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ABSTRACT: We report cutting edge performance results on a
single node hybrid CPU-multi-GPU implementation of the spin
adapted ab initio Density Matrix Renormalization Group (DMRG)
method on current state-of-the-art NVIDIA DGX-H100 architec-
tures. We evaluate the performance of the DMRG electronic
structure calculations for the active compounds of the FeMoco, the
primary cofactor of nitrogenase, and cytochrome P450 (CYP)
enzymes with complete active space (CAS) sizes of up to 113
electrons in 76 orbitals [CAS(113, 76)] and 63 electrons in 58
orbitals [CAS(63, 58)], respectively. We achieve 246 teraFLOPS
of sustained performance, an improvement of more than 2.5×
compared to the performance achieved on the DGX-A100
architectures and an 80× acceleration compared to an OpenMP
parallelized implementation on a 128-core CPU architecture. Our work highlights the ability of tensor network algorithms to
efficiently utilize high-performance multi-GPU hardware and shows that the combination of tensor networks with modern large-scale
GPU accelerators can pave the way toward solving some of the most challenging problems in quantum chemistry and beyond.

■ INTRODUCTION
Our current understanding of the properties of molecules and
materials rests on the foundations of quantum mechanics.
Many modern technologies−such as semiconductor devices,1

magnetic resonance imaging (MRI), nuclear power or
photovoltaic cells−would be impossible without the funda-
mental understanding of the underlying quantum mechanical
effects governing the processes that are responsible for the
development of these technologies. The properties of any
molecule or material can in theory be computed from solutions
of the Schrödinger equation, but obtaining the exact solution is
in general impossible except in rare special cases,2 leaving
scientists with the need to settle for approximations. The
exponential growth in computational power over the last few
decades has led to approximate numerical methods that have
become the predominant choice for modeling materials and
molecules in both scientific and industrial applications.
Prominent examples include density functional theory
(DFT)3−6 (which has become a standard tool in the scientific
community and beyond7−19), single and multireference
Coupled Cluster (CC)20−26 approaches, quantum Monte
Carlo (QMC)27−33 and various other approximations of full
configuration interaction (FCI),34−45 or tensor networks,46−62

to name a few. Despite the tremendous algorithmic and

hardware advances over the last half century, many quantum
mechanical phenomena in chemistry, material science, and
condensed matter physics are still not thoroughly understood.
Examples include the mechanism of action of biological
enzymes,63−73 the properties of exotic phases of matter74−76

(including the debated existence of anyonic quasi-par-
ticles77,78), or even the exact mechanisms of observed cases
of high-temperature superconductivity in certain materi-
als.79−81 A common theme among these phenomena is that
they all require the solutions of the many-body Schrödinger
equation to obtain a proper understanding of their electronic
structure in their ground and excited electronic states. In this
context, tensor networks have emerged as one of the most
powerful numerical approaches for tackling these challenging
problems.49,75,82−85 Tensor networks are a class of many-body
wave functions that can be efficiently stored and manipulated
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using classical hardware. Tensor networks can parametrize
wave functions obeying an area law of entanglement86 with
possibly logarithmic corrections,84,87 and can be combined
with local unitary optimization to reduce entanglement.88−90

They are also ideally suited to parametrize ground states of
gapped, local quantum systems in 1d and 2d. The most
successful tensor network, the matrix product state (MPS), is
arguably the gold standard approach for obtaining ground
states of strongly correlated quantum systems in 1d and 2d.75

In the area of quantum chemistry, the density matrix
renormalization group (DMRG) algorithm, a variational
optimization algorithm over the space of MPS, has emerged
at the forefront of strongly correlated electron methods, and is
widely regarded as a gold standard method for systems
encompassing multireference character.53,55,56,58,59,62,88,91−93

