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Introduction 

One of the actual problerns of QCD is the fOill1dation of 

spontaneous chiral symmetry breaking ill1d the description of the 

pion as the Goldstone particle. There are two different approaches 

to this problem. 

The first of them' is to construct chiral phenomenoloGical 

Lagrangians directly from QCD/1 / or from the Lnt er-med.La t e Low­

-energy quark models of the Nambu-Jona-L~zinio (NJL)/2/ type. 

A maj or achievement here is, in comparison "li th the initial chiral 

Lagrangian, the reduction of the number of phenomenological P8.l'U­

meters/3/ . However, these works corroborate the spontaneous sym­

met;y breaking by their numerous results rather than substantiate 

this phenomenon. Besides,this approach does.not describe the 

J /~ - particle - spe~troscopy. The object of critics of the NJL 

model is also the ultraviolet divergences on wqich the physical 

parameters dependo 

The second approach/4-7/ deals with proving spontaneous 

sy:zmnetry br-eak í.ng by means of the "confLnemerrt " potentials, i. e. 

by the po'tentials to which lattice calculations78/ , heavy quar­

konium spectrun/9<e c t ,; testify. 'I'he potentials 

k(:x)~YoY(~) ~o blXo) , 

o/..v (i) -\- d-.' \ xl ~ Y \ X\2. 
o\ i \ 

are given in the class of functions opposite to that for poten­

tials corresponding to the NJL modelo wner e Kt.x) 'V 01(X.) 

---------------.
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Unlike the first approach, these works have pr-oved that the 

"Lncr-ea.aí.ng " po t en t aLs lead to the spontaneous chiral synune t r-yí 

breaking vii th a dynamical quark mass (depending on the momentum), 

and exp La.Lrred the light and heavy quarkonirun sp e c t.rum haví.ng a 

rich nonlocal structure/6/ . However, the defect of such a poten­

tial npproach i8 a manifestly nonrelativistic formulation that 

makes difficult the description of the low-energy dynamics. 

The central question, we would like here to discuss, consists 

in the following: is it possible to formulate the model which 

V/ould consistently unify the nonlocal spectroacopy and local 

chiral Lagr-angã ans into ch e "bilocal chiral Lagrangians"? 

1. Bilocal Lagrangians 

The La~angirul describing the strong interactions of quark (q) 

and gluon (A) has the form 

{ \. s: -A \ 6 b"ÀB t;, f'lABL 
.q ( ç:rv') + ~ a.d.l CÀ ~ 10< ~- ~ g J" ~ ~ 

(1) 

1\ 1q~ l YnoJ().€ sA f:>	 
ó~f> €j> 

where (Â;> B), (Q) i» and (o(, ~ , ? ,\) ) are the color, 

flavour and space-time indices, respectively, h1 -==' d \ag ~ m~, ...,vn: )
0 

ia the bare quark mnss matrix. 

\Ve use the effective action where gluon-quark interactions 

are taken into account by the quark-quark "potential" 

SeH=:- (q, G-.\n -+ t (qq, \( 9q) . 
(2), 

2 
:' 

Here the notation of review/10/ is used, 

-i fi. iV (""4
Go =- l Yn o- ~	 }D') o lx.-(f) , 

r q 4 - -\ (3)

(g, G:t~) =- Jcl.x.d ~ 9lX) GolX,~) 9t~),
 

f 4 ~ q ­
(99, KqgJ=. Jdt1~1d~~d.x:2d~1. gN1l~1) 9L ( JC1) · 

1

KL N \ L N t~1 ~1 \~:t ~.2.) gN l ~2.J qL \~-')	 (4) 
112.2	 2. 2 

jJq:x:.lij- }f\.X) Df'vt:x:.-~) j:~'á) 

L= t.z) (L~ == (A~)o.~,<Xi.).) N~=.(B~;>~~)~,,) 

KL,\Ni \ l2. Nz.l~1 ~1 \ ~;t~;t) ~ 0a'\€J.. &"O;l. €1 \~r)o{1~1. lO~):J.:lJ/ (5) 

A B A B 4 LI. cp..(~) , "'V'})	 • , bl~l-~"') 'i) t~;Í~') Vrv I.:x:.,-X'...) . 

