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Abstract

The Gross-Neveu (GN) model is a 2-dimensional quantum field theory (QFT)
with an interaction given by a 4-Fermi term. Already being understood in some
detail, it serves as a possibility to explore new strategies for calculating observ-
ables or to examine new algorithms.

In this diploma thesis an algorithm for the fermion loop representation of
the GN model is developed; on the one hand to confirm the theory, on the other
hand to evaluate the pros and cons of the new approach. The work is divided
into three main parts:

The first part introduces the GN model on the lattice. The fermion loop
representation is derived via rewriting the partition function of a generalized 8-
vertex model.

The second part contains the introduction of the new numerical algorithm
for fermion loops. The newly developed Monte Carlo loop algorithm faces the
challenge of creating and annihilating closed self-avoiding loops with different
colors. Ergodicity, boundary conditions and equilibration time are analyzed in
detail.

The third part is dedicated to presenting the achieved results. Bulk observ-
ables that are rather easy to compute serve as the simplest way to compare the
produced data to those obtained from standard methods or analytic results (in
the free case). Furthermore, 2-point functions are analyzed, which finally allow
conclusions about the mass spectrum. The thesis closes with a critical assessment
of the loop approach to the GN model.
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Chapter 1

Introduction

Who wants to have the old Hitachi SR8000-F1 from the Leibniz-
Rechenzentrum? This was the question in an E-mail in June 2006. The Hi-
tachi SR8000-F1 was the flagship high-performance computer at the Leibniz-
Rechenzentrum in Munich. It achieved 2.0 TFlops peak performance and had
1376 GByte disk space. On September, 21, Hitachi SR 8000-F1 was replaced by
the new National Supercomputer HLRB IT (SGI Altix 4700), which has a peak
performance of 26.2 TFlops and a total memory size of 17.5 TByte. Moreover,
this machine will be upgraded further in 2007.

In practice more disk space means, i.e., for people doing quantum field the-
ory (QFT) on the lattice that larger lattice sizes can be used. This is an advantage
as in the physical limit the volume of the system would be infinite. But there
exists still another serious problem for the numerical simulation of fermionic sys-
tems: The implementation of Pauli statistics. Due to the fermions’ antisymmetric
wavefunction, terms with opposite sign lead to large cancellations. The conse-
quence is that statistical errors increase exponentially [I] with the volume V' of
the system. In order to achieve accuracy to a given precision, the computational
cost increases exponentially with the volume:

$$ oce” | ¢ = const. (1.1)

Even the improved computer performance cannot beat this exponential. Hence,
numerical methods to overcome the fermion sign problem would be a tremendous
advantage.

C. Gattringer invented an alternative representation - the fermion loop rep-
resentation for the partition function of the Gross-Neveu (GN) model [2]. The
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2 Chapter 1. Introduction

partition function of this 2-dimensional fermionic model is rewritten as a sum over
closed loops with only positive weights. Therefore, simulations on large lattices
(O(10%) lattice points) are possible, since one is not limited by the sign problem.
Additionally, less disk space is needed, and so, even personal computers cope with
the task.

In this diploma thesis an algorithm for the fermion loop representation is
developed; on the one hand to confirm the theory, on the other hand to evaluate
the pros and cons of the alternative approach. The thesis is structured as follows:

Chapter 2 presents the basic formulas for calculating expectation values of
observables starting from the action of the system. The action of the GN model is
discussed in different formulations and its behavior under symmetry transforma-
tions is analyzed. In the one flavor case there exist several equivalent formulations
of the interaction, which are summarized. The lattice is introduced in Chapter
3. To understand how the GN model can be simulated on the lattice, it is nec-
essary to present the concept of Grassmann algebras, which provide the correct
calculation rules for fermions. Chapter 4 lists the essential steps in the derivation
of the fermion loop representation of the GN model. First, one has to apply the
hopping expansion to the determinant of the Dirac matrix. Therewith, the par-
tition function can be interpreted as a model of loops. The simulation is still not
directly possible at this point, because the loops appear in the exponent. To find
the full expansion in terms of loops, the hopping expansion is also applied to a
generalized 8-vertex model. Matching the two expanded formulations, one finally
arrives at the fermion loop representation, which is now suitable for a Monte
Carlo simulation. Monte Carlo simulations are explained in Chapter 5. The
Metropolis algorithm used later in the simulation is outlined and the Jackknife
method as a possibility for the error estimation is presented. Eventually, Chap-
ter 6 gives the details of the algorithm for fermion loops developed in this work.
After explaining the general structure of the program, the more technical aspects
are discussed. It is shown how updates can be implemented and in which way
the algorithm is ergodic. Different initial conditions are analyzed as well as the
equilibration time, which depends on several parameters. A few bulk observables
like, e.g., the chiral condensate are discussed in Chapter 7 and signatures of a
phase transition / cross-over behavior are investigated. Finite size effects, arising
from the extrema of the susceptibilities and from the different types of boundary
conditions in the two approaches, are studied in Chapter 8. Chapter 9 contains
the comparison between results from the fermion loop representation and those
obtained from standard methods or from Fourier transformation, which can be



applied in the free case. In Chapter 10 scalar 2-point functions are presented and
their evaluation in the fermion loop representation is discussed. Besides, the anal-
ogy to the standard approach is given. Chapter 11 consists of the summary and
an outlook. The advantages and disadvantages of the fermion loop representation
compared to standard methods are addressed.






Chapter 2

Gross-Neveu-type models in path
integral formalism

In this chapter the framework of Euclidean path integrals and the models analyzed
in this work are presented. Also their symmetries for various numbers of flavors
are discussed.

2.1 The Euclidean path integral

In the path integral formalism vacuum expectation values of observables O in
systems characterized by an action S are computed as
1

(©) = [ Dl g 054 Oy, 5, 2.1)

where the integration measure for the fields 1, ¢ (fermions) and ¢ (scalar field)
is formally defined as

D[y, ¢, ¢] = [ [ de(x)dip(x)de(x) - (2.2)
The partition function Z is given by

Z~ [Dlu.dg] 09 (2.3

It is the fundamental quantity in statistical mechanics and field theory. All in-
teresting observables can be extracted from Z, when suitable source terms are
included. A closed formula for Z (with sources coupled) implies an exact solution
of the system.
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2.2 2-point functions and their interpretation

The Euclidean correlator (Os(t) O1(0)), is called 2-point function and defined as

1 A A
(02(t) O1(0)) = =Tx [ =770, e_tHOl] . (2.4)
T
The right-hand side can be rewritten as the path integral expression (1) (see,
e.g., B @). O and O, may be arbitrary operators and H denotes the Hamilto-
nian. Its eigenvalues are the energies of the system. The partition function Zr is
given by
Zp="Tr [e_TH} . (2.5)
T and t are Euclidean time variables. T' is only formally included and will even-

tually be taken to infinity, whereas ¢ remains finite. The form (7)) is particularly
convenient to derive the formula necessary for interpreting 2-point functions.

In order to evaluate Eqgs. ([Z4]) and (Z3) one inserts the unit matrix 1 =
> . In)(n|, represented as a spectral sum of the eigenstates |n) of H. The same

set of states is used to compute the trace. One obtains

(O:(1) O01(0))7 = ZLT > (m|Oz|n){n|Osfm) e~ T=0Eme=tEn . (2.6)

n,m

The eigenvalues F,, are ordered according to
Ey<E<Ey<.... (2.7)

The factor e"T0 corresponding to the vacuum energy Ej, cancels in Eq. (Z0)
and one finds

Zn,m <m|02 |n> <n|Ol \m> 6_(T_t)Em e_tEn

14+ e TE 4 e TE2 |

(O2(t) 01(0))7 = : (2.8)

with F, now denoting the energy differences (FE,, — Ey) with respect to the (un-
known) vacuum energy FEy.

In the limit 7" — oo, there remain only those terms with m = 0 and the
2-point function reduces to

lim iTr e~ (T-DHQ), e_tﬁél] = Z <0|Og|n> <n|01|0> e tEn (2.9)

T—o00 ZT
n

Thus, one concludes that if O is replaced by a product O = O,(t)01(0) in
Eq. @), the energies FE, can be computed from the exponential decay of the
2-point function (Z3).
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2.3 Action for Gross-Neveu-type models

In general, the action S is an integral over Euclidean space and time:

S[, &, 6] = / e L, 3,9 . (2.10)

Using a scalar auxiliary field ¢(x) the action density L for the GN model is given
by

L= Zw(f )+ m+ 0G0 60 + 5000, (21)

where m is the mass parameter and ¢ the coupling constant. Here, the fermion
fields ¢ and v can explicitly be written as

¥ = (¢1(x),1a(x)) b= (Y1(x),12(x))" . (2.12)

X is a 2-dimensional vector composed of one component for space and one
for (Euclidean) time. The superscript (f) labels the N, different flavors of equal
mass. The index p stands for the two directions in spacetime and the v, are the

= ((1) (1)) , o ((Z) BZ) . (2.13)

In this formulation the action of the GN model can be divided into two parts,

Pauli matrices

namely the fermionic and the scalar one:

SW)> QL? ¢] = SF[wa 77;7 ¢] + SS[¢] ’
Selv gl = 3. [ i) B, m o) 060, (210
f=1

Sslé] = % / dr ¢ (x)

An equivalent formulation for the action, as it is introduced similarly by D. Gross
and A. Neveu in [2], follows after the integration over ¢(x) in Eq. (1) (Hubbard-
Stratonovich transformation [Bl, 6]):

Ny

Supylth, 9] = / Eo |30 ) [0, + m] v ()
=1

—= Zw (x)pV)(x . (2.15)
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Therewith, the model consists of a kinetic part, the mass term and the 4-Fermi
term for the interaction. The GN model is asymptotically free, renormalizable
(in two dimensions), large-/N; expandable and has dynamical mass generation.
Hence, it is an interesting model for 4-dimensional quantum chromodynamics.

2.4 Symmetries

In this section symmetry properties of the above model are discussed.

The Zs-symmetry is defined by the transformation

WD (x) — w(f)(x),:%w(f)(x),
) = 9D = =D () . (2.16)

s = ((1) _01) . (2.17)

The kinetic term (m = 0) transforms like

with

VD (%) 0,0 (%) = =P (x)157,0,750 (%) = 9 (x)7,0,0 (x) , (2.18)

where 72 = 1 and the anti-commutation relation {vs,v,} = 0 were used. The
term ) (x)y ) (x), however, acquires an extra minus sign:

PP (x) P (x) = =P (x) P (x) . (2.19)

This term appears twice in Eq. (ZIH), in the mass term and in the 4-Fermi
interaction. For the mass term the minus sign is manifest and thus, this term
is not invariant. In the 4-Fermi interaction the term () (x)y)(x) is squared
and no overall minus sign remains. Consequently, the action (1) is invariant
under (TI0) for m = 0. (ZIH) is a discrete symmetry and thus can be broken
spontaneously also in 2 dimensions.

