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Transit Time Studies

How long does a particle take to reach the septa once it 
is outside the stable region?

How does the transit time change if  you continue 
squeezing the separatrix as the particle still transits?

How does the transit time depend on the area of  the 
stable region and other operational parameters?

Transit time study is crucial because it determines the beam response time for the 
extraction.
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Kobayashi Hamiltonian

The dynamics of  third-integer resonance can be 
extracted from the Kobayashi Hamiltonian:

𝐻 = 3𝜋𝛿𝑄 𝑋! +𝑋"! +
𝑆
4 3𝑋𝑋"! −𝑋#

Linear term Non-linear term

This simplified Hamiltonian contains only first power in 𝛿𝑄.
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Strategy to get transit time

• Get the equation of  motion for 𝑋 and 𝑋′ through 
solving:

$%
$&
= '(

'%!
    and     $%

!

$&	
= − '(

'%

• Since the Hamiltonian is a constant of  motion, 

 𝐻 𝑋*, 𝑋*" ; 𝑛 = 𝐻 𝑋, 𝑋"; 𝑛 + Δ𝑛

• Eliminate 𝑋" in terms of  𝑋 using the above equality.

• Now plug in 𝑋′ gotten from the above step into $%
$&
=

'(
'%!

 to get a RHS purely in terms of  𝑋.
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Kobayashi Hamiltonian Translated

𝐻 = 3𝜋𝛿𝑄 𝑋! +𝑋"! +
𝑆
4 3𝑋𝑋"! −𝑋#

It is convenient to analyze the transit time when we move on of  the vertices to origin.

𝑋 → 𝑋 −ℎ      and     𝑋" → 𝑋" + +
!

𝑃"

𝑋′

𝑋

𝑃!

𝑃"

𝑃#

𝑃!

𝑃"

𝑃#

ℎ𝑎

𝑋′

𝑋



1/31/246

Kobayashi Hamiltonian Translated

𝐻 = 3𝜋𝛿𝑄 𝑋! +𝑋"! +
𝑆
4 3𝑋𝑋"! −𝑋#

𝑋 → 𝑋	 − ℎ      and     𝑋" → 𝑋" + +
!

𝐻,-+&. = 3𝜋𝛿𝑄 𝑋 − ℎ ! + 𝑋" +
𝑎
2

!
+
𝑆
4 3( 𝑋 − ℎ !) 𝑋" +

𝑎
2

!
− (𝑋 − ℎ)#

=
𝑆
4 [	3ℎ𝑋

! +3ℎ# −6𝑋ℎ! +3ℎ𝑋"! +9ℎ# +2 3ℎ𝑋" 3ℎ

	 +	3𝑋𝑋" +9𝑋ℎ! +6 3𝑋𝑋"ℎ	 − 3ℎ𝑋"! −9ℎ# −6 3ℎ!𝑋"
    
                                                       −	𝑋# +3𝑋!ℎ − 3ℎ!𝑋 + ℎ#]	



1/31/247

Translated Kobayashi Hamiltonian

𝐻 = 3𝜋𝛿𝑄 𝑋! +𝑋"! +
𝑆
4 3𝑋𝑋"! −𝑋#

It is convenient to analyze the transit time when we move on of  the vertices to origin.

𝑋 → 𝑋	 − ℎ      and     𝑋" → 𝑋" + +
!

𝐻,-+&. = 3𝜋𝛿𝑄 𝑋 − ℎ ! + 𝑋" +
𝑎
2

!
+
𝑆
4 3( 𝑋 − ℎ !) 𝑋" +

𝑎
2

!
− (𝑋 − ℎ)#

𝐻,-+&. =
/
0
[	6ℎ𝑋! + 4ℎ# + 	3𝑋𝑋"! + 6 3𝑋𝑋"ℎ	 −	𝑋#]



1/31/248

Equation of  motion

From the above Hamitonian, we get the 𝑋 evolution equation as:

 12
13
= '("#$%&

'%!
 

