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The Bousso’s D-bound entropy for the various possible black hole solutions on a 4-dimensional brane
is checked. It is found that the D-bound entropy here is apparently different from that of obtained for
the 4-dimensional black hole solutions. This difference is interpreted as the extra loss of information,
associated to the extra dimension, when an extra-dimensional black hole is moved outward the
observer’s cosmological horizon. Also, it is discussed that N-bound entropy is hold for the possible

solutions here. Finally, by adopting the recent Bohr-like approach to black hole quantum physics for
the excited black holes, the obtained results are written also in terms of the black hole excited states.
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1. Introduction

Black hole (BH) quantum physics started in the 70s of last
century with the remarkable works of Bekenstein [1,2] and Hawk-
ing [3]. It is a general conviction that Hawking radiation [3] and
Bekenstein-Hawking entropy [2,3] are the two most important
provisions of a yet unknown theory of quantum gravity which
will permit to unify Einstein’s general theory of relativity (GTR)
with quantum mechanics. In fact, researchers in quantum grav-
ity think that BHs should be the fundamental bricks of quantum
gravity in the same way that atoms are the fundamental bricks of
quantum mechanics [4]. In this framework, a fundamental result
again by Bekenstein was that BHs have the maximum entropy for
given mass and size which is allowed by quantum theory and by
the GTR [5]. This Bekenstein bound represents an upper limit on
the entropy that can be contained within a given finite region of
space having a finite amount of energy. In other words, it is the
maximum amount of information required to perfectly describe a
given physical system down to the quantum level [5]. Thus, as-
suming that the region of space and the energy of the system are
finite, the information necessary to perfectly describe it, is also
finite [5]. Bekenstein bound has also important consequences in
the physics of information and in computer science because it is
connected with the so-called Bremermann’s Limit [6], a maximum
information-processing rate for a physical system having finite size
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and energy. Also, the field equations of the GTR can be also de-
rived by assuming the correctness of the Bekenstein bound and
of the laws of thermodynamics [7]. Today we have various argu-
ments which show that some form of the bound must exist if one
wants the laws of thermodynamics and the GTR to be mutually
consistent [8]. A generalization of the Bekenstein bound was at-
tempted by Bousso [9], who conjectured an entropy bound having
statistical origin and to be valid in all space-times admitted by
Einstein’s equation. This is the covariant entropy bound and re-
duces to Bekenstein bound for systems with limited self-gravity
[9]. Bousso also proposed a bound on the entropy of matter sys-
tems within the cosmological horizon called the “D-bound” which
claims that the total observable entropy is bounded by the inverse
of the cosmological constant [10]. The dependance of D-bound on
the cosmological constant and the area of initial horizon [10] turns
out to be useful for at least one application [11], but its relation-
ship to the flat space Bekenstein bound still remains obscure. If
one implies the cosmological horizon in terms of gravitational ra-
dius rather than the energy of the system, the D-bound will be the
same as the Bekenstein bound. Note that although a special limit
is taken but the agreement is non-trivial, because the background
geometry differs significantly from the flat space. So, the D-bound
in its general form may be regarded as a de Sitter space equivalent
of the flat space Bekenstein bound. Moreover, Bousso derived the
Bekenstein bound from Geroch process to the higher dimensional
spacetimes, i.e. D > 4. It has been done for both of the asymptoti-
cally de Sitter spaces (associated to the cosmological horizon) and
for asymptotically flat spaces (associated to a black hole).

In this paper, we will discuss Bousso’s D-bound in the frame-
work of the braneworld BHs [12], see also [13] as a review on the
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braneworld black holes. These objects arise from the gravitational
collapse of matter trapped on a brane [14]. In particular, Bousso’s
D-bound entropy will be checked for the various possible BH so-
lutions on 4D brane. After that, it will be shown that the relation
between the D-bound and Bekenstein entropy bound put restric-
tion on the braneworld BH solutions.

