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Abstract

The Laser Interferometer Space Antenna (LISA) Pathfinder experiment successfully demon-

strated that a future gravitational wave detector in space is possible with current technology.

Results from a selection of the many experiments performed by this state of the art gravity

gradiometer are presented in this thesis.

In the first half, groundwork for projection of test mass charging to the LISA mission will

be provided by an analysis of the Pathfinder radiation monitor data. To do this, an existing

GEANT4 model for the monitor is developed and a new component representing the on board

processing of signal hits added.

The second half of this thesis relates to fundamental physics with gravity gradiometers, with an

emphasis on measuring the gravitational constant in space. The measurements will be presented

with arguments for a number of improvements so that future gradiometers can improve on the

results outlined in this work.
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Chapter 1

Gravitational Wave Astronomy

1.1 Introduction

The practice of Astronomy as a tool to study the universe beyond our immediate planet is

thought to have existed throughout the history of the human race. From neolithic relics deter-

mining solar position in the year to modern telescopes observing distant astrophysical objects,

human beings have found many ways to gaze at the stars and contemplate the dynamics govern-

ing their motion and the mechanisms enabling their existence. Beginning as a method to predict

the seasons for harvests, astronomy has flourished in tandem with sociological, geographical

and religious movements in history.

By watching celestial bodies move through the sky, astronomers have developed the concept of

gravitation from a simplistic model to a more concrete description of the mechanics of the solar

system and at cosmological scales. More recently, these laws have been united with advances

in geometry to form the General Theory of Relativity (GR) [48][49], and with this theory came

the prediction of a new kind of radiation: gravitational waves (GWs). Over a century on,

technology has advanced enough to reach the signals from these waves, heralding the beginning

of gravitational wave astronomy.

Humans have gazed at the universe with a variety of instruments all designed to collect electro-
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magnetic radiation. Propagating as minute ripples in the fabric of space-time itself, GWs allow

an observer to now ‘listen’ to the universe, adding an extra dimension of information gleaned

from astrophysical objects. Many detectors have been proposed to measure this radiation, each

targeting a different frequency range arising from a variety of sources. Some of these sources

have electromagnetic counterparts, which presents yet another dimension to be explored in

which information relating to the gravitational universe can be linked to electromagnetic phe-

nomena.

Gravitational radiation was one of the final cornerstone predictions of GR to be measured.

Following the results of aLIGO in 2016 [5], verifying their existence constituted a major success

for GR and the beginning of a vast and rich new field through which the universe can be

observed.

1.2 Gravitational Waves

Although GWs were first formally predicted by GR, they were alluded to before the theory was

introduced. Comparisons were drawn between the inverse-square law in both gravitation and

electromagnetism [69][101], leading to the idea of an accelerating mass producing gravitational

radiation, in the same way that an accelerating charge will produce electromagnetic waves. It

would seem that moving from inertial to non-inertial motion would be the key to emitting GWs.

In his 1915 and 1916 articles, A. Einstein introduced the concept of using a manifold, a collection

of points in a set, to describe four dimensional space-time. This revolutionized the way gravity

was thought about as now space and time stood with equal weight instead of the previous

‘3+1’ approach of classical mechanics. Arguably the most important idea was that time is

not absolute but relative to the observer; it is another coordinate indicating position in the

manifold.

GR stipulates that space-time can be fully and uniquely described by a four dimensional,

pseudo-Riemannian manifold that is minimally coupled to the stress-energy tensor. That is to

say, a manifold in which distances between points, angles between vectors, etc., are described by
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a metric gµν , where µ, ν ∈ {0, 1, 2, 3} – corresponding to time and to three spatial coordinates,

respectively – for each point in the manifold. In the Einstein Field Equations 1.1, curvature of

the space-time, encoded in gµν , couples to matter to first order via the curvature (Ricci) tensor

Rµν together with the curvature (Ricci) scalar R = R(gµ,ν), where R = gµνRµν and gµν is the

contravariant (dual) metric tensor of the space-time. This leads to the connection between

mass and the curvature of space-time stated in the Einstein field equations

Gµν = Rµν − 1
2
Rgµν =

8πG
c4

Tµν (1.1)

where c is the speed of light, G is the Newtonian constant of gravity (= 6.674(1) × 10−11

m3kg−1s−2), and Rµν is a function of the metric. Tµν is the stress-energy tensor, which describes

the distribution of matter as its components are related to density and pressure.

Einstein showed that GWs naturally follow when considering the metric far from a massive

source that warps the space-time around it in a particular way. He linearized the metric,

indicating a large distance far away from a very massive body, and found that the signal

strength and shape hµν depends on a quadrupole tensor Iµν of the source. This link demands

that the source dynamics be non-symmetric orbital motion in order to produce this radiation,

for example a pair of co-orbiting black holes or an asymmetric spinning neutron star. Once

emitted, the radiation propagates to the observer in the form of a small, wave-like perturbation

to the flat background space-time with Minkowski metric ηµν . Putting these together, and

denoting the distance between the source and observer by r, and spatial indices using roman

letters j, k, l,m ∈ {1, 2, 3}, the equations describing the radiation become

gµν = ηµν + hµν , hjk =
4G
rc4

(Ïjk − 1
3
δjkδ

lmÏlm); Ijk =
1
c2

∫

d3y T00yjyk. (1.2)

Here, hjk is the time-dependent strain of space, and Ïjk − 1
3
δjkδ

lmÏlm is the second derivative

with respect to coordinate time t of the mass quadrupole tensor of the source of gravitational

waves: this tensor vanishes if the source possesses spherical symmetry. Ijk = 1
c2

∫

d3y T00yjyk

is the time-dependent moment of inertia tensor of the source, where T00(y, t) is the time-time

component of the source’s stress-energy tensor in equation 1.1, and d3y is an element of the
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source’s volume.

Therefore, T00(y, t) is the mass-energy density (i.e. energy per unit volume) of the source, such

that d3y T00(y, t)/c2 is a mass element of the source with coordinates (yj, yk) local to the source

and measured from its centre of mass. Thus, d3y T00(y, t)yjyk/c
2 is the second-moment of that

mass element about the source’s centre of mass; and so the diagonal tensorial components

Ijj =
∫

d3y T00(y, t)(yj)2/c2 are the (time-dependent) ‘moment of inertia’ components of the

source’s tensor of inertia, while the Ijk =
∫

d3y T00(y, t)yjyk/c
2 (j 6= k) are its (time-dependent)

‘product of inertial’ components. Equation 1.2 shows that hjk has components that decrease

in amplitude very slowly with distance r – as 1/r in fact. Therefore, gravitational radiation is

long-range and vary with the retarded time t− r/c.

The importance of equation 1.2 is that anything that changes both periodically and asym-

metrically in time will produce radiation, which will be experienced by a distant observer as

strain h = δl
l

on a distance l. Radiated energy will propagate at a frequency that depends on

the features of the source dynamics, and as a feature of the space-time itself, un-obscured by

foreground sources. In this way it is a much cleaner source of information compared to elec-

tromagnetic radiation, although typical strains can be as low as 10−22. This makes detecting

GWs much more difficult than observing light from distant astrophysical objects.

As the weak field wave passes through a ring of test particles, disturbances occur in unique

polarizations. Practically speaking, there are two polarizations of the detected gravitational

waves, as illustrated in Figure 1.1 taken from ref [70].

There are two transverse polarizations in GR, shown above and below the time axis in Fig-

ure 1.1. These are usually denoted by h+ and h×, with the received radiation always being some

linear superposition of the two. For example, GWs emitted along the rotation axis of a binary

Neutron Star (or Black Hole) system are polarized both h+ and h×, with equal amplitude and

phases separated by 90°, so that the resulting radiation is circularly polarized. On the other

hand, GWs emitted in the orbital plane of such a system are linearly polarized (h+, say). These

modes cause the ring of particles in a plane perpendicular to the direction of travel to modulate

back-and-forth in a plus and cross fashion, as illustrated in the drawings.
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Figure 1.1: Einstein’s GR predicts two possible polarization states of gravitational radiation,
as shown above and below the time axis and denoted by h+ and h× respectively. These polar-
izations have been detected [4, 6, 7, 8, 3, 9]. When passing perpendicularly through a ring of
test masses, they cause the transverse deformations shown with period T. Figure taken from
ref [70].

The general waveform observed can be complicated to solve for, but encodes information about

the source that can otherwise not be found using electromagnetic telescopes. This is invaluable

when considering cases where no electromagnetic radiation is emitted, for example with binary

black holes.

1.3 Sources of Gravitational Radiation

The full GW spectrum reaches from periods of the age of the universe to around hundredths

of a second, where limitations of astrophysics impede faster rotations. Between these limits

exists a diverse zoo of potential sources encoding a variety of information about astrophysics

and cosmology.

The lowest energy sources are cosmic microwave B-modes. These arise from quantum fluctua-

tions in the early universe. Many orders of magnitude above this, around the 10−8 Hz level, are

longer waves from extremely massive compact objects, such as supermassive black hole binaries

found in the center of galaxies.
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Characteristic strains as low as those listed in the example plot illustrate the level of technology

required to measure them. Einstein himself deemed the signals too small to ever be within

experimental reach. A century on, modern physics has exploded in advances, making precise

measurements of distances and times within the requirement to hear these signals.

1.4 Detectors

From the 1950’s to the 1970’s, many advances were made in analytic solutions for the Ein-

stein field equations. Coordinate systems were developed that removed singularities that

had rendered one of the first solutions by Schwarzschild inconsequential to contemporary as-

tronomers [84] [112]. Explanations for the existence of compact objects emerged [39][55], and

soon the first pulsar was observed [72][98]. As the field of GR grew, so too did the desire to

measure gravitational radiation.

1.4.1 Resonant Bar Detectors

Through the late 50’s and early 60’s, J. Weber developed an idea to use energy deposited by

GWs to excite the normal modes of a cylindrical bar. In essence, a resonant reaction to the

passing radiation [128].

He argued that the excitation would be connected to the Riemann curvature tensor, which

encoded the effects of the passing GW. Although he was never successful, despite several claims

that he had been, these detectors still exist today. A more modern example is the NAUTILUS

experiment operating at below 1 K, and searching for 103 Hz GWs [16].

Although there have been several generations of this experiment, it has largely diminished in

popularity. State-of-the-art equipment was applied to the original design but sensitivities below

h ∼ 10−19 were never reached.



30 Chapter 1. Gravitational Wave Astronomy

1.4.2 Pulsar Timing Arrays

At the other end of the GW spectrum are pulsar timing arrays (PTAs), indicated in Figure 1.2,

such as EPTA [83] (European Pulsar Timing Array), IPTA [73] (International Pulsar Timing

Array which includes EPTA), and SKA [42] (Square Kilometer Array, planned for 2018-2030)

for the three generations of arrays. The long periods of waves detectable by these arrays belong

to relic GWs from the early universe in a stochastic background, and supermassive black hole

binaries thought to populate the centres of galaxies.

As these long transient waves make their way through the universe, they disturb binary pulsars

in quasi-random, correlated patterns giving rise to a lighthouse effect. As pulsars rotate highly

regularly their radio loud jets periodically come in and out of contact with the Earth. PTAs

timing these ‘blips’ from thousands of light-years away are sensitive to disturbances, say from

a passing GW, in the regular signals received.

One of the most famous examples of Pulsar timing is the Hulse-Taylor binary. Timed since the

70’s, the orbital decay of this source has been found to agree to a remarkable level with the

predictions set by GR [114].

1.4.3 Ground Based Interferometers

In general, interferometers measure changes in the time it takes a laser to travel a given distance.

Using the universality of the speed of light, any deviation in the time of flight would indicate a

change in the distance travelled. Periodic deviations would therefore indicate a passing wave,

extending and contracting the length sinusoidally.

Changes in time of flight are measured using a Fabry-Pérot interferometry method, where a

laser beam is split, and then sent to two distant mirrors before returning. If there is any

difference in arm length travelled by the two parts of the split beam, then their phases will

be different on recombination. The resulting beam therefore has a power relative to the initial

beam that is a function of relative changes in the detector arm lengths.
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Given the polarizations of passing GW radiation, a wave passing normally to the plane con-

taining the detector arms will disturb the arm lengths out of phase to one another. This then

causes the recombined laser power output to modulate at a frequency equal to that of the

passing wave, allowing a detection to be made.

Ground based detectors are fairly limited in size by area available. Most extend several kilome-

ters, with several passes of an arm length to extend the effective arm length and amplify signals.

Current ground based detectors include GEO600 [87], Virgo [35], and aLIGO [85] (previously

LIGO). In order to localize a source on the sky, it is necessary to have more than one detector

to triangulate a signal, including the use of time delays between detectors at different locations.

As a result, detectors listed here work together as a larger collaboration.

Recent results from these experiments include the first detection of a GW signal from a Black

Hole-Black Hole ring-down and merger, designated GW150914 [5]; and, more recently, four

further strong GW signals from Black Hole-Black Hole mergers: GW151226, GW170104,

GW170608, and GW170814 (plus one further, probable, but weaker, signal: LVT151012) [3] [4]

[6] [7] [8]. Moreover, on 17th August 2017, a signal from a much more local source was observed:

a corporeal Neutron Star-Neutron Star ring-down and merger (GW170817), which was accom-

panied by an electromagnetic (gamma-ray) pulse detected by the Burst Monitor on the Fermi

Gamma-ray Space Telescope (formerly GLAST). This gamma-ray pulse arrived just 1.7 s after

the GW merger signal following a passage through the cosmos of 130 million years. Indeed this

merger event was observed subsequently across the electromagnetic spectrum, opening the way

for true multi-messenger astronomy. This event has shown that the speed of gravitational waves

is equal to the speed of light – as predicted by Einstein’s GR – to within 5 parts in 1016 [9].

All of the GW sources above varied in their final merged masses from 2.7 M� to 62 M�, where

M� is the mass of the Sun. Future ground based interferometers, such as KAGRA [106] (which

will incorporate lessons learned from the decommissioned experiment TAMA [10] and cryogenic

mirrors) and LIGO India [75], will join this collaboration in the next few decades, increasing

the localization statistics and overall sensitivity.

As first generation detectors move to their evolved, second generation updates, for example
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LIGO to aLIGO, interest has also been shown in developing a third generation of detectors.

The Einstein telescope (ET) [102], which would extend much further to 10 km arms and boast

cryogenically cooled mirrors, would enjoy a substantially enhanced sensitivity. This is thanks

in part to an additional arm and isolation from various noise sources by placing the detector

underground.

1.4.4 Space Based Interferometers

As ground detections accumulate, population statistics for stellar mass binary compact objects

are moving to the higher end of a priori predictions. This has substantial knock on effects as

attention is refocused on the statistics of other sources. As the source frequency is lowered from

tens of Hz to Hz and even mHz, wavelengths increase accordingly. Reaching as far as millions of

kilometers in the case of LISA targets, it is essential to correspondingly increase the arm length

of these detectors. The only way to provide enough space is to move outside the confines of the

Earth, and perform interferometry between pairs of satellites rather than suspended mirrors.

Fortunately, the added advantage of moving to space is isolation from spurious gravitational

disturbances on the Earth such as seismic activity.

Unlike the signals for ground based detectors lasting fractions of a second, sources for space

based detectors have longer periods reaching up to hours. Long-term monitoring of signals

entering and leaving the sensitive axis as the detector orbits around the Earth and/or Sun then

enables localizations to be made.

Currently there are no operational detectors in space, but plans are well underway with some

detectors already adopted by various space agencies around the globe. The example detectors

listed in the middle region on Figure 1.2 include LISA [43] (previously eLISA), ALIA [64], and

proposed second generation experiments like DECIGO and the Big Bang Observatory [132].

Not shown in this diagram is TianQin [88], a planned observatory targeting 10−1-100 Hz in an

Earth orbit with similar experimental set up to LISA.

Second generation space detectors aim to increase the number of detectors operating with cor-
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related signals. As more interferometers join the measurement, sources from ground based

detectors are captured by the broadened sensitivity band. Proposed experimental improve-

ments deepen the bands, allowing the detection of relic waves from the early universe. These

observatories are many decades away though, and present many technological challenges to be

met in the years to come.

1.4.5 Laser Interferometer Space Antenna

The Laser Interferometer Space Antenna, or LISA for short, is a joint European Space Agency

(ESA) and NASA space based detector. Its three arms extend 1-5 × 106 km depending on

design in an equilateral triangle, and allow two interferometric measurements to be made si-

multaneously, improving signal fits.

Each spacecraft will house a pair of test masses belonging to different measurement arms. The

typical strains h that LISA will target is of the order 10−18-10−20, meaning it will be sensitive

to disturbances around 10−9-10−12 m. In contrast to ground based detectors that measure

changes in absolute distance travelled by light, LISA will measure disturbances to geodetic

motion between pairs of identical test masses.

Figure 1.3 shows the proposed LISA orbit according to the recent proposal document to the

European Space Agency for the third large scale mission selection [1]. The spacecraft constella-

tion will follow an Earth trailing trajectory, moving along a geodesic that allows a large portion

of the sky to be scanned over the course of a year.

The arm length sets the base wavelength accessible to the detector. Sitting in the mHz region

of the GW spectrum, a host of sources are within range for LISA. Included in the proposal

was an account of the various sources available and the science that can be done with them.

Figure 1.4 shows the plot used in the document to illustrate how these sources evolve in time.

The inspiral, chirp and ringdown of massive black hole Binaries (MBHB) are shown by the

yellow-red lines, where colour coding indicates frequency migration through the merger event.