The transformation (2216 is a special case of the continuous chiral symme-
try
WD (x) — w(f)(x)/ = 1N (x) |
) — P = gD (e (2.20)
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where 6 is a real parameter. [Z20) is equivalent to the transformation 1) for
¢ = %. Under the continuous transformation (220) the kinetic term still remains
invariant and the mass term breaks the symmetry. Concerning the interaction
term one has to distinguish between two cases, namely only one flavor or more
than one.

For several flavors the massless model would only be invariant under (2220),

if the interaction term was generalized to

N, 2 2

S 00 ()0 (x) ZW’ PV | L 2y

f=1
as in the Nambu-Jona-Lasinio model [1, §.

For Ny = 1, already the simpler interaction term, as used in Eq. ([2I3), is
invariant. Writing the transformation as ([Z20) one finds

[D(x)p(x)]" —  [1h(x) (cos(20 w5s1n<2e>> (x)])’
= [P)w(x)]” cos*(20) — [P(x)51(x)]” sin®(26)
+2i cos(26) sin(2 > < )(x)(x)759 (%)
= [PEv)], (2.22)

where the identity

[WxY)]" = [Dx)(x) + da(x)e(x)]”
= 2901 (%) 1 (%) P2 (%) 2 (x)
= — [G1(x)¥r(x) — Ya(x)ta(x)]”
= — [PE)sYx)], (2.23)

and the nilpotency of the fermion fields, i.e., 92 = 12 = 0 were used (see also
Sec. B2). For Ny = 1, there exists even a third form of the interaction term,

(1002 (3x) + Ga(x)en (%)) + (=it (X)) + 2 (x)r ()]

— Gy ()t (X (X)h () — ()l () (3 ()
— 21 () () o () () | (2.24)
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which is the form known from the Thirring model [].

To summarize, the 1-flavor case provides three equivalent forms of the in-

teraction term
[BOv) = = [Fe0we(]* = =3 [Feex)]” . (225)

and the massless model is invariant under the continuous transformation (2200).
In this work, only the 1-flavor model will be considered, with and without mass.
Since the 1-flavor model has the continuous symmetry Z20) (at m = 0), one
does not expect to find phase transitions from spontaneous symmetry breaking
but only cross-over type behavior in general. This expectation will be investigated
by the numerical analysis presented below.



Chapter 3

The Gross-Neveu model on the
lattice

As it stands, the path integral formulated in Eqs. T))-@Z3) is only formally
defined. For a rigorous definition a cutoff has to be introduced.

Lattice QFT is a mathematically well defined formulation at the nonpertur-
bative level with a momentum cutoff proportional to the inverse lattice spacing
and in this way it provides a possible regularization. Another advantage of Lat-
tice QFT is the possibility to obtain quantitative results by numerical simulations
without being forced to use effective theories or perturbative expansion (see, e.g.,

[0, 1), 02).

3.1 Introduction of the lattice

When introducing the lattice, the vector x € R? is replaced by
X — an, nelA, |A=1L xLy, (3.1)
with A being a two-dimensional lattice consisting of L; X Ly sites n,
A={n=(n,ne) |n,=12,...,L,; p=12}. (3.2)

Ly and Ly denote the number of sites in space and time direction and a is the
lattice spacing. Eventually, the continuum limit @ — 0 will be considered. For

11



12 Chapter 3. The Gross-Neveu model on the lattice

notational convenience a is set equal to 1, whenever it appears in the arguments
of 1,1 or ¢ in the following. The next step is to discretize the derivative oy

Onntia — Onn-
9) el 3.3
v St O 33
where [i denotes the unit vector in direction of u. Obviously, for a — 0 the
right-hand side approaches 0,,.

Now the general formulas for the path integral introduced in Sec. 1] can
be rewritten in lattice formulation. Again, expectation values are given by

(©) = [ Dlw.d.d) 54 Oy, 3, (3.4

with
= [Pl 561 st 35
The integration measure is now well defined as the product over all lattice sites
D[, ), ¢] = Hdw n)dg(n) . (3.6)

3.2 Grassmann variables

Due to the Pauli principle fermions have anti-symmetric n-point functions. In
the path integral formalism this is implemented by using so-called Grassmann
variables. Here, the basic definitions and the formulas needed later are collected
(for a more detailed discussion see [3, [T3]).

3.2.1 Fundamental properties of Grassmann algebras

Grassmann variables are anti-commuting numbers 7;,7 = 1, ..., N, obeying

nin; = =N (3.7)

for any 4,7. This equation implies nilpotency (n? = 0), which causes the ter-
mination of the power series for any function of the 7; after a finite number of
terms. All elements of the resulting Grassmann algebra can be expressed as a
polynomial

=a+ Z ;1) + Z Q45 7);7]5 + Z [ + -+ ai2..NTM2 - - 7N (38)

1<j 1<j<k
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where the a,a;, a;j, ..., a2y denote complex coefficients. Based on Eqs. ([B)
and (B), one can construct integrals over Grassmann variables characterized by
the formulas

/ i 1-0, / dis s =1, ey = —dnydry (3.9)

Under a linear transformation
N
m=Y_ Myn; (3.10)
j=1

the integration measure transforms as

/dNn nlng...nN:det[M]/dNn’ M. .. NN - (3.11)
For derivatives with respect to Grassmann variables one finds

8771,120, 8mmzl,
{0p , 0,3 =0, {0, ,n} =0 (fori#j), (3.12)

where the curly brackets denote the anti-commutators and 0,, = a%*

3.2.2 Formulas for Grassmann integrals

In this section Gaussian integrals with Grassmann variables, giving rise to the
so-called Matthews-Salam formula and Wick’s theorem, are discussed.

Supposed, the partition function Z is given by
N
ij=1

The integration runs over 2N Grassmann variables 0y, ..., 9n, 71, ...,0n. M is a
N x N matrix and later will be chosen as the Dirac operator for the GN model
on the lattice introduced in Eq. (B22) below. Applying the transformation (BI0)



14 Chapter 3. The Gross-Neveu model on the lattice

to the Gaussian integral (B13)) and using Eq. (BI1), the partition function reads

N N
7 = det[M]/ (Hdngdm) exp <Z7]j77;‘>
i=1 j=1
N

= det[M]]] ( / dndn; eXp(ﬁMé))

i=1

= det[M] (H/dngdm(l +7h‘77@/')> = det[M] . (3.14)

Turning the sum in the exponent into a product and interchanging the integral
with the product is admissible because pairs of Grassmann variables commute
with each other. The power series of the exponential function terminates after
the second term since Grassmann variables are nilpotent. Following the rules for
the integration of Grassmann variables, it turns out that the remaining integral
reduces to a factor 1. This result of the Matthews-Salam formula is the reason
that the fermionic partition function often is referred to as fermion determinant.

The integral for the partition function Eq. (B13) can be generalized by the
generating functional for fermions, which is given by

N N N
wi[e,6) = /andﬁN ... dndmn; exp <Z 7 M n; + Z 0:in; + Z ﬁi9i>
i—1 i—1

1,j=1

= det[M]exp <— Z Qn(M_l)nm0m> , (3.15)

n,m=1

where the Grassmann variables 6 and @ serve as source terms for further calcu-
lations. The second line of Eq. (BIH) results from the following procedure: One
rewrites the exponent as

(7 + 6;(M ") 55) Mg, (e + (M) 6) — 60 (M) 0, (3.16)
and performs a transformation of variables

o =00 (M ),
M — M=k + (M b (3.17)

Since the integration measure is invariant (see Eq. (BI])), this transformation
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leads to:

N N N
n 1 i=1

IN= t,j=1

= det[M]exp <— Z Hn(M_l)nm0m> , (3.18)

n,m=1

where Eq. (BId) was used. Taking W/[0,0] as it is given in the first line of
Eq. (BI3), deriving it with respect to the source terms, setting the source terms
equal to zero afterwards and dividing the whole term by Z, there results

1 0 0 o 0

~ 29 9 Yy
Z 90;, 00y, 90;, 90;, 4. 9,0=0
1 [& N
7 / Z Ay, dmy 1y Mgy - - 703,75, XD ( Z ﬁlemUm> ) (3.19)
k=1 I,m=1

which is a common expression for so-called n-point functions (compare Secs. 211
and 222). Thus, n-point functions can also be written as

gy M) = (=1 > sign(P) (M )iy (Mg, - (M V)isg (3.20)

where the same steps as before were applied to the second line of Eq. (BIH). The
sum runs over all permutations P. This is the Wick’s theorem [14], which will be
needed in Chap. @ for computing observables with the standard approach.

3.3 The partition function of the Gross-Neveu
model

As in the continuum, the action of the GN model can be divided into a scalar
and a fermionic part also on the lattice (here, Ny = 1):

Sslol = 52 Y 0Hm)

Se,d,¢] = ) $M? (n,m)y(m) . (3.21)

n,meA
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The Dirac matrix M reads

M (n,m) =[24m + ¢(n Z T0nsfim (3.22)

pu==1

and the matrices I',, are given by

. (TF7,) - (3.23)

PiMZQ

A closer look at the Dirac matrix M shows that the naive expression ([B3)
for the derivative has been modified by adding 2 to the first term in M and
replacing the matrices v, of the second term by the matrices I',. The reason for
this is the so-called fermion doubling problem. It is a consequence of the periodic
momentum space and may be overcome by adding the extra terms (see App. [Al).
The resulting formulation is referred to as Wilson fermions.

The partition function of the GN model on the lattice is given by

Snmea @M (nm)p(m) — 5, 32, ¢*(n)
ZGN—/HW/HM n)dd(n e e ,
(3.24)

where the measure d¢(n) now is normalized to 1.

As shown in Sec. BZZ, according to the Matthews-Salam formula (BI4)
the Gaussian integral for fermions is simply det[M] and one obtains

Zan = /H d t[ M9 e~ 2 Zn# () (3.25)

So, for the evaluation of the partition function, the determinant of M has to be
computed. This is the proceeding in the standard approach.

Again, the action can be rewritten into a purely fermionic one by integrating

out the scalar field in Eq. (B24]). One finds:
Sl 9] = 3w Mo, e =23 (Bmpem)’ . (3.20)

As in the continuum, the 4-Fermi term can be expressed in the 3 different forms

listed in Eq. (220).



Chapter 4

Fermion loop representation

In this chapter the partition function of the GN model is rewritten as a model of
loops. The necessary steps are the hopping expansion of the GN model on the
lattice and the identification of a loop model with an identical hopping expansion.
The presentation follows [15] [T, [7].