Since {Nr.~ ®{N:J::,{~}(f)tNt-1} , one can decompose 

the potential ~ in the color singlet and the (N;-1)- plet com­

ponents through the projective operators P", and PNc..2.-i 

1.

Nc--~ À A1B.t. '" B
 
<; (~) r )..~):l. "\ =. l(N~-i p ., _~ p.t ~ (6) 
~ \ J- \	 .2. .., N "\ N Nr.- - -t • 
L~l	 ~ ~ c.. 

In the following, we ehall consider only the singlet channel, 

i. e. K,: K ~ ,where 

(P1) A1 B;l. \ A3. B~ 6A\B\ ~ A.a. B2 . (7 ) 

For our 'aim of unificatíon of the spectroscopy and chiral 
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·	 hadron dynamics in the frrumework of the NJL model it is useful 

to introduce the colorless bilocal variables ~t?C~~) as sugges­

ted in refs./11 
, 12 / (see also review/10 / ) . In these variables 

the four-quark part of the action (2) is written as 

expU (99,1\99)}=SdW el<pt-i('Yl1)(!m)-h (~êpn)}c8) 
where nj,- t . 

[ryn l~,~)1 o.€;oI{ t:ols\:l'>~) -+ ~s p\:ll!,(t) .. ~r v; l:l'>~f) -I­

(9 ) 

~t' gs P!r l:l', 'd) -+ Hy)', ~~J l';\ll:X>,(t)10(p (À})Q g , 

dlh1-:dSd PdVdA d1 ,'S, p , V , A , and T are, res­

pectively, scnlar, pseudoscalar vector, axial and tensor parts 

of m. SUbstituting (8) into t he generating functional for the 

Green f-dnctions wi th the action S~H at K-::: K'\ , 

Zh,ip] ~ ~ d9d9exp (i. S~H"" i.Sh,Vi.;J]) (10) 

( ~, ~, ]" are the sources) 

and performing integration over the quark fields one can express 

Set:F only in terms of the b1local fields ,"m, 

Z[~)~)JJ ~JdlJ1l ~Xf(lSeH\rm)-ti.SL1)y\'~J\'11l])' (11) 

where 

(12 )SeH (TIl.) ~ - I ('m, K-'m) - t -trtn, (G~i -\- 111) . 

Remark, the effective action can be wr1tten in the variables 
1\ 

,,>	 M=: m + mo too, 

S~~~ (M')":: -1 ( ("1- ~oJ.) K\N-Yh\)~ -~ \'"~(~)+ M). (13) 

,	 4 

The classical equation for the fields M, due to 

1) S~H ~M) = O 

~M 

is	 the well-knovm Schwinger-Dyson equation, 

/\

Lo	 = YYl a - \. \(" C;~, (14 ) 

where ~ is the solution of (14) and 

G	 (:x. U J =- 1 Ó'~\~-Y) . 
1:\	 ) O ~ --l. ~ O 

Equation (14) defines the spect.rum of the fermions and is 

the	 main tool of the investization of the spontaneous chiral 

symmetry breaking phenomenon. 

The second variation of Se~ç over M at the mí.ndmum 

point,~=~ , defines the spectr~n of mesons, i.e. the se~ond 
.J 

variation condition gives the Bethe-Salpeter equation for the
 

vertex function of the quark-antiquark bound state
 

-rn.' = L 1<1 G~ m' G~ {15) 

with 'lYl' -::. M- Lo • 
The effective action in terms of tha bil~cal mesen fields
 

variables is given by
 

SeH{M) -= ~~L.~ml) =S(L) -t S~ret(ml)+s\~t\ml), (16) 

where 'f1LI 
is a solution o'f .(1-5) arrd 

r ~ t , '. -t I)' I 1 (17)
.:Jt ree ~ - :L ,,'TIl., K m -\- IG~m GL m 

K
OQ	 l-1)K I 1 ( 18)

L t3 k 

t 

S~~\ -==. lG~ m 

5 
I' 
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The actions (17) and (18) on the solutions of (13) and (15) 

contain the whole dynamics of the mesons defined directly from QCD. 

