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Abstract. Quantum computing is aimed to solve tasks, which are believed to be exponentially
hard to existing computational devices and tools. A prominent example of such classically
hard problems is simulating complex quantum many-body systems, in particular, for quantum
chemistry. However, solving realistic quantum chemistry problems with quantum computers
encounters various difficulties, which are related, first, to limited computational capabilities
of existing quantum devices and, second, to the efficiency of algorithmic approaches. In the
present work, we address the algorithmic side of quantum chemistry applications by introducing
a Python 3 code library, whose primary objective is to speed up the development of variational
quantum algorithms for electronic structure problems. We describe the various features and
capabilities of this library, including its ease in constructing customized versions of variational
quantum algorithms. We elucidate how the developed library allows one to design quantum
circuits and enable for the efficient execution of quantum algorithms. Furthermore, the library
facilitates the integration of classical and quantum algorithms for hybrid computations and
helps to realize the cross-verification of data with traditional computational methods, thereby
enhancing the overall reliability of quantum chemistry simulations.

1. Background
One of the motivations to build a quantum computer is the idea of solving complex

quantum problems, which are considered to be hard for existing classical computing approaches.
In particular, utilizing computational tools to predict the mechanisms and energetics of
chemical reactions is of significant interest for both research and industrial applications [1, 2].
Quantum chemistry, among these tools, is especially valuable for predicting material properties
because it predominantly relies upon quantum mechanics principles rather than empirical data.
This ensures high precision in quantum chemical simulations but can also demand extensive
computational resources [3]. Despite significant progress made in classical computing techniques
in recent decades [4, 5], there are still limits that cannot be overcome in classical computations.
The high complexity of high-precision ab initio methods of quantum chemistry makes them
impractical for addressing industrially relevant problems. At the same time, the widely utilized
density functional theory (DFT) often fails in accurately predicting chemical reactions involving
transition metals, crucial components in catalytic processes [6]. Therefore, the development of
new scalable, high-precision methods in computational chemistry continues to pose a significant
challenge.

A promising approach lies in the use of quantum computers to simulate chemical systems.
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The substantial entanglement observed in molecular wavefunctions suggests that quantum
chemical simulations could benefit from such quantum computational capacities, although there
is no proven quantum advantage yet [7]. However, the capabilities of the currently available
generation of quantum processors are not yet enough to solve such problems at the relevant
scale. First of all, in order to make them more powerful not only the number of qubits should be
increased, but also the quality of quantum operations is needed to be improved. In addition to
that, an important task is to design resource-efficient quantum algorithms. Quantum chemistry
algorithms based on the use of quantum computing can be divided into two large classes: (i)
methods for fault-tolerant quantum computers and (ii) approaches for noisy intermediate-scale
quantum (NISQ) devices [8]. Algorithms for NISQ devices take into account the limitations of
the existing quantum processors, so they require low circuit depths that allow executing within
the limited coherence time of the device.

In recent years, variational quantum algorithms (VQAs) [9, 10] have received a significant
attention due to their flexibility and potential applications with the NISQ devices [8]. Although
it remains uncertain whether quantum advantage can be generally achieved with VQAs [9], the
development and testing new, efficient strategies is crucial for identifying potential applications
of quantum computers. The variational principle [10], which states that the energy of the trial
wavefunction ϕ(θ) always provides an upper bound to the true ground state energy, is a key idea
of variational quantum computations:

⟨ϕ(θ)|H|ϕ(θ)⟩ = ⟨Ψgs|H|Ψgs⟩ ≥ Egs. (1)

Following the variational principle, one can find an approximate eigenstate of the system by
determining the optimal parameters of the trial wavefunction that minimize the energy. The
form of an efficient trial wavefunction depends on the problem at hand and is referred to as an
‘ansatz’. VQAs leverage quantum computers to prepare the ansatz as a parameterized quantum
circuit, this procedure can be denoted as U(θ)|0⟩. The energy (or more complex cost function) of
the ansatz is then measured, and the circuit parameters are updated using classical optimization
algorithms. This process of state preparation, measurement, and parameter updating is repeated
until convergence criteria are met. The flexibility of VQAs arises from the ability to select
different quantum circuits, cost functions, and optimization algorithms for the same problem.
Therefore, a user-friendly and straightforward tool is needed, one that enables researchers to
implement customized versions of VQAs, thereby accelerating the development process.

In the present work, we address the algorithmic side of quantum chemistry applications. We
introduce a Python 3 code library, whose primary objective is to speed up the development of
variational quantum algorithms for the resolution of electronic structure problems. We describe
the various features and capabilities of this library, including its ease in constructing customized
versions of variational quantum algorithms. We elucidate how it allows one to design quantum
circuits and enable efficient execution of quantum computations. Furthermore, the library
facilitates the integration of classical and quantum algorithms for hybrid computations and
helps to realize the cross-verification of data with traditional computational methods, thereby
enhancing the overall reliability of simulations.

2. Quantum chemistry problem statement
One of the key applications, in which quantum computers could make a significant impact

is in the realm of non-relativistic quantum chemical simulations, typically performed within the
Born-Oppenheimer approximation. This approximation assumes the separation of electronic and
nuclear motion due to mass difference of three orders of magnitude. As a result, the molecular
wavefunction is expressed as a product of the electronic wavefunction, which depends on the
nuclear coordinates R only parametrically, and the nuclear wavefunction [11, 12]:

|Ψ⟩ = |Φelec(r,R)⟩|χnuc(R)⟩. (2)
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The Schrödinger equation is thus split into the electronic (3) and nuclear (4) equations, the
latter requires the electronic potential calculated from the first equation:

Helec|Φelec(r,R)⟩ = Eelec|Φelec(r,R)⟩, (3)

(TN (R) + Eelec(R))|χnuc(R)⟩ = Etot|χnuc(R)⟩, (4)

Solving the electronic Schrödinger equation is the central problem in quantum chemistry and
it is then of the greatest interest in the context of quantum computing [13, 14]. In this paper,
we focus on the electronic structure problem (electronic equation).