Resolvable stellar mass binaries, denoted by the violet points, include known sources in the
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Figure 1.3: Proposed orbit for LISA [1].

galaxy giving rise to ‘verification binaries’. The green line indicates the sensitivity of the

experiment, while the black dashed line is the sum of the detector base sensitivity and the

unresolvable binaries that make the galactic background noise. Typical EMRI signals are

shown as red lines that indicate the harmonics of the pulsing signal. As the much lighter

(around stellar mass) compact object orbits a supermassive black hole, it moves on an eccentric,

precessing orbit resembling a roulette curve in three dimensions to a distant observer. Due to

this complicated orbit, the GW signal occupies a region of frequencies and beats back and forth,

rather than an accelerating migration from one region of the spectrum to the next.

Also included in Figure 1.4 are typical sources detectable by ground based detectors such as

LIGO. These lighter compact object binaries originate in the LISA band and migrate to higher

frequencies where their chirp is detected. This poses an interesting opportunity to study wave

signals, for example from the back prediction of the first detected event in September 2015

(blue, solid line), across multiple detectors.

LISA sources can be used in a variety of ways to provide astronomy with new information

about the Universe. Merger events detail the history and evolution of black holes in the uni-
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Figure 1.4: Example sources measurable by LISA [1].

verse, which can also be linked to galaxy formation as supermassive black holes are thought

to populate the centres of galaxies. EMRIs provide a high energy laboratory for tests of grav-

itation, with orbiting stellar mass compact objects tracing out the gravitational regime they

move in. LISA can provide cosmological information too, providing insights to gravitational

luminosity distances which can shed light on curvature. The possibilities indeed seem endless

as continued research on this experiment uncovers more applications of LISA detections.

1.5 LISA Pathfinder

The sensitivity required to achieve a LISA mission posed a challenge to modern physics. In

order to reach the typical strains of LISA sources, two test masses (TMs) per interferometer

arm would need to be in drag free acceleration with noise disturbances lower than parts in 1015

ms−2Hz−1/2 in the mHz region. In other words, the spacecrafts would need to follow the test

masses, which would in turn need to move independently of the spacecrafts in the sensitive

axes.

In order to test that available technology is capable of achieving this, the European Space

Agency proposed a smaller scale, proof of concept mission: LISA Pathfinder [126]. This exper-
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iment, launched in December 2015 and decommissioned in July 2017, demonstrated free-fall

in one direction at fms−2, over two orders of magnitude better than some of the preceding

experiments. Each source of noise jittering the TMs at mHz frequencies was characterized by

dedicated experiments.

Within the LISA Technology Package (LTP), the science payload on Pathfinder schematically

shown in Figure 1.5, two 5 × 5 × 5 cm3 gold platinum alloy TMs weighing around 2 kg each

were enclosed in individual housing structures, and separated by 36.7 cm with an optical bench

in between. The whole LTP was attached to the spacecraft, and supported by struts. Optical

windows, one on each housing pointing towards the optical bench, allowed a laser to pass

between the two test masses for the interferometry measurements.

Figure 1.5: Schematic diagram of the LISA Technology Package, the science payload for
Pathfinder. Taken from ref [51].

Mercury lamps illuminating both TMs and housings allowed charges to be moved between the

TMs and spacecraft for discharging and experiments [65]. Sensing and actuation electrodes in

the housing walls applied audio frequency capacitive forces to the TMs to suspend and measure

their positions in six degrees of freedom per TM.

Thermal sensors and heaters throughout the LTP performed thermal experiments [60], and coils

placed near the TMs induced magnetic fields for experiments that estimated TM magnetic prop-

erties and disturbances to the magnetic environment [46]. Every component mounted on the

structure was carefully weighed, and a compensation mass placed to balance the gravitational
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forces at each TM to within requirements.

Following several burns and an injection into its quasi-stable, Lissajous orbit, the spacecraft

took six months to orbit the first Lagrange point (L1), located between the Earth and Sun

with solar orbital period of one year. Micro-Newton thrusters on the outside of the spacecraft

continually compensated for radiation pressure from the Sun which would otherwise move the

spacecraft off orbit. Figure 1.6 shows a cartoon of the manoeuvre, injection and final orbit

around L1.

Figure 1.6: LISA Pathfinder orbit following a Lissajous trajectory around the first Lagrange
point where the orbital period around the Sun exactly matches the orbital period of the Earth
around the Sun. Notice the ‘slingshot’ manoeuvres around the Earth to minimize fuel con-
sumption. Taken from ref [50].

Through the mission, noise runs were performed that measured the differential acceleration

between the TMs along the TM-TM axis. One of the TMs, labeled TM1, was used to control

the satellite drag free system while the second, labelled TM2, was effectively ‘nudged’ along

to follow the geodesic of TM1. Reducing the noise of the relative acceleration, ∆gx, to below

10−15 ms−2 at 1 mHz was the main science goal of the mission. Doing this would mean that if

achieved in LISA, the sensitivity curve in Figure 1.4 would be reached.

In February 2018 a final, end of mission performance was reported by the collaboration [14].

The model for the noise accounted for by individual experiment campaigns was reported to
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follow the relation

∆g(t) = ∆ẍ(t) + ω2
2∆x(t) + ∆ω2

12x1(t) − gc(t) − gΩ(t) + δyLΩ̇y − δzLΩ̇z (1.3)

where ∆gx(t) is the primary science signal from LPF – the differential force per unit mass.

∆x(t) = x2(t) − x1(t), and x1, are the differential displacement of TM2 relative to TM1 as

measured by a dedicated heterodyne laser, and TM1 relative to the spacecraft, respectively.

gc(t) is the known time-series, controlling force per unit mass applied electrostatically to TM2,

in order to slave it to follow TM1 via a slow controller with unity gain around 1 mHz. The

spacecraft also follows TM1, by monitoring x1(t), leaving TM1 drag free as no forces are applied

to it in the TM-TM axis. In practice, ∆ẍ(t) in equation 1.3 was calculated from the measured

values of ∆x(t). gΩ is the centrifugal force picked up by the TMs due to a noisy spacecraft

angular velocity Ω. The restoring force per unit mass, or stiffness, parameters −ω2
1 and −ω2

2

apply to TM1 and TM2 respectively, where ω1 and ω2 are the respective natural resonant

angular frequencies about their centred positions. ∆ω2
12 = ω2

2 − ω2
1 in equation 1.3 is therefore

a differential stiffness that couples spacecraft motion into ∆gx. The sum of the last two terms

in equation 1.3 represents the x component of the Euler force per unit mass due to a noisy

Ω, where L is the total distance between the test mass centres of mass, and δy,z are fractional

displacements of the TM away from the alignment with the sensitive x axis (in the TM-TM

direction), but measured along the alternate axis: δy ≡ (∆z/L) and δz ≡ (∆y/L). Note that

dots refer to numerical time derivatives of the time series data.

System identification experiments were run at each actuation force configuration, ranging from

ultra ultra ridiculously low (UURLA) with 50 pN actuation amplitude to ‘Big’ with 5 nN

amplitude, to measure the stiffness parameters from the response of the feedback system to

injected electrostatic forces on top of the actuation. The star tracker monitored the relative

movement of distant stars to give the spacecraft angular velocity, while optical metrology

readouts gave the relative displacements of TM1 to TM2 and TM1 to the spacecraft.

As detailed in the first results article, there are additional parameters that must be investigated

and fit for [13]. An example of this was the gain on the electrostatic forces applied to each TM,
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which were slightly different to the requested forces by a factor just over (under) 1 for TM1

(TM2). Details of these fits and a more in depth model used can be found in the article.

Figure 1.7 shows a plot of residual relative TM-TM acceleration ASD, ∆S1/2
∆g , from the article

indicating the success of the instrument. Not only did it exceed its requirements (darker grey

shaded region), but also the requirements for LISA (lighter grey shaded region) to be able to

detects its target sources. The two curves show a noise run from April 2016 (blue), and another

from February 2017 (red) highlighting the improvements made in this time.

Figure 1.7: Noise performance of Pathfinder from mid-way and end of mission, along with the
pre-flight requirements and sensitivity for LISA for comparison. Taken from ref [14].

Pathfinder has demonstrated that the concept of a LISA mission is within the scope of tech-

nology available today. However, there are additional difficulties to consider when moving from

Pathfinder to a full LISA mission. For example, the layout of each spacecraft as the TMs

are now skewed relative to one another rather than in line. As LISA moves through phase A

of production, these difficulties will be addressed in tandem with outstanding questions and

lessons learned from Pathfinder.

The analyses presented in this thesis have used the LISA Technology Package Data Analysis

(LTPDA) toolbox in Matlab to process data. All plots have been produced using the plotting

functions there. Unless explicitly outlined, all fitting algorithms have been done using various

pipeline steps in the toolbox that were developed pre-flight for operations.

This thesis presents work done for several experiments performed on Pathfinder. Chapters 2

and 3 relate to the radiation environment that Pathfinder experienced at L1, detailing how work
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on this can be incorporated into continued research on TM charging. Chapters 4 and 5 explore

the lessons that can be learned from Pathfinder in the context of designing future experiments

targeting fundamental physics in space.



Chapter 2

Outlining the Radiation Monitor

Model

2.1 Introduction

One source of acceleration noise on LISA Pathfinder is stray electrostatic forces between the

faces of the test masses and the electrode housings. The capacitances between the surfaces cause

additional parasitic forces to arise as a test mass becomes charged due to incident energetic

particles. The contribution of TM charging the electrostatic forces varies proportionally with

the TM potential due to the charge accumulated, and contributes roughly as a 1/f function

in frequency space with the amplitude proportional to the total TM charge. A dedicated

experiment with exaggerated TM potential of 1 V significantly increased the noise below around

5 × 10−4 Hz in Figure 1.7, even during nominal science runs a TM potential never more than

0.2−0.3 V produced a visible change in the low frequency noise. It is essential then to be able to

accurately measure charge, and the rate at which charge accumulates, while also understanding

the processes that cause charging to happen. This will then allow an accurate projection of

this source of noise to LISA.

Sources of energetic particles that can cause charging to occur include solar energetic particles

(SEPs) and Galactic Cosmic Rays (GCRs). SEPs, ranging in kinetic energy from a few keV

41
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to several GeV, originate as a result of solar flares and coronal mass ejections. SEPs are, for

the most part, not energetic enough to penetrate the spacecraft and reach the test masses

as the majority of SEP protons have kinetic energy in the few MeV range [122]. Conversely,

GCRs are a ubiquitous source of energetic particles originating outside of the galaxy, likely as

a result of acceleration by supernovae and other shock mechanisms [22][23]. The flux of GCRs

presents a source of continuous charging at a variable rate depending on the activity of the

Sun’s magnetic field, as the majority of GCR particles have kinetic energy above hundreds to

thousands of MeV.

During the Pathfinder mission, test mass charging rates were measured at a variety of test mass

potentials and suspension forces using a method detailed in section 2.7. In order to project the

rates for LISA over different times of the solar cycle and evaluate the associated acceleration

noise, it is important to understand the processes that cause TM charging, and how they relate

to changes in GCR flux. This can be accounted for by correlating measured charging rates

with GCR flux over the Pathfinder mission, which requires accurate measurements of the flux

through the mission.

Energetic particles from GCRs pass through the SC and interact in several ways to deposit

charge. This can be through ionization of electrons to or from the SC or TMs, or through

nuclear interactions that cause secondary particles to shower onto or off of the TMs which also

deposit charge. Furthermore, the stopping distance for a proton with kinetic energy around

100 MeV is comparable with the thickness of the TMs, allowing positive charges to also be

deposited directly. Variations in the charging rate are directly linked to variations in the Sun’s

magnetic field, which can modulate the lower energy GCRs entering the heliosphere.

The Sun is a spectral class G, main sequence star with an interior comprising of three main

layers [113]. The central core reaches from the center of the star to a quarter of the interior

radius. This is where the Sun generates the majority of radiation through thermonuclear fusion

of protons to fully ionized helium, and heavier elements via the carbon-nitrogen-oxygen cycle.

The next layer, reaching out to around 70% of the interior radius, is the radiative zone where

photons transport energy by absorption and re-emission. The outer region of the Sun is a
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convective layer where the Sun’s magnetic field is generated by the dynamo process [40]. These

processes create small areas of magnetic over-densities which suppress radiation leaving the

Sun’s interior, giving rise to surface features like sun spots. These features therefore indicate

regions where the magnetic field emerges and submerges as the field lines connect to form

open and closed loops. The creation of these magnetically induced features rests in differential

rotation and cellular-like motion of the plasma in the convective layer, in contrast to the near

perfect solid body rotation of the core and radiative layer [77].

The overall consequence of the dynamo process is an 11 year solar cycle due to the ‘rolling’ and

‘rotating’ flux tubes that source the Suns magnetic field in the convective layer. Most notably,

this periodic movement of tubules gives rise to the ‘butterfly’ diagram that gives the latitudinal

dependence of sun spots as a function of time [90]. This diagram illustrates the correlation

between solar surface activity and the underlying process creating the magnetic field.

From the surface of the Sun, the magnetic field threads the solar atmosphere, which is comprised

of four main layers. The first is the photosphere, where the surface features of the Sun are

observed [77]. These include Sun spots as well as solar faculae and granules, which are linked

by closed magnetic loops originating in the convective layer below [76]. Other magnetic field

lines extend through the chromosphere, transition layer and out through the large corona to

meet the magnetic field of the local galaxy, forming open field lines. The polarity of the

magnetic field generated within the convective layer causes these open fields to asymptotically

approach one another at a surface defined as the heliospheric current sheet. As particles leave

the surface of the Sun, they form a wind that extends out through the solar atmosphere. Fast

and slow streams occur depending on the latitude of the sun and the surface features that alter

the temperature, magnetic field and composition of the wind.

The solar wind dilutes in density as it propagates outward until it has a comparable momentum

per unit volume as the radiation from the galactic centre. This defines a topological boundary

called the heliopause, and marks the limits of the heliosphere. It is at this layer that the open

field lines join the galactic magnetic field lines. This layer therefore also defines the limit of the

region around the Sun where the solar magnetic variables dominate the attenuation of incoming
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GCRs from outside the heliosphere. Outside this dynamic limit, GCR flux is assumed to be

constant. As particles enter the heliosphere they are attenuated by the magnetic field in several

ways that disproportionately affect lower energy particles compared to those of higher energy.

High energy GCRs are unaffected by changes in the solar magnetic field. In contrast, lower

energy GCRs are scattered by features in the field. Their mean free path through the solar

system is decreased, causing them to attenuate in flux before they reach 1AU. Connecting the

flux with solar activity means solar minima correspond to GCR flux maxima and vice versa.

At the time of the Pathfinder mission, the Sun was entering the end of the current solar cycle,

corresponding to higher fluxes of lower energy GCR particles.

An additional complexity to consider is the Sun’s rotation of around 27 days. As it rotated,

the heliospheric current sheet propagated out in a spiral pattern, causing Pathfinder to cross

it many times through the mission and experience a change in polarity of the magnetic field,

which attenuated the solar wind slightly differently. The overall effect is a periodic change in

the net measured GCR flux on a harmonic period of the Suns rotation, superimposed on the

background flux with a gradual rise as the solar minimum is approached.

The origins of GCRs are thought to be linked to supernovae and possibly active galactic nuclei.

Their composition has been measured both on ground and in space, and found to primarily

be composed of protons (around 90%), helium nuclei (9%) and helium3 nuclei [2]. Other

components contributing almost 1% include electrons, nuclei of heavier elements and a very

small proportion of simple, stable antimatter particles like positrons and anti-protons. Each

component has a different flux spectrum characterized by a peak at several tens to hundreds

of MeV, depending on the time of the solar cycle, and a tail asymptotically approaching zero

at higher energies. In the case of Pathfinder, there is a hard cutoff in the dynamic range of

energetic particles able to reach the TMs at around 70 MeV mainly due to shielding by the

inertial sensor and vacuum chamber. Mass constraints on the satellite meant that no more

shielding could be applied.

In order to correlate this activity with the measured TM charging rates, it is important to

find a parameterization for the GCR flux. Fits can then be performed, and are reported in
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chapter 3, to estimate the flux at different times based on in situ measurements of radiation

on Pathfinder. This chapter outlines the model used to take the measured deposited energy

spectra and convert them to an estimate of the GCR flux. Although the origins of GCRs and

their attenuation in the heliosphere are complex and not well defined, it turns out there is a

relatively simple way to model the flux using just one parameter and an assumption about the

interstellar flux beyond the heliopause.

2.2 Solar Attenuation Parameter φ

The solar attenuation parameter φ was originally formulated by Gleeson and Axford [63] while

considering the transport of particles in magneto-hydrodynamic systems. This was based on

the work by Parker in 1965 [97] which aimed to solve the transport equations for the diffusion

of charged energetic particles in a flow threaded with a magnetic field, where discontinuities

carried by convection scattered the incoming particles.

This parameter is now used as a proxy for solar magnetic features attenuating GCR particles

as they propagate through the solar wind. The model assumes a constant flux outside the

heliosphere called the local interstellar spectrum (LIS). Burger et al. [33] hypothesized a form

for the LIS based on a simulation of mono-energetic particles through a slab with turbulent

magnetic field by Bieber et al. [26].

A more up-to-date outline of the parametrization, along with monthly values for φ since 1936,

are reported by Usoskin et al. [123] A more detailed outline of the method is given by Usoskin et

al. [124], which explains that, with some simplifying assumptions, Parker’s transport equation

can be solved to find an estimate for the LIS. In essence, this becomes an integration from the

measured spectrum at 1AU out to the heliopause.

As the Voyager spacecraft pass the outer reaches of the heliosphere, the LIS of cosmic rays is now

being refined [27]. The most up to date version of the LIS, in units of m−2s−2sr−1(GeV/nucleon)−1,
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for protons and helium nuclei (including isotopes) with kinetic energy E, in GeV/nucleon, are

JLIS,P (E) = 3719.0
1
β2
E1.03

(

E1.21 + 0.771.21

1 + 0.771.21

)−3.18

JLIS,He(E) = 195.4
1
β2
E1.02

(

E1.19 + 0.601.19

1 + 0.601.19

)−3.15

(2.1)

Including this in the solutions for the transport equation, and labelling for a species i of cosmic

ray particle, the flux at 1AU can be written in terms of the modulation parameter φ as

Ji(E,Φi) = JLIS,i(E)
E(E + 2Er)

(E + Φi)(E + Φi + 2Er)
(2.2)

where Φi = (eZi/Ai)φ and Er = 0.938 GeV/nuc.

