4). The rest of the transformations under (C, P) are summarized in Table As-
suming that the transport coefficients are functions of f(f, k, ) (the transformation of T’
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under (C, P) is trivial and hence will not be considered in the following analysis), we can
classify the possible functions depending on its transformation under (C, P)

(+,4) : Fi, 5, A) = g(°, 52, A%, KA

(—4) F(By 6, A) = ig(B®, K%, A k)

(=) F(f ko A) = kg1 (B, K%, 0%, 6X) + Aga (12, K2, A%, KA)

(+,-): f(i, kN = fikg (1%, k%, X2, k) + idga (B2, 62,02, k) (3.2.38)

We can now identify the anomalous transport coefficients for they transform oddly un-
der parity, namely, their transformation under (C, P) is (&, —). The most general non-
vanishing first order corrections to ideal Hydrodynamics is therefore

fP:_Cav

V= —2not,

.
q“ =ELEF + P D, fig + EP*D,T,
q“Oé :aéevB)Bg + O—(Evv)wu R
J& =QLEl + Q2 P D,y + Q2P D, T,

j& =cB Bl + o) wh. (3.2.39)

The tilded quantities refer to anomalous contributions. In a frame-invariant language

I = = SBf — S P Dyjiy + E5B) + €/ o + X P D, T, (3.2.40)
f=-¢&0, (3.2.41)
with
n = n
S = (00~ 256 ) Sw= (- 58) G2
n B n , .
B _ <afb - Efpagﬁ )> ; ¢ = <g;/ - E:pa“ V)) ; (3.2.43)
T 3 Na 3
— (03 a3 3.2.44
Xa < “ Tt ) ( )

3.2.2 Constraints from positivity of the entropy current

One can further constraint the coefficients imposing the positivity of the entropy cur-
rent

D,S* >0 (3.2.45)

The consequences of the above condition were studied by Son and Surowka [75]. We do
not enter into details here and refer the reader to the original reference for details. The
outcome of the calculation is that positivity of D, S* forces the most general constitutive
relations in the Landau frame for the energy-momentum tensor and the covariant currents
to be

T =eulu” + (p — £0) P — 2not” | (3.2.46)
JE =nout + Sop(BY — TP** Dy fip) + E5 Bl + €/ wh (3.2.47)
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with the following constraints on the transport coefficients

n>0, £>0, Yap > 0, Yob = T ap, xI=o, (3.2.48)

&(

gﬁy = 24K apefhe — Tp 12K apepeptd + ﬁbT2) )

_ n _
&) = 12Rapettpttc + BaT? — ﬁ(Sﬁazxubucud + 2By T + 4T . (3.2.49)

We observe that the anomalous transport coeflicients are fully determined by the anomaly
coefficients, up to the quantities 5, and ~, that enter the equations as integration constants
and are not fixed by the method. However, 7-terms break CPT invariance [76]. The
constant 3, is fixed by the Mixed Graviational anomaly, as we will see later on in Chapter
There are other strategies to obtain the chiral conductivities without imposing
(3.2.45)) (see for instance |76/80]).

In order to obtain the anomalous hydrodynamic expansion for a CF'T using holography, one
can make use of the Fluid/Gravity correspondence techniques commented on in Section
2.2.21 Here we will not elaborate on that construction. The interested reader can consult
[81] for the computation up to first order in momenta, or [82,83] for the construction up
to second order. Other interesting holographic approaches can be found in [84,85]

3.3 Anomalies and Kubo formulae

It is possible to use Kubo formulae in order to compute the anomalous conductivities.
The Landau frame, defined in Section turns out not to be the most convenient one
in this case, due to the fact that it involves a definition of the superfluid velocity that
absorbs the anomaly contributions to the energy current, so that there are no anomalous
terms in its constitutive relations, see equation . In the following we go to the so
called laboratory-frame, in which the constitutive relations to O(k), particularizing for a
single U(1) symmetry, read

T =euru” + (p — £€0)P* — not + 2§Hu) (3.3.50)
JF =nut + S(E* — TP*YDyji) + 0P B* + oV wh | (3.3.51)

with ¢" given by equation (3.2.39]). Since we know the anomalous part of the constitutive
relations (we pick the z-direction for simplicity)

6T =65 B, + 0wy,

0J* =ogB, + oyw,, (3.3.52)
we can take the variation of these one point functions with respect to the external per-
turbative gauge fields and metric in momentum space dA4,(z) = 5Aﬂ(w,E)e_th+ik'$;

dgu(x) = 69 (w, /;:i)e*“"t”];“ in order to get

7

op = lim W (JEJY) o (kzyw = 0), (3.3.53)
A
ov = lim o (J*T%)  (kzyw = 0), (3.3.54)
€ : i 0
op zklzlgo T (T%J") 5 (kzyw = 0), (3.3.55)
€ : /L x
oy :klzlglo T (YT, (k2w =0), (3.3.56)
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where R stands for ”retarded” and we have chosen the momentum pointing in the z-
direction taking advantage of rotation invariance. Notice that all the correlators are
computed at zero frequency. This means that there is no dynamics associated to such
correlators or, in other words, that we could have just used a euclidean compactification
of the time coordinate in order to compute them. But the latter statement is equivalent
to calculating the correlators at equilibrium. Indeed, it can be seen that the anomalous
transport coefficients, despite the fact that they are seen at first order in momentum,
are equilibrium quantities [77,/86]. This fact also suggest that such coefficients are non-
dissipative. In fact, it is possible to show that chiral conductivities are related to the
anti-Hermitian part of the retarded correlators, whereas usual transport coefficients sit in
the Hermitian part. The rate at which an external source f; works on the system is given
in terms of the spectral function of the operator O! (that couples to fr) by

I w
= S I @) ), (3.3.57)

where p¥ = %(GR — G;E) is the spectral function, corresponding essentially to the Her-
mitian part of the retarded Green’s function Gr. We thus observe that usual transport
coefficients are dissipative, whereas anomalous transport coefficients are not. As we will
see, this is no longer the case necessarily when considering chiral transport in superfluids.

Equations (3.3.53))-(3.3.56|) play a major role in this work, since we are going to make
use of them very frequently to compute chiral transport coefficients. A pertinent remark

is however in order. Equations represent the response of covariant current and
energy-momentum tensor. Actually, those equations have to be understood quantum-
mechanically, i.e. as an expression of one-point functions in terms of external sources.
Kubo formulae — are obtaining by varying the one point function with
respect to the external source, which is of course equivalent to perform a variation of the
generating functional. This implies that for instance corresponds actually to a

correlator involving one covariant and one consistent current, namely op ~ <J rJ y> (in
R

the notation of Section. In the rest of this work we will omit the ~ on top of the covariant
current for simplicity, but one has to keep in mind its precise definition.

If we are now to relate the anomalous transport coefficients in the Laboratory frame
with the corresponding ones in the Landau frame, we have to perform the following velocity
transformation

e
e—l—p'

ut — ut — (3.3.58)
In other words, the coefficients termed ¢ in equations (3.2.43|) are indeed the anomalous
transport coefficients in the laboratory frame, and the desired transformation between
Laboratory and Landau frames is no other but the one prescribed by these precise equa-
tions, i.e,

{s :klcigo 2;;:0 azb: Cabe <<Ja‘]b> B HLP <T0a‘]b>> =0, Ag=0 ’ (3.3.59)
év = Jlim 2; %: €abe <<J“T°b> - EJFLP <T0aT0b>> B (3.3.60)
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3.3.1 Anomalous conductivities at weak coupling from Kubo Formulae

It turns out that it is possible to evaluate the Kubo formulae — for N
non-interacting and right-handed fermions ¥/; f = 1,...N transforming under a global
symmetry group generated by (TA)f g- The Chiral Magnetic Conductivity was computed
in this way in [67] for the first time. The calculation reduces to the evaluation of the
Green’s function

Ghpla—a') = Semb(t = 1) ([Ta(@), Th@)]) | (3.3.61)
that reduces to
=Ly g g Ly [ A T [S7, (0075 a + ) (3.3.62)
AB—2fg Af Bfﬁ - (27_[_)3513711' fQ’Y fq Y -9

being S(q) the fermion propagator and 3 the inverse temperature. This is the diagram of
Figure after exchanging the external energy-momentum tensor by a current J3. The
final result reads [67]

N

1 1

ohp = 2 > TG T o = ) > " Tr (Ta{Ts, Ho}) e - (3.3.63)
fg=1 C

For the Chiral Vortical Conductivity the calculation is similar |70]. The interesting corre-
lator is

Yz — o) = éeinH(t ~ ) (), T ()] (3.3.64)

see Figure The final outcome turns out to be [70]

272
> Tr(Ta{Hp, Hc}) pspc + 7T2T1r(TA) : (3.3.65)
B,C

1672
The contribution proportional to u? was firstly observed by a computation in holography
[87.88]. The term ~ T2 is more interesting. It was observed in [70] firstly for free fermions
by the direct computation sketched here. The fact that it is proportional to Tr(7'4) strongly
suggests that it can be related to the Mixed Gauge-Gravitational anomaly. By means of
QFT it is difficult to demonstrate it due to the fact that we do not have control over the
anomaly contributions. However, in holography we can tune the anomaly parameter at
will and, as will be shown in Chapter |5 the term proportional to 72 has its origin in the
presence of a Mixed anomaly.

Vector/Axial splitting

To finish this section, let us particularize to the case of one vector and one axial currents
with chemical potential ur = p+ us and pp = p— ps. The charges are quA} = (1,1) and
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g+k
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i / j
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—— \ | ——
K \ / k
e
q

Figure 3.1: The 1-loop diagram that contributes at leading order to the CVC.

q{LV Ay = (1,—1) for one right-handed and one left-handed fermion. Assuming a vector
magnetic field, we get

B _ _ M5 B _ _
UVV =0CME = 271'2’ UAV = 0CSE = 27T2 )
2 2 2
v _ HU5 y_ M5t Hp T
_ . — i 3.3.66
V= gn2 AT T T ( )

For the the vector Vortical Conductivity U“j the contributions coming from the gravita-
tional anomaly cancel between right- and left-handed fermions.

The chiral conductivities can be computed in dimensions different from four, as long as the
corresponding anomalies can be accommodated. We refer the interested reader to [89-92]
for different approaches to that question.
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Chapter 4

Relativistic Superfluids

Superfluidity is a very well-known phenomenon, that can be described as the capability
of a fluid of flowing without friction through thin capillariesﬂ However, a superfluid is
more than just that. For instance, one can observe that several vortices generate when we
induce some rotation in he fluid; moreover, the speed at which temperature is transported
in a superfluid is much larger than in ordinary fluids.

The paradigmatic example of a (non-relativistic) superfluid is liquid Helium. We know
that, below certain temperature ~ 2.7K, the liquid acquires the exotic properties de-
scribed above. In modern language, we say that a phase transition has taken place, and
a symmetry has gotten spontaneously broken (a U(1) symmetry in the case of superfluid
Helium).
Breaking a symmetry spontaneously does not mean that the charge is lost. Only that
some of that charge gets stored in a single vacuum quantum state called “condensate”.
At this point it is important to emphasize the difference between the existence of a Bose-
Einstein condensation (BEC), that represents the existence of a well-populated condensate,
and the presence of superfluidity. Superfluidity is a property of the excited states, con-
cretely, it is feasible if the system finds energetically favourable to create quasiparticles.
For instance, in superfluid Helium the spectrum of excitations are superfluid phonons and
rotons, the latter being gapped. There is a famous (non-relativistic) result by Landau [93]
that establishes that, at zero temperature, there is a limiting superfluid velocity before
dissipation is produced
E(k)
e
where E(k) is the energy of the excitations as a function of momentum (dispersion re-
lation). If V' > V., the system starts creating rotons (normal component of the fluid)
and dissipation occurs. In order to get , we impose conservation of the energy and
momentum. If the fluid (of mass M) wants to slow down from v to v’ < v by creating an
excitation we have

Ve = min (4.0.1)

Muv? Mo
= E(k
Mo =MV +k. (4.0.2)

Eliminating v’ we arrive at 7-k — % = E(k). Even in the best scenario, in which M >> 1
and 7 and k are parallel, we get a limiting velocity given by 1)

!Thin capillaries are necessary to avoid the generation of vortices, which work as regions where there
is no superfluid. The bulk velocity is in this way damped.

35



4.1. A model for a superfluid 36

Notice that the Landau criterion also tells us that below V. the superfluid would not be
capable of slowing down, for there are no excitations to generate. Therefore, the system
moves without dissipation. The main difference between a superfluid and an ordinary fluid
is that the latter features V. = 0 (for instance, vortices in ordinary fluids can be generated
at the cost of a very small amount of energy).

However, it is not true in general that supefluidity is present whenever a condensate is
generated. The most trivial example is the gas of non-interacting bosons, for which a phase
transition takes place in the infinite volume limit. However, there exist more sophisticated
systems that feature a BEC but are not superfluids. We will provide with a holographic
realization of one of those systems in Chapter [[TI}

4.1 A model for a superfluid

To understand where the exotic properties of a superfluid come from, the best way to
proceed is to work with a toy model that admits a BEC. This is achieved by considering
a Ap|* theoryf]

L = 9upd*o* —m?|p* — Ag|* (4.1.3)

where ¢ is a complex scalar field that could be associated to some possibly composite
scalar operator, m is the mass and A > 0 a coupling constant. The above Lagrangian
is invariant under a global U(1) symmetry ¢ — €'®p. Parametrizing the complex scalar

field as p(z) = ei$> p(z) we get equations of motion for 1) and p that admit a simple but

non-trivial solution which preserve translation invariance

_m2 _ 2
Y =put; p= \/%. (4.1.4)

where p,, is arbitrary, i.e. fully determined by the boundary conditions (notice that p? < 0).
If —p? > m?, the background scalar field acquires a non-sourced VEV and the choice of a
particular p, makes break the global U(1) symmetry. The BEC is related to such a
non-vanishing VEV; one measure of the population of the fundamental state (the so-called
superfluid density) is p?. The field ¥(x) is usually called the Goldstone field and it will be
of fundamental importance from now on. In the broken phase, the source 9,1 = _éu is
invariant under the U(1) symmetry and hence one can study the response of the system
under its influence. Solution suggests that there exists an equilibrium state in
which éu # 0, meaning that the new type of source will affect even the thermodynamic
properties of the system. This is indeed what occurs; the ideal hydrodynamic constitutive
relations (at zero temperature) readlﬂ

j“ =ngvt 5
T =evtv” + PM P, .
&
A /_gz

—1 and P the corresponding projection operator. P is the pressure at zero temperature,

The time-like vector v# = is the so-called normalized superfluid velocity, i.e. vv, =

2For an effective-theory approach to superfluids, see [94H96].

3Strictly speaking ,one is forced to consider also the hydrodynamics of ¢ due to the fact that it is a
massless field. We will not take this issue into account here because it is not of fundamental importance
for our purposes.
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4.1. A model for a superfluid 37

ns the charge density and €4 the energy. The superfluid rest frame v* = (1, 6) diagonalizes
T and makes j* = ngd}'. From here one gets

€s + Ps =nsps
1 -
dPs =ndps + 3 fde?, (4.1.7)
where f is a function conjugate to §~2 and g = —ét. Furthermore, the quantity vs = P* éy
is identified with the superfluid velocity v,. Moreover one can show that ng = —§~2p2

and therefore ng, which behaves as a superfluid charge density, is tightly connected to p?,
as aforementioned.

Now, let us gauge weakly. This implies considering a non-dynamical gauge field
coupled to ¢, namely 0, — 0, — Ay = Dy in ﬁ Expanding in terms of ¢ and
p, one can check that the resulting Lagrangian features a gauge symmetry

Y(x) = P(x) + a(z); Ay — Ay +0u0(x) . (4.1.8)

Along with the usual electric and magnetic fields, the source §, = 9,4 — A, is also gauge-
invariant in the broken phase. At the level of ideal hydrodynamics, one can imagine
constitutive relations similar to (4.1.5)-(4.1.6)), in which v* is now defined as v* = S

Ve
Taking the analogue of (4.1.5) and using (4.1.8) to fix a gauge in which ¥ = 0, one gets

== (4.1.9)

[hs
The above relation is known as the London equation and it is at the core of the Meissner
effect. Making use of Maxwell equations along with (4.1.9) one is led to the equation

V2B = ,\%E . A2 =,/ for a magnetic field B aplied on a sample of superconducting

4drng

material. Solving it we find
B.(z) = Bye ™/, (4.1.10)

which can be interpreted as if the external gauge field became effectively massive M ~ 1/
inside the sample. The Meissner effect has been observed in holography in [3,/97]. An-
other consequence of equation is that it can be written as j# = —%E“, being
E# the electric field. Therefore, the DC conductivity becomes infinite. We will observe
that phenomenon in Section It is worth mentioning also that after using (4.1.8)) to
gauge away the Goldstone field, we can introduce the superfluid chemical potential us and
supervelocity v as background values of Ag and A; respectively. This could also have
been anticipated by the form of , where it is clear that the temporal and spatial
components of the gauge field act as sources for the superfluid charge density and the
supervelocity. This trick will be used frequently in the holographic approach of Chapter

So far our discussion has been limited to zero temperature. At finite temperature
the description is more involved because generically there are quasiparticles (normal com-
ponent of the fluid) coexisting with the BEC. A hydrodynamic formulation similar to
— is still possible, but at finite temperature it is necessary to take into ac-
count also the velocity u* associated to the normal component and its contribution to the

“Should we include a F? term for A, the Higgs mechanism will take place. Here we are not interested
in that situation.
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4.2. Spectrum of excitations: Sound 38

thermodynamic relations [98H100]. Notice that for infinitely large systems the Landau cri-
terion is better formulated at finite temperature for one can consider the reference frame
which is at rest with respect to the normal component (i.e. u* = (1,0,0,0)) and refer the
superfluid velocity to that reference frameﬂ As shown in [100], for the theory at
m = 0 and perturbatively small temperature there appear inconsistencies if the supefluid
velocity satisfies

vi=1/3 (4.1.11)

One could ask whether those issues arise as manifestations of the Landau Criterion. If
this was so, the we would be led to conclude that V,(T ~ 0) = 1/4/3. In the following we
show explicitly that 1/v/3 is indeed the velocity of sound of excitations whose dispersion
relation is w(k) = vsk. This makes clear that the divergencies observed are the effect of
the Landau Criterion at work.

4.2 Spectrum of excitations: Sound

In the unbroken phase, the spectrum of excitations contains a massless mode known

as first sound and associated to density waves in ordinary fluids (the usual “sound” with
w? ~ 2k? and 2 = g—z\ s,N). However, in the broken phase the interplay between the
superfluid and the ordinary fluid generates in addition a new mode called second sound.
The excitation of the first sound provokes an in-phase disturbances of the normal and
superfluid components, such that their contribution to the variation of the total density
adds up. On the other hand, the second sound represents the wave-like propagation of
heat. In this case the components move almost in opposite phase and the total densities
remain unaltered. We therefore conclude that in a superfluid temperature is transferred
as a wave (fastly), contrary to the case of ordinary fluids, in which conserved quantities
(such as heat) satisfy a diffusion equation and hence they are transferred very slowly.
The physical consequences of the existence of a second sound, for example, is that the
superfluid reaches thermal equilibrium rapidly after a gradient of temperature is applied
in one small region. Moreover, the famous fact that superfluid Helium does not boil is a
consequence of the fast propagation of heat: all the evaporation occurs at the surface.
A perturbation of the system will generically excite both modes. There exists the pos-
sibility that only the superfluid component flows due to the perturbations. This can
be achieved by including fine scatterers that prevent the normal component to flow, i.e.
Sut = 0 [101,/102]. In such a situation the momentum of the fluid will be generically not
conserved, due to the fact that we are forcing the scatterers to be infinitely massive. As
shown for instance in |[102], the resulting perturbation is a combination of first and second
sound called fourth-sound, which presents a dispersion relation of the form w? = v3k?
with

2_ P aﬂ)
2="LC(2E) 4.2.12
! u(ap ] (42.12)

where p, i, s are the charge density, chemical potential and entropy density in equilibrium,
respectively. It can be shown that the above equation is the phase velocity of the second
sound close to T.. At low temperatures, conformal fluids must obey p oc u?~! (there is no

5At zero temperature there are not quasiparticles present and therefore all the reference frames are
supposed to be equivalent. However, the Landau criterion...
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other scale in the system) and hence limg_; vf = ﬁ. This turns out to be the velocity
of first sound close to T' = 0. So we conclude that the fourth sound interpolates between
first sound, at low temperatures, and second sound close to T,.. We will observe fourth
sound in holographic models restricted to the probe approximation, to be defined later on.
Encountering the fourth sound at zero temperature is relatively easy. Let us consider an
euclidean version of at finite chemical potential

L= (9o + )" (90 — p)p + Bip* i + m*¢"p + Mp™)? . (4.2.13)
We observe that at pu. = M a phase transition takes place and the U(1) symmetry gets
spontaneously broken. We choose the VEV for ¢ to read ¢p = % p; pP="~ : _)\MZ. Now we

perturb the background as ¢(x) = % p+e1(x)+ipe(x) to get a sencond order Lagrangian
that reads

2

LP =" 0,0:0,0i + 2ip (10092 — (1 > 2)) — Ap 5 . (4.2.14)
=1

Diagonalizing the mass matrix, we find a massless mode with a dispersion relation

2 _ 2

H 4
Wi (k) = ka +O(kY). (4.2.15)

In the hydrodynamic limit, the dispersion relation is hence linear with the momentum

k with a velocity of sound v, = % The conformal limit of the theory under
consideration is obtained when m = 0. In that case
1

vs(m=0)=—. (4.2.16)

V3

This value is precisely the expected one for a four dimensional conformal field theory at
zero temperature. Furthermore, it is compatible with a critical velocity V. = —= (see the

V3
discussion at the end of Section .

To summarize, we have presented the picture of a weakly coupled superfluid, resulting
from the breaking of a global U(1) symmetry, and its spectrum of excitations. At zero
temperature there exists a massless Goldstone modeﬂ with dispersion relation w? = v2k?
and vg given by in the conformal limit. Moreover, we have pointed out that
the Landau criterion of superfluidity for this system is satisfied, with a resulting critical
velocity Vo(m = 0,7 ~0) = % Even though the final picture is perfectly consistent, one
could ask for generalizations of it. For instance, what would happen at strong coupling?
Could the massless modes present dispersion relations different from w ~ k7?7 To what
extent are our conclusions model dependent? We address some of these questions below.

4.3 Generalizations

At this point let us elaborate on some directions that can be followed to extend the
discussion.

5Tt is also often called Nambu-Goldstone boson. For simplicity we will refer to it as Goldstone boson or
Goldstone mode throughout the text.
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4.3. Generalizations 40

Model dependence

One could argue against the convenience of using a simple model such as A|p|*. Con-
sidering suitable generalizations of (4.1.3), it will result in drastic implications on the
conclusions that have been reached before. In the following we present an argument in

support of the generality of (4.1.3)) in the hydrodynamic limit. One can write down an
it ()

effective theory for the Goldstone field by simply substituting p(z) = 7 p(x) into the
Lagrangian, to obtain
P’ 2y _ A4
Lo = 5 (Outp0"p —m®) = Zp (4.3.17)

with p (and only p) given by || As aforementioned, (4.3.17) is invariant under global
shifts of the Goldstone ¢ — 1 + «.

We can now ask ourselves about possible corrections to compatible with the shift
symmetry. The conclusion is that any suitable term ~ O(1™) must be accompanied by
at least n derivatives. In other words, the building block of a generic theory is 9v. An
arbitrary interacting theory would thus contain more than two derivatives and would in
turn be suppressed in the hydrodynamic limit. Hence, we conclude that provides
with the leading contribution at low energiesﬂ

Strong coupling limit

The above argument also ensures that interactions among the Goldstone particles
will be suppressed at low energies. What is therefore a strongly coupled superfluid? As
in the case of ordinary fluids, the weakly coupled sector of hydrodynamic modes will
interact with a (strongly coupled) thermalized sector. We expect this to have important
implications at finite temperature, for the presence of the strongly coupled sector influences
the physics of dissipation, that is, the imaginary part of the frequency of the physical
modes. It is therefore plausible that the Goldstone particles cannot be anymore understood
as quasiparticles (as it is always the case at weak coupling in four dimensions). All these
issues will be studied by means of holography in Chapter

Other types of condensates

So far we have restricted ourselves to condensation of scalar operators. In principle,
however, it is also possible that the condensate behaves as a vector (p-wave superfluids)
or even a rank-2 tensor (d-wave superfluids). The spontaneous breaking of internal sym-
metries is in those cases accompanied by the loss of parity and rotational invariance. We
refer the reader to |[103,[104] for field theoretical approaches to p-wave superfluids. We will
elaborate briefly on these less common superfluids in Chapter focusing mostly on the
strong coupling regime. Moreover, we will construct a phase in which both s- and p-wave
condensates coexist.

"The reason why we consider p to be on-shell is that it is a massive field and we can neglect its dynamics
as long as we are concerned with low-energy processes.

8There is a caveat to this argument: it is plausible to consider a Wess-Zumino term that change as a
total derivative under a shift of 1) and contains fewer derivatives than We will not take into account
such terms here.
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4.4. Goldstone Theorem and type II NG bosons 41

Dispersion relations other than w ~ k

One could also ask what would occur if we forbid terms of the form 8“1&8“14?] and hence
we force the effective Lagrangian to start at higher order in derivatives. Reaching somehow
a non-relativistic limit, such theories would be expected to present massless modes with
dispersion relations starting at higher order in momentum (for example w? ~ k* 4 ...).
This is a natural question that will not be adressed here (see for instance [106])7]
Despite of the above, it is not obvious a priori that the only possible dispersion relations
must be of the form w ~ k in the hydrodynamic limit. To bring light onto this question,
we present below some general considerations of the low energy spectrum of theories with
BECs. We will see that the collection of available dispersion relations is not restricted to
w ~ k as long as we force some kind of breaking of Lorentz invariance. The existence of
massless modes in the spectrum of superfluids and the form of their dispersion relations
are very robust and depend only on the structure of the broken symmetries.

4.4 Goldstone Theorem and type II NG bosons

In the context of condensed matter physics it has been pointed out long ago in [107]
that certain multicomponent superfluids present unusual Goldstone modes with quadratic
dispersion relation. In the high energy context such models have been considered as models
for Kaon condensation in the color-flavor locked phase of QCD in [108}[109] again empha-
sizing the existence of the quadratic Goldstone mode. It seems useful to collect now some
of the known theorems on Goldstone bosons (a very useful review on symmetry breaking
and Goldstone modes is [110]). First we have of course the actual Goldstone theorem.
Its proof assumes the existence of a conserved current j# such that the broken charge is
Q= d?z 70 (with d spatial dimensions). The theorem then states that spontaneous
breaking of a continuous global symmetry implies the existence of a mode whose energy
fulfills

’ilg%)w(k‘) =0. (4.4.18)

The theorem by itself does not make any statement about the number of these modes,
nor does it fix the k-dependence of the frequency. In the presence of Poincaré symmetry
one can make however a stronger statement, namely that the dispersion relation of the
Goldstone mode has to be linear and that the number of Goldstone bosons equals the
number of broken generators.

Lorentz symmetry might be absent however, either in principle such as in non-relativistic
field theories or the system under consideration might be in a Lorentz symmetry break-
ing state, such as being at finite temperature or density. In these cases another theorem
classifies Goldstone bosons as type I if their energy vanishes as an odd power of the
momentum or as type II if their energy vanishes as an even power of the momentum
in the zero momentum limit. The number of type I and type II Goldstone bosons has to
fulfill then

nr—+2nyr > Npg, (4.4.19)

where Np¢ is the number of broken generators [111]. The number of type I and type II
Goldstone bosons can be further constrained. Upon assuming that the broken symmetry

9For instance, by demanding that v corresponds to a galileon [105].
'We do not discard however that the type IT NG boson, to be defined in Section below, could arise
from an effective theory with an enhanced shift symmetry, at least at lowest order in derivatives.
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4.4. Goldstone Theorem and type II NG bosons 42

generators obey ([Qq, @p]) = Bap the number of Goldstone bosons has to fulfill [112-114]
(see also [110,/115}/116] for more on counting rules of Goldstone bosons).

1
nr+nr = Npg — irank(B) ) (4.4.20)

4.4.1 A field theoretical model with type II Goldstone boson

Motivated by the physics of Kaon condensation in the color-flavor locked phase of QCD
the authors of [108,[109] studied QCD at a nonzero chemical potential for strangeness. It
was shown that at a critical value of the chemical potential equal to the Kaon mass, Kaon
condensation occurs through a continuous phase transition. Moreover, a Goldstone boson
with the non-relativistic dispersion relation w ~ k? appears in the Kaon condensed phase.
To illustrate this fact, they considered the following (Euclidean) toy model:

L= (0 + 1) (9 — p)d + 0id' 0,0 + M6 + MoT9)? (4.4.21)

where ¢ is a complex scalar doublet,

¢ = <Z;) : (4.4.22)

As long as pu < M the masses of the four excitations in the model are the positive
roots in w of

(w+p)? =M. (4.4.23)

All are doubly degenerate. It is straightforward to check that at p = M the global U(2)
symmetry gets broken and the new vacuum can be chosen to be

1 2 M2
6= <2> , with 2 = "f (4.4.24)

Studying the fluctuations of the doublet ¢ around this background one finds two massless
and two massive modes with the following dispersion relations:

2 2
9 W M7, 4
wi = mk +0(p"), (
wi = 6u* — 2M? + O(k?), (
w? =k — 2uws, (4.4.27
(

w? =k + 2wy .

If we concentrate on the positive roots we see that wy is a normal, linear Goldstone mode.
In the conformal limit, which in this theory corresponds just to M = 0, we recover the
expected dependence w? = % k? for the fourth sound in four dimensions (see the discussion
under equation ) Moreover, right at the phase transition 4 = M and hence
w? ~ O(k*), so at that point in phase space even the type I NG boson has a quadratic

dispersion relation.
The positive root of equation (4.4.27) is

k2 .
wy =g+ O(kY). (4.4.29)
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This is the type II Goldstone mode. It has formally a non-relativistic dispersion relation.
Since the underlying theory has however Lorentz invariance there is of course also a nega-
tive energy mode with quadratic dispersion. This arises as the negative root of wy. Finally
wo and wy are gapped modes with

wy =2+ O(K?). (4.4.30)

Since the symmetry breaking pattern is U(2) — U(1) there are three broken generators but
only two massless Goldstone modes in the spectrum. This model fulfills all the counting
theorems noted in the introduction. In particular the Chadha-Nielsen rule is
exactly saturated. The role of wy is special. It is the mode that pairs up with the type
IT Goldstone mode in the dispersion relations and . It has been argued
that this mode is a universal feature and that its energy at zero momentum is exact and
protected against quantum corrections [115,/117,/118|. The spectrum obtained from this
model is summed up in Figure [£.1] In our holographic models we will look for this special
gapped partner mode of the type II Goldstone mode. This simple Lagrangian model

w
M

0.5 1.0 15 20

ER

Figure 4.1: The spectrum of the field theoretical model. Below the critical value y = M
there are four massive modes. The masses are M — u and M + u, the numbers indicate
that they are doubly degenerate. In the broken phase p > M there are two Goldstone
modes with exactly zero mass and two gapped modes. The special gapped mode has mass

2.

serves as our motivation and guideline to construct a holographic model featuring type I1
Goldstone modes. In fact we can use the same kind of matter Lagrangian in a holographic
setup.

4.5 Superfluid (anomalous) hydrodynamics

Equations (4.1.5)-(4.1.6]) represent the constitutive relations of an ideal superfluid at
zero temperature. After weakly gauging, we saw that one can define a gauge-invariant
source in the broken phase of the form

0= Ot — A, (4.5.31)

When constructing the hydrodynamic constitutive relations for a non-ideal superfluid at
finite temperature, followng the procedure of Section one has to consider 4.5.31| (and
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its derivatives) in addition to the contributions already present for ordinary fluids. This
makes the analysis much more involved [96].

Here we briefly discuss the parity-odd sector of the resulting effective theory to give some
insights into the general framework in which Part of this work is embedded. Let us
consider that metric perturbations are set to zero throughout the following discussion, so
that only generic components of gauge fields are turned on. In addition to those external
sources, the effective theory contains a dynamical Goldstone field (as does)El Thus,
appart from electric and magnetic fields, to first order in derivatives there is also space for

S1=RCRGT V=GR Ay V= et (45.32)

where (¥ = P"F{,, (the projector P”# has been defined in Section . The label “eq.”
means that ¢ has to be evaluated on-shell, i.e. as a functional of the sources Ay and
A;. Recall that we are focusing only on the source terms affecting the anomalous part of
the current. It turns out that the zeroth-component of the the partity-odd sector of the
covariant current reads

J§M = gy 581, (4.5.33)

where g1 ; is a function that depends on 7', u and the background supervelocity lve? = 2.
The spatial component J?% feature more terms and will not be included here (see [96] for
details).

The new terms discussed above lead to interesting consequences for the anomalous trans-
port of Chiral Superfluids. For example, the CMC will not be fully determined by anoma-
lies anymore. Moreover, new types of anomalous transport arise (under the name of
Chiral Electric Effect and Chiral Charge Generation Effect). Part [12| below is devoted to
the analysis of the new features making use of a holographic setup.

HThe effective theory must contain at least the Goldstone mode. The theory resulting from integrating
out a dynamical massless mode is non-local at any arbitrary small scale and therefore one has to keep the
Goldstone field unaltered.
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Chapter 5

Holographic Mixed
Gauge-Gravitational anomaly and
transport

As pointed out in Section right after the discovery of the CVC via the Fluid /Gravity
correspondence, an study via Kubo formulae was made, obtaining the same results. How-
ever, a QFT computation of the CVC for fermions at zero coupling revealed a new term
proportional to the temperature squared in O'K, equation .

Contrary to the case in QFT, in usual holographic bottom-up models the implementation
of the anomaly allows us to turn off the anomaly coefficient at will. This has the advantage
that we can prove the conjecture made in [70], namely that the new term appearing in
the CVC is related to the Mixed Gauge-Gravitational anomaly, using holography. The
new term that we have to include in the action in order to implement such an anomalou
contribution is

A

05 = 167G

/d5$ /_g€MNPQRAMRABNPRBAQR

Naively one could expect that the above only contributes to terms with at least three
transverse derivatives, due to the definition of the Riemann tensor. However, we will show
below that it is not sd2l

Moreover, the computation at strong coupling served to show that the anomalous transport
coefficients do not feel the strength of the coupling, which at that time was interpreted as an
indication of the existence of a non-renormalization theorem for chiral conductivities. We
know now that the lack of dependence on the coupling is only true in the absence of gauge
fields that unavoidably contribute to the anomaly trough quantum corrections [121-123].
We cannot see such effects using the holographic methods used commonly because all the
bulk gauge fields correspond to non-dynamical sources at the boundary.

Moreover, usual methods invoking the positivity of the entropy current do not fix com-
pletely the chiral conductivities. There are several coefficients 8, and v that arise as
integration constants, as elaborated on in Section The constant +y is forced to vanish
due to CPT invariance, but 3, is in principle free. We will see, however, that 3, is actually
fixed by the Mixed Anomaly.

'For a purely graviational analysis of similar Chern-Simons corrections to General Relativity, see (119}
120].
2Undestanding why the Mixed anomaly contributes at first order in derivatives is not trivial [81}/121]

46



5.1. Holographic Model 47

The work presented below served to obtain such a temperature-dependent term also at
strong coupling, establishing that it is the same at zero coupling and also confirming
that such a term in the CVC coefficient is completely determined by the Mixed Gauge-
Gravitational anomaly.

