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The Bousso’s D-bound entropy for the various possible black hole solutions on a 4-dimensional brane 
is checked. It is found that the D-bound entropy here is apparently different from that of obtained for 
the 4-dimensional black hole solutions. This difference is interpreted as the extra loss of information, 
associated to the extra dimension, when an extra-dimensional black hole is moved outward the 
observer’s cosmological horizon. Also, it is discussed that N-bound entropy is hold for the possible 
solutions here. Finally, by adopting the recent Bohr-like approach to black hole quantum physics for 
the excited black holes, the obtained results are written also in terms of the black hole excited states.
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1. Introduction

Black hole (BH) quantum physics started in the 70s of last 
century with the remarkable works of Bekenstein [1,2] and Hawk-
ing [3]. It is a general conviction that Hawking radiation [3] and 
Bekenstein–Hawking entropy [2,3] are the two most important 
provisions of a yet unknown theory of quantum gravity which 
will permit to unify Einstein’s general theory of relativity (GTR) 
with quantum mechanics. In fact, researchers in quantum grav-
ity think that BHs should be the fundamental bricks of quantum 
gravity in the same way that atoms are the fundamental bricks of 
quantum mechanics [4]. In this framework, a fundamental result 
again by Bekenstein was that BHs have the maximum entropy for 
given mass and size which is allowed by quantum theory and by 
the GTR [5]. This Bekenstein bound represents an upper limit on 
the entropy that can be contained within a given finite region of 
space having a finite amount of energy. In other words, it is the 
maximum amount of information required to perfectly describe a 
given physical system down to the quantum level [5]. Thus, as-
suming that the region of space and the energy of the system are 
finite, the information necessary to perfectly describe it, is also 
finite [5]. Bekenstein bound has also important consequences in 
the physics of information and in computer science because it is 
connected with the so-called Bremermann’s Limit [6], a maximum 
information-processing rate for a physical system having finite size 
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and energy. Also, the field equations of the GTR can be also de-
rived by assuming the correctness of the Bekenstein bound and 
of the laws of thermodynamics [7]. Today we have various argu-
ments which show that some form of the bound must exist if one 
wants the laws of thermodynamics and the GTR to be mutually 
consistent [8]. A generalization of the Bekenstein bound was at-
tempted by Bousso [9], who conjectured an entropy bound having 
statistical origin and to be valid in all space–times admitted by 
Einstein’s equation. This is the covariant entropy bound and re-
duces to Bekenstein bound for systems with limited self-gravity 
[9]. Bousso also proposed a bound on the entropy of matter sys-
tems within the cosmological horizon called the “D-bound” which 
claims that the total observable entropy is bounded by the inverse 
of the cosmological constant [10]. The dependance of D-bound on 
the cosmological constant and the area of initial horizon [10] turns 
out to be useful for at least one application [11], but its relation-
ship to the flat space Bekenstein bound still remains obscure. If 
one implies the cosmological horizon in terms of gravitational ra-
dius rather than the energy of the system, the D-bound will be the 
same as the Bekenstein bound. Note that although a special limit 
is taken but the agreement is non-trivial, because the background 
geometry differs significantly from the flat space. So, the D-bound 
in its general form may be regarded as a de Sitter space equivalent 
of the flat space Bekenstein bound. Moreover, Bousso derived the 
Bekenstein bound from Geroch process to the higher dimensional 
spacetimes, i.e. D > 4. It has been done for both of the asymptoti-
cally de Sitter spaces (associated to the cosmological horizon) and 
for asymptotically flat spaces (associated to a black hole).

In this paper, we will discuss Bousso’s D-bound in the frame-
work of the braneworld BHs [12], see also [13] as a review on the 
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braneworld black holes. These objects arise from the gravitational 
collapse of matter trapped on a brane [14]. In particular, Bousso’s 
D-bound entropy will be checked for the various possible BH so-
lutions on 4D brane. After that, it will be shown that the relation 
between the D-bound and Bekenstein entropy bound put restric-
tion on the braneworld BH solutions.

The organization of the paper is as follows. In section 2, we 
review the entropy bounds. Then, in section 3, we introduce the 
general vacuum black hole solution and its subclasses on a 4D
brane obtained in [12]. In the following sections, we investigate 
D-bound entropy for the these mentioned subclasses. The paper 
ends in section 9, with some concluding remarks.