The organization of the paper is as follows. In section 2, we
review the entropy bounds. Then, in section 3, we introduce the
general vacuum black hole solution and its subclasses on a 4D
brane obtained in [12]. In the following sections, we investigate
D-bound entropy for the these mentioned subclasses. The paper
ends in section 9, with some concluding remarks.

2. The entropy bounds

Following Bousso [10] for the D-bound on matter entropy in
de Sitter space, one can infer some physical results by considering
the D-bound and its relationship with Bekenstein entropy bound.
In this line, to derive D-bound, one may suppose a matter sys-
tem within the apparent cosmological horizon of an observer. In
such a situation, the observer is in a universe with a future de-
Sitter asymptotic. By moving relative to the matter system toward
the asymptotic region, this observer can be witness of a thermody-
namical process by which the matter system is moved outward the
cosmological horizon. Then, the observer will find himself in the
space-time that has been converted to empty pure de-Sitter space.
In this process, the initial thermodynamical system, the asymptotic
de Sitter space including the matter system, has the total entropy

Ac

S=Sm+ (1)
where S;; is the entropy of the matter inside the cosmological
horizon and A./4 is the Bekenstein-Hawking entropy associated
to the enclosing apparent cosmological horizon. At the end of the
process, the final entropy of the system will be Sy = Ag/4 in which
Ao is the area of the cosmological horizon of the de Sitter space
empty of any matter. Now, regarding the generalized second law,
i.e. S < Sp, one arrives at [10]

1
Sm< Z(AO_AC)- (2)

This is the so-called D-bound on the matter systems in an asymp-
totically de Sitter space. For empty de Sitter space, we have
Ao = Ac and consequently the D-bound vanishes, because there is
no matter present. Using the fact Sp > 0, one realizes A < Ayp.
Then, a matter system enclosed by a cosmological horizon has
smaller area than the horizon area of an empty de-Sitter space.
Now, consider a BH, as the matter system, in an asymptotically
de Sitter space. For this case, the matter entropy S;; is the BH’s
Bekenstein-Hawking entropy. Then, one can verify that this new
configuration also satisfies the D-bound and consequently, the area
of the cosmological horizon surrounding the black hole A; will be
smaller than Ag, the cosmological horizon of the empty de Sitter
space.
The metric for this case is given by

ds® = —f(nde® + f ()~ dr* +r°dQ3, (3)
where
fr)y=1- ¥ — AP (4)

Setting f(r) =0 gives the locations of the BH horizon r, and the
cosmological horizon r. in the presence of the BH, respectively. The

values of these horizon locations depends on the mass parameter
M such that by setting M = 0, we arrive at the empty de Sitter
space. Then, for the latter case, the only positive root of f =0 is
rc =ro representing the radius of the cosmological horizon. But in
the case of M > 0, there is another root r;, which represents the
BH horizon (r, ~ 2M for small mass parameter M). By increas-
ing the mass parameter M, the BH horizon r, increases while the
cosmological horizon r. decreases. Remember that for the empty
de Sitter space, the cosmological horizon has area Ag = 471r(2J while
there exists a matter inside the system, the cosmological hori-
zon has area A. = 4nr§. For M =0, rc has its maximum value
as rc =rp and decreases for M > 0. Then, for all range of M, we
have A; < Ao and we can consider the D-bound.