5.1 Holographic Model

In this section we will define our model. We start by fixing our conventions. We choose
the five dimensional metric to be of signature (—, +, 4+, +,+). The epsilon tensor has to be
distinguished from the epsilon symbol. The symbol is defined by e(rtzyz) = +1 whereas
the tensor is defined by eapcpr = v—9 €(ABCDE). Five dimensional indices are denoted
with upper case latin letters. We define an outward pointing normal vector ny o g4 -2%

oxB

to the holographic boundary of an asymptotically AdS space with unit norm nan? = 1
so that the induced metric takes the form

hap = gap —nang. (5.1.1)

In general a foliation with timelike surfaces defined through r(x) = const can be written
as

ds? = (N? + NaNAYdr? + 2N gda’dr + hapdz?dz® . (5.1.2)

The Christoffel symbols, Riemann tensor and extrinsic curvature are given by

1
I'\Np =§9MK (OngxP + OPgr M — OKGNP) 5 (5.1.3)
RM npo =0pTNg — 0T Np + TPk I'Ng — Lok TN e, (5.1.4)
1
Kay :thCnV = §£nhABa (5.1.5)

where £,, denotes the Lie derivative in direction of n4. Finally we can define our model.
The action is given by

1 5 1 MN
167‘(‘G/d T/ g|:R+2A 4FMNF
K
+eMNPQR Y, (gFNpFQR + ARA pnpRP AQR):| + Seu + Scsk . (5.1.6)
1
Sen =—— [ d*avV/-hK 5.1.7
o1 =g |, VK. (51.7)

Sosk = — d*av/—h My e NPRR AN K pr DK, (5.1.8)

1
27TG o
where Sg s is the usual Gibbons-Hawking boundary term and D AT 5;( = hﬁ hgl hflgl AV BTS[%"'”
is the covariant derivative acting on an arbitrary tensor 1" on the four dimensional bound-
ary. The second boundary term Scgk is needed if we want the model to reproduce the
gravitational anomaly at general hypersurface. To study the behavior of our model under
the relevant gauge and diffeomorphism gauge symmetries we note that the action is diffeo-
morphism invariant. The Chern Simons terms are well formed volume forms and as such
are diffeomorphism invariant. They do depend however explicitly on the gauge connection
Ajps. Under gauge transformations 6 Ay; = V€ they are therefore invariant only up to a
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boundary term. We have

1
5S = / Az~ ceMNPQR (anFNPFQR + Ay RA pvpRE AQR) _
167G J, 3
A
_— d4£13 —hnMEMNPQRDNngLDQKIL%. (5.1.9)
47TG o

This is easiest evaluated in Gaussian normal coordinates (see next section) where the
metric takes the form ds? = dr? + ~;;dz'dz’. All the terms depending on the extrinsic
curvature cancel thanks to the contributions from Scgx. The gauge variation of the action
depends only on the intrinsic four dimensional curvature of the boundary and is given by

1 A~ N ~ . ~ .
08 = Texc /6 d'zv/=he™"™ (ganFm FAR B i) (5.1.10)

This has to be interpreted as the anomalous variation of the effective quantum action of
the dual field theory. The anomaly is therefore in the form of the consistent anomaly. Since
we are dealing only with a single U(1) symmetry the (gauge) anomaly is automatically
expressed in terms of the field strength. We could also express the anomaly in terms of
an anomalous current conservation equation. One has to be however careful about the
definition of the current since it is always possible to add a Chern-Simons current and
redefine J™ — J™ + ce™¥ A, Fy;. This redefined current can not be expressed as the
variation of a local functional of the fields with respect to the gauge field. In particular
the so-called covariant form of the anomaly differs precisely in such a redefinition of the
curremﬂ In Bertlmann’s book [55] the consistent form of the anomaly for chiral fermions
transforming under a symmetry group generated by T4 is quoted as

m 1 i 1
Dy Jy = nHme Ry [TA&- (A]akAl + 2AjAkAl>:| , (5.1.11)

with ng = + for H € {R, L} for right-handed and left-handed fermions respectively. We
use this to fix k¥ to the anomaly coefficient for a single chiral fermion transforming under
a U(1)r symmetry. To do so we simply set T4 = 1 in which fixes the anomaly
coefficient dapc = $Tr(Tu{Tp,Tc}) = 1 and therefore

ko 1
487G 9672

Similarly we can fix A by matching to the gravitational anomaly of a single left-handed
fermion

(5.1.12)

Dme = Weijklém nijén mkl » (5113)

and find A\ 1
_ _ L 5.1.14
167G 76872 ( )

As a side remark we note that the gravitational anomaly could in principle also be shifted
into the diffeomorphism sector. This can be done by adding an additional (Bardeen like)
boundary counterterm to the action

Set = /d4x V—hA,I™, (5.1.15)

3Recall that the effective field theory hydrodynamic approaches following [75] typically use the covariant
form of the anomaly [76].
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with [™ = emm* (T 0,17 4 319,17 T) fulfilling Dy, I™ = $€ 9 R™ 5 R 1. Since this
term depends explicitly on the four dimensional Chrlstoffel connection it breaks diffeo-
morphism invariance.

The bulk equations of motion are

1 1
Gun —Agun = EFMLFN L §F29MN +2Xezpor Ve (FPERP ) @F)5.1.16)
VNFNM = _MNPQR (HFNPFQR + ARA BNPRB AQR) , (5.1.17)
and they are gauge and diffeomorphism covariant. We note that keeping all boundary
terms in the variations that lead to the bulk equations of motion we end up with boundary
terms that contain derivatives of the metric variation normal to the boundary. We will

discuss this issue in more detail in the next section where we write down the Gauss-Codazzi
decomposition of the action.

5.2 Kubo formulas, anomalies and Chiral Vortical Conduc-
tivity

The system of equations ([5.1.16])-([5.1.17) admit the following exact background AdS
Reissner-Nordstrom black-brane solution with

5 f2 ~ 9 L2
ds =72 (—f(r)dt* + dz ) e )dr
AO =g (r)dt = A gy 5.2.18
=o(r)dt =\ 5 - —5" (5.2.18)
The blackening factor of the metric is
~ M L2 Q2L2

The black brane is located at ¥ = 7i; . The parameters M and @) of the RN black hole are
related to the chemical potential p and the horizon 7y by

7 Q2 g
M=AHi = = =01 (5.2.20)
L2 72 V3

The Hawking temperature is given in terms of these black hole parameters as

T It )/ (QTHM 3Q2)

5.2.21
47r L2 2T T TH ( )

The pressure of the gauge theory is P = 16”% and its energy density is € = 3P due to
the underlying conformal symmetry.

The AdS/CFT dictionary tells us how to compute the retarded propagators [44,/45]. Since
we are interested in studying the linear response limit analytically, we split the metric and
gauge field into a background part and a linear perturbation,

(0)

IMN =9y N T €hmn, (5.2.22)
Ay =AY 4 eay . (5.2.23)

Now we can compute the holographic response functions by applying the prescription
of [2,44,45,|51]. Recall that for a coupled system the holographic computation of the
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correlators consists in finding a maximal set of linearly independent solutions that satisfy
infalling boundary conditions on the horizon and that source a single operator at the AdS
boundary. Without loss of generality we consider perturbations of momentum k& in the
y-direction at zero frequency. To study the effect of anomalies we just turned on the shear
sector (transverse momentum fluctuations) a, and h$, where o = z, zE| For convenience
we redefine new parameters and radial coordinate

ApAL 4psLl3 _piL? P

: = ; = 5.2.24
% T “T B T ( )

Now the horizon sits at u = 1 and the AdS boundary at v = 0. Finally we can write the
system of differential equations for the shear sector, that consists on four second order
equations. Since we are interested in computing correlators at hydrodynamics regime, we
will solve the system up to first order in k. The reduced system can be written as

0= h?/l (u) — h?/u(u) — 3auBl, (u) + iXkeas [(24au3 —6(1— f(u))) Bﬁuu)
+(9au® — 6(1 — f(u)))Bl(u) + zu(uhf’(u))'] . (5.2.25)
_ toy 1 W g k()
0= Ba( )+ f(U) Ba( ) f('LL)
ike S (2t - AN 1)
+ikeap ( uf(u)A<a(f( )—1)+3 )ht (u) + ) ) . (5.2.26)

with the gauge field redefined as B, = ao/u. The complete system of equations depending
on frequency and momentum is showed in appendix [7.4 This system consists of six
dynamical equations and two constraints.

In order to get solutions at first order in momentum we expand the fields in the
dimensionless momentum p = k/47T such as

B (u) =h (u) + p S (w), (5.2.27)
Ba(u) =BY (u) +p BV (u). (5.2.28)

The relevant physical boundary conditions on fields are: h#(0) = H®, B,(0) = B,; where
the ‘tilde’ parameters are the sources of the boundary operators. The second condition
compatible with the ingoing one at the horizon is regularity for the gauge field and van-
ishing for the metric fluctuation [69).

After solving the system perturbatively (see appendix for solutions), we can go

compute the corresponding holographic Green functions. If we consider the vector of
fields to be

o (u) = (Bu(u), hi(w), Ba(u), hi(u)), (5.2.29)

the A and B matrices for that setup take the following form

=4

__ " : _ 1 1
A= 6P D1ag< 3af, " 3af, u> , (5.2.30)

4Since we are in the zero frequency case the fields hy completely decouple of the system and take a
constant value, see appendix
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0 R T L
H
i 0 -3 0 0
Badgs+o = ———2— | _sincers O (5.2.31)
- pepL )
167GL e 0 0 —3a
0 0 0 -3
0 0 0 0
3
i 0 5~ 0 0
Ty v
Ber=t6eci| o 0 o0 o ’ (5.2.32)
0 0 0

where B = Bagst+a9+Bcr. Notice that there is no contribution to the matrices coming from
the Chern-Simons gravity part, the corresponding contributions vanish at the boundary.
These matrices and the perturbative solutions are the ingredients to compute the matrix
of propagators. Undoing the vector field redefinition introduced in (6.4.104)) and (6.4.105))
the interesting retarded correlation functions at zero frequency are then

Gr == Gy = VB o, (5.2.33)
3ikQ*k  2ikAnT?
4 G T + G ’
iV3kQ3k  4mi3kQT?)

2t G 7’16{ + G 7:%1 '

G:r,tz :Gtx,z = _Gz,tx = _Gtz,x = (5234)

Gta:,tz = - Gtz,tx =+

(5.2.35)

Using the Kubo formulae (3.3.59) and (3.3.60)) and setting the deformation parameter to

zero we recover the conductivities

V3Qr _

- _ = 5.2.36

9B 27TGF%I 472’ ( )
3Q*k  2xrT? 2 T?

e _ _ _ " 5.2.37

Vv 9B 47rGFf‘fI G 8w2 24’ ( )
3Q3 Am/3QT? )\ 3 T2

ot = _\[Q_g@_ 7”[?2 _m o (5.2.38)
21 Gy Gy 1272 12

The first expression is in perfect agreement with the literature and the second one shows
the extra T2 term predicted in [70]. In fact the numerical coefficients coincide precisely
with the ones obtained in weak coupling. This can be taken as a strong hint that the
anomalous conductivities are indeed completely determined by the anomalies and are not
renormalized beyond one loop. However, the statement is only true if we do not allow for
dynamically generated instanton-type contributions to the (non-)conservation law [REF.]
We also point out that the 72 term that appears as undetermined integration constant in
the hydrodynamic considerations in [124] should make its appearance in of,. We do not
find any such term which is consistent with the argument that this term is absent due to
CPT invariance.

Finally let us also note that the shear viscosity is not modified by the presence of the
gravitational anomaly. We know that 7 o< lim,,_q i < T%T*Y >1_q, so we should solve
the system at k = 0 for the fluctuations h!, but the anomalous coefficients always appear
with a momentum k as we can see in , therefore if we switch off the momentum, the
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system looks precisely as the theory without anomalies. In [125] it has been shown that
the black hole entropy does not depend on the extra mixed Chern-Simons term, therefore
the shear viscosity entropy ratio remain the same in this mode]ﬂ

SFor a four dimensional holographic model with gravitational Chern-Simons term and a scalar field this
has also been shown in [126].
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Chapter 6

Cutoff Flow of Anomalous
Transport Coefficients in
Holography

One would expect that the remarkable fact that both the CME and the CVC are
completely determined by anomalies, which are very robust (topological) objects, prevents
these transport coefficients from acquire a dependence on the RG group scale or the cutoff
scale, at least in the presence of non-dynamical external fields.

Within the gauge-gravity duality the running with the holographic coordinate can be
interpreted as a type of renormalization group (RG) flow in the dual field theory [127].
The first application of this holographic flow to transport coefficients is [128] where it
was shown that the electric conductivity and the shear viscosity have a trivial flow. The
extension to finite chemical potential has been studied in [129,{130] and in [131] the flow
is analyzed in the framework of the Gauss-Bonnet theory.

Later on there was a renewed interest in this subject due to the explicit holographic
construction of the Wilsonian Renormalization Group [132]. This approach has also served
to study in detail the holographic dual of the cutoff scale [133].

It is natural to analyze the holographic flow of the anomalous conductivities as well.
In the work presented below we define a theory equipped with a cutoff A; this means
that we are not considering a (holographic) Wilsonian partition function [132], but rather
one in which the UV degrees of freedom have been neglected. The interpretation of
as a generating functional of a cutoff theory is present already in the first works
on holographic RG [127]. The resulting theory is non-local at the scale of the cutoff.
Furthermore, studying correlators as functions of A corresponds to analyzing the value
of the Green’s functions for different theories, each one equipped with a cutoff. This is
why the forthcoming analysis does not correspond to a proper RG flow, but to a cutoff
flow. Such a cutoff flow is computed using different approaches associated with equivalent
methods; we show that the resulting flow we observed can be easily interpreted as the flow
of the chemical potential.
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6.1 Setup

Lets show how transport coefficients flow with a variation of the holographic cutoff
scale. We define the theory with a cutoff as:

1 1
S=— dPz/ =g <—4FMNFMN) . (6.1.1)

€% Jr<A
We consider this theory in a general black brane background of the form

ds® = —gudt® + grrdr® + gud(z")? . (6.1.2)

We assume that the above metric has an event horizon at » = ry and that every component
depends only on r. The boundary is placed at » = A. The metric is also assumed to be
regular except at the horizon and possibly in the limit A — oo. The current of the
holographic dual field theory is

1
= SV gF (6.1.3)
r=A

In the gauge A, = 0 the z-component of its variation due to a small perturbation of the
gauge field reads

, (6.1.4)

-1 _
J' = —V—99" 9" a(x,r)
e r=A

where @ = da/dr is the r-derivative of the aforementioned perturbation. We define a(z,r)

as a(z,r) = 3((17;)) a®)(z), so that it is normalized at the boundary to a(z, A) = a(?(z) and

a(r) solves the radial wave equation

. 1, . . .

a(r) + 5a(r) (9" 91t + 9" Gua — 9" Grr) + grr (P9 — K*g"") a(r) = 0. (6.1.5)
On the other hand, we define the electric conductivity at the boundary as J* = og(A)E(A),
where E(A) = —iwa® is the external applied electric field. Comparing this to equation

(6.1.4]) we conclude

—i a(r)

A= — J—agd®T g L )

op(A) = —5-V-99""g o8|,

Varying the cutoff A — A 4 dA we find the for the differential of the electric conductivity

dog(A)  —i [d da(r)/dr

i = | (Ve )] 047

This equation shows that we can study the flow of the transport coefficients with the cutoff
reformulating it as the evolution with respect to the coordinate r, by formally identifying
r with A.

We can use now the equation of motion for the perturbation a(r) and the definition of
the conductivity to derive the flow equation

dO’E(UJ, k) . e? 2 V=Y zx tt k? T
—n — W \/ngrrgmaE + = 9\ + 29 (6.1.8)
This the flow equation first derived in [128]. It can be solved by demanding infalling
boundary conditions on the horizon. In particular the flow for the DC conductivity turns
out to be trivial g = 0. In this case the electric conductivity is completely determined
by its value on the horizon via the membrane paradigm

() = op(ry) = e% . (6.1.9)
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6.2 Flow of anomalous conductivities

We will apply now the strategy outlined before to the anomalous transport coefficients.
Two models will be considered. First we discuss a model in which we neglect the backre-
action of the gauge field fluctuations on the metric. We will study the interplay between
two U(1) symmetries which we call vector and axial ones. This allows to model the chiral
magnetic and the chiral separation effect. A second model will use only one anomalous
U(1) symmetry but we will also include the backreaction onto the metric. This allows
to study also the flow of the chiral vortical conductivity and the flow of the anomalous
transport coefficients related to the energy current.

6.2.1 Vector and Axial symmetries

We will apply the aforementioned strategy to the chiral magnetic conductivity . Its
proper definition requires the interplay between a vector like U(1) symmetry and an axial
U(1) symmetry. Holographic models have been investigated in [85}/134,|135]. The model
allows for the definition of the chiral magnetic conductivity and axial conductivities in-
volving external axial magnetic fields. Its action is given by [135]

1 1 K
S = [ VB Pl Y = o Bl N 59 A (i + 3FY i)
v A
(6.2.10)

where V' stands for “vector” and A for “axial”. The Lagrangian contains two Maxwell
actions for vector and axial gauge fields and a particular choice of Chern-Simons term. In
what follows, we will stick to the notation of the previous chapter; concretely, we define
the epsilon symbol as e(ABCDE) = —/—ge*BCPE with e(rtzyz) = 1 (r corresponds
to the fifth coordinate). From the boundary term of this action, after perturbing both
the axial and the vector gauge fields, we obtain an expression for the boundary theory
currents

1

JH = (gz\/ng‘l;T + GHGNVpAAVF[K) ) (6211)
1% r=A
1

Jb = <92J—9F;1” + 2KEWPAAVF;§> , (6.2.12)
A r=A

where e#?PA = ¢"#PA - The coefficients in front of the Chern-Simons terms are crucial to
ensure that the vector current is non-anomalous DMJ"} = 0. The axial current is anomalous
D, Jt = —Eerver (SFLF;K + FﬁFﬁ) [135]. Comparing with the standard result from

the one loop triangle calculation, we find k = —QZ:Q for a dual strongly coupled SU(N.)

gauge theory for a mass less Dirac fermion in the fundamental representation. Note also
that both currents are invariant under vector gauge transformations but not under axial
gauge transformations.

The equations of motion for the gauge fields are

1 3
g—QvNFAVM + geMNPQR(F]‘éPFSR + FYpFYR) =0, (6.2.13)
A
1
g—QvNFéVM + 3reMNPRR(FR L FYR) =0. (6.2.14)
14

In order to study the flow of the conductivities with the fifth coordinate, we will proceed
as follows:
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e We introduce an axial and vector perturbation of the gauge fields

Ay =AY +ap(y,t,r), (6.2.15)
Vir =V oy, £, 1) . (6.2.16)

We switch perturbations on only in the z and z—directions (transverse directions):
ax(y,t,7), va(y,t,7), az(y,t, 1), va(y, t,7)

e Since the Chern-Simons contribution to the current depends only on the intrinsic
gauge fields on the cutoff surface, its flow is trivial. The non-trivial part of a possible
flow is completely contained in the covariant currents

POLE (12\/—gF‘(/1)W) , (6.2.17)
v r=A

Jihe = <12\/—gF£11)W> (6.2.18)
9a r=A

e We define our transport coefficients as the response to the perturbations and in terms
of the previously defined covariant currents as

JDz — UCMEe(rtxyz)F;;)V + Uaxmlﬁ(rmyz)F;S;)A ) (6.2.19)
T = Gusiae(rtoy2) FYDY + osse(rtay2) FiDA. (6:2:20)

Oazial defines the vector current generated by an external axial magnetic field. Ob-
serve that, in order not to have F &)’g} = 0 identically, one has to turn on the
perturbations a,(y,t,7), v, (y,t,r). However, these do not play a role when studying
the flow of the anomalous conductivities for they induce contributions that tend to

zero in the low w, low k limit, very much as it occurs in [128].

The value of the background gauge fields is [135]

2
0 K57
AP — o — o (6.2.21)
2
0 Hur
v = ot (6.2.22)

The integration constants « and ~ can be fixed by e.g. demanding that the gauge fields
vanish on the horizon. In any case the covariant currents do not depend on these inte-
gration constants. The consistent currents (6.2.11)), (6.2.12)) do however depend on them
through the Chern-Simons currents. For a discussion of this dependence see [134}/135].

The procedure consists of using the equations of motion to find the value of 0,0, where
o a generic conductivity defined at some hyper surface r = A. In fact, we only need the
equations of motion projected onto x and the Bianchi identity associated with the indices
(r,y, z) to obtain an expression of the derivative with respect to r of the different transport
coefficients. From the simple form of our metric it can be seen that the vector normal to
a hyper surface of x=constant reads nj; = \/gzz (0,0,1,0,0). Hence, for the vector gauge
field we have

1
n% QTVNF‘Z/VM + 3,%MNPQR(F]{}PF5R) =0. (6.2.23)
v
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Taking advantage of the relation VyFNM = \/%798]\7 (,/— gFNM ) and the definition of the
currents (6.2.17) and (6.2.18]), we arrive at

8, gV — 12K/ —getey? (th(o)py‘;(l) + Fyf‘;(l)FV(O)> , (6.2.24)

tr
where we have neglected F‘(,l)m; F‘(/l)ygC for these modes lead to vanishing contributions in
the low momentum and low frequency limit, as mentioned before. Besides, we have carried
out the contraction e’”NPQRF]éPFgR = —46TtmyZ(Ft¢Fy‘2 + FﬁF,}; + F;;‘F,}; + (A< V).
The Bianchi identity to first order associated with indices (r,y, z) reads

0, FY-MW 4 9, FLYAWM 4 g, VAN = 0. (6.2.25)

V,A}(1
FLAN

Assuming 0, ~ gm«gyyazﬂ’(l) = 0 we obtain

V,AY1) _ _ 9zzGrr 2 1)z
87”ngz ) - \/_—g g{V7A}ayJ{V7A} . (6226)

Now, making use of these ingredients, the computation of 9,0 is immediate:

9.J*(1) Jz1)
OroopmE = lim [ r ZOh e aTFy‘g(D (6.2.27)
wk=0 1 e(rtayz)Fy, (e(rtzyz)Fy, )2 anr=0
Plugging (6.2.24)) and (6.2.26)) into (6.2.27)) we find, in momentum space
drocne = lim |126F® +ikocnp?29mr g2 Je . (6.2.28)
w,k—0 V=9 e(rteyz)Fy.
Taking the limit w,k — 0 and substituting Ft‘,{(o) = —8TA(()0) = —2“5;2?{, we get the
following flow equation for the chiral magnetic conductivity
drocmp = — 24k (6.2.29)
T
whose solution is
2
comp = C + 125228 (6.2.30)
r

Here, C is an integration constant that we must fix. In order to do that, we impose
in-falling boundary conditions for the perturbations (or, equivalently, regularity at the
horizon r = ry [135]). This in turn implies that the fields must depend only on the

combination dv = dt + ,/ %dr [128]. Therefore, in the A, = 0 gauge, we have

O Ay = |20 Ay at v =rg (6.2.31)
Gt

This condition forces directly J(M?(r = ry) to be
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Imposing these infalling boundary conditions results therefore in a vanishing chiral mag-
netic conductivity at the horizon for the covariant current E| Thus the integration constant
C can be fixed simply by the conditionﬂ

Nc 5
22

oomp(r=rg)=0—C=—12kus = (6.2.33)

The transport coefficients (6.2.19]) and ((6.2.20)) can be calculated in an analogous way. For
the axial current the projected equation is

1 3
_ gTVNFAVM " ?HEMNPQR(FJGPFSR + FXPFgR)} =0 (6.2.34)
A
which implies
2 2
arjél)w _ \/TQIQHGTtIyZ ( ;;5 Fy(;)A + T,QLFZS;)V> (6.2.35)

The values of the conductivities at » = A then read

N, r?

ocome(A) = 27:;5 <1 - Ag) (6.2.36)
Nep r2

Uamial(A) = 92 <1 - Alg) (6237)
N, r?

o55(A) = 27:;5 <1 - Ag) (6.2.38)

As expected, the result in the limit » — oo is precisely the one obtained in |135] using
AdS/CFT techniques. In view of the topological nature and the non-renormalization
theorem for the chiral magnetic conductivity it is at first sight somewhat surprising to find
a non-trivial low. This flow becomes however natural if we define the chemical potential in
its elementary way as the energy needed to introduce one unit of charge into the ensemble.
In the holographic dual this corresponds to bring a unit of charge from the boundary, now
situated at » = A behind the horizon. The energy difference between a unit of charge at
the boundary and a unit of charge at the horizon is just given by Ag(A) — Ao(rg) = u(A).
This defines an effective chemical potential in the theory equipped with the cutoff A. In
fact the definition of such an effective chemical potential is natural even in field theory. If
we have a momentum cutoff of order A we can localize a unit charge only inside a volume
within a radius of order 1/A. Thermalizing this unit of charge means spreading it out
over the entire ensemble. The difference in energy between the two configurations, the
unit of charge localized within 1/A and spread out over the ensemble again is the effective
chemical potential. All the anomalous conductivities can therefore be expressed in the
form

o(A) = N;’;(QA) .

The are linear in the chemical potential and the numerical coefficient is independent of
the cutoff. In this sense they obey the expected non-renormalization theorem.

(6.2.39)

!Note that the consistent currents might have non-vanishing chiral magnetic conductivity on the horizon
due to the Chern-Simons contribution and depending on the value of the integration constant a.

2 _ N
Recall that k = —575.
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6.2.2 Inclusion of metric perturbations

In this section we compute the flow equations for the Green’s functions associated
with generic response. The method can be described as follows: we need to consider two
equations. One is the constitutive equation

N
(0;) = ZGé@ (6.2.40)

and the other one is the covariant holographic definition of the one-point functions, evalu-
ated on some perturbed state. Generically, these would be a functional of the perturbations
and its derivatives (the dot means d/dr. We will be using both notations indistinctly).

N
(0;) = - Z(f?% + Hidi) (6.2.41)

7

Taking the r-derivative in both equations, we can force them to be equal. Observe that,

from (6.2.41)), we expect terms containing ’H;qﬁl After using the equations of motion, we

will be left with some expression involving only ¢ and ¢ Then, by equating and
, it is possible to find a formula for <;3j = ZZN Kj’qbl so that eventually we are able
to write the r-derivative of as an expansion in the perturbations only.

On the other hand, differentiating and using again gZ}j = ZZN K;(;Sl, we are lead to
an expression in terms of G;, G; and ¢;. Imposing that the r-derivative of and
that of are identical, we finally arrive at

N
0= Z Alg; (6.2.42)

where A;- is a functional of G; and their first derivatives. Assuming now that the different
perturbations are independent from each other, we get IV independent equations

AL =0 (6.2.43)

which are nothing but differential equations for G; Remarkable enough, the flow equations
for the retarded correlators are of first order in r-derivatives.

6.2.3 Application to the anomalous conductivities

In what follows we will derive the flow equations in the presence of a pure gauge Chern-
Simons term (no gravitational anomaly) by using the procedure detailed in the previous
section. The model reads

S = Spy + Seu + S V=g (—1FMNFMN + ”GMNPQRAMFNPFQR> (6.2.44)
167TG r<A 4 3

where Spp denotes the Einstein-Hilbert action with negative cosmological constant and

Scm is the Gibbons-Hawking term on the boundary » = A. The Chern-Simons coupling

is here related to the anomaly for a single chiral fermion by x = —G/(27). Since we

need now the precise equations of motion for the metric fluctuations we will specialize the

analysis to a Reissner-Nordstrom AdS Black Brane

o 1P 2 =2 L’ 2
ds* = 75 (= f(r)dt® + di?) + er(T)dr (6.2.45)
2
A = g(r)dt = —‘f—zﬂ (6.2.46)
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The integration constant in the gauge field is set that it vanishes for r — oo. The horizon of
272
the black hole is located at r = r and the blackening factor is f(r) = 1— A{ Ly QTGL . The

4
parameters M, () are related to the chemical potential at infinity p and ri by M = TL—%HL%,

2
Q= WTSI Finally, the Hawking temperature is given by

B ) = 2r2, M — 3Q?

(6.2.47)
4 L2 27T7“H

In what follows, we consider perturbations of momentum k in the y-direction at zero
frequency. It is only necessary to turn on the shear sector, that is, the perturbations are
written as aq, h{*, where a = z, 2 ﬂ It is more convenient to work with the coordinate

v
u = -4 instead of r.
The equations of motion for the perturbations derived from ((6.2.44]), when w = 0 and to
O(k), read

—B"(u f(u) w) — hta,( ) _Bg(u)
0 =B, (u)+ ) Bl (u) ) + tkeagh TR (6.2.48)
0=h" (u) — hi (W) _ 3auB’,(u) (6.2.49)

u

4pkL?
2

where & = . The operators that we will be working with have the following form

H
when evaluated in a perturbed state (for further details see [69])

2

"H
5J° el (f(w)ay, — phy) (6.2.50)
«a er( ) _ Y
oif =gt <h h ) (6.2.51)
where the prime stands for d/du. Differentiating (6.2.50) and (6.2.51)) we are left with
2
oy __TH «
(5.7%) = () F () + aly () () — b (62:52)
H ! 4 6 3f'(u)
St& I _ THf(u) e hle f (u) . he | — — . 2.
(08') 8rGLu \'* i flu) u i u?  uf(u) (6:2:53)

In order to handle the ¢} terms, we evaluate the above expressions on-shell, yielding

2

(6J%) = — o GLgmkeaﬁa,@ (6.2.54)
ri f(w) fw) 3 6 3f'(uw)]  3au
5t =t h 4R = - —a, 6.2.55
o) =gy (v [y =) e [ |+ T (6:2:55)
Now, observe that, since h}* = i’ﬁ%ﬁ? 5t + 2h and al, = (SWGLS 0J* + uh“) Flay» €qua-
H

tion ((6.2.55) turns into

cor- S - 2 23

3At zero frequency the fields hy decouple from the system and thus will not be considered (see the
previous chapter).

3rHa

flu) u?

5J° (6.2.56)
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Plugging the constitutive relations (¢** = 1)
5 gmst — Gmxéaﬂaﬁ + zeeaﬁaﬂ + Pmt(saﬁhtﬁ + Pzteaﬂhtﬂ (6257)
5t const = GE76%Pag + GI*e*Pag + Pr6“Phly + PP e bl (6.2.58)

into (6.2.56)), the remaining equation for (§t&)" involves only ¢; and G;
On the other hand, we can take the u-derivative of (6.2.57))-(6.2.58|) explicitly and then

make use of (6.2.50[)-(6.2.51)) to end up having an equation in terms of ¢;, Gé and G;-i.
Finally, imposing (6J%,,) = (6J%)" and (0t spns)’ = (918)" and assuming that the per-
turbations ¢; are independent from each other, we find

8tGL3 81GL°u
G + G™)? — (G™)?) — S~ (PG — P*'GT*) =0 (6.2.59
e (@ @)~y )=0 (6259
167GL3 87GLou r?
ez GFT Tz _ Pa:thz Pzthx — H = ik 6.2.60
T, o OO PO = mg gk (6260
8tGL3 8tGL3 8tGLu
P/;Bt 4+ Gr <_ + Pmt) _ ( Tz P€Zt) Pzt +
M R Flupd ™ i)

xt 87TGL5U xt f/(u) 3 _
+P <_r§1f2(u)P€ - T +u>_0 (6.2.61)

Pt 4 Gz <—M + ?7(757%;[ P:ct) B mpxtpft +
+p#t (—mzﬂft + % - J;((;L)) + i?gfg G’”‘”) —0  (6.2.62)
G 4 i?jfg (GT*G™™ — GT2GT?) — % Pexth:ac + % Pezth:z _
— G (i - J;gf;) + uG™® (6.2.63)
Gz 4 ??57{2 (GG + GT*G®) — m ( PTG 4 Pezth:a:) _
— g (i . J;é;‘;) + G (6.2.64)

/xt Tx 87TGL3 xt xt 87TGL5U xt 3 f/(u)
P+ G (e o5 )+ <_T§5f2(U)PE o)t
8rGL3 8rGLu 2 3 f(w) )
_ zePzt Pzt — _Prt 2
T O S B = (L) ¢
3 4
Pt — 87TGrﬁf(u) (au - ’2(;‘)) (6.2.65)

8TGL? pat _ ) N 8TGL3 e pat 87G Lo

. P.’L’tPZt
s, Fa)g e Py et

87rGLu 3 f(w) 3 f(u)
+P (—Pg” + = — > =P ( — + P (6.2.66

P T u W) v W) (6:2:00)
By directly studying the structure of the solutions to (6.2.48))-(6.2.49)), it can be realized
that G** = P* = G* = 0 for w = 0 and to first order in k. Furthermore, all the

anomalous correlators are of order k or higher. A more detailed study of (6.2.59))-(6.2.66)
is left for section [6.3.11

P/zt + sz <
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6.3 Flow of the transport coefficients as two point functions

As suggested in Section we could have determined the flow by simply considering
the system to be restricted to live between the horizon and a cutoff surface placed at A.
It is hence expected that the transport coeflicients at the boundary can be computed by
finding the corresponding 2-point functions. The boundary value of the perturbations,
whose bulk-to-boundary propagator is normalized at the cutoff, work as the sources for
the different operators of the dual theory.

Henceforth, the perturbations will be rearranged in a vector ®(u, z*). It is more convenient
to use the Fourier transformed quantity

P my _ ﬂq)l —iwt+ik® 6.3.67
() = | Gra®hwe (6.3.67)

The explicit expression for @y (u) is
OF (u) = (Bo(uw), b (u), Ba(u), b () (6.3.68)

being B, = aq/p. To proceed, one can follow [51] and assume the general form of a
boundary action

dk
55 :/ o [ A + 0! Bryo]] (6.3.69)

In order to get the solution of the system ([6.2.48])-(6.2.49) to first order in momentum we

expand the fields in the (dimensionless) quantity p = 47%, as in —5.2.28 , namely

he(u) = A (w) + ph{P (w) (6.3.70)
Ba(u) = B (u) + pB{) (u) (6.3.71)

The system can be solved perturbatively . To calculate the retarded correlators at r = A
(or, equivalently, at u = u. = 1% /A?) we only need to solve the equations for the per-
turbations with infalling boundary conditions, on the one hand, and boundary conditions
®!(u.) = ¢} on the other [69]. This procedure should give us the desired Green’s func-
tions, after taking the variation of with respect to the fields at u = u, (which
act as sources for their corresponding operators). Recall that, as explained in Section
the bulk-to-boundary propagator must be normalized at » = A, that is, if we have

o (u) = Fj(k,u)] (6.3.72)

then F1(k,u.) = 1. Notice that the relation between the boundary value at u = u, and
that at w = 0 is simply (bé (ue) _ F} (k,uc)(bi (0), so that the solution is preserved by
these manipulations, as pointed out by [128] and [132,/136,|137]. The retarded two-point
functions, from which we are able to read directly the transport coefficients, then have the
form

Grs(k,uc) = —2 lim (AIM (FM (k) +BU) (6.3.73)

U—Ue

Where the A;; and Bj; matrices are [69]
A= AD@'CL —3af(u) E —3af(u) E (6.3.74)
- 167GL? g "u’ "u o
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0 3¢ 0 0
4 3
Ty 0 —% 0 0
Bass+o=1c-~15 o0 0 0 3a (6.3.75)
0 0 0 -3
Using again the the effective chemical potential
i
u(h) = ( - A) , (6.3.76)
the result for the anomalous correlators is
e rm  LUKK r¥ zku
0J* 6%y = —= 6.3.77
o) = 0 (1- 1) - (6.3.77)
k 2\ zku(A)
5JE5t7) = (St76J%) = 1--2) ==~ 6.3.78
(83755) = (o707 = L (1 T (6.378)
(5t75t7) = irp’k 1— 7"7H ’ _M (6.3.79)
PUHT 6rG A2) 1272 -
Since limp_,00 (A) = p, these correlators coincide essentially with the ones derived

in (69

6.3.1 Compatibility with the flow equations

The system of first order differential equations ([6.2.59))-(6.2.66) must be compatible
with the result (6.3.77))-(6.3.79)) encountered in the previous section. In order to check
that it is so, the dissipative correlators play an important role. In the case w = 0 and to

O(k), they readlﬂ

Gm =P =G" =0 (6.3.80)
Pt = 87TGL5 —H__ g2y )(J;((Z)) - i) (6.3.81)

This solution implies that G** and P* = G are of order w or higher, whereas P*'
contains a part which is of order O(k% w®) (contact term). The remaining system, after
substituting (6.3.80)), (6.3.81)) and assuming that all the anomalous correlators are at least

of O(k), turns out to be (up to order k)

“The minus sign found in with respect to the result of [69] is due to the fact that in this
reference the correlator that is studied is <5J “6t§,>, that differs from <§J agtb > by a factor of (b represents
a spatial index) gi+g*® = —f(u) — —1 at infinity.

5The limit P**(u = 0) is not well defined because we have not included the corresponding counterterms
in ,. The reason is that they do not affect the anomalous correlators.
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G"™* =0 (6.3.82)
s _ 87223 Rik (6.3.83)
Pt =0 (6.3.84)
P& — uG** =0 (6.3.85)
G =0 (6.3.86)
GI** = uG** (6.3.87)
/ 4
plat — _pat (2 B J;((Z))> N Sw?ng%f(u) (au _ fi?) (6.3.88)
P — uG¥* = pup* (6.3.89)

Equation (|6.3.88]) is in agreement with (6.3.81)). In the end, the 2-point functions associ-
ated with dissipative transport coefficients decouple completely. Regarding the anomalous
correlators, the above system of equations can be integrated easily, leading to

2

G** = 87:éfL3 Rik (1 — ue) (6.3.90)
2

P = G = —ummk (1 —u,)? (6.3.91)
2

Pt = ;ﬂmmk (1—u)? (6.3.92)

which is the same as ((6.3.77)-(6.3.79)). The role played by the Chern-Simons term in
(16.2.44]) is crucial to ensure that G** presents a flow, for in its absence all the anomalous

2-point functions identically vanish.

6.4 Gravitational Anomaly

The study of the effect of the Gravitational Anomaly on the definition of the holo-
graphic operators is a non-trivial task, for the term A A R A R has not a well defined
Dirichlet problem. This makes, strictly speaking, not possible to define generic operators.
In Chapter p| the problem was circumvented by arguing that any possible contribution
vanishes asymptotically. However, now we are interested in the value of the transport
coefficients at finite cutoff A, and therefore it is necessary to face this issue.

6.4.1 The Model

The four dimensional axial gravitational anomaly is induced holographically by a
Chern-Simons term of the form

A

This action contributes to the boundary axial current as expected for a mixed anomaly.
The comple action is given by equations —. Adding Scgk ensures that the
anomalous Ward identity for gauge transformations depends only on the intrinsic curvature
tensor on the boundary at 7 = A as in Chapter [5] Indeed, the covariant current turns out
to be

167GJ4 = np [FAP - 8eP4CPEAKp Dp KE| (6.4.94)

r=A
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with a purely four dimensional divergence that on shell evaluates to

opgr [ a b
D#JM = € Pq fFoqur,« + AR(4)bOpR(4)aqri| A (6495)

167G 3

where €°P4" = ™°P4" i the four dimensional epsilon tensor.

The aforementioned difficulties with the Dirichlet problem make the definition of the stress
tensor be much more involved. The main problem is that the bulk action contains a term
proportional to Kij and hence the variation of the on-shell action is going to depend on
0K;;. Asymptotically there is a way to define the one point function which assumes that
in an AdS spacetime the r-derivative corresponds to the dilatation operator. Then, a
generic field ¢ = e(A_d)Tgb(o) + (subleading terms) fulfills 5o = (A — d)e(A_d)r&Z)(g) + ...
This makes possible to express 0K;; in terms of the induced metric and hence to define
the one-point function of the energy-momentum tensor. After tedious computations one
can obtain that, asymptotically

i = YR

r—00

DTV = [=Jn F™ + A'D;J'] (6.4.97)

r—00
In particular, is consistent with what one would expect from a system subjected
to an external electromagnetic field. Notice also that all A-terms vanish if the boundary
is flat.

