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Abstract. A cosmological Model of viscous modified Chaplygin gas in classical and loop 
quantum cosmology (LQC) is proposed and a dynamical stability study is investigated. It is 
shown that the model is consistent with the recent observational data and gives good 
predictions for the deceleration and state parameters. The model can also predict the time 
crossing and gives a solution to the coincidence problem. Furthermore, in LQC background, 
the big bang singularity found in classical cosmology cease to exist and is replaced by a 
bounce when the Hubble parameter vanishes at the LQC critical energy density. 

1.  Introduction 
Recently, Type Ia Supernovae observational data[1−3] with cosmic microwave background 
anisotropies [4−6] and large galaxy surveys [7,8] have shown that the universe is undergoing an 
accelerated expansion phase. The existence of an exotic kind of energy, called dark energy, with 
negative pressure that drives the universe to expand was proposed. The mysterious force or energy 
leading to the accelerated expansion was attributed to:  
a) a vacuum energy  
b) a theory of a modified Newtonian dynamic (MOND) that can solve the problem of the velocity   
anomalies without the need of a concept of dark matter or dark energy , 
c) f(R) theory  
d) signature of extra-dimensions  
e) exotic kind of energy called dark energy with negative pressure that drives the universe to expand  
and is modeled by several candidates: The cosmological constant where the dark energy is a perfect  
fluid and a dynamical dark energy with a Chaplygin gas models (CG) namely,  
i) the ordinary CG which has as an equation of a state (EoS)  ݌ =   and it turns out that it does ߩ/ܤ−
not fit with the observational data,  
ii) the generalized CG with an EoS  ݌ =   ఈ suffering from perturbative instabilitiesߩ/ܤ−
iii)the modified CG denoted by MCG which is considered as one of the successful dark energy  
candidate model with an EoS of the form   ݌ = ߩܣ −   are real constant ߙ and ܤ ,ܣ ఈ  whereߩ/ܤ
parameters. It is a combined model that unifies both dark energy and dark matter and gives a  
suitable negative pressure that drives the acceleration of the universe. The MCG EoS parameters   
were constrained using different observational data. [10−12] and it is preferred because of its small  
minimum chi square(߯2) value[9].  
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      The goal of this paper is to make a dynamical study of  VMCG and confrontations with recent 
observational data. In setion2, we give a brief review on the viscous modified Chaplygin gas (VMCG) 
model and solve analytically the conservation equation, check the behavior of the solutions at early , 
present and late time dominated universe. In section3, we show how the model is constrained using the 
߯2 method and recent observational data with the help of  Mathematica to calculate the best fit values 
of EoS parameters and draw the contour plots of some confidence levels. We derive the cosmological 
parameters taking into account these best fit values. The behavior of the model is then probed at small 
and present scale using the time evolution of cosmological parameters. In section4, and in the loop 
quantum cosmology ( LQC) framework, a dynamical analysis of our VMCG is conducted. Finally, in 
section5, we draw our conclusions 

2.  Classical VMCG model 
The VMCG is a generalization of the modified Chaplygin gas model  with an EoS of the form [13] 

௘௙௙݌                                                 = ெ஼ீߩܣ −
஻

ఘಾ಴ಸ
ഀ − ெ஼ீߩܪ଴ߦ3

ଵ/ଶ                                                      (1) 

where ߩெ஼ீ is the energy density of MCG, ܣ and ܤ are constants, ߙ is a positive constant, ߦ଴ a 
positive bulk viscosity coefficient, and ܪ = ܽ̇/ܽ is the Hubble expansion parameter. The dot stands 
for the cosmic time derivative. This model was investigated in Ref. [14] and it assumes  that the 
expansion process is a collection of states out of thermal equilibrium that gives rise to a bulk viscosity. 
The interest in the VMCG comes from the fact that: First of all, MCG was preferred among other 
models according to its concordance with the observational data and because of its negative pressure 
that derives the universe acceleration at late time as well as its effective coupling which unifies  dark 
energy and dark  matter fluids. Second, the universe is filled with imperfect fluid (Bulk viscosity). In 
what follows, we consider a flat space Friedmann–Robertson–Walker (FRW) universe filled with 
VMCG, the conservation equation and the Friedmann equation are given by 

ெ஼ீߩ̇                                             + ெ஼ீߩ)3+ + (௘௙௙݌ = ଶܪ     ,   0 = ఘಾ಴ಸ
ଷ

                                       (2)  