It is important to bear in mind, however, that despite the efficiency and simplicity of the
Born-Oppenheimer approximation in simplifying quantum chemical calculations, it is not always
an accurate representation of molecular systems. This is especially true when studying chemical
reactions that involve transitions between electronic states, i.e., photochemical reactions,
electron or charge transfer [15].

3. Library
Our software is written in Python 3 and relies on its several libraries: NumPy for numerical

computations, PySCF for calculating molecular integrals, Qiskit Terra for quantum circuit
construction, and SciPy for classical optimization [16]. The current version of our software
is compatible with the AerSimulator from Qiskit and the default.qubit simulator provided by
PennyLane [17]. A key feature of our software is its ability to easily construct custom versions
of variational quantum algorithms. The main steps of this procedure are as follows [9, 18]:

• Construction of the problem Hamiltonian in the qubit representation. The
current version supports built-in construction of molecular Hamiltonians for the selected
active space in both second-quantized and qubit representations [19]. Alternatively, users
can manually define matrix, second-quantized, or qubit Hamiltonians.

• Construction of the ansatz. Users are able to employ built-in ansatzes (such as unitary
coupled cluster [20] and hardware-efficient ansatzes), or they can create a custom ansatz
(for more details, see Subsec. 3.3).

• Construction of the cost function. The cost function can be defined as a weighted sum
of the expected values of operators and overlaps [21, 22, 23].

• Construction of the classical optimizer. The current version supports only SciPy’s
built-in optimizer.

In the following sections, we describe the main building blocks of the library and demonstrate
common use cases.

3.1. Models
To automatically construct a problem qubit Hamiltonian, one can utilize the built-in models.

The current version of the library includes only a molecular model (represented by the Molecule
class), which can be used to calculate basic properties of molecular systems. In future versions,
we plan to expand the set of models to include the Fermi-Hubbard model.

The Molecule class obtains information about electronic one- and two-body integrals,
molecular symmetry, and molecular energies from the PySCF library [24]. Integrals are
computed with the selected atomic basis (the full list of available basis sets can be found in
the PySCF documentation [25]).

Now we describe the key features of the Molecule class:
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• Manual definition of frozen molecular orbital indices. Selecting active orbitals and
freezing the occupation number of other orbitals (2 for core orbitals, 0 for virtual) for
electron correlated methods is a widely use technique in quantum chemical simulation. This
technique allows one to reduce the computational cost of the simulation, which is especially
important for current quantum simulations. Our library includes the ability to manually
define the indices of the frozen molecular orbitals, giving researchers greater control over
the active space.

• Restricted and unrestricted Hartree-Fock (HF) orbitals. Molecular Hamiltonian
can be build with the restriction for the spatial component of corresponding α and β orbitals
to be the same (restricted is RHF) or without it (unrestricted is UHF).

• Reference energies from classical methods. To validate the accuracy of the quantum
algorithm it is common to compute energies with Hartree-Fock and electron correlated
methods [coupled cluster (CC) and configuration interaction (CI)]. Built-in launch of
PySCF’s HF, CCSD (singles doubles), CASCI (complete active space) computations for
both spin-restricted and unrestricted HF orbitals in Molecule provides a reference point.

• Two spin-orbital notations (qiskit style, openfermion style). There are two widely
used conventions for representing spin-orbitals in quantum chemistry simulations: (i) the
Qiskit convention (α spin-orbitals first, β spin-orbitals second: α...αβ...β) and (ii) the
OpenFermion convention (αβαβ...αβ).

Below we demonstrate some examples. Input parameters of a molecule are defined in config
file (file.yaml), which follows PySCF notation:

1 model: molecule

2 molecule_info:

3 geometry: [["Li", [0., 0., 0.]], ["H", [0., 0., 1.5]]]

4 basis_set: sto -3g

5 spin: 0

6 symmetry: True

7 abelian: True

8 charge: 0

9 method: rhf

10 frozen_orbs: [null , [0], [0, 5]]

Listing 1. Example of LiH molecule configuration in .yaml file format.

In the above example, abelian is an optional parameter that should be used together
with qubit tapering procedure to reduce the symmetry of the molecule to abelian subgroup.
Parameter frozen orbs determines the indices of frozen molecular orbitals (MOs). If multiple
simulations with different active spaces is required, it is convenient to define multiple sets of
frozen orbitals simultaneously. In the aforementioned example for LiH, we define three different
sets of frozen orbitals, which result in 6, 5, and 4 MOs in the active space, respectively.

The Molecule class can be used further to construct the electronic molecular Hamiltonian
in the selected active space, which is expressed in the qubit representation (see the information
about qubit operators below).

1 from src.models import Molecule

2 from omegaconf import OmegaConf

3 from src.operators import FermionicOperator

4

5 config_path = "src/configs/molecules/lih_rhf_sto3g_eq.yaml"

6 config = OmegaConf.load(config_path)

7 config._set_item_impl ("path", config_path)

8 mol = Molecule(config)

9 mapping = "jordan_wigner"
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10 frozen_inds = frozen_orbs [0]

11 hamiltonian = mol.build_hamiltonian(frozen_inds=frozen_inds , notation=Notation

.QISKIT , mapping=mapping)

Listing 2. Getting a qubit Hamiltonian using a Molecule class

Additionally, one can obtain results of classical computations, such as Hartree-Fock, CCSD,
and CASCI [26]. The latter two requires to define the indices of frozen orbitals following PySCF
MO notation.

1 from src.models import Molecule

2 from omegaconf import OmegaConf

3 from src.operators import FermionicOperator

4

5 config_path = "src/configs/molecules/lih_rhf_sto3g_eq.yaml"

6 config = OmegaConf.load(config_path)

7 config._set_item_impl ("path", config_path)

8 mol = Molecule(config)

9 freeze_inds = config.molecule_info.frozen_orbs [-1]

10

11 print("FREEZE INDS", freeze_inds)

12 print("HARTREE -FOCK ENERGY:", mol.hf.e_tot)

13 print("CCSD ENERGY:", mol.ccsd(freeze_inds).e_tot)

14 print("CASCI ENERGY:", mol.fci(freeze_inds).e_tot)

15

16 OUTPUT:

17 FREEZE INDS None

18 HARTREE -FOCK ENERGY: -1.1161514489386022

19 CCSD ENERGY: -1.1371172451631746

20 CASCI ENERGY: -1.1371170673457307

Listing 3. The results for the H2 molecule obtained using classical methods.