At finite cutoff the previous analysis is not possible anymore, for the spacetime is not AdS
and thus one cannot write 0K;; in terms of dh;;. Moreover, it is expected that several
terms that vanish at infinity would contribute to the energy-momentum tensor at r = A.
It is therefore necessary to consider the full higher-derivative system, in which in particular
K;; is regarded as an independent variable, in order to be able to obtain an expression
for <T i > We will show however in the next section that the equations of motion turn
out to be second order in the shear sector. This allows to calculate the relevent two point
functions of energy-momentum tensor and current. The bulk equations of motion are

given by expressions (|5.1.16[)-(5.1.17)).

6.4.2 Contribution of the Gravitational Anomaly

If we vary Scs, we are left with a term which spoils the variational problem
A
e /8 V—he™ " A D KUK, (6.4.98)

If we looked for a suitable counterterm to render the Dirichlet problem well-posed, we
would end up finding Scgx. Indeed, this boundary contribution was firstly conceived as
an analogue to the Gibbons-Hawking-York term. However, after varying Sacs + Scsk
one realizes that the result

A

— / V—he™" D, A, 6KV K, (6.4.99)
27TG o q

is still problematic. Even worse, (6.4.99)) can not be canceled easily, for, for instance, the
ansatz

A
el /a V=he™" Dy A K Ky (6.4.100)
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is automatically zero. Thus in principle, there is not a straightforward way of having a
well defined variational problem for this system.

On the other hand, as aforementioned, we need Sc gk to have a four dimensional anomalous
Ward identity at the boundary, so we will keep it. A hypothetical generic counterterm (if
it exists) capable of solving all the problems, would probably ruin and therefore,
by physical means, should not be considered. Even though the variational problem is
not well-posed, we will still be able to derive the equations of motion by means of the
analogue of the Euler-Lagrange equations for higher-derivative theories. The difficulty
therefore reduces to the question How to treat holographically? Note that in [51]
it was implicitly assumed that the Dirichlet problem is correctly defined, so we should go
a little bit further in this case. Specializing for the shear sector, which is the one that
interests us, and at second order in perturbations, reads

A

- / V—=he™" D, A, 0 KV Ky, (6.4.101)
27TG o q

Other possible terms would vanish in the background . The strategy would be
the following: Since does not affect two point functions involving only energy-
momentum tensors or only currents, we know how to compute the correlators (1;*77) and
(J*J?). only plays a role when calculating (T J#), (J*Tf7), and hence those are
the ones for which the discussion of [51] does not apply.

Following the method detailed in Section [6.3] it turns out that, taking only into account
the gravitational anomaly

(J®J?) =0 (6.4.102)

(1 — u.)T?

(TETF) = — ik = (6.4.103)

(note that we have directly substituted the value of A for a single left-handed fermion
NG = —ﬁ). The above results point again towards an effective chemical potential of
the form p(1—wu.). Therefore, on physical grounds, we expect the appearance of an effective
temperature also. Note that the flows of the effective quantities must be consistent in the
sense that they must be the same, no matter what correlator we are focusing on. Equations
(6.4.102)-(6.4.103) hint at the existence of an effective temperature for the system; this
temperature does not flow with the cutoff scale, being always identical to the Hawking
temperature. This conclusion is in agreement with the asymptotic values obtained before.
So we resolve that must be treated in such a way that (T;*.J%), (J¥T¥), at finite
cutoff, are consistent with a non-flowing temperature.

It turns out that the method to achieve it is precisely the one that one would anticipate
by general considerations: Taking advantage of the fact that the equations of motion for
the shear sector

0= htall(u) _ h?;fu) . BQUB(IX(U) + Z.j\kéag I:(24au3 . 6(1 . f(u))) Bﬁlfu)
+(9au® — 6(1 — f(u)))By(w) + 2u(uhf @))'] ,  (6.4.104)

= v o LW gy b ()

O_ Balw)+ f(U)B“< ) Fu)

tikeas < uf?zu)/\ <2(f(u) 1)+ 3u3> h (u) + r=2

a
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happen to be of second order in derivatives (where A , & and a are prescribed by ),
we can solve completely the evolution as we did in Section 3.3 (imposing in-falling B.C.
at the Horizon and Dirichlet B.C. at the boundary). Once the solutions are known (see
Appendix , will in general give a well determined surface contribution (when
evaluated on-shell) that must be taken into account to calculate (T{*J%), (J*T¢). The
result so obtained presents no flow in the temperature part.

To be more concise, the boundary term to be considered has the following form

zk/\rHeag o
T orCIA / uf'(w)ag(k)hi*(—k) (6.4.106)

whose contribution, up to first order in k, is summarized

Z'k)\r%feag f’z( ) = (0)
~ o GIA /auf(uc) 3 (k)H (—k) (6.4.107)

(Notice the factor ~ ﬁ introduced to normalize the perturbation (Appendix ) So
the effect of (6.4.99) on the Green’s functions can be reformulated as a modification, pre-

scribed by (6.4.107)), of the By matrix.
Even though (6.4.107) only affects the correlator <TtO‘J6 >, Sacs + Scsx induces auto-

matically a non-vanishing value for the components A4 = A3, of the matrix A. These
contributions, which are perfectly treatable within the framework of [51], give rise to a

correction of <J T, tﬁ > which is precisely of the same form of the one implemented by

. As will be mentioned below, this turns out to be sufficient for the consistency
condition to hold.

The final form of the matrices Aj;; and By after implementing the shift driven by the
Gravitational Anomaly is given by

—3af(u) 0 0 _Muf/( )
__"H . CTh 41
A= TerGIr | 0 Ly () —3af(u) 0 (6.4.108)
H
0 3a 0 0
5 o 0 -3 4z’)\kL9““3+%_f(“)) 0
AdS+9 = 161GLS 0 0 0 3a
4iNkL 2 S0-T0) g -3
H
(6.4.109)
0 0 0 0
4z>\kL I/ (u)?
i 0 0 =23 vy O 6.4.110
908 = 167GLP 0 0 0 0 (6.4.110)
LKL, ' (u)?
ALl 0 0 0
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The resulting anomalous 2-point functions are

T TZ\ __ Zk’ﬁ::u(l _UC) o . M(A)
(J*J?) = T = —ik o (6.4.111)
. 2 92 . 2 2 2 2 2
— -9 —
T v v
ki (1 —ue)?p? kA (=2 22 2(1 — )2 T2
<,Ttw‘]2> _ KK (4GU ) 19 . 1 (ZGI‘;CL) o =k (AL(SQU) + 24> (64113)
T v Y
ooy kR (1 —up)? RN (—2+a)rh (A1 —u)® p(A)T?
(TT7) = 6Grr + (=) p GL'7 = ik 1272 T 12
(6.4.114)

Observe that it is straightforward to verify that equations ((14.0.3))-(14.0.6) are compati-
ble with the asymptotic value computed in Section Notice also that the temperature

part remains constant as we move the boundary. The flow of the different correlators is
consistent with respect to each other and the hypothesis of an effective chemical potential

A2
proportional to A.

2
w(A) = p (1 - T—H> = (1l — u,) is reinforced by the results extracted from the terms
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Chapter 7

Discussion and Conclusion

In Section we have defined a holographic bottom up model that implements the
mixed gauge-gravitational anomaly in four dimensional field theory via a mixed gauge-
gravitational Chern-Simons term. We have discussed its holographic renormalization and
have shown that the Chern-Simons term does not introduce new divergencies. As a first
application of this theory we have computed the anomalous magnetic and vortical conduc-
tivities from a charged black hole background and have found the 72 terms characteristic
for the contribution of the gravitational anomaly.

The most important result is certainly that the numerical values of the conductivities
coincide precisely with the ones obtained at weak coupling in [70] (see also the Introduction,
Section [3.3.1).

We have studied a holographic system with only one anomalous U(1) symmetry. It
should however present no problem to generalize our calculation to the case with additional
non-abelian symmetries and various types of mixed anomalies, e.g. mimicking the usual
interplay of axial and vector symmetries where gauge Bardeen counterterms are necessary
to implement the correct anomaly structures in the currents [1341|135].

In addition, Chapter [6] is devoted to the study of the holographic cutoff flow of the
anomalous transport coefficients. This has been done by using the model that implements
both the axial and the mixed axial-gravitational anomalies. The flow has been studied by
analyzing the dependence of the anomalous Green’s functions on the radial position, A, of
the boundary. We have presented several prescriptions to compute such flow and finally
obtained it by adapting the method implemented in Chapter for the case A — oo.
It is a remarkable fact that the chiral magnetic conductivity suffers from a flow even
in the non-backreacted case. In fact, this could have been anticipated by noticing that
regularity at the horizon imposes that in the deep IR the constitutive relations are only
compatible with an electric conductivity ( [128]), so that if a system exhibits a chiral
magnetic conductivity in the UV it must be due to a non-trivial low. When considering the
gravitational anomaly, a Dirichlet boundary condition is not enough anymore to define the
variational problem properly. A generic definition of suitable operators, if any, therefore
requires further discussion in this case. Here we have simply focused on computing 2-point
functions, without discussing general definitions of the corresponding operators. The term
which spoils the variational principle has been dealt with by considering its effect on the
on-shell action. This procedure, which can be seen to be the most natural one by using
physical arguments, yields 2-point functions that are consistent and whose flows do not get
in contradiction with the result found in the absence of gravitational anomaly. Moreover,
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in the spirit of [51], that the matrix of correlators Gr; obeys
d
_ T) —0 7.0.1
du (g g ’ ( )

represents a non-trivial consistency check. The result - shows that the tem-
perature remains constant (Hawking temperature) whereas the chemical potential presents
a flow that is easily interpretable in terms of the energy necessary to bring a unit of charge
from the horizon to the boundary. Observe, however, that all the correlators are written
for a metric with g ~ —r2f(r), and hence there is an implicit redshift factor between
observers living in one hypersurface placed at = A and another one at r = A’.

From the point of view of the boundary theory, these outcomes indicate that the pure gauge
Chern-Simons term does not affect the boundary operators but influences the anomalous
correlators through the flow equations, forcing them to have a non-vanishing value at the
boundary, whereas the gravitational-gauge Chern-Simons term happens not to have any
impact by means of the evolution equations, but to induce new covariant contributions,
that are first order in k, to the operators, so that the constant T2 part is present at any
value of the r-coordinate.
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Appendix of Part II

7.1 Holographic Renormalization

Holographic Renormalization is a technique that allows us, given a gravitional the-
ory, to define the holographic dictionary and to obtain finite correlators, i.e. extract the
divergences of the on-shell action.

7.1.1 Technical details on Holographic Renormalization

The renormalization procedure follows from an expansion of the four dimensional quan-
tities in eigenfunctions of the dilatation operator

5
) :2/d4x,~ . 7.1.1
This expansion reads
Kj = Koj+EKeyj+Kaj+ Kajloge ™+, (7.12)
Ai = Apyit+Ap)itAgiloge ™+, (7.1.3)
where
0pKg)5=0,  dpKw)j=—2Kgyj,
OpK(y)j = —4Kwj —2Kwj,  opKuy;=—4Kwj,
opAw)i=0, OpAp)i = —2A@)i — 24¢)i,
SpAg)i=—2Ax). (7.1.4)

Given the above expansion of the fields one has to solve the equations of motion in its
Codazzi form, order by order in a recursive way. To do so one needs to identify the leading
order in dilatation eigenvalues at which each term contributes. One has

Yij ~ O(=2), v~ 0(2), E;~0(2), Eyj ~ 0(0),

V=1 ~ 0(-4), K/ ~0(0), Ru~0(0), V;~0(0). (7.15)

Note that for convenience of notation we define O(n) if the leading eigenvalue of the
dilatation operator is —n. In practice, in the renormalization procedure one needs to use
the equations of motion Egs. (7.2.54)) and (7.2.55) up to O(2) and O(4)+0(4) respectively.
Up to O(0) they write

2 7 1
0 = Kig) = Ko) K07 =27, (7.1.6)
0= K+ KoyKq;— ek (7.1.7)
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Order O(2) writes

0=2K) K@) — 2K ;-K(Q)f - R, (7.1.8)

OZK;‘(Q) +K(0)K(2)§-+K(2)K(O)§- —R;, (7.1.9)

and finally orders O(4) and O(4) for Eq. (7.2.55)) write respectively
. . : 1. L
0= 2K o) Ky + Ky = 2K0) K07 = Koy i 7 + 7Floy isFio) 7+ (7:1.10)
0:2<K(0)K(4) _K(O)EKM)z) loge_QT. (7.1.11)

The derivative on r can be computed by using

d 0 )

— = [ dvpm— =2 [ d2K ypp— . 7.1.12
dr / *km 67km / R m ik 57km ( )

By inserting in this equation the expansion of KJ’ given by Eq. 1' one gets d/dr ~ dp

7

at the lowest order. Taking into account this, the computation of Kq)j is trivial if one

considers the definition of Kj;j, i.e.

1. 1
Ky ij = §’Yij|(0) = §5D%‘j = Yij - (7.1.13)
Then the result up to O(0) is
K j=10j, Ko =d. (7.1.14)

Inserting this result into Eq. (7.1.6)) or (7.1.7)) one arrives at the well known cosmological
constant

d(d — 1)
2=

We have used in Eq. 1} that K, 0’ = (5DK(0);- = 0. The result for K(y) follows
immediately from Eqs. (7.1.8) and (7.1.14]),

A= (7.1.15)

~

R
Ko =P=—"—. 7.1.16
@ 2(d— 1) ( )
In order to proceed with the computation of K (2)2» from Eq. (j we should evaluate
first K;|(2). Using the definition of d/dr given by Eq. (7.1.12)), it writes

. 5 A 5 .
Kt = 2 | d2K ! e——Ko) 2/d4 Kb vp——K o) &
il@ / PR mYk 5 K (2) ] + ORI e OF
5 , A .

Because K(0)§- is the Kronecker’s delta, the second term after the first equality is zero,
while the first one becomes the dilatation operator acting over K|g) ; Then one gets from

Eq. (7.1.9) the result

Ko} i= Pl = |~ Py (7.1.18)

(d-2)
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Note that the trace of K (2)2 agrees with Eq. (7.1.16]). Using all the results above it is

straightforward to solve for orders O(4) and O(4). From Egs. (7.1.10) and (7.1.11)) one
gets respectively

1 T O
Ka = 2d—1) |:PjPiJ_P — 1F 0 i) j], (7.1.19)

Ky = 0. (7.1.20)

In order to compute the counterterm for the on-shell action, besides the equations of
motion an additional equation is needed. Following Ref. [21], one can introduce a covariant
variable 6 and write the on-shell action as

1 4
_ = — V=K —0). .1.21
Son shell rG /E?d x 7( 6) (7 )

Then computing Son—she from Eq. (7.1.21)), and comparing it with the result obtained
by using Eqgs. (7.1.47)-(7.1.49)), one gets the following equation

. 1 1 A P 2 N
0 =9 - Ko - m (2A + iElEZ + 4Fiij> — gliEUklAiEijl
12X ul, A N Ry .

The variable € admits also an expansion in eigenfunctions of dp of the form

0 =00y + O2) + O(a) + Oaylog e ™ + -+, (7.1.23)
where
5pbio) =0,  Opba) = —20),
Spfy = —4000) — 200y,  Opbiay = —40,y) . (7.1.24)
Inserting expansion into Eq. , one gets the following identities
0 =6 + K(0)0(0) — (in\n : (7.1.25)
0= 0](2) + K2)00) + K(0)0(2) » (7.1.26)
0= 0|y + Ka)0(0) + K(2)0(2) + K (0)0(a) — 4(d11)F(0) iiFo)?, (1.1.27)
0 =0l + (60 K + Kol loge ™, (7.1.28)

corresponding to orders O(0), O(2), O(4) and O(4) respectively. Following the same
procedure as shown in Egs. (7.1.13)) and (7.1.17]), one gets

6(0) =0, 0(2) = 0pb(2) = —20(3) . (7.1.29)

At this point one can solve Egs. ([7.1.25)) and ([7.1.26)) to get
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Higher orders are a little bit more involved. Using the definition of d/dr, then 0 |(4) Writes

. 5
01y = 2/d4xK L 0 —|—2/d4xK L 0 —|—2/d4xK - 0
() ) m Yk 5 —0a) @ m Yk 5= —00) @) m k5 —02)
2 4 J

Note that the second term after the first equality vanishes, while the first one writes in
terms of ép. To evaluate the last term at the r.h.s. of eq. ((7.1.31)) we use

SR = — RS + DF D™ — v*"™ Dy D Sy, (7.1.32)

After a straightforward computation, one gets

1 y A y
——_|(d—2)P!P) + P>+ D;(D'P — D'P})| . (7.1.33
=g |- PP+ P D ] (33
Inserting Eq. ((7.1.33)) into Eq. (|7.1.27)) one can solve the latter, and the result isE|

- 1 1. | . .
00 = [P]Pl] - P? - ZF(O) iiFo) " + gDi (D P—DJP]-)] : (7.1.34)

4

inserting it into Eq. ([7.1.28)), this equation is trivially fulfilled.
The counterterm of the action can be read out from Eq. (7.1.21)) by using K and 6
computed up to order O(4), i.e.

The computation of t9| 7 follows in a similar way, and one gets 9|(4) = —45(4) loge™2". By
*

1 — o 0 —2r
Sct = _Sonfshell - _% Ld4$ - |:(K(O) - 0(0)) + (K(Q) - 0(2)) + (K(4) - 9(4)) log € ? :|

(7.1.35)
From this equation and Eqs. (7.1.14)), (7.1.16), (7.1.20)), (7.1.30) and ([7.1.34)), one finally
gets

(d—1) 1
Sy = — e /8d4xﬁ{1+(d_2)13
1

- 1. .
! 2 ? —2r
S 4(d-1) (PJPZ'J —P" = Fo it J) loge } . (7.1.36)

The last term in Eq. is a total derivative, and so it doesn’t contribute to the action.
As a remarkable fact we find that there is no contribution in the counterterm coming from
the gauge-gravitational Chern-Simons term. This is because this term only contributes
at higher orders. Indeed as explained above, in the renormalization procedure we use
Egs. and up to orders O(0), O(2), O(4) and O(4), and Eq. (7.2.54)
up to orders O(0) and O(2). We have explicitly checked that the A dependence starts
contributing at O(6) in all these three equations.ﬂ This means that the gauge-gravitational
Chern-Simons term does not induce new divergences, and so the renormalization is not
modified by it.

'This result for é(4) includes a total derivative term which has not been computed in Ref. [21]. To
compute 5(4)7 in this reference the authors derive the elegant relation 9~(4) = @K@) + IN((4). This
identity is however valid modulo total derivative terms.

?Note that KJZ and 6 induce terms proportional to A. Up to order O(4) + O(4) these operators write
K;|<4)+(21) = —4K@u ' + ..., and 9|(4>+(4) = —404y + ..., Wherg the dots indicate extra terms which
are A-independent. The only A-dependence could appear in K(4) 5 and 64, but these contributions are
precisely cancelled by other terms in Eqs. (7.2.54) and (7.1.22) respectively, so that these equations become
A-dependent only at O(6) and higher.
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7.1.2 Holographic Renormalization of the Mixed Anomaly

In this section, we aim to show that the term in the action that implements the
Mixed gauge-gravitational anomaly does not induce new divergences. In order to go
through the steps of the holographic renormalization program within the Hamiltonian
approach [21}/138], first of all we establish some notations. Without loss of generality we
choose a gauge with vanishing shift vector N4 = 0, lapse N = 1 and A, = 0. So we
can use four dimensional (boundary) indices and denote them by small latin letters. We
therefore also write e(txyz) = +1 and €;j, = vV/—he(ijkl). In this gauge the bulk metric
can be written as

ds® = dr? + y;dz'da’ . (7.1.37)

The non vanishing Christoffel symbols are

I,
— F:] = Kij = i’yij, (7138)
I, = Kj, (7.1.39)
and f‘; i are four dimensional Christoffel symbols computed with ;;. Dot denotes differ-
entiation respect r. All other components of the extrinsic curvature vanish, i.e. K. =

K,; = 0. Another useful table of formulas is

flki = DyK|+ DK}, — D'Ky; 7.1.40
Ry = —Kij+ KaK}, 7.1.41
R, = —Kf—-K[K], 7.1.42

Ry = DipKij — DKy,

R'yi = DyKj—D'Ki,

R'jy = R'ju— K.Kj+ KKj.
Note that indices are now raised and lowered with v;;, e.g. K = 77 K;;, and intrinsic

four dimensional curvature quantities are denoted with a hat, so R’ jk1 is the intrinsic four
dimensional Riemann tensor on the r = const surface. Finally the Ricci scalar is

R=R-2K - K> - K;K". (7.1.46)

Now we can calculate the off shell action. It is useful to divide it up in three terms. The
first one is the usual gravitational bulk and gauge terms with the usual Gibbons-Hawking
term. After some computations we get

! - U T B
0 = — 5 - 2 _K.KYW __R.E'— _F..FWY
S 167TG/d x\/—y {R+2A+K KijK" — BB’ — S FyF } , (7.1.47)
Lo __h 50 ST AL E »
Scs 127rG/d TVTye Akt (7.1.48)
8A ij PN m m 1 .
S%S 167G d51'\/_'76 Jkl |:A1R mlenKj + B KDy K™ + iFikijKl }7149)

We have used implicitly here the gauge A, = 0 and denoted A; = E;. The purely four
dimensional field strength is denoted with a hat.

Of particular concern is the last term in S(%S which contains explicitly the normal
derivative of the extrinsic curvature Kij. For this reason the field equations will be gener-
ically of third order in r-derivatives and that means that we can not define a well-posed
Dirichlet problem by fixing the «;; and Kj; alone but generically we would need to fix also
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Kij. Having applications to holography in mind we can however impose the boundary
condition that the metric has an asymptotically AdS expansion of the form
v =¥ () + e + e (o) +2rg) 4 ) (7.1.50)

Using the on-shell expansion of K;; obtained before we can show that the last term in the
action does not contribute in the limit » — co. Therefore the boundary action depends
only on the boundary metric 7;; but not on the derivative +;;. This is important because
otherwise the dual theory would have additional operators that are sourced by the deriva-
tive. Similar issues have arisen before in the holographic theory of purely gravitational
anomalies of two dimensional field theories [139-141]. Alternatively one could restrict the
field space to configurations with vanishing gauge field strength on the boundary. Then
the last term in S%S is absent. We note that the simple form of the higher derivative
terms arises only if we include Scgk in the action. An analogous term in four dimensional
Chern-Simons gravity has been considered before in |142].

The result one gets for the counterterm coming from the regularization of the boundary
action is

_ (d_l)/ 4 1
el A R
1 O N
TAd—1) (Pij — P* — ZF(O) iiF0) 7) loge } , (7.1.51)
where A
R ;1 . .
-1 Py [Rj Péj} . (7.1.52)

As a remarkable fact there is no contribution in the counterterm coming from the gauge-
gravitational Chern-Simons term. This has also been derived in [143] in a similar model
that does however not contain Scgk.

7.2 Codazzi form of Equations of Motion

We project the equations of motion ([5.1.16)) and (5.1.17]) into the boundary surface
and the orthogonal direction and rewrite them in terms of quantities at the regulated

boundary. Doing so we get a set of two dynamical equations
0 = E'+ KE'+ D;FJ" — 4¢M (HEJFM +4NKSD Ky, + 2AR® 4y DK

+ANK K[ D K5 + 4AKstK;DlK,§(>’.2.53)

. 1. 1. . 5l 1 1. .
0 = Ki+KK!'—-R.+_-F'E.+-fFm™p, 2A + —E™E,, + -~ F'™ [

12 [ _ 9eliklmg, (Fklkmj)) 4 2¢likimy, (FlemsKj]) + 2¢kim fo (Km n KfK;fn)
_kmn ( KRS ) + 2KU K, ) — 2K§Kannj) + 4e*m9, (By Dy K jy)
+26(iklmDS (Fkl (D])Krsn _ DSK])m)) + 4€iklmEkstDle’L
4 By K Dy Ky + 267 Dy (B (R i — 2K Kjym) ) ] : (7.2.54)

May 29, 2014



7.3. Solutions at zero frequency and normalized at finite cutoff u, s

and three constraints

- « 1 . 5 A
0 = Kz—Kin”—R—zA—§EZ~EZ FF

4"
8\t (Dm(ﬁijDkKl ) + Fi; Ky Klm+2EintDlK};>, (7.2.55)
0 = DKV —D'K + ZE; P/ + 2D [QEleKJ + By (KJ + KIK? )}

_|_)\€klmn {QFle;DmK% + D [Fkl(R nm T QKZ KJ )}
V2ELKI R 1 + 2F KD (DK, — D; K1) + zaT(Fk,DnK;)} , (7.2.56)
0 = D;E' — ¢k <mjﬁkl F AR i R g + ANKG KRS gy + 8)\DiKSleK,§(>7,2.57)
with the notation
X0 = (X1 + X5, Xl = 5 (X=X, (7.2.58)
We take Eq. (7.2.58) as a definition, and it should be applied also when X includes
derivatives on r, for instance X(iKlj) = L(X'Kjj + X;K}).
7.3 Solutions at zero frequency and normalized at finite cut-
off wu,
7.3.1 Case A=0
iﬁkeaﬂ
2(1+4a)?(—1 4+ u.(-1+ auc))
X (14 4a)(u — ue)(H? + Hue + a(3B% (2 4 ue) + H? (4 — ue(2 + 3u,))

)+
1+ 2au
]+
+4a

B%(u) = B* + H*(u — u.) —

+2v1 + 4a(—2 + a(—2 + 3u))(B? — Hu.)(—1 + uc(—1 4 auc))(ArcTanh [

+ArcTanh [1 2auc]
(7.3.59)
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1
2(—1 —4a)3/2(=1 4+ ue) (=1 + ue(—1 + au.))?
X (—=2(—1 —4a)32H (=1 4+ u(=1 4 aw)) (=1 + uc(—1 + aue))+
+kReas(—i (V—1—4a —ivV1+4a) HP (1 +u)(1 + ue)+
+a?3B° (2iv/~1 — dau? + iv/—1 — dauu? + V1 + dau*(2 + u.)) +
+a?HP (2iv/—1 — 4a(2 — Buc)ul + iv—1 — dau(4 — 3uc)ul + V1 + dau®(4 — ue(2 + 3u,))) —
—3iaB?(2v/—1 — 4a — 2ivV/1 + 4a + 2v/—1 — dau, — i1 + dau,)—
—3iauB® (V-1 —4a — 2iv1 + da + V-1 — dau. — iv/1 + dau,) +
+aHP (—4ivV—=1 —4a — 4vV1 + da 4+ V1 + dau®(1 4 u.))+
+aH u. (2ivV/~1—4a + 2v1 + 4a + 7iv/—1 — dau, + 3v/1 + dau,) +
+uaH (—4iv/—1 — 4a — 41 + 4a)+
+uaH v, (—iv—1 —da+ 2v/1 +4a + 4ivV/—1 — dauc + 3V1 + dau.) )+

-1+ 2au
At
1-— 2auc})

v1+4a
(7.3.60)

HP (u) = — (=1+u)x

+6iak(—1 4+ u(—1 + au))Feas(B® — HPuo)(—1 + ue(—1 + auc))ArcTan [

+6ak(—1 4 u(—1 + au))feas(B® — HPuo)(—1 4 ue(—1 + au.))ArcTanh {

7.3.2 Case k=0

B%(u) = B* + H*(u — u.)+

2i(—2 + a(—2 + 3u))ArcTanh | 1720
L ey a) ki€ [V”““} X
62— 0 e

X (4H? + a(3(1 + a(7 + 2a(7 + a)))B® + 4(8 + a(2 + a)(9 + 2a))H —
—3(1 + a(7 4 2a(7 + a))) HPu,))+
—I—%(—Zam(u — ue)(6a(B? — HP (=8 4+ u)) + 6a(B? — H? (-8 + u))u. — 8aH u?—

_|_

—3a? (335(—4 +u)(1 +ue) + HP (w(10 + 3u) +w(10 + 3u)u, — 2(—8 + u)ul — 4(7 + 6uc))) +
+8HP (1 + ue)+
+a* (H? (12 + ue(18 + (=59 4 12u(2 + 3u))ue)) + 3BP(2 + ue(5 4+ 12(=1 + u — u)ue)) )+
+a*9B” (44 u(—4 + (—4 + uc)ue) — ue (=5 +ue +u2)) +
+a®HP(29 + (23 — T2uc)ue + 9u?(—4 + (=4 + ue)ue) + 6u(—4 + ue(—4 + 5ue))) )+
+(=2+ a(=2 + 3u)) (=1 4 ue(—1 + au,))(2(4H” + a(3(1 + a(7 + 2a(7 + a))) B+

1 — 2au,
m} '
+(14a)(1 + 4a)*?(—4H° 4+ a(—3B° — 4HP + 3H%u.))x

x (Log[—1 + u(—1 + au)] — Log[—1 + u.(—1 4 au.)])))
(7.3.61)

+4(8 + a(2 + a)(9 + 2a))HP — 3(1 + a(7 + 2a(7 + a))) H?u.))ArcTanh [
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where % =

1
(—1—4a)3/2(1+uc—au?)
o (Fl1+u)(=1+u(-1+au)) (1 —u)eqp
(—1+ue)(—1+uc(—=1+auc))  2(—1—4a)3/2a2
1
— 2av/1+4 — Ue
X (=14 u(—14 au))(—1 + uc(—1 + au)) av1+da(u —uc)x

X (4HP (1 +u)(1 4 ue) + aBP(3 + 5u + 5(1 4 u)ue)+
+aH? (18 + (25 + u) + 22uc + u(25 + w)ue — 4(1 + u)u?) —
—3aBP (=5 + 20 (1 + ue) + ue(—7 + 2uc) + u(=7 + 2(=3 + uc)uc))
HPa? (18 + 24u, — 22u? — 6u®(1 + u.) + u(39 + 5(7 — 5uc)ue) — u? (14 ue + u?)
+3a°B7 (1 — 8u2 — wue(3 + 8ue) + 2u?(—4 + (—4 + uc)uc)
+HPa3(4 — 4ue(2 + 5ue) + u?(—20 4 (=20 + ue)ue) + 6u(—4 + (—4 + ue)ue))—
—HPaPu(5 + Tue(1 + 5uc)) + HPa* (du + due + 6une + (=2 + u(—5 + du(5 + 6u)))u?) +
+BPa* (2ue + u(2 + ue(5 + 24uuc))))+
+2(4H + a(3(1 + a(7 + 2a(7 + a)))B? + 4(8 + a(2 + a)(9 + 2a))

HY(u)=H

k(1+u—au2) Ue X

—3(1 + a(7 4 2a(7 + a)))H u,)) <ArcTanh [%} + ArcTanh { VIt da ia:ﬂ

+(1 +a)(1 + 4a)*?(—4H? + a(—3B° + H? (=4 + 3u.))) x
x (Log[—1 + u(—1 + au)] — Log[—1 + uc.(—1 + au.)]))

(7.3.62)
7.4 Equations of motion for the shear sector
These are the complete linearized set of six dynamical equations of motion
_ " f,( ) "(u b2 w2_ U 2 U _hta/(u)
0 - Ba() ()Ba()+uf(u)2( f( )k)Ba() f(u)
1ke 3 5 (2 u) — u? ﬁlu /?;B'B(u)
+kaﬁ<u(u) ( (f(u)—1)+ )ht()+ f(u))’ (7.4.63)
o’ h (U) b? 27« o /
0 = hy (u)— w uf@) (K*hg (u) + hy (u) wk) — 3auB,(u)
iNk€as [(24au —6(1— f(u)) Bﬁu(“) + (9au® — 6(1 — f(u)))Bj(u)
/ . 2ub?
+2u(uhf (u)) — T (hﬁ( )wk—&—hf(u)k@)] , (7.4.64)
= " (u (/1) u i w?h&(u) + wkh$ (u wikXeas [uh? (u
0 = B () = ) + s (W () + whh () +2 FAeag [uhf] (1)
Wy (w) b2 5
u) — au’®) 2 w u) + w?hP(u A.
+(97(w) = 6+ 3au®) =15 +f<u)2( kA () + w?h( ))] (7.4.65)

and two constraints for the fluctuations at w, k # 0

0 = w (hg’ (u) — 3auBa(u)> + F(u)kh (u) + ik [2u2 (whf’ + fluykhf (u))
+ (9au® — 6(1 — f(u))) Bs(u)] . (7.4.66)
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As a brief introduction, we include here some notions of s-wave Holographic superfluids,
as they were firstly constructed in [3, 144]E| (for a review, see [148,/149|). Typically, in
holography what we aim to obtain is a non-sourced scalar operator developing a VEV.
The first ingredient that we need is a chemical potential; the fact that the dual theory
is conformal implies that the temperature can be fixed to be the identity and therefore
the temperature only cannot work as a tunable parameter. Hence, our parameter will be
i = u/T. According to the AdS/CFT dictionary, this forces us to consider a gauge field
in the bulk A,, which in this introduction we take to be associated to a U(1) symmetry,
for simplicity. A minimal suitable ansatz seems then to be simply

B 1
C2k2

S /d4x\/fg <R —2A — %FWFW ~ D, UD"¥ — V(]\I/])) (7.4.1)
where R is the Ricci scalar, F),, is the U(1) field-strenght and from now on we assume
A= —%. The field ¥ is a complex scalar, i.e. D, = 9, —igA,. Moreover, we will use
the most simple potential V(|¥|) = —2|¥|?/L? (corresponding to a mass m? = —2/L?).
Thus the above bottom-up model does not contain any quartic term in the scalar field.
The reason is that the theory suffices to trigger a unsourced VEV for the scalar.
The mechanism is the following. In the absence of scalar field (¥ = 0 everywhere) there
is RN-BB solution to the equations of motion that we derive from , which is asso-
ciated to a thermal state at finite chemical potential in the dual field theory. The near
horizon geometry (which corresponds to the IR of the theory) of the RN-BB is known to
be AdSy x S? [REF.]. In order to break spontaneously the U(1) symmetry, we will make
the IR unstable under scalar perturbations. The way to accomplish this is by making the
scalar field to acquire a mass whose value lies below the BF bound of AdS; (IR geometry),
but strictly above of the BF bound of AdSy4, so that the UV is stable. Now, the term
proportional to AMAH\\I/\2 acts as an effective negative mass for the scalar field, so a large
enough source A;(r — 00) ~ u could be enough to trigger a non-trivial VEV for the scalar
field. This is indeed what occurs, at sufficiently high chemical potential the charged scalar
field develops an expectation value and triggers a symmetry breaking phase transition
towards a superfluid phase.

After the VEV is formed, the Higgs mechanism provides an effective mass for the gauge
field in the bulk of the form ~ A,A* (|¥|?), consistent with gauge invariance, which in
turn gives rise to the presence of a London current and the Meissner effect in the dual field
theory, after weakly gauging the symmetry [3]. Hence, we conclude that the U(1) global
symmetry of the boundary CFT gets broken spontaneously.

Let us remark that henceforth we will be working in the so called probe approximation
or probe limit. One could get to that decoupling limit by rescaling the gauge field and
scalar with respect to the gauge couling g, namely A, — A,/g and ¥ — ¥/g. This
rescaling implies the Maxwell-scalar sector in to acquire an overall g2 factor.
Sending now g — 0o, we can decouple such a sector from the gravity sector, leading to

1

1 -
Sprobe = TQQQ /d4x\/ —g (—4F,ﬂ,F“V — DM\I/D'U’\IJ — V(‘@‘)) . (742)

This is the action we will be working with in subsequent chapters. Notice that in the
probe limit the metric is fixed and all the dynamics is provided by the gauge field and the

3There exist also p-wave and even d-wave holographic superfluids constructed in AdS/CFT (see for
instance [145-147])
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scalar.

The study of the QNMs for the s-wave U (1) superfluid was first carried out in [2]. Since
the basic physics of superfluids is the one of spontaneous symmetry breaking it can be
expected that known results such as the existence of a Goldstone boson carry over to the
holographic models.

In the next Section we will generalize for it to enjoy a U(2) symmetry that we
will break spontaneously; we get our inspiration from the (zero-temperature) model in-
troduced in Section We will see that a subsector of our U(2) model is, up to linear
level, identical to the U(1) holographic superconductor, described by . Therefore,
we will review also the results on the QNMs and conductivities of the U(1) model.
According to the usual holographic dictionary a local bulk symmetry corresponds to a
global symmetry in the boundary conformal field theory. We would therefore most natu-
rally be led to a model in which we gauge the global U(2) symmetry of and put it
into an AdS Schwarzschild background. In order to trigger spontaneous symmetry break-
ing we introduce a chemical potential via a boundary value for the temporal component
of the overall, Abelian U(1) gauge field. This is then our gauged model.

Alternatively we might ask what are the minimal ingredients necessary to trigger spon-
taneous symmetry breaking. The chemical potential resides entirely in the overall U(1)
factor. The other three SU(2) gauge fields are not needed to achieve symmetry breaking.
Therefore we can choose as a sort of minimal setup a model in which the SU(2) symmetry
stays global in the bulk of AdS. This is a somewhat unusual realization of the symmetry
from the boundary conformal field theory point of view. There are no conserved currents
associated to this SU(2) symmetry, nevertheless all states and operators fall naturally into
representations of this symmetry group since it is a global symmetry of the bulk and it is
also not broken by any of the boundary conditions. This setup constitutes our ungauged
model and we will study it in detail in the next section.