2. The entropy bounds

Following Bousso [10] for the D-bound on matter entropy in 
de Sitter space, one can infer some physical results by considering 
the D-bound and its relationship with Bekenstein entropy bound. 
In this line, to derive D-bound, one may suppose a matter sys-
tem within the apparent cosmological horizon of an observer. In 
such a situation, the observer is in a universe with a future de-
Sitter asymptotic. By moving relative to the matter system toward 
the asymptotic region, this observer can be witness of a thermody-
namical process by which the matter system is moved outward the 
cosmological horizon. Then, the observer will find himself in the 
space–time that has been converted to empty pure de-Sitter space. 
In this process, the initial thermodynamical system, the asymptotic 
de Sitter space including the matter system, has the total entropy

S = Sm + Ac

4
, (1)

where Sm is the entropy of the matter inside the cosmological 
horizon and Ac/4 is the Bekenstein–Hawking entropy associated 
to the enclosing apparent cosmological horizon. At the end of the 
process, the final entropy of the system will be S0 = A0/4 in which 
A0 is the area of the cosmological horizon of the de Sitter space 
empty of any matter. Now, regarding the generalized second law, 
i.e. S ≤ S0, one arrives at [10]

Sm � 1

4
(A0 − Ac). (2)

This is the so-called D-bound on the matter systems in an asymp-
totically de Sitter space. For empty de Sitter space, we have 
A0 = Ac and consequently the D-bound vanishes, because there is 
no matter present. Using the fact Sm � 0, one realizes Ac � A0. 
Then, a matter system enclosed by a cosmological horizon has 
smaller area than the horizon area of an empty de-Sitter space. 
Now, consider a BH, as the matter system, in an asymptotically 
de Sitter space. For this case, the matter entropy Sm is the BH’s 
Bekenstein–Hawking entropy. Then, one can verify that this new 
configuration also satisfies the D-bound and consequently, the area 
of the cosmological horizon surrounding the black hole Ac will be 
smaller than A0, the cosmological horizon of the empty de Sitter 
space.

The metric for this case is given by

ds2 = − f (r)dt2 + f (r)−1dr2 + r2d�2
2, (3)

where

f (r) = 1 − 2M

r
− �r2. (4)

Setting f (r) = 0 gives the locations of the BH horizon rb and the 
cosmological horizon rc in the presence of the BH, respectively. The 
values of these horizon locations depends on the mass parameter 
M such that by setting M = 0, we arrive at the empty de Sitter 
space. Then, for the latter case, the only positive root of f = 0 is 
rc = r0 representing the radius of the cosmological horizon. But in 
the case of M > 0, there is another root rb which represents the 
BH horizon (rb ≈ 2M for small mass parameter M). By increas-
ing the mass parameter M , the BH horizon rb increases while the 
cosmological horizon rc decreases. Remember that for the empty 
de Sitter space, the cosmological horizon has area A0 = 4πr2

0 while 
there exists a matter inside the system, the cosmological hori-
zon has area Ac = 4πr2

c . For M = 0, rc has its maximum value 
as rc = r0 and decreases for M > 0. Then, for all range of M , we 
have Ac < A0 and we can consider the D-bound.

The D-bound (2) states that for this case, the BH entropy i.e. 
Ab/4 = πr2

b , is less than π(r2
0 −r2

c ). Thus, we can consider the total 
entropy of the system of matter, which is enclosed by the cosmo-
logical horizon (the entropy of Schwarzschild–de Sitter space), as

S = π(r2
c + r2

b ), (5)

and we know that this entropy is less than the entropy of empty 
de-Sitter space

S0 = πr2
0. (6)

By solving the cubic equation (4), i.e. f (r) = 0, finding its posi-
tive roots and putting it into (5), we can rewrite the system’s total 
entropy S in the following form for small M parameter

S = πr2
0(1 − 2M

r0
) + O (M2). (7)

Now, we can investigate the relation between this D-bound with 
the Bekenstein entropy bound. For the de Sitter space, the en-
ergy of the system is not well-defined because there is no suitable 
asymptotic region for this space. However, Birkhoff’s theorem [15]
implies that there exists some Schwarzschild–de Sitter solution for 
a spherical system such that its metric is the same as the metric 
at large radii. This large radii can be regarded as the cosmological 
horizon radius, i.e. rc . Then, one can call this BH as the system’s 
equivalent BH, and its radius is the gravitational radius rg of the 
system.