3.2. Operators
The quantum simulation of electronic systems requires a specific encoding of the wavefunction

and operators within the qubit space. Moreover, such encoding is needed to preserve the
properties of the simulated system, which in the case of fermions includes antisymmetrization.
The developed encodings for fermionic problems can be categorized into first-quantized and
second-quantized encodings. The latter, despite having worse scalability, require significantly
fewer qubits for small- and mid-sized systems, making them suitable for NISQ devices. Among
the second-quantized encodings, Jordan-Wigner [27], Bravyi-Kitaev [28], and parity are the
most commonly used. In our code, we use molecular integrals from PySCF to construct a
second-quantized representation of fermionic operators, and then perform the Jordan-Wigner
transformation to obtain qubit operators.

The Operator class is the building block of our code. It handles second-quantized fermionic
operators and qubit operators. Operators can be added, subtracted, or multiplied.

Fermionic operators The FermionicOperator class represents operators in fermionic systems
within the second-quantized formalism [13], specifically, in terms of creation and annihilation

operators. The creation operator a†i creates a fermion at the ith mode, while the annihilation
operator ai destroys a fermion at the ith mode. Each interaction in the fermionic system can
be expressed in the tensor product basis of creation and annihilation operators.

Fermionic operators obey standard the anti-commutation relations:

{ai, aj} = {a†i , a
†
j} = 0,

{a†i , aj} = a†iaj + aja
†
i = δij ,

(5)
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where i and j are indices of the single-particle state (or simply spin-orbital), and δij is the
Kronecker delta, which is 1 if i = j, and 0 otherwise.

In the current version of the library fermionic operators can be build from molecular integrals
using method from integrals():

1 from src.models import Molecule

2 from omegaconf import OmegaConf

3 from src.operators import FermionicOperator

4

5 config_path = "src/configs/molecules/h2_rhf_sto3g_eq.yaml"

6 config = OmegaConf.load(config_path)

7 config._set_item_impl("path", config_path)

8 mol = Molecule(config)

9 freeze_inds = config.molecule_info.frozen_orbs [-1]

10 integrals = mol.transform_mo2so(freeze_inds)

11 fermionic_op = FermionicOperator.from_integrals(integrals)

12 print("FERMIONIC OPERATOR", fermionic_op.inp_dict)

13

14 OUTPUT:

15 FERMIONIC OPERATOR defaultdict(<class ’complex ’>, {’+0 -0’:

( -1.2472845052236152+0j), ’+1 -1’: ( -0.48127293109598346+0j), ’+2 -2’:

( -1.2472845052236152+0j), ’+3 -3’: ( -0.48127293109598346+0j), ’+0 +1 -0 -1’:

(0.09088576828865244+0j), ’+0 +1 -1 -0’: (0.33098862973957277+0j), ’+0 +2

-2 -0’: (0.33642397347431435+0j), ’+0 +2 -3 -1’: (0.09088576828865239+0j), ’

+0 +3 -2 -1’: (0.09088576828865244+0j), ’+0 +3 -3 -0’:

(0.33098862973957277+0j), ’+1 +0 -0 -1’: (0.330988629739573+0j), ’+1 +0 -1

-0’: (0.09088576828865237+0j), ’+1 +2 -2 -1’: (0.330988629739573+0j), ’+1 +2

-3 -0’: (0.09088576828865237+0j), ’+1 +3 -2 -0’: (0.09088576828865245+0j),

’+1 +3 -3 -1’: (0.3479075755298825+0j), ’+2 +0 -0 -2’:

(0.33642397347431435+0j), ’+2 +0 -1 -3’: (0.09088576828865239+0j), ’+2 +1 -0

-3’: (0.09088576828865244+0j), ’+2 +1 -1 -2’: (0.33098862973957277+0j), ’+2

+3 -2 -3’: (0.09088576828865244+0j), ’+2 +3 -3 -2’: (0.33098862973957277+0j

), ’+3 +0 -0 -3’: (0.330988629739573+0j), ’+3 +0 -1 -2’:

(0.09088576828865237+0j), ’+3 +1 -0 -2’: (0.09088576828865245+0j), ’+3 +1 -1

-3’: (0.3479075755298825+0j), ’+3 +2 -2 -3’: (0.330988629739573+0j), ’+3 +2

-3 -2’: (0.09088576828865237+0j)})

16

Listing 4. Building a FermionicOperator using method from integrals() and config for H2

molecule

or directly by providing a defaultdict dictionary class:

1 from src.operators import FermionicOperator

2 from collections import defaultdict

3 fop = FermionicOperator(defaultdict(complex , {"+1 +2 -3 -4": 1.29 + 0.4j, "+2

-4": -0.05 - 0.12j}), num_qubits =5)

4 print("FERMIONIC OPERATOR", fop.inp_dict)

5

6 OUTPUT:

7 FERMIONIC OPERATOR defaultdict(<class ’complex ’>, {’+1 +2 -3 -4’: (1.29+0.4j),

’+2 -4’: ( -0.05 -0.12j)})

Listing 5. Building a FermionicOperator using a defaultdict dictionary.

For further application of the Jordan-Wigner transformation, the FermionicOperator object
must be transformed into the normal-ordered form. In other words, the product of creation and
annihilation operators must be rearranged as follows:

(i) all creation operators a†i are placed to the left of all annihilation operators aj ;
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(ii) within each group of creation or annihilation operators, the operators are ordered according
to their indices with operators corresponding to lower indices appearing first.