The next step in constructing our model is to fix the form 

of the quark-quark interaction potential. We shall here concent­

rate on the potential 

Ki ~X) ~ %~~i) ~~tz.) CCX~Q) \J (X) 

(19 ) 

\hj!)=-I~\*Vo\X\~, 

J es()<.s =- - ':::: O.~,
4$ 

(20) 
(4 \ ~/3
\.3\10 J ~ \ 2SQ-300) MfCY, 

which qualitatively reflects the spectroscopy light and heavy 

quarkonia/6,9/. For light quarks (r», <.<... C~ \/0) \/3 ) , with 

the compton length much larger than the "sizes" of the potential, 

the main role plays the oscillator potential, \lo \5C\~; while 

) 1~)	 ~ for heavy quarks	 ( rn o '?i- (1- V the Coulomb potential, ~ 
\ \.~ o , \~\ 

2. The oscillator potential 

Let us consider an oscillator potential. In ref./6/ for this 

potential solutions of the SchwinGer-Dyson (14) and Bethe-Salpeter 

(15)	 equations were found in the rest frame of the mesons, for 
'" the massless quar-ks J mo=' O • 

The Schwinger-Dyson equation (14) in the momentum represen­

tation can be written as 

\ó4
q r 1 ) (21),> 

z:0I~ <. ~r) -=- '- J U-li)" (\<.')0101, IH'(q\ y1"}Í- :z li,"q) JoI, fi 

6t 

and substitution 
,.-"t .... 

L lp•.p) -=- E lI'} "'in~ll')'" t':LElp) (1'&~l?) - P1 (22) 

(with \J ""' \ P\) 
-leads to an equation of the sine-Gordon-type for the function 

~ lp) 
- f 

~ v, l r~\yI) -= otP~b\Y'I~ - 1v: ~\Y) e-s (23 ) 

(the prime corresponds to the P -derivative), 

where t: can be expressed via the solution of (23) 

E lp) ~ Pc.~~ ~ - ~ Yo ~'" tQS 2'8 - i Vo l ~I ) 2. • (24) 

The solution of equation (23) -has th~ following asymptotic 

behaviour/6/ 

~l ~~oo) ~ 
e.xp (_ .2. 'fi 

.3 
p2>/.2 \ 
- ) 

~) .... ( 

E lp-...,oc) rv P 
(25) 

~lp"""o) r-.J 
~ ~ + C p , lC.~-2) 

ElP~()) 'V -
2 
d 

- i/3
c1. \/0 > 

where f == ( 1- V)
-'/3

P is the dimensionless variable,o

\2. l P'" <» \ .....,,~ <:1. y o 1/3 , 

(26) 

L l P"'00) "-' P exp C- ,lf f 1/2.) 

6/
In ref./ it has been shown that this Bolution ia more energetic­

'1 
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-favourable than the trivial solution ~ ~ O ; it leads to 

the spontaneous chiral symmetry breaking and to the quark mass 

vanishing at large momenta. 

L~	 ref./6/ the Bethe-Salpeter equation, 

G-\ "r -i . .r (27 )l:	 J- G"L =: L K \ :J.. 

has been solved for the wave function]C connected ~ith the 

bilocal meson field, 1121

, (see eqs. (15), (27)), by the relation 

I -\ .... f -\ ..... r
l1fYL =- G~ ~ G-Z -:; ~ K"\ ..),.	 (28) 

In particular, the pion wave function coincides with the dynamical 

quark mass function (see ref./6/ ) , 

.x~ lF) ~5 ~\y\ "8 (r).	 (29) 
rv 

The spontaneous chiral symmetry breaking induces a large mass 

splitting of 5\- and s> - mesona without any spin-spin interaction. 

