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Abstract. Diffusion tensor coefficients play a central role in describing cosmic ray transport in
various astrophysical environments permeated with magnetic fields, which are usually modeled
as a fluctuating field on top of a mean field. In this contribution to CRIS-MAC 2024, a formal
derivation of these coefficients is presented by means of the calculation of velocity decorrelation
functions of particles. It relies mainly on expanding the 2-pt correlation function of the (fluctuat-
ing) magnetic field experienced by the particles between two successive times in the form of an
infinite Dyson series and retaining a class of terms that converge to a physical solution. Subse-
quently, the velocity decorrelation functions, themselves expressed as Dyson series, are deduced
from an iteration procedure that improves on the partial summation scheme. The results are
shown to provide approximate solutions compared to those obtained by Monte-Carlo simulations
as long as the Larmor radius of the particles is larger than at least one tenth of the largest scale of
the turbulence.

In many astrophysical environments, the propagation and acceleration of high-energy charged particles (cosmic
rays) are governed by the scattering off magnetic fields, which are described as a turbulence 𝛿B on top of a mean
field B0. The transport of the particles is then modelled as an anisotropic diffusion process. Under very broad
conditions, the coefficients of the diffusion tensor can be related to the velocity correlation function of cosmic rays,
⟨𝑣0𝑖𝑣 𝑗 (𝑡)⟩, through a time integration [1],

𝐷𝑖 𝑗 (𝑡) =
∫ 𝑡

0
d𝑡′ ⟨𝑣0𝑖𝑣 𝑗 (𝑡′)⟩, (1)

in the limit that 𝑡 →∞. Here, 𝑣0𝑖 ≡ 𝑣𝑖 (𝑡 = 0)1 and ⟨·⟩ stands for the average quantities, taken over several space and
time correlation scales of the turbulent field. Many estimates of these coefficients have been made from numerical
simulations exploring wide ranges of particle rigidities and turbulence levels [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19]. Formal estimates, on the other hand, have been presented in [9] in the high rigidity
regime, and in [20, 21] in the gyro-resonant regime. In this contribution to CRIS-MAC 2024, we present these
latter estimates. Without loss of generalities, the study is limited to the example of an isotropic 3D turbulence
following a Kolmogorov power spectrum without helicity. The setup for the mean field is such that B0 = 𝐵0u𝑧 .

We are interested in determining the moments of 𝑣𝑖 (𝑡) to derive a workable expression for Eqn. 1. The velocity
of each test-particle is governed by the Lorentz-Newton equation of motion,

¤𝑣𝑖 (𝑡) = 𝛿Ω(𝑡) 𝜖𝑖 𝑗𝑘𝑣 𝑗 (𝑡)𝛿𝑏𝑘 (𝑡) +Ω0 𝜖𝑖 𝑗𝑘𝑣 𝑗 (𝑡)𝑏0𝑘 (𝑡). (2)

1Since cosmic rays are high-energy relativistic particles, the norm of the velocity is identified to 𝑐 for convenience.
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Here, 𝛿Ω(𝑡) = 𝑐2𝑍 |𝑒 |𝛿𝐵(𝑡)/𝐸 is the gyrofrequency related to the turbulence, Ω0 that related to the mean field,
𝑍 |𝑒 | and 𝐸 the electric charge and the energy of the particle, and 𝛿𝑏𝑘 (𝑡) ≡ 𝛿𝑏𝑘 (x(𝑡)) the 𝑘-th component of
the turbulence (expressed in units of 𝛿𝐵) at the spatial coordinate x(𝑡), which corresponds to the position of the
test-particle at time 𝑡. A formal solution for ⟨𝑣𝑖 (𝑡)⟩ can be obtained by expressing the solution of Eqn. 2 as an
infinite number of Dyson series, each combining terms in powers of 𝛿b coupled to terms in powers of B0. Dealing
with such an infinite number of Dyson series is however hardly manageable. To circumvent this difficulty, we use
the auxiliary variable introduced in [9], 𝑤𝑖 (𝑡) = 𝑅𝑖 𝑗 (Ω0𝑡)𝑣 𝑗 (𝑡), with R(Ω0𝑡) the rotation matrix of angle Ω0𝑡 around
u𝑧 . The equation of motion for w is then