4.1 Loop representation of the Gross-Neveu

model

In the following a loop representation of the GN model will be derived by per-
forming the so-called hopping expansion. For this purpose, one defines

h(n) = 24+ m+ ¢(n), (4.1)
+2
Rn,m) — ﬁ ST dutjim (4.2)

and writes the matrix M as

M€ (n,m) = h(n) [l 6ym— R(n,m)] . (4.3)

17
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1 = 4, p is the unit matrix in Dirac space. In the so-called hopping matriz R all
nearest neighbor terms are collected. The fermion determinant becomes

det [M¥] = [ ]]r*(n) | det [1 - R]
= (J][r*m) ] exp (Tf[ln(ﬂ - R)})
_ H K (n) | exp <_ Z %Tr [Rﬂ) ) (4.4)

A well known formula for determinants was used in the second step and in the last

step the logarithm was expanded in a power series, which converges for | R|| < 1.
This condition is satisfied if |h(n)| > 2, because h - R is bounded by 2 (see
App. ([@)). It has to be remarked that the condition |h(n)| > 2 can be lifted later
and the expansion holds for arbitrary ¢(n) and m.

The k-th power of R can be written out as

Rfm,m)= > R(n,L)R(y,l) ... Rl 1, m) . (4.5)

Ll

Due to the Kronecker deltas dy,151, in R(l;,1;) each factor in Eq. (H) combines
two neighboring sites. This fact allows to interpret Tr [Rk} as a sum over closed
loops of length k. Since closed loops consist of an even number of steps, k£ must
be even for nonvanishing Tr [R¥]. Along the loops, factors of 1/h(n) are collected
as well as the matrices I',, for the directions of the links in the loops. Thus, (using

Eq. (E2)) one finds

IS | | h—Tr[HF] (4.6)

neA Le E(%) meP(L

£ is the set of all possible loops of length 2k and starting point n. P(L) denotes
the set of sites visited by the loop L. Note that n is included in P(L) as well and
sites have to be counted according to the multiplicity of being visited by the loop.
An important property of the loops is the fact that they may not contain 180°
turns (no back-tracking). This follows from the second of the projector properties
of the I',;:

1 1
Fi:FM, Pu'r—uza(l_Vu)'a(l‘F%c):O- (4.7)
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There remains to compute the trace over all matrices I', contained in the loops.
Exploring the projector properties (7)) and the algebra of the Pauli matrices,
one finds [I8, 9, 20]

o[ [Ir,] = (@ (%)C(L) , (4.8)

neL

where s(L) denotes the number of self-intersections and ¢(L) counts the corners
of the loop. One obtains

o o0] = Tl (S5 ¥ T 0 (55)

m LEE(%)JGP(L
n) o
don. = / I}(mh

) 6_%—?)) (4.9)

e z%z I h o (1)

m e p(R)jeP(L

Although now the partition function of the GN model looks more complicated at
first glance, it is a great achievement that it is completely rewritten in terms of
loops. At the moment the loops still appear in the exponent, but, by applying
the hopping expansion to a so-called generalized 8-vertex model, it is possible to
effectively expand the exponential function.

4.2 The generalized 8-vertex model

An 8-vertex model is defined by 8 vertices shown in Fig. I Each vertex is
assigned a real weight w;, ¢ = 1,...,8 . Configurations are generated by covering
the whole lattice with vertices as follows (compare 21, 22, 23] and for the gener-
alized version [I7]):

Each vertex is centered on a lattice point and the vertices are arranged in such a
way that the lines on the vertices never have an open end. The Boltzmann factor
is the product over the weights of all vertices in a configuration and the partition
function is a sum over all allowed arrangements of the vertices.

In the generalized 8-vertex model the vertices are coupled to an external
field ¢(n), which is located at the sites n of the lattice. Again, the partition
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Figure 4.1: 8 vertices with their weights w;.

function is a sum over all admissible configurations C' € C, but the Boltzmann
weight obtains additional factors of the p(n): If a site n is occupied by one of
the vertices 3 to 8, a factor of p(n) is taken into account. A factor of ¢(m)?
contributes to vertex 2 and for vertex 1 it is a factor of ¢(n)° = 1. So the
partition function for the generalized 8-vertex model reads

Zso(o) =Y [Tw T )™, (4.10)

CceC i=1 neA

where n;(C') denotes how often the vertex i occurs in the configuration C' and
O(n) counts how many lines run through the site n.

4.2.1 Grassmann representation

Now, the 8-vertex model is rewritten as an integral over Grassmann variables. To
a lattice point n a set of 4 Grassmann variables 7,(n), p = £1,£2 is assigned
as shown in Fig.

The action S[n| consists of 3 terms: the hopping term Sy[n], the monomer term
Sm[n] and the corner term S.[n| (see Fig. E3). Sp[n] connects neighboring sites
and thus, it represents the line elements of the loops. S,,[n] and S.[n] determine
in which way a loop continues at a site. The different loops are obtained by the
differrent ways the Grassmann integral can be saturated, when expanding the
exponential of the action.
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N12(n)
n-1(n) n N41(n)
n-2(n)

Figure 4.2: Grassmann variables on the lattice. Actually, they all live on the lattice
point. Only for a better visualization they are shifted apart.

e - G————— L@ - - — — — —
e

Figure 4.3: Graphical representation of the hopping, monomer and corner terms of
the action.

Explicitly, the action reads

Sl = Skln] + Smln] + Sen] ,

~

Sulnl = ) [m@n s+ 1) +n(m)n s(n+2)]

neA
Smlnl = Y [bs n_i(m)ny(m) +bs n_s(n)ns(n)]
Selnl = > [es mm)n_s(n) + cg my(n)n_3(n) |
neA

+ ¢r n_s(m)n_i(n) + cs ny(n)n;(n)] (4.11)
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and the partition function for the Grassmann representation of the 8-vertex model

is given by
Zoo = (=)™ [ ] dn_s(m)dns(m)dnsm)dms(m) 570 (4.12)
neA
When choosing a = /ws, bi:—\;”w% ——\}“wi_Q 1=5,...,8,

then integrating out the Grassmann variables reproduces Zs,, i.e., Zg, = Zg,. It
has to be remarked that a necessary condition for the existence of a Grassmann
representation is the free fermion condition [21]

WiWy + W3Wy = WsWe + WrWsg . (4.13)

This is obeyed for the particular choice of weights w; presented below.

4.2.2 Hopping expansion

Similar to the lattice GN model the Grassmann representation of the 8-vertex
model can be expanded in the hopping term, as it is shown in detail in [I7]. One

obtains
N ]
o= 0 esp (33700 5% 5 ()
neAL€£<2k>
< I] (,p H mB ) (4.14)
meP(L =

In the last formula an extra factor % appears in the exponent. This arises from
the fact that the integral ([LI2) of the quadratic action Il gives rise to a
Pfaffian, which is the square root of a determinant. The determinant in turn is
obtained for bilinear actions such as [BZI]). This implies that eventually Zg, will
have to be squared in order to reproduce Zgy.

4.3 Fermion loop representation

The final step to reach the fermion loop representation of the GN model is to
bridge the gap between the formulation of its partition function in hopping ex-
pansion and the partition function of the generalized 8-vertex model in hopping
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expansion. This is done by a comparison of the two expressions and a suitable
identification of the weights w;. Comparing Eqs. [3) and I4) leads to the
following conclusion: One uses a lattice with an even number of sites to get rid
of the overall sign, wq, w3 and wy are chosen to be 1, ws, wg, w7 and wg are set to
%, consequently, due to the free fermion condition ws equals 0, ¢(n) coincides
with ﬁ and the whole term for the partition function is squared to obtain the
determinant out of the Pfaffian. The fact that w; = 0 means that the vertex
number 2 is absent and only self-avoiding loops occur. Taking into account the
overall integration over ¢, the final expression for Zsy is given by

o = [T |5 (%)C@EI%T(C] LT oo

1 c(Ca)+c(Ch) d(b( ) #2(n) 2—J(n)
) B [p@) . (4.15)
=) W

From squaring Zs, one obtains two independent sums over self-avoiding loops
(Ca, Cy), which will be referred to as blue and red. ¢(C,) and ¢(Cj) denote the
numbers of corners for red and blue loops. J(n) is the local occupation number
of a site n. J(n) = 2, if a red and a blue loop run through n, J(n) = 1, if only

one loop runs through n and J(n) = 0 if the site is empty.
The integral over d¢(n) can be solved explicitly. 3 different cases have to be

considered:
o« J=2
% 5 (4.16)
°/= © dé(n) - %P2 4 ¢(n)] = 2+ m (4.17)
“ow, , .
e J=0
T dom) g 2+m+om)’ = (2+m)*+g. (4.18)

oo V2Tg

Thus, a factor of 2+m is produced whenever a site is single-occupied and a factor
(2 +m)? + g for an empty site. With n; counting the single-occupied sites and
ng the empty ones, the partition function gets its final form:

Zan =Y (%)1 (%)2 24+m)™ ((24+m)*+9)" . (4.19)

c
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Consistently, ¢; (cq, resp.) is the number of sites occupied with one corner (two
corners, resp.).

Since in the computer program a somewhat different notation is used, this
notation is introduced as well. The factors f; and f5 are defined as

2+ m 1

Grmityg’ T @ mprig 20

fi=
Taking into account that the amount of all empty, single-occupied and double-
occupied vertices equals the number of sites, |A| = ng+nj +ns, and by extracting
a global factor (1/f,)!* out of the sum over all configurations in Zgy, it is clear
that Zgn can alternatively be written as

I EA VA

ng consequentially denotes the number of double-occupied sites and c is the total
amount of corners.
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Monte Carlo methods

Numerical simulations with Monte Carlo (MC) methods are a powerful tool in sta-
tistical physics (see, e.g., [24]). They enable one to compute physical observables
for any parameter values in a non-perturbative way. Errors can be estimated and
are systematically improvable by using more sample configurations and larger
systems. MC methods can be applied to Lattice QFTs because these are also
characterized by probability distributions. The fundamental idea of MC methods
for calculating observables is to replace the set of all possible configurations by a
smaller representative sample.

In this chapter the conceptual basis of the MC techniques, which can later
be applied to the GN model, are presented.