Qubit operators The QubitOperator class represents an operator acting in multi-qubit space.
For NISQ applications qubit operators are represented in the Pauli tensor product basis [29].
Within the library, one can build qubit operators from fermionic operators or a matrix using
two methods: from fermionic operator() and from matrix(). We note that the matrix is needed
to be Hermitian:

1 from src.operators import QubitOperator , FermionicOperator

2 from collections import defaultdict

3 fop = FermionicOperator(defaultdict(complex , {"+1 -2 +4 -3": 1.29 + 0.4j, "-2

+4": -0.05 - 0.12j}), num_qubits =5).operator_to_normal_order ()

4 qop = QubitOperator.from_fermionic_operator(fop)

5

6 print("FERMIONIC OPERATOR: ", fop.inp_dict)

7 print("QUBIT OPERATOR: ", qop.inp_dict)

8

9 OUTPUT:

10 FERMIONIC OPERATOR: defaultdict(<class ’complex ’>, {’+1 +4 -2 -3’: ( -1.29 -0.4

j), ’+4 -2’: (0.05+0.12j)})

11 QUBIT OPERATOR: defaultdict(<class ’complex ’>, {’IXXXX’: (0.080625+0.025j), ’

IYYYY’: (0.080625+0.025j), ’IXXYX’: ( -0.025+0.080625j), ’IXYXX’:

( -0.025+0.080625j), ’IXXXY ’: (0.025 -0.080625j), ’IYXXX ’: (0.025 -0.080625j),

’IXYYY ’: ( -0.025+0.080625j), ’IYYYX ’: ( -0.025+0.080625j), ’IYXYY ’:

(0.025 -0.080625j), ’IYYXY’: (0.025 -0.080625j), ’IXXYY’: (0.080625+0.025j), ’

IXYXY’: (0.080625+0.025j), ’IYXYX’: (0.080625+0.025j), ’IYYXX’:

(0.080625+0.025j), ’IYXXY ’: ( -0.080625 -0.025j), ’IXYYX’: ( -0.080625 -0.025j),

’IIYZX ’: (0.03 -0.0125j), ’IIYZY ’: (0.0125+0.03j), ’IIXZX ’: (0.0125+0.03j),

’IIXZY ’: ( -0.03+0.0125j)})

Listing 6. Buiding a QubitOperator instance from a FermionicOperator class object

Here. the method operator to normal order() is used to make FermionicOperator normal
ordered. Also a QubitOperator can be built from a defaultdict dictionary just like we did
before for a FermionicOperator:

1 qop = QubitOperator(defaultdict(complex , {"XZZY": 1.29 + 0.4j, "YZZX": -0.05 -

0.12j, "ZZZZ": 0.25}) , num_qubits =4)

Listing 7. Buiding a QubitOperator from a defaultdict dictionary

For commuting terms in the set of qubit operators, a basis exists in which these terms can
be measured simultaneously using a single quantum circuit. Reducing the number of measured
circuits is extremely important to accelerate computation and reduce its cost, especially since
molecular qubit Hamiltonians can include hundreds of terms even for the smallest molecules.
In our code, terms within QubitOperator class instances can be grouped based on qubit-wise
or general commutativity [30] (note that general commutativity is not available in the current
version of the library):

1 qop.group_terms_and_measurements(group_type="qubit_wise")

2 print("GROUPED OPERATORS", qop.term_dict_cache)

3

4 OUTPUT:

5 {’qubit_wise ’: {(’XZZY’,): (([0, 1, 2, 3],), (’ZZZZ’,), <qiskit.circuit.

quantumcircuit.QuantumCircuit object at 0x7fc74949d7f0 >), (’YZZX’,): (([0,

1, 2, 3],), (’ZZZZ’,), <qiskit.circuit.quantumcircuit.QuantumCircuit object
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at 0x7fc748c31be0 >), (’ZZZZ’,): (([0, 1, 2, 3],), (’ZZZZ’,), <qiskit.circuit

.quantumcircuit.QuantumCircuit object at 0x7fc748c60a00 >)}}

Listing 8. An example of using qubit-wise Pauli operators method of grouping.

In the presence of symmetries, the amount of qubits necessary to simulate a molecular
Hamiltonian can be decreased. The library offers methods for eliminating qubits from
Hamiltonians that include numerous Z2 symmetries (qubit tapering [31]):

1 from src.models import Molecule

2 from omegaconf import OmegaConf

3 from src.operators import FermionicOperator , QubitOperator

4

5 config_path = "src/configs/molecules/h2_rhf_sto3g_eq.yaml"

6 config = OmegaConf.load(config_path)

7 config._set_item_impl("path", config_path)

8 mol = Molecule(config)

9 freeze_inds = config.molecule_info.frozen_orbs [-1]

10

11 qubit_op = mol.build_hamiltonian(freeze_inds)

12 print("HAMILTONIAN:", qubit_op.inp_dict)

13 occ_orbs , virt_orbs = mol.occupied_virtual_orbs(freeze_inds=freeze_inds)

14

15 # Define active electrons to get tapered operator

16 active_electrons = mol.active_electrons(freeze_inds)

17 print("ACTIVE ELECTRONS", active_electrons)

18 tap_op = qubit_op.taper(active_electrons)

19 print("TAPERED HAMILTONIAN:", tap_op.inp_dict)

20

21 OUTPUT:

22 HAMILTONIAN: defaultdict(<class ’complex ’>, {’IIII’: ( -0.8153001706270068+0j),

’ZIII’: (0.16988452027940376+0j), ’IZII’: ( -0.2188630678121962+0j), ’IIZI’:

(0.16988452027940373+0j), ’IIIZ’: ( -0.2188630678121962+0j), ’ZZII’:

(0.12005143072546023+0j), ’ZIZI’: (0.16821198673715718+0j), ’YYYY’:

(0.04544288414432621+0j), ’YYXX’: (0.04544288414432621+0j), ’XXYY’:

(0.04544288414432621+0j), ’XXXX’: (0.04544288414432621+0j), ’ZIIZ’:

(0.16549431486978644+0j), ’IZZI’: (0.16549431486978644+0j), ’IZIZ’:

(0.17395378776494125+0j), ’IIZZ’: (0.12005143072546023+0j)})

23 ACTIVE ELECTRONS (1, 1)

24 TAPERED HAMILTONIAN: defaultdict(<class ’complex ’>, {’I’:

( -1.0442258873154011+0j), ’Z’: (0.7774951761831996+0j), ’X’:

(0.18177153657730474+0j)})

25

Listing 9. An example of using qubit tapering procedure for H2 molecule

In the Listing 9 example, one can see that three qubits can be removed from the original
operators, so simulating the new Hamiltonian requires less computational resources.