¤𝑤𝑖 (𝑡) = 𝛿Ω 𝑅𝑖 𝑗 (Ω0𝑡)𝜖 𝑗𝑘ℓ𝑅−1
𝑘𝑚(Ω0𝑡)𝑤𝑚 (𝑡)𝛿𝑏ℓ (𝑡), (3)

the formal solution of which can be expressed as a single Dyson series:

⟨𝑤𝑖0 (𝑡)⟩ = 𝑤0𝑖0 +
∞∑︁
𝑝=1

𝛿Ω𝑝 𝜖𝑘1𝑚1𝑛1𝜖𝑘2𝑚2𝑛2 . . . 𝜖𝑘𝑝𝑚𝑝𝑛𝑝
𝑤0𝑖𝑝

∫ 𝑡

0
d𝑡1

∫ 𝑡1

0
d𝑡2· · ·

∫ 𝑡𝑝−1

0
d𝑡𝑝

×𝑅𝑖0𝑘1 (Ω0𝑡1)𝑅𝑖1𝑘2 (Ω0𝑡2) · · ·𝑅𝑖𝑝−1𝑘𝑝 (Ω0𝑡𝑝)𝑅−1
𝑚1𝑖1

(Ω0𝑡1)𝑅−1
𝑚2𝑖2

(Ω0𝑡2) · · ·𝑅−1
𝑚𝑝𝑖𝑝

(𝑡𝑝)⟨𝛿𝑏𝑛1 (𝑡1) . . . 𝛿𝑏𝑛𝑝
(𝑡𝑝)⟩. (4)

In the following, we derive the velocity correlation functions, ⟨𝑣0𝑖𝑣 𝑗 (𝑡)⟩, based on this equation.
In the Gaussian approximation, the Wick theorem allows for expressing ⟨𝛿𝑏𝑛1 (𝑡1) . . . 𝛿𝑏𝑛𝑝

(𝑡𝑝)⟩ in terms of all
possible permutations of products of contractions of pairs of ⟨𝛿𝑏𝑛𝑖 (𝑡𝑖)𝛿𝑏𝑛 𝑗

(𝑡 𝑗 )⟩, which can be, in the case of 3D
isotropic turbulence, written as

⟨𝛿𝑏𝑛1 (𝑡𝑖)𝛿𝑏𝑛2 (𝑡 𝑗 )⟩ =
𝛿𝑛1𝑛2

3
𝜑(𝑡𝑖 − 𝑡 𝑗 ). (5)

The correlation function 𝜑(𝑡), which describes the correlation of the turbulence experienced by a test-particle along
its path at two different times, follows from

𝜑(𝑡) ≃
∫ kmax

kmin

dk
E(𝑘)
4𝜋𝑘2 sin2 𝜃𝑘 ⟨eik·x(𝑡 )⟩, (6)

where the minimum wavenumber vector kmin is related to the distance 𝐿max over which the correlation function
is non-zero (size of the largest “eddies”), while the maximum one kmax is related to the scale 𝐿min at which the
dissipation rate of the turbulence overcomes the energy cascade rate, and where E(𝑘) is the kinetic energy spectrum
of the turbulence. The factor ⟨𝑒ik·x(𝑡 )⟩ is modelled as [22]