Taking the high energy limit of equation 2.2 where E >> (Er,Φi), then Ji(E,Φi) ≈ JLIS,i, and

JLIS,i ≈ 21208.8
β2 E−2.82, which is a straight line in log − log space. In the low energy limit E <<

(Er,Φi), and assuming φ ≥∼ 100 MV, the flux becomes Ji(E,Φi) ≈ 81859.2 2Er

Φi(Φi+2Er)
E2.03, an-

other straight line in log-log space with an additive constant that is a function of the attenuation

parameter. This demonstrates that Er is a transition energy between the low and high energy

dynamics of the flux. φ changes both the transition energy and the flux of low energy particles,

while leaving the high energy region unchanged. This is expected given the high energy parti-

cles will be negligibly affected by changes in the magnetic field. For the low energy behaviour

of the LIS, taking φ = 0 before the limit, the flux becomes Ji(E, 0) ≈ JLIS,i ∼ E/β2 ∼ const.

Figure 2.1 shows some example fluxes with the LIS for both Protons and Helium nuclei. This

work uses units of MeV for kinetic energy and cm−2 for flux as the properties of the apparatus

match more closely to these units. Each spectrum is taken for a day at a time in order to

improve the statistics in each bin. The high and low energy limits of Figure 2.1 clearly show

the straight line behaviour in log-log space, with a turning point in between dependent on the

attenuation of the flux and the species in consideration.

Using this model offers a way to link the count rates measured to the flux of particles. Since there

is only one free dynamic variable, linking the space weather at the first Lagrange point to the
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for the passing particle to deposit energy in the material is through electron ionization, where

the charged particle’s electric field does work when approaching the clouds of electrons in the

outer layers of the atom. Since energy is conserved, the work done is converted to mechanical

energy knocking electrons into the conducting band of the silicon.

It can be inferred that the exact form for the energy required to stop a charged particle in

a material will be proportional to the number of charges, the electric field and some function

of the energy of the particle. The original derivation by Bethe and Bloch took into account

relativistic effects, showing the formula as

−dE

dx
=

(

ze2

4πε0

)2 4πZρNA

Amev2

[

ln

(

2mev
2

I

)

− ln
(

1 − β2
)

− β2

]

(2.3)

where the velocity fraction β = v/c, and γ = (1 − β2)−1/2, while me, ε0 and α are the electron

mass, permittivity of free space and the fine structure constant respectively. I is the average

ionization potential for the material and NA is Avogadro’s number for the atoms per mole of a

material. Lilley gives a good description of the terms in the book ‘Nuclear Physics Principles

and Applications’ [86]. Figure 2.2 shows the differential energy equation evaluated for a proton

travelling through silicon. In section 2.2, it was shown that typically protons have a kinetic

energy in the MeV range, which, according to the example plot, is the region that most efficiently

deposits energy in silicon.

An impulse is passed to the particle as it passes through the material that is governed by the

square of the transit time and the square of the electromagnetic force it experiences (∝ 1/v2 and

∝ (ze2/4πε0)2 respectively). It is also proportional to 1/m, where m is the mass of the particle,

and the density of electrons in the material ZρNA/A. The derivation, as explained by Lilley,

integrates over impact parameters of the charged particle to atoms/ions in the material, with a

minimum impact parameter governed by the extent of the particle and the atoms themselves.

These components can be seen in the form of the Bethe-Bloch formula, and so holistically the

form can be reasoned.

This expression gives the average energy loss per unit length as a particle travels through a
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These factors suggest that the deposited energy measured by the Pathfinder radiation monitor

does not follow the exact shape of the Bethe-Bloch formula, but instead samples the regions

around it. This creates a spread of deposited energy and a probabilistic relationship between

primary energy and deposited energy in the detector. Implications of this include a more

complex interplay between cosmic ray energy and test mass charging rates, and therefore an

added difficulty to the task of projecting charging rates to LISA.

In order to capture these complexities, simulations of these interactions are stochastic in nature.

The sampling process is a Monte Carlo method in GEANT4 that takes into account the particle

energy and trajectory in the probability for an interaction to occur. Furthermore, the species of

particle in consideration is accounted for in the physics list that introduces various interactions

and secondary interactions within the shielding around the detector and the material of the

detector itself.

2.4 Radiation Monitor

In order to correlate charging rates with the radiation incident on the test masses, Pathfinder

includes a Radiation Monitor (RM) that aims to estimate the dose of GCR radiation received

by a test mass, and detect any abrupt changes in the radiation environment if a SEP event

occurs. It aims to count the number of energetic particles passing through its sensitive regions,

whose shielding is similar to that around the test masses.

Energetic particles excite electrons into the conduction band of the silicon in the active area

of two Hamamatsu dual PIN photo diodes (S8576-01), as shown in Figure 2.3a, where each

electron-hole pair requires 3.55 eV to create. Conduction band electrons are then swept out of

the diodes and into the circuitry, see Figure 2.3b, by a 70 V bias applied across each diode.

This creates a current pulse, which is used to estimate the deposited energy from the primary

particle. Many particles then create a deposited energy spectrum that is dependent on, but

not equal to, the GCR flux energy distribution.

An early design document from 2006 details the dimensions and full circuitry used by the
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(a) Production photograph of a single PIN
diode recycled from the Fermi Gamma Ray
Telescope for use in the Pathfinder radiation
monitor. Two of these are stacked in a tele-
scopic arrangement with a small translational
offset in overlay. Only the larger area is oper-
ational for Pathfinder.

(b) Photograph of the electronics used to con-
vert a small burst in current from a hit within
a diode to a measured energy. Both a sin-
gles count and coincident count are measured
where a hit is recorded in one or two diodes
respectively.

Figure 2.3: LISA Pathfinder Radiation Monitor photographed before flight.

RM [29]. Figure 2.4, taken from this document, shows the schematic layout of one of the

Hamamatsu dual PIN photo diodes. Note the two silicon regions, each 320 ± 10 µm thick,

denoted by PIN diode A and B. For the Pathfinder RM, only the B diode (larger area) is

active and connected to the circuitry. However, diode A is included in the simulations here as

interactions may produce secondaries that are measurable in Diode B. Each diode is covered

in an epoxy resin to protect the silicon wafer embedded in the ceramic carrier. The full RM

includes two of these PIN photo diodes, mounted in a telescopic arrangement, inside a copper

shielding box. The monitor is then encased inside an aluminium container, and mounted to

the inside of the spacecraft.

The design document cites two main electronic noise contributions. The signal processing adds

a dark current and capacitive noise to the estimated deposited energy. This is assumed to

follow a Gaussian distribution with a standard deviation σE ≈ 3.46 keV and an offset energy

µE associated with the discriminator that is less than 2.5 keV, according to pre-flight lab tests.

Figure 2.5 shows a flow chart for the circuitry used in the radiation monitor. This takes a
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Figure 2.4: Detailed diagram, including dimensions, of a PIN photo diode. As used on the
Gamma-ray Large Area Space Telescope (GLAST), two of these diodes were selected for use on
the Pathfinder radiation monitor. Only the PIN diode B active area is used for the radiation
monitor, with the A diode inactive. Taken from the LISA Pathfinder design document for the
RM [29].
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Figure 2.5: Flow chart showing the logic from photo diode to data management unit (DMU). It
is estimated that the whole circuitry adds a total rms charge noise of around 1195e, correspond-
ing to a deposited energy rms noise of around σE ≈ 4.24 keV, using the average electron-hole
pair creation energy of around ESilicon ≈ 3.55eV. It is also noted that there is an offset energy
associated with the discriminator of less that 2.5 keV, which follows fabricant specifications.
Diagram and approximate numbers taken from the LISA Pathfinder design document for the
RM [29]

short signal from the diode and pre-amplifies, shapes, to typically 5µs, and then boosts the

voltage. Only when the rising edge of the signal from B3 or B4 reaches a re-programmed

threshold voltage, stored in B9 and B10, does the counter B14 register a hit from one of

the discriminators B5 or B6 using a logical step into the counter (not displayed in the flow

diagram). When this happens, the peak-holder B11 takes note of the active signal maximum

voltage reached through the time the pulse travels through the circuitry. The reset circuitry

then uses a capacitor to discharge the components, and resets the voltages in approximately

2µs.

When a signal passes this circuitry and is counted as a hit in both diodes, the energy deposited

in the back diode is recorded using the voltage output from B6, and called a ‘coincident’ event.

If only one diode registers a hit, the event is counted as a ‘single’ event in the counter B14, and

the singles count is incremented by one. Coincident events are usually due to either secondary

particles showering onto the second diode within a pre-determined window after the first diode

registers its hit, or a primary particle passing through the RM with the correct angle to hit
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both diodes. Singles events are stored as a time series sampled every fifteen seconds, while

coincident events are stored as a two dimensional histogram of time and energy deposited in

the ‘back’ diode every ten minutes.

Using the outline above, it is now possible to begin construction of a model for the on board

processing. This will allow the conversion of a deposited energy spectrum to an estimate for the

GCR flux on the test masses. The important parameters are the level of the electronic noise

at the time of flight and the structure of the threshold setting process. These are important

factors to take into account in the model as they will change the counts registered both in

energy and number.

2.5 Modelling Deposited Energy Spectrum

This section develops a two stage model for the simulation of cosmic rays interacting with the

radiation monitor, and the subsequent processing and vetting of hits. The first stage involves a

GEANT4 simulation of the detector geometry and cosmic ray interactions with the surrounding

material. The second models the on-board processing of count energy data using Matlab, and

accounts for the effects of electronic noise and threshold noise.

2.5.1 GEANT4 for GCR Interactions in the Detector

The GEANT4 model randomly draws primary particles from a given GCR differential energy

spectrum. Each sampled particle is stepped through the geometry of the monitor with a

cross-section for an interaction according to a ‘physics list’. Each cross section is based on the

particle species and local detector material. This process is repeated until the number of sample

particles requested is reached.

The detector geometry used is shown in Figure 2.6, where a 1.42 mm thick aluminium sphere

centered on the monitor has been added to simulate the shielding from the surrounding space-

craft, as detailed by the General Design and Interface Requirements Specification [115]. Due to
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(a) Whole geometry used, including a large
aluminium sphere centred around the radia-
tion monitor to model the shielding by the
surrounding spacecraft material. Also shown
in grey is the aluminium box and feet that join
the instrument to the surrounding spacecraft.

(b) Close up of the copper shielding around
the two dual PIN diodes in a telescopic ar-
rangement. The solid blue shows the two ac-
tive areas used in the GLAST experiment,
with only the larger area on each PIN diode
active in the Pathfinder radiation monitor.

Figure 2.6: Radiation monitor geometric model used for the GEANT4 simulations of galactic
cosmic ray radiation on spacecraft.

the sensitive regions of the diodes not being centred on their substrates (Figures 2.3 and 2.4)

there is is a small lateral offset in the telescopic configuration which is also accounted for in

the simulation. Also shown is the copper shielding around the diodes, located within a larger

aluminium box mounted on the inside wall of the spacecraft. The image on the right shows a

close up of the monitor, where the active regions are shown in blue and the ceramic substrate

is shown in cream. Only the larger blue area is active which mirrors the flight RM.

When an interaction occurs in either of the two larger sensitive regions, GEANT4 records the

energy of the primary particle sampled and the deposited energy in each diode. The detection

regions are 152 mm2 in area and 320 µm thick.

Once the simulation has been run for a particular GCR flux, the GEANT4 data are stored

as a list of primary energy and deposited energies in both diodes. This then allows a two

dimensional histogram to be made for the coincident events and primary energy, for example in

Figure 2.7. Scaling each bin of deposited energy by the ratio of a proposed flux, parameterized
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Figure 2.7: Example histogram of coincident counts from primary protons in a GEANT4 simu-
lation with specific GCR flux. Taking each deposited energy bin, an array of factors of new flux
divided by old flux can be applied to each bin of Primary energy to scale the GEANT4 data.
This allows for faster fits for attenuation parameter as each proposed flux does not have to be
run in GEANT4 separately. Notice also the broader scatter from higher energy primaries, which
deposit energy both directly and by particle showers from interactions within the shielding.

by a proposed value of φ, and the flux used in the first run of GEANT4 provides an efficient

scaling of the data instead of re-running this component of the model. This is essential when

running the fitting process as typical run times for the GEANT4 component are several hours.

Note that this stage of the simulation does not account for a threshold or electronics noise. If

energy is deposited in the sensitive region(s) of the diode(s) as a consequence of an interaction

anywhere in the simulated geometry, then that energy is recorded regardless of how small it is.

2.5.2 Matlab for On-Board Processing of Hits

A Matlab script processes the GEANT4 data according to a model for the electronics that

handles the raw diode signal pulses on the spacecraft. Electronic noise is first added to each

deposited energy, on each diode. It is assumed that this is Gaussian in nature, with a mean

and variance to be determined, but assumed close to the pre-flight measurements. Calibration
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pulses through the mission can be used to significantly constrain the values for these parameters,

and will be discussed in more detail later.

Once the electronic noise is added to the hits, each deposited energy is then compared to

a threshold energy to replicate the discriminator. The threshold, as a sourced voltage that is

variable according to a commanded value, is not a clearly defined hard cut off at the commanded

value. In all of the spectra there is some bleeding of hits below the nominal threshold, implying

a variance. The exact character of this threshold is not known, and needs to be fitted for before

the solar attenuation parameter can be extracted. The fitting algorithm is outlined later, and

the results are described in chapter 3.

To implement the threshold model in the Matlab code, each hit is compared to a randomly

generated threshold for that hit based on a trial model. The resulting list of hits that survive

the threshold test are then binned into a histogram if both diodes record a hit, or summed to

a count rate if only one diode records a hit. These correspond to the coincident and singles

counts respectively.

2.5.3 Setting the Electronic Noise Parameters

As a first estimate of the change in mean and standard deviation of the electronic noise, a

Gaussian was fitted to the top three bins in the main peak of the daily deposited energy

spectra. Figure 2.8 shows an example days fit, with the Gaussian overlaid. Figure 2.9 shows

the mean for each day with the associated errors and a linear fit to the drift. It can be seen

that these parameters slowly drift through the Pathfinder mission.

The main peak shape, particularly the position, is determined by the energy deposited by a

minimum ionizing particle, which is related to the thickness of the detector and corresponds

to particles with energies close to the minimum in Figure 2.2. These higher energy particles,

occupying the upper half of Figure 2.7, deposit energy primarily in the main peak on the left of

Figure 2.7. Given that the thickness of the diodes does not change through the mission, the drift

in peak position can only be accounted for by changing the mean of the electronic noise in the
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given by

L = P (ND|NS, µ) (2.5)

where ND is the number of counts in a single bin of the measured data, NS is the counts in the

same bin in the simulation and µ is a known scaling parameter for the time of simulation to

meet the same time span the experiment was run for (in this case one day).

Let ~θ be the parameters of the model describing the threshold, and λ = λ(~θ) be the true number

of hits in the bin. The likelihood function can then be simplified by integrating over λ(θ) and

using Bayes Theorem

L =
∫

P (ND, λ|NS, µ)dλ

=
∫

P (ND|λ,NS, µ)P (λ|NS, µ)dλ

=
∫

P (ND|λ,NS, µ)
P (NS|λ, µ)P (λ|µ)

P (NS|µ)
dλ (2.6)

Then, assuming bins with NS and ND both much greater than one, two simplifications can

be made. First, the probability of ND follows a Poisson distribution with mean λ. Second,

NS ∼ λ/µ, if the integration time is long, and therefore the probability distribution for NS is

another Poisson but with mean λ/µ. Using the latter, NS can be taken as a function of both λ

and µ in the P (ND|λ,NS, µ) term, and therefore neglected. Note that the denominator in the

fraction is a scaling term independent of λ, and hence can be taken as a normalizing constant.

Putting this all together, the likelihood function becomes

L ∼
∫ λNDe−λ

ND!
(λ/µ)NSe−(λ/µ)

NS!
P (λ|µ)dλ (2.7)

where P (λ|µ) is the prior on the true value, and is a strong function of the prior for the threshold

parameters. In this analysis, this is taken as a uniform distribution, although it could also follow

a normal distribution around ND in the limit of a long experiment time.

Due to the assumptions made about larger counts in a bin for the likelihood function to apply,

it is important to cut data below around 70 keV and above 1500 keV as outside this region the
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2.6.2 Fitting Algorithm

The algorithm used is a simple Metropolis Hastings Markov Chain Monte Carlo method [91].

It samples a point in a given trial model’s parameter space, calculates the coincident spectrum,

then computes a log likelihood of the spectrum in comparison to the data. In this particular

method, this is done using log(L) ≈ −1
2
χ2. Then it proposes a new point in parameter space,

repeats the calculations, and then takes the difference between the new point and old point

log likelihoods. If the difference is positive (new point more negative than old point) then the

trial point is rejected, and the process is repeated. If the difference is negative (new point less

negative than old point) then the trial point is accepted, and the process repeated but using

the trial point as the old position in parameter space. The collection of accepted points forms

the posterior distribution.

As the algorithm walks through the parameter space, it will gravitate to the region where the

log likelihood is maximized. Given the definition of the likelihood function, this corresponds to

finding the region of parameter space that has the greatest probability of reproducing the data

observed. The procedure is optimized when the number of accepted points is approximately

25 − 40% of the total number of points tested for a two dimensional parameter space. This is

called the acceptance ratio, and is used to fine tune the stepping distribution that moves the

algorithm from one proposed point to the next.