 12
13
= 4/

0
	𝑋𝑋" + 3𝑋ℎ	

𝐻,-+&. =
/
0
[	3ℎ𝑋! +3ℎ# + 	3𝑋𝑋"! +6 3𝑋𝑋"ℎ	 −	𝑋# +3𝑋!ℎ	 + ℎ#]
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Next is to eliminate 𝑋" and get the X evolution purely in terms of  𝑋.
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Equation of  motion

We can prove that the Hamiltonian is a constant of  motion (one way is to verify using Poisson brackets).  

𝑋$ =
𝑋%" + 3𝑋%𝑋%$ − 𝑋"

3𝑋

𝐻,-+&. =
/
0
[	3ℎ𝑋! +3ℎ# + 	3𝑋𝑋"! +6 3𝑋𝑋"ℎ	 −	𝑋# +3𝑋!ℎ	 + ℎ#]

Thus,

&
' [	3ℎ𝑋

" + 3ℎ# + 	3𝑋𝑋$" + 6 3𝑋𝑋$ℎ	 −	𝑋# + 3𝑋"ℎ	 + ℎ#] = &' [	3ℎ𝑋%
" + 3ℎ# + 	3𝑋%𝑋%$" + 6 3𝑋%𝑋%$ℎ	 −	𝑋%# + 3𝑋%"ℎ	 + ℎ#]

𝐻 𝑋*, 𝑋*" ; 𝑛 = 𝐻 𝑋, 𝑋"; 𝑛 + Δ𝑛
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Equation of  motion

𝑋$ =
𝑋%" + 3𝑋%𝑋%$ − 𝑋"

3𝑋

Plugging this into the X-evolution equation, we get:

dX
dn =

6𝑆
4 	𝑋𝑋$ + 3𝑋ℎ	

dX
dn

=
6𝑆
4

	𝑋
𝑋%" + 3𝑋%𝑋%$ − 𝑋"

3𝑋
+ 3𝑋ℎ	

dX
dn

=
6𝑆
4

𝑋%" + 3𝑋%𝑋%$ − 𝑋"

3
+ 3𝑋ℎ	

dX
dn = 𝑓(X) (say)
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dX
dn = f(X)

dn = 𝑓(𝑋) 56𝑑𝑋

𝑇,, = D
%'

%&()" 𝑆
4

6 3ℎ𝑋 +
6
3
	𝑋*! + 6	𝑋*𝑋*" 	−

6
3
𝑋!

56

𝑑𝑋

Can be integrated by completing the squares:

D
1

𝑎𝑥! + 𝑏𝑥 + 𝑐
	𝑑𝑥 =

1
𝑏! − 4𝑎𝑐

log
2𝑎𝑥 + 𝑏 − 𝑏! − 4𝑎𝑐
2𝑎𝑥 + 𝑏 + 𝑏! − 4𝑎𝑐
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Kobayashi Hamiltonian

𝑇,, = D
%'

%&()" 𝑆
4

6 3ℎ𝑋 +
6
3
	𝑋*! + 6	𝑋*𝑋*" 	−

6
3
𝑋!

56

𝑑𝑋

𝑇,, =
2
3𝑆

1

9ℎ! + 4(𝑋*! + 3𝑋*𝑋*")
log

−2𝑋 + 3ℎ − 9ℎ! + 4 𝑋*! + 3𝑋*𝑋*"

−2𝑋 + 3ℎ + 9ℎ! + 4 𝑋*! + 3𝑋*𝑋*"
%'

%&()"

Septum
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This is the analytical expression for transit time of  particles when the resonance condition 
remains constant throughout the extraction, i.e., the separatrix size does not change. 
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Computing the analytical transit time

𝑇!! =
2
3𝑆

1

9ℎ" +4(𝑋#" + 3𝑋#𝑋#$)
log

−2𝑋 +3ℎ − 9ℎ" +4 𝑋#" + 3𝑋#𝑋#$

−2𝑋 +3ℎ + 9ℎ" +4 𝑋#" + 3𝑋#𝑋#$
%!