In the flat space, the gravitational radius is exactly twice the 
mass-energy, i.e. rg = 2M [15], and one can express the Bekenstein 
bound in terms of both these quantities, i.e. mass-energy or gravi-
tational radius. However, for an asymptotically de Sitter space, one 
can still define the gravitational radius rg , while the mass-energy 
cannot be defined. In this case, one may define A0 in the D-bound, 
the relation (2), in terms of rc and rg rather than r0.

Also, the mass parameter can be obtained in terms of the BH 
radius by the help of the equation (4) as

2M = rb

(
1 − r2

b

r2
0

)
. (8)

By setting rb = rg , we can express A0 in terms of the rg and rc . For 
this purpose, in the limit of small equivalent BHs (rg � rc) which 
corresponds to light matter systems, one finds

r2
0 = r2

c

(
1 + rg

rc

)
+ O

[
(

rg

rc
)2

]
. (9)

Then, by rewriting A0 using this equation, the D-bound (2), to the 
first order in rg reads as

Sm ≤ πrgrc. (10)
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Now, recall the Bekenstein entropy bound defined in terms of grav-
itational radius rg = 2M as

Sm ≤ πrg R, (11)

where R is the radius of the sphere enclosing the system. By com-
paring (10) with (11), we find that the D-bound coincides with 
Bekenstein bound, using the fact that in de Sitter space a stable 
system cannot be larger than R = rc .

For the excited BHs, i.e. the BHs which emitted a large amount 
of Hawking quanta, the recent Bohr-like approach to BH quantum 
physics [4,16,17] permits to write the BH gravitational radius in 
function of the BH quantum level as [4,16,17]

(
rg

)
n = 2Mn = 2

√
M2

I − n

2
, (12)

where n is the BH principal quantum number, Mn is the mass of 
the BH excited at the level n and MI is the initial BH mass, i.e. 
the BH mass before that Hawking radiation starts to be emitted. 
In fact, in [4,16,17] the intuitive but general conviction that BHs 
result in highly excited states representing both the “Hydrogen 
atom” and the “quasi-thermal emission” in quantum gravity has 
been shown to be correct, because the Schwarzschild BH results 
somewhat similar to the historical semi-classical hydrogen atom 
introduced by Bohr in 1913 [18,19]. For the excited BHs, using the 
Eq. (12), the Eqs. from (8) to (11) become

2

√
M2

I − n

2
= rb(1 − r2

b

r2
0

), (13)

r2
0 = r2

c (1 +
2
√

M2
I − n

2

rc
) + O

(
2M2

I − n
2

r2
c

)
, (14)

Sm ≤ 2πrc

√
M2

I − n

2
, (15)

and finally

Sm ≤ 2π R

√
M2

I − n

2
. (16)

Then, it is seen that for the excited BHs, we have tighter bound 
depending on the BH principal quantum number n.

Here, it is worth mentioning to a brief discussion on the 
N-bound entropy. The N-bound states that the observable entropy 
S in any universe which has a positive cosmological constant � is 
bounded by N = 3π

�
, regardless of its matter content [11]. For our 

purpose, one can write the N-bound as follows

S = Sm + Sc ≤ N. (17)

Here, using (7) and (17), we have

πr2
0(1 − 2M

r0
) ≤ 3π

�
= πr2

0, (18)

which indicates that the N-bound is also satisfied.
In the following section, we introduce the general vacuum black 

hole solution and its subclasses on a 4D brane. Then, we discuss 
on the corresponding entropy bounds related to each of these sub-
classes.