Using Eqs. (1)–(2) we obtain the energy density in terms of the scale factor ܽ that is: 

ெ஼ீߩ                                                 = ቀ ௄
௔య(ഀశభ)(భశಲష√య഍బ) + ஻

ଵା஺ି√ଷకబ
ቁ

భ
భశഀ                                             (3) 

where ܭ is an integration constant. As the energy density varies with its parameters, we use the 
bifurcation theorem in studying the behavior of the solution of the VMCG conservation equation 
knowing that the dynamics of Eq. (2) depends on its equilibrium and stability. In fact, the equilibrium 
point reads: 

௘௤(ெ஼ீ)ߩ                                                          = ቀ ஻
ଵା஺ି√ଷకబ

ቁ
భ

భశഀ                                                            (4) 

This result indicates that at large scale  (ܽ ⟶ ∞), the energy density is only stable if ߙ > −1,  
1 + ܣ − ଴ߦ3√ > 0  and ܤ > 0 corresponding to a dark energy dominated universe. The effective state, 
deceleration and adiabatic sound speed parameters have as expressions (in terms of the redshift): 

߱௘௙௙	 = ܣ − ஻
ఘಾ಴ಸ
ഀశభ − ெ஼ீߩ(ݖ)ܪ଴ߦ3

ିଵ/ଶ ,  (ݖ)ݍ = −1 + ଵ
ଶ
ቀ3 +

ఘಾ಴ಸఠ೐೑೑	

ு(௭)మ
ቁ 

and 

                            ܿଶ = ܣ + ߙ ஻
ఘಾ಴ಸ
ഀశభ −

ଵ
ଶ
଴ߦ

ఘಾ಴ಸ
భ/మ

ு(௭)
− ଷ

ଶ
ெ஼ீߩ(ݖ)ܪ଴ߦ

ିଵ/ଶ                                                         (5) 

The conservation equation in Eq. (2) can be rewritten as 
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(1 + (ݖ ௗஐಾ಴ಸ(௭)
ௗ௭

= 3 ቊ(1 + (ݖ)Ωெ஼ீ(ܣ ᇱΩெ஼ீିఈܤ− − ଴Ωெ஼ீߦ	3√
భ
మ 1)](ݖ) + ଷΩ଴ெ(ݖ + Ωெ஼ீ(ݖ)]ଵ/ଶቋ             

(6) 
with 
                                                           Ωெ஼ீ(ݖ) = ఘಾ಴ಸ	

ଷுబమ
                                                                         (7) 

 
where Ω଴ெ is the present value of the baryonic matter density, ݖ is the redshift  parameter, ܪ଴ is the 
present Hubble parameter and  ܤ′ = ஻

(ଷுబమ)ഀశభ
 . The Hubble parameter (ݖ)ܪ has as an expression in 

terms of the redshift parameter  : 

(ݖ)ܪ                                        = [(1	଴ܪ + ଷΩ଴ெ(ݖ + Ωெ஼ீ(ݖ)]ଵ/ଶ                                                     (8) 

3. Constrainig VMCG and best fit values of the EoS and Cosmological parameters 
We constrain the EoS parameters  (H଴, A, B, α, ξ଴) of the VMCG model using the Supernovae Type Ia 
observational data that consists of 580 data points and belong to Union 2.1 (2012) data. The best fit 
values of the parameters are obtained by the minimization of the χଶ function of the distance modulus  
 To reduce the number of the free parameters of the model, we marginalize assuming a constant. ߤ
prior over ܪ଴ by constructing a probability density function for the parameters. As the number of the 
free parameters is still large, we first fix the viscous coefficient that is assumed to be positive, and then 
we constrain the EoS parameters (ߙ ,ܤ ,ܣ). We find that only small values of ߦ଴ corresponding to 
ω ≈	−1	are consistent with the observational data. The best fit values of the EoS parameters are listed 
inTable1,where ܤ and ߙ have approximately the same values for different choices of ߦ଴. The contour 
plots of the confidence levels 68.27%, 90% and 95.45% for both ܣ and ܤ are shown in fig.1.  

Table 1. . Summary of the best estimates of the EoS parameters for the VMCG and their 1ߪ error 
using Union 2.1 SNe Ia data,and ݀.݋.݂ denotes the degrees of freedom. 