The D-bound (2) states that for this case, the BH entropy i.e.
Ap/4=mr}, is less than 7 (1} —r2). Thus, we can consider the total
entropy of the system of matter, which is enclosed by the cosmo-
logical horizon (the entropy of Schwarzschild-de Sitter space), as

S=m@?+1d), (5)

and we know that this entropy is less than the entropy of empty
de-Sitter space

So=mrd. (6)

By solving the cubic equation (4), i.e. f(r) =0, finding its posi-
tive roots and putting it into (5), we can rewrite the system’s total
entropy S in the following form for small M parameter

S=nri(1— %)+O(M2). (7)

Now, we can investigate the relation between this D-bound with
the Bekenstein entropy bound. For the de Sitter space, the en-
ergy of the system is not well-defined because there is no suitable
asymptotic region for this space. However, Birkhoff’s theorem [15]
implies that there exists some Schwarzschild-de Sitter solution for
a spherical system such that its metric is the same as the metric
at large radii. This large radii can be regarded as the cosmological
horizon radius, i.e. r.. Then, one can call this BH as the system’s
equivalent BH, and its radius is the gravitational radius rg of the
system.

In the flat space, the gravitational radius is exactly twice the
mass-energy, i.e. rg =2M [15], and one can express the Bekenstein
bound in terms of both these quantities, i.e. mass-energy or gravi-
tational radius. However, for an asymptotically de Sitter space, one
can still define the gravitational radius rg, while the mass-energy
cannot be defined. In this case, one may define Ap in the D-bound,
the relation (2), in terms of r¢ and rg rather than ro.

Also, the mass parameter can be obtained in terms of the BH
radius by the help of the equation (4) as

r2
2M=r,[1-2). (8)
o

By setting r, =rg, we can express Ao in terms of the rg and r.. For
this purpose, in the limit of small equivalent BHs (rg < 1c) which
corresponds to light matter systems, one finds

2 =12 (1+:—f>+o [(:—f)z]. 9)

Then, by rewriting Ag using this equation, the D-bound (2), to the
first order in rg reads as

Sm S Trgle. (10)
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Now, recall the Bekenstein entropy bound defined in terms of grav-
itational radius rg =2M as

Sm <mrgR, (11)

where R is the radius of the sphere enclosing the system. By com-
paring (10) with (11), we find that the D-bound coincides with
Bekenstein bound, using the fact that in de Sitter space a stable
system cannot be larger than R =r.

For the excited BHs, i.e. the BHs which emitted a large amount
of Hawking quanta, the recent Bohr-like approach to BH quantum
physics [4,16,17] permits to write the BH gravitational radius in
function of the BH quantum level as [4,16,17]

(re), =2My =2,/ M3 -, (12)

where n is the BH principal quantum number, M, is the mass of
the BH excited at the level n and M, is the initial BH mass, i.e.
the BH mass before that Hawking radiation starts to be emitted.
In fact, in [4,16,17] the intuitive but general conviction that BHs
result in highly excited states representing both the “Hydrogen
atom” and the “quasi-thermal emission” in quantum gravity has
been shown to be correct, because the Schwarzschild BH results
somewhat similar to the historical semi-classical hydrogen atom
introduced by Bohr in 1913 [18,19]. For the excited BHs, using the
Eq. (12), the Eqgs. from (8) to (11) become

2

2 /Mz—g—rb(l - Lb), (13)
I‘

S0
T,

r0 =1y 21+ 5
Cc
m < 27re, [M? — (15)
and finally

n
Sm <2mR /M%—E. (16)

Then, it is seen that for the excited BHs, we have tighter bound
depending on the BH principal quantum number n.

Here, it is worth mentioning to a brief discussion on the
N-bound entropy. The N-bound states that the observable entropy
S in any universe Which has a positive cosmological constant A is
bounded by N = 2T, regardless of its matter content [11]. For our
purpose, one can wrlte the N-bound as follows

S=Sm+Sc=<N. (17)
Here, using (7) and (17), we have

2M 37 5
nro(l——) T:nro, (18)

which indicates that the N-bound is also satisfied.

In the following section, we introduce the general vacuum black
hole solution and its subclasses on a 4D brane. Then, we discuss
on the corresponding entropy bounds related to each of these sub-
classes.