For computing the expectation value of the qubit operator on the given state (circuit)
⟨0|U(θ)†HU(θ)|0⟩ one can use compute expectation() method:

1 from qiskit import QuantumCircuit

2 from src.operators import QubitOperator

3 from collections import defaultdict

4

5 num_qubits = 4

6 qop = QubitOperator(defaultdict(complex , {"XZZY": 1.29, "YZZX": -0.05, "ZZZZ":

0.25}) , num_qubits=num_qubits)

7 qc = QuantumCircuit(num_qubits , num_qubits)

8 qc.ry(0.2, 0)

9 qc.h(0)
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Figure 1. The change in the number of qubits after applying the tapering procedure for different
molecules.

10 qc.cnot(0, 1)

11

12 expectation_value = qop.compute_expectation(qc)

13 print("EXPECTATION VALUE:", expectation_value [0])

14

15 OUTPUT:

16 EXPECTATION VALUE: 0.226953125

Listing 10. Computation of the expectation value of a QubitOperator on a given state

3.3. Ansatzes
The ansatz consists of a parameterized quantum circuit, the parameters of which can be fine-

tuned to obtain the most appropriate solution. The choice of the ansatz is critical in determining
the success of the quantum algorithm as it influences the speed of convergence, the accuracy
of the solution, and the ability to scale to larger problem sizes. Thus, finding the optimal
ansatz typically involves an iterative process that requires both expertise and intuition. Usually,
the ansatz is selected based on prior knowledge of the problem and trial-and-error techniques.
Currently, there are four classes of ansatzes available:

• CustomAnsatz class. This class requires electron excitations or a set of fermion operators
or a set of qubit operators. It transforms the input data in the following sequence: Electron
Excitation → Fermionic Operators → Qubit operators. The circuit is constructed by
sequentially adding a circuit block to the end of the circuit, where each block is the gate
decomposition of the exponent of the qubit operator.

1 from src.ansatzes import CustomAnsatz

2

3 ansatz = CustomAnsatz(excitations =[((1, ), (3, )), ((2, 3), (0, 1))],

num_qubits =4)

4 qc = ansatz.build_circuit ()

5 qc.draw(output=’mpl’)

6 print("FERMIONIC OPERATORS", ansatz.fermionic_operators [1]. inp_dict)

7 print("QUBIT OPERATORS", ansatz.qubit_operators [1]. inp_dict)

8

9 OUTPUT:
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10 FERMIONIC OPERATORS defaultdict(<class ’complex ’>, {’+0 +1 -2 -3’: (1+0j),

’+2 +3 -0 -1’: (-1+0j)})

11 QUBIT OPERATORS defaultdict(<class ’complex ’>, {’XXXY’: -0.125j, ’XXYX’:

-0.125j, ’XYXX’: 0.125j, ’YXXX’: 0.125j, ’XYYY’: -0.125j, ’YXYY’: -0.125

j, ’YYXY’: 0.125j, ’YYYX’: 0.125j})

Listing 11. CustomAnsatz example, here the ansatz is generated by two excitations which were
passed manually

Figure 2. The circuit for the first of CustomAnsatz excitations used in Listing 12.

• UCCAnsatz class. This class represents the disentangled unitary coupled cluster ansatz (it
is a descendant of the CustomAnsatz). Unlike the CustomAnsatz, the set of excitations in
the unitary coupled cluster is predefined for the given number of electrons and orbitals, and
it depends on the selected truncation level for the excitations (i.e., UCCSD includes single
and double excitations). In our code, one can select any types of excitations to include,
i.e., (1, 2) build a UCCSD ansatz, (1, 3) build a UCCST ansatz. Moreover, three types of
excitations are built-in: conventional (excitations from occupied to unoccupied orbitals),
generalized (excitations between any orbitals), and paired (a pair of electrons with opposite
spin excite simultaneously) [20, 32]. The latter type can be combined with conventional
or generalized excitations.

1 from src.ansatzes import UCCAnsatz

2 from src.models import Molecule

3 from omegaconf import OmegaConf

4

5 config_path = "src/configs/molecules/lih_rhf_sto3g_eq.yaml"

6 config = OmegaConf.load(config_path)

7 config._set_item_impl("path", config_path)

8 mol = Molecule(config)

9 freeze_inds = config.molecule_info.frozen_orbs [-1]

10 occ_orbs , virt_orbs = mol.occupied_virtual_orbs(freeze_inds=freeze_inds)

11 ansatz = UCCAnsatz(occ_orbs , virt_orbs , excitation_order_list =(1, 2),

excitation_type="conventional")

12 ansatz_g = UCCAnsatz(occ_orbs , virt_orbs , excitation_order_list =(1, 2),

excitation_type="generalized")

13 ansatz_cp = UCCAnsatz(occ_orbs , virt_orbs , excitation_order_list =(1, 2),

excitation_type="conventional", paired=True)

14

15 print("CONVENTIONAL EXCITATIONS", ansatz.excitations)
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16 print("GENERALIZED EXCITATIONS", ansatz_g.excitations)

17 print("CONVENTIONAL PAIRED EXCITATIONS", ansatz_cp.excitations)

18

19 OUTPUT:

20 CONVENTIONAL EXCITATIONS [((0,), (1,)), ((0,), (2,)), ((3,), (4,)), ((3,),

(5,)), ((0, 3), (1, 4)), ((0, 3), (1, 5)), ((0, 3), (2, 4)), ((0, 3),

(2, 5))]