The stepping process randomly draws the next point in parameter space following a distribution

that is chosen to reflect the knowledge about the parameters. This is the part of the algorithm

that again takes into account the priors. The algorithm is most efficient when the stepping

distribution most closely resembles the posterior distribution. In this case, the distribution is

taken as a bi-variate Gaussian with no correlation for simplicity. The means are taken as the

current proposal point, and the standard deviations are tuned until the acceptance ratio falls

within the acceptable range.

Some of the points in the end posterior will be discarded as the Monte Carlo wanders through

the parameter space before settling into the optimal region. Several attempts at the discarded
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points can be used to tune the standard deviations of the stepping distributions. After removing

these points, the posterior should be thinned as consecutive points are correlated with each

other. The amount of thinning depends on the complexity of the stepping distribution, which

for this case is fairly simple. Therefore only every other point is retained in the posterior chains.

In practice, it was found that, because at each trial step new thresholds and electronic noise

were drawn, the statistic was fairly noisy relative to the sensitivity of the algorithm to global

changes in statistic. Due to the adoption of uniform priors on the true value per bin, and

therefore uniform priors on the threshold parameters, a grid was placed over the prior space

and the statistic calculated at each point. The array of values was then smoothed and sampled

from within the MCMC. This is in contrast to the fits for the solar attenuation parameter where

the thresholds and electronic noise only had to be drawn once before the fitting, and hence the

statistic was much less noisy.

This process was used to both quantitatively and qualitatively assess a model’s ability to repro-

duce the calibration data. The existence of a global model, where the posterior distributions of

parameters for a number of calibration spectra all agree with one another, is weighted heavily

in the assessment. Ideally, one or more models tested would be able to reproduce the whole

data set for one value per parameter.

2.7 Electrostatic Noise and Measuring Charging Rates

Once the thresholds have been found, and φ has been extracted through the mission, it is

intended that a connection be drawn between the GCR flux and TM charging rates. How-

ever, in order to correlate charging with φ, it is important to understand how charge induced

acceleration noise arises.

Energy deposited by incident cosmic rays predominantly ejects electrons, moving them from

housing to test mass and vice-verse. This leaves the test masses with residual charge that

can build up over time, creating stray forces on the test masses as their metallic faces have a
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capacitance with the metallic housing. As the charge grows in time, so too does the parasitic

force [11].

Consider a charged TM with no applied voltage. Given that the test mass has a capacitance

with the housing, the stray electrostatic forces arising from the charge can be calculated. A

stray force in the x axis Fx due to a charge q on the test mass is given by

Fx = −∂U

∂x
= − ∂

∂x

(

q2

2Ctot

)

=
q2

2C2
tot

∂Ctot

∂x
(2.9)

where U is the energy in the system and Ctot is the total capacitance between the test mass

and housing. Expanding in higher derivatives of the total capacitance, the force is given by

Fx =
q2

2C2
tot

[

∂C

∂x

∣

∣

∣

∣

∣

x0

+ δx
∂2C

∂x2

∣

∣

∣

∣

∣

x0

+ . . .

]

(2.10)

where δx is the displacement of the TM from its equilibrium position at x0. In this equation,

the variable δx changes in time, causing Fx, and therefore the TM acceleration, to have a

Fourier component contributing to the total acceleration noise of that TM.

Now consider the case where the charge q is allowed to vary. The total force in the x axis is

now dependent on both the change in the total capacitance as the displacement δx changes,

and the change in charge over time. The differential relation

dFx,tot =
∂Fx,tot

∂q
dq +

∂Fx,tot

∂x
dx (2.11)

shows the dependence on these parameters.

Finally, consider the case of a TM with variable charge q giving rise to a DC TM potential VDC ,

a variable position δx and a sinusoidal applied voltage VS. The component VS is called the

dither voltage, and is used to measure the charge through the response of the TM acceleration

to the injected signal. The signal is applied at a frequency ω, while the force authorities

(suspension voltages holding the TMs in place in all other degrees of freedom) are applied at

audio frequencies, and hence can be ignored as measurements are processed in the mHz region.
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The energy stored in the effective capacitor between the test mass face and electrode housing

is given by

U =
1
2
Ctot (VT M + VS)2 =

1
2
Ctot (VT M + V0 sinωt)2 (2.12)

As before, the force due to the energy in the effective capacitor is given by

Fx = −∂U

∂x
= −1

2
∂Ctot

∂x
(V 2

T M + 2VT MV0 sinωt+ V 2
0 sin2 ωt) (2.13)

Increasing orders of derivatives of the capacitance were measured on ground from the central

position in the housing. Hence it can, as before, be taken as a Taylor series. For the applications

here though, this is not important and so it is left in the form above.

Using the double angle formula and grouping into terms that oscillate in response to the signal

and terms that do not, the force can be re-written as

Fx = −1
4
∂CT ot

∂x
(TDC + TAC) (2.14)

where TDC = 2V 2
T M + V 2

0 and TAC = 4VT MV0 sinωt− V 2
0 cos 2ωt.

When the power spectral density is taken of the acceleration of the test mass with the dither,

the response to this force will present two peaks in frequency space. One at ω, with amplitude

proportional to V0VT M , and one at 2ω, with amplitude proportional to V 2
0 . After dividing by

the mass, the remaining proportionality can be incorporated into the fit for V0 and VT M .

Converting VT M to charge using the total capacitance Ctot as measured in the neutral position,

the ω response to the force then becomes proportional to the charge. Dither voltages can be

implemented in any degree of freedom of the TMs, however the optical readout is in x and

φT M , where φT M is the angle of the TM around the z axis perpendicular to the spacecraft solar

array, and so injections are made in these axes to make use of the full interferometer sensitivity.

The derivation for dither in φT M follows as before but derivatives are taken with respect to the

angle. In the angular injection case, the response will take the form of a torsion oscillator with

some spring constant proportional to VT M .
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There are then two methods to convert a charge measurement to a charging rate. The first

uses a time derivative of the charge measurement, and offers a continuous measurement for as

long as the dither voltage lasts. This does, however, require a long signal injection which is

not always possible. The second method uses subsequent, shorter charge measurements. This

offers an averaged charging rate between the charge measurement times but is only valid if the

configuration of the spacecraft, for example applied voltage actuation on the test masses, is

unchanged between the two charge measurements. This is usually not the case as experiments

on LISA Pathfinder require a perturbation to one environmental variable while measuring the

response.

2.8 Discussion

A parameterization for the attenuation of galactic cosmic rays is outlined. This model includes

a more modern LIS function, reflecting developments from Voyager data. Obtaining daily

estimates for this parameter through the Pathfinder mission will be the goal of chapter 3,

where the model is applied with the fitting algorithm also detailed in this chapter.

Also presented in this chapter is a two stage model for the RM. It develops existing GEANT4

code to simulate the interactions of energetic particles impinging upon the spacecraft and TMs,

and has a second Matlab component to process the raw GEANT4 data in a similar fashion to

the on board processing of hits from the RM.

As a first step to reducing the number of free parameters in the model, the electronic noise,

which includes a dark current and capacitive noise, was set as a Gaussian. The mean and

standard deviation for which were set by fitting Gaussians to a series of test pulses injected

weekly through the mission into the RM. The values were found to be reasonably in agreement

with estimates from ground tests.

In order to fit for the daily estimate of φ through the mission, the characteristics of the threshold

of the diodes must be known. To provide a model for these, a fitting algorithm was outlined

that takes a trial set of parameters, runs them through the RM model, and produces a trial
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spectrum that is compared to a measured spectrum. By iterating this process many times in a

Metropolis-Hastings MCMC process, posteriors may be drawn for a trial distribution shape for

the thresholds. It was found that the likelihood function was very Gaussian in character, and

therefore a simple χ2 test statistic may be used. The results of this fitting process, the data

used for the fit, and the models tested will be detailed in chapter 3.

Once the threshold has been fitted, φ may be extracted from the nominal data. The mecha-

nism for measuring charging rates was described along with a brief discussion of the origins of

electrostatic parasitic noise on Pathfinder. The purpose of this analysis is to outline a method

to link the deposition of energy in the RM by energetic particles with the flux of GCR particles

outside the spacecraft. Providing the solar attenuation parameter, as a proxy for GCR flux,

through time will lay groundwork for the connection between GCRs and TM charging rates

through the mission.



Chapter 3

Estimating Galactic Cosmic Ray Flux

During the Pathfinder Mission

3.1 Introduction

In Chapter 2 a simple model for the Radiation Monitor (RM) was outlined so that the solar

attenuation parameter φ may be estimated throughout the LISA Pathfinder mission. In this

chapter, the threshold is characterized by comparing three distributions using the algorithm

detailed in chapter 2. The solar attenuation parameter is then extracted form the RM nominal

mission data as a time series of daily estimates.

During the Pathfinder mission there were two calibration runs that varied the nominal energy

threshold of the RM in steps of 20 keV for a day at a time. The first run set the threshold at

20 keV, 40 keV, 60 keV, 80 keV, and 100 keV, while the second run set the thresholds at 60

keV, 20 keV, 40 keV, 80 keV, 100 keV, 120 keV, 100-60 keV, 60-100 keV, and 60 keV, where two

numbers denote the front and back diode thresholds respectively.

Using these data, three threshold distributions will be fitted to the first set of calibration data,

and then verified using the second set. An attempt will also be made in this chapter to discuss

the correlation of measured charging rates with φ.

70
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Figure 3.3: Hourly averaged singles count rate measured by the LISA Pathfinder radiation
monitor.

simulation. Figure 3.3 shows the hourly singles counts through the mission measured by the

monitor. At the end of the mission there was a small solar flare event whose particles were

not energetic enough to penetrate the spacecraft. However, there is indication of a Forbush

decrease after the flare in the last few points of the singles data as the count rate decreases

significantly [116]. Evaluating the model at these counts, this time series can be turned into a

time series estimate for the value of φ through the mission, as shown in Figure 3.4.

3.3 Fitting the First Calibration Run Spectra

In February 2016, a week long calibration run was carried out to characterize the thresholds.

For a day at a time, the threshold was varied in steps of 20 keV, from 20 keV to 100 keV, see

Figure 3.5 for a close up of the spectra. When the threshold was set to 20 keV and 40 keV the

main peak, to the right of the noise peak, did not change. This suggests that the threshold was

low enough to not attenuate the hits in this region of the spectrum. The data also underline

the need for a ‘soft’ threshold, as the counts visibly bleed below the commanded threshold. For

example, in the 100 keV data the main peak reaches down several bins below 100 keV.
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There are many models for the threshold shape to choose from, ranging in number of parameters

and complexity. To mirror the electronic noise parameters, the origins of which are likely

similar to the origins of threshold noise, the three simplest models are chosen for the fits.

These are a single Gaussian describing both diode thresholds, a double Gaussian in which the

standard deviations are equal and set but two means are allowed to vary, and finally, a Gamma

distribution with common parameters for both diodes that more closely reflects the shape of

the deposited energy spectra.

Each model will be evaluated in a fit for the relevant parameters, and qualitatively assessed

for a global model. The end goal is to find a set of parameters in at least one model that

can reproduce all of the calibration spectra. The value of φ is assumed constant through the

calibration data, and fitted for using the 20 keV data, where the threshold is assumed low

enough to not affect the data above 60 keV where the fit is performed. Noting that the peak in

the 40 keV data is unchanged from the 20 keV data, this would seem to be a good assumption.

3.3.1 Single Gaussian Model

The simplest of the three models tested was the single Gaussian, in which a single Gaussian

distribution is used with common parameters to both diodes. This would consist of a fit for a

mean µT and standard deviation σT denoting an offset from the nominal threshold value and

a spread.

Many components in electronics exhibit Gaussianity, and in the limit of many draws the central

limit theorem says the distribution would approach a Normal. It makes sense then to attempt

to fit this model to the data.

After running the MCMC, Figure 3.6 shows an example posterior distribution with a normal

fit to the binned chain. Although the distribution is noisy, likely a result of the noisy statistic

relative to global changes, a Gaussian can still be fitted to find the mean best fit value, and a

1σ error bar in both parameters.

Repeating this process for all three data sets, the resulting means are shown together in the
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Figure 3.15: Predicted spectra for a 60 keV commanded threshold for each of the three models.
Measured spectrum in 1st calibration run is also shown for comparison, with χ2

Red statistic
values for goodness of fit displayed in the legend.

data. Figures 3.15-3.17 show the results for the 60 keV, 80 keV and 100 keV respectively.

In all three cases the Helium peak around 300-500 keV is over attenuated in the models. This

indicates that either the spread in the thresholds are too high or the mean threshold value needs

to be shifted down. In the double Gaussian case, the model seems to cut the leading edge too

quickly as the gradient is too steep, indicating that perhaps this model could use a shift in the

mean threshold value rather than a decrease in spread. In contrast, the single Gaussian and

Gamma distributions show mixed attenuation of the main peak relative to the measured data.

Quantitatively, the statistic values indicate that in all three cases, the single Gaussian model

best predicts the measured spectra, followed by the double Gaussian. This reflects the least

scatter of posterior values in the individual fit results for the single Gaussian relative to the

other models. The global model, a mean of the three fit results, is closer to the individual best

fit parameter values, and so will correspondingly better predict each spectra.
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Figure 3.16: Predicted spectra for a 80 keV commanded threshold for each of the three models.
Measured spectrum in 1st calibration run is also shown for comparison, with χ2

Red statistic
values for goodness of fit displayed in the legend.

Figure 3.17: Predicted spectra for a 100 keV commanded threshold for each of the three models.
Measured spectrum in 1st calibration run is also shown for comparison, with χ2

Red statistic values
for goodness of fit displayed in the legend.
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coincident hits.

The double Gaussian model best predicts the three count ratios, falling marginally under the

measured ratio in all three cases. The single Gaussian predicts the ratio increasingly well for

increasing nominal thresholds, whereas the Gamma distributed threshold begins over predicting

the ratio and ends under predicting it.

Although the stability of the double Gaussian predictions is desirable, it should be noted

that as the nominal threshold increases, it is expected that the prediction moves closer to

the measured value. This is because the probability for a random noise fluctuation above the

threshold decreases as the threshold increases. Thus the number of measured singles not taken

into account decreases as the nominal threshold increases, and the predicted ratio approaches

the measured value. This makes the single Gaussian also a good fit in this cross check, and

emphasizes that so far it is the best model of the three as the behaviour of the count ratios

matches the predicted behaviour based on known limitations of the model.

3.4 Fitting the Second Calibration Run Spectra

A second set of calibration data was run in April 2017 to further test the models. In this

run, the threshold was again fixed for a day at a time at increasing nominal energies. The

commanded thresholds were 20 keV, 40 keV, 80 keV, 100 keV, 120 keV before two days were

used to test individual thresholds by setting the thresholds to 60-100 keV and 100-60 keV for the

front-back diode respectively. One day of 60 keV data was taken either side of the calibration

run too, giving a total of nine days of data, all shown in Figure 3.19.

Note that the 20 keV data are much less than the 40 keV data in main peak height, comparing

to Figure 3.5 where the 20 keV and 40 keV data were identical in the main peak. This was

found to be due to saturation of the counters. The singles counts time series also exhibited

this effect. In the time for the spectrum to be recorded, the number of counts accepted by the

monitor amassed to more than the peak number of counts. The counter then wrapped around,

starting again at zero after the maximum count was reached. For this reason, the 40 keV data
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Figure 3.23: Predicted spectra for a 60 keV commanded threshold for each of the three models.
Measured spectrum in 2nd calibration run is also shown for comparison, with χ2

Red statistic
values for goodness of fit displayed in the legend.

Figure 3.24: Predicted spectra for a 80 keV commanded threshold for each of the three models.
Measured spectrum in 2nd calibration run is also shown for comparison, with χ2

Red statistic
values for goodness of fit displayed in the legend.
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Figure 3.25: Predicted spectra for a 100 keV commanded threshold for each of the three models.
Measured spectrum in 2nd calibration run is also shown for comparison, with χ2

Red statistic
values for goodness of fit displayed in the legend.

Qualitatively all three models do reasonably well to reproduce the measured data in all three

nominal threshold cases. However, the statistic values and the shape of the spectra for the

Gamma distributed threshold model indicates the least-well-fitted data using the global pa-

rameters. The single Gaussian and double Gaussian then seem to both do as well as each other

when looking at the shape of the spectra. Although the statistic values seem to indicate that

on average the single Gaussian does slightly better.

The global models were also used to predict the shape of the 120 keV commanded threshold

data for each model. The spectra are all shown with the measured data in Figure 3.26, where

the best estimate of the data is by the single Gaussian model, whose reduced χ2 is less than

half the next lowest value. The double Gaussian and Gamma models did increasingly worse to

reproduce the data. The double Gaussian seems to be too limited in spread while the Gamma

model seems to be too liberal in spread.

The data suggests that the spread on the threshold needs to be constrained more than implied

by the previous fits. In terms of the single Gaussian model, perhaps if the second calibration

run’s 100 keV data had been omitted, and the global parameters been more like the first
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Figure 3.26: Predicted 120 keV commanded threshold data using the second calibration run
global parameters. The RM measured data (blue) is plotted with the single Gaussian model
(red), the double Gaussian model (yellow) and the Gamma distributed threshold (green).

calibration run’s, then the resulting predicted spectrum would agree more with the data.

3.4.2 Testing Individual Diode Thresholds

The remaining two days of data from the second calibration run were used to test the models

applied to each diode independently. Here the thresholds are set to 60-100 keV and 100-60 keV

for the Front-Back diodes respectively.

Figure 3.27 shows the predicted spectra from each model with the measured data for the 60-100

keV thresholds. The best fit spectrum to the data is from the double Gaussian model, although

the single Gaussian and Gamma models approach the correct high energy limit.