⟨eik·x(𝑡 )⟩ ≃
∑︁
𝑝≥0

(−(𝑘𝑐)2) 𝑝
∫ 𝑡

0
d𝑡1

∫ 𝑡1

0
d𝑡2 · · ·

∫ 𝑡2𝑝−1

0
d𝑡2𝑝

∑︁
pairings

∏
pairs 𝑖< 𝑗

e−(𝑡𝑖−𝑡 𝑗 )/𝜉 (𝑘 ) , (7)

where the approximation ⟨(k · v(𝑡1)) (k · v(𝑡2))⟩ ≃ (𝑘𝑐)2e−(𝑡1−𝑡2 )/𝜉 (𝑘 ) has been used by introducing a correlation
time scale 𝜉. Guided by Monte-Carlo simulations that show a longer falloff timescale for the 2-pt function of
the fluctuating magnetic field for large 𝑘 compared to small 𝑘 , a dependency in (𝑘𝑐)−1 turns out to reproduce
the main features of 𝜑(𝑡) for a reduced rigidity (Larmor radius conventionally related to the turbulence only and
expressed in units of the largest eddy scale 𝐿max) 𝜌 = 1. An additional dependency in 𝜌 is introduced through
𝜉 (𝑘, 𝜌) = 𝐴𝜌𝐵/(𝑘𝑐); 𝐴 ≃ 1 and 𝐵 ≃ 0.5 are found to provide a good compromise to cover the gyroresonant and high-
rigidity regimes. To evaluate the right hand side, only pairs with 𝑗 = 𝑖 +1 are retained. Under this approximation,
which corresponds to summing unconnected diagrams [23], our estimate of ⟨eik·x(𝑡 )⟩, denoted with a subscript 0,
can be written in a compact non-linear manner:

⟨eik·x(𝑡 )⟩0 ≃ 1− (𝑘𝑐)2
∫ 𝑡

0
d𝑡1

∫ 𝑡1

0
d𝑡2 e−

𝑡1−𝑡2
𝜉 (𝑘) ⟨eik·x(𝑡−𝑡1 )⟩0. (8)

In the Laplace reciprocal space, the equation is then linear in L[⟨eik·x(𝑡 )⟩0] (𝑠), which reads as

L[⟨eik·x(𝑡 )⟩0] (𝑠) =
1+ 𝑠𝜉 (𝑘)

(1+ 𝑠𝜉 (𝑘))𝑠+ (𝑘𝑐)2𝜉 (𝑘)
, (9)

so that ⟨eik·x(𝑡 )⟩0 can be inferred from a numerical inverse Laplace transformation. Subsequently, we infer the
partial-summation approximation for the 2-pt function of the fluctuating magnetic field experienced by a test particle
as

𝜑(𝑡) ≃ 2(2𝜋)2/3𝛿𝐵2

3
(
𝐿

2/3
max − 𝐿

2/3
min

) ∫ 𝑘max

𝑘min

d𝑘 𝑘−5/3L−1
[

1+ 𝑠𝜉 (𝑘)
(1+ 𝑠𝜉 (𝑘))𝑠+ (𝑘𝑐)2𝜉 (𝑘)

]
(𝑡). (10)
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Applying the Wick theorem, the Dyson series reads as

⟨𝑤𝑖0 (𝑡)⟩ = 𝑤0𝑖0 +
∞∑︁
𝑝=1

(
𝛿Ω2

3

) 𝑝
𝑤0𝑖2𝑝

∫ 𝑡

0
d𝑡1

∫ 𝑡1

0
d𝑡2· · ·

∫ 𝑡2𝑝−1

0
d𝑡2𝑝

∑︁
pairings

∏
𝑗<ℓ

𝜑(𝑡 𝑗 − 𝑡ℓ)