21 GENERALIZED EXCITATIONS [((0,), (1,)), ((0,), (2,)), ((1,), (2,)), ((3,),

(4,)), ((3,), (5,)), ((4,), (5,)), ((0, 3), (1, 4)), ((0, 3), (1, 5)),

((0, 3), (2, 4)), ((0, 3), (2, 5)), ((0, 4), (1, 5)), ((0, 4), (2, 5)),

((1, 3), (2, 4)), ((1, 3), (2, 5)), ((1, 4), (2, 5))]

22 CONVENTIONAL PAIRED EXCITATIONS [((0, 3), (1, 4)), ((0, 3), (2, 5))]

Listing 12. UCCAnsatz example with conventional, generalized, and conventional paired type
excitations of 1st and 2nd order

One option to reduce the depth of the UCCSD ansatz is to filter out all excitations that
lead to irreducible representation other than the Hartree-Fock determinant’s [33]. One can
do this by passing True to the irrep symmetry argument of a UCCAnsatz class instance:

1 ansatz = UCCAnsatz(occ_orbs , virt_orbs , excitation_order_list =(1, 3),

excitation_type="conventional", irrep_symmetry=True)

Listing 13. UCCAnsatz example with enabled filtering of excitations

• HardwareEfficientAnsatz class. This class provides basic hardware-efficient ansatz
templates constructed from single-qubit rotations and CNOTs with various qubit
connectivity options: full, linear, and circular.

1 from src.ansatzes import HardwareEfficientAnsatz

2

3 num_layers = 2

4 parameters = np.random.uniform(-np.pi , np.pi , num_qubits *2* num_layers)

5 hwe_ansatz = HardwareEfficientAnsatz(num_qubits , num_layers=num_layers ,

connectivity="chess")

6 hwe_qc = hwe_ansatz.build_circuit(parameters)

Listing 14. HardwareEfficientAnsatz example with 2 layers and chess connectivity of CNOT
gates

Figure 3. The quantum circuit with the chess structure of HardwareEfficientAnsatz.
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• ManualAnsatz class
This class is designed for cases where users want to manually create an ansatz. Its purpose
is to transform the circuit into a form compatible with the VQA framework.

1 from qiskit.circuit import QuantumCircuit

2

3 def make_circuit(num_qubits):

4 circuit = QuantumCircuit(num_qubits , num_qubits)

5 circuit.ry(0.25, 0)

6 circuit.ry(0.5, 1)

7 circuit.cx(0, 1)

8 circuit.ry(0.33, 0)

9 circuit.ry(0.27, 1)

10 circuit.cx(0, 1)

11 return circuit

12

13 num_qubits , num_layers = 2

14 circuit = make_circuit(num_qubits)

15 ansatz = ManualAnsatz(num_qubits=num_qubits , ansatz_state=circuit ,

num_layers=n_layers)

Listing 15. ManualAnsatz example the ansatz state built with make circuit function

Figure 4. Convergence behavior for various ansatz types for the hydrogen molecule.
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For each type of ansatz, one can define an initial state (for UCC, this is the Hartree-Fock
state) and initial ansatz parameters, as shown in the following listing:

1 from src.symmetry_utils import hartree_fock_state

2 import numpy as np

3 from src.models import Molecule

4 from omegaconf import OmegaConf

5

6 config_path = "src/configs/molecules/h2_rhf_sto3g_eq.yaml"

7 config = OmegaConf.load(config_path)

8 config._set_item_impl("path", config_path)

9 mol = Molecule(config)

10 freeze_inds = config.molecule_info.frozen_orbs [-1]

11

12 init_state = hartree_fock_state(num_qubits , mol.active_electrons(freeze_inds))

13 ansatz = UCCAnsatz(occ_orbs , virt_orbs , excitation_order_list =(1, 2),

14 excitation_type="conventional", init_state=init_state)

15 parameters = np.random.uniform(-np.pi , np.pi , len(ansatz.excitations))

16

17 qc = ansatz.build_circuit(parameters)

Listing 16. UCCAnsatz example with initial state and parameters passed

3.4. Variational Quantum Algorithms
Within the developed library, variational algorithms with customizable cost functions can be

built using the VariationalAlgorithm class. This ability to customize the cost function enables
one to quickly optimize and improve existing algorithms. Further examples demonstrate how
different algorithms can be realized within our framework. The required cost function typically
takes the following form:

L = w0⟨U0|E0|U0⟩+ ...+ wn⟨Un|En|Un⟩+ o1⟨U0|U1⟩2 + ...+ on⟨Ui|Uj⟩2+

c0

(
⟨U0|C0|U0⟩ − Cval

0

)2
+ ...+ c0

(
⟨U0|C0|U0⟩ − Cval

0

)2
,

(6)

where the wi, o1 and ci represent the weights of the expected values, overlaps and
constrains, respectively. Ui represents different quantum circuits. In its straightforward
VQE implementation (Listing 17) the cost function includes only the expectation value of the
Hamiltonian:

L = ⟨0|U(θ)†HU(θ)|0⟩. (7)

However, one may want to add some constrains for better performance i.e. to lead to
optimization into correct spin symmetry sector (Listing 18). This may be useful with hardware-
efficient ansatzes:

L = ⟨0|U(θ)†HU(θ)|0⟩+ c0

(
⟨0|U(θ)†S2U(θ)|0⟩ − S2

val

)2
. (8)

More complex cases may include different circuits, but with the same ansatz for different
parameter values. Variational Quantum Deflation (VQD) [23] algorithm for sequential
computation of k-th excited states can be an example of the such case with the following cost
function (Listing 19):

L = ⟨0|U(θexck )HU(θexck )|0⟩+ o1⟨0|U(θgs)U(θexck )|0⟩+ ...ok−1⟨0|U(θexck−1)U(θexck )|0⟩. (9)

Another case of different circuirs may be Subspace Search Variational Quantum Eigensolver
(SS-VQE) algorithm [22] for simultaneous search of multiple excited states:

L = ⟨ϕ0|U(θ)HU(θ)|ϕ0⟩+ ...+ ⟨ϕk|U(θ)HU(θ)|ϕk⟩. (10)
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Figure 5. Using the cost function (9) to compute the ground and first excited state of H2

molecule.