The majority of the disagreement is in the main peak for all three models. As with the 120

keV predictions, these results suggest that the single Gaussian and Gamma distributions are

too broad, while the double Gaussian threshold is not broad enough. In the case of the single

Gaussian, this again suggests that the 100 keV data could perhaps be an outlier in the full set

of fits.
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Figure 3.27: Predicted spectra by each model for the independent diode thresholds set at 60-
100 keV for the front-back diode respectively. Not the statistic for the double Gaussian is the
lowest, and the Gamma the highest.

Figure 3.28: The same as Figure 3.27, only with 100-60 keV commanded thresholds for the
front-back diode respectively. Note the difference in order of statistics. The single Gaussian
matched the measured spectrum closer than the other models, while the Gamma model matched
the farthest.
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Figure 3.27 shows the predicted spectra for the 100-60 keV data. In general the global parameter

values reproduced the data much better than in the 60-100 keV case. All models gave a closer

approach for the high energy limit, with the tensions between simulations and RM data focused

in the main peak. In this case, however, the single Gaussian model was much closer to the

measured data than the other models. There is still a slight over prediction in the main peak,

but the leading edge matches with that of the data better.

These plots demonstrate that there is clearly more complex behaviour in the data that is not

fully captured by the models derived. Given that most of the tension is in the main peak, and

that the high energy limit is a small fraction of the total hits in the spectrum, it could be inferred

that better resolution is needed in the main peak portion of the spectrum. Furthermore, the

LISA RMs, should they follow a similar design to the Pathfinder RM, should test the individual

diode thresholds individually and in more depth to try and capture some of the complexities

not fully grasped in these calibration runs.

3.4.3 Count Ratios

A further test of the models is the count ratios. As with the first calibration run data, the

singles count that arise purely from noise are not simulated, and so the count ratios are expected

to be lower those measured. Furthermore, as the nominal threshold rises, the gap between the

measured and predicted ratios is expected to decrease as the number of noise hits that are

unaccounted for decreases.

Figure 3.29 shows the percentage difference between the measured and predicted ratios for

each data set, using the global models from the second calibration run. The double Gaussian

model is in best agreement with the measured ratios, with some over predicting and some under

predicting. The Gamma model is the farthest from measurement, although it does reproduce

the expected trend in under prediction. Similarly, the single Gaussian model reproduces the

expected trend, but is in better agreement on average with the measured values.

Both the Gamma and single Gaussian models suggest that the individually set nominal thresh-
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the Gelman-Ruben statistic, tests the end solution by comparing multiple chains initiated at

different regions in parameter space [58]. The former takes short intervals of the posterior chain

and compares the inferred means and uncertainties at different times. If they are in agreement

with each other to within a variable margin, then the chain has converged to a stable solution.

The latter uses the inferred posterior values and uncertainties in two or more chains to compare

independent solutions of the same fit. If all the posterior values are in agreement to within the

combined uncertainties, then the solution is globally acceptable.

These tests are aimed to capture any variation in the optimal model for the data due to

initialization of a chain. Sometimes, particularly in many variable parameter spaces, some

combination of parameters can act in similar ways to other parameters, hence leading to multiple

stable points in parameter space. In this situation, because each model purposefully used a two

dimensional space to reduce computational costs, the chains were run twice to perform these

tests.

Figure 3.30 shows the z-scores for each of the primary chains. These scores show that all of

the individual chains have converged as the posterior mean for each segment is no more than

one standard deviation away from the whole chain’s mean, implying a stability in the values

reached.

Figure 3.31 shows the Gelman-Ruben statistic for each of the parameters fitted in the first and

second calibration run. These compare the primary posterior chain with a secondary chain

initialized in a far region of parameter space from the initialization point of the primary chains.

These results show that with the exception of the Gamma distribution, all of the chains and

posteriors were stable to within one standard deviation, and that the posterior values reached

for each model were global solutions for the fits.
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Figure 3.34: Resulting solar attenuation parameter predicted by fitting the GEANT4 data to
the daily measured coincident spectra through the mission (blue). For comparison, the results
from the correlation of the singles count with various values of φ using just GEANT4 data and
a hard threshold (red).

that the simulation is a good approximation to first order. There is a discrepancy both in the

leading edge of the main peak and in the smaller Helium peak around 400 keV. The main peak

is affected by both the shape of the threshold and the solar attenuation parameter, but the

Helium peak is less affected by the threshold given it is higher in mean deposited energy. This

suggests that there is perhaps a problem in the GEANT4 model for the interactions between

Helium nuclei and the detector, or the threshold is not wide enough as the position of the

Helium peak has not quite lined up with the measured data.

As was expected, the singles count estimate was systematically lower than the coincident count

estimate by about 8%. This reflects that the model did not include the noise hits in the singles

count case, which did not affect the coincident count fit as it was possible to cut them from the

fits. The fit to the singles counts predicted a lower φ so that the singles rate was increased to

meet the measured rates and account for the missing noise hits.

In both time series produced the 9-13 day oscillation is observed, corresponding to heliospheric

current sheet crossings at harmonics of the Sun’s 27 day rotation period. The general trend to
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therefore the charge induced acceleration noise, can be projected to times in the solar cycle

that LISA may fly in. In this section, the results of the analysis are briefly put into context

for the LISA mission. It will be demonstrated that although the final projection cannot yet be

made, this analysis provides a stepping stone for the estimation.

3.8.1 Correlating φ with measured test mass charging rates

In order to project charge induced noise and charging rates to LISA, it is necessary to correlate

variations in GCR flux with test mass charging rates. Using the radiation monitor, which

includes a similar amount of shielding relative to the test masses, in situ measurements of φ

can be correlated with the charge rate measurements.

However, several charge management and measurement experiments have shown that there

is more to charging rates that just the GCR flux. The TM potential and force authorities

(configurations) can change the charging rates, even in extreme cases reversing the current.

For this reason, the end correlation of space weather with charging rates cannot be presented

here as it requires further analysis to assess the dependence on these parameters. Instead, a

brief, qualitative description is given of the importance of these measurements while highlighting

the complexity of the final goal.

Nearly three hundred charge measurements were made through the mission. Of these, only

around fifty last longer than an hour and provide a continuous charge rate as a function of

time. An example of this is shown in Figure 3.40 with the singles count rate from the radiation

monitor. The correlation is clearly visible while the configuration of the spacecraft (in this case

nominal) and the test mass potential varies slowly as the charge accumulates.

In total, only a handful of longer measurements at a time were in the same configuration.

Shorter measurements can be used to measure charging rate if a linear extrapolation is used

between subsequent measurements. However this can only be done if the interim experiments

do not change the test mass potential, force authority or do not trigger a safe mode re-grab.

Unfortunately as these measurements were often performed once a week during station keeping,
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teristics on ground for the RM and accompanying electronics. This can be done using a simple

oscilloscope trace and test pulses injected into the system to simulate a hit. Furthermore,

electronic noise parameters should be measured directly at several points in the circuitry to

account for the contribution from each component. Test pulses should be characterized and

better documented pre-flight with the system response included in the testing. These changes

would mean the pre-flight noise properties could be used to calibrate the instrument in-flight

and more accurately account for degradation through the mission.

There should also be tests of the long term behaviour of the monitor. The flight time for

LISA is longer than Pathfinder, and so it cannot be concluded here if degradation will play a

significant role in the analysis of the same data in LISA. Therefore testing should be done to

ensure that noise parameters for both the electronics and thresholds will not degrade beyond

acceptable limits for flight.

It was also noted that because the majority of hits fall in the main peak of the spectrum, and

therefore close to the nominal threshold, the binning in the RM is not optimal to reconstruct

the energies of primary particles. It was recommended that a restructuring of the bins be made

so that resolution around the main peak is improved at the expense of bins in the tail of the

spectrum. This can be done, for example, with logarithmic binning instead of the linear spread

used in the Pathfinder RM.

3.9 Discussion

Of the three models tested for the threshold shape, the single Gaussian model best reproduced

the measured spectra using a global model. This model was derived using the first calibration

data, and then substantiated using the second calibration data. Although it reproduced the

data well, the 100 keV fit in the second calibration run did present tension in the results. The 120

keV data also showed some tension as the χ2
Red statistic was higher than with the other nominal

threshold spectra fits. This implies that as the threshold increases, there are complexities in the

system not taken into account. This could be in any of the parameters used in the model, for
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example a component in the electronics saturating as the threshold voltage increases, causing

the electronic noise to step change. However, for the entire Pathfinder mission, the threshold

was set to 60 keV, implying that understanding the behaviour at higher thresholds may not be

necessary if only to suggest that there are other factors not accounted for in the model.

The parameters for the thresholds fit at the time of the first calibration run, around February

2016, were found to be µT = 14.3 ± 2.5 keV and σT = 35.4 ± 1.8) keV. These values agree

with the individual fit results for this model, and with errors smaller than the bin width used

to construct the spectra.

However, reasonable doubt was cast on the fit results as the parameters extracted suggest that

the initial assumption that the fits for φ using the 20 keV and 40 keV data are independent of

threshold was invalid. Furthermore, the 120 keV data and individually set thresholds data were

not well reproduced, and the variation of the parameters from each fit result was not entirely

explained by a variation in φ through each week. For these reasons, the single Gaussian, which

fared best out of the three models tested, was adopted for the threshold distribution but the

parameters values were equated to those found for the electronic noise. This reflected that part

of the electronic noise could be similar in origin to the threshold noise if they are, for example,

sourced from the same reference voltage.

As with all experiments on Pathfinder, it is important to note lessons learned so that improve-

ments can be implemented when designing LISA. In retrospect, the threshold noise should have

been measured individually on ground. Indeed, the functionality of the circuitry behind the

monitor was checked pre-flight, an example check is shown in Figure 3.42, but no measurements

were recorded [29].

Relating this back to Figure 2.5, the yellow curve denotes an injected pulse from B7 or B8 into

the charge amplifier B1 or B2. The purple shows the the voltage of the discriminator for that

diode, either B5 or B6, while the green trace shows the peak holder B11 that keeps track of

the maximum voltage recorded in a given signal pulse, and the cyan vertical line denotes the

voltage reference (threshold) which is stored in B9 or B10. The horizontal scale is 2µs/pt and

the vertical scale is 1 mV per minor axis tick (roughly equivalent to 100 keV).
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Figure 3.42: Oscilloscope trace of an example pre-flight threshold test. Note that the small
ticks in the vertical axis correspond to 100 keV. This gives a large spread in threshold value
(cyan) around the main peak of hits recorded in the deposited energy spectra. The yellow
shows an injected test pulse with a relatively high energy, the purple shows the discriminator
voltage, and the green shows the peak holder keeping track of the maximum voltage of the
signal. Taken from ref [29].

Qualitatively it can be seen that there is a large spread in the threshold (cyan), with the majority

contained in a range of around 100 keV. This shows a large spread, which is in agreement with

the single Gaussian model where the standard deviation predicts 95% of points are contained

within a range of 141.6 keV.

These tests did not consider the case where the signal was just above the threshold. Considering

the position of the main peak at around 100 keV, it can be said that the majority of points

fall within the qualitatively allowed spread of threshold values when the nominal threshold is

set to 60 keV. In the future, the threshold can be characterized by outputting the trace of the

oscilloscope. This would allow for pre-flight measurements of the threshold, and for tests of

the individual diode thresholds too. Then, these models can be verified in-flight by similar

calibration runs, with second calibration runs used to fit for degradation.

It was found that the radiation monitor on LISA Pathfinder was able to provide daily estimates
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of the solar attenuation parameter through the mission time to a good agreement with estimates

using other monitors in space [15]. In particular, an agreement was found in the estimated flux

for two species of GCR particles using the daily coincident counts and an IREM-PAMELA

correlation. Furthermore, the RM on Pathfinder was sensitive enough to measure modulations

at integer fractions of the 27 day solar rotation period. These features are thought to be

associated with co-rotating interaction regions and heliospheric current sheet crossings.

There was some ambiguity about the shape of the threshold. It is thought that the shape of

the threshold could be more complex than assumed in this model. The complex circuitry in the

on board processing means that a non-Gaussian threshold shape could be possible, and could

to some extent account for the tension in the leading edge of the main peak.

There was also tension in the simulated and measured Helium peak positions. One possible

explanation of this is the physics list used in the GEANT4 portion of the model did not ad-

equately simulate the helium physics at the energies sampled. Another explanation could be

a problem with the geometry used. This would also affect the simulated main peak, which

is primarily determined by proton interactions. However the main peak is also primarily af-

fected by the choice in threshold shape, making the parameters correlated with each other and

determination of their values non-trivial.

The correlation between test mass charging and solar attenuation of GCRs was shown to be a

strong function of several parameters, and so projections of charging rates to LISA could not

be made at this time. A further investigation would have to be done to look at the dependence

of charging rates on the test mass potential and the force authority. Tentative results suggest

a possible correlation, though dependence on configuration is too strong to say for sure.

Future projects linking the space weather at the first Lagrange point with test mass charging

rates can now use the solar attenuation measured in-situ. This will facilitate a more realis-

tic model with smaller systematic errors as no extrapolation of GCR flux to the position of

the spacecraft needs to be made. Although complicated, some hints have been found at the

charging rates when considering specific configurations of test mass potentials and suspension

forces. Furthermore, understanding the temporal behaviour of the GCR variations and the
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consequent fluctuations in the TM charging will be invaluable input with the LISA charge

induced acceleration noise model.



Chapter 4

Measuring the Gravitational Constant

in Space

4.1 Introduction

In the 17th century, Newton extensively tested the application of an inverse-square law to grav-

ity. He hypothesized that the force exerted on a test particle by a nearby body is proportional

to the body’s mass and inversely proportional to the square of the distance between them [96].

Later, in 1793, Cavendish arguably measured the constant of proportionality, or ‘big G’, for

the first time using an idea and apparatus inherited from John Mitchell. In today’s units, his

measurement corresponds to 6.74 × 10−11 m3kg−1s−2 [37].

Despite the success of the theory through the centuries, modern physics has seen some disagree-

ment with the inverse-square law in systems that should obey these dynamics. For example,

the rotation curves of galaxies [105] diverge from the expected behaviour, indicating that there

could be new physics at these scales. Given the extensive tests of the inverse-square law at

Earth scales, it makes sense to treat these divergences as a next-to-leading-order correction in

the gravitation constant. However, measuring big G is notoriously difficult and as a result, G

is one of the most poorly constrained constants to date.

112
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Figure 4.1: Selection of mod-
ern measurements of the grav-
itational constant, taken from
ref [94]. Even though most
measurements have relative
uncertainties at parts in ten
thousand or less, there is a
spread between measurements
at parts in a thousand.

To demonstrate this, Figure 4.1 shows a selection of recent measurements collated in the 2014

CODATA report of physical constants [94]. In each method, an attractor mass sources a change

in force on a measurement mass, which can then be used to extract G using the inverse square

law. Notably, the most competitive measurements with relative uncertainties at parts in 105

show inconsistencies between each other at parts in a thousand. The CODATA reported value

is 6.67408±0.00031×10−11 m3kg−1s−2, and takes the disagreement into account with a relative

uncertainty of ∼ 0.005%. Finding new ways to measure G and reduce the spread is becoming

more important as the search for new physics continues.

As other experiments such as MICROSCOPE [117] go to space to test the axioms of GR

that manifest in the inverse-square law, it makes sense to ask if gravity gradiometers can also

measure the low energy limits of relativity. To test this concept and identify obstacles for future

missions to address, an attempt was made to measure the gravitational constant for the first

time in space by Pathfinder.

There are two limitations on sensitivity for Pathfinder to measure G. The first is that the

absolute separation of the two test masses is only known to parts in a thousand. The second

is that the main observable, ∆gx, cannot be used as it would include both the source mass

motion and the test mass response. This means that the electrostatic suspension forces have to
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be used instead of the full sensitivity of the interferometry system to measure the signal. Given

these limitations, a competitive measurement of G is not possible. However, this experiment

will provide invaluable lessons to be learned, paving the way for future space based laboratories

dedicated to measuring G.

4.2 Method

The concept for a measurement of G has been discussed for a number of years within the

collaboration. However, it was only when the nominal mission extension was confirmed that

the experimental procedure, from formulation to execution on the spacecraft, was formalized

internally [118]. The specific contribution made to this experiment was data analysis after the

experiment was run.

The method used one of the test masses, called the ‘source mass’, to induce a change in

absolute acceleration of the second test mass. This is done by periodically moving the source

mass between extreme positions in the x direction, with the change in acceleration of the test

mass proportional to the total distance moved by the source mass. The signal is then measured

by a change in suspension force on the test mass required to hold it stationary.

TM2 was chosen for all but one signal run as the source mass. It was displaced from the center

of the electrode housing by varying amplitudes in a square wave. At each position, the source

mass was left to dwell for around twenty minutes while the response of the system settles to

a stable state. This procedure is shown in Figure 4.2, which was taken from the experiment

summary document [118] outlining the motivation for the experiment.

In order to optimize the accuracy of the electrostatic forces, the thrusters that keep the space-

craft on orbit were switched off. This meant that the spacecraft moved off its orbit in a ‘solar

sail’; effectively sailing on the flux of photons from the sun. The force on the spacecraft due to

this flux, known as the solar radiation pressure (SRP) force, is large and variable over a typical

time frame for several signal runs. It also causes the spacecraft to roll with respect to the Sun
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Figure 4.2: Cartoon outline
of the experimental method
to measure Newtons constant.
Taken from ref [118].

pointing direction, as demonstrated by Figure 4.3 showing typical spacecraft angles through a

solar sail.