Let us note here one more technical detail: the field theoretic model of this section
is most naturally viewed as living in four space time dimensions. In the following our
holographic models will be dual to field theories living in three space time dimensions in
order to stay as close as possible to the well-studied holographic U(1) s-wave superfluid
of [2,/144]. This is however of no relevance to the essential features of the models, i.e. the
existence and the nature of the hydrodynamic and Goldstone modes. In Chapter [9] we
will analyze the stability issues at finite superfluid velocity. Our results will be interpreted
in the framework of the possible existence of a Landau criterion at strong coupling in
holography. Notice tha this criterion would imply the existence of a limiting velocity for
type I NG bosons, that we will call v.. For type II NG bosons, we expect v, to vanish.
Chapter [10]is devoted to the construction of a new phase in which an s-wave and p-wave
condensates coexist.
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Chapter 8

Non-superconducting BECs and
Type-1I Nambu-Goldstone Bosons

In this section we generalize the results on the QNM spectrum to models with U(2)
symmetry, by means of two different models. In the first one we simply add a second scalar
field of the same mass, we will call this the ungauged model. A second model also includes
gauge fields for the whole U(2) symmetry. The difference between the two models is as fol-
lows. In the ungauged model only the U(1) symmetry is local in the bulk. It has however
a global SU (2) symmetryﬂ under which the scalar fields transform as a doublet. According
to the holographic dictionary this model contains only one conserved current, correspond-
ing to the single gauge field in the bulk. The dual field theory inherits of course the global
SU(2) symmetry of the bulk but this symmetry is not generated by operators in the dual
conformal field theory. This is similar to the decoupling limit in which we are working
and in which the fluctuations of the metric are suppressed. The dual field theory has then
strictly speaking no energy momentum tensor. In usual four dimensional Lagrangian field
theories Noether’s theorem guarantees that we can always construct a conserved charge
generating a given symmetry of the Lagrangian. In holographically defined field theories
the existence of a four dimensional Lagrangian is a priori not guaranteed and therefore
Noether’s theorem does not straightforwardly apply. This is the case here. Although the
dual field theory has the SU(2) symmetry (and Poincaré covariance) it does not contain
operators generating these symmetries. We can speak of these symmetries as an outer
automorphism of the operator algebra of the dual field theoryﬂ Physically the difference
between the two models is that the ungauged one is a one-component fluid (there is only
one notion of charge) whereas the gauged one is a two component fluid. In the latter case
the charges are the expectation values of the zero-component of the currents in the Cartan
subalgebra of the U(2) symmetry.

Although this ungauged model does not contain conserved currents for the SU(2)
symmetry and therefore many of the standard proofs about existence of Goldstone bosons
do not strictly apply we find a new ungapped mode in the QNM spectrum of the scalars.
This mode is however not a standard Goldstone boson with linear dispersion relation but

! Although global symmetries are not expected in a consistent theory of quantum gravity they can be
obtained in certain decompactification limits of string theory: e.g. by wrapping branes on cycles and then
taking the volume of the cycle to infinity so that the effective gauge coupling on the branes goes to zero
leaving only a global symmetry on them.

2A string theory example for such a situation is the theory based on the small N' = 4 superconformal
algebra on the world sheet. This algebra possesses a large SO(4) = SU(2) x SU(2) symmetry acting on
the four supercharges of which only one SU(2) is represented through chiral currents on the worldsheet.

83



8.1. The ungauged model 84

a so-called type II Goldstone mode whose energy depends quadratically on momentum.

The second model we consider has a scalar field doublet coupled to the full set of
U(2) gauge fields. We switch on a chemical potential only for the overall U(1) symmetry.
Therefore the high temperature phase has the full U(2) symmetry. At low temperatures
this symmetry is broken to U(1). In this model the dual field theory contains currents for
all the U(2) symmetries. We can therefore also study the conductivities.

We shall now consider the symmetry breaking pattern of the boundary theory dual
to the gauged holographic model. We point out that through the theorems presented
in Section [£.4] the presence of a type II Goldstone boson in the spectrum is guaranteed.
As in the model studied in Section [£.4.1] there are in total four symmetry generators.
The symmetry is broken from U(2) to U(1) and so there are three broken generators.
In the broken phase the charges corresponding to the overall U(1) and the Cartan U(1)
generator inside SU(2) receive vacuum expectation values. Therefore the rank of the
matrix B (equation ) is two and so the number of type I and type II Goldstone
bosons should add up to two. This is precisely what we will find in the QNM spectrum,
one ungapped mode with linear dispersion relation and one ungapped mode with quadratic
dispersion relation.

We also note that the ungauged model satisfies Goldstone’s theorem and the counting
rule of Chadha and Nielsen . It violates however the more refined counting rule
. In a strict sense this model only has one symmetry generator since it has only
one U(1) gauge field in the bulk. Therefore the counting rule would suggest the
existence of only one Goldstone boson, the number of broken generators is one and the
matrix B vanishes trivially.

8.1 The ungauged model

We will now study the holographic model where the condensation of a charged scalar
breaks a global SU(2) symmetry in the bulk. We shall look at the spectrum of quasinormal
modes on both sides of the phase transition and study their dispersion relations. Since the
simple U (1) s-wave holographic superfluid constitutes a subsector of this as well as of the
gauged model we will also use the opportunity to briefly review the most salient features
of its QNM spectrum.

The minimal holographic model containing a type II Goldstone boson consists of a
scalar doublet of SU(2) charged under a U(1) gauge field. The Lagrangian is given by

1 v
L= (—4F“ Fy —m*UT — (D“\II)TDM\I/> : (8.1.1)
where
A :
U = w) D, =0,—1iA,, (8.1.2)

and A, is the Abelian gauge field. The mass of the scalar field is chosen to be m? = —2/L%
This is basically the same as the model in [144] except that we have added a second scalar
field A with the same mass. Because of the degeneracy in the mass the model possesses
in addition to the bulk-local U(1) symmetry a bulk-global SU(2) symmetry. Note that
the global SU(2) symmetry is a priori not enough to set the field A(r) = 0. But we
are interested in un-sourced static solutions for the scalar fields, i.e. we assume that
the leading non-normalizable mode is not switched on. The solution space is then a two
dimensional complex vector space spanned by the vevs of the operators dual to the scalar
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fields. On this parameter space we can act with the global SU(2) symmetry to set the
operator corresponding to the field A equal to zero. Since now the non-normalizable and
the normalizable mode of X are set to zero it follows that A(r) = 0.

We will be working in the probe limit, in which the coupling of the gauge field is very
large and the backreaction of the matter fields onto the metric can be neglected. The
background metric is then taken to be the Schwarzschild-AdS black brane

dr?

2 a2 " lda
s? = f()dt+f()+ (d + dy?),
7“2
) =7 ~ % (8.1.3)

The horizon of the black hole is located at rg = M/3L%/3 and its Hawking temperature
isT = f;fz. In the following we use dimensionless coordinates
L 1* L7 >

(Tv t, x, y) - (TH Ps 7t —Z, —Y
TH TH TH

(8.1.4)
These rescalings allow us to set M = rg = 1 in the dimensionless system. In order to
switch on a finite chemical potential in the boundary theory, the bulk Maxwell field

A = x(p)dt, (8.1.5)

must take a non-zero value at the boundary. The equations of motion for the background
fields are

2
X"+ ix’ — m;x =0, (8.1.6)
" /! m?
¢+(f >w+f2¢—fw=0. (8.1.7)

Notice that the system above is precisely the original U(1) holographic superconductor
first studied in [144]. To ensure finiteness of the norm of the current at the horizon,
we have to demand the scalar field to be regular whereas the gauge field has to vanish
x(p = 1) = 0. With these boundary conditions, the asymptotic behavior of the fields at
the conformal boundary is

n 1
X:—_JFO()’ 8.1.8
= e (8.1.8)

w—%+%+0(p3> : (8.1.9)

For the chosen value of the scalar mass, both terms in the scalar asymptotics correspond
to normalizable modes [150|. Considering one or the other as the vacuum expectation
value of a dual boundary operator leads to two different theories. In what follows we will
consider only the case in which 1 is interpreted as the coupling and o as the vev of a
mass dimension two operator.

The dimensionless parameters are related with the physical quantities by

0= 47%“, (8.1.10)
- @%n (8.1.11)
Y1 = ﬁzfo, (8.1.12)
by = iw;;ﬁ (), (8.1.13)
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where p, n and Jo, (O) are the chemical potential, charge density and source and expec-
tation value of an operator O of dimension 2, respectively. From now on we set L = 1.
In the following we will work in the grand canonical ensemble. In practice we vary the
dimensionless parameter ji. Because of the underlying conformal symmetry this can then
be thought of as either fixing the chemical potential y and varying the temperature T or
fixing the temperature and varying the chemical potential. We define the temperature by
T/T. = fic/ii and fix p = 1.

Spontaneous symmetry breaking is driven by low temperature or high chemical po-
tential. It triggers a non trivial expectation value for the scalar field without switching
on any source Jp. For small i the scalar field is trivial and the gauge equation is solved
by x = (1l —1/p) and ¥ = 0. The system is then in the symmetric phase. However,
by decreasing the temperature the system becomes unstable towards condensation of the
scalar [144,/151]. In [2] it was shown that at the critical temperature indeed the lowest
quasinormal mode of the scalar field becomes unstable, i. e. it crosses over to the upper

half plane.
The free energy density of the system is given by the on-shell renormalized action,
1 ) 2,122
F=—TSep=-T (un—/ ar VX ) . (8.1.14)
2 i f

The second term vanishes in the absence of a condensate and it works against the phase
transition if it is present. In Figure the free energies for the symmetric and broken
phase are compared. It is clear that for T" < T, the condensate solution is always preferred
and therefore the system undergoes a second order phase transition to the superconducting
phase. Note that the presence of the second scalar plays no role for the phase structure.
It simply vanishes in the broken and unbroken phase A = 0. In order to extract the

—10F

—20F

-30 1000

0 S S S S B S S —
0.0 0.2 0.4 0.6 0.8 10T

Figure 8.1: (Left) The free energy of the trivial (blue) and condensate (red) background
solutions at low temperatures, 7' < T.. (Right) Value of the condensate in the grand
canonical ensemble as a function of T'/T.

quasinormal mode spectrum, we switch on fluctuations of the background fields

vt = (n(pt,x), b(p) + o(p,t, 7)), (8.1.15)
A = (x(p) +alp,t,x))dt + az(p,t,x)dx. (8.1.16)

We do not include transverse fluctuations because they decouple from the interesting
physical features of the model at hand.
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In the normal phase, i.e. expanding around ¥ (p) = 0, the system reduces to the U(1)
holographic superconductor studied in [2] with two copies of the scalar fluctuations,

9 2 2
fS/,+S/ <f/+ f>+<(x—|_w)k2m2>5:07 (8117)
p f p
2f k? wk
fa/;/ + 70;; _ ?a‘t _ ?a]m :07 (8118)
" 1) w2 Wk
fax+faz+7ax+7at =0, (8.1.19)

where s stands for both n and ¢ fluctuations. The equation for the complex conjugate
scalar § can be obtained by changing the sign of the potential y in[8.1.17 The frequency
and momentum are related to the physical ones by

3
W = mwph, (8121)
3
k=——kpy,. 8.1.22
AnT " (8.1.22)

The scalar and gauge fluctuations completely decouple in the symmetric phase. This
is a consequence of working in the probe limit. The quasinormal mode spectrum of the
U(1) field in the normal phase is just that of an electromagnetic field on an AdS-Sch
background. The longitudinal fluctuations contain one hydrodynamic mode, w = —iDk?,
reflecting the diffusive behavior of normal fluids. In physical units D = 3/(4nT), see the
discussion of Section Due to the lack of an energy-momentum tensor for the dual
field theory in the probe limit, the diffusion pole is the only hydrodynamic mode in the
unbroken phase.

There are two copies of the scalar fluctuations. The quasinormal modes of n and
o move towards the origin when decreasing the temperature, whereas the modes of 7,
and & have larger masses and widths the smaller the temperature. As we approach the
critical temperature T' = T,, the lowest quasinormal modes of 1 and of ¢ become massless,
triggering the phase transition: the scalar field acquires a non trivial vev in order to avoid
its fluctuations to become tachyonic. By symmetry we can choose the condensate to reside
completely in the ¢ field. The fluctuations o couple then to the gauge field fluctuations
just as in [2]. Therefore the QNM spectrum in this sector contains a Goldstone mode with
linear dispersion relation w = fwvsk + O(k?). This is the usual type I Goldstone boson
associated with the breaking of the gauge U(1) symmetry. As aforementioned, it can be
interpreted as the sound mode of the dual superfluid in the broken phase. What happens
then to the QNMs in the fluctuations of the second scalar n? At the critical temperature
there is also an ungapped mode present since its QNM spectrum is simply another copy of
the scalar sector. Since there are no operators generating the SU(2) symmetry in the dual
field theory standard arguments about the appearance of Goldstone modes do a priori not
apply. Three logical possibilities arise then: the mode could become unstable for T' < T,
it could become gapped again or it stays ungapped, playing the role of an unexpected
Goldstone boson for the broken bulk-global SU(2) symmetry. Shortly we will see that the
last possibility is realized and that the massless mode of n will indeed correspond to a
type II Goldstone boson with quadratic dispersion relation, w o< k2.
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In the broken phase, the equations of motion read

2 2
0= fn// +77/ (f/ + 2f> + <(X+w) — % — m2> n, (8.1.23)
p S p
1 !/ / 2f 2 2 k2 2 k
oo ) (5B ) e ).
(8.1.24)
0= fc" / ;o 2f X2 w? k?L? 2 22“-’)(5 2x 8.1.95
=f¢ +C<f+r>+<f+f_ 2 —m>C+ 7 +Tt7 (8.1.25)
2
0= fa) + 2;@; — (l; + 2¢2> ‘;fax — 2iwpd — AxC (8.1.26)
2
0= fal + flal, + (a} — 2@0) ay + a}kat + 2iko (8.1.27)
0= Z}"a; + Zja; + 205 — 200, (8.1.28)

where we have divided 0 = ¢ + id into real and imaginary part. The system [8.1.2418.1.28
is again the one studied in [2]. This sector, that also appears in the gauged model that will
be presented afterwards, decouples from the additional scalar fluctuation 7. Notice that
even if is formally the same as in the normal phase, the background Yy is different
leading to non trivial features in the n sector such as the presence of a massless excitation.

Re(w)

I I 1
05 10 15

Figure 8.2: Real (left) and imaginary (right) parts of the lowest scalar QNMs as a function
of the chemical potential. Solid lines correspond to the unbroken phase. For the broken
phase dashed lines stand for modes of the additional scalar while dotdashed lines represent
the modes common to the U(1) holographic superconductor.

Figure [8.2| shows the spectrum of quasinormal excitations of the scalar doublet. In
the normal phase we have two degenerate copies of the spectrum that partially split after
the phase transition. It is clear that the two lowest excitations become massless at the
critical chemical potential and then remain massless in the superconducting phase. They
can be identified with the two Goldstone bosons at the phase transition. The rest of the
excitations remain gapped in the broken phase. Notice that the first 7 excitation (dashed
black line in figure does not follow the expected universal behavior in the broken
phase, i.e. it is not linear in p. This mode is the equivalent of the special gapped mode
wy in the field theoretical model of section However, it has already been mentioned
that the ungauged model does not satisfy all the theorems about symmetry breaking and
therefore deviations from the universal behavior should not be surprising. The behavior
of the gapped modes is actually similar to that of the U(1) model modes. In the unbroken
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phase we can distinguish the modes that come from the s-type of fluctuations from the
ones that come from the complex conjugate s fluctuations. The former become lighter
whereas the latter become heavier} In the broken phase it is more useful to use real and
imaginary parts, at least for the scalar that mixes with the gauge fields fluctuations, i.e.
the lower component of the scalar in our conventions. So we can not a priori talk of s and §
type fluctuations. We still can study to which modes the s and 5 type modes connect to in
the broken phase. Here we see an interesting pattern: the s type modes split in the broken
phase whereas the 5 type modes stay almost degenerate close to the phase transition (at
least at zero momentum). This is surprising given the fact that the fluctuations correspond
to two completely different systems, one coming from a single differential equation whereas
the others come from a complicated system of coupled equations. However, for small
temperatures they split and actually the real part of the lowest one for the U(1) sector
goes to zero at a finite temperature. For temperatures below T =~ 0.63 7, it becomes a
purely imaginary mode.

Sound mode: There are two massless modes in the broken phase. The first one is the
type I Goldstone boson appearing because of the spontaneous breaking of the U(1) gauge
symmetry. In [2], it was shown that this mode corresponds to the sound mode of the dual
superfluid and that in the hydrodynamic limit it has a linear dispersion relation

wr ==+ (vgk + bk?) — il k?, (8.1.29)

where v, is the speed of sound and I’y is its attenuation. It turns out that the quadratic
part of the dispersion relation also has a real component. This component is very small
and subleading compared to the linear term that determines the speed of sound. In [2]
this real quadratic part has not been studied.
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Figure 8.3: Speed of sound and damping for the sound mode. The speed of sound goes
to zero at the critical temperature. The damping constant first rises quickly and then
falls off again. Precisely at the critical temperature its value is such that the sound modes
connect continuously to the scalar modes that become massless there. The peak in the
damping constant sits close to the critical temperature and was not resolved in [2].

For very small temperatures the velocity approaches its conformal value v? = 1/2 while
the width goes to zero, see figure Close to the phase transition, the speed of sound

3This behavior is reversed if we had taken the chemical potential to be negative.
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has a mean field behavior as a function of temperature

9 T
vy ~ 2.8 (1 — Tc) . (8.1.30)

As expected, at T = T, the speed of sound vanishes. This can be traced back to the
fact that at the phase transition the total mass m? = M? — p? fulfills m? = v? = 0, as
expected, and hence the complex scalar field, charged under a U(1) symmetry, becomes
massless.

Indeed, one can write down the effective action, analogous to , for a complex
scalar field with mass M, in the presence of a chemical potential for a U(1) symmetry that
is spontaneously broken. The excitations on top of the U(1)-breaking background have a

dispersion relation equal to (4.4.25))-(4.4.26)), being (4.4.25)) the type I Goldstone boson.

It is a general feature of these linear sigma models that the coefficient in front of the
linear term in the momentum depends on m?2, as can be explicitly checked for the case at
hand (see (4.4.25). Therefore, at the phase transition the leading term in the dispersion
relation is of O(k?); this effect can be seen very clearly with numerical methods, as shown
in Figure 8.4l Since the quasinormal mode spectrum has to vary continuously through
the second order phase transition the real and complex coefficients of the k? term have
to coincide at T = T, with the ones obtained from the massless scalars in the unbroken

phase. Numerically we find b(7,) = 0.22 and I's(T,) = 0.071.
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Figure 8.4: Dispersion relations of Rew (left) and Imw (right) at 7' = T, for the type I
Goldstone boson in the system studied by [2]. The behavior Rew ~ k becomes quadratic
right at this temperature: Rew = bk?. The coefficient is b = 0.22, which in turn matches
the value that one finds if approaches T, from above (i.e. from the unbroken phase).

Pseudo diffusion mode: In the unbroken phase our model has only one hydrodynamic
mode, the diffusion mode w = —iDk? + O(k?) with D = 3/(47T) in physical units. The
shear and normal sound modes have their origin in the metric fluctuations and therefore are
absent in the decoupling limit we are studying. The phase transition to the broken phase
is second order. For the spectrum of quasinormal modes this implies that the modes of the
broken and unbroken phase must connect continuously through the phase transition. In
the case of the diffusion mode there must therefore exist a quasinormal mode with purely
imaginary frequency. Hydrodynamics implies however that the only ungapped modes are
the sound modes corresponding to the type I Goldstone mode. Not too far from the phase
transition, i.e. for T < T, the diffusion mode of the broken phase must develop into a
mode with dispersion relation

w = —iy(T) —iD(T)k® + O(k*), (8.1.31)
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as shown in Figure [8.5

We might say that the diffusion mode develops a gap in the broken phase and becomes
what has been called a pseudo diffusion mode in [2]|. Precisely at zero momentum k = 0
this gapped pseudo diffusion mode explains the observation made in |[152] on the late time
response of holographic superconductors. For temperatures 7' < T, the pseudo diffusion
mode is the mode that lies closest to the real axis and therefore it dominates the long time
response to any perturbation, such as the quenches studied in [152]. It follows that the
order parameter shows a purely exponential decay since this mode does not have a real
frequency. The existence of that mode can ultimately be traced back to the universality
of the diffusion mode in the unbroken phase. We expect therefore the pseudo diffusion
mode to be a universal feature of a wide class of superfluids (not necessarily holographic
ones).
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Figure 8.5: (Left) Dispersion relation of the gapped pseudo diffusion mode in the broken
phase for three different temperatures. The gap widens as the temperature is lowered.
(Right) Gap 7 as a function of the reduced temperature T'/T.. As one approaches the
critical temperature from below the gap vanishes linearly.

The gap v grows as the temperature decreases. On the other hand there are quasinor-
mal modes (connecting to the QNMs in the scalar sector of the unbroken phase) whose
imaginary part is only weakly dependent on the temperature. At a certain crossover tem-
perature T, the gap of the pseudo diffusion mode is bigger than the imaginary part of
these modes, as shown in Figure Then the response pattern changes from a purely
exponential decay to an exponentially damped oscillation. Numerically we find that the
crossover temperature is T, = 0.69 TCE| Such crossover changes in the long term response
appear frequently in the details of the quasinormal mode spectrum of holographic field
theories, [51}/153,154]. In fact this purely exponential decay applies not only to the order
parameter but to all operators that correspond to the fields participating in the fluctuation
system [8.1.2448.1.28] e.g. charge density or x-component of the current.

For finite momentum the response pattern is expected to be different however. Now
one also has to take into account the sound mode. While precisely at zero momentum
the sound mode, i.e. the Goldstone mode, degenerates to a constant phase change of the
condensate at small but non-zero momentum the long time response should be dominated
by the complex frequencies If one looks however only to the response in the gauge
invariant order parameter the Goldstone modes, being local phase rotations of the order
parameter, are projected out.

“This is lower than in the model of [152]. The difference is presumably due to the fact that we work in
the decoupling limit.
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Figure 8.6: (Left) Continuation of the second and third scalar QNM into the broken
phase. The real part grows as the temperature is lowered whereas the imaginary part
shows very little dependence on T'. (Right) The gap v (blue line) and the imaginary part
of the lowest (scalar) mode fluctuation (red line) in the broken phase are shown as function
of T/T.. At T\ ~ 0.69 T, the imaginary parts cross. For lower temperatures the late time
response is not dominated anymore by the pseudo diffusion mode and consequently is in
form of a exponentially decaying oscillation.

Type II Goldstone mode: The second massless mode is the Goldstone boson associ-
ated with the breaking of the bulk-global SU(2) symmetry. It can be fit to a quadratic
dispersion relation of the form

wir = +bk? —ick? + O(k%), (8.1.32)

in the long wavelength limit. Therefore it has the characteristic of a type II Goldstone
mode. In Figure the dispersion relation for the 1 massless mode is shown for various
temperatures as well as its fit to the hydrodynamic form. It is clear that there is a good
agreement in the regime of validity of the low energy limit.
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Figure 8.7: Real (left) and imaginary (right) parts of the type II Goldstone mode as a
function of the momentum for T'/7T, = 0.9998 (blue) and T'/T. = 0.704 (red) . The solid
lines correspond to the numerical result while the dashed lines are the quadratic fit to a
dispersion relation w;; = bk? — ic k>.

The coefficients in the hydrodynamic dispersion relation as a function of the
temperature are shown in Figure Close to the phase transition they have a linear
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dependence in the reduced temperature

T
b(T) =0.22 + 0.049 (1 - T) , (8.1.33)

¢(T) =0.071 — 0.0014 <1 — T> near T, .
T,

Notice that at the phase transition the sound mode and the type II Goldstone must behave
in the same way due to continuity of the modes through the phase transition and the fact
that they are degenerate in the normal phase. In fact, at the transition b = b = 0.22
and ¢ = I'y = 0.071, values that of course coincide with those of the lowest scalar mode
in the normal phase. On the other hand, it is interesting to notice that in the broken
phase the behavior of the coefficients of the type II Goldstone is completely different from
that of the coefficients of the sound of the superfluid. Unlike the sound velocity, that
vanishes at the phase transition, the coefficient b of the type II Goldstone mode takes a
finite value at the critical temperature. This result of course persists for the gauged model.
The attenuation on the other hand, as it happens for the U(1) sector, has a finite value
at the phase transition and then decreases with temperature, reflecting the fact that the
fluid is more ideal the lower the temperature.

b

0.26 [

I I I I I ]
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0231
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Figure 8.8: Coefficients of the type II Goldstone mode dispersion relation w;; = bk?—ick?,
as a function of the temperature. Dependence with temperature is very mild.

8.2 The gauged model

Let us now discuss the fully gauged model. Consider the following Lagrangian for a
complex scalar field living in the fundamental representation of a U(2) gauge symmetry
of the bulk,

S = /\/ gL = /d4x\/ ( —FMRS, —mPUT — (D“\IJ)TDM\IJ> : (8.2.34)
where
A . :
U= N A= AT, D, =08, —iA,, (8.2.35)

and ¢ = 0,1,2,3 is the color index. The field ¥ plays the role of the condensate. The
expectation value of its dual operator thus triggers the spontaneous breaking of the U(2)

May 29, 2014



8.2. The gauged model 94

global symmetry of the boundary theory. For simplicity, we set A = 0 in the background.
T. are the generators of U(2):
1 1
Ty = 5}1, T, = 5% (8.2.36)
Notice that we are again working in the probe limit, so the background metric is taken to
be the Schwarzschild-AdS black brane of On the other hand, the gauge field is now

The rest of the components of the gauge field being zero. As in the previous section, we
will use dimensionless coordinates defined by the rescaling given in [8.1.4
The equations of motion for our ansatz are

v (1 (®-©)3° _
(0 +(f >1/)+ e 1) fw 0, (8.2.38)
" 2 !/ 1/}2
" + ;(I) Qf(@ Q)= (8.2.39)
" 2 / 1/12
0" + ;@ 2f(<1> Q) = (8.2.40)

Notice that from[I0.1.7]it follows that we can not simply switch on ® without also allowing
for a non-trivial ©. We are of course only interested in switching on a chemical potential
in the overall U(1), and therefore we will impose O(p — o0) = 0 and allow for a finite
boundary value of .

The coupled system of equations above can be simplified by defining y = % (®—-0)

and £ = %(q) + 0). Using (|10.1.6) and ((10.1.7)), we see that the resulting equations for

these fields ard|

f/ m2

v+ <f v+ fQ\IJ - 7\1/ =0, (8.2.41)
2 202

X"+ ;x’ —Tpx= 0, (8.2.42)
2

¢+ ;g’ =0, (8.2.43)

where we have redefined 1) — /2¥. As usual we choose the boundary conditions y(p =
1) =0, £(p = 1) = 0 along with regularity of U. Having a dual field theory with only one
finite chemical potential switched on, implies that y and & must take the same non trivial
value at the boundary in order to ensure that © vanishes asymptotically. Notice that
& decouples completely. The remaining system — is again the background
found for the widely studied s-wave U(1) holographic superconductor. Therefore, the
background of the U(2) gauge model contains the Abelian superconductor plus a decoupled
conserved U(1) sector.

The field x lies in the direction of one of the broken generators, which is the linear
combination (T3 — Tp), whereas £ lies in the direction of the preserved U(1) given by
3(T3 + Tp).

5These equations of motion correspond to the probe limit of the system studied in |155] as a dual of
superconductors with chemical potential imbalance. Notice however that in |[155] the gauge symmetry was
U(1) x U(1) instead of U(2) as in the present setup.
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The asymptotic expansion of the fields near the conformal boundary reads

. n 1
X = iy — % +0 <p2> : (8.2.44)
B ’flg 1
=jig—— +0O () , 8.2.45
5 123 P pQ ( )
Y1 o ( 1 )
UV="+24+0(=%]. 8.2.46
p P p? ( )

The map of the various coefficients in the previous equations to the boundary conditions is
fiy = fte = fi. We will again focus in the Oy theory exclusively, henceforth we will demand
1 = 0.

Equations (8.2.41))-(10.1.8)) allow for solutions with a non-vanishing condensate, and
therefore %(Tg—To) will be spontaneously broken. This solution must be found numerically,
since the system is non-linear. However, (8.2.43|) does have an analytic solution

1
E=10 <1 — > (8.2.47)
P
and thus ng = [i.

When the symmetry is not broken, ¥ = 0, the equation for x has of course

X = [ (1 - ;) (8.2.48)

as a solution as well. Therefore, in the unbroken phase

©=0, (8.2.49)
® =2 (1 - :}) . (8.2.50)

This behavior reflects the fact that T3 is completely independent from T in the unbroken
phase. However, once we switch on the condensate, the interplay between T3 and Tp (recall
that the remaining symmetry is a combination of the two) makes it impossible to set only
one of the fields to zero.

Finally, let us mention that in order to relate the dimensionless parameters with the

physical ones, we need to apply the same dictionary (8.1.10[)48.1.13| used for the ungauged
model.

8.2.1 Charge Density in the broken phase

According to [108}/112] we can expect the presence of type II Goldstone modes if the
broken symmetry generators fulfill

([Qa, Qul) = Bab (8.2.51)

with at least one B,y # 0. In our case we have [Q1, Q2] = iQ3. Therefore in the broken
phase we are interested in a non-vanishing expectation value for the charge density operator
(Q3) = ne. As we argued previously, in the unbroken phase we necessarily have ©(r) = 0.
This happened since both x and £ obey the same differential equation and the integration
constants had to be set equal in order to do not switch on a source for ©. Now we would
like to find out whether or not an expectation value for © will be spontaneously generated
in the broken phase.
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Independently of the phase the field associated to the unbroken combination of gener-
ators is given by (8.2.47). Since © = £ — y, then
ne = fi — My . (8.2.52)

Hence, what we want to check is the difference between the leading and the subleading
coefficients of x as a function of the temperature. The numerical result is shown in Figure
8.9

-10-

-15

-20 ;
Figure 8.9: Charge density of ©, ng, as a function of the temperature T'/T..

So we conclude that precisely at T' < T, this difference is switched on and an expecta-
tion value for (Q3) appears. This can be taken as a clear indication for the appearance of
type II Goldstone bosons in the spectrum.

8.2.2 Fluctuations of the gauged model

In order to study the quasinormal spectrum and the conductivities of the system, we
switch on longitudinal perturbations on top of the background, so that

V= (n(t,p, ),\P( )+ ot p,x)), (8.2.53)
A — (¢(p)+at '(t,p,2))dt + al0)(t, p, x)dz, (8.2.54)
AL = (t p,x)dt +alV (¢, p, x)dx (8.2.55)
A® = (Pt p )dt + D (t, p, x)da (8.2.56)
AB®) = (@() +aP(t, p,x))dt + ol (t p,x)dz . (8.2.57)

Perturbations in the Unbroken Phase

In the normal phase, the background value of the condensate vanishes. Moreover, we
have ©(p) = 0. The equations of motion for the perturbations read

&4 s <§’+p>+<w_ﬁ_7>s ~ 0, (8.2.58)
(o) +i @ _ ;ff a<c>_;a§0> = 0, (8.2.59)

26 4 :1;’ e +;a(c>+°ﬁa§@ . (8.2.60)
?a;@up]‘;ag@ = 0, (8.2.61)
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where s € {n,o}. Since the color indices do not see each other the system is the same one
as 8.1.20| except that there are four copies of the gauge field fluctuations. Due to
the chosen normalization of the U(2) generators the gauge field background ® enters with
an additional factor % compared to . The quasinormal mode spectrum is the same
as the one of the holographic s-wave superconductor [2] except that the scalar modes are
doubly degenerate and the gauge field modes are fourfold degenerate. In particular there
are four copies of the hydrodynamic diffusion mode w = —iDk?.

Perturbations in the Broken Phase

The equations of motion in the broken phase decouple in two sets: one mixing the
(0) — (3) colors of the gauge field and o fluctuations and the other mixing the (1) — (2)
colors and the 7 fluctuations.

Writing o = ¢ + id, the equations of the (0) — (3) sector are

2 2 kQ 2
0 = f'+ (f + f>< + <°‘}+>}—p2—m2>g+ “f"XéJr p—— \P8}£262
0 = fi"+ (f +2f)5’+ <°"2+>‘2'“2m2>52i”’<c+ iWw M+
P ff p f 2f
(3) _ (0)
. Ay " — ag
+iVk o (8.2.63)
2
0 = fa/%+ ifa;(“) - <xy2+i2> al” — pk 0) 4 126(3) — 4¢Ty — 20w W5, (8.2.64)
2
0 = fa’©+ fa/® 4 (“’f - \112) al® + “}kaﬁo) + 020 + 2ik6T (8.2.65)
2
0 = fag(g) + zja;(S) - (1112 + EQ) af’) — L;égag’) + \I/2a§0) +4¢Ux + 2iwWo , (8.2.66)
2
0 = fa'® 4 fa/® 4 <°; - \112) al® + “;ffa@ + 9% — 2iksT (8.2.67)
ik
0= 5 a© + 7 a\¥ + 20’5 — 20, (8.2.68)
" :
0 = ;—Qa’f’) + %a;@ — 205 + 206 (8.2.69)

()

It is trivial to show that by defining new fields a;™ = 5(a; © :ta(g)) and ot = %(ag(to) iag’))

1
a\a
the system further decouples into a coupled system for the scalar fluctuations and aff)
and a background independent set of equations for the U(1) gauge field a,(f). The first
subsystem reproduces the eoms (8.1.24])-(8.1.28)) and therefore corresponds to the s-wave

U(1) superconductor contained in the U(2) model. On the other hand, the field a,(:r)
corresponds to the preserved gauge symmetry surviving the U(2) — U(1) spontaneous
symmetry breaking. The quasinormal mode spectrum in this sector is therefore the same
one as in [2] plus the QNMs that are stem from a U(1) gauge field in AdSy. In particular
the hydrodynamic modes in this sector are the sound mode and the diffusion mode of the
unbroken U(1).

From now on we will concentrate on the remaining fields. We will call this remaining,
inherently non-Abelian sector the (1) — (2) sector and will show that the expected type II
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Goldstone boson resides there. Writing n = a+ /3, we find the following equations in the
(1) — (2) sector:

2f w2 (@+0) K2 iw(® + O)
0 = a”+(’+>o/+ - —m? ot —— B~
o\l Pt e ;7
k w vo
_ Ko@) W (2 1)
iv <2p2ax + o7 % )—i— S YU (8.2.70)
2f w? (B +0) iw(® + 0)
0 = B”+(’+>6’+ -5 M |- ————a—
AR S T 7
k w i)
B TR A € D BN ¢ O I N (2)
iv <2p2az + 2fat ) 57 a;”’, (8.2.71)
2
0 = a;/(l) + pra;(l) - (\112 + l;2> a§1) - 9272‘7%(61) + i@p]{;ag) — 20V — 2iwYB.2.72)
2 ©? Ow k wk
0 = a;/(l) 4 /agv(l) 4 <OJ o \112 4 > a;(L-l) o 227(1:(1:2) o ’L@*CL(2) + 701(1)6 +
Jar=+d 7 i 7 7t
+2ikU 3, (8.2.73)
2
0 = fa;/@) + 2pfa;(2) - <\I/2 + l;2> a§2) - L;];ag(f) - i@p]{;ag) + 20V — 2iwY8.2.74)
2 e? Ow k wk
0 = ag(Q) 4 /alx(Z) 4 <w o \112 4 > a;?) 4 227a;1) +’l@*a(1) + 701(2) +
Jarm+d 7 i 7 7t
+2:kVa (8.2.75)
. . 1
0 = Zja;“) + %@“’ t3 (P06 - afe’) + 205 - 25'w, (8.2.76)
ik j 1
0 = ;—2@&(2) + %a;@) ~7 (a;(l)@ — a§1)9'> +20'a — 22/ (8.2.77)
A comment is in order here. This system of equations could be written in a more

compact form by using complex field variables  and agg iiag. One has to keep in mind
then that the field equations one needs to solve for the QNM spectrum for the complex
conjugate fields are not the complex conjugate equations since one has to demand infalling
boundary conditions on the fields and on the complex conjugate fields simultaneously. This
aspect is somewhat clearer if one works with the (formally) real field variables on paying
the price of writing a somewhat lengthy system of equations.

Up to linear order in perturbations, there are three decoupled sectors in the system.
Two of them belong to the ‘(0) — (3) sector’ and they are a copy of the U(1) holographic
superconductor, already extensively studied, and the preserved U(1) gauge symmetry.
The main features of the spectrum of this sector have already been presented in section
[8.1] since it is also a subsector of the ungauged model. On the other hand, the so called
‘(1) — (2) sector’ has not been studied before. The physics in this sector is quite different
from the holographic superconductors studied up to now and we will concentrate on it in
the rest of this section.

Before studying the quasinormal modes we will focus on a simpler problem, namely
the conductivities.
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8.2.3 Conductivities

In order to study the conductivities via Kubo formulae, it is enough to solve the
linearized equations in the limit kK = 0. The retarded correlators that we are interested in

have the form G ~ <J(xc), J(";,)>R, with ¢, ¢ color indices.
We will be applying the prescription of [51] for computing Green functions in the
presence of holographic operator mixing. If one has a set of fields ®;, the two-point

correlation functions will be
Gry= Ah_f}féo (AIM}—]?/[ J(A), + B[J) , (8.2.78)

where the matrix Fj(r) is nothing but the bulk-to-boundary propagator for the fields,
normalized to be the unit matrix at the boundary. The matrices A and B can be read off
from the on-shell renormalized action. The corresponding DC conductivities are given by
the following Kubo formula

opy = lim <ngu(% 0)) : (8.2.79)

At vanishing momentum the longitudinal components of the gauge field perturbations
decouple from the scalar perturbations, as well as from the temporal components of the
gauge fields. Moreover, the constraints (eqs. (8.2.6848.2.69) and(8.2.76{8.2.77)) become
trivial. Since we know that the system splits into the (0) — (3) and the (1) — (2) sectors

(c)

we can rearrange the a;’ fields in two vectors

i (0-3)(p) = (@ (p),al? (p)) and  f 1_y)(p) = (e (p).aP(p).  (8.2.80)
One can check that in our case the A, B matrices take the simple form

.A:—f(;)]l, B=0, (8.2.81)

for both sectors. A priori we would have a 4 x 4 matrix of conductivities. We know
however that the fluctuations in the (0) — (3) and the (1) — (2) sector decouple from each
other. Therefore we can restrict ourselves to study two independent 2 x 2 matrices of
conductivities.