5.1 Simple sampling vs. importance sampling

In general, expectation values of observables are defined as
(0) = /d(]P[(J]O[C] | (5.1)

where the integral runs over all possible configurations C', O[C] are the observ-
ables and P[C] are the probabilities responsible for the correct distribution of
the configurations. These expectation values usually cannot be evaluated analyt-
ically - even not in the case when the configurations are discrete and the lattice
is finite (as in the loop model). The reason is that already for small volumes the
number of possible configurations becomes large. So, what means large? For the

25
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loop model considered here, the variables of a single site can have 49 different
values. Thus, in principle, one could have 49" configurations. For an 8% lat-
tice this is 495 ~ 10'?® configurations. Of course, many of these configurations
violate the constraints (loops have to be closed) and cannot appear. Still, the
number of legitimate configurations behaves as ¢/*l and a summation over all of
them is out of the question. The MC method attacks this problem by approx-
imating the expectation value, Eq. (BJ]), with a finite number of configurations
Cy,n=1,...,N:

(0)~ O = %Z (5.2)

If, as in Eq. (B2), the C,, are chosen with equal weight, the method is called
simple sampling. In Eq. (&2) the C,, are reweighted with the probabilities P[C,,],
which here are given by

N
1
PlCo) = 5 e 5 z =3 e, (5.3)
n=1

However, it turns out that most configurations are heavily suppressed by P[C,,]
and for distributions of the type (E3) simple sampling is not suitable.

A more powerful method is importance sampling. With this method, the
probability factors are already taken into account in the generation of the config-
urations. Hence, using importance sampling, Eq. (22) reduces to

1 &
0= N;O[Cn] . (5.4)

5.2 Markov chain

One way to implement importance sampling is to start with an arbitrary config-
uration C®) and to generate a sequence of new configurations C™, n =1,2, ...
This so-called Markov chain is characterized by a transition probability

An important property of a Markov chain is that the transition probability does
not depend on the index n. The transition probabilities obey

0<T(Cr—C)<1l and Y T(Cr—C)=1. (5.6)
C/
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In addition, the process has to be built such that it is ergodic, i.e., each configu-
ration can be reached from any other configuration in a finite number of steps.

In equilibrium, the probability to jump into a configuration C’ in a Markov
step has to be equal to the probability to jump out of this configuration:

Y T(C— C)P[C')=> T(C'— C)P[C] . (5.7)
C C

The simplest solution of this equation is to fulfill the condition for each configu-
ration C' individually. This gives the detailed balance condition

T(C — C") P[C"] = T(C" — C) P[C] . (5.8)

The algorithm presented below is based on that equation.

5.3 Metropolis algorithm

The Metropolis algorithm was introduced in 1953 by N. Metropolis, A. Rosen-
bluth, M. Rosenbluth, A. Teller and E. Teller [25]. It is an algorithm that solves

the detailed balance condition (B§) and works as follows:

1. Choose an initial configuration C.

2. Propose an arbitrary trial configuration C' near the current one.

3. Compute p = %.

4. Distinguish the two cases:

e p>1:
Set T(C' — () = 1 and accept the trial configuration C' as the
new configuration C’. With T(C' —— C') = 1/p the detailed balance
condition is fulfilled.

e p<1:
To satisfy the detailed balance condition set T(C' — C) = p and
T(C +— C) = 1. In practice one draws a random number 7 € [0, 1).

If » < p the trial configuration is accepted as the new configuration
c’.

5. Go back to (2.) as long as you want to update your system.
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5.4 Error estimation

The statistical error 0 made by the approximation in Eq. (22) can be calculated
easily. An important technique is the Jackknife method [26, 27]. Tt works also
for secondary observables, i.e., quantities that are composed of several simple
observables or are obtained from a fit. In the following, such an observable is
denoted by w.

One first computes the expectation values of observables on a so-called
Jackknife block of configurations, which is, e.g., the set of all configurations except
the J-th one. Thus, there exist alltogether N Jackknife blocks (omitting the 1st,
the 2nd, ..., the N-th configuration). The corresponding results for w are denoted

as w), J=1,..., N. One then computes
1 & al 2
- J 2 - J
O= ngw( ) and o, =(N—-1) JEI (- w! )) . (5.9)

Finally, the resulting expectation value and its error are given by

— O‘UJ
w)=wt —. 5.10
W=k (5.10)
The statistical error of a calculation depends on the number of measurements N.
According to the result (2I0), it is necessary to have fourfold statistics to halve
the error.
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Algorithm for fermion loops

As was shown in Chap. Bl the GN model can be represented as a sum of loops. It
is possible to simulate the model directly in the loop representation. A suitable
algorithm faces the challenge to create and annihilate closed self-avoiding loops.
Such an algorithm is presented in the following, initial conditions are analyzed
and the arrangement of the measurements is discussed.

6.1 Structure of the computer program

The essential elements of the MC program developed in this diploma thesis are
listed in the following and can be overviewed in Fig. B} Before the actual algo-
rithm can start, several preparations must be performed. The random generator
“ranlux” has to be included [28, 29]. The arrays containing the neighborhood in-
formation (periodic boundary conditions are used here) have to be initialized and
the input parameters like the lattice size, physical parameters (m, g), the num-
ber of measurements etc. must be specified. One has to decide in which initial
configuration the algorithm should start. Three different initial conditions are
discussed in Sec. In general, the system is out of equilibrium at the begin-
ning (due to the chosen initial conditions). Thus, the system has to be updated
until it reaches equilibrium (see Sec. BX). Now the measurements may start.
In particular the overall occupation numbers and those for single timeslices are
computed and written to the outfiles. The calculation of observables built out
of the occupation numbers is performed later in the analysis. There should be
several updates between the individual measurements so that these are (almost)

29
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uncorrelated. Afterwards the analysis program reads in the data produced by
the MC program. It computes the expectation values of observables and their
statistical errors with the Jackknife method (see Sec. BAI).

Monte Carlo Program
—  Anaysis Program

— doi=1, nequi
call sweeps  (performs 1 sweep)
| enddo reads in measurements
computes expectation values
— doi=1, nmeas and statistical errors
call measure  (computesobservablesand |

doj=1, nskip writes them to file)

call sweeps
end do

— end do

Figure 6.1: Scheme of a MC program. A sweep means one update for each site,
nequi is the number of sweeps needed to reach equilibrium, nmeas is
the number of measurements and nskip denotes the number of sweeps
between to measurements.

6.2 How an update is implemented

The configurations of the model are loops living on the links of the lattice. Each
link of the lattice can be empty, occupied by one loop or occupied by two different
loops. A convenient visualization is to use different colors (red and blue) for the
two types of loops. A legitimate configuration is one, where no self-intersections
occur and neither red nor blue lines have an open end.

An example for a configuration of loops at g = 0.5 and m = 0.1 on a 64 x 64
lattice is shown in Fig. B2 Another way of thinking about a configuration is in
terms of vertices. Vertices are plaquettes (minimal squares) of the dual lattice.
They can be viewed as tiles put on the lattice, where each tile is centered at a
site. The complete set of vertices is depicted in Fig. B3 The partition function
is a sum over all possible arrangements of the vertices. Like in the 8-vertex model
the vertices have characteristic weights. According to Eq. (2ZI]) on page B4l the
weight factors are:
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Figure 6.2: Snap-shot of a loop configuration on a 64 x 64 lattice.

1 for an empty vertex,

f1 for a vertex occupied by only one loop,

fo for a vertex occupied by both loops,

a factor of % for each corner,

where
24+m 1

rmpig BT @rmiig
To obtain some feeling for the behavior of the weight factors fi, fo, their values
are listed for a range of values m, ¢ in Tab. &l

fi= (6.1)

As it was discussed in Sec. b3, in the Metropolis algorithm a trial config-
uration is generated and then accepted according to the change of the action it
leads to. The trial configuration offered to the system has to be a legitimate one.
Thus, it may not contain self-intersections or open loops. The simplest possibility
to create a trial configuration is to invert a plaquette, i.e., every empty link of



32

Chapter 6. Algorithm for fermion loops

L 1

1 f1 f1 fL 2 fll/g TlllJZ fL 2
L 1 I

f1 f1 fL A2 flg TlllJZ fL 42 fo
14+ =

f, f2 A2 f2 12 f2 12 f2 42 f, f,
L r L L
f2 2 f2 /2 f2 112 f2 12 f2 A2 202 £/2
T
f, 12 f, 12 f, 12 212 f 12 f, 12 f, 12
td Tt
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L4

L2 RIZ Rz R Rz h2 L2

Figure 6.3: The 49-vertex model. Configurations can be generated by putting rep-
resentatives of these 49 tiles on the lattice, keeping in mind that loops
must be closed and self-avoiding.

g | m 0.3 0.15 0.0 0.15 0.3
0o | 1=0588 [ 1=0540 [ /i =0.500 | fi =0.465 | /i =0.435
' fo=0.346 | f»=0.292 | f, =0.250 | f, = 0.216 | f, = 0.189
o | 1=0569 [ 1=0525] fi =048 | fi = 0455 | fi =0.427
' f,=0334 | £,=0284 | fo =0.244 | f, =0211 | f, = 0.186
05 | J1=0533 ] i =0497 | fy=0.465 | f = 0437 | /i = 0411
' f,=0313| fo=0.269 | f,=0.233 | f, =0.203 | f, = 0.179
o5 | [1=0500[ i=0472 ] fi = 0444 /i =0.420 | fi = 0397
' fy=0.295 | fo=0.255| fo =0.222 | fy = 0.195 | f, = 0.172

Table 6.1: Table of weight factors f1, fo for various g and m.
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the plaquette becomes occupied and the other way round. Several examples of
this step are illustrated in Fig. &4l This basic step is done individually for red
and blue loops.

Figure 6.4: Possible updates (no complete listing!) for one site by inverting a plaquette.

Such an inversion is not admissible, if any site included in the plaquette
has two occupied links, which do not belong to the plaquette. This case is shown
in Fig. Inverting such a plaquette would lead to forbidden vertices with two
lines of the same color crossing each other. Thus, in the computer program this
condition is checked explicitly and the update is rejected, if it would lead to a
self-intersecting loop.

Figure 6.5: If one of the corners in the direct vicinity of the plaquette is occupied,
inverting the plaquette would lead to a forbidden self-intersection.

Going through the whole lattice once and applying a MC update to each site
is referred to as a “sweep”. Due to the differently colored loops being independent
from each other, the sweeps for the two colors are done alternately.
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6.3 Ergodicity

As already announced in Sec. 2] a Markov chain MC algorithm has to be ergodic.
If a so-called two-plaquette update is applied to the system in addition to the
one-plaquette update (introduced in the previous section), it can be proven that
the algorithm used here fulfills that criterion.

First, the distance d between two occupied links o,(m) and o,(n) lying in
the same direction is defined as

doyfm),o,w) = { M mRE T T

So, the minimal distance D(C') of a configuration is given by

D(C) =min[d(o,(m),0,(n))], mmneA, pe{l,2}. (6.3)

Figure 6.6: Eleven types of configurations with minimal distance D(C) = 1.