×
(
𝑅𝑖 𝑗−1𝑘 𝑗

(Ω0𝑡 𝑗 )𝑅𝑖ℓ−1𝑘 𝑗
(Ω0𝑡ℓ)𝑅−1

𝑚 𝑗 𝑖 𝑗
(Ω0𝑡 𝑗 )𝑅−1

𝑚 𝑗 𝑖ℓ
(Ω0𝑡ℓ) −𝑅𝑖 𝑗−1𝑘 𝑗

(Ω0𝑡 𝑗 )𝑅𝑖ℓ−1𝑘ℓ (Ω0𝑡ℓ)𝑅−1
𝑘ℓ 𝑖 𝑗

(Ω0𝑡 𝑗 )𝑅−1
𝑘 𝑗 𝑖ℓ

(Ω0𝑡ℓ)
)
,

(11)

which is the relevant equation to determine the time evolution of the auxiliary variable w(𝑡) and subsequently of
the particle velocity v(𝑡) = 𝑅̂−1 (Ω0𝑡)w(𝑡). To carry out a summation of the Dyson series, we resort to a two-step
iteration procedure. In the first iteration, we calculate the propagator that would be accurate in the case of a 2-pt
function 𝜑(𝑡) approximated by a Dirac function. This approximation proves to be relevant in the high-rigidity
regime in pure turbulence. It corresponds to the summation of the class of unconnected diagrams and represents
the simplest partial summation scheme of the Dyson series [23]. However, this scheme leads to a non-physical
solution in the case of a non-zero mean field and in the gyroresonant regime. A more physical solution is then
obtained by including classes of nested and crossed diagrams in the partial summation of the Dyson series, in which
the first iteration of the propagator is inserted into each ordered time. We now detail this scheme below.

The propagator obtained by retaining only unconnected diagrams is denoted as ⟨𝑤𝑖 (𝑡)⟩0. For the sake of clarity,
we denote it with a subscript 0:

⟨𝑤𝑖 (𝑡)⟩0 = 1+ 𝛿Ω2

3

∫ 𝑡

0
d𝑡1

∫ 𝑡1

0
d𝑡2

(
𝑅−1
𝑖 𝑗 (2Ω0 (𝑡1 − 𝑡2)) − (1+2cosΩ0 (𝑡1 − 𝑡2))𝑅−1

𝑖 𝑗 (Ω0 (𝑡1 − 𝑡2)
)
𝜑(𝑡1−𝑡2)⟨𝑤𝑖 (𝑡−𝑡1)⟩0,

(12)
which gives rise to a linear term for L[⟨𝑤𝑖 (𝑥)⟩0] (𝑠) in the Laplace reciprocal space:

L[⟨𝑤𝑖 (𝑥)⟩0] = L[1] (𝑠) + 𝛿Ω2

3
L[⟨𝑤𝑖 (𝑥)⟩0] (𝑠)L[1] (𝑠)L

[(
𝑅−1
𝑖 𝑗 (2Ω0𝑥) − (1+2cosΩ0𝑥)𝑅−1

𝑖 𝑗 (Ω0𝑥)
)
𝜑(𝑥)

]
(𝑠).

(13)
The propagator ⟨𝑤𝑖 (𝑡)⟩0 is therefore obtained through a numerical inverse of Laplace transform. Throughout this
study, the Stehfest algorithm is used, with Stehfest number 𝑁 = 20 [24].

The second summation scheme accounts, in addition to unconnected diagrams, for contributions from nested
and crossed diagrams that can be approximated by substituting internal double lines for zigzags. In this manner,
both the nested and crossed contributions give rise to linear terms in L[⟨𝑤𝑖 (𝑥)⟩] (𝑠):

L[⟨𝑤𝑖 (𝑥)⟩] (𝑠) =
1
𝑠
+ 𝛿Ω2

3
L[⟨𝑤𝑖 (𝑥)⟩] (𝑠)

𝑠
L

[ [
𝑅−1
𝑖 𝑗 (2Ω0𝑥) − (1+2cosΩ0𝑥)𝑅−1

𝑖 𝑗 (Ω0𝑥)
]
𝜑(𝑥)⟨𝑤𝑖 (𝑥)⟩0

]
(𝑠)