The core operations required in the vast majority of all tensor
network algorithms are tensor contraction and matrix
factorization, both of which are highly amenable to
parallelization and Graphics Processing Unit (GPU) accel-
eration.90,94−106 In this context, growing attention is being
focused toward developing novel tensor network algorithms
that can efficiently utilize highly specialized Artificial
Intelligence (AI) accelerators. Examples include recent work
on SU(2) spin adapted implementations of DMRG run on
NVIDIA DGX-A100107 architectures,90,104,105 or multinode
multi-GPU architectures.106,108

In this work we report on recent progress using large-scale
multi-GPU hardware to substantially accelerate tensor network
simulations for quantum chemistry and materials science
applications. Benchmark calculations of our highly parallelized,
GPU-accelerated and SU(2)-aware implementation of the
DMRG algorithm on NVIDIA DGX-H100 GPU super-
computers have achieved sustained performance of ∼250
teraFLOPS (trillion floating-point calculations per second)
which represents an 80× speedup compared to a state-of-the-
art implementation on a traditional Central Processing Unit
(CPU) executed on a 128-core CPU architecture.

■ NUMERICAL PROCEDURE
In the following we will discuss performance benchmarks for
the DMRG method for quantum chemistry applications. The
DMRG algorithm is the oldest and most important tensor
network algorithm, and can be understood as a variational
method in the space of so-called matrix product state
(MPS)109 wave functions. In the quantum chemistry context,
an MPS is a parametrization of a many-body wave function in
terms of N spinful orbitals |in⟩ using N order-3 tensors A i

n n
n

1

of dimension (Dn−1, 4, Dn); i.e.,

| = [ ] [ ] [ ] |
{ } { }

A A A i i... ...MPS
i

i i
N

i
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k p

N
N

1
1

1 2
2

1

(1)

where the first and the last are order-2 tensors or matrices. The
DMRG algorithm can be used to construct a variational
approximation to the ground state of the quantum chemistry
Hamiltonian H over the space of MPS; i.e.,

= | |
||

E
H

minopt
MPS MPS

MPS MPSMPS (2)

The bond dimension D ≡ max({Dn}) controls the accuracy
of the approximation (larger D is better), with values of
D (10 )4 often mandatory to reach sufficient accuracy in

quantum chemistry applications. The computational complex-
ity and memory requirements of DMRG scale as D N( )3 4 and

D N( )2 2 , respectively. The DMRG algorithm performs an
iterative optimization (one MPS tensor update at a time) of
the wave function, where each update is obtained by solving a
large hermitian eigenvalue problem using, e.g., the Lanczos or
Davidson method. This step usually accounts for 80% of the
execution time, and scales as D( )3 . One sequence of updates
of all tensors is called a DMRG sweep. For more details on the
DMRG and tensor networks in general, we refer the reader to
the existing literature.54,57,59,62,110−114

■ PERFORMANCE ASSESSMENT
In the following we present performance benchmarks of
DMRG-CAS(M, N) of M electrons in N active orbitals on
DGX-H100115 for a series of increasingly complex molecular
systems, namely F2 [CAS(18, 18)],83 N2 [CAS(14, 28)],116 the
Iron-Molybdenium cofactor [FeMoco, CAS(54, 54)117 and
CAS(113, 76),118 and the activated heme group of cytochrome
P450 [CAS(63, 58).65 Here, we solely rely on implementations
previously introduced in refs104,105 All bond dimensions D are
reported as SU(2) multiplets, with the corresponding U(1)
bond dimensions indicated separately where applicable.

In Figure 1 we show the performance results of our DMRG
implementation on the above-mentioned systems, and for
increasing values of SU(2) bond dimension D. For all