In ref./6/ by neglecting the Coulomb interaction results have 

bee~ obtained, consistent qulitatively with the experimental mass 

spectrum of mesons. As we have noted, taking account of the 

Coulomb interaction (20) ia dictated by the spectroscopy of heavy 

quarkoniua/9/ 

Usually, the calculation of the meson maaa ia made in the 

rest frame,where 

<ol -m' (e IX) Ih) ~exp(' tx0 k
1
(i , r.)Jh(il p~~j) ~tx). (30) 

The defect of ref./6/ ia the incorrect description of a moving 
') 

quarkonium which leads to a wrong dispersion law (~l P-t'o)--2 \,Pl). 

l' 

8.. 

Naturally, such a solutiDn one cannot use for describing the 

meson relativistic interaction by means of the effective bilocal 

Lagrangian. 

Let us consider QED as an example in order to give a correct 

description of the quarkonium, in analogy with the positronium. 

3.	 Relativistic description of quarkonium and chiral 
bilocal Lagrangian 

There is an opinion that the relativistic description of 

positronium in QED could be achiev~d by,passing to the 

manifest-relativistic-covariant gauge or by taking into account 

the higher ordera of perturbation theory. But in the relativistic 

gauge there exists an unsolved problem of equal-time bound-atates 

of	 two particles. 

In recent years, the description of bound-states in QED has 

gauge/13,14(Significant resultsbeen realized only in the Coulomb 

have been got in the calculation of corrections up to the order 

O(o/.. 6). However, by improving the accuracy of calculations in 

the Coúlomb gauge one cánnot solve the problem of the relatívistic 

description. The correct staternent of the problem consists in 

the way of restoring, within a given .accuracy~ the relativistic 

covariance of the poaitronium wave function. 

It turns out, that this can be made in the scheme of quan­

tization of gauge fields in which the Poincare algebra ia fulfilled 

at	 the levei of operators rather than at the leveI of matrix 

elements alone. 

SUCR a quantization scheme ia formulated and described in 

detail in the works/15/ by Schwinger. It differs from the conven­

tional one by relativistic transformations of the spinors accom­

panied by an additional gauge rotation: 

9 
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t>L *l~) t)LO t -\- t. e f\ Sc.'hw. '\J ~ (J1) 

&0where is the usual transformation with the parame~erL t-k ' 

1 (., -O 1 . \ 
A~~"". =. E. k à~ A k - k 02;,\1 e Jo ) f 

A
·i

is the time derivative of the transverse part of the 

electromagnetic field, Jo is the time current componente This 

transformation realized the motion of the Coulomb field together 

with the bound state (that is fonned by this field). In the other 

words, in the Schwinger scheme the very field decomposition into 

the Coulomb and transverse parts has really a covariant structure. 

In the given quantization scheme after the Lorentz transfor­

mation the wave function can be v~itten in the following covariant 

form: 

(o\m'(~lX)\h> ~ eXp{LP'X) \<1l~~)lt~P'J):ihlc~P'\P'). (J2) 

whe~e ~ is the relative coordinate, separated into the longi­

tudinal (l~P')) and transverse (~tr')) parts relative to the 

P' ( , .... ) P'2. l. lP') pl rp'- )/ {l'.zvector -;:;::. \ PO) P , and = P , Z \\)4 = .r \. ~ t" • 

~<.P') _ ":2 _ -:::z~PI) • The expression 02) is the unknown 
"Z:.l.. - L c.\\ 

relativistic wave function of the bound-state (pogitronium) in 

QED. 

In refs/16 , 17/ it was ahown that the Schwinger operator 

quantization is fOllilded by the classical formulation af electro­

dynamics with the explicit solution of the equation for the 

temporal field component (the Gauss equation) 

(}3)o~ Ao= Õ.. À.. ;- ejo (Ao~ ~~ lo)\,+ejo')) 

The Lagrangian and the energy-momentum tensor at t-h e solution 

of eq. (33) are expressed only in the terms of the nonlocal 

variables A7 ' 'VT : 

LeA\.
"T
=Yl~e A~+d~)V' (4)~ t T = y '+ } \j = exptLeõ\ õ,A,) 

the classical relativistic transformations of wbich coincide 

with the Schwinger ones 

s: (~~ C\ A.. ) = 1\ s,-'nw. 