The star tracker provides an estimate of these angles with respect to a fixed frame, which is

used to calculate the components of the centrifugal and SRP forces in the x-axis, FCent,x and

FRad,x respectively, as the spacecraft rotates. The displacement of the test mass with respect to

the spacecraft, oT M , is measured by the optical metrology system (OMS), and taking a second

time derivative of this gives the total test mass acceleration öT M . Denoting the acceleration of

the test mass due to the surrounding spacecraft material as aGrav,SC , and the acceleration of

the test mass due to the source mass explicitly as aGrac,SM , the residual acceleration of the test

mass is given by

aT M = öT M +
gSM

MSC

FSM,x − gT M

mT M

FT M,x − gT M∆t
mT M

dFT M,x

dt
− 1
mT M

FRad,x

− 1
mT M

FCent,x − ω2
T MoT M + aGrav,SC + aGrav,SM (4.1)

In this expression, the reaction of the control loop to changes in the OMS read of the test

mass position is given by ω2
T MoT M . FT M,x is the total applied electrostatic force on the test

mass in the x-direction to keep it centred, which fractionally changes in response to the source

mass movement. A time delay ∆t for the reaction time of the control loop is also included

and approximated by a first derivative of the electrostatic force. A recoil acceleration of the
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In this expression r is the separation between the test mass and source mass in their electrostatic

centres, and ∆r is the total displacement between two high resolution positions in the signal run

(either 1.2 mm, 1.8 mm or 2.4 mm). mSM is the mass of the source mass, and G is Newton’s

constant. The point mass approximation can be corrected for using a factor calculated by

a numerical integration simulation. However, given the dimensions of the masses and their

separation, this correction is only important at the parts in a thousand level, and so will be

neglected for now.

The magnitude of some of the terms in equation 4.2 are already known a priori as similar terms

enter into the observable ∆gx of the nominal mission. The gains were measured around 1 for

both test masses, the stiffness around 10−7 s−2 and the time delay at milliseconds. This puts

the terms with gSM , ω2
T M and ∆t around 10−15-10−14 ms−2, which is well below the signal level

of about 10−12-10−11 ms−2. Since the absolute separation between the masses is known at parts

in 103, it is possible then to neglect these terms. Equation 4.2 then becomes

δaT M =(ö(2)
T M − ö

(1)
T M) − gT M

mT M

(F (2)
T M,x − F

(1)
T M,x) − 1

mT M

(F (2)
Rad,x

− F
(1)
Rad,x) − 1

mT M

(F (2)
Cent,x − F

(1)
Cent,x) + (a(2)

Grav,SM − a
(1)
Grav,SM) (4.4)

The remaining parameters gT M , F (2)
Rad,x − F

(1)
Rad,x and G are fitted for in three stages. First,

an injected sinusoidal force is used to fit the control loop response in frequency space, giving

the gain gT M . Then a ‘blank run’, where the experiment is performed with no source mass

displacement, is used to fit for the SRP force as the signal term cancels. Finally, the signal

runs are used to fit for G directly.

4.2.1 Fitting for the gain

The gain was fitted using a Markov Chain Monte Carlo (MCMC) method in frequency space.

The source mass was moved to +1.2 mm and a sinusoidal signal at 30 mHz and then 10 mHz

was injected into the electrostatic force on the test mass. The response of the system was

recorded while in high resolution, and the terms that respond to the injected force on the test
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Figure 4.7: Posterior distribution for gT M obtained using a Monte Carlo Markov Chain to fit
the response of the system to an injected force. The upper plot shows the binned posterior
along with a Gaussian distribution fit to the distribution. The solid red shows the mean, while
the dashed line shows the 1σ uncertainty either side of the mean. The lower plot shows the
residual after taking the difference between the binned data and the Gaussian model

velocity vector ~ω(i) =
(

θ̇
(i)
SC , η̇

(i)
SC , φ̇

(i)
SC

)

, where i indexes the segment of high resolution data

being considered, the centrifugal force on the test mass is then

~F
(i)
Cent =

1
2
mT M~ω

(i) ×
(

~ω(i) × ~d
)

(4.6)

where ~d is the separation vector of the test masses in the coordinate frame of the spacecraft.

This assumes that the test masses are placed symmetrically either side of the spacecraft centre

of mass. The difference between centrifugal forces in subsequent high resolution times is small

enough that this is a good approximation.

In practice, ~FCent is not a constant, but an increasing force through the solar sail as the SRP

force continually spins up the spacecraft. The centrifugal term is therefore the difference in

the centrifugal force acting on the test mass at different times of the solar sail; ~F (i+1)
Cent − ~F

(i)
Cent.

The magnitude of this difference grows, and so becomes more important later in the solar sail.

Figure 4.8 shows the centrifugal force calculated for the blank run.
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Figure 4.9: Fit results for the radiation pressure force. The blank run was split into eight
segments, with each pair of data segments giving one fit result (blue). The final constant is
then the mean of the four fit results (red), with an associated 1σ uncertainty (shaded red)
determined by the quadrature sum of the individual uncertainties plus the standard deviation
of the scatter.

resolution. The data are divided into eight segments, where equation 4.2 is calculated without

the SRP force term to give the pre-fit acceleration. For each segment, the combination of

angles in equation 4.7 is calculated, and the difference between pairs of segments taken. A fit

is performed for a constant FRad,z that minimizes the sum of (F (2)
Rad,x′ − F

(1)
Rad,x′)/mT M with the

pre-fit acceleration segments.

Figure 4.9 shows the four results of this fit for each pair of data segments. The blue points show

each fit result and the red line gives the mean between them of FRad,z = 7.8687 ± 0.0175 × 10−8

N. This result represents the force on the test mass to give it the same acceleration as the

spacecraft as it rolls with the SRP force. Therefore the force on the spacecraft can be calculated

by multiplying by the ratio of the spacecraft mass ∼ 420 kg to the test mass mass ∼ 2 kg,

giving 16.9 µN. This excludes an infrared force of around 7 µN and differs from the quoted value

in pre-flight estimates of around 20 µN (excluding infrared component). Note the descending

span in error bars as the fit becomes more sensitive to the radiation pressure force. This is due

to the combination of angles starting flat and increasing toward the end of the solar sail.
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From these results, the gravitational constant was measured to be 6.93±0.36×10−11 m3kg−1s−2,

which is in agrement with the CODATA reported value of 6.67408±0.00031×10−11 m3kg−1s−2.

Although the relative error of 5.2% is high, the experiment highlighted some difficulties that

future experiments similar to Pathfinder will need to overcome in order to measure G in space.

In particular, the degree to which the SRP force needs to be known in each solar sail. To

demonstrate this, Figure 4.13 shows the components of equation 4.2 along with the residuals.

It emphasizes the weakness of the signal relative to the other components of δaT M , especially

the SRP term. A fluctuation in FRad,z below 1% would be around the same order of magnitude

as the signal, and therefore can heavily affect the end result. In order to mitigate this effect

and reduce the scatter, the SRP force needs to be measured more often or within each solar

sail.

4.3 Investigating the Solar Radiation Pressure

In order to gauge the effects of the assumptions made about the SRP force, the results for

G were plotted against the change in angular projection of the force, or ∆angles for short, in

Figure 4.14. There is possibly a weak correlation, with the best fit line shown in red. There

are also two groups of points at lower and larger ∆angles, corresponding to evaluations at the

beginning and ends of solar sails. The spread in points is visibly larger in the measurements at

later ∆angles. This could be due to the larger change in ∆angles amplifying the difference in

the approximation for and the true value of the SRP force.

One method to explore the effects of the spacecraft rotation on the fits is to split the results for

FRad,z into early and late times of the solar sail. This should capture any variation in effective

SRP force due to a change in geometry of the spacecraft as it rotates relative to the direction

of the force. Taking the first two and last two fit points gives an estimate for FRad,z in the early

and late parts of the solar sail.

The two resulting estimates for the force are shown in Figure 4.15. Implementing these values

in the signal runs, a new estimate for G and its relative error can be found, as shown in
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Figure 4.15: Fit results from the blank run for FRad,z. The red line shows the overall mean,
while the yellow and green show the early and late means respectively. These will be used to
explore changes in the effective radiation pressure force through a solar sail.

Figure 4.16: Resulting G measurements after using the early and late averages for the SRP
force term. The solid red line shows the global mean, with the red shaded region showing the
uncertainty due to both statistical uncertainties and the scatter between points.
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relative error by several percent.

FRad,z was found to be 7.869 ± 0.018 × 10−8 N, orders of magnitude above the next force

acting on the test mass. Once multiplied by the combination of angles, the resulting radiation

pressure term is nearly three orders of magnitude above the peak of the centrifugal force at

around 1 × 10−11N. This means the SRP force needs to be known to, and constant at, better

than parts in 103. In the case of the blank run, it was found that depending on the segment of

the data being considered, the fit for this force can change by 0.25%. Indeed, even the fit value

for the whole blank run gave a 2σ confidence interval of 0.4% of the value, an amount that the

SRP force was shown to be capable of varying by between solar sails.

The variation of the SRP force depending on the section of the blank run used for the fit also

underlines a further assumption about the effective SRP force; the reflectivity of the spacecraft

does not change with spacecraft orientation. Although the angles are small through a solar sail,

the angular dependence of the reflectivity of the solar array is not known and therefore could

also be a source of this uncertainty.

During the nominal mission, the forces on the test masses in the z direction gave an estimate of

the SRP force. A derivative could be taken, allowing for a fit per data segment for this force.

However, in this experiment the source mass moved by a much larger distance, which meant

the sensors in the y and z directions had to be kept in wide-range mode in order to prevent

saturation of the electrodes. Consequently, the readings on the electrostatic forces in these axes

were too noisy; the reported forces using this method varied above the required accuracy to

correct the scatter. Estimates between solar sails are also not possible as the spacecraft has

to be rotated back to its initial orientation, causing a large force to register in all degrees of

freedom of the test masses.

Another difficulty in the experiment was the presence of periodic glitches in the OMS readout

and applied forces on both masses. Figure 4.21 shows a close up of Figure 4.13, where the

glitches can be clearly seen about every 100s, putting them in the frequency range of the

injection calibration fits. Moreover, they increased the amplitude of the residuals to a significant

fraction of the signal.
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Figure 4.21: Close up of Figure 4.13, showing some of the components of equation 4.2. Clearly
seen are the glitches in the second time derivative of the OMS readout of the test mass position.
These glitches are also seen on the force readouts, and pollute the injection fits as the frequency
of the glitches is within the frequency range of the fit.

Figure 4.22: Power spectral densities of the blank run and injection signal data evaluated with
the parameters that most reduce the difference between these two data sets in frequency space.
The harmonics seen are likely a result of the glitches in the data with a period of around 100
s. This is within the frequency range of the MCMC fit (5-35 mHz) and influences the result.
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Figure 4.25: G measurements plotted as a function of length of high resolution data segment
used in the signal fits. No obvious trend is visible, indicating the fit results do not depend
strongly on the length of data used. Note that the lengths tested are always longer than the
time between glitches.

Figure 4.26: Fit errors on G as a function of the length of data used within each high resolution
segment multiplied by the source mass displacement. This should show some negative correla-
tion as the fits should be more sensitive to longer segments of data and larger displacements of
the source mass. A slight negative correlation can be seen.
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Future work on this project includes a cleaning method to remove glitches from the data. This

would run a Matlab script to identify glitches in the high resolution segments, and then a

python script to fit a sine-Gaussian model to each impulse. Such codes exist for nominal ∆gx

noise runs, but need to be tuned for this data as the background noise is not as stable and the

origins of the glitches have not yet been identified. For more information about glitch removing

methods, see supplemental material in the February 2018 Pathfinder results article [14].

If this experiment were to be repeated in the future, care needs to be taken to find a way to

better account for the SRP force. Alternatively, an additional mass outside of the interferom-

etry system could be used to source the signal. This would negate the need to perform a solar

sail as the drag free system could then be used, decoupling the noise of the thrusters from the

sensitive axis. Furthermore, the centrifugal force would be greatly reduced, and the calibra-

tion parameters (e.g. gains and stiffnesses) could be taken from nominal mission calibration

experiments.

Once the final results of this experiment are released, it is hoped that they will encourage the

addition of space based gravity gradiometers as a method to measure this constant. Just as

Cavendish inherited his apparatus, it is hoped that future designs for measurements of G in

space will inherit the lessons learned here and one day populate future versions of the CODATA

plot.



Chapter 5

Tests of Fundamental Physics with

LISA Pathfinder

5.1 Introduction

Since its conception in the earlier part of the last century, general relativity (GR) has had

success in predicting various phenomena [130]. Most notably, the Hulse-Taylor binary pulsar

orbital decay [114], the Perihelion procession of Mercury [41], the lensing of light around heavy

objects [47], the procession of gyroscopic orbits due to frame dragging [52] and most recently,

the equivalence principle of free-fall acceleration [117]. Each of these effects have been measured

and agree with GR predictions.

However, there are still observed conflicts with GR. Still unexplained are rotation curves of

galaxies [105] which require a darker form of matter to be compatible with GR, hidden from

measurement by decoupling from light and located throughout the galaxy. Furthermore, the

measurement of cosmic acceleration at an increasing rate [104] saw the confirmation of a cos-

mological constant in the Einstein field equations, corresponding to a dark energy permeating

the Universe.

One of the biggest problems that faces modern physics is the reconciliation of all four funda-

139
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mental forces in a grand unified theory. Although advancements have been made to join the

Weak and Electromagnetic forces [62] [107] [129], followed about a decade later by the strong

force [44], gravitation still lacks a full theoretical description that unifies it with the other three

forces at very high energies. Known as the ‘hierarchy problem’, quantum field theory predicts

corrections to the Higgs particle mass that place it many orders of magnitude higher than

observed. Theorists have tried to reconcile this using a wide variety of modifications to both

gravity and quantum field theory.

These problems have led modern theoretical physics to explore methods of introducing a cos-

mological constant and dark matter, or perturbing GR in order to explain the differences in

a new theory of gravitation. Searches for new physics have probed the parameter spaces for

many of these theories and with the advent of gravitational wave astronomy, new ways to place

exclusion limits are anticipated [18].

As the sensitivity of precision physics experiments improve, the low energy limits of these the-

ories also come into reach, many of which include signatures unique to their mechanics. In this

chapter, the role that Pathfinder, and more broadly any highly sensitive gravity gradiometer,

can play in this discussion is explored.

5.2 Newtonian Gravity as a Limit of General Relativity

In order to see how the low energy limit of gravity can be probed, it is important to understand

how various theories of gravity can imprint on this limit. In this section, the reduction of GR to

the Newtonian limit is shown, and then a qualitative example of how the result can be changed

when perturbing GR is provided. More detail on the derivation and other aspects of geometry

as applied to GR can be found in the lecture notes by S. Carroll [36].

The first step to recovering Newtonian dynamics in the weak field limit is to show that the

geodesic of a particle not subject to any forces in a curved space-time is equivalent to an acceler-

ating particle subject to a gravitational force in flat space-time. To do this for GR, the metric,

gµν , is taken as the Minkowski metric representing a flat space-time, ηµν = diag(−1,+1,+1,+1),
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plus a small perturbation hµν = 2/c2diag(−Φ,−Ψ,−Ψ,−Ψ)

gµν = ηµν + hµν

gµν ≈
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(5.1)

The scalar potential fields Φ and Ψ, with units m2s−2, are the simplest choice in perturbation

that still preserve the cosmological principle which states there is no preferred place or direction

in the universe. It can be also assumed that Φ and Ψ are independent of time as the Newtonian

limit assumes a non-accelerating system, and velocities can be boosted into the reference frame.

The proper time τ is defined to be the local time measured by a massive particle, i.e. non-zero

mass, as it moves in a time-like fashion along its world-line, and so τ may be used to param-

eterize that motion. Also defining gµν as the dual (or contravariant) metric, such that gµρgρν

results in the identity matrix Iµ
ν = diag(1, 1, 1, 1), consider the geodesic equation governing the

trajectory due to a force F µ on the particle

F µ = m

(

d2xµ

dτ 2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ

)

(5.2)

where

Γµ
ρσ =

1
2
gµλ (∂σgλρ + ∂ρgσλ − ∂λgρσ)

≈ 1
2
ηµλ (∂σhλρ + ∂ρhσλ − ∂λhρσ) (5.3)

Using the diagonal form of the metric the only non-zero components for Γµ
ρσ are for the special

cases when ρ = σ. Denoting spatial indices with roman lower case letters and the time index



142 Chapter 5. Tests of Fundamental Physics with LISA Pathfinder

with 0, the non-zero connection coefficients can be written as

Γ0
00 = − 1

c2
∂0Φ ≈ 0 Γi

00 =
1
c2
∂iΦ

Γi
jj =

1
2

(2∂jhij − ∂ihjj) = ± 1
c2
∂iΨ Γ0

ii = − 1
c2
∂0Ψ ≈ 0 (5.4)

where Γi
jj is negative if i = j and positive if i 6= j. Taking F µ = 0 in equation 5.2 for no

external forces on the particle in the curved space-time, the time coordinate equation of motion

can be found as
d2x0

dτ 2
− 1
c2
∂0Φ

(

dx0

dτ

)2

− 1
c2
∂0Ψ

(

dxi

dτ

)2

= 0 (5.5)

Then applying the assumption that the gravitational perturbation is static, d2x0

dτ2 = 0; and so

the coordinate time t (≡ x0) is seen to be proportional to the proper time, namely x0 ∝ τ .

Next, consider the spatial coordinate geodesic equation

d2xi

dτ 2
+

1
c2
∂iΦ

(

dx0

dτ

)2

− 1
c2
∂iΨ

(

dxi

dτ

)2

+
1
c2
∂iΨ

(

dxj

dτ

)2

+
1
c2
∂iΨ

(

dxk

dτ

)2

= 0 (5.6)

Which can be multiplied twice by dτ/dt to convert to derivatives with respect to time t using

the chain rule. Note that the derivatives of Ψ are multiplied by the components of the three

velocity vi,j,k = dxi,j,k/dτ , which are assumed small in the Newtonian limit. Neglecting these

terms, the equation can be further reduced to

d2xi

dt2
= − 1

c2
∂iΦ (5.7)

which is a statement of Newtons first law that the acceleration of a particle is proportional

to the force it experiences. It is clear here that the scalar parameter Φ is interpreted as the

gravitational potential due to a massive body near the particle.

