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Introduction

One of the actual problems of QCD is the foundation of
spontaneous chiral symmetry breaking and the description of the
pion as the Goldstone particle. There are two different approaches
to this problem, .

The first of them is to construct chiral phenomenological

Lagrangians directly from QCD/1/

or from the intermediate low-
-energy quark models of the Nambu-Jona-Lazinio (NJL)/Z/ type.

A major achievement here is, in comparison with the initial chiral
Lagrangian, the reduction of the number of phenomenological para-

/3/

meters . However, these works corroborate the spontaneous sym-
metfy breaking by their numerous results rather than substantiate
this phenomenon., Besides,this approach does not describe the
:S/HL ~ particle - Speétroscopy. The object of critics of the NJL
model 1s also the ultraviolet divergences on which the physical
parameters depend.

The second approach/4-7/ deals with proving spontaneous
symmetry breaking by means of the "confinement" potentials, i.e.
by the potentials to which lattice calculations/B/, heavy quer-

/9/

konium spectrum’”’, ect., testify. The potentials

Kx)= % V(2) Yo 8(xo),

ViRy=- S+ o RV, | %)

Ed

are given in the class of functions opposite to that for poten-

tials corresponding to the NJL model, vhere K(I) ~ 64(\1) .
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Unlike the first approach, these works have proved that the
"increasing” potentials lead to the spontaneous chiral symmetry
breaking with a dynamical quark mass (depending on the momentum),
and explained the light and heavy quarkonium spectrum having a

/6/

rich nonlocal structure . However, the defect of such a poten-
tial approach is a manifestly nonrelativistic formulation that
makes difficult the description of the low-energy dynamics.

The central question, we would like here to discuss, consists
in the following: is it possible to formulate the model which

would consistently unify the nonlocal spectroscopy and local

chiral Lagrangians into the "bilocal chiral Lagrangiasns"?
1. Bilocal Lagrangians

The Lagrangian describing the strong interactions of quark (gq)

and gluon (A) has the form

v — B
L :"z:“ (Fpo) + f’\ﬁigag 5" %5{ Sag %:B

1)
A AB B

where (A B), (@, 6) and (o, F; MoV o) are the color,
flavour and space-time indices, respectively, m d\ag (mb,n;mh)
is the bare quark mass matrix.

We use the effective action where gluon-quark interactions

are taken into account by the quark-quark "potential"

Sete = - (9, G. )+ £ (93, Kq7q)

(2)

/10/

Here the notation of review is used,

Ul (e Y 8 ey,
(@, 6o ) = fatedly Geo Gley qup,
7,Kq9)= [etedlyddl, 89 8
(99> %99 4 VI

(3)

KL N,, L N(OC{ 31 X ‘32) CINkyiL) qLQgci) (4)

(Liz (AL, o), N=(B, 6, pe), L=‘»Z)
KL\M\ L;_szc“ Yiloeaya) = 8(1‘@& 80,_61&3}”)*&1(89)&2};
(Z}>A( B, ()%)A1%1 82%1_31) gqirz_’g‘} (-D)A\) K’JQ1~X.‘4) .

€5)

Since {N }@{N*}) {_ﬁ}@{N "'1} , one can decompose

the potential K in the color singlet and the (N -‘1) plet com-

ponents through the projective operators P.\ and Pch“f

N AR A B
E(ﬁ) 4 1( }\_\:)1 1_ { Nc_"* p - _‘_ p (6)
s * 2 T2 Nc_ A Mot ).

In the following, we shall consider only the singlet chanmel,

i.e. K= K1 ywhere

(P1)A181lALB‘ 7

S A B, gAzBZ

For our ‘aim of unification of the spectroscopy and chiral
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hadron dynamics in the framework of the NJL model it is useful
to introduce the colorless bilocal variables q7l(m;5)as sugges-—
ted in refs./11’12/ (see also review/10/). In these variables

the four-quark part of the action (2) is written as

exP{,% (q qa qu)}=gd’7n QXP{"L_-Z:(’Yn, K_ln'o-&i (qq%)}(g)

where ey ‘ ‘ ‘ '

[’Yn DC,‘d)] ngoljs: th:o{ g»(x,g) + ¥s p\kx,a) + Py V/‘: (e y) +
(9)

s i)« S 1] Ty e g (%ae
dM=dSdPAVAALT » S. P, V, A, aa T are, res-

pectively, scalar, pseudoscalar vector, axial and tensgor parts
ot M. Substituting (8) into the generating functional for the
Green fﬁnctions with the action Ese¥¥ at ¥(= k:1,