SUch dynamical fixation of the gauge by the explicit solution 

of the Gauss-equation see~s to be a necessary step for the con­

sistent relativistic quantization. According to ref. /19/, an 

explicit solution ia allowed by un oscillator-like potential (20) 

in the framework of an infrared degeneration. In fact the equation 

d~ A\+.= 1
"l, o -J0 

contains the solution 

A: l:l::J = S<l:>~l-9Jr \~_lj\ -~ ~ l ~-~1ejol~)"Jcl30 \J(:t'â)~·l(j) 
which leads, in the Lagrangian 

1-5J.~:t A~ eX) jal:cj = Sd~~d~ct j()l~) Yl:t\d) ~o~d) == 

Sd~~ d6~ ~ L\j l~'dJ-t-\' l(j)~)l jolX) 

1 to the oscillator-like potential (20) used in this paper ag 

a basic interaction for the describing of quarkonium (as a 

I 
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time-equal reIativistic system).Thus, the scheme of reIativistic 

operator quantization not only recognized the covari~lce of the 

bound-state wave functions, but also justifies the use of the 

oscillator-like potential (20) for the quarkoni~~ description. 
6/,

After such relativization for the wave functions of ref./

we can decompose the bilocal meson field; taking into account 

(27)	 and (28) we have


( \/ j d'1 P ç:-~ 2. L)
rm t~](1) = ~ f-... \ lz) l.li)'i {- O (P-Jh 

_\. PX LPX + (35)-le. ;th(2\?)l'{h)Ql,lP)+e..[h l~\-P)tv'th)o.hlP)}. 

Here -:c:::- ~+ O- and X=- .rl:~-~) are the relative and absolute 

coordinates; tvlh) is the nonnalization factor, the crea­

tion and annihilation operators areQh and Q~ wi th the hadron 

quantum numbers h . Uithin such a description the full rela­

tivist.ic bilocal t1time-equaltl quarkonium function can be expres­

sed	 in the followíng factorizable terms 

ml(~\ X) =L ~ K1l;t~)\ :t~~)) ~ :ihl~\:D) ~ ex) + 
h 

(36) 

s; Cit \- r» ~\)<)1 

The expressions (16)-(18), (32), (35) and (36) with the 

solutions ~ and ~ from ref./6/ , describe the ~elativistic 
version of the chiral bilocal theory. It is important to'note 

.)	 that the model proposed in this paper corresponds to taking 

into account the planar diagrams (~/lVcMdecomposition) and ean 

describe, as it, is shovm in refs./11, 18/ the Veneziano amplitude. 

~	 12 

In conneetion with the above formulated eonstruction scheme 

for the unique deseription of the speetroseopy and local chiral 

theory eonsider also the local limite As is known, the ehoiee 
~ 

~ 
;' ,. 'K rv 84(~) for the NJL-potential leads to a local chiral 

1 

il Lagrangian instead of the biloeal Lagranglan (16)0 It is easy 

t~ to	 see that not only sueh a modification of the potential gives') 
local Lagrangians. Really, the biloeal field ~nteresting for us 

is at the sarne time proportional to the potential and to th~ 

Bethe-Salpeter wave funetion whieh degenerates into a ó'-func­

tion in the limit Yo ~ O due to the normalization factor v:' 
Physically.it is equivalent to that at low momenta (and larga 

wave lengths) the biloeal hadrons interaet as poini-like objects 

without strueture. Thus, the eonstrueted model gives a unique 

description of the nonloeal spectroseopy and local chiral. theory. 

4.	 The eonfinement problem 

A ehiral effeetive meson Lagrangian is eonstrueted from QCD 

by using one-Ioop quark diagrama and at the sarne time, the quarks 

as physieal states being removed from the unitarity relation. 

