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APPROXIHATION OF EIGENVALUES, AWD EIGENFUNCTIONS, BT VARIATIONAL METHODS

1. Motivation

In consideraticn of varlous accelerator desigas employling the
alternate-gradient principle, one is often faced with the problem of
determining the velusse of the deslign perameters at the limits of stability,
If one knows the general characier of the solutien to the differential
equation at such pointz one may substitute 2 sultable simple triel function
(or simple trial functiona), countaining adjustable parameters, into the
essociated variation p{oblem arnd resdily determine the eigenvaluese with
considerabtle eccuracy. It is the purpose of the present note (i) %o
1llustrate the uze of variational methods in a simple boundary-valus
problem where the dependent verisble is fixed at ths boundaries, (41) to
apply a similar techaniqus to the Mathieu equation, for which the eigen-
solutions are periodie, and finally (1i1) to point out the applicability
of the method to a problem arising in connection with the analysis of a
Mk.V ¥PAG accelerator,

2. Example Concerning a Boundary-Value Problem in which the Depemdent Variable
is Fixed at the Boundarioe
¥e conslder the differentiel egquation
y" + Ay = 0, with  y(+1) =0,
The simplest solution %to this problem ie kmown to baﬂgf the form

n
1 = coszXx and 1s obtained when A = .

The above problem is equivalent to the lsoperimetric variation problem
in which we seek a function, such that y(*1) = 0, for which

1 p: | 2
6/ 72dx = 0, subject to / y-dx = const, (say 1)
-1 =1

that is, introducing thes Lagrarge multiplier -A , Buler's equation for
1
a/ (32 -2y dax = 0
-1

is our original differential equation y" + Ay = 0.

A trisl solution (even in x), satiefying the boundery conditionms,
may be taken of the form

vy = 1-2)ay + a2,
for which L1
R e« E-Bom?e - Bane, ¢ @5-Hae?

=3
Tha letter uprauion will be ntatioury when

& -20g » dF-f20e, = o
(Yg-%l)ai <« (1755'-'3}1—5}‘)"2 = 0 .
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f =

We accordingly find that A must be given by
A2 - 28A + 63 = 0,
of which the lesser root is A = 14 - (133&)1/2 = alh67h37 and ;f = -0.22075 ,

This value of A may be compared with -fr:-e- = 2 M67 401100022 ..., the inclusion
of additional parameters in the triel fumction would permii further improve-
ment of the ectimated value, L_The usa of three constants (a.] o1 B ) has teen
reported (Buck) to give A= 267401 10g./

It may e noted thet with the trial solution normalized so that our svziliary
integral (in this case“f:ll yodx) .is unity, the value obtaired for‘/_:]ily‘ Cax

may be shown to be cur value of A snd will ba greater then ths exasteigenvalua,

The equivalent variation problems for other differential equations with
other types of boundary conditions are presented in Courant-Hilbert?, Ch. IV,
Sect. 5, eap. p.182, Cno may further note that, in particulsr, with
J of the form

f‘x2
J =J F(x,y.y‘)dx.
x
ar 3r Iy .
0 = 2F syi j [EE5) - SET6vas;
Fr

accordingly if 5= 1is independent of x or periodic (period x,-x) in x,
boundary conditions requiring y to be periodic (period Xy xl) reault in
the veriatlion problem again reducing to the problem governed by Euler's
equaticn
( ) -B—E = §
27 '

3. Character of the Eigensolutions of the Mathieu Equaticn
At the stability boundaries for the Mathleu ecuation,

2

¥ .
s + (a + 16qcos2x)y 0,

the characteriatic bounded solutions are perlodic, with peried ™ or 27,
Wnen q= 0, the perlodic sclutions ars, of course,

1 coB x cos 2x cos 3x
sin x sin 2x sin 3x wu A

the Mathieu functlons which reduce to these forms when g-»0 are
dscignated (notation of Vhittaker and WatsonJ)

eo (x,q)  ce (x,q)  oe,(x,0) ce3(x.q)
Bel(l.q) aea(x,q) 333(x.q) ceey

the functions in the firet 1line being even functions of x end those in
the second line odd functions,.



mj-_

The stability boundaries mre given in series form for the first few
ca.aea3 and are alsc listed in tables™; coefficients for the Fourier expan-
sion of the elgenfunctions are likewlss availab103'4. The stability
boundaries are gravhed in Filg., 1 and the character of the sclutions illus-
trated in the accompanying Table I. The solutions of the table are arranged
in the same order as the quantities appear on ths gr The quatlties
be,, boy, bey, ... are tabulated as functions of e= ZTlﬁq in ref.u. as
ere the coefficients 4in- Fourier expansione of the even functions Se,,
Se1,4 ... and of the odd funstions Sol. Som caey Tor q< 0, theee functions
give the deelred solutions if we set o = 2(-10q), while, for q>0, we
est s = 2(16q) erd replace the srgument by x ¥ %/2,