Z[q,ﬁ,ﬂ:&dqc\q‘ exp (L SQHMSM,F@]) a0
( VL, Vi, J  are the sources)

and performing integration over the quark fields one can express

Seg only in terms of the bilocal fields m, .
Z1v.5.3) =jcl’m exp (¢ Segg M)+ ST, 7,3|M))» @
where '

Secs(m>= "%(’WI,K—"YYI)— vtrfn (G:Jf m) ) (12)

Remark, the effective action can be written in the variables

? M = m + Y,}‘n too,
Sege(MY= - L ( (M=), K (M=) iy (e M) . (1)

4

The classical equation for the fields b4 , due to

® Sepe (M) _
M

is the well-known Schwinger-Dyson equation,

2 = Y/’\'\o“LK\Gzy (14)
where EE is the solution of (14) and
Galxay) = —1— §tamy) .
-1y
Equation (14) defines the spectrum of the fermions and is
the main tool of the investigation of the spontaneous chiral
symmetry breaking phenomenon,
The second variation of ESe¥$ over P4 at the minimum
point,M=3 , defines the spectrum of mesons, i.e. the second
variation condition gives the Bethe—églpeter equation for the

vertex function of the quark-antiquark bound state

/Yn.‘ = K1 G}_ 'Yﬂ’ Gz {15)
with M'= M= .

The effective action in terms of the bilocal meson fields

variables is given by

Sege(M) = §(3+M) = () + S (M)+S (M), e

'
where ’YYL is a solution of .(15) and

Stree = - 5 (M KM~ S G MG, an
k X
St = ¢ g (j% KGZ ’YYL'] ' (18)
, =3
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The actions (17) and (18) on the solutions of (13) and (15)

contain the whole dynamics of the mesons defined directly froﬁ QCD.
The next step in constructing our model is to fix the form

of the quark-quark interaction potential. We shall here concent-

rate on the potential

Ki)= 3y Seey Vi,

(19)

VR = - 25 4V, | %),
| 5)
e
O(S—:.q—?—s—r’:o.:)), .

(20)

(L) ™ = (250-300) MeV,

which qualitatively reflects the spectroscopy light and heavy
quarkonla/6 9/. For light quarks (YY} L (4 \J ) ss ) , with
the compton length much larger than the "sizes" of the potential,
the main role plays the 0501llator potential, \/ \Dc\ ; while

for heavy quarks (Yn ( \V‘> ) the Coulomb potential, ffi. .

1)
2. The oscillator potential

Let us consider an oscillator potential. In ref./6/ for this
potential solutions of the Schwinger-Dyson (14) and Bethe-Salpeter
(15) equations were found in the rest frame of the mesons, for
the magsless quarks’f}\°=Ao .

The Schwinger-Dyson equation (14) in the momentum represen-

tation can be written as

XS (21)
Ed\?(fbf‘) S Gax )q (K >o(ol ]53&51 q { p’-\—% ZLP*(} 0(1531

and substitution

o<y

Z (po.B) = EpysinQ(py + i Ui(p)(es\?ap)-p] (22)

1’l

(ritn p=]p1)

leads to an equation of the sine-Gordon-type for the function

S
%Vo(p“\é?‘)'=.,zp"’gm\8- 1V, sin 29 (23)

(the prime corresponds to the P ~derivative),

where © can be expressed via the solution of (23)

Epy= peesd- 1, # o9 - LV, (4)?, (24)

The solution of equation (23) has the following asymptotic
behaviour/G/

S(p>oo) ~ exp Q— 2%5 P>,

E(P——)OO) ~ P ,

(25)

Yp=~o) ~ F+cp , (Cx-2)

- 113
E KF)-% ()) ~ - %% (:Z \(0 3

-1
where P—=- (%— Vo) P is the dimensionless variable,
1/3

S(pao)) ~ 22V, ,
‘ P \ 2 (26)

E(P‘:’m) -~ PQXP£ .7_ P3/z.)

In ref./6/ it has been shown that this solution is more energetic-



~favourable than the trivial solution :E,== O ; it leads to

»
the spontaneous chiral symmetry breaking and to the quark mass

vanishing at large momenta.