8.2.4 Conductivities in the (0) — (3) sector

The k = 0 equations of motion for agco) and agc3) can be simplified by using the already

defined a(f) and a;(f) fields. This results in

2

0 = fa!™ + fla/) 4 w?a;“, (8.2.82)
w2

0 = fa)+ fal7) + (f - 2\1/2> al) (8.2.83)

We see that the resulting system of equations is now completely decoupled. We only have
two diagonal conductivities o and o__, corresponding to the unbroken U(1) diffusive
sector and a mode which is associated to the broken U(1) coupling to the condensate.
The former is the same as in the unbroken phase and of no further interest for us. The
latter is again the well-studied U(1) s-wave superconductor. Its conductivity has been
already calculated in [3]. To check our numerics we have re-calculated it and in Figure
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We show its behavior. It coincides completely with . The real part shows the w =0
delta function characteristic of superconductivityﬂ Numerically this can be seen through
the 1/w behavior in the imaginary part. The Kramers-Kronig relation (see in
appendix implies then infinite DC conductivity. The real part of the AC conductivity
also exhibits a temperature dependent gap.

Re(oc )
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1.0l
08
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0% 2 4 6 3 10” -1l

Figure 8.10: Real part (left) and imaginary part (right) of the conductivity as a function
of frequency. The plots correspond to temperatures in the range 7'/T. ~ 0.91 — 0.41, from
red to purple. As expected, the plots reproduce the ones of .

8.2.5 Conductivities in the (1) — (2) sector

The relevant equations for the (1) — (2) sector read

2 2
0= falf® 4 £+ (2wt S ) ol 22, (3.2.84)
2 2
0= fa’® + f'a!® + (‘} — 0?4 3) a? + 2z'®]j"a;1> . (8.2.85)
These equations obey the symmetry
(@ a? o - ). (8.2:56)

One can see that the fact that ©(1) = 0 implies that ag)(l) is independent of a,(vz)(l),
so, after imposing infalling boundary conditions at the horizon, the parameter space of
boundary conditions is two-dimensional, as expected.

In the unbroken phase the system completely decouples

2
0= fa" + f'al®) + w?ag(f) . (8.2.87)

5In general, this behavior is also typical of translation invariant charged media, in which accelerated
charges cannot relax. However, working in the probe limit we effectively break translation invariance and
therefore the infinite DC conductivity is a genuine sign of superconductivity.
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Diagonal Conductivities o!'! & 022

The diagonal components of the conductivity, c'' and ¢?? have the same behavior, as

could be anticipated from the equations (8.2.84)),(8.2.85). Henceforth, we will only refer
to o1, but all the conclusions also apply to 2.

Figure shows the conductivity for several values of the temperature. We find that
these conductivities also show delta-function singularities at w = 0.

Re(o11)
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Figure 8.11: Real (left) and imaginary (right) parts of o' versus w for five different
temperatures chosen in a range 7/T, ~ 0.91 — 0.41, from red to purple. Im(c'!) clearly
blows up as w — 0.

The strength of the delta function can also be computed. It is given by the residue of
the imaginary part of the conductivity at w = 0,

lim wIm(o™) ~ ng. (8.2.88)

w—0

The residue is plotted in Figure as a function of T'/T.. As expected, it starts
growing from a zero value. At T'/T, ~ 0.65, ns reaches a maximum and starts decreasing
fast, changing sign at 7'/T, = 0.49. To study ns down to very low temperature we would
need to go beyond the probe limit. However, as we will comment below, this behaviour of
ns can be understood in light of the QNM spectra.

Ns
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Figure 8.12: Residue at w = 0 as a function of T'/T.

Let us look in detail at the behavior of the real part of the conductivity (left plot in
figure [8.11]). For high enough temperatures the optical conductivity is almost constant,
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Re(o!!) = 1, which is expected since in that regime the dynamics is described essentially
by . As soon as we decrease the temperature, the onset of the DC conductivity also
decreases and only approaches the constant value asymptotically, when w becomes large
enough and thus the term w? dominates, turning equations ([8.2.84]),(8.2.85)) approximately
into . According to the Ferrell-Glover sum rule, the area missing as we lower the
temperature is proportional to n.

Interestingly, at low temperatures the real part of o!! starts developing a bump at
small values of w (0 < w < 2). The bump leaves less area for the delta function to cover,
which explains why ns starts decreasing approximately at this temperature. Moreover,
the appearance of these bumps can be traced back to the fact that for a subleading gauge
QNM with small |Im(w)|, Rew(T) >> Imw(T") holds. Hence, the conductivities affected
by this mode start developing the reminiscence of a resonance at a particular frequency.

We have studied the spectrum of low lying QNM for the gauge sector and found that
(1,2)

this mode corresponds in the normal phase to the lowest excitation of a;, ™, w = —1.54.
But it is at lower temperatures where one finds a remarkable fact: at T'/T. =~ 0.395 the
mode becomes unstable, and indeed, as we will see, several physical quantities modify
their behavior at that temperature.

Therefore, we expect a new phase transition around 7'/7T. ~ 0.395, due entirely to the
(1) — (2) sector. Since this phase transition seems to be triggered by an unstable mode
in the vector sector it most likely leads to the formation of a p-wave condensate. We will
see in Chapter that, indeed, a phase in which an scalar and vector order parameters
coexist can be constructed for temperatures below T/T, ~ 0.395.

Off-diagonal conductivities ¢'? & o?!

The off-diagonal elements of the conductivity matrix are also related via the symmetry
and therefore obey o'? = —g2!. Therefore, it is enough to comment on o'2,
although the conclusions are valid for both components.

The form of o2 is plotted in Figure for various different temperatures as a function
of frequency. At T'/T, = 1 the system is practically decoupled, so for all temperatures the
off-diagonal conductivity goes to zero as w increases.
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Figure 8.13: Real (left) and imaginary (right) part of o'2 as a function of w for T/T, ~
0.91 — 0.41, from red to purple.

Observe that o'?(w) behaves as a normal conductivity. Its real part vanishes as w — 0,
whereas the imaginary part tends to a constant value.
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Conductivities 0, and o_

It is worth to notice that the equations (8.2.84))-(8.2.85) decouple if we define a new

vector field @
- A 1 2 ay

In this basis, the equations of motion become

(e 2
0=fAL + f/A, + (WFJ,) - \112) As. (8.2.90)
It is easy to check that the relation between the conductivity matrices in the two basis is
given by

5=(5") oS, (8.2.91)

and that only the off-diagonal components of & are non vanishing.

The conductivities o and o _ are represented in Figure and respectively.
The plot of the conductivity o_ is particularly suggestive. Besides the superconducting
delta of the DC conductivity, it resembles the behavior observed in Graphene [156]. Such
a resemblance of the conductivities of holographic superconductors to the one of graphene
has been pointed our already in [26]. We emphasize however that the conductivities
shown in figure have an even closer resemblance to [156]. In particular, at small
frequencies we see that a Drude-like peak develops. This kind of behavior in metals is
usually due to the presence of impurities or lattices, whereas in our case, momentum
relaxation would be due to the non-vanishing expectation value of the charge density
operator (Q3) = ng. The resemblance holds for not too low temperatures. When lowering
the temperature, a gap opens up as for the (0) — (3) sector. The real part of o _ shows the
same peak already observed for o1; when decreasing the temperature. For temperatures
below T ~ 0.49T,, the pole in the imaginary part of both conductivities changes sign.
Of course, it corresponds to the temperature at which the residue changes sign. The
onset of the DC conductivity at low temperatures grows very fast, becoming divergent at
T /T, =~ 0.395. The presence of such a pole in the conductivity is related to the appearance
of an instability in the spectrum of excitations of the gauge field and therefore with a phase
transition to another superconducting phase, as already discussed.
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Figure 8.14: Real (left) and imaginary (right) part of the conductivity o_, for tempera-
tures in the range T'/T. ~ 0.91 — 0.41, from red to purple.
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Figure 8.15: Real (left) and imaginary (right) part of the conductivity o _ for tempera-
tures in the range T'/T, ~ 0.91 — 0.41, from red to purple.

8.2.6 Quasinormal Modes

Let us finally study the QNM spectrum in the (1) — (2) sector. This sector contains
the fluctuations 7, afl with ¢ = 1,2, therefore in the unbroken phase the spectrum will
contain two diffusive modes associated with the two gauge fields. The fluctuations of
the scalar field in the normal phase were already discussed in section Analyzing

the quasinormal mode spectrum in the broken phase amounts to solving the system of

equations (8.2.70))-(8.2.77)). Details of the computation can be found in appendix

Type II Goldstone mode

As expected within the (1) — (2) sector we find a type II Goldstone mode. As in the
ungauged model for small enough momentum its dispersion relation can be fitted to

w = +Bk* —iCk*. (8.2.92)

Figure shows the dispersion relation for various values of the temperature in the
hydrodynamic regime. The quadratic behavior with momentum is apparent. The temper-
ature dependence of B and C is plotted in Figure The value at T' = T, is given by
the same value as in the ungauged model and in fact can also be cross checked
by calculating the scalar mode dispersion relation in the unbroken phase at T' = T, since
the QNMs must be continuous through the phase transition. We find a rather surprising
dependence of B with the temperature. It starts at a finite value at the transition and
then it rises rather sharply and falls off slower. It reaches a minimum at T =~ 0.497,,
temperature at which we found the change of sign in the residue of current-current corre-
lators. We also find another peak around T ~ 0.47,.. We expect that it is again related
with the instability found in the gauge sector around that temperature. It would also be
interesting to calculate B(T') using an alternative method e.g. as the sound velocity can be
calculated from thermodynamic considerations alone. In order to do this one would need
to formulate the hydrodynamics of type II Goldstone modes. We are however not aware
of such a hydrodynamic formulation and leave this for future research. The attenuation
C(T) decreases rapidly with temperature. For temperatures 7'/T. < 0.9 it is negligible
and the width of the type II Goldstone scales with k% in the hydrodynamic limit. This
fast decreasing with temperature reflects that this mode propagates almost ideally in the
fluid at low temperature. No further ungapped modes can be found in this sector.
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Figure 8.16: Plots of Re(w) (left) and Im(w) (right) as a function of the momentum. Thick
lines correspond to data and thin lines to quadratic fit. At 7' = 0.995 T, the real quadratic
parameter B(7T) shows a maximum, see Figure Relation (8.2.92)) is fulfilled with high

accuracy.
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Figure 8.17: B (left) and C (right) as a function of T/T.. The zoom-in shows the peak
of C close to the transition. Furthermore at T" ~ 0.47,. a sharp peak shows up in both
coefficients. We relate this feature also to the instability arising in the vector sector.
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Higher quasinormal modes

Higher quasinormal modes correspond to gapped modes in the QNM spectrum and
thus represent subleading contributions to the low energy Green’s functions. We will focus
here only on two of them: the continuation of the two diffusive modes of the unbroken
phase and the special gapped mode that appears as the partner mode of the type II
Goldstone mode in the field theoretical model.

Analyzing the first one is interesting in order to understand if also a qualitative change
in the response pattern, such as that characterized by T in the U(1) superconductor sector,
exists in the (1) — (2) sector. Since in this sector there exist however two diffusive modes
in the unbroken phase it is also possible that the diffusive modes do not simply develop a
gap but that they pair up and move off the imaginary axis in the broken phase. Indeed
as we will see this is what happens.

The special gapped mode corresponds to a mode that is associated to the complex
conjugate of the scalar perturbation in the unbroken phase. At &k = 0 and p = 0 the scalar
mode and its complex conjugate are degenerated. As we lower the temperature they split
into two different modes. When we reach T" = T, the lowest scalar mode becomes the
type II Goldstone mode whereas the mode of the complex conjugate scalar field turns into
the special gapped mode. The gap of this mode is expected to be given by the tree level

result (4.4.30) [118].

Fate of diffusive modes: As already mentioned, in the (1) — (2) sector we have two
degenerate diffusive modes in the unbroken phase. When going through the phase tran-
sition these modes can therefore pair up and move off the imaginary axes such that their
quasinormal frequencies develop real parts and lie symmetrically around the imaginary
axis. We expect therefore that in the low energy limit the dispersion relation takes the
form

w=T(T) + M(T)k?, (8.2.93)

where both coefficients are complex functions and the second mode is located at w’' = —w*.

Besides, we expect the QNMs to be continuous through the phase transition, which in
particular means that for T' = T, our pseudo-diffusive modes should match the unbroken
phase values, i.e. I'(T.) = 0 and M(T;) = —i.

The modes at zero momentum are plotted in Figure We see that indeed the
gap vanishes as T' — T, whereas the modes split and develop a real part as we decrease
the temperature. This last feature is exclusive of the non-Abelian system and thus does
not take place in the usual U(1) holographic superconductor, where the gap is purely
imaginary (see [2] and comments above). Close to the phase transition, they present a
linear behavior in temperature,

I(T) = (4.1 — 0.84) (1 - g) near T, . (8.2.94)

Cc

The temperature dependence of the coefficient of the momentum in (8.2.93), M(T),
is shown in Figure The real part rises very steeply just below the phase transition.
The imaginary part approaches the unbroken phase value at the critical temperature, i.e.
M(T:) = —i, as is expected for the pseudo-diffusion modes to continuously connect to the
normal diffusion modes through the phase transition. Notice Im M(T') decreases when
lowering the temperature.

Another check of the fact that the pseudo diffusion modes come from the pairing up
of the diffusion modes of the normal phase is that their dispersion relation at the phase
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Figure 8.18: Imw versus Rew at k = 0 as a function of the temperature. The shape of the
figure is compatible with T symmetry, since there are two pseudo-diffusive modes. Having
Rew(k = 0) # 0 is characteristic of the non-Abelian case.
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Figure 8.19: Real (left) and imaginary (right) part of M(T") as a function of 7'/T,. As the
temperature approaches T, the value of M(T') reaches the one prescribed by continuity
through the phase transition.
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transition matches. Therefore the two diffusive modes are continuous through the transi-
tion, as expected for second order phase transitions, however instead of simply developing
an imaginary gap to drop out of the hydrodynamic spectrum as for the usual U(1) super-
conductor, they pair up in two modes that on top of this gap also develop a real part.

The fact that Re(w) does not vanish for these modes implies that sufficiently close to
T. and in the limit £ = 0, the late-time response of the perturbed state will present an
oscillatory decay of the perturbations, meaning that, contrary to the U(1) case, there will
not be a temperature at which the late-time behavior changes qualitatively.

Special Gapped mode: Seeking for this mode is computationally much more involved.
Its behavior is characterized by a gap that is proportional to p. In particular, in [118]
it was argued that a type II Goldstone mode is accompanied by a gapped mode obeying
w(0) = gu with ¢ being the charge of the corresponding field. In our conventions here
we have ¢ = 1. So we have to look for a mode with w(k = 0) = pu. Furthermore we
expect that it connects to the lowest mode of the complex conjugate scalar in the unbroken
phase. In Figure[8.20| we depict such mode at zero momentum with respect to the chemical
potential i in numerical units. Notice that the mode is continuous at the phase transition,
as expected. We observe the linear behavior with the chemical potential that is predicted
theoretically, at least near fi.. It is very difficult to do the analysis when i > 6 due to
the high computational power demanded to carry out the computation. The mode shows
of course also a non-vanishing imaginary part which is due to the dissipation at finite
temperature. We find that the real part above the phase transition can be approximated
by

Rew =110 near fi.. (8.2.95)

This result shows a deviation from the conjectured behavior which could nevertheless be

due to uncertainties in the numerics. Let us emphasize here that the numerics involved in

tracking this mode through the phase transition were rather challenging.
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Figure 8.20: Real (left) and imaginary (right) part of the special gapped mode versus the
chemical potential. We encounter the expected linear behavior with p. The plot covers
both the unbroken (dashed line) and the broken (solid line) phases.
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Chapter 9

The Landau criterion in
Holography

The characteristic property of a superfluid is its ability to flow totally frictionless
through thin capillaries. From out introduction of Section 7?7 it is clear that one can
think of a superfluid as a two component liquid. One component is the ground state
with a macroscopic occupation number and the other is the normal component, subject to
friction and viscosity. At very low temperatures the normal component can be described as
the gas of elementary quasi particle excitations above the macroscopically occupied ground
state. As indicated in the introduction, a famous argument due to Landau [93,157}/158]
sets a limit to the flow velocity that the condensate can obtain. Recall that it states that
at zero temperature there is a critical flow velocity above which the superfluid ceases to
exist .

Umax = min @ , (9.0.1)

k

where the minimum over all elementary excitation branches has to be taken. The quantity
E(E) is the energy of the quasiparticle in the rest frame of the condensate. It is known for
example for superfluid helium that the low temperature normal component can be well
described as a gas of phonons and rotons and that the critical velocity is not determined
by the minimum of the phonon and roton dispersion relation but rather by the excitation
of vortices, resulting in a much lower critical velocity.

At higher temperatures there is always a normal component present and therefore the
energy of an excitation of a superfluid with superflow can not be obtained by a (Galilean)
boost € (p) = €(p) + ¥ - p. It is however still true that the energy will depend on the
superfluid velocity and that it can become negative if the superfluid velocity is too large.
At finite temperature the criterion is therefore that the superflow is stable as long as the
energy of all quasiparticle excitations is positive. If in a superfluid the only low energy
excitations are the phonons that criterion is basically the statement that the superflow
dependent sound velocity is positive for all directions.

Focusing on holography, in [159,/160] an s-wave superfluid in 241 dimensions with
superflow was constructed and it was pointed out that there is indeed a critical velocity
above which the superfluid state ceases to exist. The phase diagram obtained in these
works was based on comparing the free energy of the superflow with the free energy of the
normal phase. It turned out that the phase transition from the superfluid phase to the
normal phase was either first or second order depending on the temperature. Remarkably
enough, in 3+1 dimensions there is some range of masses of the condensate for which the
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phase transition is always of second order type [161]. Another way of establishing the
phase diagram has been used in [162]. There the supercurrent was fixed and it was argued
that the phase transition is always first order.

The physical significance of the comparison of the free energies of the state with su-
perflow and the normal state is not totally clear, since for all temperatures below the
critical temperature the normal state is unstable towards condensation to the superfluid
state without superflow. Indeed the superflow by itself is a metastable state only [158]
as emphasized already in [159]. We will propose a different method of characterizing the
phase diagram more directly related to the stability criterion .

The purpose of this chapter is thus to revisit the question of the realization of the sta-
bility criterion in holographic superfluids. We will investigate the stability of the
superflow via a QNM analysis of the U(2) model (equation (8.2.34)). As already noticed,
this automatically will give new and valuable information about the usual U(1) holographic
superfluid since a subsector of the linear fluctuations in the U(2) model is isomorphic to it.

With this aim, we will follow [159}/160] and reproduce the phase diagram based on
the comparison of the free energy of the superflow with the normal phase. Then we will
study the QNM spectrum with the superflow. In particular we will calculate the direction
dependent speed of sound. We will indeed find that as the superfluid velocity is increased
the speed of sound in opposite direction to the superflow is diminished and eventually
vanishes at a critical velocity v.. Increasing the superfluid velocity even further this sound
velocity becomes negative and this has to be interpreted as the appearance of a negative
energy state in the spectrum. In principle that would be enough to argue for instability
but at basically no price the QNM analysis can give us an even clearer sign of instability.
It is well-known that the imaginary part of the QNMs have to lie all in the lower half plane.
If they fail to do so an exponentially growing mode with amplitude ¢ x exp(I't) appears
in the spectrum. It is not necessary for this mode to have zero momentum. In fact we
will see that if we increase the superfluid velocity beyond the critical value the imaginary
part of the sound mode quasinormal frequency moves into the upper half plane. And it
does so attaining a maximum for non-zero momentum. We will see that this behavior is
necessary to connect the phase diagram continuously to the normal phase. Then moving
slightly aside we will study the conductivities with superflow. This has been done before
but only in the transverse sector and here we present results for the longitudinal sector.

Finally we will briefly investigate the fate of the type II Goldstone mode in the U(2)
model. We will study both the gauged and the ungauged model of the previous chapter.
Landau’s criterion suggests that these setups do not sustain any finite superflow since
min % = 0 for quadratic dispersion relations. Again we can not only look at the real
part but also at the imaginary part. We will indeed find poles in the upper half plane for
non-zero momenta for all temperatures and superfluid velocities for the gauged and the
ungauged model H

'Models with one U(1) gauge field and two complex scalars similar to our ungauged model were studied
before in [163] and recently in [164] (see also [165]). There the two scalars had however different masses
and this should prevent the appearance of the ungapped type II Goldstone mode.
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9.0.7 The U(2) superfluid with superflow

We will be working essentially with the same gauged U(2) model presented before, i.e.

S = / d*ey/—gL = / d*z/—g < —FMeFS, —m%w—(pw)mw), (9.0.2)

where
=2 (g) : Ay = ACT, D, =8, —iA,, (9.0.3)

where we include the v/2 in the definition of the scalar field to agree with the equations
of [159]. Following [144] we choose the mass of the scalar field to be m? = —2/L?. We take
the generators of U(2) as in . Since we will work in the probe approximation we
do not include the metric in the dynamical degrees of freedom but simply consider
in the background metric of the Schwarzschild-AdS black brane of . By suitable
rescalings we can set L = ry = 1 and work with dimensionless coordinates.

In order to find background solutions corresponding to a condensate with non-vanishing
superfluid velocity we proceed as follows. First note that the scalar field A(r) can be set
to zero by a U(2) gauge transformation. For the scalar ¥ we demand then that the non-
normalizable mode vanishes. By a residual U(1) gauge transformation we can also take ¥
to be real.

Now we need to define what we mean by the superflow. Let us discuss this for a moment
from a field theory perspective. In a multi-component superfluid with U(2) symmetry we
can in principle construct the four (super) currents

JE =T, Vre — (VHD) T, (9.0.4)

where V# = O* — i ALT, is the covariant derivative and ® is the condensate wave function
which transforms as a doublet under U(2). If the condensate is such that one of the
spatial currents does not vanish we can speak of a state with non-vanishing superflow. By
a gauge transformation we can always assume the condensate to take some standard form,
e.g. ® = (0,6)7 and represent the non-vanishing superflow in terms of constant gauge
fields. Since we are interested in the case where we break the U (2) symmetry spontaneously
to U(1) we will only allow a non-zero gauge field in the overall U(1) corresponding to the
generator Ty. Furthermore by an SO(2) rotation we can take the gauge field to point into
the = direction. From it is easy to see that such a superflow has non-vanishing

currents Jgg ) and Jz ) In order to find solutions with non-trivial charge we also need to
introduce a chemical potential. Again in order to preserve the full U(2) symmetry we also
allow a chemical potential only for the overall U(1) charge.

Returning now to Holography these considerations determine the ansatz for the gauge
fields to be of the form

A = A0 ()dt + AD (r)de, A® = AP (p)dt + AP (r)yde. (9.05)

While we introduce sources only for A the fact that also the current JL(LS) is nonvan-
ishing demands that A®) = 0. The physical interpretation for this fact is that the system
forces the appearance of a charge density p(®) # 0 (as pointed out in Chapter |8) and a
current Jf’) in the vacuum with superflow. This is in turn closely related to the presence
of type II Goldstone bosons in the spectrum [112].
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At this point it is important to note that the above identification is only valid in the
superfluid phase, that is, whenever ¥ # 0. A constant background value of the gauge field
A, in the normal phase is not physically meaningful since there is no notion of superflow.

For the reasons outlined above we choose the asymptotic boundary conditions for the
gauge fields to be

Ago)(r—>oo):2ﬂ, Agg)(r%oo):(),
A (r — 00) =28, AP (r = 00) = 0. (9.0.6)

Recall that fi is to be identified with the chemical potential of the dual theory and S, is
related to the superflow velocity. We have included a factor of two in the definitions of
and S, for the following reason. The background field equations can be recast in the form
of those derived from the U(1) model in [159,160] by using the field redefinitions

1 1

Ao = (A = AP, &= A" +47),

Ay = %(A;(’) —AD), <= %<A§P) +4%), (9.0.7)
for which the background equations now read
/ ) A2 A2 m2
N L NV 20z 0 )\ §y=— .0.
+<f+r) +<f2 27 f) 0, (9.0.8)
2 202
Af + ;Ag - Ap=0, (9.0.9)
fl 2\112
Al = AL — A, — =0, 9.0.10
ot 7 7 ( )
2
€ +2¢ =0, (9.0.11)
" f/ !

¢+ ?g =0. (9.0.12)

It can be checked that we recover the usual U(1) system describing the U(1) holographic
superconductor in the presence of superfluid velocity (see for instance [161]). The chemical
potential f is therefore the chemical potential for the field Ay which plays the role of
the temporal component of the (single) gauge field, and A, plays the role of the spatial
component of the single gauge field of [159-161]. This explicitly shows that the background
of the U(2) model is identical to that of the U(1) superconductor, even for a nonzero
superfluid velocity.

An immediate consequence of the fact that the background equations are those of the
U(1) holographic superfluid is that, at first sight, the U(2) system seems to be able to
accommodate a superflow. However, as already argued, this is in direct contradiction with
the Landau criterion of superfluidity [158] due to the presence of a type II Goldstone in
the spectrum. Of course, having found solutions to the equations of motion does not yet
say anything about the stability. In fact as we will explicitly see the type II Goldstone will
turn into an unstable mode and therefore make the whole U(2) solution with superflow
unstable.

Equations — are non-linear and have to be solved using numerical meth-
ods. Notice that (9.0.11) and (9.0.12)) are decoupled. They correspond to the preserved
U(1) symmetry after having broken spontaneously U(2) — U(1). The asymptotic behavior
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of the fields close to the conformal boundary is

AO:ﬂ_B+ )
T_
AJC:S;—%JF..., (9.0.13)
ottty
T T

3 9
b= et P = T6m22"
3 _ 9
— S - 9.0.14
3 9
Vi =700, = 167272 (O2)

We are working in the grand canonical ensemble, then we fix the chemical potential u.
The temperature is defined by 7'/ o 1/. For studying the evolution of the condensate
as a function of the superfluid velocity, the natural way to proceed is to work with S, /u as
our free parameter together with temperature. Notice that both asymptotic modes of the
scalar field are actually normalizable [150]. From now on we will stick to the Oy theory,
for which ¢; = 0 and (O3) is the vev of a scalar operator of mass dimension two in the
dual field theory. Notice that the fields £ and ¢ corresponding to the unbroken U(1) are
given by

§ = ﬂ_ﬁ/r7
(=5, (9.0.15)

even with non-vanishing condensate. The values of the condensate as a function of
temperature and superfluid velocity shown in Figure reproduce the previous results
of [159.,|160]. In the plot and in the rest of the section the temperature is measured with
respect to the critical temperature of the phase transition with no superfluid velocity, i.e.
T, ~ 0.0587p.

9.0.8 Free Energy

In this section we compute the free energy of the condensed phase and compare it to the
free energy of the unbroken phase as done in [159,[160]. After appropriate renormalization
of the Euclidean on-shell action and using the boundary conditions , the free energy
density reads

N = 2r*Aj 2\ g2
1

In the normal phase ¥ = 0, regularity at the horizon forces the A, gauge field to have
a trivial profile along the radial direction in the bulk and therefore not to contribute to
the free energy, i.e. J, = 0. This is in accordance with the fact that in absence of a
scalar condensate it is not possible to switch on a superfluid velocity anymore. Switching
on the spatial component of the gauge field in the normal phase describes a pure gauge
transformation that does not affect the free energy of the system. In the broken phase
instead, different superfluid velocities are physically distinguishable. It is important to
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Figure 9.1: The condensate for different values of the superfluid velocity, ranging from
Sz = 0.005 (right) to 5= = 0.530 (left).

emphasize that one is actually comparing the normal phase at vanishing superfluid velocity
with the superconducting phase at different values of the superfluid velocity, and that
the normal phase is unstable towards condensation without superflow for any T < T..
Therefore, the physical relevance of this comparison is not completely clear. We will see
later on that actually the Landau criterion establishes a different transition temperature
for the superfluid phase. Nevertheless the free energy gives a natural first approach to
characterize the phase diagram of the system. We would like to remark that the superflow
phase is just a metastable phase, since the true background is the static condensed phase

which allways has lower free energy [158], |159].
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Figure 9.2: Free energy of the condensed (solid line) and normal (dashed line) phases
for % = 0.5 (left) and % = 0.05 (right). The small plots show the behavior of the

condensate. The open circle corresponds to the critical temperature 7' whereas the filled
circle corresponds to the spinodal point (max. overheating).

In Figure [9.2] the free energy of both the normal and condensate phase is plotted for
different values of % The different behavior for large and small values of the superfluid
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velocity is apparent. For large superfluid velocity the transition is first order as can be
seen from the left panel in Figure indicated by the open circle. Coming from low
temperatures the system can still be overheated into a metastable state until the point
of spinodal decomposition where the order parameter susceptibility 9(O)/0u diverges,
indicated by the filled circle.

For low superfluid velocities the normal phase free energy and the condensate free
energy match smoothly at a second order phase transition. The resulting phase space is
contained in Figure and reproduces the previous analysis in [159}/160].

The phase transition found from considerations of the free energy is however only
apparent. We will call the temperature at which the free energies of the condensate phase
with superflow and the free energy of the normal phase coincide T from now on. The
temperature at which the (second order) phase transition occurs without superflow we
will denote by T.. As we will show now the superflow becomes unstable at temperatures
below T as implied by the Landau criterion applied to the sound mode. This temperature
we will denote by T*.

9.0.9 Landau criterion for the U(1) sector

In this section we analyze the QNM spectrum of the (0) — (3) sector, which is identical
to the original U(1) holographic superconductor in the presence of superfluid velocity
[159,160]. We focus on the behavior of the lowest QNM, the type I Goldstone boson, with
special emphasis on the velocity and the attenuation constant and their dependence on
the superfluid velocity and on the angle of propagation with respect to the flow.

To study the QNM spectrum we consider linearized perturbations around the back-
ground of the fields of the form d¢; = 0¢;(r) exp[—i(wt—|k| z cos(y) — |k| y sin()]. Specif-
ically we consider the fluctuations

0T = (n(r),a(r)),

0A® = a®(r)dt + al (r)dz + ol (r)dy, (9.0.17)

0A® = ol (r)dt + af¥) (r)dz + ol (r)dy,

where in the case of the gauge fluctuations we will work with the linear combinations
already defined by , ie. o) = %(aﬁ” - a,(f’)) and a,(f) = %(a&o) + a,(f)). The
linearized equations are rather complicated and we list them in Appendix The
numerical techniques used to obtain the hydrodynamic modes in coupled systems are well
known [2//51] (see also Appendix [11.4)).

In Figures [9.3] and we represent the velocity and the attenuation of the type I
Goldstone mode. Its dispersion relation is given by at low momentum, except
now the speed of sound vs and the attenuation constant I' depend on the angle v ﬂ Figure
shows the angle dependent variation of the sound velocity and damping constant for
a fixed temperature and varying values of the superfluid velocity. Figure [9.4] shows the
same at fixed superfluid velocity but with varying temperature. As one would expect for
small S,/u and low enough temperature the velocity and damping constant are almost
isotropic. As the superfluid velocity is increased or the temperature is increased the plot
becomes more and more asymmetric. The anisotropy of the system is such that we see an
enhancement of the sound velocity and a reduction of the damping in the direction of the
superflow.

2The small real constant b does not play a role here since for small enough momentum the linear part
proportional to vs dominates.
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Figure 9.3: Sound velocity and damping for T' = 0.77,. and several superfluid velocities
from S, /u = 0 (blue) to S;/pu = 0.325 (green). The radius represents the absolute value
of the sound velocity (left) and attenuation constant (right) as a function of the angle ~y
between the momentum and the superfluid velocity.
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Figure 9.4: Sound velocity (left) and attenuation constant (right) for S;/u = 0.2 as
a function of the angle v and for a range of temperatures from 7' = 0.857, (red) to
T = 0.57T, (blue).

The most interesting feature of the system is found however in the opposite direction
to the superfluid velocity. As one can see in both plots, at v = 7 the reduction in the
sound velocity is strongest and eventually both the attenuation constant and the sound
velocity vanish simultaneously. It is important to stress that this happens below the
temperature T. If one continues increasing the temperature (or equivalently increasing
the superfluid velocity at fixed temperature) one finds that the real part of the frequency
becomes negative and that its imaginary part crosses to the upper half plane, as depicted in
Figure This signals the appearance of a tachyonic mode. T™ is the temperature where
both the instability appears and the speed of sound becomes negative. This temperature
actually signals the end of the superfluid phase according to the Landau criterion, and
therefore we interpret it as the physical phase transition temperature.

In Figure (left) we present the phase diagram resulting from the QNM analysis.
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Figure 9.5: Real (left) and imaginary (right) parts of the frequency of the lowest hydro-
dynamic mode (type I Goldstone mode) versus momentum at S, /u = 0.1 and v = 7 for
different temperatures from 7' = T = 0.9707. (red) to T' = 0.905Tc (blue). The instability
appears at T = 0.935T,.

To illustrate the situation, on the right plot we show the behavior of the relevant QNME|
at three different points of the phase diagramﬁ (points labelled 1, 2, 3 on the left plot).
At T < T < T. in the unbroken phase (line 35), the mode that was responsible for the
transition to the homogeneous superfluid phase without superfluid velocity is shifted and
becomes unstable at finite momentum. This behavior reflects the fact that the system is
unstable for T < T, the mode being shifted in momentum due to the constant nonzero
value of A,. At T = T (lines 2n,s) the lowest mode becomes unstable at k = 0. It is
at this point that the free energy of the homogeneous superfluid phase equals that of the
normal phase. Hence, the free energy analysis, which only captures the k = 0 dynamics,
predicts a phase transition at this temperature. For the particular superfluid velocity in
the plot the phase transition is second order. Finally, the fate of the QNM for T* < T < T
is shown in lines 1 (for the normal phase) and 1g (for the homogeneous superflow phase).
One can see that the Goldstone mode in the superfluid phase is unstable for a finite range
in momentum. Only at 7™ this mode becomes stable again as shown in Figure [9.5] It is
at this temperature that the homogeneous superflow phase becomes stable according to
the Landau criterion since the sound velocity becomes positive (moreover the imaginary
part of the QNM dispersion relation lies entirely in the lower half plane).

Therefore the QNM results indicate that a phase transition occurs at a lower temper-
ature T* < T. Similarly, if we imagine the system at fixed temperature and start rising
the superfluid velocity, both vs and T' will vanish at some value of S, /u, which we claim
is indeed the critical velocity v, of the superfluid, in the sense of the Landau criterion.

As a very interesting fact, notice that the imaginary part of the mode exhibiting the in-
stability has a maximum at finite momentum as well. The fact that the instability appears
at finite momentum suggests that there might exist a new (meta)stable intermediate phase
above T™ with a spatially modulated condensate. Examples of such instabilities towards
spatial modulation have been discussed before in [167H169).

It is important to remark that, as shown in Figure (right), for temperatures 7% <

3In the unbroken phase this is just the lowest scalar QNM, while in the broken phase it is the sound
mode at fixed S/ p.
4An analogous discussion and phase space was found at weak coupling in |166].
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Figure 9.6: (Left) Phase diagram after the study of the QNMs . The grey dashed line
corresponds to T, the apparent transition temperature found by direct analysis of the
free energy. At a certain point (disk) the transition in free energy changes from 2nd
order (dotted) to 1st order (dash-dotted). The black solid line corresponds to the critical
temperature in absence of superfluid velocity. The black dashed line signals the physical
phase transition at 7™, the temperature at which the local instability appears. Points
1, 2 and 3 indicate the values of temperature and velocity used in the plot on the right.
(Right) Imaginary part of the lowest QNM for different temperatures at fixed S, /u = 0.2
and v = mw. Dashed lines were obtained in the normal phase whereas solid lines were
calculated in the superfluid phase.

T < T the mode responsible for the transition to the (shifted) homogeneous stationary
phase (line 1y) and the new unstable mode (line 1g) show maxima at different momenta.
We take this as an indication for existence of a new metastable in- homogeneous phase.
The wave number of the modulation in this phase should be determined by the maximum
of the line 1g.

Recall that the Landau criterion is formulated uniquely in terms of Re(w). At a given
temperature the critical velocity corresponds to the superfluid velocity at which vs = 0, or
equivalently to the value of S, /p where Re(w) becomes negative (see Figure[9.5)). That the
criterion is a statement about Re(w) reflects the fact that it holds also at zero temperature.
At finite temperature the dispersion relation of the gapless mode gets itself altered due to
both the superfluid velocity and the temperature [100,/158], implying that generically the
critical value of S, /u at fixed temperature does not correspond to the velocity of sound
at the same temperature and vanishing superfluid velocity.

An extra comment is in order here regarding the phase of the system for T, > T > T.
The fact that in the unbroken phase the lowest QNM is unstable in this regime (see line
3y in Figure of course indicates that the normal phase is unstable. Let us comment
on this. Since the condensate vanishes in the normal phase, there exists no physical notion
of superfluid velocity in this phase; different choices of A, are just different frame choices.
In particular, a constant A, simply acts as a shift in momentum in the unbroken phase, as
can be seen from the fact that the maximum of the QNM is centered at a momentum equal
to the value of the gauge field at the conformal boundary. Therefore the normal phase is
unstable for any temperature lower than the critical temperature T, towards the formation
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of a superfluid without superflow. On the other hand, we know that the homogeneous
condensate solution with finite velocity does not exist in this region, and moreover it is
unstable for T' > T*. We see two possibilities for the completion of the phase diagram in
this region. First, the system could simply fall down to the true ground state, which is the
condensate with no superflow. At finite S, /u this is still a solution which minimizes the
energy albeit with a condensate that is not real anymore but rather has a space dependent
phase such that V® = 0. This is simply the gauge transformed homogeneous ground state
without superflow. On the other hand, the fact that we found an instability at finite
momentum in the temperature range 7% < T < T could indicate that there is a spatially
modulated (metastable) phase even in the range 7% < T' < T, namely a striped superfluid.
Due to the smooth appearance of the unstable mode we expect the transition at 7™ to
that phase to be 2nd order, although this should be studied in detail by constructing the
correct inhomogeneous background. The explicit construction of this phase goes however
substantially beyond the purpose of this work and we leave this question open for further
investigation.