With this definition all possible configurations can be classified according
to their minimal distance. Three categories need to be discussed:

1. D(C)=1:
There arise eleven types of configurations (see Fig. Bf). Each of them can
be created or annihilated with the one-plaquette update.
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2. D(C) > 3:
In this category there exist two types of configurations (“stairs” and
“straight”), shown in Fig. B, and combinations of them. Obviously, all
of them can be updated by inverting one plaquette.

3. D(C) =2:
The possible configurations are of the same types as in category 2. Each
configuration can be obtained and broken up with the one-plaquette update
except the special case, where the complete configuration consists of “stairs”,
which cover the whole lattice. Here, no trial configuration can be provided,

since there would occur self-intersections due to corners in the direct vicinity
of the plaquette (see Sec. and especially Fig. [E3).

Figure 6.7: Examples for types “stairs” and “straight” with minimal distance D(C) = 3.

One way out of this special case presented in category 3 is to include a two-
plaquette update, which allows to create and annihilate such a configuration of
“stairs”.

To summarize, one can say that the algorithm is ergodic, if both, one-
plaquette and two-plaquette updates, are used. In this way each allowed con-
figuration can be created and annihilated by the algorithm. In spite of this,
the algorithm works with only one-plaquette updates in practice. The reason is
that the 4 special configurations, which contain nothing else than “stairs”, are of
measure 0.

6.4 Initial conditions

Starting with an empty lattice, there is the possibility that a loop develops in the
following way: As can be concluded from the two transitions on the right-hand
side of Fig. B4 it can grow in one direction and finally meet with itself by closing
around the periodic boundary of the lattice. Eventually, there arise two parallel
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loops winding around the torus. It is easy to see that only even numbers of non-
trivial loops can be generated (or annihilated) by the algorithm. To obtain an
odd number, the initial configuration has to be changed by putting a non-trivially
winding loop on the lattice by hand. Since there are loops of different colors, 4
different cases of simple initial configurations are possible:

1. Empty lattice: “even-even”.
2. One non-trivial loop: “even-odd”.
3. Two non-trivial loops of different color in the same direction: “odd-odd”.

4. Two non-trivial loops of different color in different directions: “odd-odd”.

Just as the empty lattice corresponds to an even number of non-trivial loops
in each direction (sector of even-even boundary condition), the lattice with one
non-trivial loop must have an even number of loops in one and an odd number
of loops in the other direction (even-odd). For quadratic latticesﬁ cases 3 and
4 are equivalent to each other due to the symmetry properties of the vertices
(odd-odd).

As an example, the effect of different boundary conditions on observables
is shown in Fig. 8 where the chiral condensate y, which will be discussed
in detail below, was computed on a 322—lattice. The plot includes the three
different graphs for x as a function of the mass parameter m, evaluated for the
free case (¢ = 0.0). It is visible that there is no gap between the different
graphs for small m at all. Only from about m = —0.15 on, the gap emerges and
grows with increasing m. After m = 0.1 it remains constant. The explanation
therefore is the following: The occupation densities are determinated by the
weight factors for the vertices (see Fig. and Eq. (610)), which in turn depend
on the parameters m and ¢ (see Tab. El). In the interval m € [—0.3, 0.3] used in
Fig. B8, f; and f; are continuously decreasing for increasing m. This means that
the occupation densities for single- and double-occupied vertices are decreasing as
well (see Fig. Ed). Consequently, the expectation values for occupation numbers
do not change for different boundary conditions as long as m is so small that non-
trivial loops do not dominate the system. With increasing m the system demands
more and more empty vertices. Now, the non-trivial loops of the even-odd and
the odd-odd cases interfere in the simulation because at least the last of them

IThis is the case studied here.
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Figure 6.8: Chiral condensate as a function of the mass parameter m for different
initial conditions and coupling constant g = 0.0 on a 32 x 32 lattice.

cannot be broken up. So, the non-trivial loop is the dominant contribution to
the total occupation. In the end, when m is greater than about 0.1, the whole
lattice would almost be unoccupied according to the weight factors. With one or
two non-trivial loops lying on the lattice, the gap between the data of different
boundary conditions roughly corresponds to the number of links occupied by
the non-trivial loops. This number amounts to the length of the lattice. For
sufficiently large m the occupation rules do no longer differ from 0 substantially
and this finite size effect remains constant if m is increased further.

The above observation allows to understand the leading finite volume effect
from different boundary conditions. Most obvious is the limit for large m (in the
free case), when the lattice prefers an unoccupied state. L links are forced to

be occupied for the even-odd sector, so one can estimate the ratio of constrained

. . . . L ~ 1
sites to correctly occupied (i.e., empty) sites as T N7,

length of a quadratic lattice and L? the total number of lattice points.

where L denotes the

A more generalized formula, which is less phenomenological, can be derived
for every value of m by ignoring the microscopic behavior and parameterizing the
occupation in terms of densities. This approach to understanding the finite size
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Figure 6.9: Typical loop configurations on a 64 x 64 lattice (g = 0.0).

effects is in the spirit of the mean-field approximation.

Let og(m, g) be the density of empty sites, o1(m, g) the density of single-
occupied and o3(m, g) the one of double-occupied sites in equilibrium. The sum
rule o9 + 01 + 09 = 1 is evident. Then the total number of empty and single-
occupied sites for the even-even (ee) sector is given by

ni = L2oo(m,g), 0\ =L?o1(m,g) . (6.4)
The densities o can be rewritten in terms of occupation probabilities for red (pg)
and blue (pg) loops:
oo = (L—pr)(1—-p5),
o1 = pr(1 —ps)+ps(l —pr) =pr+ps—2prPE ,
02 = DPRPB -
Inserting the right-hand side of Eq. (&) into Eq. (&8, there results
202+O'1 :pR+pB . (68)

For the even-odd (eo) sector, one gets the following equations (with Eqgs. (E3)
and (B8)), as here, L sites (those of the non-trivial loop) are occupied by one
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color at least:
néeo) = (I*’~1L)oy,
n§e°) = (L*-L)oy + g(l —pr+1—pgB)
N gal + Loy . (6.9)
The formula for the chiral condensate y, which will be introduced in Chap. [,

Eq. (C3), reads

=75 [2on) + 210ma)]| (6.10)

and so, the difference of x between the two sectors can be computed:

AX(eo—ee) _ X(eo) _X(ee)

— Hj ( 01—(70) +2f200] . (6.11)

For the distance between the even-even and the odd-odd (00) sector, one obtains
a similar equation:

f2
S

Thus, the finite size discrepancy between the oo and ee sector is twice as big as

Ax (007 = y(00) _ ylee) — { (01 — 200) + 4f200} = 2Ax ™) (6.12)

the effect between the eo and ee one. Most significant is that the leading terms of
order O(L") cancel out each other and so the subleading terms of order O(L™!)
govern the behavior of the finite size effect.

The amplitude in front of the % behavior is not universal. This can be
seen in the limit, where f; and fs become small. The density o; vanishes and o
approaches 1. One finds
L f 1 1

Ayleomee) = = 6.13
X ILhT T L2+m (6.13)

Since f; = el f1 and fy can be set to 0 by letting g — oc.

m and f2 2+m7
Eq. ([EI3) shows that the amplitude of the 1 + term can assume arbitrary values
if one adjusts m. Hence, the conclusion is (as mentioned) that the amplitude of

the finite size effect is not universal.

One can try to estimate oy and o7 as the density of empty and single occu-
pied vertices on the largest lattice which is computed. This is a crude estimate,
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since microscopic details are neglected in the derivation of Eqs. (E10]) and (E132),
but worth a try. On a 700? lattice one obtains for the o;(m, g)

00(0.1,0.0) ~ 0.74,  01(0.1,0.0) ~ 0.24 ,
00(0.1,0.1) ~0.77,  01(0.1,0.1) ~ 0.21 . (6.14)

Inserting the numbers into (EI0]) and (GEIJ), one finds

_ 1 [ 0.41 for g =0.0
Ax(eome) = — 6.15
X L{O.40forg:().1 ’ (6.15)
and
- 1 [ 0.82for g =0.0
A (oo—ee) _ — 1
X L { 0.80 for g = 0.1 (6.16)

A fit to the actual finite size behavior performed in Sec. (compare Tab. B2)
gives

(
- 0.86 7059 for g = 0.0
X = : (6.17)
\ 0.72 7056 for g = 0.1
and ]
oo 1.85 7100 for g = 0.0
X = (6.18)
\ 1.47 7007 for g = 0.1

Obviously, the discrepancy between the true physics and the results from the
mean-field-type arguments is sizeable and shows the limitations of the mean-field
approach. The % behavior (see Sec. BZ) and the relative factor of 2 between the
eo-ee and the oo-ee finite size effects are predicted correctly, while the overall
amplitude depends on microscopic details.

6.5 Equilibration

In order to get correct results, the system has to be updated until it is completely
in equilibrium. The required period of MC time, the so-called equilibration time,
can be found by monitoring observables for each sweep. As soon as the signal
does not change anymore beyond fluctuations, equilibrium is reached.

Here, basic observables are used for studying equilibration: the density of
empty vertices, of single occupation and of corners. Their histories as a function
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Figure 6.10: Density ng of empty vertices, ni of single occupation and ¢ of corners as
a function of the number of sweeps at m = —0.3 and g = 0.0 on a 256>
lattice.

of the number of sweeps are shown in Fig. for a given set of parameters m, g
on a 2562 lattice. It is obvious that for this case the system reaches equilibrium
after about 100 sweeps. Of course, the rate of equilibration will depend on the
values of the parameters and the volume. These effects are demonstrated in

Figs. BT and BT

In Fig. the single occupation density is compared for different mass
parameters m (1.h.s. plot) and coupling constants g (r.h.s. plot). With increasing
m correlations become more short-ranged and hence, the equilibration time de-
creases. A similar effect appears for changing the coupling: increasing g reduces
the equilibration time.

In Fig. the effect of the volume on the equilibration is studied for
fixed g and m. As expected, smaller systems show larger fluctuations and thus
equilibrate much faster. On larger lattices self averaging reduces the fluctuations.
Also it takes longer for an excitation to propagate through a large lattice and
consequently, the equilibration time increases.
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Left-hand side: Density ny of single occupation for various mass parameters m at g = 0.0
on a 2562 lattice.

Right-hand side: Density ni of single occupation for various coupling parameters g at
m = —0.3 on a 2562 lattice.
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Figure 6.12: Density ny of single occupation for various lattice sizes at g = 0.0, m = —0.3.



Chapter 7

Bulk Observables

The fastest way to check if a new algorithm runs correctly is to compare some
observables which are easy to evaluate with the results from the established meth-
ods or results from the analytic solution at g = 0, which can be obtained using
Fourier transformation. Particularly useful observables are derivatives of the par-
tition function

Zen = ; (%) 2+m)" ((2+m)*+g)" . (7.1)

Such derivatives are often referred to as “bulk observables”.