+
(
𝛿Ω2

3

)2

L[⟨𝑤𝑖 (𝑥)⟩] (𝑠)L[1] (𝑠)L
[ [

1+𝑅−1
𝑖 𝑗 (Ω0 (𝑥1 +2𝑥2 + 𝑥3)) (1+2cosΩ0 (𝑥1 − 𝑥3)) −𝑅−1

𝑖 𝑗 (Ω0 (2𝑥1 +2𝑥2))

−𝑅−1
𝑖 𝑗 (Ω0 (2𝑥2 +2𝑥3))

]
𝜑(𝑥1 + 𝑥2)𝜑(𝑥2 + 𝑥3)⟨𝑤𝑖 (𝑥1)⟩0⟨𝑤𝑖 (𝑥2)⟩0⟨𝑤𝑖 (𝑥3)⟩0

]
(𝑠). (14)

The velocity decorrelation function relevant for the parallel diffusion corresponds to 𝑖 = 𝑗 = 𝑧 in equation 14.
Denoting for convenience as 𝑊̂𝑖 (𝑠) the Laplace transform function L[⟨𝑤𝑖 (𝑡)⟩] (𝑠), the first iterated propagator
inferred in the Laplace space reads as

𝑊̂0𝑧 (𝑠) =
1
𝑠
− 2𝛿Ω2

3
𝑊̂0𝑧 (𝑠)

𝑠
L [𝜑(𝑥) cosΩ0𝑥] (𝑠), (15)

while the iterated propagator reads as

𝑊̂𝑧 (𝑠) =
1
𝑠
− 2𝛿Ω2

3
𝑊̂𝑧 (𝑠)

𝑠
L [𝜑(𝑥)⟨𝑤𝑧 (𝑥)⟩0 cosΩ0𝑥] (𝑠)

+2
(
𝛿Ω2

3

)2
𝑊̂𝑧 (𝑠)

𝑠
L
[
𝜑(𝑥1 + 𝑥2)𝜑(𝑥2 + 𝑥3)⟨𝑤𝑧 (𝑥1)⟩0⟨𝑤𝑧 (𝑥2)⟩0⟨𝑤𝑧 (𝑥3)⟩0 cosΩ0 (𝑥1 − 𝑥3)

]
(𝑠). (16)

The resulting velocity decorrelation functions ⟨𝑣0∥ 𝑣∥ (𝑡)⟩ = ⟨𝑤0𝑧𝑤𝑧 (𝑡)⟩ are shown in Fig. 1 for 𝜌 = 0.1 (left panel)
and different values of 𝐵0 (and 𝛿𝐵 = 1 μG). For reference, results from Monte-Carlo experiments are shown as the
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Figure 1: Parallel velocity decorrelation function of particles with reduced rigidity 𝜌 = 0.1 (left) and 𝜌 = 1 (right)
for different values of 𝐵0 (𝛿𝐵 = 1 μG), as a function of the gyroperiod time scale 𝛿Ω𝑡. Dashed lines are from
Monte-Carlo simulations.

dashed lines. Overall, the main features of the functions inferred from the simulations, namely the modulations
on top of an approximately exponential envelope that is decreasing slower with time for increasing 𝐵0 values, are
captured by the calculation. In this rigidity regime, the resonance between the Larmor radius of the particles with
wavelengths of the turbulence is the source of the modulations related to the total angular frequency 𝛿Ω+Ω0. They
reflect memory effects originating from large-scale wavenumber field lines around which particles spiral while
undergoing the imprint of a random walk caused by smaller wavenumber vectors. As the intensity 𝐵0 increases,
the particles tend to remain bound to the lines of the mean field for longer, and the decay takes longer. Beyond
similarities between the simulation and calculation results, however, quantitative differences are observed in Fig. 1.
The most notable one concerns the global rate of falloff of the decorrelation functions that is predicted to be too
rapid for 𝐵0 ≲ 5μG by the calculation compared to the Monte-Carlo simulations. The increase of the “decay time”
describing the approximately exponential envelope is indeed too slow for small values of 𝐵0, as clearly observed
for 𝐵0 = 1μG, before crossing the right range and getting too fast for 𝐵0 ≳ 5μG. In other words, the dependence
of the decorrelation functions in 𝐵0 is non-linearly under-(over)estimated for 𝐵0 ≲ (≳)5μG. The underestimation
for small 𝐵0, already visible for 𝐵0 = 0, is attributed at this stage on the one hand to the overestimation of 𝜑(𝑡)
observed in [22], and on the other hand to an artefact due to the partial summation of the Dyson series.