In ref./6/ the Bethe-Salpeter equation,

G;:f@; =1 K, oL (27)

has been solved for the wave function J( connected Wwith the

bilocal meson field, qui, (see eqs. (15), (27)), by the relation
. - - )
’YYL'—GZD(GZ“:»K«D(- (28)

In particular, the pion wave function coincides with the dynamical

quark mass function (see ref./é/),

—~

Xy (B ~ s sin S(p). (29)
The spontaneous chiral symmetry breaking induces a large mass
splitting of N - and S) - mesons without any spin-spin interaction.
In ref./G/ by neglecting the Coulomb interaction results have
beeg obtained, consistent quliftatively with the experimental mass
spectrum of mesons. As we have noted, taking account of the
Coulomb interaction (20) is dictated by the spectroscopy of heavy
/9/ :

quarkoniua

Usually, the calculation of the meson mass is made in the

rest frame, where

ColM' @\X)|hy ~eXP(L P?XJ K,(Z2) fh(flsaf“’) 5R). G0

The defect of ref./e/ ig the incorrect description of a moving

quarkonium which leads to a wrong dispersion law (R(B-;o)«.-z\‘.m).

Naturally, such a solution one cannot use for describing the
meson relativistic interaction by means of the effective bilocal
Lagrangiane.

Let us consider QED as an example in order to give a correct

description of the quarkonium, in analogy with the positronium.

3. Relativistie¢ description of quarkonium and chiral
bilocal Lagrangian

There is an opinion that the relativistic description of
positronium in QED could be achieved by passing to the
manifest-relativistic-covariant gauge or by taking into account
the higher orders of perturbation theory., But in the relativistic
gauge there exists an unsolved problem of equal-time bound—btaées
of two particles.

In recent years, the description of bound-states in QED has
been realized only in the Coulomb gauge/13’14{51gnificant results
have been got in the calculétion of corrections up to the order
()(5(6). However, by improving the accuracy of calculations in
the Coulomb gauge one camnot solve the problem of the relativistic
description. The correct statement of thie problem consiéts in
the way of restoring, within a given .accuracy, the relativistic
covariance of the positronium wave function.

It turns out, that this can be made ip the scheme of quan-
tization of gauge fields in which the Poincare algebra is fulfilled
at the level of operators rather than at the level of matr%x
elements alone.

Such a quantization scheme is formulated and described in
detail in the works/15/ by Schwinger. It differs from the conven-

tional one by relativistic transformations of the spinors accom-—

panied by an additional gauge rotation:



0 . The lagrangian and the energy-momentum tensor at the solution
S0 (x) = 5 %« te Ny WV, s .
of eq. (33) are expressed only in the terms of the nonlocal

T T
0 . .
where SL is the usual transformation with the parameter E,k . , variables A{. R

LAY v | e Al =V (ie AL+ ) V) (36)
Nsaw. = Ek TQA“_B\‘TQJ")’ - e A
. chw. 4 R , VT oy \j—exP(Le'b"-k'b“AL>

T
ﬁ\ is the time derivative of the transverse part of the

electromagnetic field, J“ is the time current component. This the classical relativistic transformations of which coincide

with the Schwinger ones

ﬁb /\ \) /\ Schw.

Such dynamlcal fixation of the gauge by the explicit solution

transformation realized the motion of the Coulomb field together
with the bound state (that is formed by this field). In the other %;
words, in the Schwinger scheme the very field decomposition into Fb‘

the Coulomb and transverse parts has really a covariant structure.
of the Gauss-equation seelms to be a necessary step for the con-

/19/

sistent relativistic quantization. According to ref. y an

In the given gquantization scheme after the Lorentz transfor-

mation the wave function can be vwritten in the following covariant

form: explicit solution is allowed by an oscillator-like potential (20)

p in the framework of an infrared degeneration. In fact the equation
{o \m(zl)()\h> ~exp(i P'X) K ( (P)lz(pb))uzi )\p) (32) S AT i

where £ is the relative coordinate, separated into the longi- contains the solution

tudinal (Z‘P))and transverse( (®") parts relative to the vV

vector P'=(Py, B) . ana P'L p ZWn=Pa (P'2)/ P2, Ay ()= j&z’[ . ilg( -9 edo‘}j)ja\]( )(Ma)

55—3\ €

Py (P . The expression (32) is the unkmow
Z, =& - E\q xp (32) own
relathlstlc wave function of the bound-state (positronium) in which leads, in the lLagrangian