3. Vacuum black hole solutions on the brane

In a braneworld model, the visible Universe with 3 spatial di-
mensions is considered as being restricted to a brane inside a
higher-dimensional space. If one assumes the additional dimen-
sions to be compact (that is curled up in themselves and having 
their lengths of order of the Planck length), such dimensions are 
inevitably within the Universe. Instead, if one assumes the ad-
ditional dimensions to be not compact, the higher-dimensional 
space is called the bulk. In that case, on one hand, other branes 
can move through the bulk. On the other hand, some extra di-
mensions can be extensive and even infinite. A first attempt to 
discuss a braneworld model was the pioneering work [20]. More 
than 15 years later, we find the works of Gogberashvili [21], 
Randall–Sundrum (RS) scenarios, i.e. RS1 [22] and RS2 [23], Arkani-
Hamed–Dimopoulos–Dvali (ADD) model [24], Dvali–Gabadadze–
Porrati (DGP) model [25], see [26] and [27] for a review on brane 
gravity. In this Section, we start from the black hole solution [12]
in the most general braneworld model introduced in [28] and de-
veloped in [29–38], without giving any detail on this model and 
its applications. In this general model, there is no specific junction 
conditions or Z2 symmetry and consequently, this model differs 
from the usual RS braneworld scenario where Z2 symmetry is 
applied across a background 4D brane considered as a boundary 
embedded in an ambient bulk space. In this case, the extrinsic 
curvature of the background boundary is completely determined 
by the confined energy-momentum tensor on the brane using the 
Israel–Darmois–Lanczos (IDL) condition.

We consider a 4D brane spacetime (M4, g) embedded in a 
5D bulk space (M5, G). In order to obtain the vacuum solution 
on the brane, we assume that the 4D brane (M4, g) is devoid 
of matter fields and the 5D ambient bulk space (M5, G) pos-
sesses a constant curvature. Then, using the Gauss–Codazzi equa-
tions [39], the following induced equations on the 4D brane can 
be obtained [12]

Gμν = Q μν, (19)

where

Q μν = (K γ
μ Kγ ν − K Kμν) − 1

2
(K ◦ K − K 2)gμν, (20)

is a completely geometrical quantity resulted from the extrinsic 
curvature Kμν of the 4D embedded brane where also we defined 
the terms K ◦ K ≡ Kμν K μν and K ≡ gμν Kμν .

It is clear that the right hand side of Eq. (19) appears as the 
modification to the vacuum field equations on the brane with re-
spect to the standard Einstein field equations of the GTR. This 
modification has a geometric origin and is resulted from the ex-
trinsic curvature of the 4D brane embedded within its nD ambient 
bulk space. From the spirit of Q μν , one can verify that it is an in-
dependently conserved quantity, i.e. it possesses a null divergence 
as ∇μ Q μν = 0.

In order to find a general static spherically symmetric BH space-
times, one can consider the following metric

ds2 = −eμ(r)dt2 + eν(r)dr2 + r2(dθ2 + sin2(φ)d2φ). (21)

Then, using the Codazzi equation, the induced field equations (1)
and the conservation equation ∇μ Q μν = 0, one can obtain the 
non-vanishing components of the extrinsic curvature tensor Kμν

as

K00(r) = −αeμ(r), (22)

K11(r) = αeν(r), (23)

K22(r) = αr2 + βr, (24)

K33(r, θ) = αr2 sin2 θ + βr sin2 θ, (25)
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where α and β are integration constants. Using the components 
of the extrinsic curvature tensor, one can find the non-vanishing 
components of the Q μν tensor as

Q 00 = − g00

r2

(
3α2r2 + 4αβr + β2

)
,

Q 11 = − g11

r2

(
3α2r2 + 4αβr + β2

)
,

Q 22 = g22

r

(
−3α2r − 2αβ

)
,

Q 33 = g33

r

(
−3α2r − 2αβ

)
. (26)

Then, by solving the field equations (19), one can find the metric 
components as

eμ(r) = e−ν(r) = 1 − 2M

r
− α2r2 − 2αβr − β2, (27)

where M is the central BH mass and α and β are integration con-
stants resulted from the extrinsic curvature of the embedded brane 
which are playing the role of cosmological parameters. In this re-
gard, the three modification terms in (27), relative to the familiar 
Schwarzschild solution [40], have geometric origins and are aris-
ing from the non-trivial extrinsic geometry of the brane within 
its higher dimensional ambient bulk space. Then, regarding the 
metric functions (27), one can distinguish the following distinct 
subclasses:

• the case of β = 0,
• the case of α2 	 0,
• the case of α 
= 0 and β 
= 0,
• the case of α2 	 0 and β2 	 0,
• the case of α = β = 0,
• the case of α = 0 and β 
= 0,
• the case of M = 0,
• the case of M = β = 0,
• the case of M = α = 0.