EoS parameter ߦ଴ ߙ A B χଶ χଶ/݀.  ݂.݋
Best 0.01 0.551ି଴.ଶଵ଼

ା଴.ଶ଼ଷ −0.167ି଴.ଵଽଵ
ା଴.ଵ଻ହ 0.543ି଴.ଶଷଶ

ା଴.ଶଵସ 562.191 0.974 
Fit 0.02 0.548ି଴.ଶଵଽ

ା଴.ଶ଼ହ −0.149ି଴.ଵ଼଼
ା଴.ଵ଼ଶ 0.543ି଴.ଶଷଶ

ା଴.ଶଵହ 562.191 0.974 
Values 0.0001 0.549ି଴.ଶଵ଼

ା଴.ଶ଼ଷ −0.186ି଴.ଵଽଽ
ା଴.ଵ଺଼ 0.543ି଴.ଶଷଶ

ା଴.ଶଵସ 562.191 0.974 

 

 
Figure 1.Contour plot of 68.27% CL (black), 90% CL (dashed) and 95.45% CL (gray) regions for 
VMCG parameters ܣ and ܤ’ when (a) ߦ଴ = 	0.01, (b) ߦ଴ = 	0.02	 and (c) ߦ଴ = 0.0001  

In fig. 2, the sound speed is plotted in terms of the redshift parameter ݖ using the best fit data listed in 
Table1. In the early universe, the sound speed has negative values introducing a fast exponential 
growth of instabilities that can be explained by the fact that VMCG is an effective coupled dark 
energy/dark matter fluid and in such models instabilities can occur when the coupling strength is 
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strong enough compared with the gravitational one.[15]. Moreover, when the coupling becomes 
moderate in the transition from a matter to a dark energy dominated universe, the sound speed ܿ2 
changes the sign to take positive values and the perturbations grow much slower until the universe is 
dominated by dark energy. At large scale, the sound speed takes a positive value near zero leading to 
stable oscillating perturbations and structure predictions consistent with observations. Fig.3 shows 
respectively the variation of the effective state parameter ߱௘௙௙	 and the deceleration parameter ݍ with 
respect to the redshift ݖ at the best fit values of Table1. It is obvious that the current value of ߱௘௙௙	 

 
Figure 2. The sound speed ܿ2as a function of the redshiftݖ at best fit values of Table 1 for ߦ଴ = 	0.01 
(gray line),	ߦ଴= 0.02 (solid black line) and ߦ଴ = 0.0001 (dashed line). 

varies between −0.76 and −0.74 for different values of ߦ଴ admitting an accelerated universe. At matter 
dominated era, ߱௘௙௙	takes values in the range ߱௘௙௙	 > 	 −1/3	allowing a deceleration phase. When the 
deceleration parameter crosses the zero to negative values, ߱௘௙௙	 takes values less than −0.33 and the 
VMCG behaves like quintessence scalar field. Notice that, for all best values of Table 1, the current 
deceleration parameter varies between −0.60 and −0.57, which is consistent with ݍ଴ ∈ [−0.7,−0.4] 

 
Figure 3. The evolution of the effective state parameter ߱௘௙௙	 and deceleration parameter ݍ at best fit 
values of Table 1 for ߦ଴ = 0.01 (gray line),	ߦ଴ = 	0.02 (solid black line) and ߦ଴ = 0.0001  (dashed 
line). 
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Figure 4. The evolution of the curvature scalar at best fit values of Table 1 for 0.01 =0ߦ (gray line), 
 .(dashed line) 0.0001 =0ߦ and (solid black line) 0.02 =0ߦ

given by the standard Λܯܦܥ cosmology. Moreover, a transition from a decelerated < ݍ < 1/2 to an 
accelerated  ݍ < 0   universe is realized when ݍ crosses the zero, and thus the universe passes from 
matter to dark-energy-dominated universe where ߩ஽ா ≈  .௠௔௧௧௘௥  and undergoes an accelerated phaseߩ
The crossing happened at approximately z= 0.75 for both ߦ଴ = 	0.01 and ߦ଴ = 	0.0001 and at 0.65 = ݖ 
for ߦ଴ = 	0.02. To probe the behavior of the model in the early universe, where ܽ → 0, we calculate 
the scalar curvature ܴ in a flat universe, and get: 

                                              ܴ = ଶ(ݖ)ܪ − ெ஼ீ݌ + ெ஼ீߩ(ݖ)ܪ଴ߦ3
ଵ/ଶ                                                        (9) 

In Fig. 4, the scalar curvature evolution is plotted in terms of the redshift parameter ݖ at the best values 
of Table 1. As t → 0 , ܴ → ∞ which indicates the presence of a Big Bang singularity 