ED. T i . , '_
@ Q(Bx AL i) ={d3d% 1V 2,y 1Y) =
/16,11/ 2 ° ° ° °
In refs > it was shown that the Schwinger operator
quantization is founded by the classical formulation of electro- :
e &y IV e+ x| 3.0
- . . ? ]
dynamics with the explicit solution of the equation for the L

temporal field component (the Gauss equation)

2 . . A \ .
N()k Ao= 0. A~ eJe A°=§E (b;A;*edQ) (33)

to the oscillator-like potential (20) wused in this paper ag

a basic interaction for the describing of quarkonium (as a

' 10 11 '




time~equal relativistic system)sThus, the scheme of relativistic

operator quantization not only recognized the covariance of the
bound-state wave functions, but also justifies the use of the
oscillator-like potential (20) for the quarkonium description.

: /6/

After such relativization for the wave functions of ref. s

we can decompose the bilocal meson field; taking into account

(27) and (28) we have

rm(x;p—& = [R5 T

(35)

EMRELPRILIN AR

Here Z= Zx\,-\-\é, and X— = x—a) are the relative and absolute
coordinates; /th) is the normalization factor, the crea-
tion and annihilationoperators areahand Clh with the hadron
quantum numbers h . Vithin such a description the full rela-
tivisﬁ}c bilocal "time-equal" quarkonium function can be expres-

sed in the following factorizable terms

M= Z K E LD R0+
(36)

X 2)-0) B00).

The expressions (16)-(18), (32), (35) and (36) with the
golutions :Z' and ;K“ from ref./6/ , describe the relativistic
version of the chiral bilocal theory. It is important to note
that the model proposed in this paper corresponds to taking
into account the planar diagrams (4/7deecomposition) and can

describe, as it is shovm in refs./11’18/ the Veneziano amplithde.

® 12

-

L ——
—PE o+ T

In connection with the above formulated construction scheme

Afor the unique description of the spectroscopy and local chiral

theory consider also the local limit. As is known, the choice
K1,\, 84(2) for the NJL-potential leads to a local chiral
lagrangian instead of the bilocal lLagrangian (16). It is easy

to see that not only such a modification of the potential gives
local Lagrangians., Really, the bilocal field interesting for us
is at the same time proportional to the potentiaf and to the
Bethe~Salpeter wave function which degenerates into a 5\~func~
tion in the limit \Q-» 0 due to the normalization factor \/-‘

[
Physically,it is equivalent to that at low momenta (and large

wave lengths) the bilocal hadrons interact as point-like objects
without structure. Thus, the constructed model gives a unique

description of the nonlocal spectroscopy and local chiral theory.
4. The confinement problem

A chiral effective meson Ilagrangien is constructed from QCD
by using one-loop quark diagrems and at the same time, the quarks
as physical states being removed from the unitarity relation.
This relation, as is known, is formulated only in terms of
hadron emplitudes (i.e. one supposes that all amplitudes of
color-particle generation are equal to zero, and the probability
of the total hadronization is equal to unity).

The chiral spectroscopy/4-6/ historically has come from the
problem of explanation of the quark unobservability by solving
the Schwinger-Dyson equation for the "confinement" potential.
However, instead of the confinement one meets the phemomenon
of spontaneous chiral symmet;y breaking. Really, the propagator
C;IL in (14), (21) and (28) cannot explain the difference

i3



between the physical (unobservable) quarks and the perturbative
(bare) ones, used for constructing the loops. The original
explanation that difference between the bare and physical
(dressed) quarks has been proposed by t'Hooft/18/ in the frame-
work of two~dimensional chromodynamics, where due to the infrared
divergences the physical quarks requier an infinite mass, whereas
in the loop diagrams the infrared divergences cancel out. As it
may be concluded from the final result, an analogous process of
"dresging"” of the physical quarks is allowed by the scheme used
here for the relativistic operator quentization based on the
explicit solution of the Gauss equation. Really, the variables
(33) are given up to nonsingular phase factors defined by the

infrared solutions of the Laplace equation

o )
te A = u (e AT +) U@

VP e VT
where  1(%) = QXP (¢ X(_x)), ‘b-?; ALY =0.