At higher rigidity (𝜌 = 1), the Larmor radius of the particles is always larger than the eddy sizes and scatterings
can be considered independent one from another. The process is Markovian and the decorrelation gets exponential
in the pure turbulence case, as demonstrated in [9] based on a white-noise approximation to describe the 2-
pt correlation function 𝜑(𝑡). By increasing 𝐵0, the decay of the decorrelations gets slower. Similarly to the
case 𝜌 = 0.1, the calculation is observed to underestimate the “decay time”; yet the values of 𝐵0 leading to the
underestimation span a much wider range.

The velocity decorrelation function relevant for the perpendicular diffusion corresponds to 𝑖 = 𝑗 = 𝑥 or 𝑖 = 𝑗 = 𝑦

in equation 14. The calculation proceeds the same way as for the parallel diffusion:

𝑊̂0𝑥 (𝑠) =
1
𝑠
− 𝛿Ω2

3
𝑊̂0𝑥 (𝑠)

𝑠
L [𝜑(𝑥) (1+ cosΩ0𝑥)] (𝑠), (17)

and

𝑊̂𝑥 (𝑠) =
1
𝑠
− 𝛿Ω2

3
𝑊̂𝑥 (𝑠)

𝑠
L [𝜑(𝑥)⟨𝑤𝑥 (𝑥)⟩0 (1+ cosΩ0𝑥)] (𝑠)

+2
(
𝛿Ω2

3

)2
𝑊̂𝑥 (𝑠)

𝑠
L
[
𝜑(𝑥1 + 𝑥2)𝜑(𝑥2 + 𝑥3)⟨𝑤𝑥 (𝑥1)⟩0⟨𝑤𝑥 (𝑥2)⟩0⟨𝑤𝑥 (𝑥3)⟩0 cos2Ω0

( 𝑥1
2
+ 𝑥2 +

𝑥3
2

)]
(𝑠). (18)

The relevant decorrelation function is ⟨𝑣0⊥𝑣⊥ (𝑡)⟩ = ⟨𝑤0𝑥𝑤𝑥 (𝑡)⟩ cosΩ0𝑡 = ⟨𝑤0𝑦𝑤𝑦 (𝑡)⟩ cosΩ0𝑡.
A first illustration of the calculation is given in Fig. 2 (left panel), where the perpendicular decorrelation

function is shown for 𝜌 = 0.1 and 𝐵0 = 1 μG. The dashed line is from Monte-Carlo simulations. As in the case of
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Figure 2: Perpendicular velocity decorrelation function of particles with reduced rigidity 𝜌 = 0.1 (left) and 𝜌 = 1
(right) for 𝛿𝐵 = 1 μG and 𝐵0 = 1μG, as a function of the gyroperiod time scale 𝛿Ω𝑡. Dashed line is from Monte-
Carlo simulations.

Figure 3: Parallel (left) and perpendicular (right) diffusion coefficient as a function of the reduced rigidity for
different values of 𝐵0 (𝛿𝐵 = 1 μG). The Dashed line is from Monte-Carlo simulations in the pure turbulent case
(𝐵0 = 0).

parallel diffusion, the envelope of the decay is slightly underestimated by the calculation. However, the modulations
features, which have been shown from various simulations to be responsible for the perpendicular sub-diffusive
regime at early times, are well reproduced. It is to be noted that none of the approximations proposed in the literature
could predict both the fast decaying envelope and the positions of minimum and second maximum inherited from
the modulations on top of the decay.