This relation, as is known, is formulated only in terms of 

hadron amplitudes (i.e. one supposes that alI amplitudes of 

color-particle generation are equal to zero, and the probability 

of the to tal hadronization is equal to uni ty) o' 

T-he	 ehiral speetroseopy/4-6/ hiatorieally haa come from the 

problem of explanation of the quark unobse~vability by solving 

the	 Sehwinger-Dyson equation for the"eonfinement" potential. 

However, instead of the eonfinement one meets the phenomenon 

of spontaneous ehiral aymmetry breaking. Really, the propagator 

c;~ in (14), (21) and (28) eannot explain the differenee
:1 

" 
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between the physical (unobservable) quarks and the perturbative 

(bare) ones, used for constructing the loops. The original 

explanation that difference between the bare and physical 

(dressed) quarks has been proposed by t'Hooft/18/ in the frame­

work of two-dimensional chromodynamics, where due to the infrared 

divergencea the physical quarks requier an infinite mass, whereas 

in the loo~ diagrams the infrared divergences cancel out. As it 

may be concluded from the final result, an analogous process of 

"dressing" of the physical quarks is allowed by the scheme used 

here for the relativistic operator quantization based on the 

explicit solution of the Gauss equation. Really, the variables 

(33) are given up to nonsingular phase factors defined by the 

infrared solutions of the Laplace equation 

Ph ("1) -f
i.Q. A~ -= u [x) \. \ e A\.-+ <\. u. lX) 

w p\, dl T
""{ -=- 'U C~) -r ~
 

.z
 
w~ere U l~)::: Q.Xp l \. Àl~)), O~ Àlx.) =- O. 

For the gauge theories SU(2), SUO), S\)(N~/:t) (in 

perturbation theory) in a finite space \x.\ ~ R such nontrivial 

nonsingular factors existo For example, the factor 

u~) t ~) -= exP C~ :c a, ~a, Jt n, I R ) 

(where \ n, \ = O, 1, 2, ••• ) 

gives a smooth map of the spaee Rl~}on to SU(2), while in QED 

such mnooth (nonaingular} factors do not exist. In fact, taking 

account of these factors meana that all physical color..,... fields 

U tn.} -I 
> as if are in aa ext eenaL purely gauge fields .. l . = Ull'\)Õ U lh~

t 
which suppress alI color-particle generation amplitudes, after 

averaging procedure over the infrared degeneration parameters 

14~ 

J
 

,
 
:1 

" 
~ 

(due to the destructive interference of the indicated phase 

factors). In the same time in quark loops alI phase factors 

cancel out, and the loop diagrams are effectively cons~ructed 

from the bare quark propagators. The process of such a dressing 

is described in detail in refs/16,17,19/. 

Conclusion 

In this paper, we disc~ssed, the ,possibility of constructine, 

directly from QCD, the bilocal hadron model which includes 

as limit cases both the local chiral phenomenological Lagrangians 

and the quarkonium spectroscopy with the spontaneous chiral 

syrnmetry breaking. 

That construction has required the relativistic description 

of quarkonium. As the example of QE~ indicates, such a descrip­

tion is possible only in the quantization scheme vmere noncova­

riant decomposition of the gauge field into the Coulomb and 

transverse parts has the covariant character, i.e. Lorentl trnns­

formations simultaneously change the gauge. Such a covariant 

scheme is the Séhwinger relativistic op~rator quantization which 

can be proved by explicit solution of the Gauss equation. Just 

this solution contains, due to infrared ambiguities, an additio­

nal information such as the modified Coulomb law nnd phase factors 

of topological degenerations the interZerence of which suppresses 

the color amplitudes and gives foundation of the unit hadroni­

zntion probability /16,19/. 

This "minimal" modified QCD (QCDm) realised on explicit 

solution of the Gauss equation gives the above relativistic 

bilocnl hadron modelo The formulation of the model is based on 

the asswnption of a small couplin~ constant in the low-energy 

15 
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region ànd	 ienores the formula of asymptotical freedoDl 

rXSlqL)N	 lj?> e'V\ eq2./l\l)]-i which is correct only in the 

region of	 a small o(s • 

In QCDm, like in QED, nonperturbative phenomena can be 

interpreted by the static potential; whereas perturbative ories, 

by the relativistic quark-gluon interaction. 