In the following sections, we investigate the D-bound and its rela-
tion with the Bekenstein entropy bound for each of these distinct 
solutions on brane in detail.

4. The entropy bounds for the case of β = 0

This solution corresponds to the metric functions

eμ(r) = e−ν(r) = 1 − 2M

r
− α2r2, (28)

representing the Schwarzschild–de Sitter BH with positive cosmo-
logical constant, i.e. � = α2 [41]. Interestingly, in this case, the 
cosmological constant has a geometric origin, rather than its ad-
hoc introduction to the field equations of GR and arises from the 
extrinsic curvature of the brane in a higher dimensional bulk. Then, 
the discussions here on the entropy bounds are the same as the 
section 2 and we avoid to repeat. The only point is that there is 
a geometric origin for the cosmological constant of the de-Sitter 
space.

5. The entropy bounds for the case of α2 � 0

The corresponding solution is given by

eμ(r) = e−ν(r) = 1 − 2M

r
− 2αβr − β2. (29)

Except the β2 term, this solution looks like to the Kiselev BH [42]
in GR, see also its generalization to the Rastall theory [43]. In this 
solution, the BH is surrounded by a quintessence field with the 
field structure parameter σ = 2αβ [42]. Then, this can be called as 
the Schwarzschild-quintessence-like BH on the brane. Now, let us 
find the solution of the equation

f (r) = 1 − 2M

r
− 2αβr − β2 = 0. (30)

For M = 0 or equivalently in the BH absence, the Eq. (30) gives

r0 = 1 − β2

2αβ
, (31)

which represents the cosmological horizon of an empty of matter 
(BH) space. In the presence of BH, for αβ > 0 and 1 −β2 > 0, there 
are two solutions for the Eq. (30) as

rc = (1 − β2) + √
(β2 − 1)2 − 16αβM

4αβ
, (32)

and

rb = (1 − β2) − √
(β2 − 1)2 − 16αβM

4αβ
. (33)

In the case of excited BHs, one can use the Eq. (12) and rewrite 
these solutions in terms of the BH quantum level and of the BH 
initial mass as

rc =
(1 − β2) +

√
(β2 − 1)2 − 16αβ

√
M2

I − n
2

4αβ
, (34)

and

rb =
(1 − β2) −

√
(β2 − 1)2 − 16αβ

√
M2

I − n
2

4αβ
. (35)

Then, for the next conveniences, we rewrites r2
c as

r2
c = (1 − β2)rb

2αβ

(
1 − 2M

1 − β2

)
, (36)

which becomes

r2
c = (1 − β2)rb

2αβ

⎛
⎜⎝1 −

2
√

M2
I − n

2

1 − β2

⎞
⎟⎠ , (37)

for the excited BHs.
Interestingly, from the Eqs. (32) and (33), we find rb + rc = r0. 

Now, let us consider the D-bound and its relationship with Beken-
stein bound. To check the D-bound, suppose a matter system (BH) 
within the apparent cosmological horizon of an observer. This 
observer lies in a Universe which is going to be asymptotically 
quintessence-like Universe in the future. The observer can be wit-
ness of a thermodynamical process by which the matter system 
(BH) is dropped across the cosmological horizon. Then, he will be 
in the space–time that has been converted to empty quintessence-
like space with the radius r0. In this process, the initial thermody-
namical system has entropy given by the Eq. (1). In this way, Sm is 
the entropy of the matter (BH) inside the cosmological horizon and 
Ac is the area of cosmological horizon in the presence of matter 
system (BH). At the end of process, the final entropy of the system 
will be S0 = A0/4, using the fact that the quarter of the area of the 
apparent cosmological horizon is the Bekenstein–Hawking entropy. 
Here, A0 is the area of the horizon of the empty quintessence-like 
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space. Then, using the generalized second law (S ≤ S0) leading to 
the D-bound of the Eq. (2), we find