Here we provide the examples, which runs VQA with the cost function examples given above.
It the first two we use a HardwareEfficientAnsatz class for this purpose:

1 from src.models import Molecule

2 from omegaconf import OmegaConf

3 from src.ansatzes import HardwareEfficientAnsatz

4

5 config_path = "src/configs/molecules/h2_rhf_sto3g_eq.yaml"

6 config = OmegaConf.load(config_path)

7 config._set_item_impl("path", config_path)

8 mol = Molecule(config)

9 freeze_inds = config.molecule_info.frozen_orbs [-1]

10

11 fermionic_operator = FermionicOperator.from_integrals(integrals).

operator_to_normal_order ()

12 hamiltonian = QubitOperator.from_fermionic_operator(fermionic_operator ,

mapping = "jordan -wigner")

13 num_qubits = hamiltonian.num_qubits

14 n_layers = 3

15

16 hwe_ansatz = HardwareEfficientAnsatz(num_qubits=num_qubits ,

17 num_layers=n_layers ,

18 connectivity="chess")
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19

20 objective_hwe = [( hwe_ansatz , (( hamiltonian , ), (1.0, )))]

21

Listing 17. Using HardwareEfficientAnsatz class to form a straightforward objective function
(7)

1 particle_number_qop = QubitOperator.from_fermionic_operator(

particle_number_fop(num_qubits))

2 spin_square_qop = QubitOperator.from_fermionic_operator(spin_square_fop(

num_qubits))

3 opt_circuit_hwe = hwe_ansatz.build_circuit(vqe_result_hwe.x)

4 n_particles = 2

5 s2 = 0

6

7 objective_constr = [( hwe_ansatz , (( hamiltonian , particle_number_qop ,

spin_square_qop), lambda ham_val , pn_val , s2_val: ham_val + (pn_val -

n_particles) ** 2 + (s2_val - s2) ** 2))]

Listing 18. Using HardwareEfficientAnsatz class to form a constrained objective function
(8), incorporating particle number and S2 value for the H2 molecule.

1

2 init_state = hartree_fock_state(num_qubits , active_electrons=active_electrons)

3 uccsd_ansatz = UCCAnsatz(occ_orbs , virt_orbs , init_state=init_state)

4 objective_gs = [( uccsd_ansatz , (( hamiltonian ,), (1,)))]

5 vqe_uccsd = VariationalAlgorithm(objective=objective_gs)

6 vqe_result_uccsd = vqe_uccsd.run()

7

8 gs_parameters = vqe_result_uccsd.x

9 gs_ansatz = ucc_ansatz.build_circuit(gs_parameters) # building a fixed ground

state circuit with the optimized parameters

10

11 beta = [0.9, ]

12 objective_vqd = [( ucc_ansatz , (( hamiltonian ,), lambda ham_val , current_ansatz:

ham_val + beta [0] * PauliExpectation(state_ket=current_ansatz , state_bra=

gs_ansatz).get_overlap ()))]

13 vqe_uccsd_excited = VariationalAlgorithm(objective=objective_vqd , costfn="

custom", overlap=True).run() # one have to pass a boolean flag to the class

for computing the overlaps

Listing 19. Using UCCAnsatz class to construct a VQD objective function (9) for the first
excited state of a molecule.

In our VQA implementation, terms from different operators for each quantum circuit are
first collected and grouped, if necessary. Subsequently, unequal groups (terms) are measured.
This optimizes the VQA procedure by eliminating the need to prepare identical circuits from
different operators (i.e., most of the terms in S2 are already in Hamiltonian operators). After
completing all the previous steps (including selecting the active space, constructing the problem
Hamiltonian, choosing the ansatz, selecting the appropriate cost function, and picking a classical
optimizer), one can execute the variational quantum algorithm for a molecule:

1 from src.symmetry_utils import hartree_fock_state

2 import numpy as np

3 from src.models import Molecule

4 from omegaconf import OmegaConf

5 from src.algorithms import VariationalAlgorithm

6 from qiskit.providers.aer import AerSimulator

7
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8 shots = 10 ** 4

9 backend = ("qiskit", AerSimulator(method="statevector"))

10 optimizer_config = {"optimizer": "COBYLA", "options": {"maxiter": 1000, "catol

": 1e-7, "tol": 1e-7}}

11

12 config_path = "src/configs/molecules/h2_rhf_sto3g_eq.yaml"

13 config = OmegaConf.load(config_path)

14 config._set_item_impl("path", config_path)

15 mol = Molecule(config)

16 frozen_inds = config.molecule_info.frozen_orbs [-1]

17 print("frozen_inds", frozen_inds)

18 integrals = mol.transform_mo2so(frozen_inds)

19 fermionic_operator = FermionicOperator.from_integrals(integrals).

operator_to_normal_order ()

20 hamiltonian = QubitOperator.from_fermionic_operator(fermionic_operator ,

mapping = "jordan -wigner")

21 n_qubits = hamiltonian.num_qubits

22 occ_orbs , virt_orbs = mol.occupied_virtual_orbs(frozen_inds)

23 active_electrons = mol.active_electrons(frozen_inds)

24

25 initial_state = hartree_fock_state(n_qubits , active_electrons)

26 uccsd = UCCAnsatz(excitation_order_list =(1, 2),

27 occ_orbs=occ_orbs , virt_orbs=virt_orbs ,

28 init_state=initial_state)

29 parameters = np.random.uniform(-1, 1, uccsd.num_parameters)

30 uccsd_circuit = uccsd.build_circuit(parameters)

31

32 objective = [(uccsd , (( hamiltonian ,), (1.0 ,)))]

33

34 vqe_uccsd = VariationalAlgorithm(objective=objective ,

35 shots=shots ,

36 backend=backend ,

37 config=optimizer_config)

38

39 vqe_result_uccsd = vqe_uccsd.run()

40

41 nuc_repulsion_energy = mol.hf.energy_nuc ()

42 exact_energy = mol.fci(freeze_inds).e_tot - mol.hf.energy_nuc ()

43

44 print("VQE RESULT", vqe_result_uccsd)

45 print("FCI RESULT", exact_energy)

46 print("ENERGY DELTA", vqe_result_uccsd.fun - exact_energy)

47

48 OUTPUT:

49 VQE RESULT

50 fun: -1.841287970788897

51 maxcv: 0.0

52 message: ’Optimization terminated successfully.’