3. Vacuum black hole solutions on the brane

In a braneworld model, the visible Universe with 3 spatial di-
mensions is considered as being restricted to a brane inside a

higher-dimensional space. If one assumes the additional dimen-
sions to be compact (that is curled up in themselves and having
their lengths of order of the Planck length), such dimensions are
inevitably within the Universe. Instead, if one assumes the ad-
ditional dimensions to be not compact, the higher-dimensional
space is called the bulk. In that case, on one hand, other branes
can move through the bulk. On the other hand, some extra di-
mensions can be extensive and even infinite. A first attempt to
discuss a braneworld model was the pioneering work [20]. More
than 15 years later, we find the works of Gogberashvili [21],
Randall-Sundrum (RS) scenarios, i.e. RS1 [22] and RS2 [23], Arkani-
Hamed-Dimopoulos-Dvali (ADD) model [24], Dvali-Gabadadze-
Porrati (DGP) model [25], see [26] and [27] for a review on brane
gravity. In this Section, we start from the black hole solution [12]
in the most general braneworld model introduced in [28] and de-
veloped in [29-38], without giving any detail on this model and
its applications. In this general model, there is no specific junction
conditions or Z; symmetry and consequently, this model differs
from the usual RS braneworld scenario where Z,; symmetry is
applied across a background 4D brane considered as a boundary
embedded in an ambient bulk space. In this case, the extrinsic
curvature of the background boundary is completely determined
by the confined energy-momentum tensor on the brane using the
Israel-Darmois-Lanczos (IDL) condition.

We consider a 4D brane spacetime (My, g) embedded in a
5D bulk space (Ms,G). In order to obtain the vacuum solution
on the brane, we assume that the 4D brane (My, g) is devoid
of matter fields and the 5D ambient bulk space (Ms,G) pos-
sesses a constant curvature. Then, using the Gauss-Codazzi equa-
tions [39], the following induced equations on the 4D brane can
be obtained [12]

G;w = Q;w» (19)
where

1
Quv = (K, YKy — KKpuy) — S(KoK = K?) g, (20)

is a completely geometrical quantity resulted from the extrinsic
curvature K, of the 4D embedded brane where also we defined
the terms K o K = K,, K*¥ and K = gV K ;.

It is clear that the right hand side of Eq. (19) appears as the
modification to the vacuum field equations on the brane with re-
spect to the standard Einstein field equations of the GTR. This
modification has a geometric origin and is resulted from the ex-
trinsic curvature of the 4D brane embedded within its nD ambient
bulk space. From the spirit of Qy, one can verify that it is an in-
dependently conserved quantity, i.e. it possesses a null divergence
as V, QM"Y =0.

In order to find a general static spherically symmetric BH space-
times, one can consider the following metric

ds? = —eMDde? + eV Odr? + 12 (do? + sin®(¢)d>¢). (21)

Then, using the Codazzi equation, the induced field equations (1)
and the conservation equation V,Q*" =0, one can obtain the
non-vanishing components of the extrinsic curvature tensor K,
as

Koo(r) = —ae! ™, (22)
K11(r) = e’ ™, (23)
K22 (r) = ar? + Br, (24)
Ks3(r, 6) =ar’sin®o ~|—ﬂrsin20, (25)
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where o and B are integration constants. Using the components
of the extrinsic curvature tensor, one can find the non-vanishing
components of the Q, tensor as

Qoo = —% <3a2r2 +4aBr + /32) ,
Qi1 = _g# (3a2r2 +4apr+ 52) ,
r
822

Q2 = 22 (=3a’r —28).