4.VMCG in LQG  
we study the VMCG dynamical  behavior when coupled to the baryonic matter in the framework of 
loop quantum cosmology (LQC), [16−19]. The latter is a non perturbative and background-
independent type of quantization of gravity [20,21] used to probe some cosmological problems. In 
addition to predicting an inflationary phase of the early universe[22−25]and late time cosmic 
acceleration,[26]. LQC is proved to be very successful in avoiding Big Bang and Big Rip 
singularities[27] and the semi-classical approximation in LQC formalism can be validly used at late 
time and at large scale[28]. The modified Friedman equation reads:  

ଶܪ                                                                = ఘ
ଷ
ቀ1− ఘ

ఘ೎
ቁ                                                                    (10) 

where ߩ is the total energy density, ߩ௖ = √ଷ
ଵ଺గమఊయீమ௛

 is the critical density in LQC and ߛ is the 
dimensionless Barbero–Immirzi parameter. It is worth to mention that the quantum correction is 
negligible when ߩ ≫ ߩc ∼ ܲߩ  (݈ܲߩ is the energy density at the Planck scale), but it dominates the 
dynamics when ߩ ∽ ߩc. In what follows, we assume a universe filled with VMCG and baryonic matter. 
To make the dynamical analysis, we introduce the following dimensionless variables: 

 c                                                                                     (11)ߩ/ߩ= ݖ     ,2ܪMCG/3݌= ݕ   ,2ܪMCG/3ߩ= ݔ                                             

where the phase space is bounded by 0 ≤ 1 ≥ ݖ ≥ 0 ,1 ≥ ݔ and a negative ݕ (a negative pressure is 
needed to generate an accelerated expansion). The modified Friedman equation and the effective state 
parameter can be expressed in terms of the dimensionless variables as 

x′	 = 	3[x(1 − 2z) − 1](y	 − √3ξ଴xଵ/ଶ) 	− 	3x ቀ
z

1− z
ቁ 

y’ = −3[A(α	 + 	1)x	 − 	αy]		– 3[A(1 + α) − 	y(1 − 2z	 + αx)]	(y	 − √3ξ଴x
ଵ
ଶ) + 	3y ൬1	 −

2z
1− z

൰ 

                                                   z’	 = 	 −	3z	 − 	3(1	 − 	z)(y	 − √3ξ଴xଵ/ଶ)                                              (12) 

 
where the prime denotes the derivative with respect to the e-folding number ܰ = ln ܽ. Notice that this 
autonomous system does not depend on the EoS parameter ܤ, and its critical points (ݔc, ݕc, ݖc) are 
found numerically at the best values of Table 1. Their properties are determined by the sign and nature 
of the eigenvalues ߣ௜ , ݅ = 1,3തതതത of the Jacobian matrix . When we fix the values of both 0ߦ and ܣ, the 
critical points are the same and  independent of the choice of ߙ as listed in Table 2. For (0.01 =0ߦ, 
 the only physical and stable critical points (0.548= ߙ ,0.149− = ܣ ,0.02 =0ߦ) and (0.551 = ߙ ,0.167−=ܣ
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Table 2. . The eigenvalues  of the Jacobian matrix around critical points ܲ݅ for the autonomous   
                   system Eq. (33).. 

 Critical points Eigenvalues ߱௘௙௙	 

଴ߦ = 0.01, A=-167 
ଵܲ(1,−0.98,0) 
ଶܲ(1,−0.167,0) 

  (0.008-,(ߙ	+1)2.43-,2,99-)
 (2.44-,(ߙ	+1)2.44-,0,55-)

-1\ 
-0.184 

଴ߦ = 0.02, A=-149 
ଵܲ(1,−0.96,0) 
ଶܲ(1,−0.149,0) 

  (0.016-,(ߙ	+1)2.36-,2,98-)
 (2.44-,(ߙ	+1)2.5-,0,55-)

-1 
-0.184 

଴ߦ = 0.01, A1 

ଵܲ(1,−0.98,0) 
ଶܲ(1,0.0003,0) 

ଷܲ(1,1,0) 

  (0.008-,(ߙ	+1)5.93-,2,99-)
  (1.5-,(ߙ	+1)3-,3-)

 (5.94--,(ߙ	+1)2,49,5,94-)

-1 
0 

0.99 

 
ܲ1 with negative eigenvalues describing an accelerated VMCG-dominated universe with ߱eff ≈ −1 
exactly as predicted in the classical case. Moreover, the values of the critical points corresponding to 
an accelerated-VMCG-dominated universe change only with 0ߦ.   
 