Sm � π

((
1 − β2

2αβ

)2

−
(

1 − β2

2αβ

)
rc + Mrc

αβ

)
. (38)

Using the Eq. (31), one can rewrites the Eq. (38) as

Sm � π

(
(

1 − β2

2αβ
)(r0 − rc) + Mrc

αβ

)
. (39)

On the other hand, taking the limit of rb for small β values, one 
gets

rb = 2M

1 − β2
. (40)

Now, if one recalls the approach in the section 2, one can take 
rb = rg . Then, we have

2M = rg(1 − β2). (41)

Putting the Eq. (41) and Eq. (31) in the Eq. (39) and using the 
relation rb + rc = r0, one obtains

Sm � πrgrc (1 + rc) + r2
g(1 + rc). (42)

Here, it is worth to discuss about the terms appeared in the 
RHS of (42) in comparison to the term in the RHS of (10). Actu-
ally, it turns out that the terms in the RHS of (42) are appeared 
because of the extra loss of information, associated to the extra di-
mension, when an extra-dimensional black hole is moved outward 
the observer’s cosmological horizon.

For further discussion we compare this with the covariant en-
tropy bound of a 4-dimensional black hole. The covariant entropy 
bound for this black hole leads to [9]

Sm � A

4
, (43)

where A is the area of black hole’s horizon. So, here the covari-
ant entropy bound becomes Sm � πr2

g . This bound is tighter than 
the bound in inequality (42). This result is not surprising because 
even for a 4-dimensional black hole, the covariant entropy bound 
is tighter than D-bound [10].

Regarding the N-bound, we note that since α2 	 0 which 
means � 	 0, then the N-bound becomes infinite and so this kind 
of black hole in a braneworld may be allowed.

6. The entropy bounds for the case of α �= 0 and β �= 0

This is the most general solution on the brane where

f (r) = 1 − 2M
r − α2r2 − 2αβr − β2

= 1 − 2M
r − (αr + β)2.

(44)

In the BH absence, i.e. M = 0, the Eq. (44) gives

(αr0 + β)2 = 1, (45)

where r0 is the radius of the cosmological horizon in the absence 
of any matter system (BH). Using the Eq. (45), one can rewrite the 
Eq. (44) as

f (r) = 1 − 2M

r
− (αr + β)2

(αr0 + β)2
. (46)

Now, by solving f (r) = 0, one can find two roots rc and rb as the 
cosmological horizon in the presence of matter system (BH) and 
the BH horizon, respectively, as
1 − 2M

rc
− (αrc + β)2

(αr0 + β)2
= 0, (47)

and

1 − 2M

rb
− (αrb + β)2

(αr0 + β)2
= 0. (48)

If 2M � rc , using (47), we have

(αr0 + β)2 = (αrc + β)2(1 + 2M

rc
+ 4M2

r2
c

) + O (
2M

rc
)3, (49)

which leads to

r2
0 = r2

c + 4M2 + 2β

α
(rc − r0) + 2Mrc + 2Mβ2

rcα2
+ 4Mβ

α
. (50)

Also, we can rewrite the equation (48) as

rb = 2M

(
1 − (

αrb + β

αr0 + β
)2

)−1

. (51)

We note that the condition 2M � rc will be, in principle, satisfied 
for the excited astrophysics BHs in the future, when a lot of their 
mass will be radiated in terms of Hawking quanta. In that case, 
if one uses again the Eq. (12), the Eqs. from (49) to (51) can be 
re-written in terms of the BH quantum level and the BH initial 
mass as

(αr0 + β)2 = (αrc + β)2(1 +
2
√

M2
I − n

2

rc
+ 4

(
M2

I − n
2

)
r2

c
)

+ O (
2
√

M2
I − n

2

rc
)3, (52)

and

r2
0 = r2

c + 4
(

M2
I − n

2

)
+ 2β

α
(rc − r0)

+ 2

√
M2

I − n

2
rc +

2
√

M2
I − n

2 β2

rcα2
+

4
√

M2
I − n

2 β

α
, (53)

and

rb = 2

√
M2

I − n

2

(
1 − (

αrb + β

αr0 + β
)2

)−1

. (54)