_88( 4 2.
Q== ( 302r 2aﬁ). (26)

Then, by solving the field equations (19), one can find the metric
components as
et =™V =1 271\/1 —a?r? —2apr— B2, (27)
where M is the central BH mass and « and 8 are integration con-
stants resulted from the extrinsic curvature of the embedded brane
which are playing the role of cosmological parameters. In this re-
gard, the three modification terms in (27), relative to the familiar
Schwarzschild solution [40], have geometric origins and are aris-
ing from the non-trivial extrinsic geometry of the brane within
its higher dimensional ambient bulk space. Then, regarding the
metric functions (27), one can distinguish the following distinct
subclasses:

the case of 8 =0,

the case of a2 ~0,

the case of ¢ #£0 and 8 #0,
the case of «? ~0 and g2 ~0,
the case of @ = 8 =0,

the case of o =0 and 8 #0,
the case of M =0,

the case of M =8 =0,

the case of M = =0.

In the following sections, we investigate the D-bound and its rela-
tion with the Bekenstein entropy bound for each of these distinct
solutions on brane in detail.

4. The entropy bounds for the case of $ =0

This solution corresponds to the metric functions

2M
- or?, (28)

e — o=V _ 1
representing the Schwarzschild-de Sitter BH with positive cosmo-
logical constant, i.e. A = «? [41]. Interestingly, in this case, the
cosmological constant has a geometric origin, rather than its ad-
hoc introduction to the field equations of GR and arises from the
extrinsic curvature of the brane in a higher dimensional bulk. Then,
the discussions here on the entropy bounds are the same as the
section 2 and we avoid to repeat. The only point is that there is
a geometric origin for the cosmological constant of the de-Sitter
space.

5. The entropy bounds for the case of «? ~ 0

The corresponding solution is given by
2M 2

Except the A2 term, this solution looks like to the Kiselev BH [42]
in GR, see also its generalization to the Rastall theory [43]. In this

et =V =1 (29)

solution, the BH is surrounded by a quintessence field with the
field structure parameter 0 = 2«8 [42]. Then, this can be called as
the Schwarzschild-quintessence-like BH on the brane. Now, let us
find the solution of the equation

2M
fr)=1- — —2uaBr — p>=0. (30)
For M = 0 or equivalently in the BH absence, the Eq. (30) gives
1— 2
="t (31)
208

which represents the cosmological horizon of an empty of matter
(BH) space. In the presence of BH, for «8 > 0 and 1— 2 > 0, there
are two solutions for the Eq. (30) as

(=B + /(B2 —1)2 —16aM
fe= 4a8 ’

(32)

and
_(=pH— V(21> —16apM
- 4ap '

In the case of excited BHs, one can use the Eq. (12) and rewrite
these solutions in terms of the BH quantum level and of the BH
initial mass as

T'p (33)

(1—,32)-1-\/(52—1)2—1605/3 M; -3
T'C: ’ (34)
4B

and

(1—ﬁ2)—\/(ﬂ2—1)2—16aﬂ M? -1

iy 35
b 1ap (35)
Then, for the next conveniences, we rewrites r? as

1—B3r, 2M
rcz _ ( By 1- , (36)

208 1—p2
which becomes
2 n

1— 2 r 2. /M — =

1,2:( BT N A ’ (37)

¢ 2ap 1-p82
for the excited BHs.
Interestingly, from the Egs. (32) and (33), we find 1, 4+ 1. =T19.
Now, let us consider the D-bound and its relationship with Beken-
stein bound. To check the D-bound, suppose a matter system (BH)
within the apparent cosmological horizon of an observer. This
observer lies in a Universe which is going to be asymptotically
quintessence-like Universe in the future. The observer can be wit-
ness of a thermodynamical process by which the matter system
(BH) is dropped across the cosmological horizon. Then, he will be
in the space-time that has been converted to empty quintessence-
like space with the radius rp. In this process, the initial thermody-
namical system has entropy given by the Eq. (1). In this way, S, is
the entropy of the matter (BH) inside the cosmological horizon and
Ac is the area of cosmological horizon in the presence of matter
system (BH). At the end of process, the final entropy of the system
will be Sg = Ag/4, using the fact that the quarter of the area of the
apparent cosmological horizon is the Bekenstein-Hawking entropy.
Here, Ag is the area of the horizon of the empty quintessence-like
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space. Then, using the generalized second law (S < Sp) leading to
the D-bound of the Eq. (2), we find