 
Figure 5. The evolution of the total energy density ߩ with time. Parameters are set at the best fit 
values of Table 1for 0.01 =0ߦ with ߩc = 10. 
 
However, those describing a decelerated matter-dominated universe and a decelerated VMCG 
dominated universe depend on both (ܣ ,0ߦ). For (1 = ܣ ,0.01 = 0ߦ) the critical points are ܲ1(1, −0.98, 
0)a stable critical point because it has negative eigenvalues as ߙ is a positive constant and it 
corresponds to an accelerated-VMCG-dominated universe and ܲ2(0.0003, 0.0003, 0) and ܲ3(1, 1, 0) 
unstable saddle points due to the opposite signs of their eigenvalues corresponding respectively to a 
decelerated matter-dominated universe and a decelerated-VMCG dominated universe. 

 
Figure 6. The evolution of the Hubble parameter ܪ with time. Parameters are set at the best fit values 
of Table 1for 0.01 =0ߦ with ߩc = 10 and 0ߩMCG + 0ߩM = 10. 
 
From fig. 6 the universe undergoes an accelerated expansion till a final de Sitter universe. In classical 
cosmology, the model suffers from Big Bang singularity. This problem does not occur in the loop 
quantum cosmology scenario. From Fig. (5) and (6),when ߩtot ≈12ߩc, the Hubble parameter takes a 
maximum value and when ߩtot takes its maximum valueߩc, the Hubble parameter vanishes, thus the 
universe undergoes a contraction then enters the bounce. 
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5.Main results and conclusions 
We have considered a model of VMCG where we have shown that the observational data of Union 2.1 
constrain the viscous coefficient 0ߦ to values much smaller than one, otherwise the perturbation 
instabilities at the present time will grow exponentially leading to a non-consistent model. In fact, with 
small values of 0ߦ, the model is found to be suitable to describe the current universe and gives good 
predictions at the present time for both state and deceleration parameters ߱0eff =∈ (−0.76, −0.74) and 
q0 =∈ (−0.60, −0.57). It is worth to mention that the obtained value of the state parameter is in 
agreement with (0.13−)(0.17+)0.53− = 0ݍat(68% C.L.; SN Ia+SALT2 fitter+ BAO/CMB) given by 
Ref. [29]and (0.07−)(0.05+)0.54− = 0ݍat (68% C.L.; SNIa+BAO/CMB+H(z)+uniform prior with ݂ݍ = 
−1)given by Ref. [30]. The present value of the effective state parameter of VMCG is also consistent 
with ߱0 = −1.04(+0.72)(−0.69)at (95% C.L.; Planck+WP+BAO) for a dynamical state parameter 
estimated in Ref. [31]and ߱0 = −0.91(+0.16)(−0.20)(SNLS3 team) of Refs. [32-33] The perturbation 
instabilities, at the matter-dominated era are dropped down in present and late time as the coupling 
between dark energy and dark matter is decreasing. At large scale, the VMCG has no future 
singularities and its equation of state is nearly equivalent to the cosmological constant  with ߱eff = −1, 
while the sound speed parameter takes a constant value different from zero as a difference between a 
dynamical fluid model and an inert cosmological constant model. Thus, the VMCG discussed here 
reproduces the main results of the standard model without assuming a priori the existence of a 
cosmological constant[13]. Moreover,   the problems related to fine-tuning and coincidence problem 
are solved and the value of the redshift where (ߩDE ≈ ߩmatter) for both 0.01 =0ߦ and 0.0001 =0ߦ is 
z	 ≈ 	0.75. This value is in agreement with (0.07−)(0.13+)0.64 =ݐݖgiven by Ref. [29] for models with 
the final de Sitter phase, 0.03 ± 0.71 =ݐ of the Λܯܦܥ model of Ref. [11], 0.05± 0.74= ݐݖ given by Ref. 
[34] and ݐݖ at (more than 68% C.L.;SN Ia + BAO/CMB(WMAP9)+H(z)+uniform prior with 1− = ݂ݍ) 
of Ref. [30]. At LQC background and at small scale the Big Bang singularity problem is solved and 
replaced by a bounce. At a large scale the stability of the model does not depend on the EoS parameter 
 0ߦ and VMCG solutions depend only on ܤ
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