The next step of the reduction is to show the explicit form of the force as the inverse-square

law. To do this, consider the Einstein field equations

Gµν = Rµν − 1
2
Rgµν =

8πG
c4

Tµν (5.8)
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Where in this case the stress-energy (or energy-momentum) tensor Tµν is defined to be

Tµν =
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(5.9)

in the low energy limit where the only important component is the matter density ρ as the

system is assumed pressure-less with no shear.

The Ricci scalar R is the contraction of the Ricci tensor Rµν , where R = gµλRλµ = Rµ
µ and gµν is

the dual metric. The Ricci tensor Rµν is itself a contraction on (here) the first and third indices

of the Riemann curvature tensor Rρ
µβν . Rρ

µβν holds a complete description of the curvature of

the space under consideration, and it is defined as a function of the connection coefficients (or

Christoffel symbols of the second kind), Γα
σρ, and their derivatives. The connection coefficients

are functions of the dual metric and the derivatives of the metric gµν for that space.

The Riemann tensor can be written

Rρ
µβν = ∂βΓρ

µν − ∂νΓρ
µβ + Γρ

βλΓλ
µν − Γρ

νλΓλ
µβ (5.10)

and so, after contracting the first and third indices, this becomes

Rρ
µρν ≡ Rµν = ∂ρΓρ

µν − ∂νΓρ
µρ + Γρ

ρλΓλ
µν − Γρ

νλΓλ
µρ (5.11)

From the symmetry of the connection coefficients (Γρ
µν ≡ Γρ

νµ), the Ricci tensor then can be

written

Rµν = ∂ρΓρ
νµ − ∂νΓρ

ρµ + Γρ
ρλΓλ

νµ − Γρ
νλΓλ

ρµ (5.12)

Terms where the lower indices of the connection coefficients are equal are taken only, and the

potentials Φ and Ψ are treated as constant relative to typical orbital times for the particle. Then,

since only small perturbations to the metric are being considered, a useful approximation can be
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made by keeping only terms which are first order in the potentials, i.e. the metric perturbations.

This reduces the components of the Ricci tensor to become

R00 = ∂iΓi
00 + Γi

iiΓ
i
00 =

1
c2
δjk∂j∂kΦ +

3
c2
∂0∂0Ψ ≈ 1

c2
δjk∂j∂kΦ

R0i = Ri0 =
2
c2
∂0∂iΨ ≈ 0

Rij =
1
c2
∂j∂i (Ψ − Φ) = 0 (for Φ = Ψ in GR)

Rii =
1
c2
δjk∂j∂kΨ (5.13)

Summing over the diagonal components of the Ricci tensor yields the Ricci scalar as

R = −R0
0 +Ri

i = − 1
c2
δjk∂j∂kΦ +

3
c2
δjk∂j∂kΨ =

2
c2
δjk∂j∂kΦ (for Φ = Ψ in GR) (5.14)

Inserting into the ‘00’ component of the Einstein field equations becomes

R00 − 1
2
η00R =

8πG
c4

T00

1
c2
δjk∂j∂kΦ − 1

2
(−1)

2
c2
δjk∂j∂kΦ =

1
c2

2δjk∂j∂kΦ =
8πG
c4

ρc2

∴

1
c2

2δjk∂j∂kΦ =
8πG
c2

ρ (5.15)

or ∇2Φ = 4πGρ, which is Poisson’s equation for a gravitational potential Φ. Note that the

assumption Ψ = Φ has been implemented as GR predicts that the two potentials are indistin-

guishable. Poisson’s equation for the gravitational potential may be solved for a point mass M

located at a source position ~r
′

M using a Green’s function G(~r − ~r
′

M), where an arrow indicates

only the spatial indices are being considered, that satisfies

∇2G(~r − ~r
′

M) = δ(~r − ~r
′

M) (5.16)

where δ(~r − ~r
′

M) is the Dirac delta-function. Using the property that ∇2

(

1

|~r−~r
′

M
|

)

= −4πδ(~r −

~r
′

M), the Green’s function can be written as G(~r − ~r
′

M) = −1

4π|~r−~r
′

M
|
.
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A solution using a Green’s function, which in this case gives the potential due to a single point

mass at a single position, can then be used to solve for the gravitational potential by summing

over all infinitesimal contributions to the total mass distribution giving rise to the potential Φ.

In other words

Φ (~r) =
∫

Vsource

G(~r − ~r
′

)4πGρ(~r
′

) d3~r
′

= −4πG
∫

Vsource

ρ(~r
′

)
4π | ~r − ~r ′ |d

3~r
′

= − GM

| ~r − ~r
′

M | (5.17)

where the field point ~r and the positions ~r
′

of the volume d3~r
′

within the source with vol-

ume Vsource are measured from the same origin, G is Newtonian constant of gravity, and
∫

Vsource
ρ(~r

′

)d3~r
′

= M . Note that the point-like nature of the source picks out ~r
′

= ~r
′

M

in the integrand.

For a point-mass M located at the origin of the coordinate system (~r
′ −~0), Poisson’s equation

yields Φ(r) = −GM
r

. The equipotentials for Φ are therefore concentric spherical shells about the

point-mass, and since the Newtonian gravitational acceleration ~a = −~∇Φ = −∂r(−GM/r)~er, or

~a = −(GM/r2)~er, where ~er is a unit vector in the outward radial direction. This is the familiar

inverse-square law of Newtonian gravitational attraction for a particle placed a distance r away

from a point-mass M . Note that the limit is a result of the first order estimate for the full

result. As such, any modifications to GR that have first order corrections to the connection

coefficients would have signatures on the Newtonian limit.

Originally, the formulation of GR used the inversion of this reduction. It started at the inverse

square law and worked up from the conservation of energy and momentum, which shows that the

Einstein field equations are the simplest form possible for GR that still preserves conservation

laws. To see the conservation, consider the covariant derivative of a second rank tensor field

Aµν defined as

∇σAµν = ∂σAµν − Γλ
σµAλν − Γλ

σνAµλ (5.18)

which says the derivative in an arbitrary space-time is the normal derivative through the coor-

dinate system, plus a correction to account for changes in the coordinate system due to matter
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curving the space-time.

Conservation of energy and momentum can be written as

∇µTµν = gρµ∇ρTµν = 0 (5.19)

which follows from the simple definition of the energy momentum tensor. The ∇µ used here

is still a covariant derivative operator, but its index has been raised in order to ensure metric

compatibility. Linking this to the curvature terms of the Einstein field equations

∇µ
(

Rµν − 1
2
Rgµν

)

= 0 (5.20)

Only taking terms first order in Γ, which follows from the assumption that the perturbations

to the metric are small, the conservation equations become

∇µ
(

∂ρΓρ
νµ − ∂νΓρ

ρµ − 1
2
gµνg

σλ
(

∂ρΓρ
σλ − ∂σΓρ

ρλ

)

)

= 0 (5.21)

where the Ricci scalar has been written as the contraction of indices in the Ricci tensor to

first order in the connection coefficients. Then expanding the covariant derivative as only the

partial derivative as other terms are second order in the coefficients, the equation becomes

∂µ∂ρΓρ
νµ − ∂µ∂νΓρ

ρµ − 1
2
gσλ∂ν∂ρΓρ

σλ + ∂ν∂
λΓρ

ρλ = 0 (5.22)

The second and last terms are equivalent after relabelling the indices being summed over. The

first and third terms are also equivalent, once the symmetry of the connection coefficients are

employed so that the only non-zero contribution is when µ = ν and when σ = λ. The difference

is that the first term picks out specifically when µ = ν, but the third term sums over the gamma

matrices. This gives twice as many entries as the first term after considering the entries in the

perturbation to the metric are all the same. Hence energy and momentum conservation follows

from the Einstein field equations in the weak field limit.
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A property of the metric is that it is locally coordinate invariant, and therefore it can be

written as the canonical form with vanishing first derivatives. From this, it can be said that

the Lagrange density of general relativity must be some scalar, composed of second derivatives

of the metric, multiplied by
√−g, where g = det(gµν). The simplest choice in scalar using

second derivatives of the metric is the Ricci scalar R. This leads to the Hilbert action in four

dimensional space-time

SH =
∫

d4x
√−gR (5.23)

which, when used in the Euler-Lagrange equation to find the motion of a particle perturbed

from a stable state, gives the Einstein field equations in a vacuum. When a component of the

Lagrange density that couples to matter is included, it is possible to uniquely identify

Tµν =
1√−g

δSM

δgµν
(5.24)

where SM is an extra component of the action relating to the coupling of gravity with matter. It

should be noted that the conservation of energy and momentum follow from Noether’s theorem

by claiming invariance under translation in time and space respectively.

The important message here is that Einstein’s equations are the simplest choice for the Lagrange

density. This suggests that it is theoretically permissible to choose a different density, so long

as the conservation equations still hold and the same weak field limit is reached at laboratory

scales. According to this derivation, there are three ways to modify this density: include higher

order terms in R, include a small dynamical field, or change the metric.

Adding a dynamical field gives rise to an extra force and the resulting set of actions describe ‘fifth

force’ theories. These are showing some promise and are motivated particularly in string theory,

but require a way to hide the new particle from observation. This can be done in many ways,

for example by a screening mechanism relative to a characteristic length (Yukawa), acceleration

scale (modified Newtonian dynamics), or local matter density (Chameleons). Modifying the

metric constitutes a change in the particle that mediates gravity, or adding more particles that

couple to gravity. For example bi-gravity splits the metric into two describing a massive and
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massless graviton, effectively adding a tensor field to the theory. There are many more ways to

modify the action, however outlining them is beyond the scope of this thesis.

Instead, the specific example of a scalar field φ perturbation is outlined to show how modifica-

tions can be achieved using screening mechanisms. The Hilbert action including a new scalar

field becomes

SH =
∫

d4x
√−g

(

f(φ)R +
1
2
gµν(∂µφ)(∂νφ) − V (φ)

)

(5.25)

where V (φ) is a function describing the self interactions of the field and its mass. The function

f defines the coupling of the field with the universe, and includes a dynamic gravitational

‘constant’ G. Note that the component Sm describing the coupling of the theory with matter

will also transform. One example takes Sm = Sm(A2(φ)gµν , ψi), where ψi describe species of

matter and A2(φ)gµν is a conformal transformation of the metric gµν , and includes a shielding

mechanism to maintain the integrity of laboratory experiments and astronomical observations

to date [32].

When the full action S = SH/8πG + SM is used to derive the equations of motion under

coordinate transformation invariance, a modification to the coupling constant G is found. It

was mentioned in chapter 4 that it is useful to think of departures from Newtonian theory as a

re-scaling of the gravitational constant. Indeed, for the specific example of scalar-tensor gravity

G is found to be inversely proportional to the scalar field G ∼ 1/φ [31].

The background material here highlights that the weak field limit can also be used to explore

the rich zoo of theories used to explain the remaining conflicts between observations and GR.

In the context of Pathfinder, original motivation for testing modified gravity lay in the ultra-

low acceleration dynamics. This developed into a measurement of Newton’s constant (see

chapter 4), which poses the question of how well can gravity gradiometers probe these theories

and what can be expected from an experiment that can use fully drag free dynamics? This

chapter outlines the development of these ideas.
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5.3 Developing Ideas for a Saddle Point Mission

5.3.1 Background

It has been argued that a modification to Newtonian dynamics according to the acceleration

regime of the object could give an alternative explanation for the incompatibility between

theoretical and measured rotation curves [92] [93]. By incorporating a cut off acceleration in

the theory, Newtonian dynamics is recovered in the systems tested at higher accelerations,

such as the Hulse-Taylor binary Pulsar system, but a new set of laws is uncovered in the low

acceleration limit. The cut off acceleration is usually taken to be around 10−10 ms−2. Theories

that segregate the laws of Physics into acceleration limits are usually denoted by MOdified

Newtonian Dynamics, or MOND for short.

There are many different flavours of MOND, using various transfer functions that transform

Newton’s laws into the modified dynamics at varying rates as the acceleration decreases. The

most notable ones in the context of Pathfinder are the linear, quadratic and Tensor-Vector-

Scalar (TeVeS) theories. These entered a conversation that discussed the ability for Pathfinder

to constrain alternative or extension theories of gravity [53] [111] [119] [120]. In particular, for

a time there was mention of a mission extension to examine the MONDian parameter space

by passing the space craft through the saddle point in the gravitational potential between the

Earth and the Sun [54] [119] [120].

The Newtonian Or Modified Acceleration Dynamics (NOMAD) mission suggested sending

Pathfinder through the gravitational saddle point between the Earth and Sun, where it had been

argued the MOND limit is within sight of the estimated experimental limits at the time [20].

In the development of the idea, there was some disagreement in how far and to what extent

Pathfinder could constrain MOND parameter space, which was the specific target for this ex-

tension mission. In all cases, it could be agreed that, even in the ‘current best estimate’ cases

for the sensitivity curves at the time, and even for the new reported curves, the extent to which

the signal entered into the observable regime was limited, and usually involved very specific

transfer functions.
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The variable δa/a (the fractional residual error, also called ζ(a) in later calculations) has the

additional property that it is equivalent to the fractional residual error in the gravitational

potential, assuming a Newtonian model. This first attempts to look at current coverage of this

parameter space were calculated by Sumner & Trenkel [109]. This included planetary points,

derived from the Ephemerides of the planets and compared with observational data [99] [100],

Pioneer measurements of the gravitational acceleration on exiting the solar system [121], and

potential contributions from a Pathfinder measurement based on the best estimate and the

nominal sensitivity curves for the system at the time of the proposal.

The work here details the additional constraints added to the plot first constructed by Sumner

& Trenkel. These investigations included points from pulsar timing, Globular Cluster data,

the centre of mass proper motion of the Large Magellanic Cloud and the Sun’s orbital motion

around the Galactic Centre.

5.3.3 Sources for Constraints on Newtonian Dynamics

One set of points for the plot uses precision pulsar timing data. Catalogues such as that

available from the Australia Telescope National Facility (ATNF) [89] and a compilation of data

provided by William Johnstone [78], can give the typical separations of objects and a very

precise measure of orbit periods Pdata using Doppler shifts of pulse times. These can be used

to calculate the centrifugal acceleration of the object to estimate the ‘observed’ acceleration

assuming a circular orbit (eccentricities ≤ 10−4 were used). This is, along with the comparative

‘model’ acceleration, given by

|~adata| = Mtotr
4π2

P 2
data

|~amodel| =
GMtot

r2
(5.26)

with their difference used in the fractional residual error δa/a. Masses used in this analysis

were estimated using the upper limit for neutron star formation M ≈ 1.35M�. This is rooted

in the theory behind neutron star formation in a binary system, where the mass limit before

collapse is reached by mass transfer. The companion mass is estimated using its spectral type.
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A second set of points uses Globular Cluster (GC) observations, compiled by William E. Har-

ris [68], where the role of Newton’s laws in the Virial Theorem can be tested for relaxed systems.

GCs are known to be relaxed systems as their ages are typically an order of magnitude greater

than the relaxation time [24]. To do this, the velocity dispersions for a sample of observed GCs

are used with their typical core radii to find the averaged core kinetic energy for the system.

This can be used to find the ‘observed’ gravitational potential energy of the GC core. Then

the number of stars in the core of the GC can be computed using the core luminosity density

(given as L� kpc−3) divided by the Luminosity estimate for the average core star spectral type

using the relations derived in Habets & Heintze [66]. Multiplying by an estimate for the aver-

age stellar mass based on average spectral type, an estimate for the total mass and therefore

gravitational potential energy GMtot/rcore can be found. Noting that the fractional error in

the acceleration is equivalent to the fractional error in the potential, and using the potential

divided again by rcore to obtain the model Gravitational acceleration, the resulting fractional

error can be extracted.

A third set of points uses a 2011 simulation by Kenji Bekki [21], where the center of mass proper

motion (CMPM) of stellar objects within the Large Magellanic Cloud (LMC) are simulated

and compared to observational data from the Hubble Space Telescope. According to Bekki,

the residual error of around 50 kms−1 between the simulated and observed CMPM was the

result of neglecting the effects of random motion by assuming circular orbits within the LMC.

The measured CMPM speed of 380 kms−1 is used with the distance to the Milky Way (MW)

galactic centre to find the ‘measured’ acceleration, assuming as a rough estimate a circular

motion acceleration a = v2

r
, where v is the velocity and r is the distance to the MW. Noting

that the fractional error in the acceleration is twice the fractional error in the CMPM speed v,

the observed acceleration and fractional error are

a =
v2

P M

Rd

=
(3.8 × 105)2

4.5 × 1019
= 3.21 × 10−9ms−2 δa

a
= 2

δv

v
= 2

5 × 104

3.8 × 105
= 0.263 (5.27)

A spread of points were created using several estimates of the MW total bound luminous mass.

The lower bound was found by ‘counting’ the number of stars and assuming the mean mass
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consistent with MW disk stellar population luminosities and counts, the remaining parameters

for the exponential disk model can be derived using the solar neighbourhood values for the

luminous matter density.

The total mass enclosed in the exponential disk to a radius R > Rbulge+bar is given by

Mencl (R) = −4πρ0HRd

(

Rd − e−R/Rd (R +Rd)
)

+ Mbulge+bar (5.28)

Then, using the Sun’s position (RGC = 8 kpc) to estimate the central density, ρ0 ≈ 3.81ρ� ≈

(0.46 − 1.26) stars pc−3. Assuming a solar mass for the average stellar mass in the disk,

ρ0 ≈ (0.92 − 2.51 × 1030) kg pc−3. An upper limit treats the sun’s off-plane position (∼ 20 pc,

using the lower estimate of disk thickness of ∼ 200 pc) as the characteristic height H. A lower

limit assumes the Sun is approximately in the galactic plane (z = 0, using the upper limit of

the disk thickness of ∼ 1000 pc).