%"#$%

Transit Time:

Plugging in sample Mu2e extraction numbers:
 

• 𝑋()*+ = (12 − ℎ) mm
• ℎ = "

#
,-./
&

• 𝛿𝑄 = 9.650 → 9.666 (acquired from slow 
regulation quad ramp)

• S = 500 T/m^2 
• ℎ010 =

2232
" # ≈ 2.6	𝑚𝑚

• 𝑎010 ≈ 9.2	mm (approximation)
• 𝑋% and 𝑋′% chosen from distribution at 

vertex

We get the analytical transit time curve to be:
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Particle Tracking to validate Transit Time
To verify the transit time expression through simulation, we prepared our initial 
distribution to avoid statistical noises from the beam halo. Particle tracking was done using 
4 millions particles.

The initial distribution was prepared by running a normal 
distribution of particles at a constant tune of 𝜈* = 9.650 for 2000 
turns until all the halo is extracted.

Simulation strategy:

• Get the ideal tune ramp curve from Slow Regulation 
simulations.

• Squeeze the tune from ∆𝜈 = 𝜈+ → 𝜈, using the tune 
ramp  curve.

• Store at the number of particles extracted at each turn, 
including the transit time.

• Iterate this for all the 430 time steps until ∆𝜈 goes to 
zero. 

Input sample used for particle 
tracking.
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Simulation result
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Dynamic Transit Time

The transit time function derived earlier was for when the resonance condition remains static throughout the extraction process, 
i.e., the stable region’s size does not change while the particles are still in transition.

However, often in reality, the resonant extraction process is a continuous one 
where the stable region is not static but changes dynamically with time. 

This begs the question: how does the transit time change with the separatrices are 
shrinking?

We can start from the evolution equation of 𝑋:

dX
dn =

𝑆
4 6 3ℎ𝑋 +

6
3
	𝑋-, +6	𝑋-𝑋-. 	−

6
3
𝑋,

Since the particles that will get extracted first are the ones near the vertex of the 
triangle close to the septum, let us assume 𝑋- = 0 and 𝑋-. = 3𝑋-.

Plugging in:

dX
dn =

𝑆
4 6 3ℎ −

6
3
𝑋, =

3𝑆
2 3

	(3ℎ𝑋 −𝑋,)

t2

t1

𝑡1 =	?

𝑋!

𝑋
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Dynamic Transit Time

Since the tune will be ramped towards resonant tune throughout the spill, the separatrix will be shrinking with the same velocity, 
given by:

ℎ̇ = −
4𝜋
𝑆
𝑑𝑄
𝑑𝑛

Since this velocity is in the opposite direction of the particle’s direction (because the 
particle is moving away from the separatrix), we add this to the 𝑑𝑋/𝑑𝑛 :

dX
dn =

3𝑆
2 3

3ℎ𝑋 −𝑋, +
4𝜋
𝑆
𝑑𝑄
𝑑𝑛

t2

t1

𝑡1 =	?

𝑋!

𝑋

ℎ̇

Now we invert the above equation and integrate to find the transit time T//0 =	∫𝑑𝑛

𝑇11	345 = ∫𝑑𝑛 = A
6748

6
75678
8 1

3𝑆
2 3ℎ𝑋 −𝑋, +4𝜋𝑆

𝑑𝑄
𝑑𝑛

	𝑑𝑋
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𝑇99	:;& = ∫ 𝑑𝑛 = D
5%'<

5
%&()"
< 1

3𝑆
2 3ℎ𝑋 − 𝑋! + 4𝜋𝑆

𝑑𝑄
𝑑𝑛

	𝑑𝑋

𝑇++	451 =
2

6 3𝜋𝛿𝑄
1

9ℎ" + 4(𝑋%" + 3𝑋%𝑋%$)
log

2
3
𝑋()*+
ℎ 	− 2

3𝛿𝑄
𝑑𝑄
𝑑𝑛

2
3
𝑋%
ℎ + 2 3	− 1

9𝜋𝛿𝑄"
𝑑𝑄
𝑑𝑛

2
3
𝑋%
ℎ − 2

3𝛿𝑄
𝑑𝑄
𝑑𝑛

2
3
𝑋()*+
ℎ + 2 3	− 1

9𝜋𝛿𝑄"
𝑑𝑄
𝑑𝑛 64

65678

Analytical Expression for Transit Time (Dynamic case)