In this chapter several bulk observables are presented and discussed. They
will be compared to analytic results and to those from the standard approach in
Chap. @

7.1 Chiral condensate and mass susceptibility

In terms of the familiar Grassmann representation the chiral condensate Y is given
by

¥ = ﬁ S (Bn)y(m) (7.2)

The underlying expression is proportional to the derivative of the free energy
In Zgn with respect to m. Applying this to the fermion loop representation, one
obtains

1 OlnZgy 1 [f2<n1>+2f1<n0> . (7.3)

XS om N LA
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Its derivative with respect to m, the so-called mass susceptibility C,, reads

1 0 - 1 0?InZay
Oy = A om ;W(HW(H» =TT o2 (7.4)
_ o1 o ng — (ng))? J2 2— ny — (ny))?
= T { [4f1% = 2fa] ((n0 — (n0))*) + <f1) 2f2] ((n1—(n1))?)
+ 2f> ((no +m1 = (no +n1))*) — [4(}012 —2fa{no) — (%) ] <n1>} ~

Here, the expectation values are written as fluctuations in order to keep the
computer errors, which result from finite precision, as small as possible. For
analyzing the bulk observables several simulations ran for different lattice sizes
and parameter values.

-0.65

-0.75

Figure 7.1: Chiral condensate as a function of the mass parameter m for different
lattice sizes in the free case (g = 0.0).
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Fig. [Tl shows the chiral condensate as a function of the mass parameter m
for the free case calculated in the fermion loop representation on different volumes.
The initial configuration always was the empty lattice. The main conclusion of
this picture is that the difference between different lattice sizes diminishes more
and more with increasing volume, except at the critical value m = 0.0. This finite
size effect will be discussed in detail below.

-1.5F

Figure 7.2: Mass susceptibility as a function of the mass parameter m for different
lattice sizes in the free case (g = 0.0).

An equivalent figure was produced for the mass susceptibility (Fig. [L2).
One can see that the discrepancy between the data sets vanishes slower, especially
in the critical region around m = 0.0. It seems as if there was a delta function
in the continuum limit and a kind of phase transition or cross-over is emerging
for the mass susceptibility. However, from a lattice size of about 256% on (for a
precise analysis see Sec. Bl), the extremum of the susceptibility does not decrease
further. The minimum of the data set for the 5122 lattice is less pronounced than
the one for the 2562 lattice. Probably, this fact results from autocorrelation. As
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-0.65—
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Figure 7.3: Chiral condensate as a function of the mass parameter m for different
lattice sizes at coupling g = 0.1.
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Figure 7.4: Mass susceptibility as a function of the mass parameter m for different
lattice sizes at coupling g = 0.1.
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the algorithm for fermion loops only uses one-plaquette updates, excitations need
a longer time to propagate through the entire lattice with increasing the size of
the system. Hence, it is supposed that the systematical error of calculations on
very large lattices is notable.

The chiral condensate and the mass susceptibility for g = 0.1 are plotted
in Figs. and [L4 Compared to the free case, the curve for y seems to have
the same shape at first glance. But regarding the “peak” in C, there arises a
contrast: Its minimum is shifted from m = 0.0 to m ~ —0.04 and with enlarging
the lattice size the peak becomes more and more pronounced without any slowing
down. A turned on coupling means that the acceptance for loops on the lattice
decreases. So, a crude assumption is that the autocorrelation time might decrease
with the density of occupied links.

7.2 Interaction density and interaction suscep-
tibility

The interaction density p is defined as

1 - 2 1 d0lnZgy 2
p= mEﬂX(w(nwn)) ) =20 g, = () (1)

and its derivative with respect to g, the interaction susceptibility C,, is given by

_ A PIZgy A o ey
Cp—|A| 297 |A|f2 [<(0 <o>)> <0>}- (7.6)

Again, these two bulk observables were calculated on several volumes for the free
and the coupled case as a function of the mass parameter (see Fig. [[H). Their
graphs behave similar to the graphs for the chiral condensate and its derivative.
For the susceptibilities one obtains a straight convergence of the peak in the
coupled case, whereas in the free case the maximum values of the peaks do not
grow further for large lattice sizes.

7.3 Phase transition / Cross-over

For an infinite system, first order phase transitions are delta functions in the
susceptibility. In finite systems these delta functions are melting into continuously
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Figure 7.5:
Top left: p as a function of m for different lattice sizes at g = 0.0.
Top right: C), as a function of m for different lattice sizes at g = 0.0.

Bottom left: p as a function of m for different lattice sizes at coupling g = 0.1.

Bottom right: C, as a function of m for different lattice sizes at coupling g = 0.1.

differentiable functions, which have a pronounced extremum near the transition
point. If the height of such peaks behaves proportional to L? (with d being the
dimension of the system) and the width of the peak is proportional to L=¢, then
the phase transition is identified as a first order phase transition (see [24), B0)]).
For second order transitions there exists a critical exponent «, which governs the
behavior of the height of the peak with enlarging the system. Otherwise, when
no such exponent exists, the system has a cross-over.

It can be concluded from the plots of the chiral condensate and especially
the mass susceptibility that there is a kind of phase transition or cross-over at
m = 0.0 for the free case and near m = —0.04 for g = 0.1. The curvature of y
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changes and C, might indicate a divergence in the continuum limit.

To examine if it is a transition of first or higher order, one analyzes his-
tograms of the measured values for observables using small intervals (bins), e.g.,
of length 2.5-107%, around the critical region. A two-state signal with a local
minimum in-between gives evidence for a first order transition, where near the
transition point two phases compete with each other. An approximately Gaussian
shape of the histograms hints at a higher order transition or a cross-over.

P(X)
0 “ln.. ,.||M
-0.8 -0.78 -0.76 -0.74 -0.8 -0.78 -0.76 -0.74

X X

Figure 7.6: Histograms for the frequency of measured values of x on a 2562 lattice.

Left-hand side:  Free case (critical value: m = 0.0).

Right-hand side: Coupled case at g = 0.1 (critical value: m = —0.04).

Fig. [ shows the histograms for the chiral condensate on a 2562 lattice for
m = —0.02,0.0 and 0.02 in the free case (Lh.s. plot) and for m = —0.06, —0.04
and —0.02 in the coupled case at g = 0.1 (r.h.s. plot). Since the shapes of the
black histograms with the critical parameter values m = 0.0 and m = —0.04 do
not differ essentially from the other ones, it follows that the peaks in the second
derivatives of the free energy are not related to first order transitions.

The decision between a second order transition and a cross-over cannot
be made with the bulk observables considered here because to examine critical
exponents would demand to compute the specific heat

1 2\ 2
Cs = 137 (157 = (8)%) - (7.7)






Chapter 8

Finite size effects

Since a computer is finite, one is forced to simulate on finite volumes. As long as
the system feels the boundaries, one encounters finite size effects. With enlarging
the volume, finite size effects will decrease in general. There are two types of
finite size effects discussed in this work. The first one is a study of the volume
scaling of the mass and the interaction susceptibility at their extremal values, the
second one concerns the use of different boundary conditions.

8.1 Extrema of the susceptibilities

Following the ideas discussed in Sec. [, the behavior of the susceptibilities C),
and C, is analyzed to examine if there are nonanalyticities in the derivatives of
the free energy. As all simulations have to run on finite lattices, sharp delta
functions can no longer occur. In fact, they are rounded and shifted over some
region, which shrinks smoothly to zero with enlarging the system. Another finite
size effect is the height of their peaks, studied below.

It can already be seen in the graphs for the susceptibilities (Fig. [[2, [C4]
and [L3) that the height of the peaks increases with enlarging the lattice size.
The detailed analysis is presented in Figs. and B2, where the minimum of
the chiral susceptibility and the maximum of the interaction susceptibility are
plotted against the lattice size. The data points beyond the 1282 lattice are not
considered in the free case because there, the computation is strongly affected by
autocorrelation. As announced, this effect results from the local algorithm, which
only applies one-plaquette updates to the system. Therewith, the systematic

o1
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Figure 8.1: Minimum of C, as a function of the lattice size.

Left-hand side: Free case.

Right-hand side: Coupled case at g = 0.1.

error is estimated much higher than the errorbars indicate. In order to reach
unmitigated data, it would be helpful to improve the statistics impetuously or to
use a cluster algorithm.

The fit functions used here are given by

y=al’+y. (8.1)
g=20.0 g=20.1
Min(CY) ‘ Max(C,) | Min(Cy) ‘ Max(C,)
o —1.1 0.47 —0.22 0.41
g 013 0.47 0.32 0.20
~ 1 095 028 | —015 | —022

Table 8.1: Coefficients «, 3 and v for the fit functions y = a L + ~.

The interpretation of the finite volume behavior is not straightforward. In
the continuum the only symmetry of relevance is the continuous chiral symmetry
(Eq. 20)). In 2 dimensions it is not expected to be broken spontaneously
BT, B2, B3, B4, B3] and thus cannot drive a phase transition. The loop model,
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Figure 8.2: Maximum of C, as a function of the lattice size.

Left-hand side: Free case.

Right-hand side: Coupled case at g = 0.1.

however, has a discrete symmetry, the interchange of red and blue loops (see
Eqgs. (1), (E210)), which could be broken in 2 dimensions. However, the values
for the exponent 3 are relatively small and the behavior of the peaks could also
be of the form In(L). This is a functional behavior, which would also be well
compatible with the expectations from the continuum theory. Anyhow, for a
sound distinction between a logarithmic divergence and a small exponent (3 very
high statistics would be required and this question has to be left open for now.

8.2 Comparison of different boundary condi-
tions

In Sec. &4 where the different initial conditions are discussed, the effect of dif-
ferent boundary conditions for the chiral condensate on a 322 lattice is shown in
Fig. BE8 Now the size dependence of this effect is analyzed numerically.

One can extract the distances between the three graphs in Fig. B8 for
instance at m = 0.1, where the difference between the graphs is most obvious. The
gap between the ee (even-even) and the eo (even-odd) sector Ax(®>=¢®) (introduced
in Sec. B4)) as well as the gap between the ee and the oo (odd-odd) sector Ay(?0—¢¢)
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10

Figure 8.3: Ay as a function of the lattice size for mass parameter m = 0.1.

Left-hand side: Free case.