A second illustration is given in Fig. 2 , for 𝜌 = 0.1 and 𝐵0 = 1 μG. At such a high rigidity, the decay time scale
is longer than the gyroperiod time scale Ω0𝑡, hence the numerous oscillations. The results from the calculation or
from the simulations are almost indistinguishable.

The dependence in rigidity of the parallel diffusion coefficient 𝐷 ∥ is shown in Fig. 3 (left panel) for different
values of 𝐵0, expressed in units of 𝑐𝐿max. The dashed line displays, for reference, the results obtained from Monte-
Carlo simulations in the case of pure turbulence. Despite the aforementioned differences between the simulations
and the calculation, 𝐷 ∥ is observed to be reproduced within a factor 2. In particular, the calculation slightly deviates
from the expected scalings in 𝜌1/3 in the gyroresonant regime an in 𝜌2 in the quasi-ballistic regime [25, 26, 27]. As
𝐵0 is increasing, from the analysis of the decorrelation functions presented above, 𝐷 ∥ is expected to be more and
more underestimated; yet the calculation presented here provides genuine qualitative scalings that are also reliable
quantitatively around 𝜌 = 0.1.
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Figure 4: Ratio between perpendicular and parallel diffusion coefficient as a function of the reduced rigidity for
different values of 𝐵0 (𝛿𝐵 = 1 μG).

In the same manner as in the parallel transport, the dependence in rigidity of the perpendicular diffusion
coefficient 𝐷⊥ is shown in Fig. 3 (right panel) for different values of 𝐵0, expressed in units of 𝑐𝐿max. Due to
the oscillatory behavior of the velocity decorrelation functions, the additional time integration should smooth out
differences between the simulations and the calculations. As 𝐵0 is increasing, 𝐷⊥ is decreasing, as expected (for
𝐵0 → ∞, a particle would be spiraling around B0 at a fixed radius). More revealing is the rigidity dependence
of 𝐷⊥, observed to rise more slowly than that of 𝐷 ∥ in the gyroresonant regime and, unlike 𝐷 ∥ , to decrease
in the high-rigidity regime. These dependencies are more clearly highlighted in Fig. 4, where the ratio 𝐷⊥/𝐷 ∥
is displayed. The rise at low rigidities is in agreement with that revealed in Monte-Carlo studies in which the
turbulence dynamical range well covers the rigidities of interest [17]. Furthermore, the decrease at high rigidities
is also in agreement with these simulations, as is the shift of the transition region towards higher rigidities as 𝐵0 is
increasing.

In conclusion, velocity decorrelation functions of high-energy cosmic rays propagating in magnetic fields have
been obtained from the Dyson series governing the motion of the particles. The particular example of Kolmogorov
turbulence has been used, as it is a widely-used benchmark; yet there is a priori no restriction in the formalism to
inject any spectrum of turbulence into Eqn. 5. The absence of small parameter of expansion forbids any perturbation
theory to hold, and hence any truncation of the Dyson series [28]. The partial-summation scheme developed in
this study is shown to provide an approximate solution that captures the main features uncovered by numerical
simulations in a range of rigidities covering the transition between the gyroresonant and the quasi-ballistic regimes
on the one hand, and the quasi-ballistic regime itself on the other hand. Keeping in mind the limitations underlined
in terms of underestimation of the diffusion coefficients, the calculation based on Eqn. 14 provides a rapid tool for
deriving approximate solutions without having to resort to heavy numerical simulation campaigns.

A key ingredient of the approximate solution relies on the modeling of the 2-pt correlation function of the
turbulence experienced by the particles between two successive times. The approximation proposed in this study
is found to reproduce the main features uncovered, here again, by numerical simulations as long as the reduced
rigidity is larger than about one tenth of the largest scale of the turbulence. Progress in the modeling of this 2-pt
function is needed to extend to lower rigidity the range of validity of the type of calculation presented in this study.
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