We can solve this again by completing the squares.
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Transit Time in dynamic conditions:

Plugging in Mu2e extraction numbers:
 

• 𝑋9:;< = (12−ℎ) mm
• ℎ = ,

=
>?@A
B

• Nturns = 500
• 𝛿𝑄 = 6𝜋	×	𝜈[𝑖: 𝑖 + 7]	values 

repeated 60 times (because 500/60 ≈
8)

• 𝛿𝑄̇ = 6𝜋	× 𝜈 𝑖 − 𝜈 𝑖 + 1
• ℎC5C = 𝑎C5C/2 3
• 𝑎C5C ≈ 9.2	mm (approximation)

𝑇!!	#$% =
2

6 3𝜋𝛿𝑄
1

9ℎ& + 4(𝑋'& + 3𝑋'𝑋'()
log

2
3
𝑋)*+!
ℎ 	− 2

3𝛿𝑄
𝑑𝑄
𝑑𝑛

2
3
𝑋'
ℎ + 2 3	− 1

9𝜋𝛿𝑄&
𝑑𝑄
𝑑𝑛

2
3
𝑋'
ℎ − 2

3𝛿𝑄
𝑑𝑄
𝑑𝑛

2
3
𝑋)*+!
ℎ + 2 3	− 1

9𝜋𝛿𝑄&
𝑑𝑄
𝑑𝑛 ,&

,'()*

Dynamic TT is faster than static TT.

Comparison of  the analytical transit time with 
simulation



Comparison of  the analytical transit time with 
simulation



Distribution Preparation

To compare the transit time of  particles in the upper and lower 
band just outside the separatrix, an initial distribution was 
prepared. 

Distribution preparation could be challenging and time consuming 
since we require an infinitesimally thin slice of  particles.

To achieve this, the distribution was prepared by squeezing the 
tune by 0.000128 (equivalent of  about 200 turns worth of  tune 
change). 

This was achieved by assigning particle ID to each particle and 
backtracking the extracted slice. 

# of  extracted particles ~ 600,000



Particle TT in upper and lower slice

To compare the transit time of  particles in the upper and lower 
band just outside the separatrix, an initial distribution was 
prepared. 

Distribution preparation could be challenging and time consuming 
since we require an infinitesimally thin slice of  particles.

To achieve this, the distribution was prepared by squeezing the 
tune by 0.000128 (equivalent of  about 200 turns worth of  tune 
change). 

This was achieved by assigning particle ID to each particle and 
backtracking the extracted slice. 

# of  extracted particles ~ 600,000



Particle TT in upper and lower slice



Particle TT in upper and lower slice

How does the simulation compare to 
analytical expression?



Prediction = 37 turns
Simulation = 33 turns

Simulation = 33 turns

Prediction = 81 turns
Simulation = 84 turns

Analytical Calculation vs Simulation 



Prediction = 38 turns
Simulation = 33 turns

Simulation = 33 turns

Prediction = 153 turns
Simulation = 156 turns

Analytical Calculation vs Simulation 
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Future Directions

• Compute the analytical histogram for all the extracted particles and compare 
against the histogram gotten from tracking simulation.

• Derive an expression for a truer Hamiltonian that contains higher orders in 
𝛿𝑄,	derive the equations of  motion, derive the transit time and compare it against 
the Kobayashi Hamiltonian transit time.

• Investigate the effects of  intensity dependent effects on transit time (and how one 
could incorporate space charge in the SX Hamiltonian) and compare with space 
charge tracking numerical simulations.

• Investigate ways of  validating transit time not just through tracking but with the real 
beam.
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THANK YOU