To clear up the status of QCDm, oneoneeds a calculation 

of these relativistic corrections and a detailed study of the 

chiral s~wletry spontaneous breaking with taking into account 

the 1/Nc. - expansion, the Coulomb interaction, and the quark 

Inasses. In uddition, such a description is interesting for pure 

gluodynomí, c s • 

The authors thank Profs. D.Ebert, A.V.Efremov and 

V.G.Kadyshevski for discussion of the results. One of the authors 

(V.P.) would like to thank Academician N.N.Bogolubov for the 

fruitful discussion of the bilocal field method and Prof. W.Kummer 

for the discussion of the quantization method and pointing out 

the' ref/14/ . 

References 

1.	 A.A.Andrianov, Yu.V.Novozhilov. Phys.Lett., 1985, 15JB, 

422; 

A.A.Andrianov. Phys.Lett., 1985, 157 B, 425. 

p.Simié9 Phys.Rev.Lett., 1~85, 55, 40; phys.Rev• 198ó, 

DJ4, 19 uJ ; 

li!'	 No I. Karchev, A.A.S1avnov. Sov. J• Theor.Math.Phys., 1985, , 

65, 192. 

• 16f 

2.	 T.Eguohi. Phys.Rev. 1976, D14, 2755; 

K.Kikkawa. Progr. Theor.Phys., 1976, 56, 947; 

H.Kleinert. Proc. Erice Lectures, 1976, p.289. 

D.Ebert, M.K. Volkov. Z.Phys.C - Partic1es and Fields, 198), 

16, 205; 

M.K.Vo1kov. Ann.Phys. (N.Y.), 1984, 157, 285; 

A.Dhar, R.Shanker, S.R.Wadia. Phys.Rev., 1985! DJ1, 3256; 

D.Ebert, H.Reinhardt. Nucl. Phys., 1986, B271, 188. 

J.	 S.Weinbe~g. Phys.Rev.Lett., 1967, 18, 188;
 

V.N.Pervushin, M.K.Volkov. Essentially' Nonlinear
 

Lagrangians, Dynami ca l Symmetry and Mesan Physics, Atom­

izdat, M., 1979, 2J9 p. 

4.	 J.lt.Finger, J.E.Ma.ndu1a. Nucl.Phys., 1982, B199, 168. 

5.	 L.Âdler, A. C. Davã s , Nucl. Phys., 1984, B224" 469. 

6.	 A.Le Yaouanc, L.Oliver, P.Pene, J. -C.P~nal. Phys.Rev.,
 

1984, D29, 12JJ; ibid. 1985, DJ1, 1)7.
 

7.	 M.L.Nekrasov, V.E.Rochev. lHEP preprint, 86-186,
 

Serpukhov, 1986.
 

8.	 P.Hasenfratz. CERN preprint, TH-J7J7, 1983; 

G.Schierholz. CERN preprint, TH-4139 , 1985. 

F.R.Klinkhamer, M.B.Halpern. Quark conflnement and 

lib.e.ration, World acienti:fic C.o Pte Ltd., 1985, 250 p. 

9.	 A.A.~kov, I.M.Dremin, A.V.Leonldov. Sov.J.Usp. Fiz. Nauk, 

1984, 14J, J. 

10.	 D.Ebert, H.Reinhardt, V.N.Pervushin, Sovo J.Part.Nuo1., 

1979, 10, 1114. 

11.	 H.Kleinert - In: Proc.lnt.Conf. on High Energy Phys., 

1976, Tbilisi,JINR D1,2-10400, p.C241;Erlc-Leotures,1976. 

12.	 D.Ebert, V.N.Pervushin. In: Proc. Int.Conf. on High 

17 

http:Phys.Rev


l ­

Energy Phys., 1976, Tbi1isi, JINR D1,2-10400,p.C125; 

JIIUt preprint, E2-10020, Dubna, 1976. 