2\ 2 2
Sm§n<<1_'8> —<1_’3 )rC+M“>. (38)
208 208 ap

Using the Eq. (31), one can rewrites the Eq. (38) as

ap
On the other hand, taking the limit of r, for small 8 values, one
gets

1—pB2 Mr.
Sm<n<( 2ap )(ro—rc)+—>. (39)

2M
=1 g
Now, if one recalls the approach in the section 2, one can take
ry =rg. Then, we have

Th (40)

2M =r4(1 — B2). (41)

Putting the Eq. (41) and Eq. (31) in the Eq. (39) and using the
relation rp + rc =rp, one obtains

Sm < rgre (141¢) +15(1410). (42)

Here, it is worth to discuss about the terms appeared in the
RHS of (42) in comparison to the term in the RHS of (10). Actu-
ally, it turns out that the terms in the RHS of (42) are appeared
because of the extra loss of information, associated to the extra di-
mension, when an extra-dimensional black hole is moved outward
the observer’s cosmological horizon.

For further discussion we compare this with the covariant en-
tropy bound of a 4-dimensional black hole. The covariant entropy
bound for this black hole leads to [9]

Sm < (43)

2
where A is the area of black hole’s horizon. So, here the covari-
ant entropy bound becomes S, < nré. This bound is tighter than
the bound in inequality (42). This result is not surprising because
even for a 4-dimensional black hole, the covariant entropy bound
is tighter than D-bound [10].

Regarding the N-bound, we note that since «? ~ 0 which
means A =~ 0, then the N-bound becomes infinite and so this kind
of black hole in a braneworld may be allowed.

6. The entropy bounds for the case of « # 0 and 8 # 0

This is the most general solution on the brane where

fy=1-2M 22 _20pr — p?

2M 2 (44)
=12 —(@r+p)>
In the BH absence, i.e. M =0, the Eq. (44) gives
(arg+B)? =1, (45)

where rg is the radius of the cosmological horizon in the absence
of any matter system (BH). Using the Eq. (45), one can rewrite the
Eq. (44) as

2M  (ar + B)2
fy=1— — — —_—.

r (aro+ B)

Now, by solving f(r) =0, one can find two roots r. and r, as the
cosmological horizon in the presence of matter system (BH) and
the BH horizon, respectively, as

(46)

2
1— M (arc+B)° =0, (47)
re  (aro+p)?

and
| 2M _ (n +p)?
o (aro+p)?
If 2M « r¢, using (47), we have

5 5 . 2M  4M? 2M 4
(arg+p) = (arc+p)" A1+ —+—)+0(—)", (49)
Te 2 Te
which leads to
2 2MB%  4aM
rd=r2 4 4M? + —ﬂ(rc —10) + 2Mrc + ’32 + aMp (50)
o reo o
Also, we can rewrite the equation (48) as
-1
ar
rb=2M(l—( b+ﬂ)2> . (51)
org + ,3

We note that the condition 2M <« r. will be, in principle, satisfied
for the excited astrophysics BHs in the future, when a lot of their
mass will be radiated in terms of Hawking quanta. In that case,
if one uses again the Eq. (12), the Egs. from (49) to (51) can be
re-written in terms of the BH quantum level and the BH initial

mass as
2 n
2,/M? -1

4(Mf - 5)

(arg+ B)* = (arc + B)*(1 + +——5—29)
Te g
2,/M? -2
1 2
+0(——>)°, (52)
T'c
and
n 28
r(2)=r3+4(M,2— 5) —i—?(rc—ro)
S 2 IMP-3p% 4 /MP-3p
+2,/M? — —rc+ 5 + , (53)
2 reo o
and

o fur (1o @mtB )T
ry =2,/ M? 2(1 (ar0+ﬁ)> . (54)