Longitudinal conductivities in the U(1) sector

In this section we compute the conductivities in the (0) — (3) sector in the presence
of superfluid velocity. As far as we are aware, only the transverse conductivities have
been computed so far (see for instance [161,/162]). In contrast, here we will focus on the
longitudinal conductivities. These are calculated, via the Kubo formula

;
= —(J*J" .0.1
o w(J JTY, (9.0.18)
from the two point function
Gry = Jim (A Fes(A)) (9.0.19)

where the matrix A can be read off from the on-shell action. F is the matrix valued
bulk-to-boundary propagator normalized to the unit matrix at the boundary. Since we
are only interested in the entry of the matrix corresponding to (J*J*) and the matrix
A is diagonal, we just need one element, i.e. A, = —@. In order to construct the
bulk-to-boundary propagator one needs a complete set of linearly independent solutions
for the perturbations of the scalar and gauge fields. This implies solving the system of
equations given in Appendix at zero momentum. The method follows closely the one
detailed in [51] and the one used extensively in previous chapters. Notice that there is a
surviving coupling between the gauge fields and the scalar perturbations mediated by A,.
This makes the computation of the conductivities more involved than in the case without
superflow.

Our results show little deviation from what was found at zero superflow. The most
interesting new feature is a low frequency peak which appears due to the coupling between
the gauge and the scalar sectors induced by the superfluid velocity. In Figures and
we present the results for different values of S,/u. As expected the behavior for
small superfluid velocity far from the critical temperature is the same as the one obtained
in [144]. Close to T* a bump is generated in the real part of the conductivity at w & 0. This
indicates the existence of a mode with very small imaginary gap. The mode responsible
for this behavior is the pseudo-diffusive mode described previously. Due to the conserved
U(1) symmetry of the unbroken phase, there exists a diffusive (gapless) mode in the QNM
spectrum of the theory. Once the symmetry is spontaneously broken, this mode develops
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Figure 9.7: Plots of the Real (left) and Imaginary (right) parts of the conductivity for fixed
Sy/p = 0.05. Different lines correspond to different temperatures from 7" = 0.997(red)
to T' = 0.387¢ (blue).

a purely imaginary gap that increases as we lower the temperature. Therefore, for high
enough temperatures below the phase transition, the gap of the pseudo-diffusive mode
at k = 0 is very small and this implies the appearance of a peak at small frequencies
in the conductivity as we can see in the figures. If we lower the temperature, the bump
starts disappearing simply because the gap of the pseudo-diffusive mode becomes larger.
Although this mode was already present in the analysis of the conductivities without
superflow, it is only in our present case that it affects the conductivity, due to the coupling
at zero momentum between the gauge and scalar sectors mediated by the field A,. The
size of the peak is proportional to the size of that coupling, i.e. it grows with S, /p.

9.0.10 Landau criterion for holographic Type II Goldstone bosons

In the previous section we studied the lowest lying QNM contained in the (0) — (3) or
U(1) sector of the theory for various values of the superfluid velocity and arbitrary angle
between the momentum and the direction of the superflow. In this section we extend the
analysis to the (1) — (2) sector, which is particular of the U(2) model and contains a type
II Goldstone boson in the spectrum, whose dispersion relation is given by in the
hydrodynamic limit.

The equations describing the system can be found in Appendix B. In this case we
choose the momentum to lie always in the direction opposite to the superflow, because as
we will see this mode is always unstable. Along with the scalar perturbations prescribed
by we have to consider the following gauge perturbations in the (1) — (2) sector

AL — agl)(t, rx)dt + oD (7, z)dx
42 — a£2) (t,r,z)dt + a P (t,r,z)dx . (9.0.20)

x

Again we use the determinant method of [51] to find the QNMs in this sector. Our re-
sults are summarized in Figure where the dispersion relation for the lowest QNM mode
is shown at a particular superfluid velocity. We checked that the result is qualitatively the
same for arbitrary Sy /u.

The type II Goldstone mode becomes unstable for arbitrarily small superfluid velocities
and temperatures below T. However, an important difference arises with respect to the
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Figure 9.8: Real (left) and imaginary (right) parts of the conductivity for fixed S, /p = 0.4.
Different lines correspond to different temperatures in the range 7' = 0.357 (blue) - 0.65T,
(red).

U(1) sector. The tachyonic mode does not become stable at any temperature below T,
contrary to the situation in the (0) — (3) sector, there is no analogous of T* in this
sector. This behavior can be easily interpreted as a reflection of the Landau criterion of
superfluidity in our holographic setup: according to , the critical velocity is zero in
any system featuring type II Goldstone bosons, hence for any T < T the superfluid phase
is not stable at any finite superfluid velocity. In addition notice that the maximum in the
imaginary part occurs at higher values of the momentum as we lower the temperature.
In fact as we can see from the figure, lowering the temperature below T the maximum in
Im(w) first increases but then starts to decrease again as the temperature is lowered. At
the same time it moves out to ever larger values of the momentum.
Rew Im
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Figure 9.9: Real (left) and imaginary (right) parts of the dispersion relation of the lowest
QNM of the (1) — (2) sector in the gauged model for fixed S;/u = 0.15 and a range of
temperatures from 7' = T = 0.957, (red) to T' = 0.45T, (blue) and momentum anti-parallel
to the superfluid velocity.

Note that plots analogous to Figures and do not make any sense in the U(2)
model, since the (1) — (2) sector is unstable at any temperature.
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Figure 9.10: Real (left) and imaginary (right) parts of the dispersion relation of the lowest
QNM in the (1) — (2) sector of the ungauged model for fixed S;/pu = 0.25 and a range of
temperatures from T = T = 0.8537 (red) to T = 0.3067, (blue). Momentum is taken
anti-parallel to the superfluid velocity.

Ungauged model

Recall that the ungauged model of Section [8.1] is basically given by the same action
once we keep only the overall U(1) gauge field. Actually it corresponds to the simple
U(1) model with two scalar fields with degenerate mass and therefore has an accidental
SU(2) global symmetry.

The background solution is again that of the U(1) superfluid, hence the superflow
solution can be accommodated also in the ungauged model. The difference is that the
type II Goldstone mode appears now in the fluctuations of the upper component of the
scalar field 7, whose equation of motion reads

2 2
"+ <f’ + 2f> n + <(w + A (kA m2> n=0, (9.0.21)
r f r2
and is completely decoupled of all other field fluctuations. As noticed in Chapter [§] the
change of the background due to the condensate is enough to trigger the appearance of
the type II Goldstone.

It is remarkable that in the ungauged model the type I Goldstone mode is still unstable
at any temperature below T for any value of the superfluid velocity. Therefore, the Landau
criterion of stability is still valid.

The ungauged model presents a qualitative difference with respect to the gauged model.
The value of the momentum at the maximum now decreases as we lower the temperature.
This is shown in Figure where the dispersion relation of the type II Goldstone at
fixed superfluid velocity and for a long range of temperatures is plotted. For arbitrary
values of the superfluid velocity we obtained analogous results.
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Chapter 10

Holographic s+p Superfluids

An interesting problem in the arena of unconventional superfluids and superconductors
is that of the competition and coexistence of different order parameters [170]. A paradig-
matic example in the realm of superfluids is that of 3He. At low temperature He presents
two distinct superfluid phases, denoted as A and B phases [171]. *He-B is the low temper-
ature (and low pressure) phase and it corresponds to a p-wave superfluid, where the order
parameter transforms as a vector under spatial rotations. He-A is the higher temperature
(and pressure) superfluid phase. It is a chiral p-wave superfluid whose order parameter is
a complex vector, and time-reversal and parity symmetry are spontaneously broken. In
the domain of unconventional superconductors it has been shown in [172] that for doped
three dimensional narrow gap semiconductors such as Cu,BisSes and Snj_,In,Te there
is a competition between s and p-wave superconducting states. Dialing the coupling con-
stants of the two different channels (corresponding to the s and p pairings) leads to a phase
diagram where both a p and an s-wave phase exist. Moreover, at the interface of both
phases a new p+is state appears. The order parameter for this phase is the combination of
a vector and a pseudoscalar, and breaks both time-reversal and parity symmetry, making
this state an interesting example of a topological superconductoﬂ

In AdS/CFT, coexistence and competition of several order parameters has also been
addressed holographically in [1634165,/174-176,/176,/177,(177,|178,/178]. In Section
we found that the superfluid phase is unstable at low temperatures and argued that this
instability signaled the appearance of a non-trivial p-wave order parameter. In this chapter
we confirm that prediction and explicitly construct the solutions in which condensation
of a vector mode breaks the remaining U(1) and gives rise to a new phase with two
condensates: the s+p-wave holographic superconductor. The study of these new solutions
allows us to determine the phase diagram of the two-component superfluid.

If one works in the grand canonical ensemble, where the chemical potential of the boundary
theory is held fixed, the temperature of the system is given by T o 1/u, where u is
a dimensionless chemical potential related to that of the boundary theory by rescalings.
The final picture is the following: at small enough chemical potential u (high temperature)
the system is in the normal phase where no condensate is present. For p greater than a
critical value s the scalar field acquires an expectation value and the system enters the
s-wave superfluid phase. Going to even larger chemical potential a new phase transition

!This is actually an example of an axionic state of matter. This p+is phase belongs to the class D in
the classification |173] of 3D topological superconductors. It possesses gapped Majorana fermions as edge
states which give rise to an anomalous surface thermal Hall effect. It would be very interesting to realize
holographically this axionic superconducting state (see [174] for a holographic time-reversal symmetry
breaking p+ip superconductor).
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10.1. The holographic two-component superfluid 124

happens: at g, > ps a vector condensate appears and for p > g, the system is in an
s+p-wave phase with both scalar and vector non-vanishing order parameters.

Finally, we shall study new configurations of the system where the two chemical poten-
tials corresponding to the two U(1)s C U(2) are switched on. This setup, where the U(2)
is explicitly broken to U(1) x U(1), realizes an unbalanced mixture, characterized by the
presence of two species of charges with different chemical potentials. Examples of such sys-
tems are unbalanced Fermi mixtures [179], and QCD at finite baryon and isospin chemical
potential [180}/181]. Moreover, unbalanced superconductors are interesting systems where
anisotropic and inhomogeneous phases are expected to appear [182H185]. Holographic
realizations of unbalanced systems where only one kind of order parameter can be real-
ized have been constructed in [155/186]. Here we construct new solutions of the system
corresponding to unbalanced mixtures that allow for competition of different order
parameters. We determine its phase diagram as a function of the two chemical potentials
and find that s-wave, p-wave and s+p-wave phases exist.

10.1  The holographic two-component superfluid

Let us consider the holographic model of a multi-component superfluid of Chapter
that we reproduce below for the shake of clearness

1 v C
S = /dﬂmﬁ—g (—4Fg S, —m*Uiw — (D“\I/)TD”\I/> , (10.1.1)
with
T =12 @) , Dy=0,—iA,, Ay=AT,, (10.1.2)
1 1
To==I, T,==0;. 10.1.
0 2 ) 20 ( 0 3)

The system lives in the Schwarzschild-AdS background (8.1.3]). We consider the following
(consistent) ansatz for the fields in our setup

AV =a@r), AP =), AV =w(r), v=1y(), (10.1.4)

with all functions being real-valued. All other fields in (10.1.1f) are set to zero, in particular
we set A = 0 without loss of generality. The resulting equations of motion read

/ o2 2 2
wll'i‘(f'i‘i)w/'i‘((q)@)_m_ w )1/}:0’

f 4f? fo oty
(10.1.5)
2 2
"+ -9 — —(d-0)=0, (10.1.6)
r f
@”+2®’+—2(c1> o) P (10.1.7)
r f r2f o o
" / , @2 2
w4+ =w4+ —w——w=_0. 10.1.8
f f? f ( )
In what follows we choose the scalar to have m? = —2 and the corresponding dual operator

to have mass dimension 2.
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The UV asymptotic behavior of the fields, corresponding to the solution of equations

(10.1.5(-]10.1.8)) in the limit » — oo, is given by

d=p—p/r+0(r2)), (10.1.9)
O =z —p3/r+0(r7?), (10.1.10)
w=w" +w®/r+0r?), (10.1.11)
¢ =W e+ @ /r2 £ O3, (10.1.12)

where, on the dual side, u and p are respectively the chemical potential and charge density
corresponding to the overall U(1) C U(2) generated by Ty, whereas pz and ps are the
chemical potential and charge density corresponding to the U(1) C SU(2) generated by
Ts. (1) is the source of a scalar operator of dimension 2, while ¥ is its expectation
value. Finally w(©® and w(® are the source and vev of the current operator JS) (recall

that A,(}) is dual to the current J,Sl)). Notice that in a background where w(r) condenses
the SU(2) C U(2) is spontaneously broken, and moreover spatial rotational symmetry is
spontaneously broken too.

10.2 The s+p-wave holographic superconductor

We are looking for solutions of the equations (10.1.5| - [10.1.8)) where 1, w, or both
acquire non-trivial profiles. We want them to realize spontaneous symmetry breaking so

we impose that their leading UV contributions (dual to the sources of the corresponding
operators) vanish. We will switch on a chemical potential p along the overall U(1), while
requiring that the other chemical potential s remains null. Therefore our UV boundary
conditions are

M =0, w® =0, p=0. (10.2.13)

In the IR regularity requires A; to vanish at the BH horizon.

We have looked for numerical solutions with non-zero ¢ and w, shooting from the IR
towards the UV where we impose the boundary conditions ((10.2.13]). We have found the
following solutions:

Normal phase: for all values of u there exists an analytic solution where ¢y = w =0 =0
and ® = u(1 —1/r). This solution describes the normal state of the system.

s-wave phase: for p > ps ~ 8.127 we find solutions with non-zero 1. As seen in previous
chapters for these solutions the equations decouple into two sectors: one corresponding
to the Abelian holographic superconductor |144] and the other to the unbroken U(1)
symmetry. Although ps is zero as required in , both charge densities p and ps
are non-vanishing and therefore a two-component s-wave superfluid is realized. Indeed as
one can see in eq. (|10.1.7) a non-trivial scalar ¢ acts a a source for the field O(r), and
therefore the only pure s-wave solutions satisfying the boundary conditions are
those with ps # 0. Hence two different charge densities (p and p3) corresponding to the
two different U(1)s C U(2) are turned on for these solutions and it is in this sense that
this phase was denoted a two-component holographic Superﬂuidﬂ

s+p-wave phase: for u > p,, ~ 20.56 there are solutions satisfying with non-
zero ¢ and w. In these solutions the U(2) symmetry is completely broken, and moreover

2From eqs. (10.1.5] - , one can see that the scalar condensate is only charged under a linear
combination of ® and ©, whereas in the absence of a vector condensate, the orthogonal combination
completely decouples corresponding to the unbroken U (1) gauge field.
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since w) ~ <J£1)> spatial rotational symmetry is broken too. Again us = 0 while p and

p3 are non-vanishing, thus realizing an s+p-wave phase of a two-component superfluid.
Usually p-wave superconductivity is triggered by a ps chemical potential [145,(187]. Here
instead the p component of the s+p superfluid is supported by the spontaneously induced
charge density p3. For that reason no solutions with only p condensate are present in this
Systemﬁ

In ﬁgurewe plot the condensates (Os) ~ ¥(?) and <J£1)> ~ w) as a function of the
chemical potential. Notice that the solution where both condensates coexist extends down
to as low 1/u (or equivalently low temperatures) as where we can trust the decoupling
limit and thus neglect backreaction.

Condensates
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Figure 10.1:  Condensates ¥(® (solid) and w) (dashed) as a function of 1/ in the
s-wave (blue) and s+p-wave (red) phases. The p condensate appears at pg, such that
s/ psp = 0.395 as found in Section The inset zooms in on the plot of ¥(?) to show
the difference in the scalar condensate between the s (blue) and the s+p (red) solutions.

To determine the phase diagram of our system we compute the free energy of the
different solutions and establish which is preferred when more than one exist. The free
energy density is given by the on-shell action, and for our ansatz it reads

T 1
F=-35=—5up+usps) + (10.2.14)
[t @ -0 ¢+ Lute?)
2f 72 ’

The free energy for the different solutions is shown in figure At small chemical
potential only the normal phase solution exists. At u = us &~ 8.127 there is a second order
phase transition to the s-wave solution. If one keeps increasing p, at 15, ~ 20.56 there is a

31t is clear from eq. that the p-wave condensate only couples directly to the U(1) C SU(2), i.e to
O(r). Actually, this equation reduces to that of the standard p-wave holographic superconductor [145}/187]
when the scalar is switched off. As in [145||187], only a non-zero © in the bulk can source the vector
condensate since the coupling to the scalar i increases the effective mass of w and therefore hinders
condensation. In contrast to the standard p-wave scenario we are fixing us = 0, but solutions with non-
zero © are still possible in presence of the s-wave condensate (realized by a non-zero 1) as explained
above.
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second order phase transition from the s-wave phase to the s+p-wave phase. The system
stays in the s+p-wave phase for pu > psp.

Free Energy
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Figure 10.2: Free energy of the different solutions versus 1/u: normal phase in black,
s-wave phase in blue, and s+p-wave phase in red.

10.3 Unbalanced Superconductors

In this section we relax the condition us = 0 and study the phase diagram of the
system as a function of p and pg/u. Notice that turning on a second chemical potential
means to explicitly break U(2) — U(1) x U(1). The system can now be interpreted as a
holographic dual to an unbalanced mixture [155,|186].

Now that the U(2) is explicitly broken, we can not generically impose that A\ = 0
by using gauge transformations. Therefore, in principle both components of the scalar
doublet may condense. In [188] it was studied which option is thermodynamically favored.
Following their analysis, choosing the condensate to be on the lower component forces us
to set us/p < 0 for the solutions to be stable.

The UV boundary conditions now read

v =0, w®=0. (10.3.15)

As before we use numerical integration to solve the system (10.1.5) - [10.1.8]). We are
presented with a scenario where four different solutions exist:

Normal phase: an analytic solution where v = w = 0, ® = u(l —1/r) and © =
us3(l — 1/r) exists for any value of pu and pg, and it describes the normal state of the
system.

s-wave phase: for p — pug > 8.127 we find solutions with non-zero 1 resembling those in
the balanced case.

p-wave phase: for |us|/p > 3.65/u solutions with ¢ = 0, but w # 0 satisfying
exist. The scalar condensate (O3) is null while <J£1)> # 0. These solutions break the
U(1) x U(1) down to U(1) and also break the SO(2) corresponding to spatial rotations.
Notice that w(r) is not charged under the overall U(1) and therefore this solution is
insensitive to the value of . This would change if the backreaction of the matter fields
on the geometry was taken into account as in [155,|/186].

s+p-wave phase: for small values of u3/p we find the extension of the s+p-wave solution
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found in the previous section for pug = 0. However, the larger |us|/p the larger the p
at which the phase appears. We have also found solutions with two condensates in an
intermediate region in which us3 is large and p is close to the critical value us. But they
are always energetically unfavored with respect to the pure s-wave solutions (see Figure
10.3).

By computing the free energy of the different solutions we determine the
phase diagram of the system as a function of 1/u and ps/p which we plotted in figure
10.3] For small values of us/p the situation is very similar to what we found in the
previous section for us = 0. As already mentioned, as |us|/p gets larger, the transition to
the s+p-wave phase happens at a higher value of u. It might be the case that the phase
eventually disappears at a finite value of that ratio, but this would happen beyond the
region of applicability of the decoupling limit, and thus backreaction should be taken into
accountﬂ For |us|/p large enough, the p-wave phase is preferred at intermediate values of
p. Therefore, as 1 is increased above a critical value p, the system goes from the normal
to the p-wave phase through a second order phase transition. If y is increased even further
a first order phase transition takes the system from the p-wave to the s-wave phase. This
p- to s-wave first order phase transition is illustrated by figure where we plot the free
energy of both phases (and that of the normal phase) as a function of y at a fixed value
of pus/p = —1. The tricritical point where the normal, s-wave and p-wave phases meet
happens at 1/ ~ 0.223 and |us|/p ~ 0.815. The p-wave solution is never energetically
preferred for |us|/p < 0.815.
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Figure 10.3: Phase diagram of the unbalanced system as a function of 1/u and us/pu.
Second order phase transitions are denoted by blue lines, whereas the red line corresponds
to a first order phase transition.

A cautionary comment about the phase diagram of figure is in order. In the
regions of the parameter space where |ug|/pu > 1 or 1/u < 1 the probe limit is not valid
anymore, and therefore the phase diagram might be modified once backreaction is taken
into account EL Indeed, the nature of the different phase transitions, as well as the critical

“Notice that if the s4p-wave phase survived down to 1/u = 0 for us/u lower than a critical value (as
the phase diagram seems to imply) we would be in the pressence of a quantum critical point at which
the system goes from the s+p to the s-wave phase. This resembles what happens in [172] for the p+is
superconductor.

SRemember that the decoupling limit corresponds to taking the gauge coupling (and charge of the scalar
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values of the chemical potentials could be altered in those regions [189,[190]. However, in
2+ 1-dimensions both the s-wave and p-wave superconducting phase transitions separately
are known to remain second order even lor large backreaction [155,|186]. Therefore, we
expect the main features of the phase diagram like the existence of distinct s and p-
wave phases meeting at a tricritical point will not be very sensitive to backreaction. The
order of the phase transition between the s and p-wave phases could still be modified by
backreaction.
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Figure 10.4: Free energy as a function of 1/u for pug/p = —1. Black corresponds to the
normal phase, blue to the s-wave phase, and green to the p-wave phase.

field) gym to be very large, so the effect of the matter fields on the metric is negligible. Hence it is valid
as far as pu; < gym and the condensates are small.
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Chapter 11

Discussion and Outlook

In this second part we have presented several results on exotic superfluids, by means
of holographic methods.

In Chapter the main focus was to establish the existence of type II Goldstone
modes in the quasinormal mode spectrum of a holographic theory dual to a strongly
coupled superfluid with U(2) symmetry. We studied two models, one in which only the
overall U(1) symmetry is gauged in the AdS bulk (ungauged model) and another in which
all the U(2) symmetry is gauged. The most important finding is that indeed there exist
ungapped excitations represented by quasinormal modes in the AdS bulk that show the
expected but somewhat unusual quadratic dispersion relation of type II Goldstone bosons.

Section [8.1] is devoted to the analysis of the ungauged model. Since the well-known
s-wave superconductor is a subsector of both the ungauged and the gauged model we
also briefly review first the findings of [2]. One of the main results of [2] concerning
the U(1) superfluid was that the QNM spectrum in the superfluid phase contains such
an ungapped Goldstone mode with dispersion relation w = 4wvsk + O(k?). This mode
can also be understood as the sound mode of the superfluid and v, is the sound veloc-
ityﬂ In the non-backreacted model these are the only hydrodynamic modes in the broken
phase. Recall that in the unbroken phase in contrast there exists a single hydrodynamic
mode signaling the usual diffusive behavior of a normal fluid. Its dispersion relation is
w = —iDk?, where D is the diffusion constant. This mode develops a purely imaginary
gap w = —iy — iDk? in the unbroken phase. This is quite natural because the single
purely imaginary mode can not move off the imaginary axisﬂ The hydrodynamics of the
broken phase is fully captured by the Goldstone mode and the diffusion mode does the
simplest thing it can to drop out of the hydrodynamic regime by growing the gap . Since
this purely imaginary gapped mode has its origin in the universal diffusive mode of the
unbroken phase we expect that it is a universal feature of a large class of superfluids, not
only holographic ones. This mode will necessarily dominate the late time response in the
order parameter to homogeneous perturbations and in regimes close but below the critical
temperature where the gap v is rather small. Therefore the order parameter is bound to
show a purely exponential decay towards its equilibrium value without any oscillation. In
contrast for lower temperatures where v becomes large there are other low lying QNMs

n [102] it was pointed out that this mode corresponds to the fourth sound (see also Section .
2Quasinormal modes are bound to come either in pairs w, and @, = —w}; or are fixed on the imaginary
axis. This follows from rather generic symmetry considerations for retarded Green’s functions, see appendix
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with real and imaginary parts in their frequency. In this low temperature regime the
response in the order parameter is then an exponentially damped oscillation rather than a
purely imaginary decay. This universal aspect of the late time response of superfluids was
also emphasized in recent numerical studies of quenches of holographic superfluids in [152].

Then we show that even with this drastic simplification, i.e. not gauging the global
SU(2) symmetry in the bulk, the model presents Goldstone modes with quadratic disper-
sion relation. Hence, within this model a type II NG boson is found as a consequence of
having broken just one charge generator (the one associated to the U(1) symmetry).

For the ungauged model this does constitute a surprising result. After all, the field
theory dual to this model does not contain the necessary conserved currents that would
correspond to the generators of the global SU(2) symmetry. Standard proofs of the Gold-
stone theorem take the existence of such conserved currents for granted. On the other
hand it is basically guaranteed that one can construct an effective field theory, a simple
Landau-Ginzburg type model, that captures the essential dynamics of the light modes,
i.e. the lowest lying quasinormal modes. Such a model would be essentially given by the
field theoretical model of Section and this guarantees the existence of the type II
Goldstone modes. However one can expect that such an effective field theory approach can
capture only the physics of the low lying QNMs but not the higher modes. This is indeed
what happens: the partner mode of the type II Goldstone mode in the ungauged model
does not behave in the supposed universal way w = qu. In contrast the corresponding
mode in the gauged model does obey this relation approximately and the deviation we
found could very well be attributed to numerical difficulties and uncertainties that arise
in the study of the higher QNMs.

One rather interesting perspective on the ungauged model opens up if we vary the
masses of the scalar fields in the AdS bulk. If the masses are slightly different, then at
the critical temperature only one of the two scalars will feature an ungapped QNM (the
one with smaller mass). The lowest scalar mode of the second one will still be gapped at
that temperature. As one goes through the phase transition we do not expect this mode
to become massless at lower temperatures. Rather it should become a pseudo-Goldstone
mode with a gap that is proportional to the mass splitting. The appearance of the type I1
Goldstone mode can then be interpreted as the effect of a symmetry enhancement at the
point in parameter space where the masses of the scalars become degenerate. Since this
symmetry is not represented by bulk-gauge fields we might call it an accidental symmetry.
At this point it is difficult to resist the temptation to draw a parallel to the conjectured
symmetry enhancement of high T, superconductors. In [170] it was suggested that the
phase diagram of high T, superconductors can be captured by a unified model with and
enhancement of the SO(3) x U(1) symmetry of rotations and electromagnetism to a larger
SO(5) symmetry. Since high T, superconductors are d-wave rather than s-wave it remains
to be seen how our symmetry enhancement mechanism and the resulting type II Goldstone
mode can be combined with holographic models of d-wave superfluids such as [146}|147] ﬂ

In Sectionwe studied the fully gauged U(2) model. There we analyze the fluctuation
equations to linear order, which decompose into three decoupled sectors. One being the
already encountered U(1) s-wave superfluid, the other describing the non-Abelian sector
in which the type II Goldstone mode resides and a third one with the unbroken U(1)

3The appearance of unexpected massless modes related to symmetry enhancement in the context of
Bose condensates was as well found in [191]
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symmetry. We find several important differences compared to the ungauged model. The
most eye-jumping one is that now we can also define and study the full set of conductivities
corresponding to the U(2) symmetry. Nothing special occurs of course in the unbroken
phase, there are simply four diagonal conductivities for all the four bulk gauge fields. In
the broken phase there are however interesting new phenomena. In particular there are
now off-diagonal conductivities that do not simply vanish. In addition we have found that
also the diagonal conductivities in the (1) — (2) sector, the one containing the type II
Goldstone mode, have delta-function poles at zero frequency. In this sense this sector is
still superconducting. Moreover, going to a decoupling basis for this sector leads to a very
suggestive result: the conductivity develops a Drude-like peak characteristic of metals on
top of the infinite DC conductivity. On the other hand Landau’s criterion for superfluidity
does not hold in this sector. Recall that this says that superfluidity takes place for flow
velocities v that are smaller than the critical velocity v. where v, = min;w;(k)/k for all
excitation branches ¢ and over all momenta k [157,(192]. For a type II Goldstone mode
the critical flow velocity is clearly zero.

A second difference concerns the fate of the diffusive modes. In the unbroken phase
there are simply four diffusive modes, one for each gauge field in the AdS bulk. In the
broken phase there is one purely imaginary gapped ‘pseudo-diffusive’ mode in the (0) —(3)
sector, i.e. in the sector isomorphic to the U(1) s-wave superfluid. Since there is still one
unbroken U(1) symmetry there is also a normal diffusive mode for the preserved U(1)
symmetry. In the (1) — (2) sector we have however two diffusive modes in the unbroken
phase. Going through the phase transition these two modes can pair up and move off
the imaginary axis, becoming a pair of usual gapped quasinormal modes with real and
imaginary parts in their frequencies. Generically the imaginary part of this gap is smaller
(i.e. it lies closer to the real axis) then the gap of the purely imaginary mode in the
(0) — (3) sector. A large, generic perturbation will in its late time response pattern excite
both the (0) — (3) and the (1) — (2) sector. The late time response of the U(2) invariant
order parameter /|O1|? 4+ |O2|? will therefore be dominated by these paired modes and
show an oscillatory behavior in contrast to the response pattern of the order parameter in
the U(1) case [152].

Another remarkable QNM is the special gapped mode, i.e. the partner mode of the
type II Goldstone boson. At very high temperatures this mode and the one which at
T =T, leads to the sound mode are degenerate. As we lower the temperature the gap of
these modes becomes different and, for T' < T¢, it is expected that Re(w(k = 0)) for the
Special Gapped mode is proportional to gu [115,118]. In particular we find w ~ 1.1p even
if ¢ = 1 in our conventions. Unfortunately with the numerical methods employed here we
found it very difficult to study this mode and the discrepancy can therefore very well be
a consequence of insufficient numerical accuracy. It is probably worth the effort to study
this mode with alternative methods such as the relaxation method developed in [193,/194].

In Chapter [9] we have analyzed the holographic realization of the Landau criterion of
superfluidity. The study was motivated by the appearance of type II Goldstone bosons
in the model . The quadratic nature of the dispersion relation of the type II Gold-
stone mode should be responsible for driving the system out of the superfluid phase for
arbitrarily small superfluid velocity.

Taking advantage of the fact that the usual U(1) holographic s-wave superconductor is con-
tained in , we have revisited the Landau criterion for holographic type I Goldstone
modes. When addressing the question of the stability of the condensate at finite super-
fluid velocity the analysis of the free energy does not give the correct answer. The QNM
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spectrum contains a tachyonic mode at finite momentum for temperatures T* < T < T.
As defined T is the temperature at which free energies of the normal and condensate phase
coincide. In contrast, 7™ is the temperature where the tachyonic instability arises. Hence,
the homogeneous superfluid is stable only for T" < T, see Figure The results for
the sound velocity as a function of the angle v between the propagation direction and
the superfluid velocity, depicted in Figures and are perfectly consistent with this
statement: at T = T* and v = 7 the velocity of sound vanishes. This condition can be
seen to be equivalent to the Landau criterion and signals the existence of a critical velocity
above which the superfluid is not stable anymore. Since the maximum of the imaginary
part of the unstable mode has non-vanishing wave number it is natural to suggest that
there might be another, spatially modulated phase for T' > T*. The nature or this inho-
mogeneous phase is however unknown.

We have also computed the longitudinal conductivities for various superfluid velocities.
As far as we know, they have not been computed before. We see a peak at w = 0, due
to the coupling with the spatial component of the gauge field A,. The peak decreases
as we lower the temperature until it gets completely suppressed (Figure . We believe
that this enhancement of the DC conductivity is caused by the gap of the pseudo-diffusive
mode, which in the presence of superfluid velocity is formed due to the coupling between
the gauge and scalar sectors that takes place even at k = 0.

Moving to the (1) — (2) sector, we worked out the impact of the superflow on the type
IT Goldstone mode. We found that the Landau criterion is effective for arbitrarily small
superfluid velocity as depicted in Figure The tachyon persists for the whole range of
temperatures and (finite) superfluid velocities we have been able to analyze. Hence, we
conclude that the critical superfluid velocity for this sector vanishes, in complete accor-
dance with the Landau criterion applied to modes with dispersion relation w o k2. An
analogous result holds for the type II Goldstone mode in the ungauged model.

Finally, in Chapter [L0] we report on the construction of a holographic s+p-wave super-
conducting state. This phase, where both an s-wave and p-wave condensates exist, is the
preferred state at low temperatures of the holographic two-component superfluid.

The main results are summarized by figures and Figure shows that an
s+p-wave state appears at low temperatures. A free energy analysis determined that the
system enters this state through a second order phase transition, and stays in it for as low
temperature as we can go.

On the other hand, figure presents the phase diagram for the unbalanced system:
chemical potentials for the two U(1)s C U(2) are turned on, and hence U(2) is explicitly
broken to U(1) x U(1). In this phase diagram three different superconducting phases
are present. These are the standard s-wave phase where a scalar condensate breaks the
U(1) x U(1) down to U(1); a p-wave phase where <J¢£1)) #0,U(1) x U(1) is broken to (a
different) U(1), and also spatial rotational symmetry is broken; and an s+p-wave phase
where the U(1) x U(1) is completely broken by the s and p-wave condensates, and again
spatial rotational symmetry is broken. Remarkably, while the system goes from the normal
phase to the s-wave and p-wave phases through second order phase transitions, the phase
transition between the s and p-wave phases is always a first order one. The existence of
this first order phase transition between superconducting phases in the unbalanced system
is an interesting prediction of our holographic model. These conclusions could be sensi-
tive to the inclusion of backreaction since, as already mentioned, in principle the order
of the phase transitions could change when the parameters are large and the decoupling
limit breaks down. Yet in the proximity of the tricritical point, where the p- and s-wave
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phases meet, the matter fields and its derivatives are small enough for the probe limit to
be trusted. Hence the existence of this point and the first order phase transition between
the p- and s-wave phases in its proximity will survive once backreaction is considered,
at least for large enough gauge coupling. Moreover, a preliminary study of backreacted
solutions in that region supports this conclusion and show it holds for small values of the
gauge coupling too. In any case, in order to ensure the stability of the different phases
it is important to study the quasinormal mode spectrum of the model. As pointed out
in Chapter[9], it might be possible that instabilities towards inhomogeneous phases appear.

In [104] a QFT model featuring a gauged U(2) symmetry, and with a symmetry break-
ing scheme similar to ours is studied. There the autors find roton excitations along the
direction of the vector condensate. It would be interesting to study the quasinormal mode
spectra of the s+p-wave phase and see if something similar happens in our case. We leave
this for a future investigation.

For future firections, a possible generalization would be to analyze the model
when the backreaction onto the metric is taken into account. This introduces the energy-
momentum tensor as an operator of the dual field theory and thus we expect the usual
sound and shear modes to stem from bulk metric fluctuations. Moreover, this would allow
us to obtain reliable results even at very low temperatures and for instance compute the
density of superconducting charge densities at zero temperature, as well as B(T = 0).

We have constructed here a simply model with type II Goldstone bosons using a
“bottom-up” strategy. It is however also interesting to ask if such models can be realized
via “top-down” D-brane, string theory or M-theory constructions [187,[195H198].

Another possible direction of research involves using the Fluid /Gravity correspondence
[38] in order to derive the Hydrodynamic expansion of the current and upon including
backreaction also the constitutive relation for the energy-momentum tensor. This will
throw light on the hydrodynamic behavior of non-relativistic superfluids and in particular
should result in the formulation of the hydrodynamics of relativistic type II Goldstone
modes. Up to our knowledge this is not even known to the leading, i.e. zeroth order in
derivatives.

Finally it is also interesting to ask the question if holographic models featuring Gold-
stone modes with higher order dispersion relation w = ck™ with n > 2 can be constructed.
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Appendix of Part III

11.1 Fluctuation equations in the (0) — (3) sector

The fluctuations in the U(1) theory or the (0) — (3) sector contain the zeroth and third
color sectors of the gauge field and the lower component of the scalar field o = p+1id. The
equations of motion for an arbitrary direction of the momentum then read
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where we have used k, = |k|cos(v), ky = |k|sin(y) . The general pure gauge solution in
this sector is

d=1i\U;  p=0; az(f_) =Xw; a7 = —Alk| cos(v); a?(;) = —\|k|sin(y), (11.1.7)

x

where ) is an arbitrary constant.