1). G.T.Bodwin, D.F..Yennie, I.l.A.Gregorio. Rev.Mod.Phys., 

1985, 57, 72). 

14.	 ~.Love. ~nn.Phys. (N.Y.), 1978, 113, 153. 

1043;15~	 J.Schwinger. PhYs.Rev., 1962, 125, 

ibid. 1962, 127, 324; ibid. 1962, 122, 2425. 

16. V.N.Pervushin. Riv. Nuovo Cimento,	 1985, 8, N 10. 

17.	 N.p.l1ieva, Nguyen Suan Han, V.N.Perv·ushin. 

Sov.J. Jad.Fiz., 1987, 45, 1169; 

Nguyen Suan Han, v.N.Pervushin. Journal Qf Modern 

Phys1cs (to be pub1ished). 

18.	 G. t'Hooft. Nucl. Pnys., 1974, B12, 461. 

C.G.Cal1an (Jr.), N.Goote, D.J.Gross. Phys.Rev., 1976, 

Dl), 1649. 

19.	 R.A.Azimov, V.N.Pervushin. ~ov.J.Theor.Math.Phys., 1986, 

61,	 )49. 

Received by Publishing Department• on June 16~ 1987. 

,	 18 

t 

ilepBYIDHH B.H., Kanrmc B., CapHKoB H.A. E2-87-43ü 
ilHOH KaK ron~CTOYHoBcKaH qaCTH4a B KXAM 

O~cy~aeTcR B03MO~HOCTh ~opMynHpoBKH KX~, n03BonHw~e~ 

~a'l'b enaaoe omrcauae cPH3HKH anponon BO aceã 3HepI'enlt~eCKO~ 

WKane. ~ paccMaTpHBaeTcH B nonHo~ aHanOI'HH C K3n. B K3n 
HenepTypCSaTHBHble HBneHHH: OCS'bHCHHW'l'CH HCKmOQHTenhHO CTaTH­
~eCKHM nOTeH4HanoM, a ~nH KoppeKTHOI'O penHTHBHCTCKOI'O onH­
caHHH CBHsaHH~X COCTOHHH~ HeoCSxO~HMO penHTHBHcTcKoe onepa­
TopHoe KBaHToBauHe. iloKa3aHo, QTO T8Koe KBaHToaaHHe XPOMO­
gHHaMHKH ~onycKaeT HHcPpaKpaCHble ~oonpe~eneHHH: CTaTHQeCKOI'O 
noreauaana , xoropae MOI'YT onHC8Th cnex'rpocxomuo neI'KHX 
H TH~enb1X KBllpKOHHeB, xapansasre nar-panxaausr , KOHcP~HMeHT 

H aMnnHTY~Y BeHe4HaHO. 

PaCSOTa aunonnena B Jlaõoparopaa 'l'eOpeTHQeCl\O~ cPH3HKH 
Ollill1. 

Ilpenpaar 06'beJJ,HHeHHOrO HHCTHTYTB RJJ,epHblX HCC1Ie.a.OBtUlHA• .lly6HB 1987 

Pervushin V.N., Kallies W., Sarikov N.A. E2-87-430 
Pion as Goldstone Pa~ticle in QCD rn 

The possibility of constructing the QCD-model (QCDm)
that allows us to give a unique deacriptian of th~ hadron 
phyaics at all energies ia diacussed. QCD m ia constructcd 
fully in analogy with QED. In QED, nonperturbntivc pheno­
mena ara explainud solcly by the stutic potential, nnd thc 
rclativiatic operator quuntization ia necesaary for cor­
r.ect relativistic description of. the bound-atates. It is 
shown that such quantization of the chromodynamics allowa 
the infrared redefinitiona of the static potential that 
wou1d exp1ain the spectroscopy of light and heavy quarko­
nia, the chira1 phenomenologica1 Lagrangians, the confine­
ment and the Veneziano amplitude. 

Tha	 invcstigation has been performed at the Laboratory 
of	 Theorcticlll Phy'sicB, JINR. 
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