Now, we can investigate the relation between the D-bound and
the Bekenstein bound for this type of BHs on the brane. To de-
rive the D-bound, suppose a matter system within the apparent
cosmological horizon of an observer. Regarding the Eq. (44), al-
though the structure of the whole system is different than the
usual Schwarzschild-de Sitter system, particularly for the mean
distances, we find that here the observer is also in a Universe
which is going to be asymptotically de Sitter in the future. The ob-
server can be witness of a thermodynamical process by which the
matter system is dropped across the cosmological horizon. Then,
he will be in the space-time that has been converted to empty
de Sitter-like space but not pure de Sitter. In this process the ini-
tial thermodynamical system has entropy, like as the equation (2),
where S;; is the entropy of the matter inside the cosmological
horizon and A. is the area of the cosmological horizon. A quarter
of the area of the apparent cosmological horizon is the Bekenstein-
Hawking entropy. At the end of process, the final entropy of the
system will be So = Ag/4. Here, Ap is the area of horizon of
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the empty de Sitter-like space. Then, the generalized second law,
S < Sy, leads to D-bound

2
2 2
Smgan<2M+rc+ P ﬁ) P

5+ ) + e — o), (55)
rea o o

where we used the Eq. (2). Using the Eq. (36), we can rewrite this
relation as

Sm <y <1 —(“r”ﬂ)Z) (rb (1—(“”’“3)2)+rc

arg+ B arg+ B
22 2
+ ’32+—’3>+—ﬂ(rc—ro)- (56)
reo o o

Replacing r, =14, one gets

Sm < Trg (1 _ (Mf) <1”g (1 _ (Mf) +71,

arg+ B arg+ B
22 2
;P > +—ﬂ>+—ﬂ(rc—ro), (57)
reo o o
which yields
Sm < Trglc
arg+ B, B> 28
1 (=&~ nls
+nrg(rg< (ozro+,3)>+rcoz2+a
2
— 1y (“rg +5) (rg <1 _ (Olrg +/3)2) +re
arg+ B8 arg+ B
2 2 2
+ P 3 —l——ﬁ)—i——ﬂ(rc—ro). (58)
reo o o

By comparing this D-bound with the Bekenstein entropy bound
(11) with rg =1, = 2M for r, < 1o, using the equation (6) and
rc = R, we find that there are two physical possibilities as

e The extra terms should vanish in order to maintain the Beken-
stein bound for this type of black holes on the brane.

e The extra terms should possesses total negative values, but
small relative to 7rrcrg, in order to lead a D-bound tighter than
the Bekenstein bound for this type of black holes on the brane.

Both of these two possibilities put restrictions on the geometric
parameters « and g of the embedded brane within its ambient
space.

If one sets 8 =0, one finds

Sm < wrerg(14-5), (59)
Cc
where in the limit of rg < 1, the relation Sy, < mrerg in (10) can
be recovered, as the obtained result in [10].
Also in this case, if one considers excited BHs, the equations
from (55) to (59) can be written in terms of the BH quantum level
and the BH initial mass through the Eq. (12). For this case, the

Eq. (59) becomes
/2
2,/M7 — %

Sm<mrerg | 1+
Tc

(60)

Here, it is also seen that for the excited BH, we have tighter en-
tropy bound relative to the initial their states.

We can discuss here about the N-bound for the solution (44).
Because the cosmological constant term «2r? in the spacetime of
the metric (44) is still asymptotically dominant term, so it is ex-
pected that the N-bound will hold also for the solution (44) similar
to the de-Sitter and Schwarzschild-de-Sitter spaces.