11.2 Fluctuation equations in the (1) — (2) sector

The perturbations in the (1) — (2) sector of the U(2) theory include the fluctuations of
the upper component of the scalar field, n = o + i3, along with that sector of the gauge
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field. For momentum in the opposite direction of the superflow, the equations of motion
read

2
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subject to the constraints

0=2f (\I/ﬂ' - \Iflﬁ) + aEQ)A;(g) - a;(Q)A,Eg) + LQ <A§C3)a’x(2) — ag)A;(?’)) - z'wag(l) — ga;ﬂ) ,
T T
(11.2.14)
0=2f (\I/o/ B q,/a) i a;(l)Af’) _ agl)A;(:a) + 7Tf? (ag)A;(?’) _ Agf’)a;(l)) _ iwa;(z) _ Z%fa;(z) ’
(11.2.15)

There are two pure gauge solutions in this sector,

a=0, B=inU/2, a” =xw, o =inA® | a) = Nk, o® =ixA®)

x

(11.2.16)
a=ixP/2, B=0, a=-ixAY o =w, o) =—ixA® o = Ak,
(11.2.17)
where A1 and A9 are arbitrary constants.
11.3 Matrix valued Kramers-Kronig relation
The generically matriz-valued spectral function is defined as
pij(x) = ([Oi(z), 0;(0)]) , (11.3.18)
where O; are Hermitian operators. Its behavior under Hermitian conjugation is
o) = p(—z) = —p(a)". (11.3.19)

Correspondingly, the Fourier transform (k) = [ d*z e~%*%p(x) also satisfies a set of iden-
tities

pk) = k) = —p(—h)" (11.3.20)
In particular this means that the diagonal components are real and antisymmetric under
k — —k. One may also be interested in the behavior under w — —w. We take now

k = (w,q). For theories with rotational invariance the spectral function can depend only
on q°. Consequently the diagonal components will also be real and odd in w

pii(w,d) = pii(w,a*)" = —pii(-w,q*) . (11.3.21)

For the off-diagonal components however, only if one also imposes time reversal or parity
symmetry can one prove that the off-diagonal entries must be either even or odd functions
of the frequency. In the present case time reversal symmetry is broken by the presence of
the chemical potential. Further constraints can however by obtained by supposing that
the theory is invariant under x — —x. For an odd number of spatial dimensions we could
use the parity operators P to take x — —x. In the two spatial dimensions we study in
this paper we can take P to by a rotation by = (for an arbitrary even number of spatial
dimensions D = 2n we could take the angle 7 for all the rotations in the 4,7 + 1-th plane
for all i < n). This P-operator acts as PO;(t,x)P~! = 0;0;(t, —x) with o; = 1. In odd
spatial dimensions o; is the parity of the operator. In even spatial dimension o; = —1 if
O; is the component of a spatial vector. Hence

Plpij(t,x)] = 0i0jpi;(t, —x) - (11.3.22)
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P-invariance implies p;;(t,x) = 0;0;p;;(t, —x), which for the Fourier transform implies
that
ﬁij(w, q) = —Jiajﬁij(—w, q)* . (11.3.23)

So the off-diagonal entries are either odd or even functions of w depending on the signs
0;. In the case where the fields transform in the same way under the parity operator
this means that the real (imaginary) part of the off-diagonal components is an odd (even)
function of the frequency.

From the spectral function, as defined in we can define two causal propaga-
tors, namely the retarded and advanced Green’s functions

Gr(x) =—1i0(t)p(z), (11.3.24)
Ga(x) =1iO(—t)p(x), (11.3.25)

where x = (t,x). Using ({11.3.20)), one can prove the following relation among the Fourier
transforms of these ) 3 )
Gr(k) = Gr(=k)* = Ga(k)T. (11.3.26)

From here, we see that the real (imaginary) part, Re(Gr) (Im(Gg)), is even (odd) under
k — —k. We can compute the Fourier transform of the retarded Green’s function, which
is given by the convolution of the Fourier transform of the Heaviside step function ©(w)
with the Fourier transform of the spectral function p(k),

N oo B du
Gr(w,q) = —i Ow —mplk,a)y - (11.3.27)
e T
Using the Fourier transform of the step function
~ 1
® =
() w + i€’
and the Sokhatsky-Weierstrass theorem we get
oo~ / / .
. plw',q) dw’ i
G = _— == 11.3.28
ra) =P PR L), (11.3.25)

where P denotes the principle value. From the Hermiticity of 5(k) we see that we can
regard as a split of G®(k) into its Hermitian and anti-Hermitian parts, and find
that the spectral function can be computed from the anti-Hermitian part of the Fourier
transform of the retarded Green’s function

plk) = i[Gr(k) — Gr(k)T] = 2GD (k) (11.3.29)

where the (A) stands for anti—Hermitianﬁ Plugging this back into (11.3.28) and taking
the Hermitian part (H) on both sides we arrive at

i oo @)y
Gl (w) = ZP/ TR (:},)dw’, (11.3.30)
T J_x -

which is nothing but the Kramers-Kronig relation for the matrix Green’s function. It is
complemented by the conjugate relation interchanging the Hermitian and anti-Hermitian

4Using (11.3.26) we can always work with retarded Green’s functions Gg.
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parts. Imposing P-invariance and using ((11.3.23]) and (11.3.28]) if follows that the Green’s

function satisfies i ]
Gli(w,q) = 0i0;Gii(-w,q)". (11.3.31)

This constrains the QNM spectrum. Taking for example a diagonal Green’s function with
i = j and writing it as a sum over quasinormal frequencies [46,[153] one seems that the
quasinormal frequencies have to come either in pairs obeying w, and &, = —w or are
confined to lie on the imaginary axis. The residues of the pairs are related by complex
conjugation and the purely imaginary ones have to have also purely imaginary residue.

11.4 Solving the fluctuation equations

The (1) — (2) sector of the gauged model in the broken phase consists of a system
of coupled equations —. In order to extract the spectrum of quasinormal
modes we made use of the techniques detailed in [2,51], where a method to compute the
poles of the Green functions in terms of non-gauge invariant fields was developed. The
quasinormal frequencies are given by the zeroes of the determinant of the field matrix
spanned by a maximal set of linearly independent solutions satisfying infalling boundary
conditions on the horizon evaluated at the boundary.

Imposing infalling boundary conditions, the near horizon behavior of the fields solving
the mentioned equations reads

a = (p=1"(apy+amlp—1)+...), (11.4.32)

B = (p=1"Boy+Bylp—1)+...), (11.4.33)

af? = (=1 (ol +aly o =1+ ) (11.4.34)

d® = (p—1) (agjgm +ally (o= 1) + .. ) : (11.4.35)

where kK = —iw/3 and i = 1,2. Since the system is subject to two constraints, we can

only choose four of the six parameters at the horizon. Without loss of generality, solutions
can be parametrized by {a ), ﬂ(o),aggo)}. In this way it is possible to construct four
independent solutions to the field equations. We can label them as I, I1, I1I, IV.

Two additional solutions, V, VI, can be obtained by performing gauge transformations
of the trivial solution,

AU
a—0,5— 217 al = —kA1, a® 0, oV = wir, o - PO, (11.4.36)

(1)

AW
a =i 80,0 =0, a?) » —kXs, o) - —iONs, o

— wA9(11.4.37)

where \; are arbitrary constants. Notice that these pure gauge solutions are not algebraic
since they have a nontrivial dependence on the bulk coordinate p.

The most general solution for each field ¢; = {a, B, agi), ag)} is given by a linear
combination of the above solutions, including the pure gauge modes,

vi = crol +errpt + el +ervel” +evel +evipl T (11.4.38)

where we have defined {@(p), 8(p)} = {pa(p), pB(p)}. This convenient choice allows us
to identify the asymptotic boundary values ; with the sources of the gauge invariant
operators of the dual field theory.

May 29, 2014



11.4. Solving the fluctuation equations 140

As shown in [2], the poles of the retarded Green functions will be given by the val-
ues of the frequency for which the determinant of the matrix spanned by ¢ vanishes
asymptotically. Expanding the determinant and evaluating it at a cutoff p = A, it reads

9004[ SOaII (PaIII (PaIV Soav @aVI
1
0 — det (Pt(l)l <Pt(1)H <Pt(1)H SOt(l)IV (Pt(l)v Sf’t(l)v] (11.4.39)
A1A2 (Pt(Q)I ‘Pt(Q)H Sot(Q)HI SOt(z)I Pr2) P2 ;
Pa(1) Pax(1) Pax(1) 90:2(1)‘/ @x(l)v @m(l)v
QO:E(2)I 9@2(2)11 ¢x(2)lll QO:B(Q)IV QO:E(2)V me(2)VI
e Ve bg Ye Ca Ve Pg by
— W2 VR IR Y kd B Y ¥B Y5
= w”det I T III v + wk det I IIT v
Pz1) Pz(1) %51[) Px(1) t(1)  Pe(1) ‘Pt%) (1)
I A% I I
Pa@) Pa2) Po2) Pa(2) Pu2) Pa2) P2 Pa(2)
e Ve bg be Ca Py Ve O
_ LR T - T 2 Ys ¥Pp Pz Pp
wk det I 11 IIr Iv + k“ det I 11 I Iv ;
Pi(2) ‘Ptsz) %321) 9%9) Py Pray Pra) P
I I I I I II II I
Ye) Pa() Pol) Pa(n) Yi2) Piuz) Fu2) Fue)

where the background boundary conditions ©(A) = 0 and AV = 0 have been already
imposed. This absence of background sources for the corresponding operators makes
the point (w, k) = (0,0) a trivial solution to the vanishing determinant condition, which
ensures the existence of a hydrodynamic mode. Notice also that the point (w, k) = (0,0)
is a double solution to the previous determinant equation.

Solutions to the equations of motion and to the determinant condition have
been computed numerically. It has been checked that the election of solution basis, i.e. of
initial values of the free parameters, does not affect the result.
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Chapter 12

Chiral transport in Holographic
Superfluids

It could be stated that the study of the interplay between anomalous transport and
superfluids started a decade ago; the first approaches to chiral transport (concretely, the
Chiral Separation Effect) where analyzed for high-density QCD, assuming for instance
that baryon symmetry is spontaneously broken, see [58,/63]. However, a systematic study
of Chiral Superfluids has only been undertaken recently, using different techniques to
obtain the hydrodynamic expansion, with particular emphasis on the anomalous response
[06}[1241[199-201].

The results indicate that the effect of the background condensate is two-fold. On the one
hand, unlike the case of ordinary fluids (see Chapter [3| for an introduction), anomalous
conductivities are not fully determined by anomaly coefficients anymore. On the other,
in addition to the Chiral Vortical and Chiral Magnetic effects, there exist new types
of transport phenomena driven by the anomalies. However, until now, we lack clear
predictions for the anomalous response parameters in superfluids.

Remarkably, it has been recently pointed out that, for a certain class of holographic
models of chiral superfluids [202] the zero-temperature behaviour of the CMC and CVC
is universal and given by [4]

unbrok.
O_Esr)ok. (T — 0) — 0-5577 (12.0.1)
Ugr‘(/)léf(T N O) — O, (1202)

where ”brok.” and "unbrok.” refer to broken and unbroken phases, respectively.

Here we address the possible corrections of the anomalous transport coefficients due to
the presence of condensates, performing an explicit computation of them. We will focus
on the strongly coupled regime and, to simplify the approach, we will stick to s-wave
condensates. To that end, we use holographic methods.

Contrary to the usual approaches to transport in Chiral Superfluids, here we will rely
on linear response theory to analyze the possible corrections. Kubo formulae (see the
introduction) provide us with the response driven by a small external perturbation. These
are powerful because they account automatically for all the corrections to the coefficients
and sometimes prove the existence of new transport phenomena which is difficult to analyze
by means of hydrodynamic expansions. Hence, we assume that it is possible to define the
anomalous conductivities in terms of correlators in the broken phase, which is to say, that
there exists a current due to an external magnetic field in both the unbroken and broken
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phaseq]]

J' = oiemp.csesn B (12.0.3)

Where J, B, E correspond to a generic U(1) covariant current (defined by equation ({3.0.16)),
magnetic and electric field, respectively, whereas o denotes generic conductivitiesﬂ Equa-
tion represents the Chiral Electric Effect (CEE), an anomalous transport phe-
nomenon which is present only for Chiral Superfluids at finite superfluid velocity, see [124].
We will propose a Kubo formula for the Chiral Electric Conductivity (CEC) and compute
its value in our models.

In addition, we emphasize the existence of a type of transport phenomena in Chiral Su-
perfluids that to our knowledge has been overlooked so far. We will call it Chiral Charge
Generation Effect (CCGE). It establishes the presence of a charge density whenever the
supervelocity is aligned with an external magnetic field

—

p=56¢-B (12.0.5)

here E is the superfluid velocity and & the corresponding conductivity (CCGC). We will
provide a Kubo formula for it in Section and compute its value, showing that it is
generically different from zero. The response prescribed by is not formally new,
even though we believe its physical importance has not been stressed before. It has ap-
peared in the literature and for instance it can be mapped to the term S; of equation
(2.31) of [96] ﬂ Such a term establishes the presence of a charge density whenever a trans-
verse London-type-current S7 = eijkg}-aj@ is acting on the system. Since (; = —0Ok¢ + Ag
(see [96]) we propose that there is an effective response of the form arising from
S = €Y kggajAk + .... We believe that such a transport phenomenon leads to interesting
phenomenological implications.

Notice that, for the above formulae to make sense, it is important in general that
the background we are considering is stable in the presence of a (perturbatively small)
magnetic field, i.e. that there exists a perturbative expansion in the amplitude of a exter-
nal magnetic field. Given such a perturbative expansion, at zeroth order the holographic
superfluid corresponds to the background considered here. This is consistent with the us-
age of Kubo Formulae to compute the transport coefficients. However, for finite external
magnetic fields, the holographic superfluid gets affected and, in particular, it generates
London-type currents [3]. Therefore, one could argue against the validity of our results
beyond perturbatively small external sources. In order to avoid that potential issue, in
Section we study a U(1) x U(1) model, in which only one of the U(1)’s undergoes a
phase transition and thus we can study how the (unscreened) magnetic field associated to
the unbroken symmetry enters the chiral transport properties.

In what follows we will work with global symmetries in the QFT, for they are very nat-
urally accommodated within holography. This means that we can restrict ourselves to
configurations which do not excite the anomaly. This is a pertinent remark, since having
a dynamical photon would imply the existence of general loop corrections to the anomalous
transport coefficients [123] which are important even in the hydrodynamic approximation.

'For a detailed analysis of some of the Kubo formulae applied to Chiral Superfluids, see [203]
2CSE stands for Chiral Separation Effect.
3We thank Carlos Hoyos for pointing this out.
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Despite the fact that there is no photon here, in the broken phase the Goldstone boson
could in general give important corrections at strong coupling. However, we expect our
calculation not to capture all these contributions, for they are subleading in the classical
gravity approximation.

A source of the corrections that we should be able to capture within holography is the
one associated to the background scalar field. For instance, in [204] the Chiral Separation
Conductivity (CSC) was indeed found to present corrections in the case of a linear sigma
model (the background scalar field gives an effective mass to the fermions through the
Yukawa coupling and contributes to the CSC).

Entropic arguments were used in [124] to extract the Hydrodynamics of Chiral Su-

perfluids in the presence of external unbroken gauge fields. The Chiral Electric Effect
was predicted and some possible generic corrections to the CMC and CVC were found.
Moreover, in [4] it was argued that such corrections do not vanish but become universal
(model independent) at low temperatures and the CMC and the CVC were computed at
T = 0, indeed finding a universal result. Our models are restricted to the probe limit
and hence we will not be able to reach T" — 0; furthermore, we cannot induce metric
perturbations and hence the CVC cannot be calculated. However, we observe that the
chiral conductivities stabilize fast enough to be able to observe their T" = 0 behaviour even
at temperatures close enough to T, where our computations are reliable.
In what follows we consider two models, one in which a U(1) anomalous symmetry un-
dergoes a phase transition and one in which we have two U(1) symmetries and just one of
them develops a condensate. In the absence of supervelocity the former case reduces to a
truncation of the model of [4] and indeed we observe that 055 approaches the value pre-
scribed by equation (12.0.1]). In the latter model (not considered so far in the literature)
at zero supervelocity we can define three non-vanishing anomalous conductivities [135];
our results suggest that all of them approach universal values at low temperatures. Re-
markably enough, the universal ratio is always different from 1/3 and, in particular, the
CMC vanishes as we increase the chemical potential.

Remarks on the definition of the current

At this point it is important to point out several remarks related to the definition of
the currents. In principle, one could use the consistent currents to define the anomalous
correlators. As pointed out in [205], one has to be careful in this case, for the gauge fields
at infinity are not directly related to the chemical potential of the theory. In [135] an
holographic calculation of the anomalous transport coefficients, taking the previous issue
into account, was carried out; it was shown how one has to give up the condition that
the background gauge field vanishes at the horizon in order to be able to distinguish the
source from the chemical potential.

In the presence of a condensate, regularity imposes that the gauge field must be zero at
the horizon. Hence, it is better to work from the start with the covariant definition of
the current, as in Chapter [6] Notice that this amounts to neglecting the contribution
to the current operator coming from the holographic Chern-Simons term. With this
manipulation there is no trace of the sources in the correlators and one can perfectly work
with a boundary condition such that the background gauge field vanishes at the horizon.
The resulting correlators are the ones of [135] with = 8 = 0. Physically, we thus will
be working with the covariant current, and our computed retarded two-point functions
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contain therefore one covariant and one consistent current, namely

Gr ~ (TVT) . (12.0.6)

Notice that this in particular implies that, no matter the model under consideration, none
of our (covariant) currents is conserved in general. However, this is not a problem at all
since our background gauge field configurations are such that the anomaly is not excited.

Remarks on the Kubo Formulae

Let us point out some remarks on the Kubo formulae we are going to use. We lack
formal derivation of the one corresponding to the CEE. However, assuming a constitutive
relation of the form , we can derive a suitable Kubo formula for it. We point out
that we do not intend to make contact with the hydrodynamic construction of [124](for
example, our Kubo relations are associated to the laboratory frame, not the Landau
frame). Instead, we will propose suitable Kubo formulae for the conductivities we aim to
study, based on the fact that we know which the gauge-invariant sources are, as well as
the type of response that we expect. Our Kubo formulae read

0(55,05E,cMp}y = Hm o (JY ) (w=0,k), (12.0.7)
ocpe = lim o= (JVJ%)p (w,k = 0), (12.0.8)

. 1
occop = lim T (JOJY) o (w=0,k). (12.0.9)

Where k| means that the momentum points in a direction transverse to the supervelocity.
All the conductivities in are associated to similar correlators. The distinction
between them comes from the nature of the currents inside the two point functions and
it only makes sense in the presence of more than one U(1). This will be made explicit in
Section We believe the above provide suitable expressions due to the following

e All the above conductivities vanish in the absence of anomaly.

e For o55.09m,cmE) We rely on the fact that they are related to the response to an
external magnetic field by definition. Moreover, as we will see, is continuous
through the phase transition, matching the value that o(55 csp cympy shows in the
unbroken phase. In addition to this, our formula coincides with the one of [203].

e In the case of oopc, we take into account that it corresponds to the effect of an
external electric field, as in [124]. With this in mind, we choose a kinematic limit
such that it can be drastically distinguished from the other anomalous transport
coefficients. Moreover, we will observe that ocopc ~ £ at low temperatures.

e The formula ((12.0.9)) can be derived from the discussion of [203] (our notation is also
taken from that reference). We start with the term J° = —Tpe% 91,51 E| and take
the variation

eq.

35S S
L= zz'kje”’fgfq-f’jll\soum:o (12.0.10)

5A

491,1, is the derivative of the thermal coefficient g1 with respect to v = u/T [96]
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.. €q.
where the 2 comes from the fact that we have twice the same contribution €7*¢% 9 %

T C) 6A
For transverse momentum, we use equation (3.29) of [203], yielding l
6€eq 1 k@kl . 1
Tj‘ll :5i — k2 — QZT()Cgk‘iC:O, (12.0.11)
0S1 L. i ke ! .
rAl :22kjeljk<? (52 — ? — QZT()Cgka(l) . (12.0.12)
Now, kkkjekj = 0 and hence, to first order in k we have
<J0Jl> = —2iT gy k;e9'¢; + O(K?) (12.0.13)

where all the equilibrium super/subscripts ”0” have been omitted. From here,
emnGy = —2iTg1,,k;¢; (65,60 — 67,6%) (12.0.14)

where g%l = <JOJI>. The formula ((12.0.5) can be recovered by assuming m = z,n =
z. In our notation (; = & and we get
)

occae =T6:q10 = kliglo GY(w=0) (12.0.15)

To avoid any possible confusion let us point out that, taking advantage of the fact that we
work with a fixed component of the supervelocity, throughout this work we will usually
absorb the supervelocity factors into the conductivities, as prescribed by equations (|12.0.8))

and ((12.0.9). This can be seen explicitly in (12.0.15)). Of course, in general one has to
take into account that the CEE and CCGE are linear in the supervelocity (a vector) and

write expressions like (12.0.5)) instead.

12.1 Broken Anomalous symmetry

We want to analyze, from the holographic point of view, how the anomalous conduc-
tivities are altered due to the presence of an s-wave condensate. To this end we consider
a holographic superconductor plus a Chern-Simons term that induces a U(1)? anomaly in
the dual field theory.

From the point of view of the dual field theory we have a spontaneously broken U(1)
anomalous global symmetry. The action of the bottom-up model reads

1 _ _
S = /d%\ﬁ—g <—4FMNFMN + geMABCDAMFABFCD — Dy UDME — m2\1n1/>

(12.1.16)

This is the model of [4] with Vi, =1, V = m?¥¥ and x = ¢/8. In what follows we will be
working with the covariant definition of the current, meaning that we are neglecting the
Chern-Simons contribution to the definition of J*.

We take the Schwarzschild AdS Black Brane in 5 dimensions as our background metric in
the bulk

dr? r? 2 2 2
) + ﬁ(dx + dy” + dz*) (12.1.17)

ds® = —f(r)dt* +
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being f(r) = 2—22 — :i; From now on we will work in adimensional units, rescaling all
the L? factors to one. Our ansatz for the background fields consists of a non-vanishing
temporal and spatial component of the gauge field and the real component of the scalar
field. All of them with just radial dependence

A= ¢(r)dt +V(r)dx; U(r) =1(r) (12.1.18)
With this ansatz the background equations of motion reduce to
2
" + <z> — Qlijs =0 (12.1.19)
fl ¢2 V2 m2
— ——¢Y =0 12.1.20
P+ <f >¢ + fg"t/J wa 7 (G ( )
v (1 ;27
1% Vi-—V =0 12.1.21
(Fe)v-g (2421

The equations boil down to the ones which govern the usual s-wave holographic supercon-
ductor in the presence of supervelocity (i.e. equations appeared in Chapter E[) This could
have been anticipated by noticing that the ansatz does not excite the Chern-Simons con-
tribution keMABCP Fy g Fop to the gauge field equation, as expected. Hence, the anomaly
is absent at the level of the background. However, it has important implications for the
perturbations.

In our convention we choose to fix the temperature and interpret the adimensional quan-

g% Iss
K Hs K Hs
[ I - ————

L
o

=
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8/3 8/3
2] 2
Hs
1 2 3 4 Hsc” 0 1 2 3 4 Usc

Figure 12.1: Axial conductivity divided by the chemical potential and the anomaly coeffi-
cient versus chemical potential. pf. is the critical chemical potential at zero supervelocity
and m? = —7/2. (Left) Each line corresponds to a different superfluid velocity, from
&:/T = 0.1 (blue) to & /T = 2.1 (orange). The dashed horizontal line corresponds to the
unbroken phase, where 055 ~ ps. In the broken phase this conductivity approaches 1/3
of the unbroken phase value for large enough chemical potential. This is compatible with
the results of [4]. (Right) Each line corresponds to a different value for the mass (red
m? = —7/2, blue m? = —3, green m?> = —5/2) of the scalar field in the bulk. As one
can see the 1/3 factor is unaltered by the dimension of the operator that condenses. The
conductivity depends linearly with x.
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as the chemical potential and the supervelocity of the system (along this work we make
some abuse of language and refer to the i — oo regime as the T' — 0 limit), which are
determined by the boundary conditions of the fields to be imposed at spatial infinity:

QS(r)r—mo ~ U5 V(T)r—wo ~ g{x,z} (12123)

By {4,y we mean that the supervelocity will be taken to be pointing either in the z or the
z-direction. In addition, we choose the standard quantization, by imposing the boundary
conditions to the leading term in the asymtotic expansion of the scalar field

Y G
Y(r)rooo ~ —x=+ o
P1=0 1y = (0) (12.1.24)

We solve equations (12.1.19)-(12.1.21) with this boundary conditions numerically.

Before we proceed to discuss our results for the conductivities a comment is in order
regarding the background we have constructed. In Section[9.0.9 we argued that the system
presents instabilities at finite momentum close to the phase transition for a large range
of supervelocities. The stable background in that region is not known. Although this
analysis was made in AdSsy1 we expect it to apply in AdS4y1 as well. We do not discard
those issues to have some influence, even though, as we will see later on, all of our results
seem to be perfectly consistent for every value of the chemical potential. In any case, let
us emphasize that our forthcoming main observations have to do with the behaviour of
the conductivities far from the transition point, where the above potential issues are not
expected to play any role.

12.1.1 The Chiral conductivities in the broken phase: Axial conductiv-
ity and CEC

In order to compute the chiral conductivities from the Kubo formulae —
we study perturbations on top of the background we have built. We first want to explore
the axial conductivityﬂ and the CEC, therefore we switch on the perturbations with non-
vanishing frequency and momentum pointing in the direction parallel to the supervelocity
(that we choose to be the z-direction). The sector we are interested in decouples from the
rest of the field perturbations in this kinematic setup, leaving us with just the perturbations
of the transverse gauge fields

0A, = ay(r,t, x); dA, = a,(r,t,x) (12.1.25)

°In some of the literature this conductivity has often been directly associated to the CMC, for the
qualitative dependence of the three conductivities of on the axial/vector chemical potentials is
the same in the absence of condensate. However, there are significant differences when a condensate
distinguishing between axial and vector currents is present, as we will see. Thus, we will stick to the
notation of [135] and denote as CMC the conductivity related to a vector-vector correlator when a AVV
anomaly is switched on.

May 29, 2014



12.1. Broken Anomalous symmetry 149

- . . Hs ) ‘ ‘ ‘ ‘fx
1 2 3 4 pg e 0.5 1.0 15 2.0 2.5?

Figure 12.2: (Left) Chiral electric conductivity versus chemical potential. Each line cor-
responds to a different superfluid velocity, &, /T = 0.1 —2.1. We observe that cocpg/T =0
at ps. and it approaches a constant value at low temperatures/ large chemical potential.
(Right) Dots correspond to ocopp/kT versus &, in the region in which ccpp/T is indepen-
dent of ps. The solid line corresponds to a linear fit; the slope is 2.667. The conductivity
depends linearly with k.

In momentum space the equations read

| 1 (w? K2L? L L
all + (f + r) a + = (w - - 2¢2> ay + 16ik’;—f¢’az F16iw =V, = 0

f SrNE rf
(12.1.26)
" o1\, 1 /w? K2L? 5 kL, . kL _,
a’l + 7-1-; az+? T -2 az—16zkﬁ¢ay—162wﬁv ay =0
(12.1.27)

In the unbroken phase it is possible to find an analytic solution to the above system of
equations in the kinematic limit w = 0 and to first order in momentum k, = k. Recall that
this is all that we need in order to compute the os5, making use of Kubo formulae [69].
However, in the case at hand the background has been computed numerically and there-
fore we will look directly for numerical solutions to the system ((12.1.26)-(12.1.27)).
We are now ready to compute the Kubo formulae shown in —. The prob-
lem reduces to numerically compute the two retarded 2-point functions with the usual
holographic prescription [51](see the Appendix for details on the computation).

A comment that applies to all figures is in order here. The critical value of the chemical
potential depends on the value of the supervelocity and the mass of the scalar field. In
our convention, j* is the critical value at zero supervelocity and m? = —7/2.

Our results for 055 are depicted in Figure We observe that os5 is proportional
to the (axial) chemical potential even in the broken phase. However, the coefficient of
proportionality decreases from 1 to 1/3 in units of e?N,/472. Numerically, in terms of &

May 29, 2014



12.1. Broken Anomalous symmetry 150

U CCGE

LZ

Figure 12.3:  (Left) Chiral charge generation conductivity versus chemical potential,
different lines correspond to different values of the supervelocity, &, /T = 0.1 —2.1. (Right)
Dots correspond to og2qp versus supervelocity for large values of the chemical potential.
The solid line corresponds to a linear fit; the slope is 2.667. The conductivity depends
linearly with x.
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K s 3

This reduction has been predicted to be universal. In our model, we can check that this is
independent from the mass of the bulk scalar field (right plot of Figure . Remarkably,
finite supervelocity does not alter these conclusions, as depicted in Figure (left); the
correction to the transport coefficient is independent of the supervelocity. As a final
remark, we find that the dependence of the axial conductivity with x is unaffected by the
presence of the condensate and the supervelocity, namely 055 ~ k.

Moving to the CEC, we observe that it starts increasing but rapidly approaches a constant
value, independent of us/T. On the contrary, it linearly increases with the superfluid
velocity for large chemical potential, see Figure Or results thus strongly suggest
that, at low temperatures,

sorp (f2 >>1) & 8%
Notice that this value is essentially the same as the observed for 055 at large axial chemical
potential. Again the dependence with « is linear.

12.1.2 The Chiral Charge Generation Effect

Let us now induce a supervelocity in the z-direction, by turning on A,(r) instead of
Az (r) in the bulk. This, as anticipated, influences the quasinormal modes, even though the

5In order to make contact with the computation in the unbroken phase of [69], notice that we have set
167G =1 in (12.1.16)). Hence, their result o{*™% = 8xus/(167G) corresponds to oSEP™% = 8usk with

our conventions.
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background equations remain the same as in the previous subsection (due to the fact that,
without superflow, the background is isotropic), with the replacement A, < A,. On top of
this we switch on the perturbations with non-vanishing frequency and momentum pointing
in the z-direction (transverse to the supervelocity). The equations for the perturbations
in the transverse sector are more involved now for they couple to all other perturbations.
They can be found in Appendix :

As mentioned in the introduction, the CCGE corresponds to a ”generation” of charge
proportional to the scalar product of the supervelocity and the magnetic field

—

p=6¢-B. (12.1.30)

As aforementioned, for convenience we will absorb the supervelocity component into the
conductivity, i.e. oocge = 6&,. Note that the charge vanishes if the supervelocity is
parallel to the external momentum. In order to observe such an effect, we will use .
We proceed as before and present our result in Figure . We observe that indeed this
phenomenon is not negligible in the presence of supervelocity. Moreover, it stabilizes at
large enough chemical potential; in the region in which occcgr does not depend on pis, it
presents a clear linear dependence on the superfluid velocity (right plot of Figure .
We can perform a numerical quadratic fit, obtaining

KT T T T 3T

(12.1.31)

to a good approximation. Again, the slope has the same value as for the CEC. Let us
emphasize that the behaviour of this transport coefficient at the phase transition is strange
at first sight. Naively, we would have expected cccgp(fic) = 0 instead of the observed
value. We comment on this issue in Section [12.3

12.2 Model with axial and vector currents
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Figure 12.4: (Left) Axial conductivity versus vector chemical potential at 5 = 1 and
&:/T = 0.1 —2.1. We find that o055 is independent of both the vector chemical potential
and the superfluid velocity. (Right) os5 versus axial chemical potential. The dependence
is linear, as expected. The conductivity depends linearly with k.
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Figure 12.5: (Left) Chiral separation conductivity divided by vector chemical potential
versus vector chemical potential, i5 = 1 and &;/7 = 0.1 — 2.1. The conductivity now
approaches 1/2 of the value at [i., independently of &, /T. (Right) The plot shows this
conductivity against the axial chemical potential for generic values of u. ocgg is inde-
pendent of the axial chemical potential in both the broken and ubroken phases. The
conductivity depends linearly with .

In this section we study the more realistic model, in which we consider two U(1)
bulk gauge fields, being only one of them spontaneously broken. There are two different
interpretations of this model:

e We have axial and vector currents U(1)y x U(1)4 and the condensate is coupled
only to the vector part, whereas the axial symmetry is unbroken. This realizes the
interplay between anomalous axial and vector currents, first considered in [135].
The fact that the axial current is not coupled to the scalar field means that the axial
charge of the condensate is zero, so the axial chemical potential can be made constant
through the phase transition and is not affected by the condensation whatsoever.

e The unbroken U(1) is a generic field and the two U(1)’s are intertwined in a par-
ticular way by the anomaly. With this second interpretation, crossed anomalous
correlators can be related to the response of the (broken) current to an external
unscreened magnetic field, associated to the unbroken symmetry. This avoids any
possible problem with the physical realization external magnetic fields contained in
the bulk of the system.

Despite of the two possible interpretations, we will use a notation adapted to the first one.
The action of the model contains a complex scalar field coupled to the vector sector

1 1 K
L= —ZFMNFMN — ZGMNGMN + §6MABCDAM(3FABFCD + GABGCD)
—DyUDMY — 200, (12.2.32)

Here F' is the field strength for the vector gauge field V' and G is the analogue for the axial
gauge field A. Moreover DyV = 0y ¥ — iV ¥. We consider AAA and AVV anomalies.
The equations of motion for the background are the same as (12.1.19))-(12.1.21)), with an
additional equation for the background axial gauge field A(r) = K (r)dt

K" + %K/ =0 (12.2.33)
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Figure 12.6: (Left) Chiral magnetic conductivity versus vector chemical potential with
s = 1. Different lines correspond to different values of the superfluid velocity, with
&:/T = 0.1 —2.1. The best fit shows that for large enough values of [ it decreases as
o ~ 1/i?. (Right) This plot corresponds to ocap/T vs. axial chemical potential with
u/T = 2.5. The linear dependence with s, characteristic of the unbroken phase, remains
unaltered. The conductivity depends linearly with x.

which has a trivial analytic solution K (r) = Ko — K1/r?. The boundary conditions for
the gauge fields are:

oy V(oo ~ Efas) K(r)roe ~ps  (12.2.34)

We impose again standard quantization for the scalar field. First we choose the super-
velocity to point in the z-direction. On top of this we switch on the perturbations with
non-vanishing frequency and momentum parallel to the supervelocity. The equations for
the perturbations in the transverse sector can be found in Appendix There is a
wider set of correlators that we can study in this set up

. .
ocsg = lim o (JYJi)p (w=0,k) (12.2.36)
oomp = lim = (JUT5 ) o (w=0,k) (12.2.37)

In the superfluid phase, after assuming that the supervelocity is transverse to the momen-
tum, we can also consider the Kubo formulae related to the Chiral Electric Effect and the
Chiral Charge Generation Effect

. L
obcar = ,llﬂ% 2%, <J2J\y/>7z (w=0,k); obean = ,E)% 2% <JXO/J}4>R (w=0,k)
(12.2.38)
A . i . 7 . 7
0bpr = ]gi% 5% (J4T7 ) p (W k= 0) ; OClpn = 1?36 5% (Vi) (W, k=0)
(12.2.39)

We expect them to receive different corrections due to the fact that the condensate distin-
guishes between the vector and the axial symmetry. Notice that our notation establishes
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Figure 12.7:  (Left) Chiral electric conductivities versus vector chemical potential at
fis =1 and & /T = 0.1 — 2.1 (bottom to top). Both ol yp/T and o0& 5k /T show the same
behaviour . (Right) Chiral electric conductivities versus supervelocity at jis = 1 in the
region where they don’t depend on u. The conductivity depends linearly with x.

that, for example, pgq = aéCGEBX and py = agCGEBf.

Our results are as follows. On the one hand, the correlator (JY.JZ) does not get altered
due to the condensate, and is linear in us, as depicted in Figure The behavior could
have been anticipated, since the on-shell action is diagonal in vector/axial sectors and it
is clear that in the dynamical equations ((12.5.78)-(12.5.79)) the mixing between a, and a.
is independent of the condensate.

On the other hand, the results concerning occgg are summarized in Figure This
conductivity acts similarly to that encountered in the first section. This was expected by
the form of the equations of motion: in this model, the correlator mixing between a, and
v, is mediated by the same background fields as in the model with only axial symmetry.
Remarkably, unlike the case with a U(1)? anomaly, at large values of ji we obtainﬂ

OCSE (_ﬂ >> 1) =
e — 9,998 ~ 7C5E )

, 12.2.40
KL 2K0 ( )

independently of the superfluid velocity. This result indicates that the T" — 0 behaviour
is strongly dependent on the structure of the broken symmetries and the interplay of the
anomalies. Moreover, the conductivity does not depend on the axial chemical potential
(right plot).

Finally, let us comment on the oojrp. The results are displayed in Figure We
find a linear dependence on [i5, as expected. However, in the presence of the condensate
we observe a new dependence on the vector chemical potential, which is absent in the
unbroken phase. The chemical potential diminishes the value of the CMC strongly and it

"The numerical value occse(T:)/(ku) ~ 6 depends on the strength of the s-term in the equations of
motion and is not of fundamental importance, for it can be easily rescaled (compare to Section [12.1)).
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tends to zero for large values of i as

OCME (ﬁ% >> 1) 1
= (12.2.41)

kT Ngu

with a numerical value for g &~ 2.15. We elaborate on this in Section [12.3
For the chiral transport coefficients associated to the CEE, we observe that correlators

of the form (JaJ4) (kK = 0) and (Jy Jy) (k = 0) vanish identically. Concerning the ones

. : V,A .
mixing axial and vector currents, we observe that ag EE = aé BE = O'(C o E) . The result is

depicted in Figure Fitting the right plot to a parabola, we get

(V,A) (o
JonE <“ﬂ - 1> — 3.003% (12.2.42)
o = 3.00327. 2.

with remarkable precision.

12.2.1 U(1) x U(1) model with transverse supervelocity

As we did in the previous model, in order to study the CCGE we switch on perturba-
tions with non-zero frequency and momentum pointing in the x-direction, transverse to
the superfluid velocity (z-direction). The system of equations with transverse superveloc-
ity can be found in Appendix We report the results on the CCGC in Figure [12.8]
As shown in there are now two different conductivities related to the CCGE, which we

denote O'(CVC)G p and U(CAC)G g They exhibit a very different behavior close to fi.; the conduc-

tivity USQG p 1s similar to the one found in Section [12.1.2} whereas O'(CAC)«G g looks like the
CEC, with a good continuous behavior at the phase transition. We comment on those
differences in Section At low temperatures, however, both a(CACZG p and a(CVgG p tend
to the same value and the dependence with the supervelocity is linear (Figure [12.9)). A

quadratic fit yields

VA (o
0CcCcGE (ﬂc > 1) _ 3_003572. (12.2.43)
w1 T

Remarkably enough, we point out that the conductivity

cocarwy) = lim i (JOTL) 1 (w = 0,k) (12.2.44)
depicted in Figure is not negligible. In principle we could have anticipated it to
vanish because of the structure of the anomalies included in the Lagrangian . As
shown in the plot, this only occurs far enough form the phase transition. This effect points
towards an "effective VVV anomaly” (see also the results concerning the CMC) that is
present close to the phase transition.