L, Approximation, by Variationsl Methods, of Eigenvalues and Bigenfunctions
for Mathieu Equation

The first eigenvalues of lMathieu's equation (givea by beg, ‘bol, bal, boz)
may be approximated by a procedure paralleling that employed in the example
of Section 2, We consider, in this connection, ths varlation prcblem for
the form of the eigenfunctions

an
55 (Y'a - ayz - lf‘rqyzcos 2x)éx = O
0

into which we introduce psriodic trial solutiona,
(1) For the first etability boundary we employ trial solutions, even in x
and of pericd ™, of the form

L
Ao o A.lcos‘&‘x + Aecoa X o+ -

If only two terme are retained, the integral becomes
on [-aa? - 16qa,8 + (2——)1.1‘_7
This expression ie statlionary if
~2a 4, - 16q A =0
<16 &, + (-8} &4 = 0 ;

and gives us a relation from which one odtaine a good first estimate of the
first stability boundary.

(169)% = 2a(a-U4).
¥e thus obtain, for the first stability boundary, /2

s 2 —2[(1+32q2) -17], Afag 2 (1*32‘1)

and,
by way of example, if 16 g = +4,
e = -1M464 , Ay fa, # +0,732 (the elgn veing that of gJ,

@ho sscond root for "ar is 2/(1+ 320_2)1/2 +1 ] or, in this example,
5464 with A /A, % F2.732 . ]
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Stability Boundaries and Figen solutions

for Mathieu Equation

d2

+ (a + 16qcoe2x)y = 0.
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If we refine our approximation by including thres paramgters in
the trial function, the intsgral becomes
e 2 _ fn. 2 2 _ a b
an/-ak " =160 hh + (2-3)4° -BquA, + (B~ .
We thus obtain the simultansous eguations
= - =
2BA° _Gqu
-J_Gqu + @-a)A.l - BqA,
-8q A + (16 - a).ia
we thus cbtein for the first stobility boundary (for 16q = 4 )

I
2 0 O

and a second solution
a 2 +5.176, A/a, = 2,588, Alh = Toasus,

We thus are cbtaining what sppears to he a good epwvroximation to the -
first elgenvalue and 1ts associated solution as well as a reasonable eatimate’
of the value and solution corremponding to ce,. The correct values are

First solution. &= -1.513%, 4 /A =Yo.7570, A /A = +0.0870;
Second solution. a = 5.17266, 4 /A = 72.5863, A,/a, =0.1870.

The first stability limit rmay,_ of course, be alternatively eatimated
by use of The emooth approximation)! in this way we find a = -32 o2,
which repressnts a good avproximation to the correct value when q is
sma’l (2¢ is seen by expansion of our firgt result or by reference teo the
sgriea riven on p,411 of ref.3) and gives the numerical value -2 for
log= +4 .,

(11) One may proceed similarly to locate the second stability boundary
and to examine the character of the associated elgensclutions, In this case
(when q <> 0) we omploy trial solutions (with period 2m) of the form

Ricosx + B?_ 3
Retaining three terms, the integral becomes

cos 3x + B,cos5x + .-,

Loy _8yn 2 _ .8y 2 228y 2
an[_'(g hq 2)131 8qB, B, + (3 2)32 3@233 = (—25 2)133 7

and leade to the equations

(1 - 8q - a)B - 8q3B, e B
-8qB, + (9—a)32 - 8qB = 0

- 8B, + (25 ~ a;33 Dy

The location of the first stability boundary of the present type is then
estimated to be, when 16 q =4,

e = -1.,39066, with B,/B, = 0.1%33 =nd 33/31 = 0.011;303.

The correct valuee are

a = ~-1.,39068, and B,/B, = 0.195%, 33131 = 0.014848 ,
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(111) Proceeding to the next etability 1imit, one mesumes trial solutions
(sgain of period 2m) of the fomm

C,sinx + cesinfsx + C

1 3

Since we are concerned only with this problem as an illustration, we
keep merely two terms here to obtain
J -8y
* A8 2)02 7

1 lg-Bp?2 o
enl(5 + ¥q - 5)0, 840, C

sin 5z +

2
for the integral,
We then obtain the equations
(1+8q-—a)cl - 8¢, =0
-8¢C + (3-a)C, = 0,

with ths solution of interest, for 16q = 4,
a = 6-GM2 < 239, oo = 0.3025.

The correct values a.rel"'
a = 2.37192 , 02/01 = 0,310% .

(iv) The fourth type of etability limit is investigated by ald of the trial
function (period )

Dlulnzx + D.sinlx + D osinfx + ++-,

2 3
Again we retalin only two terms to obtain

2y, 2 ay. &
an/ (2 - 3)n g0y D, + (8 -3)D," ]
for the integral.
We then obtain the equations
4 -a)p, - 8g D, =0
-8q D + (16-33132 = 0,

with the solution of interest, for 16q =4,

a = 10-(1&0)1/3 = 3;675u. za;_,ln1 = 0.1623.

s correct velues are

e = 36722, /D, = 0.1639.
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5. Application of Variation Methods to a Problem arising in a Mk.V TFAG

In the zea.nal:ftsfll8 of the oecillations sbout a scalloped orbit, as
for a Mk.V FFAG accelerator, one obtnins differential equations of the form

o {a + [Decon2t + ccos(‘%tﬂs)j}y = 0,

2 [
no

or

A
n
+

il {a + [boos2t + ccosb coslit - ceind ninutj}y = 0.