7. The entropy bounds for the case of «? ~ 0 and 2 ~0

The corresponding solution is given by
) — o=V _ 1 _ ¥ —2apr, (61)
which is exactly the Schwarzschild BH in the quintessence field

[42] with the quintessence structure parameter o = 2«/8. Now, we
need to find the solutions of

2M
fry=1- — —2afr—p*=0. (62)
For M = 0 or equivalently in the BH absence, the Eq. (62) gives
1
- ; 63
0= 2up (63)

which represents the cosmological horizon of an empty of matter
(BH) space. In the presence of BH, there are two solutions for (62)
as

1+./1—-16aBM
re=————, (64)
4ap
and
1-/1—-16a8M
p = Ty (65)

representing the cosmological horizon in the BH presence and the
BH horizon, respectively. Here, it is useful to rewrite (64) as

1
2
re = —(c+2M). 66
Then, by using r, +r. =19 and the generalized second law (S <
So), we find the D-bound

Sm < mré —mr?

=7 ((rc +1g)* = ro(rc +2M))
=7 (rorg — 2roM)
= 7T (2rcM + 15 — 2rgM). (67)

Since rg > rg then the third term overcomes to the second, i.e.
r§ — 2roM < 0, and this relation represents a tighter bound than
the Bekenstein and covariant entropy bounds for this type of BHs
on the brane. Then, these BHs can exist as the real physical BH
solutions on the brane, if one regards the covariant bound as the
basic physical entropy bound.

For this case, if one considers the excited BHs, the Eq. (12) per-
mits to rewrite the Eq. (67) in terms of the BH excited state as

Sm < mré —mr?

_ 2 2_ I
=7 | (re+r1g)° —T1o(rc +2 Ml—i)

, N
= | rorg — 2rg MI_E
n n
:n(ZrC/Mf—2+r§—2r0/M%—2>, (68)

representing a tighter bound.

Because of a? ~ 0 which means A ~ 0, the N-bound becomes
infinite and so this kind of black hole in a braneworld may be
allowed.
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8. The remaining cases
8.1. Thecaseof« =B =0

Here, the corresponding metric is the familiar Schwarzschild so-
lution [15]
() _ p—v) _ 1 _ M (69)

r

In this case, there is no cosmological horizon. Thus, one cannot
consider the thermodynamical process defined for obtaining the
D-bound or N-bound. Therefore, that method cannot be applied
for this case.

8.2. Thecaseofa =0and B #0

In this case, we have no cosmological horizon and consequently,
we can not define the thermodynamic process considered in [10]
and [11] to obtain the D-bound or N-bound.

8.3. The case of M =0

In this case, we have two horizons without BHs. If the inner
horizon can be go out of the outer horizon, like the BH in the
thermodynamical process in the studied cases in sections 3-6, it
may be possible to find D-bound or N-bound. This is an issue that
will be analyzed in our future work [44].

84. Thecaseof M=8=0

This case represents the pure de Sitter space where A, = Ap
and the D-bound vanishes.

8.5. Thecaseof M =a =0

There is no cosmological horizon for this case to define the
mentioned thermodynamical process in [10].

9. Concluding remarks

In this paper, we have focused on the Bousso’s D-bound
entropy and on the Bekenstein’s entropy bound. In particular,
Bousso’s D-bound entropy has been checked for the various possi-
ble extra dimensional black hole solutions. It turns out that the
D-bound entropy here is apparently different from that of ob-
tained for the 4-dimensional black hole solutions. This difference
is interpreted as the extra loss of information, associated to the
extra dimension, when an extra-dimensional black hole is moved
outward the observer’s cosmological horizon. We have also dis-
cussed briefly about the N-bound entropy for the possible black
hole solutions on the braneworld, represented by the cases a? =0
and a? # 0. It turns out that the N-bound holds for both cases.
In addition, through the recent Bohr-like approach to black hole
quantum physics for the excited black holes, it has been possi-
ble to rewrite the various obtained results also in function of the
black hole quantum principal number, i.e. in function of the black
hole quantum excited state. In this regard, we have tighter entropy
bound for the excited black holes relative their initial states. We
hope to further extend our analysis in a future paper [44].
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