Figure 1. Benchmark results obtained via the SU(2) spin-adapted
single node hybrid CPU plus multi-GPU DMRG calculations for the
F2 molecule on a CAS(18,18) orbital space,83 the N2 molecule on a
CAS(14,28) space,116 FeMoco on CAS(54,54)117 and CAS-
(113,76)118 spaces, and P450 on CAS(63,58).65 The solid lines
correspond to calculations performed on a DGX-H100 system. As a
reference, the dotted lines trace the results obtained on a DGX-A100
system. The estimated FP64 theoretical upper bound for DGX-A100
is shown by the horizontal dashed line, while the same but also
including specialized tensor core units (TCUs) by the horizontal
dashed−dotted line. Numbers indicate the corresponding U(1) bond
dimension values, which are the same for both the dotted and the
solid lines.
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simulations we observe an initial linear increase in performance
with increasing D and a problem-dependent saturation value.
For the smallest systems [CAS(18,18)], the performance
saturates at ∼180 teraFLOPS. For the largest systems
[CAS(54,54) and CAS(63, 58)] we achieve sustained
performance of ∼250 teraFLOPS and expect to reach the
performance plateau between D ≈ 8000−10000. Beyond these
bond dimensions, host-device data communication119 starts to
become the dominating factor due to memory limitations on
the DGX-H100 and causes a performance breakdown for these
large CAS DMRG simulations. However, we expect that MPI-
based approaches106,108 and advanced hardware (such as
GH200120 or AMD MI300121 superchips) will mitigate this
problem and allow us to scale simulations well into and
eventually surpassing this regime. Indeed, for GH200 and
MI300 hardware, the CPU and GPU have direct shared-
memory access across the node, largely eliminating the host-
device communication bottleneck. For a more detailed
discussion on the nature of the CAS-size dependence of the
performance plateau values, we refer the reader to ref.104

In summary, we observe an almost ideal 2.5× increase in
performance compared to DGX-A100 (dashed lines in Figure
1) and an 80× increase compared to other state-of-the-art
OpenMP parallelized implementations of quantum-chemistry
DMRG calculations on 128 CPU cores.104 Two key hardware
features that allow us to achieve such performance gains are
the massive compute throughput and high memory bandwidth
on DGX-H100, as well as the availability of efficient
implementations of core linear algebra subroutines in NVIDIA
math libraries (CUBLAS).

In Figure 2 we show the total wall time spent in the
Davidson diagonalization (including host-device communica-
tion) over seven DMRG sweeps as a function of bond
dimension D for the systems considered above. Consistent

with Figure 1, we observe a linear increase in the wall time for
bond dimensions below the performance plateau, and the
expected D3 scaling once we reach the performance plateau.

Due to the high performance of the latest generations of
GPUs and the high degree of parallelization of our DMRG
implementation, the wall time for the diagonalization step is
reduced to a point where it is no longer the limiting operation,
and instead data transfer operations between CPU memory
and storage media become the bottleneck. We utilize data
compression techniques and asynchronous data transfer
approaches to partially mitigate this problem, at the cost of
increasing memory requirements by ∼30%. For multinode
systems, distributed data approaches99,103,106,108 can be used to
mitigate similar data transfer bottlenecks. For further details on
how the different DMRG components contribute to the total
wall time in a given iteration step we guide readers to ref,90

where a more precise performance analysis of the Davidson
diagonalization method is also presented.

■ SPIN STATES OF CYTOCHROME P450 HEME
GROUP

In the following we present DMRG-CAS results for the low-
lying spin states of the heme-group of the Cytochrome P450
(3A4 isoform) enzyme in its active state (Cpd I).65

Cytochromes are heme-containing enzymes primarily respon-
sible for detoxification of organisms,65,122,123 where the heme-
group, an iron porphyrin system, is responsible for catalyzing
chemical reactions with substrates of the enzyme. Iron
porphyrin structures appear as key building blocks in various
enzymes. In the active state of P450 (3A4), the iron-porphyrin
ring has an oxygen and cysteine bound to the central Fe atom
above and below the iron-coordinating plane. Their low-lying
energy spectrum features three nearly degenerate states with
spin s = 1/2, 3/2 ,and 5/2, whose relative energies depend on
the geometry and the local chemical environment of the heme
group. A full understanding of the electronic structure of this
system remains an open problem.66−73,124 The multireference
character and the near-degeneracy of the doublet (s = 1/2) and
quartet (s = 3/2) states66 pose significant challenges for
existing computational approaches, with large active spaces
being crucial for obtaining qualitatively and quantitatively
accurate results.66,71 Here, we revisit the problem of computing
the DMRG energies of the s = 1/2, 3/2, and 5/2 states for the
active spaces defined in,65 and extend them to the CAS(63, 58)
space. To the best of our knowledge, this is the largest DMRG-
CAS calculation reported to date for this compound. Our
primary aim is to demonstrate the ability of our SU(2)
symmetric, GPU-accelerated DMRG implementation to
perform high accuracy calculations on very large active spaces
with large bond dimension within a significantly reduced
runtime on DGX-H100 machines.