In a typical case,
b= *1.3672, c=X0.M462, and & = 0.0331 radian.

It is desired to determine valuss of the paramster "a® at those stabllity
limite which lie near zero,.

(1) Since & is emall it may be sxperted that a good estimate of the stability
boundaries may, in fact, be obtainable by eetting 8 = 0 and using trial
solutions

A, + Ajcos2t + A cos Ut for one boundary

snd A cost + Ajcos 3t (in the case the upper sign for "o* is taken)

3 et the other boundary.

In these respective cares, proceding by methods similar to those used
before, one finde the determanental equations

-2a -b -c 1_3_33 i i

b b-a-2 -2l =0 ama e 2 Hlwg,
y 2 2 b _c 9 -a

=t ~3 16-a 2 2

The first determanental equation lesds to the first boundary location
(when b 2nd ¢ have the values indicated)

-0.23’#29 for ¢ >»0,

i}

a

- 0.2155 for c€ 0.

The values obtained in gemeral from this first determanental equation spproach,
when b and c¢ erc small, the value given by the smooth apprexinatiaJZ

”~r

2
a ¥ -(%—*-%é)

but, in third order (order of v2e), appear to permit a slightly more negative
value of "a" yhen the maximum positive cxcursioans of the cos 2t and cos kit
terms add in phase. TFor the values of b and ¢ assumed here the emooth
approximation gives a ¥ -(Q,2355,

The second determenental equation lesds to the sacound stability boundary
estimated to be given by

a = 0,421 for ¢»0,

a = 0.2804 for c<O.
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(11) If we do not neglect & in the given problem, it then sppears eppro-
priate to take trial functions of a rmore general form, although the deter-
manental equation will be found to factor into two equations, corresponding
to eigensolutions of periods ™ and 27,

‘e accordingly talte as a trial function

y = A + Acost + A,cos2t + Ajcos3t + A coslit

+ Byelnt + Bzain 2t + B;sin 3t o+ B osinlt
for which the integral which is to teke on a stationary value is
2“[—-&..&02 = DA A, - ccosb Ak +csind AR

+ (}2- - —;- - ).A.l {—*- --—cosG)A.lA + = sina AlB
#ilg -5 - R—cos&)& - -—Aés.u + Zsins A232

- (-2: —%)A;-{- ;eina AB + (8 '")A*-L

- (]—2‘ - -g- - !1%)312 - (—% +-§c096)3133
+(2-%+foone)n? - —3 » 3,

+G-5m2 + (8-2377.

The resulting determanental equetion may be factored to read

-2a ~-b ~cecos 8 (¢} ceing }

b Y-a-3coss -b/2 %sinﬁ 0
-ccos -b/2 16-a 0 0 x
0 %aina 0 H-a-o--g—coes -b/e
ceins 0 0 -v/2 16-a
l-a--z- --gﬂgcosa C %uinﬁ
By - 9-8a Zgins 0
ol c : b b C = 0"
0 ECOSS l-a+-§ -'2'+'5C085
%sinﬁ 0 —%4—-2—::0:8 9 -a

and is seen to reduce to the previous result if 5 is set equsl to zero.
Yanishing of the first determanent would permit one to obtain ratios of
ncn-vanlshing coefficlents Ao. AE' Ah' 32' B!;‘ corresponding to a solution
of period T, and the vanishing of the second permit an independent similar

determination of .H, 13. :Bl. 33. corresponding to a solution of periocd 27,
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With regard to the 5 x5 determanent, it has been noted that it
will factor when § = 0 to give the earlier result, If 6+ O, the deter-
manent may be expanded as a sum of 3x 3 mi:p%ra and their associated 2x2
cofactors to give a correction of order ¢"§~ to the original 3Ix 3
determanent, In addition, it is to be noted that the origimal 3x 3
determanent is iteelf modified by & term of order cSE: a rough numer-
ical check seems to indicate that this latter effect is somewhat the greater
and would result (as might be expected) in bringing together the estimates
of the first stability boundary for the two cases b 20, With the
present value of &, however, the change of "a" 1s believed to be small
-~ perhaps of the order of *0,003 -- and a direct revaluation has pot
been undertaken,

Yith regard to the 4 x 4 determanent associated with the next
stability 1imnit a similar situation is seen to apply. Expansion in a
series of products of 2 x 2 determanente and adjustment of the original
2x 2 determanant to take account of cos$ # 1 1s seen once agaln to in-
troduce correztions of the order of &2 ,
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