Right-hand side: Coupled case at g = 0.1.

is evaluated for several lattice sizes in the free and the coupled case. Using a
logarithmic scale in Fig. brings the data sets into an approximately linear
form. This is shown by the straight lines, which are fits to a straight line using
only the data for the three largest lattices. The corresponding fit functions are
given by

y=alL”, (8.2)

with «, § being real numbers. [ denotes the slopes of the straight lines on the
logarithmic scale, its values are given in Tab. B2

g=20.0 g=20.1
€0 - ee | 00 - ee eo—ee‘oo—ee
a |l 0.86 1.85 0.72 1.47
g1 —0.99 | —1.00 | —0.96 | —0.97

Table 8.2: Coefficients a and 3 for the fit functions Ax = o L°.

Since the values of the slopes of all straight lines are very close to —1, one

can estimate the finite size effect to be proportional to % This result nicely

confirms the mechanism for the finite size effect, which is discussed using mean-

field arguments in Sec. (in particular formulas (E1H)-(GEIS) show that the
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leading effects should scale as 1). Also the relative factor of 2 between the eo-

ee and the oo-ee finite size effect is found here. The overall amplitude is not

predicted as is discussed in Sec. B4l






Chapter 9

Comparison with standard
methods

The best verification for the fermion loop representation is the free case because
analytic results are available for a comparison. Since the parameters f; and f,
are smooth functions of both, g and m, the free case is not particularly special in
the fermion loop representation. That means, if the free case matches with the
analytic results, then the coupled case is expected to be correct, too. Of course,
in spite of this fact, it is indispensable to check also the coupled case.

Using the standard approach it is rather awkward to compute the interac-
tion susceptibility. This is the reason why only the chiral condensate, the mass
susceptibility and the interaction density are compared to analytic results (free
case) and to results from the standard formulation for the coupled case in this
chapter. Markus Limmer (see [30]) has provided the data for the observables
computed with the standard approach.

9.1 The standard approach

In the standard approach one takes the formulation of the partition function in
Eq. BZ3), where the fermion fields are integrated out. Hence, the expectation

values (Eq. (1)) are given by

[ Tlaea do(n) det[M19] 7% Zn " @0 (019, )

O T 2
o J Taen dé(m) det[M16] ¢720 2n 70

(9.1)

27
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Applying a MC simulation one replaces the integrals by sums over the number
of measurements. The configurations ¢; (¢; denotes |A| values ¢(n)) have a
Gaussian distribution. They are generated with the Box-Muller [37] algorithm.
Then, observables can be computed according to

SN det(MI), O(M), ¢),
S, det(M9)),; 7

where the configurations are re-weighted with the determinant. The determinant
can be computed using LAPACK routines (see [36], 38]).

(O)p = (9.2)

9.2 Chiral condensate and mass susceptibility

To compute the chiral condensate x in the standard approach, one uses Wick’s
theorem (introduced in Sec. BZZ3J) to rewrite the chiral condensate from its for-
mulation in Eq. ([Z32):

1 _
XZW;@#(H)@D(H»: Tl <ZM n,m), > - (9.3)

¢

The Dirac indices « (and in the next formula 3) are summed over. Analogously,
the mass susceptibility can be written as

1 0 -
Cy = ma—mgjwm)w(n»

e o))

|A| <ZM n,m),; M '(m, n)ga> . (9.4)

¢

A special case is the free case. The scalar field ¢ can be set equal to zero.
This means that the Dirac matrix is a simple differential operator and its inverse
can easily be obtained from Fourier transformation (see App. [Al). No summation
over configurations ¢; is necessary.

Figs. and show results for the chiral condensate and the mass sus-
ceptibility in the free case in both representations for some lattice sizes.
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and mass susceptibility

99

-0.65—

-0.75—

2 ':
8" fermionloops;

analytic result|

32° fermlonloopsf 1
: 512 fermlonloopS‘ ]

— 32 analyﬂcresultf ]

-0.2 0

0.2

Figure 9.1: Comparison of x for the two different methods in the free case.
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Figure 9.2: Comparison of C, for the two different methods in the free case.
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Obviously, there is a clear difference between the data sets for the chiral
condensate produced on a 82 lattice and it is still recognizable for the 322 lattice.
The data sets from the 5122 lattice calculations lie exactly on top of each other
within errorbars. Concerning the mass susceptibility the conclusions are the same,
but the correspondence at m = 0.0 is not as perfect as for the condensate. This
is, however, not a surprise, since second derivatives of the free energy, such as the
susceptibility, are much harder to evaluate numerically.

Where does this discrepancy for smaller lattice sizes come from? One reason
are different boundary conditions, of course. Three choices are possible on a
square lattice in the standard approach (concerning space and time direction):

e periodic - periodic boundary conditions.
e periodic - anti-periodic boundary conditions.

e anti-periodic - anti-periodic boundary conditions.

The results for the chiral condensate of the 3 different boundary conditions are
presented in Fig. for the free case. In the fermion loop representation one
has the three sectors for the loops discussed in Sec. E4l The different boundary
conditions, or sectors respectively, of the two representations do not correspond
to each other one to one. A possible mapping between the different types of
boundary effects in the two representations was not found so far, but also cannot
be excluded.

The decisive point is that boundary conditions become less important with
enlarging the system as the boundaries are of order L, whereas the 2-dimensional
system increases according to L? (there are no massless excitations in 2 dimen-
sions). Finite size effects behave like . For the free case this fact is confirmed in
Fig. @4, where the gaps between analytic results (periodic - anti-periodic bound-
ary conditions) and the 3 sectors considered in the loop approach are depicted.
Only data points up to a 1282 lattice are used for the fit functions. Beyond this
size it is assumed that autocorrelation interferes distinctly in the loop approach.
All the fit functions reproduce the %
that both approaches match in the thermodynamic limit.

behavior and hence, one rightly concludes

The coupled case is presented in Figs. B4 and @@ It is not possible to
get data sets for lattice sizes larger than 322 in the standard approach because
of the high demand for computer time and memory of the standard approach.
Therefore, only results for calculations on a 162 and a 322 lattice can be provided.
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Figure 9.3: x as a function of the mass parameter m in the free case (g = 0.0) for
different boundary conditions in the standard approach. The data for
the anti-periodic - anti-periodic case lie exactly on top of the periodic -
anti-periodic data.
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Figure 9.4: % behavior of different boundary conditions (g = 0.0, m = 0.0). The
gaps between analytic results and the 3 sectors of the loop approach are
depicted. y is a fit function for each data set. The 2 measure points of
the large lattices corresponding to the ee sector are omitted.
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methods
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Comparing the free and the coupled case, e.g., on a 322 lattice, one rec-
ognizes that the data sets match much better in the free case. The mechanism
underlying this fact is clear: Both weight factors f; and f, decrease with increas-
ing coupling g. This implies that for increasing g the occupation of sites goes
down. The occupied lines that are enforced in the eo and oo sectors thus become
more important and the finite size effects more prominent. However, although
it seems that the data sets might not approximate each other so quickly when
enlarging L, there are some further hints that they do: Both representations show
that the data sets develop similarly. The curves of the chiral condensate become a
bit steeper and the change in the sign of the curvature shifts in positive direction.
Regarding the mass susceptibilities, one can see that the “peak” becomes more
pronounced and its modulus increases with enlarging the lattice. In spite of not
being able to compare standard and loop approach on large lattices, due to the
exploding numerical cost for a standard simulation, there is no doubt that the
methods agree in the thermodynamic limit.

9.3 Interaction density

Again, the standard approach uses Wick’s theorem (Sec. BZZ2) to express observ-
ables in terms of inverse Dirac matrices. The interaction density reads

1

= (mem)’)

_ ﬁ <Z M~ (n, n)aﬁM_l(n, n)5a> ) (9.5)

The two plots of the interaction density for the free and the coupled case
(Figs. @ and ) emphasize once more that the data sets are closer to each other
for the free case. The reason for this behavior are different boundary conditions
being more decisive in the coupled case (see previous section). Furthermore, it
is obvious that in the thermodynamic limit the results from the two methods
approximate each other.
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Figure 9.7: Comparison of p for the two different methods in the free case.
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Chapter 10

Scalar 2-point functions

In this chapter scalar 2-point functions are discussed. The expression for their
calculation in the fermion loop representation is derived and the results are pre-
sented. A comparison with the standard approach is complied in the second
part.

10.1 2-point functions in the loop approach

As introduced in Secs. B2l and 221, 2-point functions are computed as

1 B _
(O2(t) O1(0)) = E/D[d},wwb] e~ Sv A O0y(t) 04(0) - (10.1)
A possible choice for Oy(t) and O;(0) are ¢(n)i(n) and ¥ (m)y(m). To be able
to extract these observables from the path integral formalism, one additionally

inserts an auxiliary scalar field # into the Dirac matrix:
+2
MY(n,m) =24+ m+ ¢mn) — 0(0)] dnm — Y Cudntjim - (10.2)
pn==x1

This makes the partition function #-dependent and turns it into a generating
functional. Computing the second derivative of the free energy with respect to
the #(n) and setting 6 = 0, one obtains

% = (D) ()lmp(m)) —(Glaps(m) (d(m)y(m) - (103)

65
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Fourier transformation leads to the final form of the correlator:

Ly
G(mzﬂh) = %12 Z [<1/_1(711,n2)1/1(n1,n2)1/7(m17m2)1/1(m17m2)>
ni,mi=1

o <&(n17n2)w(n17n2)> <&(m17m2)w(m1,m2)>} .(10.4)

Using the fermion loop representation (Eq. (EEI3)) the derivative of the free
energy with respect to € at 8 = 0 reads

c(Cq)+c(Cy)
Oln Zay 1 3 (L) b I1 dOm) - 30m) (7, ()]~
90m) |y Zax o, \V2 P e
0 J(m) =2
X< —1 J(m) =1 (10.5)
—2(24m+ ¢(m)) J(m) =0
In terms of expectation values it can be written as
Oln ZGN fg
—_— = —=(0ym)1) — 2f1 (07(m ) 10.6
980m) |, f (Qem1) = 21 (Bmo) (10.6)

Analogously, the second derivative for n # m can be expressed as

82 In ZGN
060(m)0f(n)

- < [—é&](n),l - 2f15J(n),0:| [_ééJ(m),l - Qfldf(m)’o} >
6=0 fi S

— <—é5J(n),1 - 2f15J(n),o> <_é5J(m),1 - 2f15J(m),o> -(10.7)
fi fi

Due to translation invariance the expectation values of the second line in
Eq. (07) are independent of n and m. Therefore, they can be rewritten as
the chiral condensate (see Eq. ([Z3))

1
<—E5J(n),1 — 2f15J(n),0> = —7 [% <ng > +2f1 <Ng>|=X". (108)
1

h Al

Finally, the simplified expression is given by

82 In ZGN

2\’
90(m)d0(n) <_ (Os@)a05m)1) + 4 F2 (0sw195m)0)

S

+ 4 £ (65m)0050m)0) — X° - (10.9)

6=0
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Before applying the Fourier transformation to zero momentum, it is helpful to
define the number of empty and singly occupied sites in timeslice ns:

No(ng) = Z5J(n1,n2),o : Ni(ng) = Z5J(n1,n2),1 : (10.10)
One obtains
2
Glmam) = 73| (52) (Nl Vitma) + e (i) Nofrn)
1

Building the sliding average is an important tool for improving the statistics.
Here, ny is replaced by ¢ and accordingly ms is written as t 4 7:

G(r) = L%ZG@”’”

+4f? (NO(H—T)NO(t))] 2. (10.12)

Fig. [T shows the correlator G(7) in the free case at m = 0.1 for different
lattice sizes, which still can be reached by standard approach. The error bars are
asymmetric, since the correlators are plotted on a logarithmic scale. Fig.
shows the correlator G(7) in the coupled case at m = 0.1 for different lattice
sizes. The plateaus in the center of the correlator are dropping with increasing
Ly and it is expected that they reach zero in the thermodynamic limit. It is quite
evident that the statistical fluctuations for the correlators, in particular for large
distances, are more pronounced than for bulk observables. This is a well-known
fact in the numerical investigation of spin systems.