53 nfev: 67

54 status: 1

55 success: True

56 x: array ([ 0.06824215 , -0.02625553 , -0.23748941])

57 FCI RESULT -1.8426866819057306

58 ENERGY DELTA 0.0013987111168336508

Listing 20. VariationalAlgorithm workflow demonstration.
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3.5. Adaptive Algorithm
The VQE algorithm requires a good initial guess of the ansatz to give accurate results, which is

not always straightforward to obtain. To overcome this issue, the Adaptive Derivative-Assembled
Pseudo-Trotter ansatz Variational Quantum Eigensolver (ADAPT-VQE) [34] extends the VQE
algorithm by using an adaptive procedure. It iteratively constructs the ansatz by selecting and
adding operators from a predefined pool, prioritizing those that most significantly contribute to
energy reduction at each step.

The main steps of the Adaptive VQE algorithm are as follows:

(i) Initialization: Start with an initial state |ψ(θ)⟩ and a predefined pool of excitation operators
Oi.

(ii) Outer Loop (Operator Selection): For each operator in the pool, compute the gradient of
the expectation value ⟨ψ(θ)|OiH|ψ(θ)⟩ with respect to the parameters θ. Select the operator
Omax with the largest gradient.

(iii) Ansatz Update: Append the selected operator Omax to the current ansatz to create a new
ansatz |ψ′(θ′)⟩.

(iv) Inner Loop (Parameter Optimization): For the new ansatz, calculate the expectation value
⟨ψ′(θ′)|H|ψ′(θ′)⟩. Use a classical optimizer to find the parameters θ′ that minimize this
expectation value.

(v) Convergence Check: Check if the energy has converged (i.e., the energy difference between
iterations is below a certain threshold). If not, return to step 2 using the updated ansatz
|ψ′(θ′)⟩ and optimized parameters θ′.

The following is an example of using the AdaptiveAlgorithm class for calculating the ground
state energy of a LiH molecule:

1 from src.algorithms import AdaptiveAlgorithm

2 from omegaconf import OmegaConf

3 from src.models.Molecule import Molecule

4

5 config_lih_path = "src/configs/molecules/lih_rhf_sto3g_eq.yaml"

6 config_lih_rhf = OmegaConf.load(config_lih_path)

7 config_lih_rhf._set_item_impl("path", config_lih_path)

8

9 mol = Molecule(config_lih_rhf)

10 conf = config_lih_rhf

11

12 freeze_inds = conf.molecule_info.frozen_orbs [0]

13

14

15 qubit_op = mol.build_hamiltonian(freeze_inds)

16 occ_orbs , virt_orbs = mol.occupied_virtual_orbs(freeze_inds=freeze_inds)

17

18 active_electrons = mol.active_electrons(freeze_inds)

19 tap_op = qubit_op.taper(active_electrons)

20

21 res = AdaptiveAlgorithm ((mol , freeze_inds), tap_op , iterations =10,

add_multiple_ops=True , grad_ratio =2, max_batch=2, gradient_method="num_diff"

, tapering_info=qubit_op.tapering_info).run()

22

23 print("Energy", res)

24

25 nuc_repulsion_energy = mol.hf.energy_nuc ()

26 exact_energy = mol.fci(freeze_inds).e_tot - mol.hf.energy_nuc ()

27 print("FCI RESULT WITH NUCLEAR ENERGY", mol.fci(freeze_inds).e_tot)
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28 print("FCI RESULT", exact_energy)

29 print("ENERGY DELTA", res - exact_energy)

30

31 OUTPUT:

32 Ansatz operators length: 15

33 Energy -8.83794699957919

34 FCI RESULT WITH NUCLEAR ENERGY -7.88217599080109

35 FCI RESULT -8.877556035167508

36 ENERGY DELTA 0.03960903558831852

Listing 21. Example of using AdaptiveAlgorithm class.

The AdaptiveAlgorithm class includes a parameter named operator pool, which can accept a
QubitOperator instance. This feature enables users to provide their own pool of qubit operators,
from which the ansatz is constructed. By default, the operator pool is generated internally by
the AdaptiveAlgorithm class.

Figure 6. An example of applying our library’s ADAPT-VQE algorithm for ground state
computation of LiH molecule. The shaded green region indicates the area within the chemical
accuracy of 0.0016 Hartree.

The algorithm adaptively constructs an efficient ansatz that can often yield more accurate
results than standard VQE. Importantly, it does not require a good initial guess for the ansatz.
Furthermore, this ADAPT-VQE implementation allows for the addition of multiple operators
simultaneously. Studies have shown that algorithm performance improves significantly under
these conditions [35]. However, this process can be computationally intensive due to the
additional outer loop for operator selection and gradient calculation. The operator pool’s
selection can significantly impact the Adaptive VQE’s performance and accuracy.

4. Summary
We have presented the comprehensive description of the abilities of the developed library for

quantum chemistry simulations and have provided detailed instructions for its usage. As we have
discussed, the developed library enables users to perform quantum computing-based chemistry
calculations for small molecules. The library incorporates sophisticated algorithms such as
the VQE and its adaptive version, ADAPT VQE, facilitating efficient simulations of quantum
chemistry problems using various backends. This manual covers basic usage, advanced features,
and offers practical examples, assisting users in leveraging the library to its full potential.

The article overviews the essential classes needed to construct a comprehensive variational
quantum algorithm workflow. However, this discussion does not cover all methods and
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functionalities available within these classes. Certain research directions in this field have been
identified and discussed.
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