Now, we can investigate the relation between the D-bound and 
the Bekenstein bound for this type of BHs on the brane. To de-
rive the D-bound, suppose a matter system within the apparent 
cosmological horizon of an observer. Regarding the Eq. (44), al-
though the structure of the whole system is different than the 
usual Schwarzschild–de Sitter system, particularly for the mean 
distances, we find that here the observer is also in a Universe 
which is going to be asymptotically de Sitter in the future. The ob-
server can be witness of a thermodynamical process by which the 
matter system is dropped across the cosmological horizon. Then, 
he will be in the space–time that has been converted to empty 
de Sitter-like space but not pure de Sitter. In this process the ini-
tial thermodynamical system has entropy, like as the equation (2), 
where Sm is the entropy of the matter inside the cosmological 
horizon and Ac is the area of the cosmological horizon. A quarter 
of the area of the apparent cosmological horizon is the Bekenstein–
Hawking entropy. At the end of process, the final entropy of the 
system will be S0 = A0/4. Here, A0 is the area of horizon of 
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the empty de Sitter-like space. Then, the generalized second law, 
S ≤ S0, leads to D-bound

Sm � 2π M

(
2M + rc + β2

rcα2
+ 2β

α

)
+ 2β

α
(rc − r0), (55)

where we used the Eq. (2). Using the Eq. (36), we can rewrite this 
relation as

Sm � πrb

(
1 − (

αrb + β

αr0 + β
)2

)(
rb

(
1 − (

αrb + β

αr0 + β
)2

)
+ rc

+ β2

rcα2
+ 2β

α

)
+ 2β

α
(rc − r0). (56)

Replacing rb = rg , one gets

Sm � πrg

(
1 − (

αrg + β

αr0 + β
)2

)(
rg

(
1 − (

αrg + β

αr0 + β
)2

)
+ rc

+ β2

rcα2
+ 2β

α

)
+ 2β

α
(rc − r0), (57)

which yields

Sm � πrgrc

+ πrg

(
rg

(
1 − (

αrg + β

αr0 + β
)2

)
+ β2

rcα2
+ 2β

α

)

− πrg

(
αrg + β

αr0 + β

)2 (
rg

(
1 − (

αrg + β

αr0 + β
)2

)
+ rc

+ β2

rcα2
+ 2β

α

)
+ 2β

α
(rc − r0). (58)

By comparing this D-bound with the Bekenstein entropy bound 
(11) with rg = rb

∼= 2M for rb � r0, using the equation (6) and 
rc = R , we find that there are two physical possibilities as

• The extra terms should vanish in order to maintain the Beken-
stein bound for this type of black holes on the brane.

• The extra terms should possesses total negative values, but 
small relative to πrcrg , in order to lead a D-bound tighter than 
the Bekenstein bound for this type of black holes on the brane.

Both of these two possibilities put restrictions on the geometric 
parameters α and β of the embedded brane within its ambient 
space.

If one sets β = 0, one finds

Sm � πrcrg(1 + rg

rc
), (59)

where in the limit of rg � rc , the relation Sm � πrcrg in (10) can 
be recovered, as the obtained result in [10].

Also in this case, if one considers excited BHs, the equations 
from (55) to (59) can be written in terms of the BH quantum level 
and the BH initial mass through the Eq. (12). For this case, the 
Eq. (59) becomes

Sm � πrcrg

⎛
⎜⎝1 +

2
√

M2
I − n

2

rc

⎞
⎟⎠ . (60)

Here, it is also seen that for the excited BH, we have tighter en-
tropy bound relative to the initial their states.

We can discuss here about the N-bound for the solution (44). 
Because the cosmological constant term α2r2 in the spacetime of 
the metric (44) is still asymptotically dominant term, so it is ex-
pected that the N-bound will hold also for the solution (44) similar 
to the de-Sitter and Schwarzschild–de-Sitter spaces.
7. The entropy bounds for the case of α2 � 0 and β2 � 0

The corresponding solution is given by

eμ(r) = e−ν(r) = 1 − 2M

r
− 2αβr, (61)

which is exactly the Schwarzschild BH in the quintessence field 
[42] with the quintessence structure parameter σ = 2αβ . Now, we 
need to find the solutions of

f (r) = 1 − 2M

r
− 2αβr − β2 = 0. (62)