It is now possible to construct the fractional residual error

δa

a
(R) =

GMencl (R)
v2(R)R

− 1 (5.29)

Using the flat rotation curves first observed by Rubin et al [105] to estimate the measured

rotational velocities as a function of radius from galactic centre, a locus of constraints can be

produced.

In order to further develop the exponential disk model for the MW, the Sun’s velocity in

the galactic plane was used to produce an upper and lower bound estimate for the locus of

constraints. The measured total speed of the Sun with respect to the galactic centre is 220

kms−1. However, the Sun is offset from the galactic plane by around 20 pc. This will split

the speed into the rotational and vertical components, thus reducing the observed angular

speed by a small amount. The split velocity will be used for the upper bound on the residual,

while the larger, total speed observed will be used for the lower bound. The Sun’s period

around the GC is estimated to be P�,φ = 240 × 106 yrs. This gives vφ ≈ 2πRGC/P�,φ = 205.8

kms−1. Using the relation v2 = v2
φ + v2

z , and an estimate for the form of vz based on an un-
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that are known to diverge from these laws. However, it is noted that no known theories of gravity

predict large anomalies in an intermediate acceleration range [71]. These results suggest that

a saddle point fly-by mission would only test the agreement between Newtonian dynamics and

measured systems in a region that is not known to contain new physics. That is to say that

the cut-off acceleration for which the Newtonian dynamics convert into a modified regime is

already placed around 10−10 ms−2 from observations of rotation curves of galaxies.

5.4 Theoretical Measurement of the Gravitational Con-

stant in Drag Free

One of the consequences of the NOMAD mission proposal was a move to model independent

probes of weak field violations to GR. As discussed in section 5.2, many theories of gravity

include imprints on the gravitational constant, making it a sought after currency when probing

gravity. In this section the motivation for attempting this measurement again but in drag free

will be shown.

In order to demonstrate the difference when using a full drag free system, a simple modulation

experiment is simulated on a LISA-like interferometer. It will be demonstrated that the results

improve significantly when using the full sensitivity to measure a change in relative acceleration,

rather than using electrostatic suspension forces to measure a change in acceleration.

Since the measurement is performed in drag free, the thrusters would not be turned off. This

would mean the SRP force becomes irrelevant, and the space craft could be left in a nominal

configuration. An example of the experiment is shown in Figure 5.5. However, as LISA is still in

the planning stages, some of the parameters describing the signal are unknown. A scan through

the parameter space governing the magnitude of the signal can be made, which also highlights

the most significant parameters to optimize when exploring layouts for future gradiometers.

The angle between sensitive axes of test masses within a space craft is taken to be 60°, and the

modulation is only allowed in the sensitive axis direction. The separation of the test masses
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Figure 5.5: Cartoon of a simple modulation experiment to measure G on a LISA-like interfer-
ometer to demonstrate the increase in performance when measuring in drag free. A sinusoidal
movement r(t) = a sin(ωt) (red arrows) of two source masses in two space crafts can double
the signal ∆gx measured by the measurement arm. The variable distance between the source
mass and adjacent test mass within a single space craft, denoted by R(t), can be used with the
variable angle φ(t) to project the change in acceleration ∆g into the x axis.

in their neutral positions in their housings is defined as d, and modulation of the neighbouring

source mass in a space craft is given by r = r(t). Putting these together, the variable angle

subtended by the line between the test masses from the sensitive axis is

φ(t) =
π

3
− φ′(t)

=
π

3
− tan−1

(

r

2d−
√

3r

)

(5.30)

The variable shortest distance between the two test masses is then defined by

R(t) = ((r + d)2 − (2 +
√

3)rd)1/2 (5.31)

These can be used to calculate the relative acceleration between the two sensitive test masses,

due to the in phase motion of the two source masses

∆gx = 2

(

Gm cos(φ(t))
R2(t)

)

(5.32)

A probable outcome for LISA has a test mass separation of around 40−50 cm, and a requirement
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The calculation assumes the space craft is travelling at 1.5 kms−1 through the saddle point, and

that the lateral gravitational gradient is a
′

= 2.3 × 10−11 s−2. The Sun facing solar array fixes

the space craft orientation so that the measurement of ∆gx samples the lateral gradient only.

The integrated time tint in each acceleration band can be estimated from its velocity and the

extent of the saddle point region. According to these approximations, it would spend 10200 s

between 10−4 and 10−5 ms−2, 1020 s between 10−5 and 10−6 ms−2, 102 s between 10−6 and 10−7

ms−2, and 30 s between 10−7 and 3 × 10−8 ms−2. Accelerations below this limit are restricted

by the the precision of the trajectory through the saddle point.

Estimating the Pathfinder sensitivity at frequencies equal to the inverse integration time, this

gives the noise of the measurement σgg = Sgg(1/tint), where Sgg is the reported sensitivity

curve. Then, using the test mass separation of d = 0.367 m, the residual δa/a is given by

δa

a
=
σgg

a′d
=
Sgg(1/tint)
a′d

√
tint

(5.34)

Repeating this for each acceleration bin, the new band can be inserted into the plot as shown

in Figure 5.8.

The lowest acceleration reached is determined by the miss distance to the saddle point; closer

approaches to the saddle point means closer approaches to zero acceleration. Given this, the

Pathfinder bands are not going to extend to accelerations occupied by systems like galactic

rotation curves as trajectories are unlikely to pass through bands lower than 3 × 10−8 ms−2.

However, a substantial reduction in the Pathfinder residuals can clearly be seen, which provides

a more stringent test on accelerations that otherwise are not well constrained.

The importance of testing the gap between solar system scales and galactic scales is paramount

to understanding where current models for gravity begin to fail. Although many models place

the characteristic scale beyond that reachable by a NOMAD mission, it would have provided

further tests of the inverse square law in interim accelerations.
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where α is the strength of the additional term and λ is the characteristic length scale. In the

case of five dimensional gravity, the correction would be a factor 1 + λ/r, which to leading

order is identical to the correction above. The strength parameter can be further decomposed

into a function of the baryon and lepton number [25], however the TMs on pathfinder are

designed to be identical, and the case where lepton number is excluded only is assumed here.

The modified potential can be used to derive the relative error in a measurement of G using

the Pathfinder method and the proposed modulation experiment for LISA, in terms of the

parameters describing the theory.

In the case of the Pathfinder experiment, the extreme positions of the source mass modulation

relative to the test mass are denoted by x+ and x−. Then, relabelling Newton’s gravitational

constant by GN , the acceleration on the test mass due to the position of the source mass is

given by aY
± and aN

± for the Yukawa and Newtonian cases respectively, where

aY
± = −GNm

x2
±

(

1 +
(

1 +
x±

λ

)

αe−x±/λ
)

aN
± = −GNm

x2
±

(5.36)

and m is the mass of the source mass.

Then, the difference in acceleration between these two positions for the Newtonian case is

δaN = aN
+ − aN

− = −GNm(x2
+ − x2

−)
x2

+x
2
−

(5.37)

and for the Yukawa case is

δaY = aY
+ − aY

− = δaN − aN
+

(

1 +
x+

λ

)

αe−x+/λ + aN
−

(

1 +
x−

λ

)

αe−x−/λ (5.38)

Then noting that the two extreme positions of the source mass are the same but in opposite

directions in the x-axis from the central position, the relation can be simplified using

x± = d± δd GN =
−δaNx2

+x
2
−

m(x2
+ − x2

−)
GY =

−δaY x2
+x

2
−

m(x2
+ − x2

−)
(5.39)
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where GY is what would be measured given a Yukawa like perturbation. The fractional error

in the measured and predicted constant is then

ζLP F (λ, α) =
GY −GN

GN

=
αe−d/λ

2dδd
[(

d2

(

1 +
d

λ

)

+ (δd)2

(

1 − δd

λ

))

sinh (δd/λ) +

(

dδd

(

2 +
d

λ

)

− δd

λ
(δd)2

)

cosh (δd/λ)

]

(5.40)

where the fractional error of the measurement is used instead of the difference between the

CODATA and measured value, as this gives the most conservative estimate for the limit.

Now considering the drag free modulation experiment, the modification uses the distance be-

tween the source mass and test mass. Using the notation from before, this is

ζDF (λ, α) =
GY −GN

GN

=
∆gY

x − ∆gN
x

∆gN
x

= α

(

R|r=+A

λ
e−R|r=+A/λ

)

(5.41)

where R(t) = ((r + d)2 − (2 +
√

3)rd)1/2 and r = A sin(ωt).

Using ζLP F = 0.07 and ζDF ≈ 10−3 as the approximate errors on G, exclusion limits can be

drawn in (λ, α) parameter space as shown in Figure 5.9.

Now comparing to the constraints on this theory around these length scales, it can be seen

that the simple drag free experiment exclusion limits approach those in place by laboratory

experiments. Comparing the results from the Pathfinder measurement of G, the motivation for

measuring G using drag free interferometry becomes clear, as even a simple modulation exper-

iment can improve the results of the Pathfinder measurement. Furthermore, this emphasizes

the cost of not being able to source a signal using a mass outside of the measurement system.
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scalar field φ. Using the results in Khoury et al. [81] for the predicted change in gravitational

constant, with the convention of Burrage & Sakstein [34] for a more modern approach to the

parametrization, a conservative, upper limit on the length scale for this modification is given

by a change in big G equal to the 1σ error in the Pathfinder measurement. This can then be

used with the effective coupling constant, defined as

βeff = 3β
∆RSC

RSC

(5.42)

where β is the coupling of the theory, and defined as Mc/Mpl, where Mc is the mass scale for

coupling and Mpl is the plank mass. In the original work by Khoury et al., β was assumed to

be order 1, giving a perturbation to the gravitational constant at around 100%. RSC is the

dimension of the space craft, and ∆RSC defines a ‘thin shell’ through which the chameleon

force acts. In this shell region, the field changes between the solution for the chameleon inside

and outside of the space craft. As long as this shell is ‘thin’ the forces of gravity will match

what is observed on Earth.

Khoury et al. found that
∆RSC

RSC

=
φa − φSC

6βMP lΦSC

(5.43)

where φa is the value of the chameleon field in interplanetary space, φSC is the value of the field

inside the space craft, and ΦSC = GNMSC/R
2
SC is the Newtonian potential of the space craft.

Using the definition of the field inside and outside as the value of the field that minimizes the

effective potential

Veff = Λ4+n/φn +
β

MP l

ρeβφ/MP l (5.44)

it is possible to link the measurement of G with the characteristic energy scale Λ through the

local density of gas at 1AU. Denoted by ρ, this residual gas density acts as a weak shield for

local Chameleons, and therefore should be accounted for when deriving the exclusion limit.

Taking the derivative of equation 5.44 and using a general potential with index n, where n is
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density of around ρa ≈ 10 protons cm−3 at 1AU, the resulting exclusion limit for the special

case n = 1 can be shown in Figure 5.10a. This exclusion limit is equivalent to the parameter

values required to ensure the space craft is adequately shielded so that the TMs do not measure

a departure from GR. Compared with the value of mG ≤ 10 − 104AU from Khoury et al. [81]

using laboratory measurements and the earth’s atmosphere, this places a much more strict limit

on the theory.

A more recent review of Chameleons and their current constraints as of 2017 is given by Burrage

& Sakstein [34]. Figure 5.10b shows the corresponding current constraints for this particular

parameter space, highlighting that a measurement of Newton’s constant in space is a powerful

tool to explore theories of modified gravity that include screening mechanisms.

5.6 Discussion

Although the saddle point mission did not go ahead, there could have been a reasonable contri-

bution from Pathfinder to fill a gap between relatively well modeled and not so well understood

systems. However, a priori, the working sensitivity of the instrument was not known, making

the motivation for the mission a question of risk for time with the space craft and fuel allowance.

The better than expected nominal performance on Pathfinder saw a deepening of the potential

exclusion limit Pathfinder could have place were the NOMAD mission to have flown. The

lowest acceleration reached by this limit, however, depends heavily on the miss distance to

the saddle point. Closer approaches will etch the Pathfinder bands closer to the limits set by

rotation curves of galaxies, globular clusters, the LMC as a satellite, and, most importantly,

the set transition acceleration of 10−10 ms−2. However, the more stringent tests of the interim

accelerations would verify GR in a region that otherwise is poorly understood. This is important

for understanding how the dynamics at these two scales approach each other.

Turning to a more model independent approach to exploring fundamental physics with Pathfinder,

the Big G experiment proved difficult for a number of reasons. It was shown that even a simpler

modulation experiment by a LISA-like interferometer could provide a near competitive mea-
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surement, highlighting that one of the primary difficulties of the Big G experiment was working

outside of the drag free system.

The next limiting factor for any future gravity gradiometer wishing to make a similar measure-

ment is the knowledge in the absolute distance between a source mass and measurement mass,

which was known at parts in 104 for Pathfinder. This would need to be calibrated both on

ground and in flight to lift the underlying limit on the measurement and adjust for a drift as

the TM reaches the electrostatic equilibrium position. More importantly, using a scan through

a two parameter space it was shown that reducing the distance between source mass and test

mass would improve the overall measurement substantially.

Although the example drag free measurement used a layout defined by the LISA experiment, the

derivation is similar for a general interferometer. In fact, it is possible to apply the derivation

here to the layout of SMART-2, an early version of the Pathfinder experiment where two pairs

of test masses were proposed instead of one. In essence, the results apply to any experiment

with drag free interferometry and source mass independent of the measurement axis.

Two example theories were used with the Pathfinder measurement and the example modulation

experiment to illustrate the improvements on exclusion limits possible when in drag free, and

the motivations for pursuing these measurements. In the case of Yukawa gravity, a simple drag

free modulation experiment provided an improvement in exclusion limit proportional to the

improved relative error of the gravitational constant measurement. In the case of Chameleons,

the limit placed by Pathfinder was close to current constraints, emphasizing that measuring this

constant in space is a powerful tool to explore the parameter spaces of theories with screening

mechanisms.

This chapter briefly discusses one aspect of the role gravity gradiometers could play in ad-

dressing some of the problems faced in fundamental physics. With the better than expected

performance of Pathfinder it is hoped these experiments could begin to help shape the theoret-

ical landscape, providing new exclusion limits in the foreseeable future.
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Conclusion

In the next few decades, the field of Gravitational Wave Astronomy will see several ground-

breaking experiments approach operations. LISA Pathfinder, a proof of concept mission to test

the technology available for a large scale interferometer in space, has successfully surpassed

its sensitivity requirements and those set for LISA. This thesis presents some of the contribu-

tions made toward the experiment relating to space weather at the first Lagrange point and

fundamental physics.

A model was outlined for the radiation monitor on Pathfinder. It assumed a Gaussian electronic

noise with parameters fitted using weekly test pulses. Three different plausible models for the

threshold distributions were tested using two sets of calibration data. Of the three models, a

single Gaussian with mean µT and standard deviation σT was found to reproduce the data well,

best re-produce the expected singles count to coincident count ratio behaviour and even suggest

a global model. However, the best fit threshold parameter values suggested the assumptions in

the initial fit for φ were flawed.

Also tested was a double Gaussian model which included a single standard deviation σT de-

termined by a technical report and two free parameters, µF ront and µBack, denoting the mean

offset from the nominal threshold in the front and back diodes. This did not fair as well as the

single Gaussian model with no global parameter values available. The final model tested was a

single Gamma distribution for both thresholds described by parameters κθ and θ for the mean
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and shape. This was the worse of the three distributions, with no global model available and

the highest tension between predicted and measured spectra. Furthermore, when the front and

back diode thresholds were set at different values, the results suggested that there was more

happening than was captured by the model.

The fits performed suggested that a single Gaussian distribution best described the threshold

characteristics for the nominal data, but the model required further scrutiny to fully describe

the monitor’s full range of energies. Future designs for radiation monitors on LISA are advised

to more extensively test the individual shapes of the thresholds using an oscilloscope, especially

considering the cases where the deposited energy is close to the nominal threshold. This will

improve the quality of analyses with this data as the vast majority of deposited energy in the

Pathfinder RM resides in the main peak just a few bins above the nominal threshold.

In order to remove the redundancy between the initial fit for φ and the threshold parameters,

the single Gaussian model was adopted but the parameters µT and σT were set to the values

determined for the electronics noise. The model was then applied to daily coincident spectra

through the Pathfinder mission to extract estimates for solar attenuation of cosmic rays. The

daily estimates recovered a variation at integer fractions of the 27 day solar rotation period,

indicating a link to heliospheric current sheet crossings. Ground work was made to project

test mass charging to the LISA mission by correlating the φ estimates with charging rate

measurements at several configurations of TM potential and actuation voltage.

A measurement of the gravitational constant in space was made by Pathfinder. The value was

found to be 6.93 × 10−11 ± 0.36 × 10−11m3kg−1s−2, although further refinement of the analysis

is expected. The difficulties encountered so far have highlighted obstacles to be addressed by

future gradiometers wishing to improve on this value.

A toy model of a simple modulation experiment with a LISA-like interferometer showed that a

measurement using drag-free relative acceleration greatly improves the result. It also suggested

that the most efficient way to decrease the relative uncertainty is to minimize the distance

between the test mass(es) and source mass. Optimizing this in layouts of future gradiometers

is essential in order to reach a competitive measurement of the gravitational constant.
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The motivation for a saddle-point fly-by mission on MOND was also developed. It was found

that Pathfinder could bridge the gap and test accelerations between well modelled solar system

dynamics and relatively not-well understood dynamics above this scale. The impact of this

kind of measurement depends on the miss distance between the satellite and the saddle point,

which determines the lowest acceleration reached.

The success of Pathfinder has demonstrated that space based interferometers are well within

the scope of current technology, and as detections by ground based experiments mount it is

clear that there are numerous sources in the universe waiting to be heard. As Gravitational

Wave Astronomy continues to expand, the addition of lower frequency detectors will broaden

the field and enrich the knowledge gained from the gravitational universe.
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