For the gauge theories SU(2), sU(3), SV (V%2) (in
perturbation theory) in a finite space la:\s ¥2 such nontrivial

nonsingular factors exist. For example, the factor
Ugy (x) = exp (i o T TN/R)

(where \TL\ =0, 1, 25004)
gives a smooth map of the space F{K&)on to SU(2), while in QED
such smooth (nonsingular} factors do not exist. In fact, taking
account of these factors means that all physical color,. fields
-1 (n) -t
as if are in anexternal purely gauge fields \}- = U D Uin
4 ) 6 Hn)
which suppress all color-particle generation amplitudes, after

averaging procedure over the infrared degeneration parameters

14

SR A

(due to the destructive interference of the indicated phase
factors). In the seme time in quark loops all phase factors
cancel out, and the loop diagrams are effectively consﬁructed
from the bare quark propagators. The process of such a dressing

/16,17,19/_

is described in detail in refs

Conclusion

In this paper, we discussed‘the'possibilify of constructing,
directly from QCD, the bilocal hadron model which includes
as limit cases both the local chiral phenomenological Lagrangians
and the querkonium spectroscopy with the spontaneous chiral
symmetry breaking.

That construction has required the relativistic description
of quarkonium, As the example of QEQ indicates, such a descrip~
tion is possible only in the quantization scheme vhere noncova-
riant decomposition of the gauge field into the Coulomb and
transverse par%s has the covariant character, i.e. Lorentz trans-
formations simul taneously change the gauge. Such a covariant
gcheme is the Schwinger relativistic operator gquantization which
can be proved by explicit solution of the Gauss equation. Just
this solution contains, due to infrared ambiguities, an additio-
nal information such as the modified Coulomdb law and phase factors
of topological degenerations the interference of which suppresses
the color amplitudes and gives foundation of the unit hadroni-
zation probability /16’19/.

This "minimal" modified QCD (QCDm) realised on explicit
golution of the Gauss equation gives the above relativistic
bilocal hadron model. The formulation of the model is based on

the assunption of a small coupling constant in the low-energy

15
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region and ignores the formula of asymptotical freedon
Ay (O\Z)N LS@ Q‘V\ (-qz/,\2.>:\_1 which is correct only in the
region of a small o{s .

In QCDm, like in QED, nonperturbative phenomena can be
interpreted by the static potential; whereas perturbative ones,
by the relativistic quark-gluon interaction.

To clear up the status of QCDm, one'needs a calculation
of these relativistic corrections and a detailed study of the
chiral symmetry spontaneous breaking with taking into account
the ‘1//V£ - expansion, the Coulomb interaction, end the quark
masses. In addition, such a description is interesting for pure
gluodynamics.
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MepBymnx B.H,, Kamnuc B., Capuxos H.A.
[lMOH kaK romgcroyHoBcKas udacrtHua B KXy
OGcyxpaeTca BO3MOXHOCTbL GopMynupoBkH KX, nosBonswuel
[arTp egHHoe onMcaHHe QUSHKM agpPOHOB BO BCell 3HepreTHYecKoMd
wkane., KX paccmarpuBaercsa B nonHo# asamoruu c K3O. B K91
HenepTypOaTHBHbE ABNEHHA OOBACHAWNTCH HCKIWYATENbHO CTaTH-
YeCKHM noTeHuuanoM, a AJlA KOPPeKTHOI'O DeJATHBHCTCKOro OIHu-
caHNfl CBASAHHBIX COCTOAHMA HeoOGXOAMMO peJIATHBHCTCKOe onepa-
TOpHOe kBaHToBaiHe, [lokasaHo, UTO Takoe KBaHTOBaHHe XpPOMo-
AMHAMHKM HonyckaeT HHppaKpacCHele OJoomnpefelleHMA CTATHYeCKOro

noTeHuuana, KoTopble MOI'yT ONHCATb CHEKTPOCKOMHW JIerKMX

H TAKEILX KBAPKOHHEB, KHpPalbHbie JarpaHxdalbl, KoHpaltHMeHT
H aMmnuTyny BeHeumaHo,
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Pabora BuimonHeHa B JlaGopaTOpHH TeopeTHYeCKON GHIMKH
OusH.
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The possibility of constructlng the QCD-model (QCDm)
that allows us to give a unique description of the hadron
physice at all energies is discussed. QCD, is constructed
fully in analogy with QED, In QED, nonperturbative pheno=
mena are explained solely by the static potential, and the
relativistic operator quuantization is necessary for cor-
rect relativistic description of the bound-states. It is
shown that such quantization of the chromodynamics allows
the infrared redefinitions of the static potential that
would explain the spectroscopy of light and heavy quarko-
nia, the chiral phenomenological Lagrangians, the confine-
ment and the Veneziano amplitude.
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