10.2 2-point functions in compare with the
standard approach

The comparison with the standard approach is given in Fig. for the free case
and in Fig. [04 for the coupled case.
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Figure 10.1: Correlator G(7) as a function of time T for different lattice sizes in the
free case (g = 0.0) at m = 0.1.
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Figure 10.2: Correlator G(7) as a function of time 7 for different lattice sizes in the
coupled case (g = 0.1) at m = 0.1.
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Comparison of the correlator G(r) for the two different methods as a
function of time 7 for different lattice sizes in the free case (g = 0.0)
at m = 0.1. The dotted data result from the loop approach (without
errorbars now) and the solid lines are analytic results.
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function of time 7 for different lattice sizes in the coupled case (g = 0.1)
at m = 0.1. The dotted data result from the loop approach and the solid
lines are gained from the standard approach. For a clear visualization,
errorbars are omitted in both cases.
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Analytic results can be used in the free case. Obviously, both data sets
(Fig. MOI3) have a similar shape and develop equivalently: For increasing the
length of the lattice in space, the bottom of the plateaus drops. The remaining
discrepancy is expected to originate from different boundary conditions, which
cannot be neglected for lattice sizes smaller than 64%2. However, Fig. [0l demon-
strates that the results agree within errorbars for the 24 x 64 lattice.

The plot for the coupled case is on a linear scale, because the large fluctu-
ations in the standard approach lead to a few negative data points. Again, one
can see that the agreement between the two representations is granted within
the precision of measurements and the impact of different boundary conditions.
Anyway, the data must coincide in the thermodynamic limit, since the mapping
between the two representations becomes exact then.



Chapter 11

Conclusions

In general, when computing expectation values of fermionic systems in lattice
QFT using a MC simulation, one has to deal with the fermion sign problem. For
this reason calculations need exponentially increasing computer capacity with en-
larging the volume of the system. It can be shown that there exists an alternative
representation of the partition function of a 2-dimensional QFT (GN model), the
fermion loop representation, which overcomes the fermion sign problem.

In this thesis an algorithm for the fermion loop representation is developed.
It verifies that the mapping between the two partition functions is correct and
serves as the basis to compare the advantages and disadvantages between the two
approaches.

11.1 Standard approach versus loop approach

The greatest advantage of the standard approach is that it is relatively simple and
general. This means that there is a lot of experience in possible implementations
and many standard tools for computations exist. For example, the Box-Muller
algorithm, which incurs the Gaussian distribution of the scalar fields ¢, can easily
be taken over from [37]. LAPACK routines (see [38]) handle the inversion of the
Dirac matrix and compute its determinant. This is not the case in the fermion
loop representation. The algorithm for the loops has to be developed step by step
and tested carefully. One has to verify that it avoids self-intersections of loops
that all loops are closed and one has to prove its ergodicity. It is also important
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to find an optimal implementation of the algorithm, so that it runs as fast as
possible and that the code remains transparent.

In the standard approach no specific representation for the partition func-
tion needs to be considered and all steps can be used for a large class of models
in the same way. By contrast, in the loop approach, finding a mapping to other
variables can be quite demanding and the result is specific for only the model
under consideration. The fermion loop representation, as it is used in this thesis,
only works for the GN model (and equivalent models) in 2 dimensions so far.

Moreover, in the fermion loop representation, one also has to find expres-
sions for the observables in terms of loops. Troubles appear for instance with
vector 2-point functions [39, B0, because probably these observables cannot be
expressed in terms of non-oriented loops only (see also in the outlook, Sec. [T2).
Scalar 2-point functions can be computed, since they have the form ()1 1)),
while 2-point functions (@Z_)%@/) Vy,1p) for vectors have an orientation according to
the indices p,v. The situation is simpler for expectation values in the standard
approach, which always can be calculated directly using Wick’s theorem. The re-
sulting formulas are functions of the inverse Dirac matrix and can be implemented
in the computer program without reformulation.

Although there exist several disadvantages for the fermion loop representa-
tion, it has also a lot of merits. Outstanding are the drastically reduced computer
requirements of the programs. Compared to the standard approach two orders
of magnitude are gained. Therefore, the statistics and system sizes can be highly
improved. Furthermore, the loop representation needs considerably less memory
for its implementation. Calculations for fixed parameter values allow to include
more than 10° lattice points without any problem, need only about one week of
run-time on the available pc cluster and still have excellent statistics (compare
Chap. [M). Enlarging the system is a decisive point, because finite size effects be-
come less important and one approximates the thermodynamic limit much better.
By contrast, the standard approach is limited to lattice sizes of 2500 lattice points
(using a typical pc cluster).

Summarizing these various aspects, it is fair to say that the fermion
loop representation, as it is developed so far, needs more conceptual
work compared to the standard approach. This is, however, rewarded
by an increase of the efficiency by two orders of magnitude, which
leads to considerably improved physical results.



11.2. Outlook 73

11.2 Outlook

The fermion loop representation definitely can be a great advantage and its fur-
ther development will be useful. Several issues should be considered:

e One of the primary aims is, of course, to be able to compute some more
advanced observables, in particular vector n-point functions. The difficulty
here is that each observable has to be expressed in terms of the loop rep-
resentation. Since vectors are oriented objects, it might be necessary to
generalize the representation to oriented loops.

e The algorithm developed in this thesis is constructed for the one flavor
model. The loop representation exists for arbitrary numbers of flavors and it
would be challenging to develop and test the corresponding algorithms. This
is really interesting, since for more than one flavor the chiral symmetry is a
discrete symmetry, which can be broken spontaneously also in 2 dimensions.

e Of particular value is the generalization of the loop approach to higher
dimensions. Omne could imagine [AI] that the loops might be replaced by
closed surfaces, but up to now, no such mapping exists for a physically
interesting model.






Appendix A

The doubling problem

Naively, the discretized Dirac matrix of the GN-model on the lattice would be
written as

2
5n a,m 5n—A m
M, m) = [+ §(n)) G — D 9 EI ()
pn=1

where a is the lattice spacing. The quark propagator which governs the behavior

of n-point functions is the inverse of the Dirac matrix M (n, m)~'. One obtains

1

the free case, when ¢ is set equal to zero. Here, M (n,m)~' can be computed

with Fourier transformation

1 ) .
FTM ) (n,m)] = o' >~ e ™M (n, m) e (A.2)

s

p and q are vectors of the lattice in momentum space, given by

~ 27
A:{p:(p17p2) pu:a/Tnu ) nuzl,...,LH} . (A3)
o
One finds
FT[M"(n,m)] = a* M(p)(p - q) . (A.4)
with )
. i ‘
M(p) =ml+—3 ysin(pua) . (A.5)
pn=1

where obviously all elements non-diagonal in p vanish. Inverting the 2 x 2 matrix
M (p), one finds [
~ . ml—ia'Y ,sin(pua)
M(p)™' = 2 2 — 2
m? +a23" sin(pua)

(A.6)
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Although the correct continuum limit (@ — 0) is reached for fixed p, there remain
additional poles for p = (0,%),(%,0),(%Z, %) at m = 0 due to the sine functions
which appear on the lattice. The physical pole is p = (0, 0).

The other poles, so-called doublers, can be removed by augmenting the

Dirac operator in momentum space with the so-called Wilson term
;2 12
M(p) =ml + — i 1-) (1- : A7
(p) =ml +- ;w sin(pya) +1- ;( cos(p,a)) (A7)

Now, the doubler poles (p, = Z) acquire a mass o % which diverges in the con-

tinuum limit @ — 0. Thus, the doublers decouple then.
The Dirac operator in position space can be found by inverse Fourier transfor-
mation. It reads (the scalar field ¢ is now coupled again)

+2
2 1
[¢] — z R — .
M m) = (142 4 00) ) b= 50 5 (L= )G« (A9
p==1
with v_, = —v,. For small a it has the behavior
m -+ 6(n) + 7+ 50 + 0(a”) (A.9)

The Wilson term is the term proportional to the Laplace operator. The propor-
tionality constant is the lattice spacing a. Thus, in the continuum limit (a — 0)
the Wilson term becomes irrelevant.



Appendix B

Computing the norm of the
hopping matrix R(n, m)

For the hopping expansion (needed in Chap. Hl) to converge, one has to require

the condition
+2

1
IR, m)|| = || > T, e S| <1 (B.1)
p==x1
As defined in Sec. B h(n) is given by
h(n) =24+m+ ¢(n) . (B.2)
Assumed that A(n) fulfills the condition
1 1
— — B.
il <z v B

one has to show that the remaining part H = > I',0n+4m is bounded by the

value 2: |
IR, m)|| < S[[H@nm)[<1. (B.4)

H can be decomposed into
H(n,m) = Hi(n,m) + Hy(n,m) , (B.5)

where H,(n,m), (1 = 1,2), is given by

1 1
Hu(na m) = 5(1 - 7u)5n+/2,m + 5(1 + VM)(Sn—ﬂ,m . (B.6)
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Applying the triangle inequality one obtains
[H | = [[Hy + Hal| < [[Hy[| + [|H2]| - (B.7)
So, each H; and Hs must not be greater than 1. Using the definition of the norm,

[Hull = max [[Huv], (B.8)

v,[vil=1

one finds

|E~) =\ (H) Hy =\ ViHHy =V =|v[=1, (B9

where in the last step H/TLH » = 1 was used. This can easily be seen to hold with
the equations

(1+7u)(1 _'Vu) =0,

(1+ 7#)2 =2(1+ Vu) )
H(m,m0) = 214+ %)6n s + 51— )i (B.10)
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