In Figure 3 we present the 1/D scaling analysis of the
calculated energies using 13 DMRG sweeps for the lowest
lying eigenstates with total spin 1/2 (left panel), 3/2 (middle
panel), and 5/2 (right panel) used to obtain the truncation free
extrapolated D → ∞ limit54 for the different CAS spaces (solid
lines are second order polynomial fits). The extrapolated
energies for the spin 1/2−3/2 and 1/2−5/2 gaps are shown
for increasing CAS space sizes in Figure 4. We observe a
degeneracy on the order of 0.1 mHartree for the doublet and
quartet states, which lies within the established accuracy of the
largest measured DMRG truncation error (order 10−2

mHartree for D ≤ 4096). The spin 1/2−5/2 gap (right

Figure 2. Total diagonalization time of seven DMRG sweeps for the
eight GPU accelerated diagonalization procedure measured in
minutes including host-device IO overhead for the F2 CAS(18,18),
N2 CAS(14,28), FeMoco CAS(54,54), and CAS(113,76) as a
function of DMRG bond dimension on A100 (solid dot symbol,
●) and on H100 (open symbol, ○) architectures. The solid lines are
results of first-order polynomial fits on selected data sets
corresponding to measured performance up to saturation of GPU
performance (black) and for a region where performance is saturated
(red). The fitted exponents for the H100 calculations are 1.05 ± 0.1
and 2.95 ± 0.2, respectively.
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panel of Figure 4) remains positive and the spin 5/2 state lies
above both the spin 1/2 and spin 3/2 states. To provide
further insights regarding convergence and computational
complexity, the change between the energies of the last two
DMRG sweeps was less than 10−5 and for D = 4k the
corresponding DU(1) bond dimension was found to be 15.6k,
22.3k, and 29.1k, for the 1/2, 3/2, and 5/2 states, respectively.
Therefore, in our calculations the largest U(1) bond dimension
was twice as large compared to the one used in ref 106, albeit
at a significantly reduced runtime and memory costs.

However, in order to resolve the spin gaps at a high level of
accuracy (or even capture the qualitative behavior) it is
imperative to extend the calculations to larger active spaces
while including dynamical correlation effects (e.g., via
NEVPT2, the tailored coupled cluster (TCC)125 or the
restricted active space DMRG-RAS-X126,127 methods).
Namely, the resolution of the spin gaps is highly dependent
upon a balanced treatment of static and dynamic correlation
effects for all three spin states. We have also performed
DMRG-CASSCF128 calculations on this system, using smaller
active spaces, which yield substantially lower energies

compared to calculations with fixed nonoptimized orbitals.
This is part of currently ongoing research and will be published
in the near future.

We emphasize again that the high performance of our
DMRG implementation, in particular observed already at small
bond dimensions, yields substantial accelerations by almost 2
orders of magnitude, allowing calculations for CAS sizes far
beyond the current computational limits already feasible on
single-node GPU accelerators. We expect future advances
enabling DMRG calculations based on CAS spaces well
beyond CAS(100,100) will soon be possible on multinode,
multi-GPU hardware architectures.106,108