12.3 Conclusions, Educated guesses and Future directions

We have analyzed the explicit form of the chiral conductivities in two holographic
models with U(1) and U(1) x U(1) symmetries that develop a scalar condensate at finite
superfluid velocity. We have presented an explicit calculation of CEE by using a suitable
Kubo formula, which allowed us to prove in a robust way that the CEC is in general not
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Figure 12.8: ag;)GE /T (Left) and USQGE /T (Right) versus vector chemical potential at

g5 = 1 and & /T = 0.1 — 2.1 (bottom to top). For large enough values of the chemical
potential both conductivities show the same behaviour. Both depend linearly with .

vanishing in superfluids.

Moreover, by means of the Kubo formulae we have found an effect whose existence, as
far as we are aware, had not been emphasized before in the literature. This induces the
”generation” of axial charge in the presence of supervelocity and a magnetic field

pax - B (12.3.45)

Such a term has interesting consequences. For instance, the Chiral Magnetic Effect would
be dynamically produced in a superfluid in the presence of an external magnetic field
aligned with the supervelocity. We believe this term deserves more investigation in the
future, in order to fully understand the mechanism by which charge is ”generated”, as well
as to analyze the implications that it could lead to.

In addition, we have found generic corrections, due to the background condensate, to all of
the anomalous conductivities. Such corrections seem to take a constant value as T'— 0 in
all of the cases. We observe that such value is model-dependent, but seems to be strongly
constrained by the number of broken symmetries and the interplay between the anomalies.

Section is devoted to the study of the chiral transport of a broken anomalous U (1)
symmetry. At & = 0, we found the result previously pointed out, namely, the value of the
conductivity is 1/3 of that in the unbroken phase, i.e,

8K os55(T,
O'55(T — O) ~ E,ug, = 55; C) .

(12.3.46)
This fact turns out not to be affected when a supervelocity parallel to the momentum is
considered. Moreover, as soon as supervelocity is considered, we have two new anomalous
effects present: The Chiral Electric Effect and the Chiral Charge Generation Effect. We
proposed suitable Kubo formulae for both the CEE and CCGE and computed their value,
finding that both become independent from the chemical potential at sufficiently low
temperatures. Moreover, their dependence with the superfluid velocity is linear, i.e.,

8K
UCEE(T — O) =~ UC’CGE(T — 0) ~ ?fz, (12.3.47)
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Figure 12.9: Both conductivities ag;’gé show the same dependence on the vector chemical

potential p and the supervelocity &, for large enough values of . The slope coincides
with the slope for the CEC, despite the radically different behaviour close to the phase
transition.

Section deals with two U(1) global symmetries, giving rise to a more rich set
of anomalous conductivities with different behaviors once one of the U(1) symmetries
gets spontaneously broken. The transport coefficient 055 remains the same as in the
unbroken phase, but the CMC now acquires a dependence of the vector chemical potential
that makes it vanish as we lower the temperature. That result suggests that the charged
particles stored in the condensate (forming ”cooper pairs”) do not contribute to the CMC,
which hence vanishes at sufficiently low temperatures. The decrease of the CMC seems
to be following a law of the form ooy /T ~ g/h?, with g ~ 2.15. The scaling of ocare
with the axial chemical potential is the usual one, namely ooy ~ pa. Finally, the CSE
decreases up to 1/2 the value that it presents in the unbroken phase, yielding

(o1 OCSE (TC)

O'CSE(T — O) ~ ?,u = f . (12.3.48)

These results do not get altered when inducing supervelocity. Furthermore, we observe
ag BE = aé g both presenting a qualitative behavior that is similar to the one of Section
however the scaling with supervelocity is now

o N(T — 0) ~ 3kE, (12.3.49)

Finally, UXCG G aéCG g close to the phase transition. At low temperatures both tend
to the same value and the same dependence on supervelocity, namely

o) (T = 0) ~ 3k¢, (12.3.50)

12.3.1 On the Low temperature behaviour of the Chiral Conductivities

A simple argument by which the CCGE is expected to arise in superfluids is the

following. Imagine that we have free Chiral fermions coupled to an electromagnetic field
A,

L=v¢V,—A )" (12.3.51)
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Figure 12.10:  Plot of the oc2gpyvy conductivity (defined in the text) versus vector
chemical potential for several values of the supervelocity.

We also couple them to an external field V,, associated to a U(1) symmetry that gets
spontaneously broken. The axial current j!' . | = py*~51) is anomalous. Hence, in general

oty =a FANF+bGAF+cGANG (12.3.52)

where a, b and c are coefficients; F' and G are the stress-tensors associated to A, and V),
respectively. There is no external axial field. Let us concentrate on the term proportional
to b; due to the Bianchi identities, it can be rewritten as b @L(e“”p)‘V,,Fp,\) At this
point, we substitute the actual value of V), which, assuming that p = 0, corresponds
toV, = (O,&B,O,O)ﬂ Assuming that jfxial does not depend on the position, we find, in
momentum space

wik s | = wheHTPAL Foy + .. (12.3.53)

leading to both the Chiral Electric Effect and the Chiral Charge Generation Effect, i.e,
Tt ~ VT (12.3.54)
Jacial ~ bV E B, (12.3.55)

The above argument ”with the hands” leads us to some notion of covariantization of those
effectﬂ This would imply that for the U(1)% anomaly, the anomalous contribution to
the current can be recast in a covariant form

JH

anom

(T — 0) = Shope™ P uS Fop + ... (12.3.56)

8 Notice that, since the symmetry is spontaneously broken, in principle we have to substitute V,, —
V, — Ou¢, where ¢ is the Goldstone mode. However, for simplicity we stick to a gauge in which ¢ = 0.
This will not influence our conclusions.

90ne can consider £ — e~ ! instead, to bring down the frequency in consistently. At the end
of the calculation all the w factors will cancel.

0A cautionary remark is in order here. It is not clear to us whether an argument such as the one
presented here gives the complete answer, i.e. whether one can associate the parameter b in (12.3.55) to
the actual cccar. Most likely one cannot. The reason for our concerns is that, for instance, the reasoning
does not distinguish between covariant/consistent currents and overlooks the subtleties associated to the
introduction of chemical potential/supervelocity in the presence of anomalous symmetries. However, we
believe that it serves to ilustrate the kind of transport phenomena that we expect, for it works at the
formal level.
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) ”

where u* = —pu* + ¢, P"" is the (non-normalized) superfluid velocity and the ...
indicate possible corrections due to vorticity. This covariant form of the response can
be analyzed numerically by establishing the numerical universality (up to the form of the
interplay between the anomaly A and the broken symmetries) of the coefficient 2“540 - Our
results suggest that the superfluid component (the only one present at zero temperature)
gives a contribution of the form with

Na4a = g (12.3.57)

being C' a number that is fully determined by the anomaly coefficient.
For the U(1) x U(1) model the at zero temperatures there exists a subset of non-vanishing

chiral conductivities for which (|12.3.56)) applies, with
C
savY = 5 (12.3.58)

Equations (12.3.57) and (|12.3.58)) are very suggestive. The nature of the number in the

denominator of Zﬁc g appears to be determined by the spontaneously broken symmetries
that are contained in the anomaly responsible for the chiral conductivity under consider-
ation.
Furthermore, one could ask whether the conclusions presented here are universal, i.e.
valid for all holographic s-wave superfluids or even beyond the holographic approach. If
and held in general, it would imply that at zero temperature the anoma-
lous conductivities have a robust value, entirely determined by anomaly coefficients plus
the interplay between the broken symmetries and the anomalies.
We would also like to emphasize that formula ((12.0.15)) allows us to extract the coeffi-
cient termed gy (T, u/T,£?/T?) in [96]. At low temperatures, our numerical results for the
CCGC and o535 for the U(1)3 anomaly are perfectly compatible with
g >>1) = f%% (12.3.59)

In the case of the AVV anomaly, the compatibility seems to be not that straightforward.
In the notation of [203], 055 ~ (2791 + nC). The coefficient g; is continuous at the
phase transition but its derivative is not (see Figure and hence cccgr ~ g1, 1s not
continuous at fi.. This fact explains why we do not observe that the CCGC vanishes at
the phase transition.
Finally, let us mention that the electric field E, = A, is a gauge invariant source in
our setup, so assuming that j¥ ~ occpgE, only, we would have expected

£ Jim 0,68 (0, )l k=0 = - Jim O, G (e W)k, kom0 (12.3.60)
to hold by gauge invariance. Here Gl are retarded correlators and the subindex "ra”
represents the correct combination of time and anti-time ordered sources with respect to
which we vary the generating functional.
Notice that the right hand side of equation is also the Kubo formula for cccogr,
and therefore cocgr = ocgp should be enforced by gauge invariance of the external
sources. This is not what we observe, compare Figures and The reason is that
the constitutive relation of the current receives contributions from terms other than the
one associated to the CEE and therefore the limits taken in (12.3.60)) capture the influence
of gauge-invariant sources that are not the electric field. Remarkably, the effect of those
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Figure 12.11: J(CfBE /T (Left) and O'(CVE)E /T (Right) versus vector chemical potential at
fs = 1 and &,;/T = 0.1 — 2.1 (bottom to top) computed in the two different kinematic
limits allowed by gauge invariance. For large enough values of the chemical potential the
lines overlap. Notice that one of the limits corresponds to the CCGC.

other sources seems to vanish at low temperatures, as shown in Figure[12.11] for, at T — 0,

we recover (|12.3.60)). This supports the validity of the relation (12.3.56]).

For future analysis, a possible direction concerns he computation of the Chiral Vorti-
cal Conductivity. This amounts to studying the system with backreaction. However, the
complicated form of the holographic gauge-gravitational anomaly introduces important
difficulties. Moreover, it would also be interesting to analyze the case in which the pattern
of broken symmetries is U(2) — U(1), for in that case it is known that the spectrum of
low-energy excitations is qualitatively different and this could affect the anomalous con-
ductivities.
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Appendix of Part IV

12.4 Computing the Conductivities

To compute the conductivities we have followed the method developed in [51].

We rearrange the perturbations in a vector ®(r, z*) and work with the Fourier trans-
formed quantity

d 77—
O(r, ") z/(;l:)d@i(r)e‘“t“’“ (12.4.61)
with @ (r) being
O (u) = (Ai(r), Au(r), Ax(r), ..) (12.4.62)

(the specific structure depends on the case at hand, the number of coupled fields, etc.).
The general form of the boundary action is [51]

d
6532 = / (%d (@1, A0 + @1, Br @] (12.4.63)
where the prime stands for d/dr. To calculate the retarded correlators we solve the
equations for the perturbations with infalling boundary conditions, on the one hand, and
boundary conditions @i(r — o0) = qﬁé on the other. This procedure should give us the
desired Green’s functions, after taking the variation of with respect to the fields
at large values of r. Moreover, if

Of(r) = Fj(k, )¢} (12.4.64)

then F f (k,r — oo0) = 1 is the bulk-to-boundary propagator. The retarded two-point
functions, from which we are able to read directly the transport coefficients, are then
computed as

GR (k,7 — 00) = —2 lim (AIM (FM(k,r)) + BIJ) (12.4.65)

r—00

The Ary and Bry matrices depend only on the background and also upon the model
under consideration. We provide their values below

12.4.1 U(1) model: A;; and B;; matrices

The matrices turn out to be independent of the supervelocity and its direction, once
we neglect the contribution of the Chern-Simons term to define the covariant currents.
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162
We get
A= —%rf(r)Diag(l, 1)
B=0
_Inr K2/ f(r) w2r .
Bor = = ( S f(r)> Diag(1,1) (12.4.66)

Notice that the counterterms do not contribute to the anomalous transport coefficients,
for Bet only has diagonal entries, which furthermore are of second order in w and k.

12.4.2 U(1) x U(1) model: A;; and B;; matrices

In this case we get the same results as before, independently for the axial and vector

fields, namely

1 .
Aaxial = _§Tf(T)D1ag(1v 1)
Baxial =0

" — m) Diag(1,1)

and

1 .
Avector = _Erf(T)Dlag(la 1)
Bvector =0

) Diag(1,1)

Bvectorzlnr k? fr) wr
R r )

(12.4.67)

(12.4.68)
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12.5 Equations of Motion

12.5.1 Momentum transverse to the supervelocity for the U(1) model

3 2 g2 v R 2 .
0=fp”+<f’+f>p’+(“}+¢—z—rz—m2>p+ Zw¢5+2at‘1]?_2%\pv

r foor f f

(12.5.69)

S ) TR (A G Ay S T B
B r FUF e [
(12.5.70)

3 k> k

0= fal + Tfa; - (7”2 + 2\1»'2> ar — %aw — 4V pp — 2iwV — 16ik/{r13V'ay

(12.5.71)
2 k 16i

0= fal + (f’ + i) al, + <u} — 2\I/2> ag + %at + 2ikW6 + me’ay

(12.5.72)
2 2 -
" p Y (W R Gk 16ik _
fay—|—<f—|—r>ay+<f 3 2¢>ay+161kr¢az . V' (way + kay) =0
(12.5.73)
2 2
fal + <f’ + f> al, + <w — I% — 2¢2> a, — 16ik5¢’ay —4V¥p =0
r f r r
(12.5.74)
and the constraint
0= %aé + %a; + 20’6 — 20§’ (12.5.75)
r

Where a; are the perturbations of the axial gauge field. p and § are the real and
imaginary parts of the perturbations of the scalar field, respectively. Momentum points
in the z-direction, transverse to the superfluid velocity that points in the z-direction. We
observe that now the equations become more complicated, with the perturbations of the
scalar coupled to all the fields, including the transverse sector. This can imply that the
Quasinormal Modes now get affected by the anomaly.
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12.5.2 Momentum parallel to the supervelocity for the U(1) model

The equations for the relevant sector with momentum aligned to the supervelocity read

/ 1 1 2 kQLQ
ol + <f + T) ot (“’ - 2¢2> vy + 120k 0, + 120k Ko,

f fF\r r? rf rf
kL
+12iw— 7 V'a, =0
(12.5.76)
| 1 (w?  K2L? kL kL
vl + <f + ) v+ = < — 2 ) —12ik—¢'a, — 12ik—K'v
A A A pf T
. KL
—12zwﬁV'ay =0
(12.5.77)
o1 1 (w?  K2L?
a/y/+<f+r aé%—} 7 7 ay + 12ik fgzﬁvz—i-lek—fKaz—i—lew—vaZ—O
(12.5.78)
o1 1 [w?  K2L2 kL kL kL
al + <f + . a, + AVEEEE ay — 12zkﬁq§/vy — 122kﬁK/ay — 122wﬁV’vy =0
(12.5.79)

where vy, .y and ay, .} are the vector and axial perturbations respectively. Momentum
points in the z-direction, parallel to the supervelocity. Note that only the vector compo-
nent couples to the condensate, as could have been anticipated. This equations decouple
from the equations for the rest of perturbations.
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12.5.3 Momentum transverse to the supervelocity for the U(1) x U(1)
model

The equations read

2 2 2 2

A j
(12.5.80)
" , 3 2 2 ]{72 V2 ;
(12.5.81)
2
o 2= (55 20 = S — 2w — 4009 - 120K V0, =0
(12.5.82)

2
k
fop+ (f’ + {) vy + <°} — w?) vy + %Ut + 2ikipd + 12iw§V’ay =0
(12.5.83)

f// / i / C‘ﬁ k2 2 /
C il W el T foor? — 27 oy + 12k ¢az+12lk LK

122@)—‘/"%c — 24ik—V’at =0
r r

(12.5.84)

fol + <f’ + i) vl + (0}2 - kj - 2¢2) —4Vyp — 12ik§¢/% - 12“?;}{/% =0
(12.5.85)

fal + ﬂag szat — u;—k — 12ik fV’vy =0
(12.5.86)

2
k
fal+ (f’ + f) al, + “7% + “’7at +12iw= V"0, = 0
(12.5.87)

2 k‘2
fal+ <f/ n f) d+ (“" _ 2) ay + 12ik = ¢lv. + 12k~ K'a,—
T f T T r

12iw V0, —12ik5V70, = 0
T T

(12.5.88)
2 k,2
fa? + (f’ + ‘:) al, + <o} - 7“2> a, — 12ik§¢'vy =0
(12.5.89)
And the constraints
ik
Z}" a+ =0 (12.5.90)
Z}" vl + ﬁ 2y — 298 =0 (12.5.91)

Where a; and v; are the perturbatlons of the axial and vector gauge fields respectively. p
and ¢ are the real and imaginary parts of the perturbations of the scalar field, respectively.
Momentum points in the z-direction, whereas the superfluid velocity points in the z-
direction.
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Chapter 13

General conclusions and outlook
of the work

The original content of this thesis is presented in Parts 2, 3 and 4. Parts 2 and 3 have
well differenciated topics that somehow merge to give rise to the discussion put forward
in Part 4.

Summary of Part 2 We have analyzed anomalous transport coefficients at strong
coupling by considering extensions to the bulk action that account for both the chiral
and mixed gravitational anomaly. This implies that the boundary current satisfies the
expected anomalous conservation law

d b
_ywp [ dabe b 8
Vi = e? <3239;2 FoFo\+ Waﬂz B ap)\) ; (13.0.1)

being dape = 3t (Tu{Ty, To});, — (L » R) and b, = tr ((T,), — (L <+ R) the anomaly coef-
ficients. These are implemented phenomenologically by x and A coefficients respectively,
appearing in .

Using the corresponding bottom-up model we have calculated all the anomalous conductiv-
ities in an ordinary (i.e. non-superconducting) medium at finite temperature and density,
showing on the one hand that the mixed anomaly is indeed responsible for the appearance
of the T? contribution to the CVC and, on the other, that chiral transport coefficients at
strong coupling have the same value than their weakly coupling counterparts, namely

B _ _ M5, B _ -
Oyy =0CME = o2’ OAy = 0CSE = o2’
2 2 2
v _ M v_Htpu T

— o, === 4+ - 13.0.2

O'V 271'2’ UA 47T2 + 12 (30 )

This latter statement turns out to be true only because we have non-dynamical gauge
fields on the boundary; quantum corrections are expected otherwise.

We have also studied the cutoff flow of chiral conductivities by defining several theories
equipped with a cutoff A. In order to do so we developed several methods and showed
the equivalence of one to another. Analyzing the flow in the presence of the gravitational
anomaly becomes problematic because one has to work with a higher derivative theory.
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After addressing all technical issues, we have obtained a cutoff flow of the form

ikk p (1 — ue) _ —ik‘M(A)

gy = R — (13.0.3)
: 2 , 2
(JPT7) = — ikk (145;%) p? kA (2—;;7(:) i — ik <M2(187_T2“0)2 n Z) (13.0.4)
(e = — ikk (145;%)2 w2 ik (2—2;76:)2 i — ik (W 4 Z) (13.0.5)
gy = B CUTI (1 ARy (RGO
(13.0.6)

with u. = r%/A? (rg is the horizon radius), so that there exists an effective chemical
potential p(A) = p(1 — 7% /A?) and a non-flowing effective temperature 7. The results
can be interpreted as follows. We have a flowing chemical potential, flow that is easily
interpretable in terms of the energy necessary to bring a unit of charge from the horizon
to the boundary.

Summary of Part 3 We have studied several extensions to usual superfluids by means
of holography. Holographic techniques make it simple to compute certain finite tempera-
ture quantities, such as conductivities or decay rates, which in turn are deeply afected by
the fact that the dual theory is in a strong coupling regime.

We presented a holographic bottom-up model in which a U(2) symmetry gets sponta-
neously broken to U(1). This has the peculiarity of giving rise to non-relativistic massless
modes in its spectrum, known as type II Nambu-Goldstone bosons, whose dispersion re-
lation reads

w = Bk? —iCk*. (13.0.7)

In our model type II Nambu-Goldstone bosons are well-defined quasi-particles at low
temperatures (i.e. C << B) and, contrary to the case of type I Goldstone bosons, their
corresponding velocity of sound does not seem to take any universal value at vanishing
temperature. Moreover, it has been shown recently that type II Goldstone bosons are
accompanied by a massive partner mode whose gap is universal and given by

w=2u+ O(k?). (13.0.8)

Even though the computation of this gap is computationally more demanding, we have
been able to shown explicitly that even at strong coupling the value of such a mass cor-
responds to the one predicted theoretically. Within the spectrum of the usual U(1) holo-
graphic superconductor there is only one, purely imaginary, diffusive mode that depends
on temperature; this happens to have important consequences for the late-time response
of the system to certain perturbations: the perturbation could end up being oscillatory
or being exponentially suppressed at leading order, depending on temperature. In our
U(2) model, we observed that diffusive modes come in pairs have a real part in their dis-
persion relation. Hence the aforementioned behaviour at late times is always oscillatory.
Conductivities in this model become infinite at low frequencies, signaling the presence of
superconductivity. We also worked out a different model that features a U(2) global sym-
metry in the bulk, which we call ungauged. The ungauged model does not have an operator
realization of some of the charges in the boundary theory and therefore the Goldstone’s
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theorem does not apply to it, which implies that we did not have an a-priori expectation on
the spectrum of excitations. Remarkably, we show that the ungauged model still presents
type II Goldstone mode in its spectrum.
According to the Landau Criterion of superfluidity, a system featuring type II Nambu-
Goldstone bosons in its spectrum cannot superfluid. The reason is that its critical velocity,
defined as .

Umax = Min 6(]? s (1309)

vanishes. This fact entails that any finite supervelocity will drive the system out of the
superfluid phase. We studied the Landau Criterion at strong coupling by means of our
gauged and ungauged models, finding that the system gets perturbatively unstable at
certain critical velocity, in accordance with Landau’s ideas. We observe that the modes
that induce the instability are precisely the Nambu-Goldstone bosons. When the model
only has type I Goldstone particles (whose dispersion relation is linear) the critical velocity
is finite and depends on temperature. However, for the gauged and ungauged models we
find that vyax = 0 for any superfluid velocity. Both behaviours are expected in view of the
validity of . We conclude that the Landau Criterion is fulfilled at strong coupling,
in our holographic model(s).

Finally, we have constructed a s+p-wave superfluid numerically in holography. This phase
is characterized by the coexistence of two order parameters. One of the is a scalar (s-
wave) and the other one is a vector (p-wave). These sort of superfluids are less frequent
in nature, even though some modified version of the s+p superfluid is expected to be
realized in real systems. One can reach this phase from the gauged U(2) model that we
commented on before; we observed the U(2) s-wave superfluid presents a further instability
at low temperatures (around 0.47;) towards this s+p superfluid. We have also turned
on an aditional chemical potential (making two of them different from zero in total) and
studied the phase diagram of the resulting unbalanced s+p-superfluid, reaching interesting
conclusions, such as the possibility for the existence of a Quatum Phase Transition.

Summary of Part 4 This last part has been distinguished from the rest for it acts as
a combination of Parts 2 and 3. In it we discuss the form of anomalous transport coef-
ficients for a (usual U(1) s-wave) superfluid at finite temperature and density. Here the
analysis is restricted to the chiral anomaly for the implementation of the mixed anomaly
induce serious complications. Apart from the Chiral Magnetic and Vortical Conductivities,
present already in ordinary fluids, we compute the so-called Chiral Electric Conductiv-
ity and point out the physical existence of a charge ”generation” in the presence of a
supervelocity aligned with an external magnetic field

- o

p=6¢-B (13.0.10)

We call this effect Chiral Charge Generation Effect and Chiral Charge Generation Con-
ductivity its corresponding transport coefficient, &.

We study two models. In the first one we implement a AAA anomaly and the anomalous
U(1) symmetry gets spontaneously broken. We show that all anomalous conductivities
tend to universal values at zero temperature, even though at finite temperature their
values are not universal. At zero temperature one gets

8 T,
o55(T — 0) ~ gug = 0555) ) (13.0.11)
8K
ocpp(T = 0) ® occae(T = 0) & —-&, (13.0.12)
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where £ o< C' is the anomaly coefficient, ps the (axial) chemical potential and &, the su-
pervelocity. Note that is independent from the superfluid velocity.

We also analyze a more sophisticated situation in which we start with a U(1)y x U(1)4
symmetry (V stands for "vector” and A for "axial”). There is a wider set of chiral con-
ductivities that one can study in this setup once the vector symmetry gets spontaneously
broken, and we compute all of them. At zero temperature we observe again that their
value becomes universal and given by

6 T,
ocse(T — 0) ~ ?’“‘M - (’ng() (13.0.13)
o (T = 0) ~ 3KE.; AT 5 0) ~ 3k, . (13.0.14)

Equations ([13.0.11))-(13.0.14)) represent different types of chiral conductivities, but they
all have in common the universality of the coefficient in front of the thermodynamic
parameter. In fact, the value itself is not actually important for what we call k¥ could
be different in the AAA and AVV models. The important measure of the correction
is the relation between the conductivities in the unbroken and unbroken phases at zero
temperature. This is, schematically

AAA: Broken = % Unbroken , (13.0.15)

1
AVV . Broken = 5 Unbroken , (13.0.16)

as indicated in equations ((13.0.11f) and (13.0.13]). So we conclude that chiral conductivities

in superfluids become universal at zero temperature and they suffer a correction which
depends solely on the structure of broken symmetries and its relation to the type of
anomaly.
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Chapter 14

Conclusiones generales del trabajo

El contenido original de esta tesis se presenta en las partes 2, 3 y 4. Las partes 2
y 3 tienen temas bien diferenciadas que se unen de alguna manera para dar lugar a la
discusién presentada en la Parte 4 .

Resumen de la Parte 1 Hemos explicado el contenido no original de este trabajo, que
sirve como prefacio para entender los contenidos que se presentan en las Partes 2, 3 y 4.

Empezamos dando una visién global y bastante practica de la dualidad AdS/CFT,
poniendo énfasis en las aplicaciones a la fisica de la materia condensada. Se explican las
nociones basicas y el diccionario holografico. También se discute como implementar una
densidad de carga finita y se hace una breve introduccion al tema de superconductores
holograficos, introduccién que serd ampliada en el capitulo correspondiente a ese tema.
Se tratan también las técnicas tedricas disponibles para tratar sistemas fisicos fuera del
equilibrio mediante la correspondencia AdS/CFT, que se pueden resumir en dos aproxi-
maciones: Hidrodindmica y Teoria de Respuesta Lineal. También se comenta brevemente
acerca de la regién en el espacio de pardmetros en que ambas aproximaciones tienen
validez.

Se pasa luego al estudio de los llamados coeficientes de transporte anémalos, haciendo
hincapié en el régimen de acoplamiendo débil. Se presenta la manera en la que dichos
coeficientes son entendidos tanto desde el punto de vista hidrodindmico como a través de
las férmulas de Kubo.

Por tdltimo se incluye una pequena introduccién al concepto de superfluido, al Criterio de
Landau y al efecto Meissner, asi como a la descripcién hidrodinamica de un superfluido.

Resumen de la Parte 2 Hemos analizado los coeficientes de transporte anémalos en
acoplamiento fuerte tras incluir en la accién en el bulk los términos que dan lugar tanto
a la anomalia quiral y como la anomalia mixta. Esto implica que la corriente satisface la
ley de (no) conservacién esperada debido a la anomalia

d b
_ HVP abc b 1nc a o 8
VMJé:L = 6” P (32])7,2 FMVFp)\ + W ﬂ#l/R ocp>\> 5 (1401)

siendo dgpe = 5t (Tu{Th,Te});, — (L <> R) y ba = tr ((Tu), — (L +» R) los coeficientes de
las anomalias. Estos se implementan fenomenolégicamente a través de los coeficientes x y
A\ respectivamente, que aparecen en . Usando el modelo bottom-up correspondiente
hemos calculado todas las conductividades anémalas en un medio ordinario (es decir, no
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superconductor) a temperatura y la densidad finitas, lo que muestra por una parte que
la anomalia mixta es de hecho responsable de la aparicién de contributcién del tipo T2 a
la Conductivitdad Quiral Vortical y ,por otro, que los coeficientes de transporte quiral en
régimen de acoplamiento fuerte tienen el mismo valor que los correspondientes calculados
en acoplamiento débil, a saber,

B _ _ M5, B _ _
UVV:UCME—ﬁv UAV:UCSE—ﬁa
2 2 2
v _ HU5 y _ M5t Hp r
= —: =+ — 14.0.2
= on2 AT T T ( )

Esta ultima afirmacién resulta ser cierta sélo porque estamos considerando campos de
gauge no dindmicos en la frontera; en el caso de que esto no fuese asi, seria de esperar la
aparicién de correcciones cudnticas.

También hemos estudiado el flujo de conductividades quirales como funcién una escala de
corte energética mediante la definicién de varias teorias equipados con dicha escala que
llamamos A . Para ello hemos desarrollado varios métodos y demostrado la equivalencia
entre ellos. Analizar el flujo en presencia de la anomalia gravitacional se convierte en
problemaético debido a que es necesario trabajar con una teoria en derivadas superiores.
Después de abordar todas las cuestiones técnicas, se ha obtenido un flujo en funcién de A
de la forma

(T = w _ —ik4(7TA2) (14.0.3)
. 2 . 2
(JOTF) = — ikk (145:::) p’ kA (2—2;76:) i il (Fﬂg(l&;uc)z n 7;) (14.0.4)
gy — b (145:&2 i kA (2G2L+4Z)2 TH _ (W N Z) (14.0.5)
(TFT7) = ikk (165;%)3 3 - Mz‘k)\ (_(;2;;:)2 rh _ L <M3(12;:C)3 M(Il\;T2> |
(14.0.6)

con u, = r%{ /A% (rg es el radio del horizonte), por lo que existe un potencial quimico
efectivo u(A) = u(l — r%/A?%) y una temperatura efectiva T independiente de A. Los
resultados se pueden interpretar como sigue: tenemos un potencial quimico que fluye,
flujo que es facilmente interpretable en términos de la energia necesaria para llevar una
unidad de carga desde el horizonte hasta la frontera del espacio-tiempo.

Resumen de la Parte 3 Hemos estudiado varios superfluidos no usuales por medio
de las técnicas de Holografia. Estas técnicas hacen sencillo calcular ciertas cantidades a
temperatura finita, como conductividades o tasas de descomposicién, las cuales a su vez
estan profundamente afectadas por el sector termalizado, que en la teoria dual se encuentra
en un régimen de acoplamiento fuerte.

Se presenta un modelo bottom-up holografico en el que una simetria U(2) (modelo gauged
en el bulk) se rompe esponténeamente a U(1). Esto tiene la particularidad de dar lugar
a modos sin masa no relativistas en su espectro conocidos como bosones de Nambu-
Goldstone de tipo II, con una relacién de dispersion

w = Bk? —iCk?*. (14.0.7)

En nuestro modelo los bosones de Nambu-Goldstone de tipo II son cuasiparticulas bien
definidas a bajas temperaturas (es decir, C << B) y, contrariamente a lo que ocurre para
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bosones de tipo I, su correspondiente velocidad del sonido no parece tener ningun valor
universal a temperatura cero. Por otra parte, se ha demostrado recientemente que los
bosones de Goldstone el tipo II aparecen junto a un modo compafnero masivo cuya masa
es universal y dada por (u es el potencial quimico)

w =2+ O(k?). (14.0.8)

A pesar de que el calculo de esta masa es computacionalmente mas exigente, hemos sido
capaces de mostrar explicitamente que incluso en acoplamiento fuerte el valor de dicha
masa se corresponde con la predicha tedricamente. En el superconductor holografico U(1)
habitual sélo hay un modo difusivo, puramente imaginario, que depende de la temperatura;
ésto tiene consecuencias importantes en la respuesta del sistema a ciertas perturbaciones
a tiempos grandes: la perturbacién podria acabar presentando un comportamiento oscila-
torio o siendo exponencialmente suprimida, a primer orden, en funcion de la temperatura.
En nuestro modelo U(2) se observa que los modos difusivos vienen en pares y tienen una
parte real en su relacion de dispersion. Por lo tanto el comportamiento antes mencionado
a tiempos largos siempre es oscilatorio en este modelo. Ademds, las conductividades se
vuelven infinitas a frecuencias bajas, lo que indica la presencia de superconductividad.
También hemos elaborado un modelo diferente que cuenta con una simetria global U(2)
en el bulk, el cual llamamos modelo ungauged. Este modelo hace que la teoria dual carezca
de algunos operadores carga, por lo que el teorema de Goldstone no aplica. A su vez esto
hace que no tengamos una expectativa a priori sobre el espectro de excitaciones. Sorpren-
dentemente, obtenemos que el modelo ungauged presenta el modo Goldstone tipo II en su
espectro.
De acuerdo con el criterio de superfluidez de Landau, un sistema con bosones de Nambu-
Goldstone de tipo II en su espectro no puede superfluir. La razon es que su velocidad
critica, que se define como .

Umax = Min 6(:) s (1409)

es nula. Este hecho implica que cualquier supervelocidad no cero llevaria al sistema fuera
de la fase de superfluido. En este trabajo hemos estudiado el Criterio de Landau en
acoplamiento fuerte por medio de nuestros modelos U(2) gauged y ungauged, encontrando
que el sistema se vuelve inestable perturbativamente a cierta velocidad critica, en conformi-
dad con las ideas de Landau. Observamos que los modos que inducen la inestabilidad son,
precisamente, los bosones de Nambu-Goldstone. Cuando el modelo sélo tiene el tipo I de
particulas de Goldstone (cuya relacion de dispersién es lineal) la velocidad critica es no
nula y depende de la temperatura. Sin embargo, para los modelos gauged y ungauged,
que como se ha explicado contienen bosones de Goldstone de tipo II (con una relacién de
dispersion cuadratica ),encontramos que vmax = 0 para cualquier supervelocidad.
Ambos comportamientos son esperables en vista de la validez de . Llegamos asi a
la conclusién de que el criterio de Landau se cumple a acoplamiento fuerte en nuestro(s)
modelo(s) hologréfico(s).

Por ultimo, hemos construido un superfluido s+p numéricamente en Holografia. Esta fase
se caracteriza por la coexistencia de dos parametros de orden. Uno de los es un escalar
(onda tipo s) y el otro es un vector (onda tipo p). Este tipo de superfluidos son menos
frecuentes en la naturaleza, aunque alguna version modificada del superfluido s+p se es-
peraria poder realizar en sistemas reales. Uno puede llegar a esta fase a partir de modelo
U(2) gauged sobre el que comentamos antes; observamos que el superfluido U(2) de tipo
s presenta una inestabilidad adicional a bajas temperaturas (alrededor de 0.47, ) en di-
reccion a este s+p superfluido. También hemos encendido un potencial quimico adicional
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(haciendo en total dos de ellos diferentes de cero) y estudiado el diagrama de fases del
resultante superfluido s+p desequilibrado, llegando a conclusiones interesantes, como la
posibilidad de la existencia de una transicién de fase cudntica.

Resumen de la Parte 4 Esta tltima parte se ha distinguido del resto porque actia
como una combinacién de las partes 2 y 3. En ella se discute la forma de los coeficientes
de transporte anémalos para un superfluido (U(1) en onda s) a temperatura y densidad
finitas. El andlisis se restringe a la anomalia quiral ya que la inclusién de la anomalia
mixta induce complicaciones importantes. Aparte de la Conductividad Quiral Magnética
y Conductividad Quiral Vortical, presentes ya en liquidos ordinarios, calculamos la llamada
Conductividad Quiral Eléctrica y senalamos la existencia fisica de una “generacién” de
carga en presencia de una supervelocidad alineada con un campo magnético externo

p=6¢E-B (14.0.10)

Llamamos a este efecto Efecto Quiral de Generacién de carga y a su correspondiente
conductividad Conductividad de Generacién Quiral de Carga (6 en la ecuacién) .

Se estudian dos modelos. En el primero implementamos una anomalia AAA y la simetria
U(1) anémala se rompe espontdneamente. Se demuestra que todas las conductividades
anémalas tienden a valores universales a temperatura cero, a pesar de que a temperatura
finita sus valores no son universales. A temperatura cero se obtiene

8 T
o55(T = 0) = g% — ‘755:§ ) , (14.0.11)
8K
ocpp(T = 0) = occae(T — 0) = ?&3, (14.0.12)

donde k o C' es el coeficiente de la anomalia , us el potencial quimico (axial) y &, la
supervelocidad . Notar que es independiente de la supervelocidad.

También analizamos una situacién més sofisticada en la que comenzamos con una simetria
U(1)y xU(1)4 (V significa "vector” y A significa ”axial”). Hay un conjunto mas amplio de
conductividades quirales que se pueden estudiar en esta situacién una vez que la simetria
vectorial se rompe espontdneamente, y calculamos todos ellos. A temperatura cero se
observa una vez mas que su valor se convierte en universal y dado por

6 T,
oosp(T = 0) ~ 7&# - ‘Wgu (14.0.13)
oAl (T = 0) ~ 3re.; AT — 0) ~ 3ké, . (14.0.14)

Las ecuaciones ([14.0.11))-(14.0.14) representan diferentes tipos de conductividades quirales,
pero todas tienen en comun la universalidad del coeficiente que multiplica al parametro
termodinamico. De hecho, el valor en si mismo no es realmente importante porque lo
que llamamos k podria ser diferente en los modelos AAA y AVV . La medida importante
de la correccién es la relacién entre la conductividad entre las fases ordinaria (no rota) y
espontaneamente rota a temperatura cero. Esto es, esqueméaticamente

AAA o(Rota) = = o(No rota), (14.0.15)

AVV . o(Rota) = — o(No rota), (14.0.16)

DN — W =

como se indica en las ecuaciones (14.0.11)) y (14.0.13)). Por lo tanto concluimos que las
conductividades quirales en superfluidos se convierten en universales a temperatura cero
y sufren una correccién que depende tinicamente de la estructura de simetrias rotas y su
relacion con el tipo de anomalia.
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