For M = 0 or equivalently in the BH absence, the Eq. (62) gives

r0 = 1

2αβ
, (63)

which represents the cosmological horizon of an empty of matter 
(BH) space. In the presence of BH, there are two solutions for (62)
as

rc = 1 + √
1 − 16αβM

4αβ
, (64)

and

rb = 1 − √
1 − 16αβM

4αβ
, (65)

representing the cosmological horizon in the BH presence and the 
BH horizon, respectively. Here, it is useful to rewrite (64) as

r2
c = 1

2αβ
(rc + 2M). (66)

Then, by using rb + rc = r0 and the generalized second law (S ≤
S0), we find the D-bound

Sm ≤ πr2
0 − πr2

c

= π((rc + rg)
2 − r0(rc + 2M))

= π(r0rg − 2r0M)

= π(2rc M + r2
g − 2r0M). (67)

Since r0 
 rg then the third term overcomes to the second, i.e. 
r2

g − 2r0M < 0, and this relation represents a tighter bound than 
the Bekenstein and covariant entropy bounds for this type of BHs 
on the brane. Then, these BHs can exist as the real physical BH 
solutions on the brane, if one regards the covariant bound as the 
basic physical entropy bound.

For this case, if one considers the excited BHs, the Eq. (12) per-
mits to rewrite the Eq. (67) in terms of the BH excited state as

Sm ≤ πr2
0 − πr2

c

= π

(
(rc + rg)

2 − r0(rc + 2

√
M2

I − n

2
)

)

= π

(
r0rg − 2r0

√
M2

I − n

2

)

= π

(
2rc

√
M2

I − n

2
+ r2

g − 2r0

√
M2

I − n

2

)
, (68)

representing a tighter bound.
Because of α2 	 0 which means � 	 0, the N-bound becomes 

infinite and so this kind of black hole in a braneworld may be 
allowed.
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8. The remaining cases

8.1. The case of α = β = 0

Here, the corresponding metric is the familiar Schwarzschild so-
lution [15]

eμ(r) = e−ν(r) = 1 − 2M

r
. (69)

In this case, there is no cosmological horizon. Thus, one cannot 
consider the thermodynamical process defined for obtaining the 
D-bound or N-bound. Therefore, that method cannot be applied 
for this case.

8.2. The case of α = 0 and β 
= 0

In this case, we have no cosmological horizon and consequently, 
we can not define the thermodynamic process considered in [10]
and [11] to obtain the D-bound or N-bound.

8.3. The case of M = 0

In this case, we have two horizons without BHs. If the inner 
horizon can be go out of the outer horizon, like the BH in the 
thermodynamical process in the studied cases in sections 3–6, it 
may be possible to find D-bound or N-bound. This is an issue that 
will be analyzed in our future work [44].

8.4. The case of M = β = 0

This case represents the pure de Sitter space where Ac = A0
and the D-bound vanishes.

8.5. The case of M = α = 0

There is no cosmological horizon for this case to define the 
mentioned thermodynamical process in [10].

9. Concluding remarks

In this paper, we have focused on the Bousso’s D-bound 
entropy and on the Bekenstein’s entropy bound. In particular, 
Bousso’s D-bound entropy has been checked for the various possi-
ble extra dimensional black hole solutions. It turns out that the 
D-bound entropy here is apparently different from that of ob-
tained for the 4-dimensional black hole solutions. This difference 
is interpreted as the extra loss of information, associated to the 
extra dimension, when an extra-dimensional black hole is moved 
outward the observer’s cosmological horizon. We have also dis-
cussed briefly about the N-bound entropy for the possible black 
hole solutions on the braneworld, represented by the cases α2 = 0
and α2 
= 0. It turns out that the N-bound holds for both cases. 
In addition, through the recent Bohr-like approach to black hole 
quantum physics for the excited black holes, it has been possi-
ble to rewrite the various obtained results also in function of the 
black hole quantum principal number, i.e. in function of the black 
hole quantum excited state. In this regard, we have tighter entropy 
bound for the excited black holes relative their initial states. We 
hope to further extend our analysis in a future paper [44].
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