■ CONCLUSIONS AND OUTLOOK
In this work we report state-of-the-art performance results
obtained on a single node NVIDIA DGX-H100 architecture
via the spin adapted ab initio density matrix renormalization
group method. We observe a 2.5× speedup compared to a
DGX-A100 node or equivalently an 80× speedup compared to
an OpenMP parallelized 128 core CPU implementation. These
performance improvements reduce run times of typical DMRG
calculations for quantum chemistry applications from many
days to a few hours, making it possible to potentially apply
DMRG routinely in scientific and industrial applications. We
expect that with the development of even more advanced
classical hardware in the near future, and their extension to
shared-memory, multinode multi-GPU architectures, tensor
network calculations well beyond CAS(100,100) to be
achievable within hours. Such large CAS calculations may
help elucidate the electronic mechanisms behind some of the
most elusive chemical systems, such as multireference
transition metal systems, catalysts, or metalloenzymes. We
want to emphasize that a truly quantitatively correct
description of such challenging problems requires a careful
selection of the orbital active space and a balanced treatment of
static and dynamic correlation effects. Chemists today largely
rely on their intuition to find appropriate active spaces, and the
question of finding the right one for a given system is a
currently unsolved problem.129−131 The ability to quickly
iterate on different choices of large active spaces enables a
more systematic search for an appropriate active space
description. Combined with the ability to perform CASSCF
calculations on larger active spaces in similarly short times, and
robust approaches for CAS selection,129−131 represents a
significant step forward toward solving the CAS selection
problem and obtaining quantitatively and qualitatively
unambiguous results for strongly correlated systems.

Tensor network algorithms like DMRG,132 projected
entangled pair states (PEPS),85 or the multiscale entanglement
renormalization ansatz (MERA)84 occupy a space at the
intersection of classical and quantum computing, and are
considered to be among the most powerful classical methods
to treat strongly correlated and weakly entangled quantum
systems. They play a key role in the quest for achieving
quantum advantage, both for providing the best known
classical answers to reference for many challenging prob-
lems65,133−138 and as fundamental tools for building and
testing quantum algorithms,139,140 simulating and under-
standing the real-time behavior of quantum hardware,141−144

and performing error correction.145 GPU accelerated tensor
network algorithms can be expected to have significant impact
in these areas in the years to come, and we expect our results
to further boost community efforts aimed at the stand-

Figure 3. Scaling of the energy for spin states with total spin 1/2 (left
panel), 3/2 (middle panel), and 5/2 (right panel) as a function of the
inverse DMRG SU(2) bond dimension for the Cytochrome P450
enzyme for the model spaces of CAS(17,15), CAS(25,23), CAS-
(33,31), CAS(45,41), CAS(47,43), and CAS(63,58) introduced in ref
65, shown by dark blue, red, orange, purple, green, and light blue
colors, respectively. Solid lines are the result of second-order
polynomial fits.

Figure 4. Extrapolated (D → ∞) spin gap (mHartree) between the
spin 1/2 ground and spin 3/2 excited states (left panel) and between
the spin 1/2 ground and spin 5/2 excited states (right panel) as a
function of model CAS spaces with increasing complexity, i.e., with
increasing number of orbitals and number of electrons (data from ref
65).
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ardization and adoption of large-scale, GPU accelerated tensor
contraction methods and libraries.146
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Research Group, Wigner Research Centre for Physics, H-1525
Budapest, Hungary; Eötvös Loránd University, 1117
Budapest, Hungary

Maarten van Damme − SandboxAQ, Palo Alto, California
94301, United States

Alan Rask − SandboxAQ, Palo Alto, California 94301, United
States

Lee Huntington − SandboxAQ, Palo Alto, California 94301,
United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.4c00903

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work has been supported by the Hungarian National
Research, Development and Innovation Office (NKFIH)
through Grant Nos. K134983 and TKP2021-NVA-04, by the
Quantum Information National Laboratory of Hungary. Ö.L.
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(104) Menczer, A.; Legeza, Ö. Massively Parallel Tensor Network

State Algorithms on Hybrid CPU-GPU Based Architectures. arXiv
Prepint (Quantum Physics), 2023. arXiv:2305.05581. https://arxiv.
org/abs/2305.05581.
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